sched: Remove obsolete comment from scheduler_tick()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee 233/*
c4a8849a 234 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
3d4b47b4 344 int on_list;
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857 362 /*
3b3d190e
PT
363 * Maintaining per-cpu shares distribution for group scheduling
364 *
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 368 */
2069dd75
PZ
369 u64 load_avg;
370 u64 load_period;
3b3d190e 371 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 372
2069dd75 373 unsigned long load_contribution;
c09595f6 374#endif
6aa645ea
IM
375#endif
376};
1da177e4 377
6aa645ea
IM
378/* Real-Time classes' related field in a runqueue: */
379struct rt_rq {
380 struct rt_prio_array active;
63489e45 381 unsigned long rt_nr_running;
052f1dc7 382#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
383 struct {
384 int curr; /* highest queued rt task prio */
398a153b 385#ifdef CONFIG_SMP
e864c499 386 int next; /* next highest */
398a153b 387#endif
e864c499 388 } highest_prio;
6f505b16 389#endif
fa85ae24 390#ifdef CONFIG_SMP
73fe6aae 391 unsigned long rt_nr_migratory;
a1ba4d8b 392 unsigned long rt_nr_total;
a22d7fc1 393 int overloaded;
917b627d 394 struct plist_head pushable_tasks;
fa85ae24 395#endif
6f505b16 396 int rt_throttled;
fa85ae24 397 u64 rt_time;
ac086bc2 398 u64 rt_runtime;
ea736ed5 399 /* Nests inside the rq lock: */
0986b11b 400 raw_spinlock_t rt_runtime_lock;
6f505b16 401
052f1dc7 402#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
403 unsigned long rt_nr_boosted;
404
6f505b16
PZ
405 struct rq *rq;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
6f505b16 408#endif
6aa645ea
IM
409};
410
57d885fe
GH
411#ifdef CONFIG_SMP
412
413/*
414 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
417 * exclusive cpuset is created, we also create and attach a new root-domain
418 * object.
419 *
57d885fe
GH
420 */
421struct root_domain {
422 atomic_t refcount;
dce840a0 423 struct rcu_head rcu;
c6c4927b
RR
424 cpumask_var_t span;
425 cpumask_var_t online;
637f5085 426
0eab9146 427 /*
637f5085
GH
428 * The "RT overload" flag: it gets set if a CPU has more than
429 * one runnable RT task.
430 */
c6c4927b 431 cpumask_var_t rto_mask;
0eab9146 432 atomic_t rto_count;
6e0534f2 433 struct cpupri cpupri;
57d885fe
GH
434};
435
dc938520
GH
436/*
437 * By default the system creates a single root-domain with all cpus as
438 * members (mimicking the global state we have today).
439 */
57d885fe
GH
440static struct root_domain def_root_domain;
441
ed2d372c 442#endif /* CONFIG_SMP */
57d885fe 443
1da177e4
LT
444/*
445 * This is the main, per-CPU runqueue data structure.
446 *
447 * Locking rule: those places that want to lock multiple runqueues
448 * (such as the load balancing or the thread migration code), lock
449 * acquire operations must be ordered by ascending &runqueue.
450 */
70b97a7f 451struct rq {
d8016491 452 /* runqueue lock: */
05fa785c 453 raw_spinlock_t lock;
1da177e4
LT
454
455 /*
456 * nr_running and cpu_load should be in the same cacheline because
457 * remote CPUs use both these fields when doing load calculation.
