sched: disable forced preemption by default
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
a4ec24b4 99#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
5517d86b
ED
113#ifdef CONFIG_SMP
114/*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119{
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121}
122
123/*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128{
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131}
132#endif
133
e05606d3
IM
134static inline int rt_policy(int policy)
135{
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139}
140
141static inline int task_has_rt_policy(struct task_struct *p)
142{
143 return rt_policy(p->policy);
144}
145
1da177e4 146/*
6aa645ea 147 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 148 */
6aa645ea
IM
149struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152};
153
29f59db3
SV
154#ifdef CONFIG_FAIR_GROUP_SCHED
155
29f59db3
SV
156struct cfs_rq;
157
158/* task group related information */
4cf86d77 159struct task_group {
29f59db3
SV
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
5cb350ba
DG
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
29f59db3
SV
167};
168
169/* Default task group's sched entity on each cpu */
170static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171/* Default task group's cfs_rq on each cpu */
172static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
173
9b5b7751
SV
174static struct sched_entity *init_sched_entity_p[NR_CPUS];
175static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
176
177/* Default task group.
3a252015 178 * Every task in system belong to this group at bootup.
29f59db3 179 */
4cf86d77 180struct task_group init_task_group = {
3a252015
IM
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
183};
9b5b7751 184
24e377a8 185#ifdef CONFIG_FAIR_USER_SCHED
3a252015 186# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 187#else
3a252015 188# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
189#endif
190
4cf86d77 191static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
192
193/* return group to which a task belongs */
4cf86d77 194static inline struct task_group *task_group(struct task_struct *p)
29f59db3 195{
4cf86d77 196 struct task_group *tg;
9b5b7751 197
24e377a8
SV
198#ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200#else
4cf86d77 201 tg = &init_task_group;
24e377a8 202#endif
9b5b7751
SV
203
204 return tg;
29f59db3
SV
205}
206
207/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208static inline void set_task_cfs_rq(struct task_struct *p)
209{
4cf86d77
IM
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
212}
213
214#else
215
216static inline void set_task_cfs_rq(struct task_struct *p) { }
217
218#endif /* CONFIG_FAIR_GROUP_SCHED */
219
6aa645ea
IM
220/* CFS-related fields in a runqueue */
221struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
224
6aa645ea 225 u64 exec_clock;
e9acbff6 226 u64 min_vruntime;
6aa645ea
IM
227
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
233 */
234 struct sched_entity *curr;
ddc97297
PZ
235
236 unsigned long nr_spread_over;
237
62160e3f 238#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
240
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
244 *
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
247 */
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 249 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 250 struct rcu_head rcu;
6aa645ea
IM
251#endif
252};
1da177e4 253
6aa645ea
IM
254/* Real-Time classes' related field in a runqueue: */
255struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
259};
260
1da177e4
LT
261/*
262 * This is the main, per-CPU runqueue data structure.
263 *
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
267 */
70b97a7f 268struct rq {
6aa645ea 269 spinlock_t lock; /* runqueue lock */
1da177e4
LT
270
271 /*
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
274 */
275 unsigned long nr_running;
6aa645ea
IM
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 278 unsigned char idle_at_tick;
46cb4b7c
SS
279#ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281#endif
495eca49 282 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
283 unsigned long nr_load_updates;
284 u64 nr_switches;
285
286 struct cfs_rq cfs;
287#ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 289#endif
6aa645ea 290 struct rt_rq rt;
1da177e4
LT
291
292 /*
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
297 */
298 unsigned long nr_uninterruptible;
299
36c8b586 300 struct task_struct *curr, *idle;
c9819f45 301 unsigned long next_balance;
1da177e4 302 struct mm_struct *prev_mm;
6aa645ea 303
6aa645ea
IM
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
306
307 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
529c7726 310 u64 tick_timestamp;
6aa645ea 311
1da177e4
LT
312 atomic_t nr_iowait;
313
314#ifdef CONFIG_SMP
315 struct sched_domain *sd;
316
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
0a2966b4 320 int cpu; /* cpu of this runqueue */
1da177e4 321
36c8b586 322 struct task_struct *migration_thread;
1da177e4
LT
323 struct list_head migration_queue;
324#endif
325
326#ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
329
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
2d72376b 334 unsigned long yld_count;
1da177e4
LT
335
336 /* schedule() stats */
337 unsigned long sched_switch;
2d72376b 338 unsigned long sched_count;
1da177e4
LT
339 unsigned long sched_goidle;
340
341 /* try_to_wake_up() stats */
2d72376b 342 unsigned long ttwu_count;
1da177e4 343 unsigned long ttwu_local;
b8efb561
IM
344
345 /* BKL stats */
2d72376b 346 unsigned long bkl_count;
1da177e4 347#endif
fcb99371 348 struct lock_class_key rq_lock_key;
1da177e4
LT
349};
350
f34e3b61 351static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 352static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 353
dd41f596
IM
354static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
355{
356 rq->curr->sched_class->check_preempt_curr(rq, p);
357}
358
0a2966b4
CL
359static inline int cpu_of(struct rq *rq)
360{
361#ifdef CONFIG_SMP
362 return rq->cpu;
363#else
364 return 0;
365#endif
366}
367
20d315d4 368/*
b04a0f4c
IM
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
20d315d4 371 */
b04a0f4c 372static void __update_rq_clock(struct rq *rq)
20d315d4
IM
373{
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
378
b04a0f4c
IM
379#ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381#endif
20d315d4
IM
382 /*
383 * Protect against sched_clock() occasionally going backwards:
384 */
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
389 /*
390 * Catch too large forward jumps too:
391 */
529c7726
IM
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
20d315d4
IM
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
402 }
403 }
404
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
b04a0f4c 407}
20d315d4 408
b04a0f4c
IM
409static void update_rq_clock(struct rq *rq)
410{
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
20d315d4
IM
413}
414
674311d5
NP
415/*
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 417 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
418 *
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
421 */
48f24c4d
IM
422#define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
424
425#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426#define this_rq() (&__get_cpu_var(runqueues))
427#define task_rq(p) cpu_rq(task_cpu(p))
428#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
429
bf5c91ba
IM
430/*
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
432 */
433#ifdef CONFIG_SCHED_DEBUG
434# define const_debug __read_mostly
435#else
436# define const_debug static const
437#endif
438
439/*
440 * Debugging: various feature bits
441 */
442enum {
bbdba7c0
IM
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
06877c33 445 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 446 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
bf5c91ba
IM
448};
449
450const_debug unsigned int sysctl_sched_features =
bf5c91ba 451 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7 452 SCHED_FEAT_START_DEBIT *1 |
06877c33 453 SCHED_FEAT_TREE_AVG *0 |
ce6c1311
PZ
454 SCHED_FEAT_APPROX_AVG *0 |
455 SCHED_FEAT_WAKEUP_PREEMPT *1;
bf5c91ba
IM
456
457#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
458
e436d800
IM
459/*
460 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
461 * clock constructed from sched_clock():
462 */
463unsigned long long cpu_clock(int cpu)
464{
e436d800
IM
465 unsigned long long now;
466 unsigned long flags;
b04a0f4c 467 struct rq *rq;
e436d800 468
2cd4d0ea 469 local_irq_save(flags);
b04a0f4c
IM
470 rq = cpu_rq(cpu);
471 update_rq_clock(rq);
472 now = rq->clock;
2cd4d0ea 473 local_irq_restore(flags);
e436d800
IM
474
475 return now;
476}
a58f6f25 477EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 478
1da177e4 479#ifndef prepare_arch_switch
4866cde0
NP
480# define prepare_arch_switch(next) do { } while (0)
481#endif
482#ifndef finish_arch_switch
483# define finish_arch_switch(prev) do { } while (0)
484#endif
485
486#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 487static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
488{
489 return rq->curr == p;
490}
491
70b97a7f 492static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
493{
494}
495
70b97a7f 496static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 497{
da04c035
IM
498#ifdef CONFIG_DEBUG_SPINLOCK
499 /* this is a valid case when another task releases the spinlock */
500 rq->lock.owner = current;
501#endif
8a25d5de
IM
502 /*
503 * If we are tracking spinlock dependencies then we have to
504 * fix up the runqueue lock - which gets 'carried over' from
505 * prev into current:
506 */
507 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
508
4866cde0
NP
509 spin_unlock_irq(&rq->lock);
510}
511
512#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 513static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
514{
515#ifdef CONFIG_SMP
516 return p->oncpu;
517#else
518 return rq->curr == p;
519#endif
520}
521
70b97a7f 522static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
523{
524#ifdef CONFIG_SMP
525 /*
526 * We can optimise this out completely for !SMP, because the
527 * SMP rebalancing from interrupt is the only thing that cares
528 * here.
529 */
530 next->oncpu = 1;
531#endif
532#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
533 spin_unlock_irq(&rq->lock);
534#else
535 spin_unlock(&rq->lock);
536#endif
537}
538
70b97a7f 539static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
540{
541#ifdef CONFIG_SMP
542 /*
543 * After ->oncpu is cleared, the task can be moved to a different CPU.
544 * We must ensure this doesn't happen until the switch is completely
545 * finished.
546 */
547 smp_wmb();
548 prev->oncpu = 0;
549#endif
550#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
551 local_irq_enable();
1da177e4 552#endif
4866cde0
NP
553}
554#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 555
b29739f9
IM
556/*
557 * __task_rq_lock - lock the runqueue a given task resides on.
558 * Must be called interrupts disabled.
559 */
70b97a7f 560static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
561 __acquires(rq->lock)
562{
70b97a7f 563 struct rq *rq;
b29739f9
IM
564
565repeat_lock_task:
566 rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (unlikely(rq != task_rq(p))) {
569 spin_unlock(&rq->lock);
570 goto repeat_lock_task;
571 }
572 return rq;
573}
574
1da177e4
LT
575/*
576 * task_rq_lock - lock the runqueue a given task resides on and disable
577 * interrupts. Note the ordering: we can safely lookup the task_rq without
578 * explicitly disabling preemption.
579 */
70b97a7f 580static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
581 __acquires(rq->lock)
582{
70b97a7f 583 struct rq *rq;
1da177e4
LT
584
585repeat_lock_task:
586 local_irq_save(*flags);
587 rq = task_rq(p);
588 spin_lock(&rq->lock);
589 if (unlikely(rq != task_rq(p))) {
590 spin_unlock_irqrestore(&rq->lock, *flags);
591 goto repeat_lock_task;
592 }
593 return rq;
594}
595
a9957449 596static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
597 __releases(rq->lock)
598{
599 spin_unlock(&rq->lock);
600}
601
70b97a7f 602static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
603 __releases(rq->lock)
604{
605 spin_unlock_irqrestore(&rq->lock, *flags);
606}
607
1da177e4 608/*
cc2a73b5 609 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 610 */
a9957449 611static struct rq *this_rq_lock(void)
1da177e4
LT
612 __acquires(rq->lock)
613{
70b97a7f 614 struct rq *rq;
1da177e4
LT
615
616 local_irq_disable();
617 rq = this_rq();
618 spin_lock(&rq->lock);
619
620 return rq;
621}
622
1b9f19c2 623/*
2aa44d05 624 * We are going deep-idle (irqs are disabled):
1b9f19c2 625 */
2aa44d05 626void sched_clock_idle_sleep_event(void)
1b9f19c2 627{
2aa44d05
IM
628 struct rq *rq = cpu_rq(smp_processor_id());
629
630 spin_lock(&rq->lock);
631 __update_rq_clock(rq);
632 spin_unlock(&rq->lock);
633 rq->clock_deep_idle_events++;
634}
635EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
636
637/*
638 * We just idled delta nanoseconds (called with irqs disabled):
639 */
640void sched_clock_idle_wakeup_event(u64 delta_ns)
641{
642 struct rq *rq = cpu_rq(smp_processor_id());
643 u64 now = sched_clock();
1b9f19c2 644
2aa44d05
IM
645 rq->idle_clock += delta_ns;
646 /*
647 * Override the previous timestamp and ignore all
648 * sched_clock() deltas that occured while we idled,
649 * and use the PM-provided delta_ns to advance the
650 * rq clock:
651 */
652 spin_lock(&rq->lock);
653 rq->prev_clock_raw = now;
654 rq->clock += delta_ns;
655 spin_unlock(&rq->lock);
1b9f19c2 656}
2aa44d05 657EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 658
c24d20db
IM
659/*
660 * resched_task - mark a task 'to be rescheduled now'.
661 *
662 * On UP this means the setting of the need_resched flag, on SMP it
663 * might also involve a cross-CPU call to trigger the scheduler on
664 * the target CPU.
665 */
666#ifdef CONFIG_SMP
667
668#ifndef tsk_is_polling
669#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
670#endif
671
672static void resched_task(struct task_struct *p)
673{
674 int cpu;
675
676 assert_spin_locked(&task_rq(p)->lock);
677
678 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
679 return;
680
681 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
682
683 cpu = task_cpu(p);
684 if (cpu == smp_processor_id())
685 return;
686
687 /* NEED_RESCHED must be visible before we test polling */
688 smp_mb();
689 if (!tsk_is_polling(p))
690 smp_send_reschedule(cpu);
691}
692
693static void resched_cpu(int cpu)
694{
695 struct rq *rq = cpu_rq(cpu);
696 unsigned long flags;
697
698 if (!spin_trylock_irqsave(&rq->lock, flags))
699 return;
700 resched_task(cpu_curr(cpu));
701 spin_unlock_irqrestore(&rq->lock, flags);
702}
703#else
704static inline void resched_task(struct task_struct *p)
705{
706 assert_spin_locked(&task_rq(p)->lock);
707 set_tsk_need_resched(p);
708}
709#endif
710
45bf76df
IM
711#if BITS_PER_LONG == 32
712# define WMULT_CONST (~0UL)
713#else
714# define WMULT_CONST (1UL << 32)
715#endif
716
717#define WMULT_SHIFT 32
718
194081eb
IM
719/*
720 * Shift right and round:
721 */
cf2ab469 722#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 723
cb1c4fc9 724static unsigned long
45bf76df
IM
725calc_delta_mine(unsigned long delta_exec, unsigned long weight,
726 struct load_weight *lw)
727{
728 u64 tmp;
729
730 if (unlikely(!lw->inv_weight))
194081eb 731 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
732
733 tmp = (u64)delta_exec * weight;
734 /*
735 * Check whether we'd overflow the 64-bit multiplication:
736 */
194081eb 737 if (unlikely(tmp > WMULT_CONST))
cf2ab469 738 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
739 WMULT_SHIFT/2);
740 else
cf2ab469 741 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 742
ecf691da 743 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
744}
745
746static inline unsigned long
747calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
748{
749 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
750}
751
1091985b 752static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
753{
754 lw->weight += inc;
45bf76df
IM
755}
756
1091985b 757static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
758{
759 lw->weight -= dec;
45bf76df
IM
760}
761
2dd73a4f
PW
762/*
763 * To aid in avoiding the subversion of "niceness" due to uneven distribution
764 * of tasks with abnormal "nice" values across CPUs the contribution that
765 * each task makes to its run queue's load is weighted according to its
766 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
767 * scaled version of the new time slice allocation that they receive on time
768 * slice expiry etc.
769 */
770
dd41f596
IM
771#define WEIGHT_IDLEPRIO 2
772#define WMULT_IDLEPRIO (1 << 31)
773
774/*
775 * Nice levels are multiplicative, with a gentle 10% change for every
776 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
777 * nice 1, it will get ~10% less CPU time than another CPU-bound task
778 * that remained on nice 0.
779 *
780 * The "10% effect" is relative and cumulative: from _any_ nice level,
781 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
782 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
783 * If a task goes up by ~10% and another task goes down by ~10% then
784 * the relative distance between them is ~25%.)
dd41f596
IM
785 */
786static const int prio_to_weight[40] = {
254753dc
IM
787 /* -20 */ 88761, 71755, 56483, 46273, 36291,
788 /* -15 */ 29154, 23254, 18705, 14949, 11916,
789 /* -10 */ 9548, 7620, 6100, 4904, 3906,
790 /* -5 */ 3121, 2501, 1991, 1586, 1277,
791 /* 0 */ 1024, 820, 655, 526, 423,
792 /* 5 */ 335, 272, 215, 172, 137,
793 /* 10 */ 110, 87, 70, 56, 45,
794 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
795};
796
5714d2de
IM
797/*
798 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
799 *
800 * In cases where the weight does not change often, we can use the
801 * precalculated inverse to speed up arithmetics by turning divisions
802 * into multiplications:
803 */
dd41f596 804static const u32 prio_to_wmult[40] = {
254753dc
IM
805 /* -20 */ 48388, 59856, 76040, 92818, 118348,
806 /* -15 */ 147320, 184698, 229616, 287308, 360437,
807 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
808 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
809 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
810 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
811 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
812 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 813};
2dd73a4f 814
dd41f596
IM
815static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
816
817/*
818 * runqueue iterator, to support SMP load-balancing between different
819 * scheduling classes, without having to expose their internal data
820 * structures to the load-balancing proper:
821 */
822struct rq_iterator {
823 void *arg;
824 struct task_struct *(*start)(void *);
825 struct task_struct *(*next)(void *);
826};
827
828static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
829 unsigned long max_nr_move, unsigned long max_load_move,
830 struct sched_domain *sd, enum cpu_idle_type idle,
831 int *all_pinned, unsigned long *load_moved,
a4ac01c3 832 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
833
834#include "sched_stats.h"
dd41f596 835#include "sched_idletask.c"
5522d5d5
IM
836#include "sched_fair.c"
837#include "sched_rt.c"
dd41f596
IM
838#ifdef CONFIG_SCHED_DEBUG
839# include "sched_debug.c"
840#endif
841
842#define sched_class_highest (&rt_sched_class)
843
9c217245
IM
844/*
845 * Update delta_exec, delta_fair fields for rq.
846 *
847 * delta_fair clock advances at a rate inversely proportional to
495eca49 848 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
849 * delta_exec advances at the same rate as wall-clock (provided
850 * cpu is not idle).
851 *
852 * delta_exec / delta_fair is a measure of the (smoothened) load on this
853 * runqueue over any given interval. This (smoothened) load is used
854 * during load balance.
855 *
495eca49 856 * This function is called /before/ updating rq->load
9c217245
IM
857 * and when switching tasks.
858 */
29b4b623 859static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 860{
495eca49 861 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
862}
863
79b5dddf 864static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 865{
495eca49 866 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
867}
868
e5fa2237 869static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
870{
871 rq->nr_running++;
29b4b623 872 inc_load(rq, p);
9c217245
IM
873}
874
db53181e 875static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
876{
877 rq->nr_running--;
79b5dddf 878 dec_load(rq, p);
9c217245
IM
879}
880
45bf76df
IM
881static void set_load_weight(struct task_struct *p)
882{
883 if (task_has_rt_policy(p)) {
dd41f596
IM
884 p->se.load.weight = prio_to_weight[0] * 2;
885 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
886 return;
887 }
45bf76df 888
dd41f596
IM
889 /*
890 * SCHED_IDLE tasks get minimal weight:
891 */
892 if (p->policy == SCHED_IDLE) {
893 p->se.load.weight = WEIGHT_IDLEPRIO;
894 p->se.load.inv_weight = WMULT_IDLEPRIO;
895 return;
896 }
71f8bd46 897
dd41f596
IM
898 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
899 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
900}
901
8159f87e 902static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 903{
dd41f596 904 sched_info_queued(p);
fd390f6a 905 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 906 p->se.on_rq = 1;
71f8bd46
IM
907}
908
69be72c1 909static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 910{
f02231e5 911 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 912 p->se.on_rq = 0;
71f8bd46
IM
913}
914
14531189 915/*
dd41f596 916 * __normal_prio - return the priority that is based on the static prio
14531189 917 */
14531189
IM
918static inline int __normal_prio(struct task_struct *p)
919{
dd41f596 920 return p->static_prio;
14531189
IM
921}
922
b29739f9
IM
923/*
924 * Calculate the expected normal priority: i.e. priority
925 * without taking RT-inheritance into account. Might be
926 * boosted by interactivity modifiers. Changes upon fork,
927 * setprio syscalls, and whenever the interactivity
928 * estimator recalculates.
929 */
36c8b586 930static inline int normal_prio(struct task_struct *p)
b29739f9
IM
931{
932 int prio;
933
e05606d3 934 if (task_has_rt_policy(p))
b29739f9
IM
935 prio = MAX_RT_PRIO-1 - p->rt_priority;
936 else
937 prio = __normal_prio(p);
938 return prio;
939}
940
941/*
942 * Calculate the current priority, i.e. the priority
943 * taken into account by the scheduler. This value might
944 * be boosted by RT tasks, or might be boosted by
945 * interactivity modifiers. Will be RT if the task got
946 * RT-boosted. If not then it returns p->normal_prio.
947 */
36c8b586 948static int effective_prio(struct task_struct *p)
b29739f9
IM
949{
950 p->normal_prio = normal_prio(p);
951 /*
952 * If we are RT tasks or we were boosted to RT priority,
953 * keep the priority unchanged. Otherwise, update priority
954 * to the normal priority:
955 */
956 if (!rt_prio(p->prio))
957 return p->normal_prio;
958 return p->prio;
959}
960
1da177e4 961/*
dd41f596 962 * activate_task - move a task to the runqueue.
1da177e4 963 */
dd41f596 964static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 965{
dd41f596
IM
966 if (p->state == TASK_UNINTERRUPTIBLE)
967 rq->nr_uninterruptible--;
1da177e4 968
8159f87e 969 enqueue_task(rq, p, wakeup);
e5fa2237 970 inc_nr_running(p, rq);
1da177e4
LT
971}
972
1da177e4
LT
973/*
974 * deactivate_task - remove a task from the runqueue.
975 */
2e1cb74a 976static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 977{
dd41f596
IM
978 if (p->state == TASK_UNINTERRUPTIBLE)
979 rq->nr_uninterruptible++;
980
69be72c1 981 dequeue_task(rq, p, sleep);
db53181e 982 dec_nr_running(p, rq);
1da177e4
LT
983}
984
1da177e4
LT
985/**
986 * task_curr - is this task currently executing on a CPU?
987 * @p: the task in question.
988 */
36c8b586 989inline int task_curr(const struct task_struct *p)
1da177e4
LT
990{
991 return cpu_curr(task_cpu(p)) == p;
992}
993
2dd73a4f
PW
994/* Used instead of source_load when we know the type == 0 */
995unsigned long weighted_cpuload(const int cpu)
996{
495eca49 997 return cpu_rq(cpu)->load.weight;
dd41f596
IM
998}
999
1000static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1001{
1002#ifdef CONFIG_SMP
1003 task_thread_info(p)->cpu = cpu;
dd41f596 1004#endif
29f59db3 1005 set_task_cfs_rq(p);
2dd73a4f
PW
1006}
1007
1da177e4 1008#ifdef CONFIG_SMP
c65cc870 1009
dd41f596 1010void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1011{
dd41f596
IM
1012 int old_cpu = task_cpu(p);
1013 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1014 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1015 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1016 u64 clock_offset;
dd41f596
IM
1017
1018 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1019
1020#ifdef CONFIG_SCHEDSTATS
1021 if (p->se.wait_start)
1022 p->se.wait_start -= clock_offset;
dd41f596
IM
1023 if (p->se.sleep_start)
1024 p->se.sleep_start -= clock_offset;
1025 if (p->se.block_start)
1026 p->se.block_start -= clock_offset;
6cfb0d5d 1027#endif
2830cf8c
SV
1028 p->se.vruntime -= old_cfsrq->min_vruntime -
1029 new_cfsrq->min_vruntime;
dd41f596
IM
1030
1031 __set_task_cpu(p, new_cpu);
c65cc870
IM
1032}
1033
70b97a7f 1034struct migration_req {
1da177e4 1035 struct list_head list;
1da177e4 1036
36c8b586 1037 struct task_struct *task;
1da177e4
LT
1038 int dest_cpu;
1039
1da177e4 1040 struct completion done;
70b97a7f 1041};
1da177e4
LT
1042
1043/*
1044 * The task's runqueue lock must be held.
1045 * Returns true if you have to wait for migration thread.
1046 */
36c8b586 1047static int
70b97a7f 1048migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1049{
70b97a7f 1050 struct rq *rq = task_rq(p);
1da177e4
LT
1051
1052 /*
1053 * If the task is not on a runqueue (and not running), then
1054 * it is sufficient to simply update the task's cpu field.
1055 */
dd41f596 1056 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1057 set_task_cpu(p, dest_cpu);
1058 return 0;
1059 }
1060
1061 init_completion(&req->done);
1da177e4
LT
1062 req->task = p;
1063 req->dest_cpu = dest_cpu;
1064 list_add(&req->list, &rq->migration_queue);
48f24c4d 1065
1da177e4
LT
1066 return 1;
1067}
1068
1069/*
1070 * wait_task_inactive - wait for a thread to unschedule.
1071 *
1072 * The caller must ensure that the task *will* unschedule sometime soon,
1073 * else this function might spin for a *long* time. This function can't
1074 * be called with interrupts off, or it may introduce deadlock with
1075 * smp_call_function() if an IPI is sent by the same process we are
1076 * waiting to become inactive.
1077 */
36c8b586 1078void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1079{
1080 unsigned long flags;
dd41f596 1081 int running, on_rq;
70b97a7f 1082 struct rq *rq;
1da177e4
LT
1083
1084repeat:
fa490cfd
LT
1085 /*
1086 * We do the initial early heuristics without holding
1087 * any task-queue locks at all. We'll only try to get
1088 * the runqueue lock when things look like they will
1089 * work out!
1090 */
1091 rq = task_rq(p);
1092
1093 /*
1094 * If the task is actively running on another CPU
1095 * still, just relax and busy-wait without holding
1096 * any locks.
1097 *
1098 * NOTE! Since we don't hold any locks, it's not
1099 * even sure that "rq" stays as the right runqueue!
1100 * But we don't care, since "task_running()" will
1101 * return false if the runqueue has changed and p
1102 * is actually now running somewhere else!
1103 */
1104 while (task_running(rq, p))
1105 cpu_relax();
1106
1107 /*
1108 * Ok, time to look more closely! We need the rq
1109 * lock now, to be *sure*. If we're wrong, we'll
1110 * just go back and repeat.
1111 */
1da177e4 1112 rq = task_rq_lock(p, &flags);
fa490cfd 1113 running = task_running(rq, p);
dd41f596 1114 on_rq = p->se.on_rq;
fa490cfd
LT
1115 task_rq_unlock(rq, &flags);
1116
1117 /*
1118 * Was it really running after all now that we
1119 * checked with the proper locks actually held?
1120 *
1121 * Oops. Go back and try again..
1122 */
1123 if (unlikely(running)) {
1da177e4 1124 cpu_relax();
1da177e4
LT
1125 goto repeat;
1126 }
fa490cfd
LT
1127
1128 /*
1129 * It's not enough that it's not actively running,
1130 * it must be off the runqueue _entirely_, and not
1131 * preempted!
1132 *
1133 * So if it wa still runnable (but just not actively
1134 * running right now), it's preempted, and we should
1135 * yield - it could be a while.
1136 */
dd41f596 1137 if (unlikely(on_rq)) {
638e13ac 1138 schedule_timeout_uninterruptible(1);
fa490cfd
LT
1139 goto repeat;
1140 }
1141
1142 /*
1143 * Ahh, all good. It wasn't running, and it wasn't
1144 * runnable, which means that it will never become
1145 * running in the future either. We're all done!
1146 */
1da177e4
LT
1147}
1148
1149/***
1150 * kick_process - kick a running thread to enter/exit the kernel
1151 * @p: the to-be-kicked thread
1152 *
1153 * Cause a process which is running on another CPU to enter
1154 * kernel-mode, without any delay. (to get signals handled.)
1155 *
1156 * NOTE: this function doesnt have to take the runqueue lock,
1157 * because all it wants to ensure is that the remote task enters
1158 * the kernel. If the IPI races and the task has been migrated
1159 * to another CPU then no harm is done and the purpose has been
1160 * achieved as well.
1161 */
36c8b586 1162void kick_process(struct task_struct *p)
1da177e4
LT
1163{
1164 int cpu;
1165
1166 preempt_disable();
1167 cpu = task_cpu(p);
1168 if ((cpu != smp_processor_id()) && task_curr(p))
1169 smp_send_reschedule(cpu);
1170 preempt_enable();
1171}
1172
1173/*
2dd73a4f
PW
1174 * Return a low guess at the load of a migration-source cpu weighted
1175 * according to the scheduling class and "nice" value.
1da177e4
LT
1176 *
1177 * We want to under-estimate the load of migration sources, to
1178 * balance conservatively.
1179 */
a9957449 1180static unsigned long source_load(int cpu, int type)
1da177e4 1181{
70b97a7f 1182 struct rq *rq = cpu_rq(cpu);
dd41f596 1183 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1184
3b0bd9bc 1185 if (type == 0)
dd41f596 1186 return total;
b910472d 1187
dd41f596 1188 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1189}
1190
1191/*
2dd73a4f
PW
1192 * Return a high guess at the load of a migration-target cpu weighted
1193 * according to the scheduling class and "nice" value.
1da177e4 1194 */
a9957449 1195static unsigned long target_load(int cpu, int type)
1da177e4 1196{
70b97a7f 1197 struct rq *rq = cpu_rq(cpu);
dd41f596 1198 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1199
7897986b 1200 if (type == 0)
dd41f596 1201 return total;
3b0bd9bc 1202
dd41f596 1203 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1204}
1205
1206/*
1207 * Return the average load per task on the cpu's run queue
1208 */
1209static inline unsigned long cpu_avg_load_per_task(int cpu)
1210{
70b97a7f 1211 struct rq *rq = cpu_rq(cpu);
dd41f596 1212 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1213 unsigned long n = rq->nr_running;
1214
dd41f596 1215 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1216}
1217
147cbb4b
NP
1218/*
1219 * find_idlest_group finds and returns the least busy CPU group within the
1220 * domain.
1221 */
1222static struct sched_group *
1223find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1224{
1225 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1226 unsigned long min_load = ULONG_MAX, this_load = 0;
1227 int load_idx = sd->forkexec_idx;
1228 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1229
1230 do {
1231 unsigned long load, avg_load;
1232 int local_group;
1233 int i;
1234
da5a5522
BD
1235 /* Skip over this group if it has no CPUs allowed */
1236 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1237 goto nextgroup;
1238
147cbb4b 1239 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1240
1241 /* Tally up the load of all CPUs in the group */
1242 avg_load = 0;
1243
1244 for_each_cpu_mask(i, group->cpumask) {
1245 /* Bias balancing toward cpus of our domain */
1246 if (local_group)
1247 load = source_load(i, load_idx);
1248 else
1249 load = target_load(i, load_idx);
1250
1251 avg_load += load;
1252 }
1253
1254 /* Adjust by relative CPU power of the group */
5517d86b
ED
1255 avg_load = sg_div_cpu_power(group,
1256 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1257
1258 if (local_group) {
1259 this_load = avg_load;
1260 this = group;
1261 } else if (avg_load < min_load) {
1262 min_load = avg_load;
1263 idlest = group;
1264 }
da5a5522 1265nextgroup:
147cbb4b
NP
1266 group = group->next;
1267 } while (group != sd->groups);
1268
1269 if (!idlest || 100*this_load < imbalance*min_load)
1270 return NULL;
1271 return idlest;
1272}
1273
1274/*
0feaece9 1275 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1276 */
95cdf3b7
IM
1277static int
1278find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1279{
da5a5522 1280 cpumask_t tmp;
147cbb4b
NP
1281 unsigned long load, min_load = ULONG_MAX;
1282 int idlest = -1;
1283 int i;
1284
da5a5522
BD
1285 /* Traverse only the allowed CPUs */
1286 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1287
1288 for_each_cpu_mask(i, tmp) {
2dd73a4f 1289 load = weighted_cpuload(i);
147cbb4b
NP
1290
1291 if (load < min_load || (load == min_load && i == this_cpu)) {
1292 min_load = load;
1293 idlest = i;
1294 }
1295 }
1296
1297 return idlest;
1298}
1299
476d139c
NP
1300/*
1301 * sched_balance_self: balance the current task (running on cpu) in domains
1302 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1303 * SD_BALANCE_EXEC.
1304 *
1305 * Balance, ie. select the least loaded group.
1306 *
1307 * Returns the target CPU number, or the same CPU if no balancing is needed.
1308 *
1309 * preempt must be disabled.
1310 */
1311static int sched_balance_self(int cpu, int flag)
1312{
1313 struct task_struct *t = current;
1314 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1315
c96d145e 1316 for_each_domain(cpu, tmp) {
9761eea8
IM
1317 /*
1318 * If power savings logic is enabled for a domain, stop there.
1319 */
5c45bf27
SS
1320 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1321 break;
476d139c
NP
1322 if (tmp->flags & flag)
1323 sd = tmp;
c96d145e 1324 }
476d139c
NP
1325
1326 while (sd) {
1327 cpumask_t span;
1328 struct sched_group *group;
1a848870
SS
1329 int new_cpu, weight;
1330
1331 if (!(sd->flags & flag)) {
1332 sd = sd->child;
1333 continue;
1334 }
476d139c
NP
1335
1336 span = sd->span;
1337 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1338 if (!group) {
1339 sd = sd->child;
1340 continue;
1341 }
476d139c 1342
da5a5522 1343 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1344 if (new_cpu == -1 || new_cpu == cpu) {
1345 /* Now try balancing at a lower domain level of cpu */
1346 sd = sd->child;
1347 continue;
1348 }
476d139c 1349
1a848870 1350 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1351 cpu = new_cpu;
476d139c
NP
1352 sd = NULL;
1353 weight = cpus_weight(span);
1354 for_each_domain(cpu, tmp) {
1355 if (weight <= cpus_weight(tmp->span))
1356 break;
1357 if (tmp->flags & flag)
1358 sd = tmp;
1359 }
1360 /* while loop will break here if sd == NULL */
1361 }
1362
1363 return cpu;
1364}
1365
1366#endif /* CONFIG_SMP */
1da177e4
LT
1367
1368/*
1369 * wake_idle() will wake a task on an idle cpu if task->cpu is
1370 * not idle and an idle cpu is available. The span of cpus to
1371 * search starts with cpus closest then further out as needed,
1372 * so we always favor a closer, idle cpu.
1373 *
1374 * Returns the CPU we should wake onto.
1375 */
1376#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1377static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1378{
1379 cpumask_t tmp;
1380 struct sched_domain *sd;
1381 int i;
1382
4953198b
SS
1383 /*
1384 * If it is idle, then it is the best cpu to run this task.
1385 *
1386 * This cpu is also the best, if it has more than one task already.
1387 * Siblings must be also busy(in most cases) as they didn't already
1388 * pickup the extra load from this cpu and hence we need not check
1389 * sibling runqueue info. This will avoid the checks and cache miss
1390 * penalities associated with that.
1391 */
1392 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1393 return cpu;
1394
1395 for_each_domain(cpu, sd) {
1396 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1397 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1398 for_each_cpu_mask(i, tmp) {
1399 if (idle_cpu(i))
1400 return i;
1401 }
9761eea8 1402 } else {
e0f364f4 1403 break;
9761eea8 1404 }
1da177e4
LT
1405 }
1406 return cpu;
1407}
1408#else
36c8b586 1409static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1410{
1411 return cpu;
1412}
1413#endif
1414
1415/***
1416 * try_to_wake_up - wake up a thread
1417 * @p: the to-be-woken-up thread
1418 * @state: the mask of task states that can be woken
1419 * @sync: do a synchronous wakeup?
1420 *
1421 * Put it on the run-queue if it's not already there. The "current"
1422 * thread is always on the run-queue (except when the actual
1423 * re-schedule is in progress), and as such you're allowed to do
1424 * the simpler "current->state = TASK_RUNNING" to mark yourself
1425 * runnable without the overhead of this.
1426 *
1427 * returns failure only if the task is already active.
1428 */
36c8b586 1429static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1430{
1431 int cpu, this_cpu, success = 0;
1432 unsigned long flags;
1433 long old_state;
70b97a7f 1434 struct rq *rq;
1da177e4 1435#ifdef CONFIG_SMP
7897986b 1436 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1437 unsigned long load, this_load;
1da177e4
LT
1438 int new_cpu;
1439#endif
1440
1441 rq = task_rq_lock(p, &flags);
1442 old_state = p->state;
1443 if (!(old_state & state))
1444 goto out;
1445
dd41f596 1446 if (p->se.on_rq)
1da177e4
LT
1447 goto out_running;
1448
1449 cpu = task_cpu(p);
1450 this_cpu = smp_processor_id();
1451
1452#ifdef CONFIG_SMP
1453 if (unlikely(task_running(rq, p)))
1454 goto out_activate;
1455
7897986b
NP
1456 new_cpu = cpu;
1457
2d72376b 1458 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1459 if (cpu == this_cpu) {
1460 schedstat_inc(rq, ttwu_local);
7897986b
NP
1461 goto out_set_cpu;
1462 }
1463
1464 for_each_domain(this_cpu, sd) {
1465 if (cpu_isset(cpu, sd->span)) {
1466 schedstat_inc(sd, ttwu_wake_remote);
1467 this_sd = sd;
1468 break;
1da177e4
LT
1469 }
1470 }
1da177e4 1471
7897986b 1472 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1473 goto out_set_cpu;
1474
1da177e4 1475 /*
7897986b 1476 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1477 */
7897986b
NP
1478 if (this_sd) {
1479 int idx = this_sd->wake_idx;
1480 unsigned int imbalance;
1da177e4 1481
a3f21bce
NP
1482 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1483
7897986b
NP
1484 load = source_load(cpu, idx);
1485 this_load = target_load(this_cpu, idx);
1da177e4 1486
7897986b
NP
1487 new_cpu = this_cpu; /* Wake to this CPU if we can */
1488
a3f21bce
NP
1489 if (this_sd->flags & SD_WAKE_AFFINE) {
1490 unsigned long tl = this_load;
33859f7f
MOS
1491 unsigned long tl_per_task;
1492
1493 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1494
1da177e4 1495 /*
a3f21bce
NP
1496 * If sync wakeup then subtract the (maximum possible)
1497 * effect of the currently running task from the load
1498 * of the current CPU:
1da177e4 1499 */
a3f21bce 1500 if (sync)
dd41f596 1501 tl -= current->se.load.weight;
a3f21bce
NP
1502
1503 if ((tl <= load &&
2dd73a4f 1504 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1505 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1506 /*
1507 * This domain has SD_WAKE_AFFINE and
1508 * p is cache cold in this domain, and
1509 * there is no bad imbalance.
1510 */
1511 schedstat_inc(this_sd, ttwu_move_affine);
1512 goto out_set_cpu;
1513 }
1514 }
1515
1516 /*
1517 * Start passive balancing when half the imbalance_pct
1518 * limit is reached.
1519 */
1520 if (this_sd->flags & SD_WAKE_BALANCE) {
1521 if (imbalance*this_load <= 100*load) {
1522 schedstat_inc(this_sd, ttwu_move_balance);
1523 goto out_set_cpu;
1524 }
1da177e4
LT
1525 }
1526 }
1527
1528 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1529out_set_cpu:
1530 new_cpu = wake_idle(new_cpu, p);
1531 if (new_cpu != cpu) {
1532 set_task_cpu(p, new_cpu);
1533 task_rq_unlock(rq, &flags);
1534 /* might preempt at this point */
1535 rq = task_rq_lock(p, &flags);
1536 old_state = p->state;
1537 if (!(old_state & state))
1538 goto out;
dd41f596 1539 if (p->se.on_rq)
1da177e4
LT
1540 goto out_running;
1541
1542 this_cpu = smp_processor_id();
1543 cpu = task_cpu(p);
1544 }
1545
1546out_activate:
1547#endif /* CONFIG_SMP */
2daa3577 1548 update_rq_clock(rq);
dd41f596 1549 activate_task(rq, p, 1);
1da177e4
LT
1550 /*
1551 * Sync wakeups (i.e. those types of wakeups where the waker
1552 * has indicated that it will leave the CPU in short order)
1553 * don't trigger a preemption, if the woken up task will run on
1554 * this cpu. (in this case the 'I will reschedule' promise of
1555 * the waker guarantees that the freshly woken up task is going
1556 * to be considered on this CPU.)
1557 */
dd41f596
IM
1558 if (!sync || cpu != this_cpu)
1559 check_preempt_curr(rq, p);
1da177e4
LT
1560 success = 1;
1561
1562out_running:
1563 p->state = TASK_RUNNING;
1564out:
1565 task_rq_unlock(rq, &flags);
1566
1567 return success;
1568}
1569
36c8b586 1570int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1571{
1572 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1573 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1574}
1da177e4
LT
1575EXPORT_SYMBOL(wake_up_process);
1576
36c8b586 1577int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1578{
1579 return try_to_wake_up(p, state, 0);
1580}
1581
1da177e4
LT
1582/*
1583 * Perform scheduler related setup for a newly forked process p.
1584 * p is forked by current.
dd41f596
IM
1585 *
1586 * __sched_fork() is basic setup used by init_idle() too:
1587 */
1588static void __sched_fork(struct task_struct *p)
1589{
dd41f596
IM
1590 p->se.exec_start = 0;
1591 p->se.sum_exec_runtime = 0;
f6cf891c 1592 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1593
1594#ifdef CONFIG_SCHEDSTATS
1595 p->se.wait_start = 0;
dd41f596
IM
1596 p->se.sum_sleep_runtime = 0;
1597 p->se.sleep_start = 0;
dd41f596
IM
1598 p->se.block_start = 0;
1599 p->se.sleep_max = 0;
1600 p->se.block_max = 0;
1601 p->se.exec_max = 0;
eba1ed4b 1602 p->se.slice_max = 0;
dd41f596 1603 p->se.wait_max = 0;
6cfb0d5d 1604#endif
476d139c 1605
dd41f596
IM
1606 INIT_LIST_HEAD(&p->run_list);
1607 p->se.on_rq = 0;
476d139c 1608
e107be36
AK
1609#ifdef CONFIG_PREEMPT_NOTIFIERS
1610 INIT_HLIST_HEAD(&p->preempt_notifiers);
1611#endif
1612
1da177e4
LT
1613 /*
1614 * We mark the process as running here, but have not actually
1615 * inserted it onto the runqueue yet. This guarantees that
1616 * nobody will actually run it, and a signal or other external
1617 * event cannot wake it up and insert it on the runqueue either.
1618 */
1619 p->state = TASK_RUNNING;
dd41f596
IM
1620}
1621
1622/*
1623 * fork()/clone()-time setup:
1624 */
1625void sched_fork(struct task_struct *p, int clone_flags)
1626{
1627 int cpu = get_cpu();
1628
1629 __sched_fork(p);
1630
1631#ifdef CONFIG_SMP
1632 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1633#endif
02e4bac2 1634 set_task_cpu(p, cpu);
b29739f9
IM
1635
1636 /*
1637 * Make sure we do not leak PI boosting priority to the child:
1638 */
1639 p->prio = current->normal_prio;
2ddbf952
HS
1640 if (!rt_prio(p->prio))
1641 p->sched_class = &fair_sched_class;
b29739f9 1642
52f17b6c 1643#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1644 if (likely(sched_info_on()))
52f17b6c 1645 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1646#endif
d6077cb8 1647#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1648 p->oncpu = 0;
1649#endif
1da177e4 1650#ifdef CONFIG_PREEMPT
4866cde0 1651 /* Want to start with kernel preemption disabled. */
a1261f54 1652 task_thread_info(p)->preempt_count = 1;
1da177e4 1653#endif
476d139c 1654 put_cpu();
1da177e4
LT
1655}
1656
1657/*
1658 * wake_up_new_task - wake up a newly created task for the first time.
1659 *
1660 * This function will do some initial scheduler statistics housekeeping
1661 * that must be done for every newly created context, then puts the task
1662 * on the runqueue and wakes it.
1663 */
36c8b586 1664void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1665{
1666 unsigned long flags;
dd41f596 1667 struct rq *rq;
1da177e4
LT
1668
1669 rq = task_rq_lock(p, &flags);
147cbb4b 1670 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1671 update_rq_clock(rq);
1da177e4
LT
1672
1673 p->prio = effective_prio(p);
1674
00bf7bfc 1675 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
dd41f596 1676 activate_task(rq, p, 0);
1da177e4 1677 } else {
1da177e4 1678 /*
dd41f596
IM
1679 * Let the scheduling class do new task startup
1680 * management (if any):
1da177e4 1681 */
ee0827d8 1682 p->sched_class->task_new(rq, p);
e5fa2237 1683 inc_nr_running(p, rq);
1da177e4 1684 }
dd41f596
IM
1685 check_preempt_curr(rq, p);
1686 task_rq_unlock(rq, &flags);
1da177e4
LT
1687}
1688
e107be36
AK
1689#ifdef CONFIG_PREEMPT_NOTIFIERS
1690
1691/**
421cee29
RD
1692 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1693 * @notifier: notifier struct to register
e107be36
AK
1694 */
1695void preempt_notifier_register(struct preempt_notifier *notifier)
1696{
1697 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1698}
1699EXPORT_SYMBOL_GPL(preempt_notifier_register);
1700
1701/**
1702 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1703 * @notifier: notifier struct to unregister
e107be36
AK
1704 *
1705 * This is safe to call from within a preemption notifier.
1706 */
1707void preempt_notifier_unregister(struct preempt_notifier *notifier)
1708{
1709 hlist_del(&notifier->link);
1710}
1711EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1712
1713static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1714{
1715 struct preempt_notifier *notifier;
1716 struct hlist_node *node;
1717
1718 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1719 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1720}
1721
1722static void
1723fire_sched_out_preempt_notifiers(struct task_struct *curr,
1724 struct task_struct *next)
1725{
1726 struct preempt_notifier *notifier;
1727 struct hlist_node *node;
1728
1729 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1730 notifier->ops->sched_out(notifier, next);
1731}
1732
1733#else
1734
1735static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1736{
1737}
1738
1739static void
1740fire_sched_out_preempt_notifiers(struct task_struct *curr,
1741 struct task_struct *next)
1742{
1743}
1744
1745#endif
1746
4866cde0
NP
1747/**
1748 * prepare_task_switch - prepare to switch tasks
1749 * @rq: the runqueue preparing to switch
421cee29 1750 * @prev: the current task that is being switched out
4866cde0
NP
1751 * @next: the task we are going to switch to.
1752 *
1753 * This is called with the rq lock held and interrupts off. It must
1754 * be paired with a subsequent finish_task_switch after the context
1755 * switch.
1756 *
1757 * prepare_task_switch sets up locking and calls architecture specific
1758 * hooks.
1759 */
e107be36
AK
1760static inline void
1761prepare_task_switch(struct rq *rq, struct task_struct *prev,
1762 struct task_struct *next)
4866cde0 1763{
e107be36 1764 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1765 prepare_lock_switch(rq, next);
1766 prepare_arch_switch(next);
1767}
1768
1da177e4
LT
1769/**
1770 * finish_task_switch - clean up after a task-switch
344babaa 1771 * @rq: runqueue associated with task-switch
1da177e4
LT
1772 * @prev: the thread we just switched away from.
1773 *
4866cde0
NP
1774 * finish_task_switch must be called after the context switch, paired
1775 * with a prepare_task_switch call before the context switch.
1776 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1777 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1778 *
1779 * Note that we may have delayed dropping an mm in context_switch(). If
1780 * so, we finish that here outside of the runqueue lock. (Doing it
1781 * with the lock held can cause deadlocks; see schedule() for
1782 * details.)
1783 */
a9957449 1784static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1785 __releases(rq->lock)
1786{
1da177e4 1787 struct mm_struct *mm = rq->prev_mm;
55a101f8 1788 long prev_state;
1da177e4
LT
1789
1790 rq->prev_mm = NULL;
1791
1792 /*
1793 * A task struct has one reference for the use as "current".
c394cc9f 1794 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1795 * schedule one last time. The schedule call will never return, and
1796 * the scheduled task must drop that reference.
c394cc9f 1797 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1798 * still held, otherwise prev could be scheduled on another cpu, die
1799 * there before we look at prev->state, and then the reference would
1800 * be dropped twice.
1801 * Manfred Spraul <manfred@colorfullife.com>
1802 */
55a101f8 1803 prev_state = prev->state;
4866cde0
NP
1804 finish_arch_switch(prev);
1805 finish_lock_switch(rq, prev);
e107be36 1806 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1807 if (mm)
1808 mmdrop(mm);
c394cc9f 1809 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1810 /*
1811 * Remove function-return probe instances associated with this
1812 * task and put them back on the free list.
9761eea8 1813 */
c6fd91f0 1814 kprobe_flush_task(prev);
1da177e4 1815 put_task_struct(prev);
c6fd91f0 1816 }
1da177e4
LT
1817}
1818
1819/**
1820 * schedule_tail - first thing a freshly forked thread must call.
1821 * @prev: the thread we just switched away from.
1822 */
36c8b586 1823asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1824 __releases(rq->lock)
1825{
70b97a7f
IM
1826 struct rq *rq = this_rq();
1827
4866cde0
NP
1828 finish_task_switch(rq, prev);
1829#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1830 /* In this case, finish_task_switch does not reenable preemption */
1831 preempt_enable();
1832#endif
1da177e4
LT
1833 if (current->set_child_tid)
1834 put_user(current->pid, current->set_child_tid);
1835}
1836
1837/*
1838 * context_switch - switch to the new MM and the new
1839 * thread's register state.
1840 */
dd41f596 1841static inline void
70b97a7f 1842context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1843 struct task_struct *next)
1da177e4 1844{
dd41f596 1845 struct mm_struct *mm, *oldmm;
1da177e4 1846
e107be36 1847 prepare_task_switch(rq, prev, next);
dd41f596
IM
1848 mm = next->mm;
1849 oldmm = prev->active_mm;
9226d125
ZA
1850 /*
1851 * For paravirt, this is coupled with an exit in switch_to to
1852 * combine the page table reload and the switch backend into
1853 * one hypercall.
1854 */
1855 arch_enter_lazy_cpu_mode();
1856
dd41f596 1857 if (unlikely(!mm)) {
1da177e4
LT
1858 next->active_mm = oldmm;
1859 atomic_inc(&oldmm->mm_count);
1860 enter_lazy_tlb(oldmm, next);
1861 } else
1862 switch_mm(oldmm, mm, next);
1863
dd41f596 1864 if (unlikely(!prev->mm)) {
1da177e4 1865 prev->active_mm = NULL;
1da177e4
LT
1866 rq->prev_mm = oldmm;
1867 }
3a5f5e48
IM
1868 /*
1869 * Since the runqueue lock will be released by the next
1870 * task (which is an invalid locking op but in the case
1871 * of the scheduler it's an obvious special-case), so we
1872 * do an early lockdep release here:
1873 */
1874#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1876#endif
1da177e4
LT
1877
1878 /* Here we just switch the register state and the stack. */
1879 switch_to(prev, next, prev);
1880
dd41f596
IM
1881 barrier();
1882 /*
1883 * this_rq must be evaluated again because prev may have moved
1884 * CPUs since it called schedule(), thus the 'rq' on its stack
1885 * frame will be invalid.
1886 */
1887 finish_task_switch(this_rq(), prev);
1da177e4
LT
1888}
1889
1890/*
1891 * nr_running, nr_uninterruptible and nr_context_switches:
1892 *
1893 * externally visible scheduler statistics: current number of runnable
1894 * threads, current number of uninterruptible-sleeping threads, total
1895 * number of context switches performed since bootup.
1896 */
1897unsigned long nr_running(void)
1898{
1899 unsigned long i, sum = 0;
1900
1901 for_each_online_cpu(i)
1902 sum += cpu_rq(i)->nr_running;
1903
1904 return sum;
1905}
1906
1907unsigned long nr_uninterruptible(void)
1908{
1909 unsigned long i, sum = 0;
1910
0a945022 1911 for_each_possible_cpu(i)
1da177e4
LT
1912 sum += cpu_rq(i)->nr_uninterruptible;
1913
1914 /*
1915 * Since we read the counters lockless, it might be slightly
1916 * inaccurate. Do not allow it to go below zero though:
1917 */
1918 if (unlikely((long)sum < 0))
1919 sum = 0;
1920
1921 return sum;
1922}
1923
1924unsigned long long nr_context_switches(void)
1925{
cc94abfc
SR
1926 int i;
1927 unsigned long long sum = 0;
1da177e4 1928
0a945022 1929 for_each_possible_cpu(i)
1da177e4
LT
1930 sum += cpu_rq(i)->nr_switches;
1931
1932 return sum;
1933}
1934
1935unsigned long nr_iowait(void)
1936{
1937 unsigned long i, sum = 0;
1938
0a945022 1939 for_each_possible_cpu(i)
1da177e4
LT
1940 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1941
1942 return sum;
1943}
1944
db1b1fef
JS
1945unsigned long nr_active(void)
1946{
1947 unsigned long i, running = 0, uninterruptible = 0;
1948
1949 for_each_online_cpu(i) {
1950 running += cpu_rq(i)->nr_running;
1951 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1952 }
1953
1954 if (unlikely((long)uninterruptible < 0))
1955 uninterruptible = 0;
1956
1957 return running + uninterruptible;
1958}
1959
48f24c4d 1960/*
dd41f596
IM
1961 * Update rq->cpu_load[] statistics. This function is usually called every
1962 * scheduler tick (TICK_NSEC).
48f24c4d 1963 */
dd41f596 1964static void update_cpu_load(struct rq *this_rq)
48f24c4d 1965{
495eca49 1966 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
1967 int i, scale;
1968
1969 this_rq->nr_load_updates++;
dd41f596
IM
1970
1971 /* Update our load: */
1972 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1973 unsigned long old_load, new_load;
1974
1975 /* scale is effectively 1 << i now, and >> i divides by scale */
1976
1977 old_load = this_rq->cpu_load[i];
1978 new_load = this_load;
a25707f3
IM
1979 /*
1980 * Round up the averaging division if load is increasing. This
1981 * prevents us from getting stuck on 9 if the load is 10, for
1982 * example.