458 */
459 unsigned long nr_running;
6aa645ea
IM
460 #define CPU_LOAD_IDX_MAX 5
461 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 462 unsigned long last_load_update_tick;
46cb4b7c 463#ifdef CONFIG_NO_HZ
39c0cbe2 464 u64 nohz_stamp;
83cd4fe2 465 unsigned char nohz_balance_kick;
46cb4b7c 466#endif
a64692a3
MG
467 unsigned int skip_clock_update;
468
d8016491
IM
469 /* capture load from *all* tasks on this cpu: */
470 struct load_weight load;
6aa645ea
IM
471 unsigned long nr_load_updates;
472 u64 nr_switches;
473
474 struct cfs_rq cfs;
6f505b16 475 struct rt_rq rt;
6f505b16 476
6aa645ea 477#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
478 /* list of leaf cfs_rq on this cpu: */
479 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
480#endif
481#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 482 struct list_head leaf_rt_rq_list;
1da177e4 483#endif
1da177e4
LT
484
485 /*
486 * This is part of a global counter where only the total sum
487 * over all CPUs matters. A task can increase this counter on
488 * one CPU and if it got migrated afterwards it may decrease
489 * it on another CPU. Always updated under the runqueue lock:
490 */
491 unsigned long nr_uninterruptible;
492
34f971f6 493 struct task_struct *curr, *idle, *stop;
c9819f45 494 unsigned long next_balance;
1da177e4 495 struct mm_struct *prev_mm;
6aa645ea 496
3e51f33f 497 u64 clock;
305e6835 498 u64 clock_task;
6aa645ea 499
1da177e4
LT
500 atomic_t nr_iowait;
501
502#ifdef CONFIG_SMP
0eab9146 503 struct root_domain *rd;
1da177e4
LT
504 struct sched_domain *sd;
505
e51fd5e2
PZ
506 unsigned long cpu_power;
507
a0a522ce 508 unsigned char idle_at_tick;
1da177e4 509 /* For active balancing */
3f029d3c 510 int post_schedule;
1da177e4
LT
511 int active_balance;
512 int push_cpu;
969c7921 513 struct cpu_stop_work active_balance_work;
d8016491
IM
514 /* cpu of this runqueue: */
515 int cpu;
1f11eb6a 516 int online;
1da177e4 517
a8a51d5e 518 unsigned long avg_load_per_task;
1da177e4 519
e9e9250b
PZ
520 u64 rt_avg;
521 u64 age_stamp;
1b9508f6
MG
522 u64 idle_stamp;
523 u64 avg_idle;
1da177e4
LT
524#endif
525
aa483808
VP
526#ifdef CONFIG_IRQ_TIME_ACCOUNTING
527 u64 prev_irq_time;
528#endif
529
dce48a84
TG
530 /* calc_load related fields */
531 unsigned long calc_load_update;
532 long calc_load_active;
533
8f4d37ec 534#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
535#ifdef CONFIG_SMP
536 int hrtick_csd_pending;
537 struct call_single_data hrtick_csd;
538#endif
8f4d37ec
PZ
539 struct hrtimer hrtick_timer;
540#endif
541
1da177e4
LT
542#ifdef CONFIG_SCHEDSTATS
543 /* latency stats */
544 struct sched_info rq_sched_info;
9c2c4802
KC
545 unsigned long long rq_cpu_time;
546 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
547
548 /* sys_sched_yield() stats */
480b9434 549 unsigned int yld_count;
1da177e4
LT
550
551 /* schedule() stats */
480b9434
KC
552 unsigned int sched_switch;
553 unsigned int sched_count;
554 unsigned int sched_goidle;
1da177e4
LT
555
556 /* try_to_wake_up() stats */
480b9434
KC
557 unsigned int ttwu_count;
558 unsigned int ttwu_local;
1da177e4 559#endif
317f3941
PZ
560
561#ifdef CONFIG_SMP
562 struct task_struct *wake_list;
563#endif
1da177e4
LT
564};
565
f34e3b61 566static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 567
a64692a3 568
1e5a7405 569static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 570
0a2966b4
CL
571static inline int cpu_of(struct rq *rq)
572{
573#ifdef CONFIG_SMP
574 return rq->cpu;
575#else
576 return 0;
577#endif
578}
579
497f0ab3 580#define rcu_dereference_check_sched_domain(p) \
d11c563d 581 rcu_dereference_check((p), \
dce840a0 582 rcu_read_lock_held() || \
d11c563d
PM
583 lockdep_is_held(&sched_domains_mutex))
584
674311d5
NP
585/*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 587 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
48f24c4d 592#define for_each_domain(cpu, __sd) \
497f0ab3 593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
594