1983 */
1984 if (new_load > old_load)
1985 new_load += scale-1;
dd41f596
IM
1986 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1987 }
48f24c4d
IM
1988}
1989
dd41f596
IM
1990#ifdef CONFIG_SMP
1991
1da177e4
LT
1992/*
1993 * double_rq_lock - safely lock two runqueues
1994 *
1995 * Note this does not disable interrupts like task_rq_lock,
1996 * you need to do so manually before calling.
1997 */
70b97a7f 1998static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1999 __acquires(rq1->lock)
2000 __acquires(rq2->lock)
2001{
054b9108 2002 BUG_ON(!irqs_disabled());
1da177e4
LT
2003 if (rq1 == rq2) {
2004 spin_lock(&rq1->lock);
2005 __acquire(rq2->lock); /* Fake it out ;) */
2006 } else {
c96d145e 2007 if (rq1 < rq2) {
1da177e4
LT
2008 spin_lock(&rq1->lock);
2009 spin_lock(&rq2->lock);
2010 } else {
2011 spin_lock(&rq2->lock);
2012 spin_lock(&rq1->lock);
2013 }
2014 }
6e82a3be
IM
2015 update_rq_clock(rq1);
2016 update_rq_clock(rq2);
1da177e4
LT
2017}
2018
2019/*
2020 * double_rq_unlock - safely unlock two runqueues
2021 *
2022 * Note this does not restore interrupts like task_rq_unlock,
2023 * you need to do so manually after calling.
2024 */
70b97a7f 2025static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2026 __releases(rq1->lock)
2027 __releases(rq2->lock)
2028{
2029 spin_unlock(&rq1->lock);
2030 if (rq1 != rq2)
2031 spin_unlock(&rq2->lock);
2032 else
2033 __release(rq2->lock);
2034}
2035
2036/*
2037 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2038 */
70b97a7f 2039static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2040 __releases(this_rq->lock)
2041 __acquires(busiest->lock)
2042 __acquires(this_rq->lock)
2043{
054b9108
KK
2044 if (unlikely(!irqs_disabled())) {
2045 /* printk() doesn't work good under rq->lock */
2046 spin_unlock(&this_rq->lock);
2047 BUG_ON(1);
2048 }
1da177e4 2049 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2050 if (busiest < this_rq) {
1da177e4
LT
2051 spin_unlock(&this_rq->lock);
2052 spin_lock(&busiest->lock);
2053 spin_lock(&this_rq->lock);
2054 } else
2055 spin_lock(&busiest->lock);
2056 }
2057}
2058
1da177e4
LT
2059/*
2060 * If dest_cpu is allowed for this process, migrate the task to it.
2061 * This is accomplished by forcing the cpu_allowed mask to only
2062 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2063 * the cpu_allowed mask is restored.
2064 */
36c8b586 2065static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2066{
70b97a7f 2067 struct migration_req req;
1da177e4 2068 unsigned long flags;
70b97a7f 2069 struct rq *rq;
1da177e4
LT
2070
2071 rq = task_rq_lock(p, &flags);
2072 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2073 || unlikely(cpu_is_offline(dest_cpu)))
2074 goto out;
2075
2076 /* force the process onto the specified CPU */
2077 if (migrate_task(p, dest_cpu, &req)) {
2078 /* Need to wait for migration thread (might exit: take ref). */
2079 struct task_struct *mt = rq->migration_thread;
36c8b586 2080
1da177e4
LT
2081 get_task_struct(mt);
2082 task_rq_unlock(rq, &flags);
2083 wake_up_process(mt);
2084 put_task_struct(mt);
2085 wait_for_completion(&req.done);
36c8b586 2086
1da177e4
LT
2087 return;
2088 }
2089out:
2090 task_rq_unlock(rq, &flags);
2091}
2092
2093/*
476d139c
NP
2094 * sched_exec - execve() is a valuable balancing opportunity, because at
2095 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2096 */
2097void sched_exec(void)
2098{
1da177e4 2099 int new_cpu, this_cpu = get_cpu();
476d139c 2100 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2101 put_cpu();
476d139c
NP
2102 if (new_cpu != this_cpu)
2103 sched_migrate_task(current, new_cpu);
1da177e4
LT
2104}
2105
2106/*
2107 * pull_task - move a task from a remote runqueue to the local runqueue.
2108 * Both runqueues must be locked.
2109 */
dd41f596
IM
2110static void pull_task(struct rq *src_rq, struct task_struct *p,
2111 struct rq *this_rq, int this_cpu)
1da177e4 2112{
2e1cb74a 2113 deactivate_task(src_rq, p, 0);
1da177e4 2114 set_task_cpu(p, this_cpu);
dd41f596 2115 activate_task(this_rq, p, 0);
1da177e4
LT
2116 /*
2117 * Note that idle threads have a prio of MAX_PRIO, for this test
2118 * to be always true for them.
2119 */
dd41f596 2120 check_preempt_curr(this_rq, p);
1da177e4
LT
2121}
2122
2123/*
2124 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2125 */
858119e1 2126static
70b97a7f 2127int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2128 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2129 int *all_pinned)
1da177e4
LT
2130{
2131 /*
2132 * We do not migrate tasks that are:
2133 * 1) running (obviously), or
2134 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2135 * 3) are cache-hot on their current CPU.
2136 */
1da177e4
LT
2137 if (!cpu_isset(this_cpu, p->cpus_allowed))
2138 return 0;
81026794
NP
2139 *all_pinned = 0;
2140
2141 if (task_running(rq, p))
2142 return 0;
1da177e4 2143
1da177e4
LT
2144 return 1;
2145}
2146
dd41f596 2147static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2148 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2149 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2150 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2151 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2152{
dd41f596
IM
2153 int pulled = 0, pinned = 0, skip_for_load;
2154 struct task_struct *p;
2155 long rem_load_move = max_load_move;
1da177e4 2156
2dd73a4f 2157 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2158 goto out;
2159
81026794
NP
2160 pinned = 1;
2161
1da177e4 2162 /*
dd41f596 2163 * Start the load-balancing iterator:
1da177e4 2164 */
dd41f596
IM
2165 p = iterator->start(iterator->arg);
2166next:
2167 if (!p)
1da177e4 2168 goto out;
50ddd969
PW
2169 /*
2170 * To help distribute high priority tasks accross CPUs we don't
2171 * skip a task if it will be the highest priority task (i.e. smallest
2172 * prio value) on its new queue regardless of its load weight
2173 */
dd41f596
IM
2174 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2175 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2176 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2177 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2178 p = iterator->next(iterator->arg);
2179 goto next;
1da177e4
LT
2180 }
2181
dd41f596 2182 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2183 pulled++;
dd41f596 2184 rem_load_move -= p->se.load.weight;
1da177e4 2185
2dd73a4f
PW
2186 /*
2187 * We only want to steal up to the prescribed number of tasks
2188 * and the prescribed amount of weighted load.
2189 */
2190 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2191 if (p->prio < *this_best_prio)
2192 *this_best_prio = p->prio;
dd41f596
IM
2193 p = iterator->next(iterator->arg);
2194 goto next;
1da177e4
LT
2195 }
2196out:
2197 /*
2198 * Right now, this is the only place pull_task() is called,
2199 * so we can safely collect pull_task() stats here rather than
2200 * inside pull_task().
2201 */
2202 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2203
2204 if (all_pinned)
2205 *all_pinned = pinned;
dd41f596 2206 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2207 return pulled;
2208}
2209
dd41f596 2210/*
43010659
PW
2211 * move_tasks tries to move up to max_load_move weighted load from busiest to
2212 * this_rq, as part of a balancing operation within domain "sd".
2213 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2214 *
2215 * Called with both runqueues locked.
2216 */
2217static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2218 unsigned long max_load_move,
dd41f596
IM
2219 struct sched_domain *sd, enum cpu_idle_type idle,
2220 int *all_pinned)
2221{
5522d5d5 2222 const struct sched_class *class = sched_class_highest;
43010659 2223 unsigned long total_load_moved = 0;
a4ac01c3 2224 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2225
2226 do {
43010659
PW
2227 total_load_moved +=
2228 class->load_balance(this_rq, this_cpu, busiest,
2229 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2230 sd, idle, all_pinned, &this_best_prio);
dd41f596 2231 class = class->next;
43010659 2232 } while (class && max_load_move > total_load_moved);
dd41f596 2233
43010659
PW
2234 return total_load_moved > 0;
2235}
2236
2237/*
2238 * move_one_task tries to move exactly one task from busiest to this_rq, as
2239 * part of active balancing operations within "domain".
2240 * Returns 1 if successful and 0 otherwise.
2241 *
2242 * Called with both runqueues locked.
2243 */
2244static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2245 struct sched_domain *sd, enum cpu_idle_type idle)
2246{
5522d5d5 2247 const struct sched_class *class;
a4ac01c3 2248 int this_best_prio = MAX_PRIO;
43010659
PW
2249
2250 for (class = sched_class_highest; class; class = class->next)
2251 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2252 1, ULONG_MAX, sd, idle, NULL,
2253 &this_best_prio))
43010659
PW
2254 return 1;
2255
2256 return 0;
dd41f596
IM
2257}
2258
1da177e4
LT
2259/*
2260 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2261 * domain. It calculates and returns the amount of weighted load which
2262 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2263 */
2264static struct sched_group *
2265find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2266 unsigned long *imbalance, enum cpu_idle_type idle,
2267 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2268{
2269 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2270 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2271 unsigned long max_pull;
2dd73a4f
PW
2272 unsigned long busiest_load_per_task, busiest_nr_running;
2273 unsigned long this_load_per_task, this_nr_running;
7897986b 2274 int load_idx;
5c45bf27
SS
2275#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2276 int power_savings_balance = 1;
2277 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2278 unsigned long min_nr_running = ULONG_MAX;
2279 struct sched_group *group_min = NULL, *group_leader = NULL;
2280#endif
1da177e4
LT
2281
2282 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2283 busiest_load_per_task = busiest_nr_running = 0;
2284 this_load_per_task = this_nr_running = 0;
d15bcfdb 2285 if (idle == CPU_NOT_IDLE)
7897986b 2286 load_idx = sd->busy_idx;
d15bcfdb 2287 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2288 load_idx = sd->newidle_idx;
2289 else
2290 load_idx = sd->idle_idx;
1da177e4
LT
2291
2292 do {
5c45bf27 2293 unsigned long load, group_capacity;
1da177e4
LT
2294 int local_group;
2295 int i;
783609c6 2296 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2297 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2298
2299 local_group = cpu_isset(this_cpu, group->cpumask);
2300
783609c6
SS
2301 if (local_group)
2302 balance_cpu = first_cpu(group->cpumask);
2303
1da177e4 2304 /* Tally up the load of all CPUs in the group */
2dd73a4f 2305 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2306
2307 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2308 struct rq *rq;
2309
2310 if (!cpu_isset(i, *cpus))
2311 continue;
2312
2313 rq = cpu_rq(i);
2dd73a4f 2314
9439aab8 2315 if (*sd_idle && rq->nr_running)
5969fe06
NP
2316 *sd_idle = 0;
2317
1da177e4 2318 /* Bias balancing toward cpus of our domain */
783609c6
SS
2319 if (local_group) {
2320 if (idle_cpu(i) && !first_idle_cpu) {
2321 first_idle_cpu = 1;
2322 balance_cpu = i;
2323 }
2324
a2000572 2325 load = target_load(i, load_idx);
783609c6 2326 } else
a2000572 2327 load = source_load(i, load_idx);
1da177e4
LT
2328
2329 avg_load += load;
2dd73a4f 2330 sum_nr_running += rq->nr_running;
dd41f596 2331 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2332 }
2333
783609c6
SS
2334 /*
2335 * First idle cpu or the first cpu(busiest) in this sched group
2336 * is eligible for doing load balancing at this and above
9439aab8
SS
2337 * domains. In the newly idle case, we will allow all the cpu's
2338 * to do the newly idle load balance.
783609c6 2339 */
9439aab8
SS
2340 if (idle != CPU_NEWLY_IDLE && local_group &&
2341 balance_cpu != this_cpu && balance) {
783609c6
SS
2342 *balance = 0;
2343 goto ret;
2344 }
2345
1da177e4 2346 total_load += avg_load;
5517d86b 2347 total_pwr += group->__cpu_power;
1da177e4
LT
2348
2349 /* Adjust by relative CPU power of the group */
5517d86b
ED
2350 avg_load = sg_div_cpu_power(group,
2351 avg_load * SCHED_LOAD_SCALE);
1da177e4 2352
5517d86b 2353 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2354
1da177e4
LT
2355 if (local_group) {
2356 this_load = avg_load;
2357 this = group;
2dd73a4f
PW
2358 this_nr_running = sum_nr_running;
2359 this_load_per_task = sum_weighted_load;
2360 } else if (avg_load > max_load &&
5c45bf27 2361 sum_nr_running > group_capacity) {
1da177e4
LT
2362 max_load = avg_load;
2363 busiest = group;
2dd73a4f
PW
2364 busiest_nr_running = sum_nr_running;
2365 busiest_load_per_task = sum_weighted_load;
1da177e4 2366 }
5c45bf27
SS
2367
2368#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2369 /*
2370 * Busy processors will not participate in power savings
2371 * balance.
2372 */
dd41f596
IM
2373 if (idle == CPU_NOT_IDLE ||
2374 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2375 goto group_next;
5c45bf27
SS
2376
2377 /*
2378 * If the local group is idle or completely loaded
2379 * no need to do power savings balance at this domain
2380 */
2381 if (local_group && (this_nr_running >= group_capacity ||
2382 !this_nr_running))
2383 power_savings_balance = 0;
2384
dd41f596 2385 /*
5c45bf27
SS
2386 * If a group is already running at full capacity or idle,
2387 * don't include that group in power savings calculations
dd41f596
IM
2388 */
2389 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2390 || !sum_nr_running)
dd41f596 2391 goto group_next;
5c45bf27 2392
dd41f596 2393 /*
5c45bf27 2394 * Calculate the group which has the least non-idle load.
dd41f596
IM
2395 * This is the group from where we need to pick up the load
2396 * for saving power
2397 */
2398 if ((sum_nr_running < min_nr_running) ||
2399 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2400 first_cpu(group->cpumask) <
2401 first_cpu(group_min->cpumask))) {
dd41f596
IM
2402 group_min = group;
2403 min_nr_running = sum_nr_running;
5c45bf27
SS
2404 min_load_per_task = sum_weighted_load /
2405 sum_nr_running;
dd41f596 2406 }
5c45bf27 2407
dd41f596 2408 /*
5c45bf27 2409 * Calculate the group which is almost near its
dd41f596
IM
2410 * capacity but still has some space to pick up some load
2411 * from other group and save more power
2412 */
2413 if (sum_nr_running <= group_capacity - 1) {
2414 if (sum_nr_running > leader_nr_running ||
2415 (sum_nr_running == leader_nr_running &&
2416 first_cpu(group->cpumask) >
2417 first_cpu(group_leader->cpumask))) {
2418 group_leader = group;
2419 leader_nr_running = sum_nr_running;
2420 }
48f24c4d 2421 }
5c45bf27
SS
2422group_next:
2423#endif
1da177e4
LT
2424 group = group->next;
2425 } while (group != sd->groups);
2426
2dd73a4f 2427 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2428 goto out_balanced;
2429
2430 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2431
2432 if (this_load >= avg_load ||
2433 100*max_load <= sd->imbalance_pct*this_load)
2434 goto out_balanced;
2435
2dd73a4f 2436 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2437 /*
2438 * We're trying to get all the cpus to the average_load, so we don't
2439 * want to push ourselves above the average load, nor do we wish to
2440 * reduce the max loaded cpu below the average load, as either of these
2441 * actions would just result in more rebalancing later, and ping-pong
2442 * tasks around. Thus we look for the minimum possible imbalance.
2443 * Negative imbalances (*we* are more loaded than anyone else) will
2444 * be counted as no imbalance for these purposes -- we can't fix that
2445 * by pulling tasks to us. Be careful of negative numbers as they'll
2446 * appear as very large values with unsigned longs.
2447 */
2dd73a4f
PW
2448 if (max_load <= busiest_load_per_task)
2449 goto out_balanced;
2450
2451 /*
2452 * In the presence of smp nice balancing, certain scenarios can have
2453 * max load less than avg load(as we skip the groups at or below
2454 * its cpu_power, while calculating max_load..)
2455 */
2456 if (max_load < avg_load) {
2457 *imbalance = 0;
2458 goto small_imbalance;
2459 }
0c117f1b
SS
2460
2461 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2462 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2463
1da177e4 2464 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2465 *imbalance = min(max_pull * busiest->__cpu_power,
2466 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2467 / SCHED_LOAD_SCALE;
2468
2dd73a4f
PW
2469 /*
2470 * if *imbalance is less than the average load per runnable task
2471 * there is no gaurantee that any tasks will be moved so we'll have
2472 * a think about bumping its value to force at least one task to be
2473 * moved
2474 */
7fd0d2dd 2475 if (*imbalance < busiest_load_per_task) {
48f24c4d 2476 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2477 unsigned int imbn;
2478
2479small_imbalance:
2480 pwr_move = pwr_now = 0;
2481 imbn = 2;
2482 if (this_nr_running) {
2483 this_load_per_task /= this_nr_running;
2484 if (busiest_load_per_task > this_load_per_task)
2485 imbn = 1;
2486 } else
2487 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2488
dd41f596
IM
2489 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2490 busiest_load_per_task * imbn) {
2dd73a4f 2491 *imbalance = busiest_load_per_task;
1da177e4
LT
2492 return busiest;
2493 }
2494
2495 /*
2496 * OK, we don't have enough imbalance to justify moving tasks,
2497 * however we may be able to increase total CPU power used by
2498 * moving them.
2499 */
2500
5517d86b
ED
2501 pwr_now += busiest->__cpu_power *
2502 min(busiest_load_per_task, max_load);
2503 pwr_now += this->__cpu_power *
2504 min(this_load_per_task, this_load);
1da177e4
LT
2505 pwr_now /= SCHED_LOAD_SCALE;
2506
2507 /* Amount of load we'd subtract */
5517d86b
ED
2508 tmp = sg_div_cpu_power(busiest,
2509 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2510 if (max_load > tmp)
5517d86b 2511 pwr_move += busiest->__cpu_power *
2dd73a4f 2512 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2513
2514 /* Amount of load we'd add */
5517d86b 2515 if (max_load * busiest->__cpu_power <
33859f7f 2516 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2517 tmp = sg_div_cpu_power(this,
2518 max_load * busiest->__cpu_power);
1da177e4 2519 else
5517d86b
ED
2520 tmp = sg_div_cpu_power(this,
2521 busiest_load_per_task * SCHED_LOAD_SCALE);
2522 pwr_move += this->__cpu_power *
2523 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2524 pwr_move /= SCHED_LOAD_SCALE;
2525
2526 /* Move if we gain throughput */
7fd0d2dd
SS
2527 if (pwr_move > pwr_now)
2528 *imbalance = busiest_load_per_task;
1da177e4
LT
2529 }
2530
1da177e4
LT
2531 return busiest;
2532
2533out_balanced:
5c45bf27 2534#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2535 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2536 goto ret;
1da177e4 2537
5c45bf27
SS
2538 if (this == group_leader && group_leader != group_min) {
2539 *imbalance = min_load_per_task;
2540 return group_min;
2541 }
5c45bf27 2542#endif
783609c6 2543ret:
1da177e4
LT
2544 *imbalance = 0;
2545 return NULL;
2546}
2547
2548/*
2549 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2550 */
70b97a7f 2551static struct rq *
d15bcfdb 2552find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2553 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2554{
70b97a7f 2555 struct rq *busiest = NULL, *rq;
2dd73a4f 2556 unsigned long max_load = 0;
1da177e4
LT
2557 int i;
2558
2559 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2560 unsigned long wl;
0a2966b4
CL
2561
2562 if (!cpu_isset(i, *cpus))
2563 continue;
2564
48f24c4d 2565 rq = cpu_rq(i);
dd41f596 2566 wl = weighted_cpuload(i);
2dd73a4f 2567
dd41f596 2568 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2569 continue;
1da177e4 2570
dd41f596
IM
2571 if (wl > max_load) {
2572 max_load = wl;
48f24c4d 2573 busiest = rq;
1da177e4
LT
2574 }
2575 }
2576
2577 return busiest;
2578}
2579
77391d71
NP
2580/*
2581 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2582 * so long as it is large enough.
2583 */
2584#define MAX_PINNED_INTERVAL 512
2585
1da177e4
LT
2586/*
2587 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2588 * tasks if there is an imbalance.
1da177e4 2589 */
70b97a7f 2590static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2591 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2592 int *balance)
1da177e4 2593{
43010659 2594 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2595 struct sched_group *group;
1da177e4 2596 unsigned long imbalance;
70b97a7f 2597 struct rq *busiest;
0a2966b4 2598 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2599 unsigned long flags;
5969fe06 2600
89c4710e
SS
2601 /*
2602 * When power savings policy is enabled for the parent domain, idle
2603 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2604 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2605 * portraying it as CPU_NOT_IDLE.
89c4710e 2606 */
d15bcfdb 2607 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2608 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2609 sd_idle = 1;
1da177e4 2610
2d72376b 2611 schedstat_inc(sd, lb_count[idle]);
1da177e4 2612
0a2966b4
CL
2613redo:
2614 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2615 &cpus, balance);
2616
06066714 2617 if (*balance == 0)
783609c6 2618 goto out_balanced;
783609c6 2619
1da177e4
LT
2620 if (!group) {
2621 schedstat_inc(sd, lb_nobusyg[idle]);
2622 goto out_balanced;
2623 }
2624
0a2966b4 2625 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2626 if (!busiest) {
2627 schedstat_inc(sd, lb_nobusyq[idle]);
2628 goto out_balanced;
2629 }
2630
db935dbd 2631 BUG_ON(busiest == this_rq);
1da177e4
LT
2632
2633 schedstat_add(sd, lb_imbalance[idle], imbalance);
2634
43010659 2635 ld_moved = 0;
1da177e4
LT
2636 if (busiest->nr_running > 1) {
2637 /*
2638 * Attempt to move tasks. If find_busiest_group has found
2639 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2640 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2641 * correctly treated as an imbalance.
2642 */
fe2eea3f 2643 local_irq_save(flags);
e17224bf 2644 double_rq_lock(this_rq, busiest);
43010659 2645 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2646 imbalance, sd, idle, &all_pinned);
e17224bf 2647 double_rq_unlock(this_rq, busiest);
fe2eea3f 2648 local_irq_restore(flags);
81026794 2649
46cb4b7c
SS
2650 /*
2651 * some other cpu did the load balance for us.
2652 */
43010659 2653 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2654 resched_cpu(this_cpu);
2655
81026794 2656 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2657 if (unlikely(all_pinned)) {
2658 cpu_clear(cpu_of(busiest), cpus);
2659 if (!cpus_empty(cpus))
2660 goto redo;
81026794 2661 goto out_balanced;
0a2966b4 2662 }
1da177e4 2663 }
81026794 2664
43010659 2665 if (!ld_moved) {
1da177e4
LT
2666 schedstat_inc(sd, lb_failed[idle]);
2667 sd->nr_balance_failed++;
2668
2669 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2670
fe2eea3f 2671 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2672
2673 /* don't kick the migration_thread, if the curr
2674 * task on busiest cpu can't be moved to this_cpu
2675 */
2676 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2677 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2678 all_pinned = 1;
2679 goto out_one_pinned;
2680 }
2681
1da177e4
LT
2682 if (!busiest->active_balance) {
2683 busiest->active_balance = 1;
2684 busiest->push_cpu = this_cpu;
81026794 2685 active_balance = 1;
1da177e4 2686 }
fe2eea3f 2687 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2688 if (active_balance)
1da177e4
LT
2689 wake_up_process(busiest->migration_thread);
2690
2691 /*
2692 * We've kicked active balancing, reset the failure
2693 * counter.
2694 */
39507451 2695 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2696 }
81026794 2697 } else
1da177e4
LT
2698 sd->nr_balance_failed = 0;
2699
81026794 2700 if (likely(!active_balance)) {
1da177e4
LT
2701 /* We were unbalanced, so reset the balancing interval */
2702 sd->balance_interval = sd->min_interval;
81026794
NP
2703 } else {
2704 /*
2705 * If we've begun active balancing, start to back off. This
2706 * case may not be covered by the all_pinned logic if there
2707 * is only 1 task on the busy runqueue (because we don't call
2708 * move_tasks).
2709 */
2710 if (sd->balance_interval < sd->max_interval)
2711 sd->balance_interval *= 2;
1da177e4
LT
2712 }
2713
43010659 2714 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2715 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2716 return -1;
43010659 2717 return ld_moved;
1da177e4
LT
2718
2719out_balanced:
1da177e4
LT
2720 schedstat_inc(sd, lb_balanced[idle]);
2721
16cfb1c0 2722 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2723
2724out_one_pinned:
1da177e4 2725 /* tune up the balancing interval */
77391d71
NP
2726 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2727 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2728 sd->balance_interval *= 2;
2729
48f24c4d 2730 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2731 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2732 return -1;
1da177e4
LT
2733 return 0;
2734}
2735
2736/*
2737 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2738 * tasks if there is an imbalance.
2739 *
d15bcfdb 2740 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2741 * this_rq is locked.
2742 */
48f24c4d 2743static int
70b97a7f 2744load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2745{
2746 struct sched_group *group;
70b97a7f 2747 struct rq *busiest = NULL;
1da177e4 2748 unsigned long imbalance;
43010659 2749 int ld_moved = 0;
5969fe06 2750 int sd_idle = 0;
969bb4e4 2751 int all_pinned = 0;
0a2966b4 2752 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2753
89c4710e
SS
2754 /*
2755 * When power savings policy is enabled for the parent domain, idle
2756 * sibling can pick up load irrespective of busy siblings. In this case,
2757 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2758 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2759 */
2760 if (sd->flags & SD_SHARE_CPUPOWER &&
2761 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2762 sd_idle = 1;
1da177e4 2763
2d72376b 2764 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2765redo:
d15bcfdb 2766 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2767 &sd_idle, &cpus, NULL);
1da177e4 2768 if (!group) {
d15bcfdb 2769 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2770 goto out_balanced;
1da177e4
LT
2771 }
2772
d15bcfdb 2773 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2774 &cpus);
db935dbd 2775 if (!busiest) {
d15bcfdb 2776 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2777 goto out_balanced;
1da177e4
LT
2778 }
2779
db935dbd
NP
2780 BUG_ON(busiest == this_rq);
2781
d15bcfdb 2782 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2783
43010659 2784 ld_moved = 0;
d6d5cfaf
NP
2785 if (busiest->nr_running > 1) {
2786 /* Attempt to move tasks */
2787 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2788 /* this_rq->clock is already updated */
2789 update_rq_clock(busiest);
43010659 2790 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2791 imbalance, sd, CPU_NEWLY_IDLE,
2792 &all_pinned);
d6d5cfaf 2793 spin_unlock(&busiest->lock);
0a2966b4 2794
969bb4e4 2795 if (unlikely(all_pinned)) {
0a2966b4
CL
2796 cpu_clear(cpu_of(busiest), cpus);
2797 if (!cpus_empty(cpus))
2798 goto redo;
2799 }
d6d5cfaf
NP
2800 }
2801
43010659 2802 if (!ld_moved) {
d15bcfdb 2803 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2804 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2805 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2806 return -1;
2807 } else
16cfb1c0 2808 sd->nr_balance_failed = 0;
1da177e4 2809
43010659 2810 return ld_moved;
16cfb1c0
NP
2811
2812out_balanced:
d15bcfdb 2813 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2814 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2815 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2816 return -1;
16cfb1c0 2817 sd->nr_balance_failed = 0;
48f24c4d 2818
16cfb1c0 2819 return 0;
1da177e4
LT
2820}
2821
2822/*
2823 * idle_balance is called by schedule() if this_cpu is about to become
2824 * idle. Attempts to pull tasks from other CPUs.
2825 */
70b97a7f 2826static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2827{
2828 struct sched_domain *sd;
dd41f596
IM
2829 int pulled_task = -1;
2830 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2831
2832 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2833 unsigned long interval;
2834
2835 if (!(sd->flags & SD_LOAD_BALANCE))
2836 continue;
2837
2838 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2839 /* If we've pulled tasks over stop searching: */
1bd77f2d 2840 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2841 this_rq, sd);
2842
2843 interval = msecs_to_jiffies(sd->balance_interval);
2844 if (time_after(next_balance, sd->last_balance + interval))
2845 next_balance = sd->last_balance + interval;
2846 if (pulled_task)
2847 break;
1da177e4 2848 }
dd41f596 2849 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2850 /*
2851 * We are going idle. next_balance may be set based on
2852 * a busy processor. So reset next_balance.
2853 */
2854 this_rq->next_balance = next_balance;
dd41f596 2855 }
1da177e4
LT
2856}
2857
2858/*
2859 * active_load_balance is run by migration threads. It pushes running tasks
2860 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2861 * running on each physical CPU where possible, and avoids physical /
2862 * logical imbalances.
2863 *
2864 * Called with busiest_rq locked.
2865 */
70b97a7f 2866static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2867{
39507451 2868 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2869 struct sched_domain *sd;
2870 struct rq *target_rq;
39507451 2871
48f24c4d 2872 /* Is there any task to move? */
39507451 2873 if (busiest_rq->nr_running <= 1)
39507451
NP
2874 return;
2875
2876 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2877
2878 /*
39507451
NP
2879 * This condition is "impossible", if it occurs
2880 * we need to fix it. Originally reported by
2881 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2882 */
39507451 2883 BUG_ON(busiest_rq == target_rq);
1da177e4 2884
39507451
NP
2885 /* move a task from busiest_rq to target_rq */
2886 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2887 update_rq_clock(busiest_rq);
2888 update_rq_clock(target_rq);
39507451
NP
2889
2890 /* Search for an sd spanning us and the target CPU. */
c96d145e 2891 for_each_domain(target_cpu, sd) {
39507451 2892 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2893 cpu_isset(busiest_cpu, sd->span))
39507451 2894 break;
c96d145e 2895 }
39507451 2896
48f24c4d 2897 if (likely(sd)) {
2d72376b 2898 schedstat_inc(sd, alb_count);
39507451 2899
43010659
PW
2900 if (move_one_task(target_rq, target_cpu, busiest_rq,
2901 sd, CPU_IDLE))
48f24c4d
IM
2902 schedstat_inc(sd, alb_pushed);
2903 else
2904 schedstat_inc(sd, alb_failed);
2905 }
39507451 2906 spin_unlock(&target_rq->lock);
1da177e4
LT
2907}
2908
46cb4b7c
SS
2909#ifdef CONFIG_NO_HZ
2910static struct {
2911 atomic_t load_balancer;
2912 cpumask_t cpu_mask;
2913} nohz ____cacheline_aligned = {
2914 .load_balancer = ATOMIC_INIT(-1),
2915 .cpu_mask = CPU_MASK_NONE,
2916};
2917
7835b98b 2918/*
46cb4b7c
SS
2919 * This routine will try to nominate the ilb (idle load balancing)
2920 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2921 * load balancing on behalf of all those cpus. If all the cpus in the system
2922 * go into this tickless mode, then there will be no ilb owner (as there is
2923 * no need for one) and all the cpus will sleep till the next wakeup event
2924 * arrives...
2925 *
2926 * For the ilb owner, tick is not stopped. And this tick will be used
2927 * for idle load balancing. ilb owner will still be part of
2928 * nohz.cpu_mask..
7835b98b 2929 *
46cb4b7c
SS
2930 * While stopping the tick, this cpu will become the ilb owner if there
2931 * is no other owner. And will be the owner till that cpu becomes busy
2932 * or if all cpus in the system stop their ticks at which point
2933 * there is no need for ilb owner.
2934 *
2935 * When the ilb owner becomes busy, it nominates another owner, during the
2936 * next busy scheduler_tick()
2937 */
2938int select_nohz_load_balancer(int stop_tick)
2939{
2940 int cpu = smp_processor_id();
2941
2942 if (stop_tick) {
2943 cpu_set(cpu, nohz.cpu_mask);
2944 cpu_rq(cpu)->in_nohz_recently = 1;
2945
2946 /*
2947 * If we are going offline and still the leader, give up!
2948 */
2949 if (cpu_is_offline(cpu) &&
2950 atomic_read(&nohz.load_balancer) == cpu) {
2951 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2952 BUG();
2953 return 0;
2954 }
2955
2956 /* time for ilb owner also to sleep */
2957 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2958 if (atomic_read(&nohz.load_balancer) == cpu)
2959 atomic_set(&nohz.load_balancer, -1);
2960 return 0;
2961 }
2962
2963 if (atomic_read(&nohz.load_balancer) == -1) {
2964 /* make me the ilb owner */
2965 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2966 return 1;
2967 } else if (atomic_read(&nohz.load_balancer) == cpu)
2968 return 1;
2969 } else {
2970 if (!cpu_isset(cpu, nohz.cpu_mask))
2971 return 0;
2972
2973 cpu_clear(cpu, nohz.cpu_mask);
2974
2975 if (atomic_read(&nohz.load_balancer) == cpu)
2976 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2977 BUG();
2978 }
2979 return 0;
2980}
2981#endif
2982
2983static DEFINE_SPINLOCK(balancing);
2984
2985/*
7835b98b
CL
2986 * It checks each scheduling domain to see if it is due to be balanced,
2987 * and initiates a balancing operation if so.
2988 *
2989 * Balancing parameters are set up in arch_init_sched_domains.
2990 */
a9957449 2991static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 2992{
46cb4b7c
SS
2993 int balance = 1;
2994 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
2995 unsigned long interval;
2996 struct sched_domain *sd;
46cb4b7c 2997 /* Earliest time when we have to do rebalance again */
c9819f45 2998 unsigned long next_balance = jiffies + 60*HZ;
f549da84 2999 int update_next_balance = 0;
1da177e4 3000
46cb4b7c 3001 for_each_domain(cpu, sd) {
1da177e4
LT
3002 if (!(sd->flags & SD_LOAD_BALANCE))
3003 continue;
3004
3005 interval = sd->balance_interval;
d15bcfdb 3006 if (idle != CPU_IDLE)
1da177e4
LT
3007 interval *= sd->busy_factor;
3008
3009 /* scale ms to jiffies */
3010 interval = msecs_to_jiffies(interval);
3011 if (unlikely(!interval))
3012 interval = 1;
dd41f596
IM
3013 if (interval > HZ*NR_CPUS/10)
3014 interval = HZ*NR_CPUS/10;
3015
1da177e4 3016
08c183f3
CL
3017 if (sd->flags & SD_SERIALIZE) {
3018 if (!spin_trylock(&balancing))
3019 goto out;
3020 }
3021
c9819f45 3022 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3023 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3024 /*
3025 * We've pulled tasks over so either we're no
5969fe06
NP
3026 * longer idle, or one of our SMT siblings is
3027 * not idle.
3028 */
d15bcfdb 3029 idle = CPU_NOT_IDLE;
1da177e4 3030 }
1bd77f2d 3031 sd->last_balance = jiffies;
1da177e4 3032 }
08c183f3
CL
3033 if (sd->flags & SD_SERIALIZE)
3034 spin_unlock(&balancing);
3035out:
f549da84 3036 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3037 next_balance = sd->last_balance + interval;
f549da84
SS
3038 update_next_balance = 1;
3039 }
783609c6
SS
3040
3041 /*
3042 * Stop the load balance at this level. There is another
3043 * CPU in our sched group which is doing load balancing more
3044 * actively.
3045 */
3046 if (!balance)
3047 break;
1da177e4 3048 }
f549da84
SS
3049
3050 /*
3051 * next_balance will be updated only when there is a need.
3052 * When the cpu is attached to null domain for ex, it will not be
3053 * updated.
3054 */
3055 if (likely(update_next_balance))
3056 rq->next_balance = next_balance;
46cb4b7c
SS
3057}
3058
3059/*
3060 * run_rebalance_domains is triggered when needed from the scheduler tick.
3061 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3062 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3063 */
3064static void run_rebalance_domains(struct softirq_action *h)
3065{
dd41f596
IM
3066 int this_cpu = smp_processor_id();
3067 struct rq *this_rq = cpu_rq(this_cpu);
3068 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3069 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3070
dd41f596 3071 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3072
3073#ifdef CONFIG_NO_HZ
3074 /*
3075 * If this cpu is the owner for idle load balancing, then do the
3076 * balancing on behalf of the other idle cpus whose ticks are
3077 * stopped.
3078 */
dd41f596
IM
3079 if (this_rq->idle_at_tick &&
3080 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3081 cpumask_t cpus = nohz.cpu_mask;
3082 struct rq *rq;
3083 int balance_cpu;
3084
dd41f596 3085 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3086 for_each_cpu_mask(balance_cpu, cpus) {
3087 /*
3088 * If this cpu gets work to do, stop the load balancing
3089 * work being done for other cpus. Next load
3090 * balancing owner will pick it up.
3091 */
3092 if (need_resched())
3093 break;
3094
de0cf899 3095 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3096
3097 rq = cpu_rq(balance_cpu);
dd41f596
IM
3098 if (time_after(this_rq->next_balance, rq->next_balance))
3099 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3100 }
3101 }
3102#endif
3103}
3104
3105/*
3106 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3107 *
3108 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3109 * idle load balancing owner or decide to stop the periodic load balancing,
3110 * if the whole system is idle.
3111 */
dd41f596 3112static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3113{
46cb4b7c
SS
3114#ifdef CONFIG_NO_HZ
3115 /*
3116 * If we were in the nohz mode recently and busy at the current
3117 * scheduler tick, then check if we need to nominate new idle
3118 * load balancer.
3119 */
3120 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3121 rq->in_nohz_recently = 0;
3122
3123 if (atomic_read(&nohz.load_balancer) == cpu) {
3124 cpu_clear(cpu, nohz.cpu_mask);
3125 atomic_set(&nohz.load_balancer, -1);
3126 }
3127
3128 if (atomic_read(&nohz.load_balancer) == -1) {
3129 /*
3130 * simple selection for now: Nominate the
3131 * first cpu in the nohz list to be the next
3132 * ilb owner.
3133 *
3134 * TBD: Traverse the sched domains and nominate
3135 * the nearest cpu in the nohz.cpu_mask.
3136 */
3137 int ilb = first_cpu(nohz.cpu_mask);
3138
3139 if (ilb != NR_CPUS)
3140 resched_cpu(ilb);
3141 }
3142 }
3143
3144 /*
3145 * If this cpu is idle and doing idle load balancing for all the
3146 * cpus with ticks stopped, is it time for that to stop?
3147 */
3148 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3149 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3150 resched_cpu(cpu);
3151 return;
3152 }
3153
3154 /*
3155 * If this cpu is idle and the idle load balancing is done by
3156 * someone else, then no need raise the SCHED_SOFTIRQ
3157 */
3158 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3159 cpu_isset(cpu, nohz.cpu_mask))
3160 return;
3161#endif
3162 if (time_after_eq(jiffies, rq->next_balance))
3163 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3164}
dd41f596
IM
3165
3166#else /* CONFIG_SMP */
3167
1da177e4
LT
3168/*
3169 * on UP we do not need to balance between CPUs:
3170 */
70b97a7f 3171static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3172{
3173}
dd41f596
IM
3174
3175/* Avoid "used but not defined" warning on UP */
3176static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3177 unsigned long max_nr_move, unsigned long max_load_move,
3178 struct sched_domain *sd, enum cpu_idle_type idle,
3179 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3180 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3181{
3182 *load_moved = 0;
3183
3184 return 0;
3185}
3186
1da177e4
LT
3187#endif
3188
1da177e4
LT
3189DEFINE_PER_CPU(struct kernel_stat, kstat);
3190
3191EXPORT_PER_CPU_SYMBOL(kstat);
3192
3193/*
41b86e9c
IM
3194 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3195 * that have not yet been banked in case the task is currently running.
1da177e4 3196 */
41b86e9c 3197unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3198{
1da177e4 3199 unsigned long flags;
41b86e9c
IM
3200 u64 ns, delta_exec;
3201 struct rq *rq;
48f24c4d 3202
41b86e9c
IM
3203 rq = task_rq_lock(p, &flags);
3204 ns = p->se.sum_exec_runtime;
3205 if (rq->curr == p) {
a8e504d2
IM
3206 update_rq_clock(rq);
3207 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3208 if ((s64)delta_exec > 0)
3209 ns += delta_exec;
3210 }
3211 task_rq_unlock(rq, &flags);
48f24c4d 3212
1da177e4
LT
3213 return ns;
3214}
3215
1da177e4
LT
3216/*
3217 * Account user cpu time to a process.
3218 * @p: the process that the cpu time gets accounted to
3219 * @hardirq_offset: the offset to subtract from hardirq_count()
3220 * @cputime: the cpu time spent in user space since the last update
3221 */
3222void account_user_time(struct task_struct *p, cputime_t cputime)
3223{
3224 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3225 cputime64_t tmp;
3226
3227 p->utime = cputime_add(p->utime, cputime);
3228
3229 /* Add user time to cpustat. */
3230 tmp = cputime_to_cputime64(cputime);
3231 if (TASK_NICE(p) > 0)
3232 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3233 else
3234 cpustat->user = cputime64_add(cpustat->user, tmp);
3235}
3236
3237/*
3238 * Account system cpu time to a process.
3239 * @p: the process that the cpu time gets accounted to
3240 * @hardirq_offset: the offset to subtract from hardirq_count()
3241 * @cputime: the cpu time spent in kernel space since the last update
3242 */
3243void account_system_time(struct task_struct *p, int hardirq_offset,
3244 cputime_t cputime)
3245{
3246 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3247 struct rq *rq = this_rq();
1da177e4
LT
3248 cputime64_t tmp;
3249
3250 p->stime = cputime_add(p->stime, cputime);
3251
3252 /* Add system time to cpustat. */
3253 tmp = cputime_to_cputime64(cputime);
3254 if (hardirq_count() - hardirq_offset)
3255 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3256 else if (softirq_count())
3257 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3258 else if (p != rq->idle)
3259 cpustat->system = cputime64_add(cpustat->system, tmp);
3260 else if (atomic_read(&rq->nr_iowait) > 0)
3261 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3262 else
3263 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3264 /* Account for system time used */
3265 acct_update_integrals(p);
1da177e4
LT
3266}
3267
3268/*
3269 * Account for involuntary wait time.
3270 * @p: the process from which the cpu time has been stolen
3271 * @steal: the cpu time spent in involuntary wait
3272 */
3273void account_steal_time(struct task_struct *p, cputime_t steal)
3274{
3275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3276 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3277 struct rq *rq = this_rq();
1da177e4
LT
3278
3279 if (p == rq->idle) {
3280 p->stime = cputime_add(p->stime, steal);
3281 if (atomic_read(&rq->nr_iowait) > 0)
3282 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3283 else
3284 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3285 } else
3286 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3287}
3288
7835b98b
CL
3289/*
3290 * This function gets called by the timer code, with HZ frequency.
3291 * We call it with interrupts disabled.
3292 *
3293 * It also gets called by the fork code, when changing the parent's
3294 * timeslices.
3295 */
3296void scheduler_tick(void)
3297{
7835b98b
CL
3298 int cpu = smp_processor_id();
3299 struct rq *rq = cpu_rq(cpu);
dd41f596 3300 struct task_struct *curr = rq->curr;
529c7726 3301 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3302
3303 spin_lock(&rq->lock);
546fe3c9 3304 __update_rq_clock(rq);
529c7726
IM
3305 /*
3306 * Let rq->clock advance by at least TICK_NSEC:
3307 */
3308 if (unlikely(rq->clock < next_tick))
3309 rq->clock = next_tick;
3310 rq->tick_timestamp = rq->clock;
f1a438d8 3311 update_cpu_load(rq);
dd41f596
IM
3312 if (curr != rq->idle) /* FIXME: needed? */
3313 curr->sched_class->task_tick(rq, curr);
dd41f596 3314 spin_unlock(&rq->lock);
7835b98b 3315
e418e1c2 3316#ifdef CONFIG_SMP
dd41f596
IM
3317 rq->idle_at_tick = idle_cpu(cpu);
3318 trigger_load_balance(rq, cpu);
e418e1c2 3319#endif
1da177e4
LT
3320}
3321
1da177e4
LT
3322#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3323
3324void fastcall add_preempt_count(int val)
3325{
3326 /*
3327 * Underflow?
3328 */
9a11b49a
IM
3329 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3330 return;
1da177e4
LT
3331 preempt_count() += val;
3332 /*
3333 * Spinlock count overflowing soon?
3334 */
33859f7f
MOS
3335 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3336 PREEMPT_MASK - 10);
1da177e4
LT
3337}
3338EXPORT_SYMBOL(add_preempt_count);
3339
3340void fastcall sub_preempt_count(int val)
3341{
3342 /*
3343 * Underflow?
3344 */
9a11b49a
IM
3345 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3346 return;
1da177e4
LT
3347 /*
3348 * Is the spinlock portion underflowing?
3349 */
9a11b49a
IM
3350 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3351 !(preempt_count() & PREEMPT_MASK)))
3352 return;
3353
1da177e4
LT
3354 preempt_count() -= val;
3355}
3356EXPORT_SYMBOL(sub_preempt_count);
3357
3358#endif
3359
3360/*
dd41f596 3361 * Print scheduling while atomic bug:
1da177e4 3362 */
dd41f596 3363static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3364{
dd41f596
IM
3365 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3366 prev->comm, preempt_count(), prev->pid);
3367 debug_show_held_locks(prev);
3368 if (irqs_disabled())
3369 print_irqtrace_events(prev);
3370 dump_stack();
3371}
1da177e4 3372
dd41f596
IM
3373/*
3374 * Various schedule()-time debugging checks and statistics:
3375 */
3376static inline void schedule_debug(struct task_struct *prev)
3377{
1da177e4
LT
3378 /*
3379 * Test if we are atomic. Since do_exit() needs to call into
3380 * schedule() atomically, we ignore that path for now.
3381 * Otherwise, whine if we are scheduling when we should not be.
3382 */
dd41f596
IM
3383 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3384 __schedule_bug(prev);
3385
1da177e4
LT
3386 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3387
2d72376b 3388 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3389#ifdef CONFIG_SCHEDSTATS
3390 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3391 schedstat_inc(this_rq(), bkl_count);
3392 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3393 }
3394#endif
dd41f596
IM
3395}
3396
3397/*
3398 * Pick up the highest-prio task:
3399 */
3400static inline struct task_struct *
ff95f3df 3401pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3402{
5522d5d5 3403 const struct sched_class *class;
dd41f596 3404 struct task_struct *p;
1da177e4
LT
3405
3406 /*
dd41f596
IM
3407 * Optimization: we know that if all tasks are in
3408 * the fair class we can call that function directly:
1da177e4 3409 */
dd41f596 3410 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3411 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3412 if (likely(p))
3413 return p;
1da177e4
LT
3414 }
3415
dd41f596
IM
3416 class = sched_class_highest;
3417 for ( ; ; ) {
fb8d4724 3418 p = class->pick_next_task(rq);
dd41f596
IM
3419 if (p)
3420 return p;
3421 /*
3422 * Will never be NULL as the idle class always
3423 * returns a non-NULL p:
3424 */
3425 class = class->next;
3426 }
3427}
1da177e4 3428
dd41f596
IM
3429/*
3430 * schedule() is the main scheduler function.
3431 */
3432asmlinkage void __sched schedule(void)
3433{
3434 struct task_struct *prev, *next;
3435 long *switch_count;
3436 struct rq *rq;
dd41f596
IM
3437 int cpu;
3438
3439need_resched:
3440 preempt_disable();
3441 cpu = smp_processor_id();
3442 rq = cpu_rq(cpu);
3443 rcu_qsctr_inc(cpu);
3444 prev = rq->curr;
3445 switch_count = &prev->nivcsw;
3446
3447 release_kernel_lock(prev);
3448need_resched_nonpreemptible:
3449
3450 schedule_debug(prev);
1da177e4 3451
1e819950
IM
3452 /*
3453 * Do the rq-clock update outside the rq lock:
3454 */
3455 local_irq_disable();
c1b3da3e 3456 __update_rq_clock(rq);
1e819950
IM
3457 spin_lock(&rq->lock);
3458 clear_tsk_need_resched(prev);
1da177e4 3459
1da177e4 3460 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3461 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3462 unlikely(signal_pending(prev)))) {
1da177e4 3463 prev->state = TASK_RUNNING;
dd41f596 3464 } else {
2e1cb74a 3465 deactivate_task(rq, prev, 1);
1da177e4 3466 }
dd41f596 3467 switch_count = &prev->nvcsw;
1da177e4
LT
3468 }
3469
dd41f596 3470 if (unlikely(!rq->nr_running))
1da177e4 3471 idle_balance(cpu, rq);
1da177e4 3472
31ee529c 3473 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3474 next = pick_next_task(rq, prev);
1da177e4
LT
3475
3476 sched_info_switch(prev, next);
dd41f596 3477
1da177e4 3478 if (likely(prev != next)) {
1da177e4
LT
3479 rq->nr_switches++;
3480 rq->curr = next;
3481 ++*switch_count;
3482
dd41f596 3483 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3484 } else
3485 spin_unlock_irq(&rq->lock);
3486
dd41f596
IM
3487 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3488 cpu = smp_processor_id();
3489 rq = cpu_rq(cpu);
1da177e4 3490 goto need_resched_nonpreemptible;
dd41f596 3491 }
1da177e4
LT
3492 preempt_enable_no_resched();
3493 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3494 goto need_resched;
3495}
1da177e4
LT
3496EXPORT_SYMBOL(schedule);
3497
3498#ifdef CONFIG_PREEMPT
3499/*
2ed6e34f 3500 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3501 * off of preempt_enable. Kernel preemptions off return from interrupt
3502 * occur there and call schedule directly.
3503 */
3504asmlinkage void __sched preempt_schedule(void)
3505{
3506 struct thread_info *ti = current_thread_info();
3507#ifdef CONFIG_PREEMPT_BKL
3508 struct task_struct *task = current;
3509 int saved_lock_depth;
3510#endif
3511 /*
3512 * If there is a non-zero preempt_count or interrupts are disabled,
3513 * we do not want to preempt the current task. Just return..
3514 */
beed33a8 3515 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3516 return;
3517
3518need_resched:
3519 add_preempt_count(PREEMPT_ACTIVE);
3520 /*
3521 * We keep the big kernel semaphore locked, but we
3522 * clear ->lock_depth so that schedule() doesnt
3523 * auto-release the semaphore:
3524 */
3525#ifdef CONFIG_PREEMPT_BKL
3526 saved_lock_depth = task->lock_depth;
3527 task->lock_depth = -1;
3528#endif
3529 schedule();
3530#ifdef CONFIG_PREEMPT_BKL
3531 task->lock_depth = saved_lock_depth;
3532#endif
3533 sub_preempt_count(PREEMPT_ACTIVE);
3534
3535 /* we could miss a preemption opportunity between schedule and now */
3536 barrier();
3537 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3538 goto need_resched;
3539}
1da177e4
LT
3540EXPORT_SYMBOL(preempt_schedule);
3541
3542/*
2ed6e34f 3543 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3544 * off of irq context.
3545 * Note, that this is called and return with irqs disabled. This will
3546 * protect us against recursive calling from irq.
3547 */
3548asmlinkage void __sched preempt_schedule_irq(void)
3549{
3550 struct thread_info *ti = current_thread_info();
3551#ifdef CONFIG_PREEMPT_BKL
3552 struct task_struct *task = current;
3553 int saved_lock_depth;
3554#endif
2ed6e34f 3555 /* Catch callers which need to be fixed */
1da177e4
LT
3556 BUG_ON(ti->preempt_count || !irqs_disabled());
3557
3558need_resched:
3559 add_preempt_count(PREEMPT_ACTIVE);
3560 /*
3561 * We keep the big kernel semaphore locked, but we
3562 * clear ->lock_depth so that schedule() doesnt
3563 * auto-release the semaphore:
3564 */
3565#ifdef CONFIG_PREEMPT_BKL
3566 saved_lock_depth = task->lock_depth;
3567 task->lock_depth = -1;
3568#endif
3569 local_irq_enable();
3570 schedule();
3571 local_irq_disable();
3572#ifdef CONFIG_PREEMPT_BKL
3573 task->lock_depth = saved_lock_depth;
3574#endif
3575 sub_preempt_count(PREEMPT_ACTIVE);
3576
3577 /* we could miss a preemption opportunity between schedule and now */
3578 barrier();
3579 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3580 goto need_resched;
3581}
3582
3583#endif /* CONFIG_PREEMPT */
3584
95cdf3b7
IM
3585int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3586 void *key)
1da177e4 3587{
48f24c4d 3588 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3589}
1da177e4
LT
3590EXPORT_SYMBOL(default_wake_function);
3591
3592/*
3593 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3594 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3595 * number) then we wake all the non-exclusive tasks and one exclusive task.
3596 *
3597 * There are circumstances in which we can try to wake a task which has already
3598 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3599 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3600 */
3601static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3602 int nr_exclusive, int sync, void *key)
3603{
2e45874c 3604 wait_queue_t *curr, *next;
1da177e4 3605
2e45874c 3606 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3607 unsigned flags = curr->flags;
3608
1da177e4 3609 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3610 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3611 break;
3612 }
3613}
3614
3615/**
3616 * __wake_up - wake up threads blocked on a waitqueue.