595#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596#define this_rq() (&__get_cpu_var(runqueues))
597#define task_rq(p) cpu_rq(task_cpu(p))
598#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 599#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 600
dc61b1d6
PZ
601#ifdef CONFIG_CGROUP_SCHED
602
603/*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
0122ec5b 607 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
dc61b1d6
PZ
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611static inline struct task_group *task_group(struct task_struct *p)
612{
5091faa4 613 struct task_group *tg;
dc61b1d6
PZ
614 struct cgroup_subsys_state *css;
615
616 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
0122ec5b 617 lockdep_is_held(&p->pi_lock));
5091faa4
MG
618 tg = container_of(css, struct task_group, css);
619
620 return autogroup_task_group(p, tg);
dc61b1d6
PZ
621}
622
623/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
624static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
625{
626#ifdef CONFIG_FAIR_GROUP_SCHED
627 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
628 p->se.parent = task_group(p)->se[cpu];
629#endif
630
631#ifdef CONFIG_RT_GROUP_SCHED
632 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
633 p->rt.parent = task_group(p)->rt_se[cpu];
634#endif
635}
636
637#else /* CONFIG_CGROUP_SCHED */
638
639static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
640static inline struct task_group *task_group(struct task_struct *p)
641{
642 return NULL;
643}
644
645#endif /* CONFIG_CGROUP_SCHED */
646
fe44d621 647static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 648
fe44d621 649static void update_rq_clock(struct rq *rq)
3e51f33f 650{
fe44d621 651 s64 delta;
305e6835 652
f26f9aff
MG
653 if (rq->skip_clock_update)
654 return;
aa483808 655
fe44d621
PZ
656 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
657 rq->clock += delta;
658 update_rq_clock_task(rq, delta);
3e51f33f
PZ
659}
660
bf5c91ba
IM
661/*
662 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
663 */
664#ifdef CONFIG_SCHED_DEBUG
665# define const_debug __read_mostly
666#else
667# define const_debug static const
668#endif
669
017730c1 670/**
1fd06bb1 671 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 672 * @cpu: the processor in question.
017730c1 673 *
017730c1
IM
674 * This interface allows printk to be called with the runqueue lock
675 * held and know whether or not it is OK to wake up the klogd.
676 */
89f19f04 677int runqueue_is_locked(int cpu)
017730c1 678{
05fa785c 679 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
680}
681
bf5c91ba
IM
682/*
683 * Debugging: various feature bits
684 */
f00b45c1
PZ
685
686#define SCHED_FEAT(name, enabled) \
687 __SCHED_FEAT_##name ,
688
bf5c91ba 689enum {
f00b45c1 690#include "sched_features.h"
bf5c91ba
IM
691};
692
f00b45c1
PZ
693#undef SCHED_FEAT
694
695#define SCHED_FEAT(name, enabled) \
696 (1UL << __SCHED_FEAT_##name) * enabled |
697
bf5c91ba 698const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
699#include "sched_features.h"
700 0;
701
702#undef SCHED_FEAT
703
704#ifdef CONFIG_SCHED_DEBUG
705#define SCHED_FEAT(name, enabled) \
706 #name ,
707
983ed7a6 708static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
709#include "sched_features.h"
710 NULL
711};
712
713#undef SCHED_FEAT
714
34f3a814 715static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 716{
f00b45c1
PZ
717 int i;
718
719 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
720 if (!(sysctl_sched_features & (1UL << i)))
721 seq_puts(m, "NO_");
722 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 723 }
34f3a814 724 seq_puts(m, "\n");
f00b45c1 725
34f3a814 726 return 0;
f00b45c1
PZ
727}
728
729static ssize_t
730sched_feat_write(struct file *filp, const char __user *ubuf,
731 size_t cnt, loff_t *ppos)
732{
733 char buf[64];
7740191c 734 char *cmp;
f00b45c1
PZ
735 int neg = 0;
736 int i;
737
738 if (cnt > 63)
739 cnt = 63;
740
741 if (copy_from_user(&buf, ubuf, cnt))
742 return -EFAULT;
743
744 buf[cnt] = 0;
7740191c 745 cmp = strstrip(buf);