3617 * @q: the waitqueue
3618 * @mode: which threads
3619 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3620 * @key: is directly passed to the wakeup function
1da177e4
LT
3621 */
3622void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3623 int nr_exclusive, void *key)
1da177e4
LT
3624{
3625 unsigned long flags;
3626
3627 spin_lock_irqsave(&q->lock, flags);
3628 __wake_up_common(q, mode, nr_exclusive, 0, key);
3629 spin_unlock_irqrestore(&q->lock, flags);
3630}
1da177e4
LT
3631EXPORT_SYMBOL(__wake_up);
3632
3633/*
3634 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3635 */
3636void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3637{
3638 __wake_up_common(q, mode, 1, 0, NULL);
3639}
3640
3641/**
67be2dd1 3642 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3643 * @q: the waitqueue
3644 * @mode: which threads
3645 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3646 *
3647 * The sync wakeup differs that the waker knows that it will schedule
3648 * away soon, so while the target thread will be woken up, it will not
3649 * be migrated to another CPU - ie. the two threads are 'synchronized'
3650 * with each other. This can prevent needless bouncing between CPUs.
3651 *
3652 * On UP it can prevent extra preemption.
3653 */
95cdf3b7
IM
3654void fastcall
3655__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3656{
3657 unsigned long flags;
3658 int sync = 1;
3659
3660 if (unlikely(!q))
3661 return;
3662
3663 if (unlikely(!nr_exclusive))
3664 sync = 0;
3665
3666 spin_lock_irqsave(&q->lock, flags);
3667 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3668 spin_unlock_irqrestore(&q->lock, flags);
3669}
3670EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3671
3672void fastcall complete(struct completion *x)
3673{
3674 unsigned long flags;
3675
3676 spin_lock_irqsave(&x->wait.lock, flags);
3677 x->done++;
3678 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3679 1, 0, NULL);
3680 spin_unlock_irqrestore(&x->wait.lock, flags);
3681}
3682EXPORT_SYMBOL(complete);
3683
3684void fastcall complete_all(struct completion *x)
3685{
3686 unsigned long flags;
3687
3688 spin_lock_irqsave(&x->wait.lock, flags);
3689 x->done += UINT_MAX/2;
3690 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3691 0, 0, NULL);
3692 spin_unlock_irqrestore(&x->wait.lock, flags);
3693}
3694EXPORT_SYMBOL(complete_all);
3695
3696void fastcall __sched wait_for_completion(struct completion *x)
3697{
3698 might_sleep();
48f24c4d 3699
1da177e4
LT
3700 spin_lock_irq(&x->wait.lock);
3701 if (!x->done) {
3702 DECLARE_WAITQUEUE(wait, current);
3703
3704 wait.flags |= WQ_FLAG_EXCLUSIVE;
3705 __add_wait_queue_tail(&x->wait, &wait);
3706 do {
3707 __set_current_state(TASK_UNINTERRUPTIBLE);
3708 spin_unlock_irq(&x->wait.lock);
3709 schedule();
3710 spin_lock_irq(&x->wait.lock);
3711 } while (!x->done);
3712 __remove_wait_queue(&x->wait, &wait);
3713 }
3714 x->done--;
3715 spin_unlock_irq(&x->wait.lock);
3716}
3717EXPORT_SYMBOL(wait_for_completion);
3718
3719unsigned long fastcall __sched
3720wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3721{
3722 might_sleep();
3723
3724 spin_lock_irq(&x->wait.lock);
3725 if (!x->done) {
3726 DECLARE_WAITQUEUE(wait, current);
3727
3728 wait.flags |= WQ_FLAG_EXCLUSIVE;
3729 __add_wait_queue_tail(&x->wait, &wait);
3730 do {
3731 __set_current_state(TASK_UNINTERRUPTIBLE);
3732 spin_unlock_irq(&x->wait.lock);
3733 timeout = schedule_timeout(timeout);
3734 spin_lock_irq(&x->wait.lock);
3735 if (!timeout) {
3736 __remove_wait_queue(&x->wait, &wait);
3737 goto out;
3738 }
3739 } while (!x->done);
3740 __remove_wait_queue(&x->wait, &wait);
3741 }
3742 x->done--;
3743out:
3744 spin_unlock_irq(&x->wait.lock);
3745 return timeout;
3746}
3747EXPORT_SYMBOL(wait_for_completion_timeout);
3748
3749int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3750{
3751 int ret = 0;
3752
3753 might_sleep();
3754
3755 spin_lock_irq(&x->wait.lock);
3756 if (!x->done) {
3757 DECLARE_WAITQUEUE(wait, current);
3758
3759 wait.flags |= WQ_FLAG_EXCLUSIVE;
3760 __add_wait_queue_tail(&x->wait, &wait);
3761 do {
3762 if (signal_pending(current)) {
3763 ret = -ERESTARTSYS;
3764 __remove_wait_queue(&x->wait, &wait);
3765 goto out;
3766 }
3767 __set_current_state(TASK_INTERRUPTIBLE);
3768 spin_unlock_irq(&x->wait.lock);
3769 schedule();
3770 spin_lock_irq(&x->wait.lock);
3771 } while (!x->done);
3772 __remove_wait_queue(&x->wait, &wait);
3773 }
3774 x->done--;
3775out:
3776 spin_unlock_irq(&x->wait.lock);
3777
3778 return ret;
3779}
3780EXPORT_SYMBOL(wait_for_completion_interruptible);
3781
3782unsigned long fastcall __sched
3783wait_for_completion_interruptible_timeout(struct completion *x,
3784 unsigned long timeout)
3785{
3786 might_sleep();
3787
3788 spin_lock_irq(&x->wait.lock);
3789 if (!x->done) {
3790 DECLARE_WAITQUEUE(wait, current);
3791
3792 wait.flags |= WQ_FLAG_EXCLUSIVE;
3793 __add_wait_queue_tail(&x->wait, &wait);
3794 do {
3795 if (signal_pending(current)) {
3796 timeout = -ERESTARTSYS;
3797 __remove_wait_queue(&x->wait, &wait);
3798 goto out;
3799 }
3800 __set_current_state(TASK_INTERRUPTIBLE);
3801 spin_unlock_irq(&x->wait.lock);
3802 timeout = schedule_timeout(timeout);
3803 spin_lock_irq(&x->wait.lock);
3804 if (!timeout) {
3805 __remove_wait_queue(&x->wait, &wait);
3806 goto out;
3807 }
3808 } while (!x->done);
3809 __remove_wait_queue(&x->wait, &wait);
3810 }
3811 x->done--;
3812out:
3813 spin_unlock_irq(&x->wait.lock);
3814 return timeout;
3815}
3816EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3817
0fec171c
IM
3818static inline void
3819sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3820{
3821 spin_lock_irqsave(&q->lock, *flags);
3822 __add_wait_queue(q, wait);
1da177e4 3823 spin_unlock(&q->lock);
0fec171c 3824}
1da177e4 3825
0fec171c
IM
3826static inline void
3827sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3828{
3829 spin_lock_irq(&q->lock);
3830 __remove_wait_queue(q, wait);
3831 spin_unlock_irqrestore(&q->lock, *flags);
3832}
1da177e4 3833
0fec171c 3834void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3835{
0fec171c
IM
3836 unsigned long flags;
3837 wait_queue_t wait;
3838
3839 init_waitqueue_entry(&wait, current);
1da177e4
LT
3840
3841 current->state = TASK_INTERRUPTIBLE;
3842
0fec171c 3843 sleep_on_head(q, &wait, &flags);
1da177e4 3844 schedule();
0fec171c 3845 sleep_on_tail(q, &wait, &flags);
1da177e4 3846}
1da177e4
LT
3847EXPORT_SYMBOL(interruptible_sleep_on);
3848
0fec171c 3849long __sched
95cdf3b7 3850interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3851{
0fec171c
IM
3852 unsigned long flags;
3853 wait_queue_t wait;
3854
3855 init_waitqueue_entry(&wait, current);
1da177e4
LT
3856
3857 current->state = TASK_INTERRUPTIBLE;
3858
0fec171c 3859 sleep_on_head(q, &wait, &flags);
1da177e4 3860 timeout = schedule_timeout(timeout);
0fec171c 3861 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3862
3863 return timeout;
3864}
1da177e4
LT
3865EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3866
0fec171c 3867void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3868{
0fec171c
IM
3869 unsigned long flags;
3870 wait_queue_t wait;
3871
3872 init_waitqueue_entry(&wait, current);
1da177e4
LT
3873
3874 current->state = TASK_UNINTERRUPTIBLE;
3875
0fec171c 3876 sleep_on_head(q, &wait, &flags);
1da177e4 3877 schedule();
0fec171c 3878 sleep_on_tail(q, &wait, &flags);
1da177e4 3879}
1da177e4
LT
3880EXPORT_SYMBOL(sleep_on);
3881
0fec171c 3882long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3883{
0fec171c
IM
3884 unsigned long flags;
3885 wait_queue_t wait;
3886
3887 init_waitqueue_entry(&wait, current);
1da177e4
LT
3888
3889 current->state = TASK_UNINTERRUPTIBLE;
3890
0fec171c 3891 sleep_on_head(q, &wait, &flags);
1da177e4 3892 timeout = schedule_timeout(timeout);
0fec171c 3893 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3894
3895 return timeout;
3896}
1da177e4
LT
3897EXPORT_SYMBOL(sleep_on_timeout);
3898
b29739f9
IM
3899#ifdef CONFIG_RT_MUTEXES
3900
3901/*
3902 * rt_mutex_setprio - set the current priority of a task
3903 * @p: task
3904 * @prio: prio value (kernel-internal form)
3905 *
3906 * This function changes the 'effective' priority of a task. It does
3907 * not touch ->normal_prio like __setscheduler().
3908 *
3909 * Used by the rt_mutex code to implement priority inheritance logic.
3910 */
36c8b586 3911void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3912{
3913 unsigned long flags;
83b699ed 3914 int oldprio, on_rq, running;
70b97a7f 3915 struct rq *rq;
b29739f9
IM
3916
3917 BUG_ON(prio < 0 || prio > MAX_PRIO);
3918
3919 rq = task_rq_lock(p, &flags);
a8e504d2 3920 update_rq_clock(rq);
b29739f9 3921
d5f9f942 3922 oldprio = p->prio;
dd41f596 3923 on_rq = p->se.on_rq;
83b699ed
SV
3924 running = task_running(rq, p);
3925 if (on_rq) {
69be72c1 3926 dequeue_task(rq, p, 0);
83b699ed
SV
3927 if (running)
3928 p->sched_class->put_prev_task(rq, p);
3929 }
dd41f596
IM
3930
3931 if (rt_prio(prio))
3932 p->sched_class = &rt_sched_class;
3933 else
3934 p->sched_class = &fair_sched_class;
3935
b29739f9
IM
3936 p->prio = prio;
3937
dd41f596 3938 if (on_rq) {
83b699ed
SV
3939 if (running)
3940 p->sched_class->set_curr_task(rq);
8159f87e 3941 enqueue_task(rq, p, 0);
b29739f9
IM
3942 /*
3943 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3944 * our priority decreased, or if we are not currently running on
3945 * this runqueue and our priority is higher than the current's
b29739f9 3946 */
83b699ed 3947 if (running) {
d5f9f942
AM
3948 if (p->prio > oldprio)
3949 resched_task(rq->curr);
dd41f596
IM
3950 } else {
3951 check_preempt_curr(rq, p);
3952 }
b29739f9
IM
3953 }
3954 task_rq_unlock(rq, &flags);
3955}
3956
3957#endif
3958
36c8b586 3959void set_user_nice(struct task_struct *p, long nice)
1da177e4 3960{
dd41f596 3961 int old_prio, delta, on_rq;
1da177e4 3962 unsigned long flags;
70b97a7f 3963 struct rq *rq;
1da177e4
LT
3964
3965 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3966 return;
3967 /*
3968 * We have to be careful, if called from sys_setpriority(),
3969 * the task might be in the middle of scheduling on another CPU.
3970 */
3971 rq = task_rq_lock(p, &flags);
a8e504d2 3972 update_rq_clock(rq);
1da177e4
LT
3973 /*
3974 * The RT priorities are set via sched_setscheduler(), but we still
3975 * allow the 'normal' nice value to be set - but as expected
3976 * it wont have any effect on scheduling until the task is
dd41f596 3977 * SCHED_FIFO/SCHED_RR:
1da177e4 3978 */
e05606d3 3979 if (task_has_rt_policy(p)) {
1da177e4
LT
3980 p->static_prio = NICE_TO_PRIO(nice);
3981 goto out_unlock;
3982 }
dd41f596
IM
3983 on_rq = p->se.on_rq;
3984 if (on_rq) {
69be72c1 3985 dequeue_task(rq, p, 0);
79b5dddf 3986 dec_load(rq, p);
2dd73a4f 3987 }
1da177e4 3988
1da177e4 3989 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3990 set_load_weight(p);
b29739f9
IM
3991 old_prio = p->prio;
3992 p->prio = effective_prio(p);
3993 delta = p->prio - old_prio;
1da177e4 3994
dd41f596 3995 if (on_rq) {
8159f87e 3996 enqueue_task(rq, p, 0);
29b4b623 3997 inc_load(rq, p);
1da177e4 3998 /*
d5f9f942
AM
3999 * If the task increased its priority or is running and
4000 * lowered its priority, then reschedule its CPU:
1da177e4 4001 */
d5f9f942 4002 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4003 resched_task(rq->curr);
4004 }
4005out_unlock:
4006 task_rq_unlock(rq, &flags);
4007}
1da177e4
LT
4008EXPORT_SYMBOL(set_user_nice);
4009
e43379f1
MM
4010/*
4011 * can_nice - check if a task can reduce its nice value
4012 * @p: task
4013 * @nice: nice value
4014 */
36c8b586 4015int can_nice(const struct task_struct *p, const int nice)
e43379f1 4016{
024f4747
MM
4017 /* convert nice value [19,-20] to rlimit style value [1,40] */
4018 int nice_rlim = 20 - nice;
48f24c4d 4019
e43379f1
MM
4020 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4021 capable(CAP_SYS_NICE));
4022}
4023
1da177e4
LT
4024#ifdef __ARCH_WANT_SYS_NICE
4025
4026/*
4027 * sys_nice - change the priority of the current process.
4028 * @increment: priority increment
4029 *
4030 * sys_setpriority is a more generic, but much slower function that
4031 * does similar things.
4032 */
4033asmlinkage long sys_nice(int increment)
4034{
48f24c4d 4035 long nice, retval;
1da177e4
LT
4036
4037 /*
4038 * Setpriority might change our priority at the same moment.
4039 * We don't have to worry. Conceptually one call occurs first
4040 * and we have a single winner.
4041 */
e43379f1
MM
4042 if (increment < -40)
4043 increment = -40;
1da177e4
LT
4044 if (increment > 40)
4045 increment = 40;
4046
4047 nice = PRIO_TO_NICE(current->static_prio) + increment;
4048 if (nice < -20)
4049 nice = -20;
4050 if (nice > 19)
4051 nice = 19;
4052
e43379f1
MM
4053 if (increment < 0 && !can_nice(current, nice))
4054 return -EPERM;
4055
1da177e4
LT
4056 retval = security_task_setnice(current, nice);
4057 if (retval)
4058 return retval;
4059
4060 set_user_nice(current, nice);
4061 return 0;
4062}
4063
4064#endif
4065
4066/**
4067 * task_prio - return the priority value of a given task.
4068 * @p: the task in question.
4069 *
4070 * This is the priority value as seen by users in /proc.
4071 * RT tasks are offset by -200. Normal tasks are centered
4072 * around 0, value goes from -16 to +15.
4073 */
36c8b586 4074int task_prio(const struct task_struct *p)
1da177e4
LT
4075{
4076 return p->prio - MAX_RT_PRIO;
4077}
4078
4079/**
4080 * task_nice - return the nice value of a given task.
4081 * @p: the task in question.
4082 */
36c8b586 4083int task_nice(const struct task_struct *p)
1da177e4
LT
4084{
4085 return TASK_NICE(p);
4086}
1da177e4 4087EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4088
4089/**
4090 * idle_cpu - is a given cpu idle currently?
4091 * @cpu: the processor in question.
4092 */
4093int idle_cpu(int cpu)
4094{
4095 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4096}
4097
1da177e4
LT
4098/**
4099 * idle_task - return the idle task for a given cpu.
4100 * @cpu: the processor in question.
4101 */
36c8b586 4102struct task_struct *idle_task(int cpu)
1da177e4
LT
4103{
4104 return cpu_rq(cpu)->idle;
4105}
4106
4107/**
4108 * find_process_by_pid - find a process with a matching PID value.
4109 * @pid: the pid in question.
4110 */
a9957449 4111static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4112{
4113 return pid ? find_task_by_pid(pid) : current;
4114}
4115
4116/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4117static void
4118__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4119{
dd41f596 4120 BUG_ON(p->se.on_rq);
48f24c4d 4121
1da177e4 4122 p->policy = policy;
dd41f596
IM
4123 switch (p->policy) {
4124 case SCHED_NORMAL:
4125 case SCHED_BATCH:
4126 case SCHED_IDLE:
4127 p->sched_class = &fair_sched_class;
4128 break;
4129 case SCHED_FIFO:
4130 case SCHED_RR:
4131 p->sched_class = &rt_sched_class;
4132 break;
4133 }
4134
1da177e4 4135 p->rt_priority = prio;
b29739f9
IM
4136 p->normal_prio = normal_prio(p);
4137 /* we are holding p->pi_lock already */
4138 p->prio = rt_mutex_getprio(p);
2dd73a4f 4139 set_load_weight(p);
1da177e4
LT
4140}
4141
4142/**
72fd4a35 4143 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4144 * @p: the task in question.
4145 * @policy: new policy.
4146 * @param: structure containing the new RT priority.
5fe1d75f 4147 *
72fd4a35 4148 * NOTE that the task may be already dead.
1da177e4 4149 */
95cdf3b7
IM
4150int sched_setscheduler(struct task_struct *p, int policy,
4151 struct sched_param *param)
1da177e4 4152{
83b699ed 4153 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4154 unsigned long flags;
70b97a7f 4155 struct rq *rq;
1da177e4 4156
66e5393a
SR
4157 /* may grab non-irq protected spin_locks */
4158 BUG_ON(in_interrupt());
1da177e4
LT
4159recheck:
4160 /* double check policy once rq lock held */
4161 if (policy < 0)
4162 policy = oldpolicy = p->policy;
4163 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4164 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4165 policy != SCHED_IDLE)
b0a9499c 4166 return -EINVAL;
1da177e4
LT
4167 /*
4168 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4169 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4170 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4171 */
4172 if (param->sched_priority < 0 ||
95cdf3b7 4173 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4174 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4175 return -EINVAL;
e05606d3 4176 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4177 return -EINVAL;
4178
37e4ab3f
OC
4179 /*
4180 * Allow unprivileged RT tasks to decrease priority:
4181 */
4182 if (!capable(CAP_SYS_NICE)) {
e05606d3 4183 if (rt_policy(policy)) {
8dc3e909 4184 unsigned long rlim_rtprio;
8dc3e909
ON
4185
4186 if (!lock_task_sighand(p, &flags))
4187 return -ESRCH;
4188 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4189 unlock_task_sighand(p, &flags);
4190
4191 /* can't set/change the rt policy */
4192 if (policy != p->policy && !rlim_rtprio)
4193 return -EPERM;
4194
4195 /* can't increase priority */
4196 if (param->sched_priority > p->rt_priority &&
4197 param->sched_priority > rlim_rtprio)
4198 return -EPERM;
4199 }
dd41f596
IM
4200 /*
4201 * Like positive nice levels, dont allow tasks to
4202 * move out of SCHED_IDLE either:
4203 */
4204 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4205 return -EPERM;
5fe1d75f 4206
37e4ab3f
OC
4207 /* can't change other user's priorities */
4208 if ((current->euid != p->euid) &&
4209 (current->euid != p->uid))
4210 return -EPERM;
4211 }
1da177e4
LT
4212
4213 retval = security_task_setscheduler(p, policy, param);
4214 if (retval)
4215 return retval;
b29739f9
IM
4216 /*
4217 * make sure no PI-waiters arrive (or leave) while we are
4218 * changing the priority of the task:
4219 */
4220 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4221 /*
4222 * To be able to change p->policy safely, the apropriate
4223 * runqueue lock must be held.
4224 */
b29739f9 4225 rq = __task_rq_lock(p);
1da177e4
LT
4226 /* recheck policy now with rq lock held */
4227 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4228 policy = oldpolicy = -1;
b29739f9
IM
4229 __task_rq_unlock(rq);
4230 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4231 goto recheck;
4232 }
2daa3577 4233 update_rq_clock(rq);
dd41f596 4234 on_rq = p->se.on_rq;
83b699ed
SV
4235 running = task_running(rq, p);
4236 if (on_rq) {
2e1cb74a 4237 deactivate_task(rq, p, 0);
83b699ed
SV
4238 if (running)
4239 p->sched_class->put_prev_task(rq, p);
4240 }
f6b53205 4241
1da177e4 4242 oldprio = p->prio;
dd41f596 4243 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4244
dd41f596 4245 if (on_rq) {
83b699ed
SV
4246 if (running)
4247 p->sched_class->set_curr_task(rq);
dd41f596 4248 activate_task(rq, p, 0);
1da177e4
LT
4249 /*
4250 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4251 * our priority decreased, or if we are not currently running on
4252 * this runqueue and our priority is higher than the current's
1da177e4 4253 */
83b699ed 4254 if (running) {
d5f9f942
AM
4255 if (p->prio > oldprio)
4256 resched_task(rq->curr);
dd41f596
IM
4257 } else {
4258 check_preempt_curr(rq, p);
4259 }
1da177e4 4260 }
b29739f9
IM
4261 __task_rq_unlock(rq);
4262 spin_unlock_irqrestore(&p->pi_lock, flags);
4263
95e02ca9
TG
4264 rt_mutex_adjust_pi(p);
4265
1da177e4
LT
4266 return 0;
4267}
4268EXPORT_SYMBOL_GPL(sched_setscheduler);
4269
95cdf3b7
IM
4270static int
4271do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4272{
1da177e4
LT
4273 struct sched_param lparam;
4274 struct task_struct *p;
36c8b586 4275 int retval;
1da177e4
LT
4276
4277 if (!param || pid < 0)
4278 return -EINVAL;
4279 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4280 return -EFAULT;
5fe1d75f
ON
4281
4282 rcu_read_lock();
4283 retval = -ESRCH;
1da177e4 4284 p = find_process_by_pid(pid);
5fe1d75f
ON
4285 if (p != NULL)
4286 retval = sched_setscheduler(p, policy, &lparam);
4287 rcu_read_unlock();
36c8b586 4288
1da177e4
LT
4289 return retval;
4290}
4291
4292/**
4293 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4294 * @pid: the pid in question.
4295 * @policy: new policy.
4296 * @param: structure containing the new RT priority.
4297 */
4298asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4299 struct sched_param __user *param)
4300{
c21761f1
JB
4301 /* negative values for policy are not valid */
4302 if (policy < 0)
4303 return -EINVAL;
4304
1da177e4
LT
4305 return do_sched_setscheduler(pid, policy, param);
4306}
4307
4308/**
4309 * sys_sched_setparam - set/change the RT priority of a thread
4310 * @pid: the pid in question.
4311 * @param: structure containing the new RT priority.
4312 */
4313asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4314{
4315 return do_sched_setscheduler(pid, -1, param);
4316}
4317
4318/**
4319 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4320 * @pid: the pid in question.
4321 */
4322asmlinkage long sys_sched_getscheduler(pid_t pid)
4323{
36c8b586 4324 struct task_struct *p;
1da177e4 4325 int retval = -EINVAL;
1da177e4
LT
4326
4327 if (pid < 0)
4328 goto out_nounlock;
4329
4330 retval = -ESRCH;
4331 read_lock(&tasklist_lock);
4332 p = find_process_by_pid(pid);
4333 if (p) {
4334 retval = security_task_getscheduler(p);
4335 if (!retval)
4336 retval = p->policy;
4337 }
4338 read_unlock(&tasklist_lock);
4339
4340out_nounlock:
4341 return retval;
4342}
4343
4344/**
4345 * sys_sched_getscheduler - get the RT priority of a thread
4346 * @pid: the pid in question.
4347 * @param: structure containing the RT priority.
4348 */
4349asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4350{
4351 struct sched_param lp;
36c8b586 4352 struct task_struct *p;
1da177e4 4353 int retval = -EINVAL;
1da177e4
LT
4354
4355 if (!param || pid < 0)
4356 goto out_nounlock;
4357
4358 read_lock(&tasklist_lock);
4359 p = find_process_by_pid(pid);
4360 retval = -ESRCH;
4361 if (!p)
4362 goto out_unlock;
4363
4364 retval = security_task_getscheduler(p);
4365 if (retval)
4366 goto out_unlock;
4367
4368 lp.sched_priority = p->rt_priority;
4369 read_unlock(&tasklist_lock);
4370
4371 /*
4372 * This one might sleep, we cannot do it with a spinlock held ...
4373 */
4374 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4375
4376out_nounlock:
4377 return retval;
4378
4379out_unlock:
4380 read_unlock(&tasklist_lock);
4381 return retval;
4382}
4383
4384long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4385{
1da177e4 4386 cpumask_t cpus_allowed;
36c8b586
IM
4387 struct task_struct *p;
4388 int retval;
1da177e4 4389
5be9361c 4390 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4391 read_lock(&tasklist_lock);
4392
4393 p = find_process_by_pid(pid);
4394 if (!p) {
4395 read_unlock(&tasklist_lock);
5be9361c 4396 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4397 return -ESRCH;
4398 }
4399
4400 /*
4401 * It is not safe to call set_cpus_allowed with the
4402 * tasklist_lock held. We will bump the task_struct's
4403 * usage count and then drop tasklist_lock.
4404 */
4405 get_task_struct(p);
4406 read_unlock(&tasklist_lock);
4407
4408 retval = -EPERM;
4409 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4410 !capable(CAP_SYS_NICE))
4411 goto out_unlock;
4412
e7834f8f
DQ
4413 retval = security_task_setscheduler(p, 0, NULL);
4414 if (retval)
4415 goto out_unlock;
4416
1da177e4
LT
4417 cpus_allowed = cpuset_cpus_allowed(p);
4418 cpus_and(new_mask, new_mask, cpus_allowed);
4419 retval = set_cpus_allowed(p, new_mask);
4420
4421out_unlock:
4422 put_task_struct(p);
5be9361c 4423 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4424 return retval;
4425}
4426
4427static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4428 cpumask_t *new_mask)
4429{
4430 if (len < sizeof(cpumask_t)) {
4431 memset(new_mask, 0, sizeof(cpumask_t));
4432 } else if (len > sizeof(cpumask_t)) {
4433 len = sizeof(cpumask_t);
4434 }
4435 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4436}
4437
4438/**
4439 * sys_sched_setaffinity - set the cpu affinity of a process
4440 * @pid: pid of the process
4441 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4442 * @user_mask_ptr: user-space pointer to the new cpu mask
4443 */
4444asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4445 unsigned long __user *user_mask_ptr)
4446{
4447 cpumask_t new_mask;
4448 int retval;
4449
4450 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4451 if (retval)
4452 return retval;
4453
4454 return sched_setaffinity(pid, new_mask);
4455}
4456
4457/*
4458 * Represents all cpu's present in the system
4459 * In systems capable of hotplug, this map could dynamically grow
4460 * as new cpu's are detected in the system via any platform specific
4461 * method, such as ACPI for e.g.
4462 */
4463
4cef0c61 4464cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4465EXPORT_SYMBOL(cpu_present_map);
4466
4467#ifndef CONFIG_SMP
4cef0c61 4468cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4469EXPORT_SYMBOL(cpu_online_map);
4470
4cef0c61 4471cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4472EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4473#endif
4474
4475long sched_getaffinity(pid_t pid, cpumask_t *mask)
4476{
36c8b586 4477 struct task_struct *p;
1da177e4 4478 int retval;
1da177e4 4479
5be9361c 4480 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4481 read_lock(&tasklist_lock);
4482
4483 retval = -ESRCH;
4484 p = find_process_by_pid(pid);
4485 if (!p)
4486 goto out_unlock;
4487
e7834f8f
DQ
4488 retval = security_task_getscheduler(p);
4489 if (retval)
4490 goto out_unlock;
4491
2f7016d9 4492 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4493
4494out_unlock:
4495 read_unlock(&tasklist_lock);
5be9361c 4496 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4497
9531b62f 4498 return retval;
1da177e4
LT
4499}
4500
4501/**
4502 * sys_sched_getaffinity - get the cpu affinity of a process
4503 * @pid: pid of the process
4504 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4505 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4506 */
4507asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4508 unsigned long __user *user_mask_ptr)
4509{
4510 int ret;
4511 cpumask_t mask;
4512
4513 if (len < sizeof(cpumask_t))
4514 return -EINVAL;
4515
4516 ret = sched_getaffinity(pid, &mask);
4517 if (ret < 0)
4518 return ret;
4519
4520 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4521 return -EFAULT;
4522
4523 return sizeof(cpumask_t);
4524}
4525
4526/**
4527 * sys_sched_yield - yield the current processor to other threads.
4528 *
dd41f596
IM
4529 * This function yields the current CPU to other tasks. If there are no
4530 * other threads running on this CPU then this function will return.
1da177e4
LT
4531 */
4532asmlinkage long sys_sched_yield(void)
4533{
70b97a7f 4534 struct rq *rq = this_rq_lock();
1da177e4 4535
2d72376b 4536 schedstat_inc(rq, yld_count);
4530d7ab 4537 current->sched_class->yield_task(rq);
1da177e4
LT
4538
4539 /*
4540 * Since we are going to call schedule() anyway, there's
4541 * no need to preempt or enable interrupts:
4542 */
4543 __release(rq->lock);
8a25d5de 4544 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4545 _raw_spin_unlock(&rq->lock);
4546 preempt_enable_no_resched();
4547
4548 schedule();
4549
4550 return 0;
4551}
4552
e7b38404 4553static void __cond_resched(void)
1da177e4 4554{
8e0a43d8
IM
4555#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4556 __might_sleep(__FILE__, __LINE__);
4557#endif
5bbcfd90
IM
4558 /*
4559 * The BKS might be reacquired before we have dropped
4560 * PREEMPT_ACTIVE, which could trigger a second
4561 * cond_resched() call.
4562 */
1da177e4
LT
4563 do {
4564 add_preempt_count(PREEMPT_ACTIVE);
4565 schedule();
4566 sub_preempt_count(PREEMPT_ACTIVE);
4567 } while (need_resched());
4568}
4569
4570int __sched cond_resched(void)
4571{
9414232f
IM
4572 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4573 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4574 __cond_resched();
4575 return 1;
4576 }
4577 return 0;
4578}
1da177e4
LT
4579EXPORT_SYMBOL(cond_resched);
4580
4581/*
4582 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4583 * call schedule, and on return reacquire the lock.
4584 *
4585 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4586 * operations here to prevent schedule() from being called twice (once via
4587 * spin_unlock(), once by hand).
4588 */
95cdf3b7 4589int cond_resched_lock(spinlock_t *lock)
1da177e4 4590{
6df3cecb
JK
4591 int ret = 0;
4592
1da177e4
LT
4593 if (need_lockbreak(lock)) {
4594 spin_unlock(lock);
4595 cpu_relax();
6df3cecb 4596 ret = 1;
1da177e4
LT
4597 spin_lock(lock);
4598 }
9414232f 4599 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4600 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4601 _raw_spin_unlock(lock);
4602 preempt_enable_no_resched();
4603 __cond_resched();
6df3cecb 4604 ret = 1;
1da177e4 4605 spin_lock(lock);
1da177e4 4606 }
6df3cecb 4607 return ret;
1da177e4 4608}
1da177e4
LT
4609EXPORT_SYMBOL(cond_resched_lock);
4610
4611int __sched cond_resched_softirq(void)
4612{
4613 BUG_ON(!in_softirq());
4614
9414232f 4615 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4616 local_bh_enable();
1da177e4
LT
4617 __cond_resched();
4618 local_bh_disable();
4619 return 1;
4620 }
4621 return 0;
4622}
1da177e4
LT
4623EXPORT_SYMBOL(cond_resched_softirq);
4624
1da177e4
LT
4625/**
4626 * yield - yield the current processor to other threads.
4627 *
72fd4a35 4628 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4629 * thread runnable and calls sys_sched_yield().
4630 */
4631void __sched yield(void)
4632{
4633 set_current_state(TASK_RUNNING);
4634 sys_sched_yield();
4635}
1da177e4
LT
4636EXPORT_SYMBOL(yield);
4637
4638/*
4639 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4640 * that process accounting knows that this is a task in IO wait state.
4641 *
4642 * But don't do that if it is a deliberate, throttling IO wait (this task
4643 * has set its backing_dev_info: the queue against which it should throttle)
4644 */
4645void __sched io_schedule(void)
4646{
70b97a7f 4647 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4648
0ff92245 4649 delayacct_blkio_start();
1da177e4
LT
4650 atomic_inc(&rq->nr_iowait);
4651 schedule();
4652 atomic_dec(&rq->nr_iowait);
0ff92245 4653 delayacct_blkio_end();
1da177e4 4654}
1da177e4
LT
4655EXPORT_SYMBOL(io_schedule);
4656
4657long __sched io_schedule_timeout(long timeout)
4658{
70b97a7f 4659 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4660 long ret;
4661
0ff92245 4662 delayacct_blkio_start();
1da177e4
LT
4663 atomic_inc(&rq->nr_iowait);
4664 ret = schedule_timeout(timeout);
4665 atomic_dec(&rq->nr_iowait);
0ff92245 4666 delayacct_blkio_end();
1da177e4
LT
4667 return ret;
4668}
4669
4670/**
4671 * sys_sched_get_priority_max - return maximum RT priority.
4672 * @policy: scheduling class.
4673 *
4674 * this syscall returns the maximum rt_priority that can be used
4675 * by a given scheduling class.
4676 */
4677asmlinkage long sys_sched_get_priority_max(int policy)
4678{
4679 int ret = -EINVAL;
4680
4681 switch (policy) {
4682 case SCHED_FIFO:
4683 case SCHED_RR:
4684 ret = MAX_USER_RT_PRIO-1;
4685 break;
4686 case SCHED_NORMAL:
b0a9499c 4687 case SCHED_BATCH:
dd41f596 4688 case SCHED_IDLE:
1da177e4
LT
4689 ret = 0;
4690 break;
4691 }
4692 return ret;
4693}
4694
4695/**
4696 * sys_sched_get_priority_min - return minimum RT priority.
4697 * @policy: scheduling class.
4698 *
4699 * this syscall returns the minimum rt_priority that can be used
4700 * by a given scheduling class.
4701 */
4702asmlinkage long sys_sched_get_priority_min(int policy)
4703{
4704 int ret = -EINVAL;
4705
4706 switch (policy) {
4707 case SCHED_FIFO:
4708 case SCHED_RR:
4709 ret = 1;
4710 break;
4711 case SCHED_NORMAL:
b0a9499c 4712 case SCHED_BATCH:
dd41f596 4713 case SCHED_IDLE:
1da177e4
LT
4714 ret = 0;
4715 }
4716 return ret;
4717}
4718
4719/**
4720 * sys_sched_rr_get_interval - return the default timeslice of a process.
4721 * @pid: pid of the process.
4722 * @interval: userspace pointer to the timeslice value.
4723 *
4724 * this syscall writes the default timeslice value of a given process
4725 * into the user-space timespec buffer. A value of '0' means infinity.
4726 */
4727asmlinkage
4728long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4729{
36c8b586 4730 struct task_struct *p;
a4ec24b4 4731 unsigned int time_slice;
1da177e4
LT
4732 int retval = -EINVAL;
4733 struct timespec t;
1da177e4
LT
4734
4735 if (pid < 0)
4736 goto out_nounlock;
4737
4738 retval = -ESRCH;
4739 read_lock(&tasklist_lock);
4740 p = find_process_by_pid(pid);
4741 if (!p)
4742 goto out_unlock;
4743
4744 retval = security_task_getscheduler(p);
4745 if (retval)
4746 goto out_unlock;
4747
a4ec24b4
DA
4748 if (p->policy == SCHED_FIFO)
4749 time_slice = 0;
4750 else if (p->policy == SCHED_RR)
4751 time_slice = DEF_TIMESLICE;
4752 else {
4753 struct sched_entity *se = &p->se;
4754 unsigned long flags;
4755 struct rq *rq;
4756
4757 rq = task_rq_lock(p, &flags);
4758 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4759 task_rq_unlock(rq, &flags);
4760 }
1da177e4 4761 read_unlock(&tasklist_lock);
a4ec24b4 4762 jiffies_to_timespec(time_slice, &t);
1da177e4
LT
4763 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4764out_nounlock:
4765 return retval;
4766out_unlock:
4767 read_unlock(&tasklist_lock);
4768 return retval;
4769}
4770
2ed6e34f 4771static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4772
4773static void show_task(struct task_struct *p)
1da177e4 4774{
1da177e4 4775 unsigned long free = 0;
36c8b586 4776 unsigned state;
1da177e4 4777
1da177e4 4778 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4779 printk("%-13.13s %c", p->comm,
4780 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4781#if BITS_PER_LONG == 32
1da177e4 4782 if (state == TASK_RUNNING)
4bd77321 4783 printk(" running ");
1da177e4 4784 else
4bd77321 4785 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4786#else
4787 if (state == TASK_RUNNING)
4bd77321 4788 printk(" running task ");
1da177e4
LT
4789 else
4790 printk(" %016lx ", thread_saved_pc(p));
4791#endif
4792#ifdef CONFIG_DEBUG_STACK_USAGE
4793 {
10ebffde 4794 unsigned long *n = end_of_stack(p);
1da177e4
LT
4795 while (!*n)
4796 n++;
10ebffde 4797 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4798 }
4799#endif
4bd77321 4800 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4801
4802 if (state != TASK_RUNNING)
4803 show_stack(p, NULL);
4804}
4805
e59e2ae2 4806void show_state_filter(unsigned long state_filter)
1da177e4 4807{
36c8b586 4808 struct task_struct *g, *p;
1da177e4 4809
4bd77321
IM
4810#if BITS_PER_LONG == 32
4811 printk(KERN_INFO
4812 " task PC stack pid father\n");
1da177e4 4813#else
4bd77321
IM
4814 printk(KERN_INFO
4815 " task PC stack pid father\n");
1da177e4
LT
4816#endif
4817 read_lock(&tasklist_lock);
4818 do_each_thread(g, p) {
4819 /*
4820 * reset the NMI-timeout, listing all files on a slow
4821 * console might take alot of time:
4822 */
4823 touch_nmi_watchdog();
39bc89fd 4824 if (!state_filter || (p->state & state_filter))
e59e2ae2 4825 show_task(p);
1da177e4
LT
4826 } while_each_thread(g, p);
4827
04c9167f
JF
4828 touch_all_softlockup_watchdogs();
4829
dd41f596
IM
4830#ifdef CONFIG_SCHED_DEBUG
4831 sysrq_sched_debug_show();
4832#endif
1da177e4 4833 read_unlock(&tasklist_lock);
e59e2ae2
IM
4834 /*
4835 * Only show locks if all tasks are dumped:
4836 */
4837 if (state_filter == -1)
4838 debug_show_all_locks();
1da177e4
LT
4839}
4840
1df21055
IM
4841void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4842{
dd41f596 4843 idle->sched_class = &idle_sched_class;
1df21055
IM
4844}
4845
f340c0d1
IM
4846/**
4847 * init_idle - set up an idle thread for a given CPU
4848 * @idle: task in question
4849 * @cpu: cpu the idle task belongs to
4850 *
4851 * NOTE: this function does not set the idle thread's NEED_RESCHED
4852 * flag, to make booting more robust.
4853 */
5c1e1767 4854void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4855{
70b97a7f 4856 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4857 unsigned long flags;
4858
dd41f596
IM
4859 __sched_fork(idle);
4860 idle->se.exec_start = sched_clock();
4861
b29739f9 4862 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4863 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4864 __set_task_cpu(idle, cpu);
1da177e4
LT
4865
4866 spin_lock_irqsave(&rq->lock, flags);
4867 rq->curr = rq->idle = idle;
4866cde0
NP
4868#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4869 idle->oncpu = 1;
4870#endif
1da177e4
LT
4871 spin_unlock_irqrestore(&rq->lock, flags);
4872
4873 /* Set the preempt count _outside_ the spinlocks! */
4874#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4875 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4876#else
a1261f54 4877 task_thread_info(idle)->preempt_count = 0;
1da177e4 4878#endif
dd41f596
IM
4879 /*
4880 * The idle tasks have their own, simple scheduling class:
4881 */
4882 idle->sched_class = &idle_sched_class;
1da177e4
LT
4883}
4884
4885/*
4886 * In a system that switches off the HZ timer nohz_cpu_mask
4887 * indicates which cpus entered this state. This is used
4888 * in the rcu update to wait only for active cpus. For system
4889 * which do not switch off the HZ timer nohz_cpu_mask should
4890 * always be CPU_MASK_NONE.
4891 */
4892cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4893
4894#ifdef CONFIG_SMP
4895/*
4896 * This is how migration works:
4897 *
70b97a7f 4898 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4899 * runqueue and wake up that CPU's migration thread.
4900 * 2) we down() the locked semaphore => thread blocks.
4901 * 3) migration thread wakes up (implicitly it forces the migrated
4902 * thread off the CPU)
4903 * 4) it gets the migration request and checks whether the migrated
4904 * task is still in the wrong runqueue.
4905 * 5) if it's in the wrong runqueue then the migration thread removes
4906 * it and puts it into the right queue.
4907 * 6) migration thread up()s the semaphore.
4908 * 7) we wake up and the migration is done.
4909 */
4910
4911/*
4912 * Change a given task's CPU affinity. Migrate the thread to a
4913 * proper CPU and schedule it away if the CPU it's executing on
4914 * is removed from the allowed bitmask.
4915 *
4916 * NOTE: the caller must have a valid reference to the task, the
4917 * task must not exit() & deallocate itself prematurely. The
4918 * call is not atomic; no spinlocks may be held.
4919 */
36c8b586 4920int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4921{
70b97a7f 4922 struct migration_req req;
1da177e4 4923 unsigned long flags;
70b97a7f 4924 struct rq *rq;
48f24c4d 4925 int ret = 0;
1da177e4
LT
4926
4927 rq = task_rq_lock(p, &flags);
4928 if (!cpus_intersects(new_mask, cpu_online_map)) {
4929 ret = -EINVAL;
4930 goto out;
4931 }
4932
4933 p->cpus_allowed = new_mask;
4934 /* Can the task run on the task's current CPU? If so, we're done */
4935 if (cpu_isset(task_cpu(p), new_mask))
4936 goto out;
4937
4938 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4939 /* Need help from migration thread: drop lock and wait. */
4940 task_rq_unlock(rq, &flags);
4941 wake_up_process(rq->migration_thread);
4942 wait_for_completion(&req.done);
4943 tlb_migrate_finish(p->mm);
4944 return 0;
4945 }
4946out:
4947 task_rq_unlock(rq, &flags);
48f24c4d 4948
1da177e4
LT
4949 return ret;
4950}
1da177e4
LT
4951EXPORT_SYMBOL_GPL(set_cpus_allowed);
4952
4953/*
4954 * Move (not current) task off this cpu, onto dest cpu. We're doing
4955 * this because either it can't run here any more (set_cpus_allowed()
4956 * away from this CPU, or CPU going down), or because we're
4957 * attempting to rebalance this task on exec (sched_exec).
4958 *
4959 * So we race with normal scheduler movements, but that's OK, as long
4960 * as the task is no longer on this CPU.
efc30814
KK
4961 *
4962 * Returns non-zero if task was successfully migrated.
1da177e4 4963 */
efc30814 4964static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4965{
70b97a7f 4966 struct rq *rq_dest, *rq_src;
dd41f596 4967 int ret = 0, on_rq;
1da177e4
LT
4968
4969 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4970 return ret;
1da177e4
LT
4971
4972 rq_src = cpu_rq(src_cpu);
4973 rq_dest = cpu_rq(dest_cpu);
4974
4975 double_rq_lock(rq_src, rq_dest);
4976 /* Already moved. */
4977 if (task_cpu(p) != src_cpu)
4978 goto out;
4979 /* Affinity changed (again). */
4980 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4981 goto out;
4982
dd41f596 4983 on_rq = p->se.on_rq;
6e82a3be 4984 if (on_rq)
2e1cb74a 4985 deactivate_task(rq_src, p, 0);
6e82a3be 4986
1da177e4 4987 set_task_cpu(p, dest_cpu);
dd41f596
IM
4988 if (on_rq) {
4989 activate_task(rq_dest, p, 0);
4990 check_preempt_curr(rq_dest, p);
1da177e4 4991 }
efc30814 4992 ret = 1;
1da177e4
LT
4993out:
4994 double_rq_unlock(rq_src, rq_dest);
efc30814 4995 return ret;
1da177e4
LT
4996}
4997
4998/*
4999 * migration_thread - this is a highprio system thread that performs
5000 * thread migration by bumping thread off CPU then 'pushing' onto
5001 * another runqueue.
5002 */
95cdf3b7 5003static int migration_thread(void *data)
1da177e4 5004{
1da177e4 5005 int cpu = (long)data;
70b97a7f 5006 struct rq *rq;
1da177e4
LT
5007
5008 rq = cpu_rq(cpu);
5009 BUG_ON(rq->migration_thread != current);
5010
5011 set_current_state(TASK_INTERRUPTIBLE);
5012 while (!kthread_should_stop()) {
70b97a7f 5013 struct migration_req *req;
1da177e4 5014 struct list_head *head;
1da177e4 5015
1da177e4
LT
5016 spin_lock_irq(&rq->lock);
5017
5018 if (cpu_is_offline(cpu)) {
5019 spin_unlock_irq(&rq->lock);
5020 goto wait_to_die;
5021 }
5022
5023 if (rq->active_balance) {
5024 active_load_balance(rq, cpu);
5025 rq->active_balance = 0;
5026 }
5027
5028 head = &rq->migration_queue;
5029
5030 if (list_empty(head)) {
5031 spin_unlock_irq(&rq->lock);
5032 schedule();
5033 set_current_state(TASK_INTERRUPTIBLE);
5034 continue;
5035 }
70b97a7f 5036 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5037 list_del_init(head->next);
5038
674311d5
NP
5039 spin_unlock(&rq->lock);
5040 __migrate_task(req->task, cpu, req->dest_cpu);
5041 local_irq_enable();
1da177e4
LT
5042
5043 complete(&req->done);
5044 }
5045 __set_current_state(TASK_RUNNING);
5046 return 0;
5047
5048wait_to_die:
5049 /* Wait for kthread_stop */
5050 set_current_state(TASK_INTERRUPTIBLE);
5051 while (!kthread_should_stop()) {
5052 schedule();
5053 set_current_state(TASK_INTERRUPTIBLE);
5054 }
5055 __set_current_state(TASK_RUNNING);
5056 return 0;
5057}
5058
5059#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5060/*
5061 * Figure out where task on dead CPU should go, use force if neccessary.
5062 * NOTE: interrupts should be disabled by the caller
5063 */
48f24c4d 5064static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5065{
efc30814 5066 unsigned long flags;
1da177e4 5067 cpumask_t mask;
70b97a7f
IM
5068 struct rq *rq;
5069 int dest_cpu;
1da177e4 5070
efc30814 5071restart:
1da177e4
LT
5072 /* On same node? */
5073 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5074 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5075 dest_cpu = any_online_cpu(mask);
5076
5077 /* On any allowed CPU? */
5078 if (dest_cpu == NR_CPUS)
48f24c4d 5079 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5080
5081 /* No more Mr. Nice Guy. */
5082 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5083 rq = task_rq_lock(p, &flags);
5084 cpus_setall(p->cpus_allowed);
5085 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5086 task_rq_unlock(rq, &flags);
1da177e4
LT
5087
5088 /*
5089 * Don't tell them about moving exiting tasks or
5090 * kernel threads (both mm NULL), since they never
5091 * leave kernel.
5092 */
48f24c4d 5093 if (p->mm && printk_ratelimit())
1da177e4
LT
5094 printk(KERN_INFO "process %d (%s) no "
5095 "longer affine to cpu%d\n",
48f24c4d 5096 p->pid, p->comm, dead_cpu);
1da177e4 5097 }
48f24c4d 5098 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5099 goto restart;
1da177e4
LT
5100}
5101
5102/*
5103 * While a dead CPU has no uninterruptible tasks queued at this point,
5104 * it might still have a nonzero ->nr_uninterruptible counter, because
5105 * for performance reasons the counter is not stricly tracking tasks to
5106 * their home CPUs. So we just add the counter to another CPU's counter,
5107 * to keep the global sum constant after CPU-down:
5108 */
70b97a7f 5109static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5110{
70b97a7f 5111 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5112 unsigned long flags;
5113
5114 local_irq_save(flags);
5115 double_rq_lock(rq_src, rq_dest);
5116 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5117 rq_src->nr_uninterruptible = 0;
5118 double_rq_unlock(rq_src, rq_dest);
5119 local_irq_restore(flags);
5120}
5121
5122/* Run through task list and migrate tasks from the dead cpu. */
5123static void migrate_live_tasks(int src_cpu)
5124{
48f24c4d 5125 struct task_struct *p, *t;
1da177e4
LT
5126
5127 write_lock_irq(&tasklist_lock);
5128
48f24c4d
IM
5129 do_each_thread(t, p) {
5130 if (p == current)
1da177e4
LT
5131 continue;
5132
48f24c4d
IM
5133 if (task_cpu(p) == src_cpu)
5134 move_task_off_dead_cpu(src_cpu, p);
5135 } while_each_thread(t, p);
1da177e4
LT
5136
5137 write_unlock_irq(&tasklist_lock);
5138}
5139
a9957449
AD
5140/*
5141 * activate_idle_task - move idle task to the _front_ of runqueue.
5142 */
5143static void activate_idle_task(struct task_struct *p, struct rq *rq)
5144{
5145 update_rq_clock(rq);
5146
5147 if (p->state == TASK_UNINTERRUPTIBLE)
5148 rq->nr_uninterruptible--;
5149
5150 enqueue_task(rq, p, 0);
5151 inc_nr_running(p, rq);
5152}
5153
dd41f596
IM
5154/*
5155 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5156 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5157 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5158 */
5159void sched_idle_next(void)
5160{
48f24c4d 5161 int this_cpu = smp_processor_id();
70b97a7f 5162 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5163 struct task_struct *p = rq->idle;
5164 unsigned long flags;
5165
5166 /* cpu has to be offline */
48f24c4d 5167 BUG_ON(cpu_online(this_cpu));
1da177e4 5168
48f24c4d
IM
5169 /*
5170 * Strictly not necessary since rest of the CPUs are stopped by now
5171 * and interrupts disabled on the current cpu.
1da177e4
LT
5172 */
5173 spin_lock_irqsave(&rq->lock, flags);
5174
dd41f596 5175 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5176
5177 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5178 activate_idle_task(p, rq);
1da177e4
LT
5179
5180 spin_unlock_irqrestore(&rq->lock, flags);
5181}
5182
48f24c4d
IM
5183/*
5184 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5185 * offline.
5186 */
5187void idle_task_exit(void)
5188{
5189 struct mm_struct *mm = current->active_mm;
5190
5191 BUG_ON(cpu_online(smp_processor_id()));
5192
5193 if (mm != &init_mm)
5194 switch_mm(mm, &init_mm, current);
5195 mmdrop(mm);
5196}
5197
054b9108 5198/* called under rq->lock with disabled interrupts */
36c8b586 5199static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5200{
70b97a7f 5201 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5202
5203 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5204 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5205
5206 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5207 BUG_ON(p->state == TASK_DEAD);
1da177e4 5208
48f24c4d 5209 get_task_struct(p);
1da177e4
LT
5210
5211 /*
5212 * Drop lock around migration; if someone else moves it,
5213 * that's OK. No task can be added to this CPU, so iteration is
5214 * fine.