f00b45c1 746
524429c3 747 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
748 neg = 1;
749 cmp += 3;
750 }
751
752 for (i = 0; sched_feat_names[i]; i++) {
7740191c 753 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
754 if (neg)
755 sysctl_sched_features &= ~(1UL << i);
756 else
757 sysctl_sched_features |= (1UL << i);
758 break;
759 }
760 }
761
762 if (!sched_feat_names[i])
763 return -EINVAL;
764
42994724 765 *ppos += cnt;
f00b45c1
PZ
766
767 return cnt;
768}
769
34f3a814
LZ
770static int sched_feat_open(struct inode *inode, struct file *filp)
771{
772 return single_open(filp, sched_feat_show, NULL);
773}
774
828c0950 775static const struct file_operations sched_feat_fops = {
34f3a814
LZ
776 .open = sched_feat_open,
777 .write = sched_feat_write,
778 .read = seq_read,
779 .llseek = seq_lseek,
780 .release = single_release,
f00b45c1
PZ
781};
782
783static __init int sched_init_debug(void)
784{
f00b45c1
PZ
785 debugfs_create_file("sched_features", 0644, NULL, NULL,
786 &sched_feat_fops);
787
788 return 0;
789}
790late_initcall(sched_init_debug);
791
792#endif
793
794#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 795
b82d9fdd
PZ
796/*
797 * Number of tasks to iterate in a single balance run.
798 * Limited because this is done with IRQs disabled.
799 */
800const_debug unsigned int sysctl_sched_nr_migrate = 32;
801
e9e9250b
PZ
802/*
803 * period over which we average the RT time consumption, measured
804 * in ms.
805 *
806 * default: 1s
807 */
808const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
809
fa85ae24 810/*
9f0c1e56 811 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
812 * default: 1s
813 */
9f0c1e56 814unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 815
6892b75e
IM
816static __read_mostly int scheduler_running;
817
9f0c1e56
PZ
818/*
819 * part of the period that we allow rt tasks to run in us.
820 * default: 0.95s
821 */
822int sysctl_sched_rt_runtime = 950000;
fa85ae24 823
d0b27fa7
PZ
824static inline u64 global_rt_period(void)
825{
826 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
827}
828
829static inline u64 global_rt_runtime(void)
830{
e26873bb 831 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
832 return RUNTIME_INF;
833
834 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
835}
fa85ae24 836
1da177e4 837#ifndef prepare_arch_switch
4866cde0
NP
838# define prepare_arch_switch(next) do { } while (0)
839#endif
840#ifndef finish_arch_switch
841# define finish_arch_switch(prev) do { } while (0)
842#endif
843
051a1d1a
DA
844static inline int task_current(struct rq *rq, struct task_struct *p)
845{
846 return rq->curr == p;
847}
848
70b97a7f 849static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 850{
3ca7a440
PZ
851#ifdef CONFIG_SMP
852 return p->on_cpu;
853#else
051a1d1a 854 return task_current(rq, p);
3ca7a440 855#endif
4866cde0
NP
856}
857
3ca7a440 858#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 859static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 860{
3ca7a440
PZ
861#ifdef CONFIG_SMP
862 /*
863 * We can optimise this out completely for !SMP, because the
864 * SMP rebalancing from interrupt is the only thing that cares
865 * here.
866 */
867 next->on_cpu = 1;
868#endif
4866cde0
NP
869}
870
70b97a7f 871static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 872{
3ca7a440
PZ
873#ifdef CONFIG_SMP
874 /*
875 * After ->on_cpu is cleared, the task can be moved to a different CPU.
876 * We must ensure this doesn't happen until the switch is completely
877 * finished.
878 */
879 smp_wmb();
880 prev->on_cpu = 0;
881#endif
da04c035
IM
882#ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885#endif
8a25d5de
IM
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
894}
895
896#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 897static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 /*
901 * We can optimise this out completely for !SMP, because the
902 * SMP rebalancing from interrupt is the only thing that cares
903 * here.