054b9108 5215 * NOTE: interrupts should be left disabled --dev@
1da177e4 5216 */
054b9108 5217 spin_unlock(&rq->lock);
48f24c4d 5218 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5219 spin_lock(&rq->lock);
1da177e4 5220
48f24c4d 5221 put_task_struct(p);
1da177e4
LT
5222}
5223
5224/* release_task() removes task from tasklist, so we won't find dead tasks. */
5225static void migrate_dead_tasks(unsigned int dead_cpu)
5226{
70b97a7f 5227 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5228 struct task_struct *next;
48f24c4d 5229
dd41f596
IM
5230 for ( ; ; ) {
5231 if (!rq->nr_running)
5232 break;
a8e504d2 5233 update_rq_clock(rq);
ff95f3df 5234 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5235 if (!next)
5236 break;
5237 migrate_dead(dead_cpu, next);
e692ab53 5238
1da177e4
LT
5239 }
5240}
5241#endif /* CONFIG_HOTPLUG_CPU */
5242
e692ab53
NP
5243#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5244
5245static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5246 {
5247 .procname = "sched_domain",
c57baf1e 5248 .mode = 0555,
e0361851 5249 },
e692ab53
NP
5250 {0,},
5251};
5252
5253static struct ctl_table sd_ctl_root[] = {
e0361851 5254 {
c57baf1e 5255 .ctl_name = CTL_KERN,
e0361851 5256 .procname = "kernel",
c57baf1e 5257 .mode = 0555,
e0361851
AD
5258 .child = sd_ctl_dir,
5259 },
e692ab53
NP
5260 {0,},
5261};
5262
5263static struct ctl_table *sd_alloc_ctl_entry(int n)
5264{
5265 struct ctl_table *entry =
5266 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5267
5268 BUG_ON(!entry);
5269 memset(entry, 0, n * sizeof(struct ctl_table));
5270
5271 return entry;
5272}
5273
5274static void
e0361851 5275set_table_entry(struct ctl_table *entry,
e692ab53
NP
5276 const char *procname, void *data, int maxlen,
5277 mode_t mode, proc_handler *proc_handler)
5278{
e692ab53
NP
5279 entry->procname = procname;
5280 entry->data = data;
5281 entry->maxlen = maxlen;
5282 entry->mode = mode;
5283 entry->proc_handler = proc_handler;
5284}
5285
5286static struct ctl_table *
5287sd_alloc_ctl_domain_table(struct sched_domain *sd)
5288{
ace8b3d6 5289 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5290
e0361851 5291 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5292 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5293 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5294 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5295 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5296 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5297 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5298 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5299 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5300 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5301 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5302 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5303 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5304 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5305 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5306 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5307 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5308 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5309 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5310 &sd->cache_nice_tries,
5311 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5312 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53
NP
5313 sizeof(int), 0644, proc_dointvec_minmax);
5314
5315 return table;
5316}
5317
5318static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5319{
5320 struct ctl_table *entry, *table;
5321 struct sched_domain *sd;
5322 int domain_num = 0, i;
5323 char buf[32];
5324
5325 for_each_domain(cpu, sd)
5326 domain_num++;
5327 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5328
5329 i = 0;
5330 for_each_domain(cpu, sd) {
5331 snprintf(buf, 32, "domain%d", i);
e692ab53 5332 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5333 entry->mode = 0555;
e692ab53
NP
5334 entry->child = sd_alloc_ctl_domain_table(sd);
5335 entry++;
5336 i++;
5337 }
5338 return table;
5339}
5340
5341static struct ctl_table_header *sd_sysctl_header;
5342static void init_sched_domain_sysctl(void)
5343{
5344 int i, cpu_num = num_online_cpus();
5345 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5346 char buf[32];
5347
5348 sd_ctl_dir[0].child = entry;
5349
5350 for (i = 0; i < cpu_num; i++, entry++) {
5351 snprintf(buf, 32, "cpu%d", i);
e692ab53 5352 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5353 entry->mode = 0555;
e692ab53
NP
5354 entry->child = sd_alloc_ctl_cpu_table(i);
5355 }
5356 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5357}
5358#else
5359static void init_sched_domain_sysctl(void)
5360{
5361}
5362#endif
5363
1da177e4
LT
5364/*
5365 * migration_call - callback that gets triggered when a CPU is added.
5366 * Here we can start up the necessary migration thread for the new CPU.
5367 */
48f24c4d
IM
5368static int __cpuinit
5369migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5370{
1da177e4 5371 struct task_struct *p;
48f24c4d 5372 int cpu = (long)hcpu;
1da177e4 5373 unsigned long flags;
70b97a7f 5374 struct rq *rq;
1da177e4
LT
5375
5376 switch (action) {
5be9361c
GS
5377 case CPU_LOCK_ACQUIRE:
5378 mutex_lock(&sched_hotcpu_mutex);
5379 break;
5380
1da177e4 5381 case CPU_UP_PREPARE:
8bb78442 5382 case CPU_UP_PREPARE_FROZEN:
dd41f596 5383 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5384 if (IS_ERR(p))
5385 return NOTIFY_BAD;
1da177e4
LT
5386 kthread_bind(p, cpu);
5387 /* Must be high prio: stop_machine expects to yield to it. */
5388 rq = task_rq_lock(p, &flags);
dd41f596 5389 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5390 task_rq_unlock(rq, &flags);
5391 cpu_rq(cpu)->migration_thread = p;
5392 break;
48f24c4d 5393
1da177e4 5394 case CPU_ONLINE:
8bb78442 5395 case CPU_ONLINE_FROZEN:
1da177e4
LT
5396 /* Strictly unneccessary, as first user will wake it. */
5397 wake_up_process(cpu_rq(cpu)->migration_thread);
5398 break;
48f24c4d 5399
1da177e4
LT
5400#ifdef CONFIG_HOTPLUG_CPU
5401 case CPU_UP_CANCELED:
8bb78442 5402 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5403 if (!cpu_rq(cpu)->migration_thread)
5404 break;
1da177e4 5405 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5406 kthread_bind(cpu_rq(cpu)->migration_thread,
5407 any_online_cpu(cpu_online_map));
1da177e4
LT
5408 kthread_stop(cpu_rq(cpu)->migration_thread);
5409 cpu_rq(cpu)->migration_thread = NULL;
5410 break;
48f24c4d 5411
1da177e4 5412 case CPU_DEAD:
8bb78442 5413 case CPU_DEAD_FROZEN:
1da177e4
LT
5414 migrate_live_tasks(cpu);
5415 rq = cpu_rq(cpu);
5416 kthread_stop(rq->migration_thread);
5417 rq->migration_thread = NULL;
5418 /* Idle task back to normal (off runqueue, low prio) */
5419 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5420 update_rq_clock(rq);
2e1cb74a 5421 deactivate_task(rq, rq->idle, 0);
1da177e4 5422 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5423 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5424 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5425 migrate_dead_tasks(cpu);
5426 task_rq_unlock(rq, &flags);
5427 migrate_nr_uninterruptible(rq);
5428 BUG_ON(rq->nr_running != 0);
5429
5430 /* No need to migrate the tasks: it was best-effort if
5be9361c 5431 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5432 * the requestors. */
5433 spin_lock_irq(&rq->lock);
5434 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5435 struct migration_req *req;
5436
1da177e4 5437 req = list_entry(rq->migration_queue.next,
70b97a7f 5438 struct migration_req, list);
1da177e4
LT
5439 list_del_init(&req->list);
5440 complete(&req->done);
5441 }
5442 spin_unlock_irq(&rq->lock);
5443 break;
5444#endif
5be9361c
GS
5445 case CPU_LOCK_RELEASE:
5446 mutex_unlock(&sched_hotcpu_mutex);
5447 break;
1da177e4
LT
5448 }
5449 return NOTIFY_OK;
5450}
5451
5452/* Register at highest priority so that task migration (migrate_all_tasks)
5453 * happens before everything else.
5454 */
26c2143b 5455static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5456 .notifier_call = migration_call,
5457 .priority = 10
5458};
5459
5460int __init migration_init(void)
5461{
5462 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5463 int err;
48f24c4d
IM
5464
5465 /* Start one for the boot CPU: */
07dccf33
AM
5466 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5467 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5468 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5469 register_cpu_notifier(&migration_notifier);
48f24c4d 5470
1da177e4
LT
5471 return 0;
5472}
5473#endif
5474
5475#ifdef CONFIG_SMP
476f3534
CL
5476
5477/* Number of possible processor ids */
5478int nr_cpu_ids __read_mostly = NR_CPUS;
5479EXPORT_SYMBOL(nr_cpu_ids);
5480
3e9830dc 5481#ifdef CONFIG_SCHED_DEBUG
1da177e4
LT
5482static void sched_domain_debug(struct sched_domain *sd, int cpu)
5483{
5484 int level = 0;
5485
41c7ce9a
NP
5486 if (!sd) {
5487 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5488 return;
5489 }
5490
1da177e4
LT
5491 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5492
5493 do {
5494 int i;
5495 char str[NR_CPUS];
5496 struct sched_group *group = sd->groups;
5497 cpumask_t groupmask;
5498
5499 cpumask_scnprintf(str, NR_CPUS, sd->span);
5500 cpus_clear(groupmask);
5501
5502 printk(KERN_DEBUG);
5503 for (i = 0; i < level + 1; i++)
5504 printk(" ");
5505 printk("domain %d: ", level);
5506
5507 if (!(sd->flags & SD_LOAD_BALANCE)) {
5508 printk("does not load-balance\n");
5509 if (sd->parent)
33859f7f
MOS
5510 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5511 " has parent");
1da177e4
LT
5512 break;
5513 }
5514
5515 printk("span %s\n", str);
5516
5517 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5518 printk(KERN_ERR "ERROR: domain->span does not contain "
5519 "CPU%d\n", cpu);
1da177e4 5520 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5521 printk(KERN_ERR "ERROR: domain->groups does not contain"
5522 " CPU%d\n", cpu);
1da177e4
LT
5523
5524 printk(KERN_DEBUG);
5525 for (i = 0; i < level + 2; i++)
5526 printk(" ");
5527 printk("groups:");
5528 do {
5529 if (!group) {
5530 printk("\n");
5531 printk(KERN_ERR "ERROR: group is NULL\n");
5532 break;
5533 }
5534
5517d86b 5535 if (!group->__cpu_power) {
1da177e4 5536 printk("\n");
33859f7f
MOS
5537 printk(KERN_ERR "ERROR: domain->cpu_power not "
5538 "set\n");
26797a34 5539 break;
1da177e4
LT
5540 }
5541
5542 if (!cpus_weight(group->cpumask)) {
5543 printk("\n");
5544 printk(KERN_ERR "ERROR: empty group\n");
26797a34 5545 break;
1da177e4
LT
5546 }
5547
5548 if (cpus_intersects(groupmask, group->cpumask)) {
5549 printk("\n");
5550 printk(KERN_ERR "ERROR: repeated CPUs\n");
26797a34 5551 break;
1da177e4
LT
5552 }
5553
5554 cpus_or(groupmask, groupmask, group->cpumask);
5555
5556 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5557 printk(" %s", str);
5558
5559 group = group->next;
5560 } while (group != sd->groups);
5561 printk("\n");
5562
5563 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5564 printk(KERN_ERR "ERROR: groups don't span "
5565 "domain->span\n");
1da177e4
LT
5566
5567 level++;
5568 sd = sd->parent;
33859f7f
MOS
5569 if (!sd)
5570 continue;
1da177e4 5571
33859f7f
MOS
5572 if (!cpus_subset(groupmask, sd->span))
5573 printk(KERN_ERR "ERROR: parent span is not a superset "
5574 "of domain->span\n");
1da177e4
LT
5575
5576 } while (sd);
5577}
5578#else
48f24c4d 5579# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5580#endif
5581
1a20ff27 5582static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5583{
5584 if (cpus_weight(sd->span) == 1)
5585 return 1;
5586
5587 /* Following flags need at least 2 groups */
5588 if (sd->flags & (SD_LOAD_BALANCE |
5589 SD_BALANCE_NEWIDLE |
5590 SD_BALANCE_FORK |
89c4710e
SS
5591 SD_BALANCE_EXEC |
5592 SD_SHARE_CPUPOWER |
5593 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5594 if (sd->groups != sd->groups->next)
5595 return 0;
5596 }
5597
5598 /* Following flags don't use groups */
5599 if (sd->flags & (SD_WAKE_IDLE |
5600 SD_WAKE_AFFINE |
5601 SD_WAKE_BALANCE))
5602 return 0;
5603
5604 return 1;
5605}
5606
48f24c4d
IM
5607static int
5608sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5609{
5610 unsigned long cflags = sd->flags, pflags = parent->flags;
5611
5612 if (sd_degenerate(parent))
5613 return 1;
5614
5615 if (!cpus_equal(sd->span, parent->span))
5616 return 0;
5617
5618 /* Does parent contain flags not in child? */
5619 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5620 if (cflags & SD_WAKE_AFFINE)
5621 pflags &= ~SD_WAKE_BALANCE;
5622 /* Flags needing groups don't count if only 1 group in parent */
5623 if (parent->groups == parent->groups->next) {
5624 pflags &= ~(SD_LOAD_BALANCE |
5625 SD_BALANCE_NEWIDLE |
5626 SD_BALANCE_FORK |
89c4710e
SS
5627 SD_BALANCE_EXEC |
5628 SD_SHARE_CPUPOWER |
5629 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5630 }
5631 if (~cflags & pflags)
5632 return 0;
5633
5634 return 1;
5635}
5636
1da177e4
LT
5637/*
5638 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5639 * hold the hotplug lock.
5640 */
9c1cfda2 5641static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5642{
70b97a7f 5643 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5644 struct sched_domain *tmp;
5645
5646 /* Remove the sched domains which do not contribute to scheduling. */
5647 for (tmp = sd; tmp; tmp = tmp->parent) {
5648 struct sched_domain *parent = tmp->parent;
5649 if (!parent)
5650 break;
1a848870 5651 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5652 tmp->parent = parent->parent;
1a848870
SS
5653 if (parent->parent)
5654 parent->parent->child = tmp;
5655 }
245af2c7
SS
5656 }
5657
1a848870 5658 if (sd && sd_degenerate(sd)) {
245af2c7 5659 sd = sd->parent;
1a848870
SS
5660 if (sd)
5661 sd->child = NULL;
5662 }
1da177e4
LT
5663
5664 sched_domain_debug(sd, cpu);
5665
674311d5 5666 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5667}
5668
5669/* cpus with isolated domains */
67af63a6 5670static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5671
5672/* Setup the mask of cpus configured for isolated domains */
5673static int __init isolated_cpu_setup(char *str)
5674{
5675 int ints[NR_CPUS], i;
5676
5677 str = get_options(str, ARRAY_SIZE(ints), ints);
5678 cpus_clear(cpu_isolated_map);
5679 for (i = 1; i <= ints[0]; i++)
5680 if (ints[i] < NR_CPUS)
5681 cpu_set(ints[i], cpu_isolated_map);
5682 return 1;
5683}
5684
8927f494 5685__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5686
5687/*
6711cab4
SS
5688 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5689 * to a function which identifies what group(along with sched group) a CPU
5690 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5691 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5692 *
5693 * init_sched_build_groups will build a circular linked list of the groups
5694 * covered by the given span, and will set each group's ->cpumask correctly,
5695 * and ->cpu_power to 0.
5696 */
a616058b 5697static void
6711cab4
SS
5698init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5699 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5700 struct sched_group **sg))
1da177e4
LT
5701{
5702 struct sched_group *first = NULL, *last = NULL;
5703 cpumask_t covered = CPU_MASK_NONE;
5704 int i;
5705
5706 for_each_cpu_mask(i, span) {
6711cab4
SS
5707 struct sched_group *sg;
5708 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5709 int j;
5710
5711 if (cpu_isset(i, covered))
5712 continue;
5713
5714 sg->cpumask = CPU_MASK_NONE;
5517d86b 5715 sg->__cpu_power = 0;
1da177e4
LT
5716
5717 for_each_cpu_mask(j, span) {
6711cab4 5718 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5719 continue;
5720
5721 cpu_set(j, covered);
5722 cpu_set(j, sg->cpumask);
5723 }
5724 if (!first)
5725 first = sg;
5726 if (last)
5727 last->next = sg;
5728 last = sg;
5729 }
5730 last->next = first;
5731}
5732
9c1cfda2 5733#define SD_NODES_PER_DOMAIN 16
1da177e4 5734
9c1cfda2 5735#ifdef CONFIG_NUMA
198e2f18 5736
9c1cfda2
JH
5737/**
5738 * find_next_best_node - find the next node to include in a sched_domain
5739 * @node: node whose sched_domain we're building
5740 * @used_nodes: nodes already in the sched_domain
5741 *
5742 * Find the next node to include in a given scheduling domain. Simply
5743 * finds the closest node not already in the @used_nodes map.
5744 *
5745 * Should use nodemask_t.
5746 */
5747static int find_next_best_node(int node, unsigned long *used_nodes)
5748{
5749 int i, n, val, min_val, best_node = 0;
5750
5751 min_val = INT_MAX;
5752
5753 for (i = 0; i < MAX_NUMNODES; i++) {
5754 /* Start at @node */
5755 n = (node + i) % MAX_NUMNODES;
5756
5757 if (!nr_cpus_node(n))
5758 continue;
5759
5760 /* Skip already used nodes */
5761 if (test_bit(n, used_nodes))
5762 continue;
5763
5764 /* Simple min distance search */
5765 val = node_distance(node, n);
5766
5767 if (val < min_val) {
5768 min_val = val;
5769 best_node = n;
5770 }
5771 }
5772
5773 set_bit(best_node, used_nodes);
5774 return best_node;
5775}
5776
5777/**
5778 * sched_domain_node_span - get a cpumask for a node's sched_domain
5779 * @node: node whose cpumask we're constructing
5780 * @size: number of nodes to include in this span
5781 *
5782 * Given a node, construct a good cpumask for its sched_domain to span. It
5783 * should be one that prevents unnecessary balancing, but also spreads tasks
5784 * out optimally.
5785 */
5786static cpumask_t sched_domain_node_span(int node)
5787{
9c1cfda2 5788 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5789 cpumask_t span, nodemask;
5790 int i;
9c1cfda2
JH
5791
5792 cpus_clear(span);
5793 bitmap_zero(used_nodes, MAX_NUMNODES);
5794
5795 nodemask = node_to_cpumask(node);
5796 cpus_or(span, span, nodemask);
5797 set_bit(node, used_nodes);
5798
5799 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5800 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5801
9c1cfda2
JH
5802 nodemask = node_to_cpumask(next_node);
5803 cpus_or(span, span, nodemask);
5804 }
5805
5806 return span;
5807}
5808#endif
5809
5c45bf27 5810int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5811
9c1cfda2 5812/*
48f24c4d 5813 * SMT sched-domains:
9c1cfda2 5814 */
1da177e4
LT
5815#ifdef CONFIG_SCHED_SMT
5816static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5817static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5818
6711cab4
SS
5819static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5820 struct sched_group **sg)
1da177e4 5821{
6711cab4
SS
5822 if (sg)
5823 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5824 return cpu;
5825}
5826#endif
5827
48f24c4d
IM
5828/*
5829 * multi-core sched-domains:
5830 */
1e9f28fa
SS
5831#ifdef CONFIG_SCHED_MC
5832static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5833static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5834#endif
5835
5836#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5837static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5838 struct sched_group **sg)
1e9f28fa 5839{
6711cab4 5840 int group;
a616058b
SS
5841 cpumask_t mask = cpu_sibling_map[cpu];
5842 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5843 group = first_cpu(mask);
5844 if (sg)
5845 *sg = &per_cpu(sched_group_core, group);
5846 return group;
1e9f28fa
SS
5847}
5848#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5849static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5850 struct sched_group **sg)
1e9f28fa 5851{
6711cab4
SS
5852 if (sg)
5853 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5854 return cpu;
5855}
5856#endif
5857
1da177e4 5858static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5859static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5860
6711cab4
SS
5861static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5862 struct sched_group **sg)
1da177e4 5863{
6711cab4 5864 int group;
48f24c4d 5865#ifdef CONFIG_SCHED_MC
1e9f28fa 5866 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5867 cpus_and(mask, mask, *cpu_map);
6711cab4 5868 group = first_cpu(mask);
1e9f28fa 5869#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5870 cpumask_t mask = cpu_sibling_map[cpu];
5871 cpus_and(mask, mask, *cpu_map);
6711cab4 5872 group = first_cpu(mask);
1da177e4 5873#else
6711cab4 5874 group = cpu;
1da177e4 5875#endif
6711cab4
SS
5876 if (sg)
5877 *sg = &per_cpu(sched_group_phys, group);
5878 return group;
1da177e4
LT
5879}
5880
5881#ifdef CONFIG_NUMA
1da177e4 5882/*
9c1cfda2
JH
5883 * The init_sched_build_groups can't handle what we want to do with node
5884 * groups, so roll our own. Now each node has its own list of groups which
5885 * gets dynamically allocated.
1da177e4 5886 */
9c1cfda2 5887static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5888static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5889
9c1cfda2 5890static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5891static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5892
6711cab4
SS
5893static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5894 struct sched_group **sg)
9c1cfda2 5895{
6711cab4
SS
5896 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5897 int group;
5898
5899 cpus_and(nodemask, nodemask, *cpu_map);
5900 group = first_cpu(nodemask);
5901
5902 if (sg)
5903 *sg = &per_cpu(sched_group_allnodes, group);
5904 return group;
1da177e4 5905}
6711cab4 5906
08069033
SS
5907static void init_numa_sched_groups_power(struct sched_group *group_head)
5908{
5909 struct sched_group *sg = group_head;
5910 int j;
5911
5912 if (!sg)
5913 return;
5914next_sg:
5915 for_each_cpu_mask(j, sg->cpumask) {
5916 struct sched_domain *sd;
5917
5918 sd = &per_cpu(phys_domains, j);
5919 if (j != first_cpu(sd->groups->cpumask)) {
5920 /*
5921 * Only add "power" once for each
5922 * physical package.
5923 */
5924 continue;
5925 }
5926
5517d86b 5927 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5928 }
5929 sg = sg->next;
5930 if (sg != group_head)
5931 goto next_sg;
5932}
1da177e4
LT
5933#endif
5934
a616058b 5935#ifdef CONFIG_NUMA
51888ca2
SV
5936/* Free memory allocated for various sched_group structures */
5937static void free_sched_groups(const cpumask_t *cpu_map)
5938{
a616058b 5939 int cpu, i;
51888ca2
SV
5940
5941 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5942 struct sched_group **sched_group_nodes
5943 = sched_group_nodes_bycpu[cpu];
5944
51888ca2
SV
5945 if (!sched_group_nodes)
5946 continue;
5947
5948 for (i = 0; i < MAX_NUMNODES; i++) {
5949 cpumask_t nodemask = node_to_cpumask(i);
5950 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5951
5952 cpus_and(nodemask, nodemask, *cpu_map);
5953 if (cpus_empty(nodemask))
5954 continue;
5955
5956 if (sg == NULL)
5957 continue;
5958 sg = sg->next;
5959next_sg:
5960 oldsg = sg;
5961 sg = sg->next;
5962 kfree(oldsg);
5963 if (oldsg != sched_group_nodes[i])
5964 goto next_sg;
5965 }
5966 kfree(sched_group_nodes);
5967 sched_group_nodes_bycpu[cpu] = NULL;
5968 }
51888ca2 5969}
a616058b
SS
5970#else
5971static void free_sched_groups(const cpumask_t *cpu_map)
5972{
5973}
5974#endif
51888ca2 5975
89c4710e
SS
5976/*
5977 * Initialize sched groups cpu_power.
5978 *
5979 * cpu_power indicates the capacity of sched group, which is used while
5980 * distributing the load between different sched groups in a sched domain.
5981 * Typically cpu_power for all the groups in a sched domain will be same unless
5982 * there are asymmetries in the topology. If there are asymmetries, group
5983 * having more cpu_power will pickup more load compared to the group having
5984 * less cpu_power.
5985 *
5986 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5987 * the maximum number of tasks a group can handle in the presence of other idle
5988 * or lightly loaded groups in the same sched domain.
5989 */
5990static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5991{
5992 struct sched_domain *child;
5993 struct sched_group *group;
5994
5995 WARN_ON(!sd || !sd->groups);
5996
5997 if (cpu != first_cpu(sd->groups->cpumask))
5998 return;
5999
6000 child = sd->child;
6001
5517d86b
ED
6002 sd->groups->__cpu_power = 0;
6003
89c4710e
SS
6004 /*
6005 * For perf policy, if the groups in child domain share resources
6006 * (for example cores sharing some portions of the cache hierarchy
6007 * or SMT), then set this domain groups cpu_power such that each group
6008 * can handle only one task, when there are other idle groups in the
6009 * same sched domain.
6010 */
6011 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6012 (child->flags &
6013 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6014 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6015 return;
6016 }
6017
89c4710e
SS
6018 /*
6019 * add cpu_power of each child group to this groups cpu_power
6020 */
6021 group = child->groups;
6022 do {
5517d86b 6023 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6024 group = group->next;
6025 } while (group != child->groups);
6026}
6027
1da177e4 6028/*
1a20ff27
DG
6029 * Build sched domains for a given set of cpus and attach the sched domains
6030 * to the individual cpus
1da177e4 6031 */
51888ca2 6032static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6033{
6034 int i;
d1b55138
JH
6035#ifdef CONFIG_NUMA
6036 struct sched_group **sched_group_nodes = NULL;
6711cab4 6037 int sd_allnodes = 0;
d1b55138
JH
6038
6039 /*
6040 * Allocate the per-node list of sched groups
6041 */
dd41f596 6042 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6043 GFP_KERNEL);
d1b55138
JH
6044 if (!sched_group_nodes) {
6045 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6046 return -ENOMEM;
d1b55138
JH
6047 }
6048 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6049#endif
1da177e4
LT
6050
6051 /*
1a20ff27 6052 * Set up domains for cpus specified by the cpu_map.