904 */
3ca7a440 905 next->on_cpu = 1;
4866cde0
NP
906#endif
907#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 908 raw_spin_unlock_irq(&rq->lock);
4866cde0 909#else
05fa785c 910 raw_spin_unlock(&rq->lock);
4866cde0
NP
911#endif
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
915{
916#ifdef CONFIG_SMP
917 /*
3ca7a440 918 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
919 * We must ensure this doesn't happen until the switch is completely
920 * finished.
921 */
922 smp_wmb();
3ca7a440 923 prev->on_cpu = 0;
4866cde0
NP
924#endif
925#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
926 local_irq_enable();
1da177e4 927#endif
4866cde0
NP
928}
929#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 930
0970d299 931/*
0122ec5b 932 * __task_rq_lock - lock the rq @p resides on.
b29739f9 933 */
70b97a7f 934static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
935 __acquires(rq->lock)
936{
0970d299
PZ
937 struct rq *rq;
938
0122ec5b
PZ
939 lockdep_assert_held(&p->pi_lock);
940
3a5c359a 941 for (;;) {
0970d299 942 rq = task_rq(p);
05fa785c 943 raw_spin_lock(&rq->lock);
65cc8e48 944 if (likely(rq == task_rq(p)))
3a5c359a 945 return rq;
05fa785c 946 raw_spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4 950/*
0122ec5b 951 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 952 */
70b97a7f 953static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 954 __acquires(p->pi_lock)
1da177e4
LT
955 __acquires(rq->lock)
956{
70b97a7f 957 struct rq *rq;
1da177e4 958
3a5c359a 959 for (;;) {
0122ec5b 960 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 961 rq = task_rq(p);
05fa785c 962 raw_spin_lock(&rq->lock);
65cc8e48 963 if (likely(rq == task_rq(p)))
3a5c359a 964 return rq;
0122ec5b
PZ
965 raw_spin_unlock(&rq->lock);
966 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
0122ec5b
PZ
976static inline void
977task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 978 __releases(rq->lock)
0122ec5b 979 __releases(p->pi_lock)
1da177e4 980{
0122ec5b
PZ
981 raw_spin_unlock(&rq->lock);
982 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
983}
984
1da177e4 985/*
cc2a73b5 986 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 987 */
a9957449 988static struct rq *this_rq_lock(void)
1da177e4
LT
989 __acquires(rq->lock)
990{
70b97a7f 991 struct rq *rq;
1da177e4
LT
992
993 local_irq_disable();
994 rq = this_rq();
05fa785c 995 raw_spin_lock(&rq->lock);
1da177e4
LT
996
997 return rq;
998}
999
8f4d37ec
PZ
1000#ifdef CONFIG_SCHED_HRTICK
1001/*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
8f4d37ec
PZ
1011
1012/*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017static inline int hrtick_enabled(struct rq *rq)
1018{
1019 if (!sched_feat(HRTICK))
1020 return 0;
ba42059f 1021 if (!cpu_active(cpu_of(rq)))
b328ca18 1022 return 0;
8f4d37ec
PZ
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026static void hrtick_clear(struct rq *rq)
1027{
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032/*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037{
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
05fa785c 1042 raw_spin_lock(&rq->lock);
3e51f33f 1043 update_rq_clock(rq);
8f4d37ec 1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1045 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1046
1047 return HRTIMER_NORESTART;
1048}
1049
95e904c7 1050#ifdef CONFIG_SMP
31656519
PZ
1051/*
1052 * called from hardirq (IPI) context
1053 */
1054static void __hrtick_start(void *arg)
b328ca18 1055{
31656519 1056 struct rq *rq = arg;
b328ca18 1057
05fa785c 1058 raw_spin_lock(&rq->lock);
31656519
PZ
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
05fa785c 1061 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1062}
1063
31656519
PZ
1064/*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1070{
31656519
PZ
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1073
cc584b21 1074 hrtimer_set_expires(timer, time);
31656519
PZ
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
6e275637 1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1080 rq->hrtick_csd_pending = 1;
1081 }
b328ca18
PZ
1082}
1083
1084static int
1085hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086{
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
31656519 1096 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101}
1102