1da177e4 6053 */
1a20ff27 6054 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6055 struct sched_domain *sd = NULL, *p;
6056 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6057
1a20ff27 6058 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6059
6060#ifdef CONFIG_NUMA
dd41f596
IM
6061 if (cpus_weight(*cpu_map) >
6062 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6063 sd = &per_cpu(allnodes_domains, i);
6064 *sd = SD_ALLNODES_INIT;
6065 sd->span = *cpu_map;
6711cab4 6066 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6067 p = sd;
6711cab4 6068 sd_allnodes = 1;
9c1cfda2
JH
6069 } else
6070 p = NULL;
6071
1da177e4 6072 sd = &per_cpu(node_domains, i);
1da177e4 6073 *sd = SD_NODE_INIT;
9c1cfda2
JH
6074 sd->span = sched_domain_node_span(cpu_to_node(i));
6075 sd->parent = p;
1a848870
SS
6076 if (p)
6077 p->child = sd;
9c1cfda2 6078 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6079#endif
6080
6081 p = sd;
6082 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6083 *sd = SD_CPU_INIT;
6084 sd->span = nodemask;
6085 sd->parent = p;
1a848870
SS
6086 if (p)
6087 p->child = sd;
6711cab4 6088 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6089
1e9f28fa
SS
6090#ifdef CONFIG_SCHED_MC
6091 p = sd;
6092 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6093 *sd = SD_MC_INIT;
6094 sd->span = cpu_coregroup_map(i);
6095 cpus_and(sd->span, sd->span, *cpu_map);
6096 sd->parent = p;
1a848870 6097 p->child = sd;
6711cab4 6098 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6099#endif
6100
1da177e4
LT
6101#ifdef CONFIG_SCHED_SMT
6102 p = sd;
6103 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6104 *sd = SD_SIBLING_INIT;
6105 sd->span = cpu_sibling_map[i];
1a20ff27 6106 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6107 sd->parent = p;
1a848870 6108 p->child = sd;
6711cab4 6109 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6110#endif
6111 }
6112
6113#ifdef CONFIG_SCHED_SMT
6114 /* Set up CPU (sibling) groups */
9c1cfda2 6115 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6116 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6117 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6118 if (i != first_cpu(this_sibling_map))
6119 continue;
6120
dd41f596
IM
6121 init_sched_build_groups(this_sibling_map, cpu_map,
6122 &cpu_to_cpu_group);
1da177e4
LT
6123 }
6124#endif
6125
1e9f28fa
SS
6126#ifdef CONFIG_SCHED_MC
6127 /* Set up multi-core groups */
6128 for_each_cpu_mask(i, *cpu_map) {
6129 cpumask_t this_core_map = cpu_coregroup_map(i);
6130 cpus_and(this_core_map, this_core_map, *cpu_map);
6131 if (i != first_cpu(this_core_map))
6132 continue;
dd41f596
IM
6133 init_sched_build_groups(this_core_map, cpu_map,
6134 &cpu_to_core_group);
1e9f28fa
SS
6135 }
6136#endif
6137
1da177e4
LT
6138 /* Set up physical groups */
6139 for (i = 0; i < MAX_NUMNODES; i++) {
6140 cpumask_t nodemask = node_to_cpumask(i);
6141
1a20ff27 6142 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6143 if (cpus_empty(nodemask))
6144 continue;
6145
6711cab4 6146 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6147 }
6148
6149#ifdef CONFIG_NUMA
6150 /* Set up node groups */
6711cab4 6151 if (sd_allnodes)
dd41f596
IM
6152 init_sched_build_groups(*cpu_map, cpu_map,
6153 &cpu_to_allnodes_group);
9c1cfda2
JH
6154
6155 for (i = 0; i < MAX_NUMNODES; i++) {
6156 /* Set up node groups */
6157 struct sched_group *sg, *prev;
6158 cpumask_t nodemask = node_to_cpumask(i);
6159 cpumask_t domainspan;
6160 cpumask_t covered = CPU_MASK_NONE;
6161 int j;
6162
6163 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6164 if (cpus_empty(nodemask)) {
6165 sched_group_nodes[i] = NULL;
9c1cfda2 6166 continue;
d1b55138 6167 }
9c1cfda2
JH
6168
6169 domainspan = sched_domain_node_span(i);
6170 cpus_and(domainspan, domainspan, *cpu_map);
6171
15f0b676 6172 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6173 if (!sg) {
6174 printk(KERN_WARNING "Can not alloc domain group for "
6175 "node %d\n", i);
6176 goto error;
6177 }
9c1cfda2
JH
6178 sched_group_nodes[i] = sg;
6179 for_each_cpu_mask(j, nodemask) {
6180 struct sched_domain *sd;
9761eea8 6181
9c1cfda2
JH
6182 sd = &per_cpu(node_domains, j);
6183 sd->groups = sg;
9c1cfda2 6184 }
5517d86b 6185 sg->__cpu_power = 0;
9c1cfda2 6186 sg->cpumask = nodemask;
51888ca2 6187 sg->next = sg;
9c1cfda2
JH
6188 cpus_or(covered, covered, nodemask);
6189 prev = sg;
6190
6191 for (j = 0; j < MAX_NUMNODES; j++) {
6192 cpumask_t tmp, notcovered;
6193 int n = (i + j) % MAX_NUMNODES;
6194
6195 cpus_complement(notcovered, covered);
6196 cpus_and(tmp, notcovered, *cpu_map);
6197 cpus_and(tmp, tmp, domainspan);
6198 if (cpus_empty(tmp))
6199 break;
6200
6201 nodemask = node_to_cpumask(n);
6202 cpus_and(tmp, tmp, nodemask);
6203 if (cpus_empty(tmp))
6204 continue;
6205
15f0b676
SV
6206 sg = kmalloc_node(sizeof(struct sched_group),
6207 GFP_KERNEL, i);
9c1cfda2
JH
6208 if (!sg) {
6209 printk(KERN_WARNING
6210 "Can not alloc domain group for node %d\n", j);
51888ca2 6211 goto error;
9c1cfda2 6212 }
5517d86b 6213 sg->__cpu_power = 0;
9c1cfda2 6214 sg->cpumask = tmp;
51888ca2 6215 sg->next = prev->next;
9c1cfda2
JH
6216 cpus_or(covered, covered, tmp);
6217 prev->next = sg;
6218 prev = sg;
6219 }
9c1cfda2 6220 }
1da177e4
LT
6221#endif
6222
6223 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6224#ifdef CONFIG_SCHED_SMT
1a20ff27 6225 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6226 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6227
89c4710e 6228 init_sched_groups_power(i, sd);
5c45bf27 6229 }
1da177e4 6230#endif
1e9f28fa 6231#ifdef CONFIG_SCHED_MC
5c45bf27 6232 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6233 struct sched_domain *sd = &per_cpu(core_domains, i);
6234
89c4710e 6235 init_sched_groups_power(i, sd);
5c45bf27
SS
6236 }
6237#endif
1e9f28fa 6238
5c45bf27 6239 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6240 struct sched_domain *sd = &per_cpu(phys_domains, i);
6241
89c4710e 6242 init_sched_groups_power(i, sd);
1da177e4
LT
6243 }
6244
9c1cfda2 6245#ifdef CONFIG_NUMA
08069033
SS
6246 for (i = 0; i < MAX_NUMNODES; i++)
6247 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6248
6711cab4
SS
6249 if (sd_allnodes) {
6250 struct sched_group *sg;
f712c0c7 6251
6711cab4 6252 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6253 init_numa_sched_groups_power(sg);
6254 }
9c1cfda2
JH
6255#endif
6256
1da177e4 6257 /* Attach the domains */
1a20ff27 6258 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6259 struct sched_domain *sd;
6260#ifdef CONFIG_SCHED_SMT
6261 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6262#elif defined(CONFIG_SCHED_MC)
6263 sd = &per_cpu(core_domains, i);
1da177e4
LT
6264#else
6265 sd = &per_cpu(phys_domains, i);
6266#endif
6267 cpu_attach_domain(sd, i);
6268 }
51888ca2
SV
6269
6270 return 0;
6271
a616058b 6272#ifdef CONFIG_NUMA
51888ca2
SV
6273error:
6274 free_sched_groups(cpu_map);
6275 return -ENOMEM;
a616058b 6276#endif
1da177e4 6277}
1a20ff27
DG
6278/*
6279 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6280 */
51888ca2 6281static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6282{
6283 cpumask_t cpu_default_map;
51888ca2 6284 int err;
1da177e4 6285
1a20ff27
DG
6286 /*
6287 * Setup mask for cpus without special case scheduling requirements.
6288 * For now this just excludes isolated cpus, but could be used to
6289 * exclude other special cases in the future.
6290 */
6291 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6292
51888ca2
SV
6293 err = build_sched_domains(&cpu_default_map);
6294
6295 return err;
1a20ff27
DG
6296}
6297
6298static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6299{
51888ca2 6300 free_sched_groups(cpu_map);
9c1cfda2 6301}
1da177e4 6302
1a20ff27
DG
6303/*
6304 * Detach sched domains from a group of cpus specified in cpu_map
6305 * These cpus will now be attached to the NULL domain
6306 */
858119e1 6307static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6308{
6309 int i;
6310
6311 for_each_cpu_mask(i, *cpu_map)
6312 cpu_attach_domain(NULL, i);
6313 synchronize_sched();
6314 arch_destroy_sched_domains(cpu_map);
6315}
6316
6317/*
6318 * Partition sched domains as specified by the cpumasks below.
6319 * This attaches all cpus from the cpumasks to the NULL domain,
6320 * waits for a RCU quiescent period, recalculates sched
6321 * domain information and then attaches them back to the
6322 * correct sched domains
6323 * Call with hotplug lock held
6324 */
51888ca2 6325int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6326{
6327 cpumask_t change_map;
51888ca2 6328 int err = 0;
1a20ff27
DG
6329
6330 cpus_and(*partition1, *partition1, cpu_online_map);
6331 cpus_and(*partition2, *partition2, cpu_online_map);
6332 cpus_or(change_map, *partition1, *partition2);
6333
6334 /* Detach sched domains from all of the affected cpus */
6335 detach_destroy_domains(&change_map);
6336 if (!cpus_empty(*partition1))
51888ca2
SV
6337 err = build_sched_domains(partition1);
6338 if (!err && !cpus_empty(*partition2))
6339 err = build_sched_domains(partition2);
6340
6341 return err;
1a20ff27
DG
6342}
6343
5c45bf27 6344#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6345static int arch_reinit_sched_domains(void)
5c45bf27
SS
6346{
6347 int err;
6348
5be9361c 6349 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6350 detach_destroy_domains(&cpu_online_map);
6351 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6352 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6353
6354 return err;
6355}
6356
6357static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6358{
6359 int ret;
6360
6361 if (buf[0] != '0' && buf[0] != '1')
6362 return -EINVAL;
6363
6364 if (smt)
6365 sched_smt_power_savings = (buf[0] == '1');
6366 else
6367 sched_mc_power_savings = (buf[0] == '1');
6368
6369 ret = arch_reinit_sched_domains();
6370
6371 return ret ? ret : count;
6372}
6373
5c45bf27
SS
6374#ifdef CONFIG_SCHED_MC
6375static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6376{
6377 return sprintf(page, "%u\n", sched_mc_power_savings);
6378}
48f24c4d
IM
6379static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6380 const char *buf, size_t count)
5c45bf27
SS
6381{
6382 return sched_power_savings_store(buf, count, 0);
6383}
6707de00
AB
6384static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6385 sched_mc_power_savings_store);
5c45bf27
SS
6386#endif
6387
6388#ifdef CONFIG_SCHED_SMT
6389static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6390{
6391 return sprintf(page, "%u\n", sched_smt_power_savings);
6392}
48f24c4d
IM
6393static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6394 const char *buf, size_t count)
5c45bf27
SS
6395{
6396 return sched_power_savings_store(buf, count, 1);
6397}
6707de00
AB
6398static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6399 sched_smt_power_savings_store);
6400#endif
6401
6402int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6403{
6404 int err = 0;
6405
6406#ifdef CONFIG_SCHED_SMT
6407 if (smt_capable())
6408 err = sysfs_create_file(&cls->kset.kobj,
6409 &attr_sched_smt_power_savings.attr);
6410#endif
6411#ifdef CONFIG_SCHED_MC
6412 if (!err && mc_capable())
6413 err = sysfs_create_file(&cls->kset.kobj,
6414 &attr_sched_mc_power_savings.attr);
6415#endif
6416 return err;
6417}
5c45bf27
SS
6418#endif
6419
1da177e4
LT
6420/*
6421 * Force a reinitialization of the sched domains hierarchy. The domains
6422 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6423 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6424 * which will prevent rebalancing while the sched domains are recalculated.
6425 */
6426static int update_sched_domains(struct notifier_block *nfb,
6427 unsigned long action, void *hcpu)
6428{
1da177e4
LT
6429 switch (action) {
6430 case CPU_UP_PREPARE:
8bb78442 6431 case CPU_UP_PREPARE_FROZEN:
1da177e4 6432 case CPU_DOWN_PREPARE:
8bb78442 6433 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6434 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6435 return NOTIFY_OK;
6436
6437 case CPU_UP_CANCELED:
8bb78442 6438 case CPU_UP_CANCELED_FROZEN:
1da177e4 6439 case CPU_DOWN_FAILED:
8bb78442 6440 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6441 case CPU_ONLINE:
8bb78442 6442 case CPU_ONLINE_FROZEN:
1da177e4 6443 case CPU_DEAD:
8bb78442 6444 case CPU_DEAD_FROZEN:
1da177e4
LT
6445 /*
6446 * Fall through and re-initialise the domains.
6447 */
6448 break;
6449 default:
6450 return NOTIFY_DONE;
6451 }
6452
6453 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6454 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6455
6456 return NOTIFY_OK;
6457}
1da177e4
LT
6458
6459void __init sched_init_smp(void)
6460{
5c1e1767
NP
6461 cpumask_t non_isolated_cpus;
6462
5be9361c 6463 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6464 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6465 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6466 if (cpus_empty(non_isolated_cpus))
6467 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6468 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6469 /* XXX: Theoretical race here - CPU may be hotplugged now */
6470 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6471
e692ab53
NP
6472 init_sched_domain_sysctl();
6473
5c1e1767
NP
6474 /* Move init over to a non-isolated CPU */
6475 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6476 BUG();
1da177e4
LT
6477}
6478#else
6479void __init sched_init_smp(void)
6480{
6481}
6482#endif /* CONFIG_SMP */
6483
6484int in_sched_functions(unsigned long addr)
6485{
6486 /* Linker adds these: start and end of __sched functions */
6487 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6488
1da177e4
LT
6489 return in_lock_functions(addr) ||
6490 (addr >= (unsigned long)__sched_text_start
6491 && addr < (unsigned long)__sched_text_end);
6492}
6493
a9957449 6494static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6495{
6496 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6497#ifdef CONFIG_FAIR_GROUP_SCHED
6498 cfs_rq->rq = rq;
6499#endif
67e9fb2a 6500 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6501}
6502
1da177e4
LT
6503void __init sched_init(void)
6504{
476f3534 6505 int highest_cpu = 0;
dd41f596
IM
6506 int i, j;
6507
0a945022 6508 for_each_possible_cpu(i) {
dd41f596 6509 struct rt_prio_array *array;
70b97a7f 6510 struct rq *rq;
1da177e4
LT
6511
6512 rq = cpu_rq(i);
6513 spin_lock_init(&rq->lock);
fcb99371 6514 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6515 rq->nr_running = 0;
dd41f596
IM
6516 rq->clock = 1;
6517 init_cfs_rq(&rq->cfs, rq);
6518#ifdef CONFIG_FAIR_GROUP_SCHED
6519 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6520 {
6521 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6522 struct sched_entity *se =
6523 &per_cpu(init_sched_entity, i);
6524
6525 init_cfs_rq_p[i] = cfs_rq;
6526 init_cfs_rq(cfs_rq, rq);
4cf86d77 6527 cfs_rq->tg = &init_task_group;
3a252015 6528 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6529 &rq->leaf_cfs_rq_list);
6530
3a252015
IM
6531 init_sched_entity_p[i] = se;
6532 se->cfs_rq = &rq->cfs;
6533 se->my_q = cfs_rq;
4cf86d77 6534 se->load.weight = init_task_group_load;
9b5b7751 6535 se->load.inv_weight =
4cf86d77 6536 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6537 se->parent = NULL;
6538 }
4cf86d77 6539 init_task_group.shares = init_task_group_load;
5cb350ba 6540 spin_lock_init(&init_task_group.lock);
dd41f596 6541#endif
1da177e4 6542
dd41f596
IM
6543 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6544 rq->cpu_load[j] = 0;
1da177e4 6545#ifdef CONFIG_SMP
41c7ce9a 6546 rq->sd = NULL;
1da177e4 6547 rq->active_balance = 0;
dd41f596 6548 rq->next_balance = jiffies;
1da177e4 6549 rq->push_cpu = 0;
0a2966b4 6550 rq->cpu = i;
1da177e4
LT
6551 rq->migration_thread = NULL;
6552 INIT_LIST_HEAD(&rq->migration_queue);
6553#endif
6554 atomic_set(&rq->nr_iowait, 0);
6555
dd41f596
IM
6556 array = &rq->rt.active;
6557 for (j = 0; j < MAX_RT_PRIO; j++) {
6558 INIT_LIST_HEAD(array->queue + j);
6559 __clear_bit(j, array->bitmap);
1da177e4 6560 }
476f3534 6561 highest_cpu = i;
dd41f596
IM
6562 /* delimiter for bitsearch: */
6563 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6564 }
6565
2dd73a4f 6566 set_load_weight(&init_task);
b50f60ce 6567
e107be36
AK
6568#ifdef CONFIG_PREEMPT_NOTIFIERS
6569 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6570#endif
6571
c9819f45 6572#ifdef CONFIG_SMP
476f3534 6573 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6574 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6575#endif
6576
b50f60ce
HC
6577#ifdef CONFIG_RT_MUTEXES
6578 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6579#endif
6580
1da177e4
LT
6581 /*
6582 * The boot idle thread does lazy MMU switching as well:
6583 */
6584 atomic_inc(&init_mm.mm_count);
6585 enter_lazy_tlb(&init_mm, current);
6586
6587 /*
6588 * Make us the idle thread. Technically, schedule() should not be
6589 * called from this thread, however somewhere below it might be,
6590 * but because we are the idle thread, we just pick up running again
6591 * when this runqueue becomes "idle".
6592 */
6593 init_idle(current, smp_processor_id());
dd41f596
IM
6594 /*
6595 * During early bootup we pretend to be a normal task:
6596 */
6597 current->sched_class = &fair_sched_class;
1da177e4
LT
6598}
6599
6600#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6601void __might_sleep(char *file, int line)
6602{
48f24c4d 6603#ifdef in_atomic
1da177e4
LT
6604 static unsigned long prev_jiffy; /* ratelimiting */
6605
6606 if ((in_atomic() || irqs_disabled()) &&
6607 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6608 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6609 return;
6610 prev_jiffy = jiffies;
91368d73 6611 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6612 " context at %s:%d\n", file, line);
6613 printk("in_atomic():%d, irqs_disabled():%d\n",
6614 in_atomic(), irqs_disabled());
a4c410f0 6615 debug_show_held_locks(current);
3117df04
IM
6616 if (irqs_disabled())
6617 print_irqtrace_events(current);
1da177e4
LT
6618 dump_stack();
6619 }
6620#endif
6621}
6622EXPORT_SYMBOL(__might_sleep);
6623#endif
6624
6625#ifdef CONFIG_MAGIC_SYSRQ
6626void normalize_rt_tasks(void)
6627{
a0f98a1c 6628 struct task_struct *g, *p;
1da177e4 6629 unsigned long flags;
70b97a7f 6630 struct rq *rq;
dd41f596 6631 int on_rq;
1da177e4
LT
6632
6633 read_lock_irq(&tasklist_lock);
a0f98a1c 6634 do_each_thread(g, p) {
6cfb0d5d 6635 p->se.exec_start = 0;
6cfb0d5d 6636#ifdef CONFIG_SCHEDSTATS
dd41f596 6637 p->se.wait_start = 0;
dd41f596 6638 p->se.sleep_start = 0;
dd41f596 6639 p->se.block_start = 0;
6cfb0d5d 6640#endif
dd41f596
IM
6641 task_rq(p)->clock = 0;
6642
6643 if (!rt_task(p)) {
6644 /*
6645 * Renice negative nice level userspace
6646 * tasks back to 0:
6647 */
6648 if (TASK_NICE(p) < 0 && p->mm)
6649 set_user_nice(p, 0);
1da177e4 6650 continue;
dd41f596 6651 }
1da177e4 6652
b29739f9
IM
6653 spin_lock_irqsave(&p->pi_lock, flags);
6654 rq = __task_rq_lock(p);
dd41f596
IM
6655#ifdef CONFIG_SMP
6656 /*
6657 * Do not touch the migration thread:
6658 */
6659 if (p == rq->migration_thread)
6660 goto out_unlock;
6661#endif
1da177e4 6662
2daa3577 6663 update_rq_clock(rq);
dd41f596 6664 on_rq = p->se.on_rq;
2daa3577
IM
6665 if (on_rq)
6666 deactivate_task(rq, p, 0);
dd41f596
IM
6667 __setscheduler(rq, p, SCHED_NORMAL, 0);
6668 if (on_rq) {
2daa3577 6669 activate_task(rq, p, 0);
1da177e4
LT
6670 resched_task(rq->curr);
6671 }
dd41f596
IM
6672#ifdef CONFIG_SMP
6673 out_unlock:
6674#endif
b29739f9
IM
6675 __task_rq_unlock(rq);
6676 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6677 } while_each_thread(g, p);
6678
1da177e4
LT
6679 read_unlock_irq(&tasklist_lock);
6680}
6681
6682#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6683
6684#ifdef CONFIG_IA64
6685/*
6686 * These functions are only useful for the IA64 MCA handling.
6687 *
6688 * They can only be called when the whole system has been
6689 * stopped - every CPU needs to be quiescent, and no scheduling
6690 * activity can take place. Using them for anything else would
6691 * be a serious bug, and as a result, they aren't even visible
6692 * under any other configuration.
6693 */
6694
6695/**
6696 * curr_task - return the current task for a given cpu.
6697 * @cpu: the processor in question.
6698 *
6699 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6700 */
36c8b586 6701struct task_struct *curr_task(int cpu)
1df5c10a
LT
6702{
6703 return cpu_curr(cpu);
6704}
6705
6706/**
6707 * set_curr_task - set the current task for a given cpu.
6708 * @cpu: the processor in question.
6709 * @p: the task pointer to set.
6710 *
6711 * Description: This function must only be used when non-maskable interrupts
6712 * are serviced on a separate stack. It allows the architecture to switch the
6713 * notion of the current task on a cpu in a non-blocking manner. This function
6714 * must be called with all CPU's synchronized, and interrupts disabled, the
6715 * and caller must save the original value of the current task (see
6716 * curr_task() above) and restore that value before reenabling interrupts and
6717 * re-starting the system.
6718 *
6719 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6720 */
36c8b586 6721void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6722{
6723 cpu_curr(cpu) = p;
6724}
6725
6726#endif
29f59db3
SV
6727
6728#ifdef CONFIG_FAIR_GROUP_SCHED
6729
29f59db3 6730/* allocate runqueue etc for a new task group */
4cf86d77 6731struct task_group *sched_create_group(void)
29f59db3 6732{
4cf86d77 6733 struct task_group *tg;
29f59db3
SV
6734 struct cfs_rq *cfs_rq;
6735 struct sched_entity *se;
9b5b7751 6736 struct rq *rq;
29f59db3
SV
6737 int i;
6738
29f59db3
SV
6739 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6740 if (!tg)
6741 return ERR_PTR(-ENOMEM);
6742
9b5b7751 6743 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6744 if (!tg->cfs_rq)
6745 goto err;
9b5b7751 6746 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6747 if (!tg->se)
6748 goto err;
6749
6750 for_each_possible_cpu(i) {
9b5b7751 6751 rq = cpu_rq(i);
29f59db3
SV
6752
6753 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6754 cpu_to_node(i));
6755 if (!cfs_rq)
6756 goto err;
6757
6758 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6759 cpu_to_node(i));
6760 if (!se)
6761 goto err;
6762
6763 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6764 memset(se, 0, sizeof(struct sched_entity));
6765
6766 tg->cfs_rq[i] = cfs_rq;
6767 init_cfs_rq(cfs_rq, rq);
6768 cfs_rq->tg = tg;
29f59db3
SV
6769
6770 tg->se[i] = se;
6771 se->cfs_rq = &rq->cfs;
6772 se->my_q = cfs_rq;
6773 se->load.weight = NICE_0_LOAD;
6774 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6775 se->parent = NULL;
6776 }
6777
9b5b7751
SV
6778 for_each_possible_cpu(i) {
6779 rq = cpu_rq(i);
6780 cfs_rq = tg->cfs_rq[i];
6781 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6782 }
29f59db3 6783
9b5b7751 6784 tg->shares = NICE_0_LOAD;
5cb350ba 6785 spin_lock_init(&tg->lock);
29f59db3 6786
9b5b7751 6787 return tg;
29f59db3
SV
6788
6789err:
6790 for_each_possible_cpu(i) {
a65914b3 6791 if (tg->cfs_rq)
29f59db3 6792 kfree(tg->cfs_rq[i]);
a65914b3 6793 if (tg->se)
29f59db3
SV
6794 kfree(tg->se[i]);
6795 }
a65914b3
IM
6796 kfree(tg->cfs_rq);
6797 kfree(tg->se);
6798 kfree(tg);
29f59db3
SV
6799
6800 return ERR_PTR(-ENOMEM);
6801}
6802
9b5b7751
SV
6803/* rcu callback to free various structures associated with a task group */
6804static void free_sched_group(struct rcu_head *rhp)
29f59db3 6805{
9b5b7751 6806 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 6807 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
6808 struct sched_entity *se;
6809 int i;
6810
29f59db3
SV
6811 /* now it should be safe to free those cfs_rqs */
6812 for_each_possible_cpu(i) {
6813 cfs_rq = tg->cfs_rq[i];
6814 kfree(cfs_rq);
6815
6816 se = tg->se[i];
6817 kfree(se);
6818 }
6819
6820 kfree(tg->cfs_rq);
6821 kfree(tg->se);
6822 kfree(tg);
6823}
6824
9b5b7751 6825/* Destroy runqueue etc associated with a task group */
4cf86d77 6826void sched_destroy_group(struct task_group *tg)
29f59db3 6827{
9b5b7751
SV
6828 struct cfs_rq *cfs_rq;
6829 int i;
29f59db3 6830
9b5b7751
SV
6831 for_each_possible_cpu(i) {
6832 cfs_rq = tg->cfs_rq[i];
6833 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6834 }
6835
6836 cfs_rq = tg->cfs_rq[0];
6837
6838 /* wait for possible concurrent references to cfs_rqs complete */
6839 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
6840}
6841
9b5b7751 6842/* change task's runqueue when it moves between groups.
3a252015
IM
6843 * The caller of this function should have put the task in its new group
6844 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6845 * reflect its new group.
9b5b7751
SV
6846 */
6847void sched_move_task(struct task_struct *tsk)
29f59db3
SV
6848{
6849 int on_rq, running;
6850 unsigned long flags;
6851 struct rq *rq;
6852
6853 rq = task_rq_lock(tsk, &flags);
6854
6855 if (tsk->sched_class != &fair_sched_class)
6856 goto done;
6857
6858 update_rq_clock(rq);
6859
6860 running = task_running(rq, tsk);
6861 on_rq = tsk->se.on_rq;
6862
83b699ed 6863 if (on_rq) {
29f59db3 6864 dequeue_task(rq, tsk, 0);
83b699ed
SV
6865 if (unlikely(running))
6866 tsk->sched_class->put_prev_task(rq, tsk);
6867 }
29f59db3
SV
6868
6869 set_task_cfs_rq(tsk);
6870
83b699ed
SV
6871 if (on_rq) {
6872 if (unlikely(running))
6873 tsk->sched_class->set_curr_task(rq);
7074badb 6874 enqueue_task(rq, tsk, 0);
83b699ed 6875 }
29f59db3
SV
6876
6877done:
6878 task_rq_unlock(rq, &flags);
6879}
6880
6881static void set_se_shares(struct sched_entity *se, unsigned long shares)
6882{
6883 struct cfs_rq *cfs_rq = se->cfs_rq;
6884 struct rq *rq = cfs_rq->rq;
6885 int on_rq;
6886
6887 spin_lock_irq(&rq->lock);
6888
6889 on_rq = se->on_rq;
6890 if (on_rq)
6891 dequeue_entity(cfs_rq, se, 0);
6892
6893 se->load.weight = shares;
6894 se->load.inv_weight = div64_64((1ULL<<32), shares);
6895
6896 if (on_rq)
6897 enqueue_entity(cfs_rq, se, 0);
6898
6899 spin_unlock_irq(&rq->lock);
6900}
6901
4cf86d77 6902int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
6903{
6904 int i;
29f59db3 6905
5cb350ba 6906 spin_lock(&tg->lock);
9b5b7751 6907 if (tg->shares == shares)
5cb350ba 6908 goto done;
29f59db3 6909
9b5b7751 6910 /* return -EINVAL if the new value is not sane */
29f59db3 6911
9b5b7751 6912 tg->shares = shares;
29f59db3 6913 for_each_possible_cpu(i)
9b5b7751 6914 set_se_shares(tg->se[i], shares);
29f59db3 6915
5cb350ba
DG
6916done:
6917 spin_unlock(&tg->lock);
9b5b7751 6918 return 0;
29f59db3
SV
6919}
6920
5cb350ba
DG
6921unsigned long sched_group_shares(struct task_group *tg)
6922{
6923 return tg->shares;
6924}
6925
3a252015 6926#endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 0.8268 seconds and 5 git commands to generate.