fa748203 1103static __init void init_hrtick(void)
b328ca18
PZ
1104{
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106}
31656519
PZ
1107#else
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
1114{
7f1e2ca9 1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1116 HRTIMER_MODE_REL_PINNED, 0);
31656519 1117}
b328ca18 1118
006c75f1 1119static inline void init_hrtick(void)
8f4d37ec 1120{
8f4d37ec 1121}
31656519 1122#endif /* CONFIG_SMP */
8f4d37ec 1123
31656519 1124static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1125{
31656519
PZ
1126#ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
8f4d37ec 1128
31656519
PZ
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132#endif
8f4d37ec 1133
31656519
PZ
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
8f4d37ec 1136}
006c75f1 1137#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1138static inline void hrtick_clear(struct rq *rq)
1139{
1140}
1141
8f4d37ec
PZ
1142static inline void init_rq_hrtick(struct rq *rq)
1143{
1144}
1145
b328ca18
PZ
1146static inline void init_hrtick(void)
1147{
1148}
006c75f1 1149#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1150
c24d20db
IM
1151/*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158#ifdef CONFIG_SMP
1159
1160#ifndef tsk_is_polling
1161#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162#endif
1163
31656519 1164static void resched_task(struct task_struct *p)
c24d20db
IM
1165{
1166 int cpu;
1167
05fa785c 1168 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1169
5ed0cec0 1170 if (test_tsk_need_resched(p))
c24d20db
IM
1171 return;
1172
5ed0cec0 1173 set_tsk_need_resched(p);
c24d20db
IM
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183}
1184
1185static void resched_cpu(int cpu)
1186{
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
05fa785c 1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1191 return;
1192 resched_task(cpu_curr(cpu));
05fa785c 1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1194}
06d8308c
TG
1195
1196#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1197/*
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1200 *
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 */
1205int get_nohz_timer_target(void)
1206{
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1210
057f3fad 1211 rcu_read_lock();
83cd4fe2 1212 for_each_domain(cpu, sd) {
057f3fad
PZ
1213 for_each_cpu(i, sched_domain_span(sd)) {
1214 if (!idle_cpu(i)) {
1215 cpu = i;
1216 goto unlock;
1217 }
1218 }
83cd4fe2 1219 }
057f3fad
PZ
1220unlock:
1221 rcu_read_unlock();
83cd4fe2
VP
1222 return cpu;
1223}
06d8308c
TG
1224/*
1225 * When add_timer_on() enqueues a timer into the timer wheel of an
1226 * idle CPU then this timer might expire before the next timer event
1227 * which is scheduled to wake up that CPU. In case of a completely
1228 * idle system the next event might even be infinite time into the
1229 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1230 * leaves the inner idle loop so the newly added timer is taken into
1231 * account when the CPU goes back to idle and evaluates the timer
1232 * wheel for the next timer event.
1233 */
1234void wake_up_idle_cpu(int cpu)
1235{
1236 struct rq *rq = cpu_rq(cpu);
1237
1238 if (cpu == smp_processor_id())
1239 return;
1240
1241 /*
1242 * This is safe, as this function is called with the timer
1243 * wheel base lock of (cpu) held. When the CPU is on the way
1244 * to idle and has not yet set rq->curr to idle then it will
1245 * be serialized on the timer wheel base lock and take the new
1246 * timer into account automatically.
1247 */
1248 if (rq->curr != rq->idle)
1249 return;
1250
1251 /*
1252 * We can set TIF_RESCHED on the idle task of the other CPU
1253 * lockless. The worst case is that the other CPU runs the
1254 * idle task through an additional NOOP schedule()
1255 */
5ed0cec0 1256 set_tsk_need_resched(rq->idle);
06d8308c
TG
1257
1258 /* NEED_RESCHED must be visible before we test polling */
1259 smp_mb();
1260 if (!tsk_is_polling(rq->idle))
1261 smp_send_reschedule(cpu);
1262}
39c0cbe2 1263
6d6bc0ad 1264#endif /* CONFIG_NO_HZ */
06d8308c 1265
e9e9250b
PZ
1266static u64 sched_avg_period(void)
1267{
1268 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1269}
1270
1271static void sched_avg_update(struct rq *rq)
1272{
1273 s64 period = sched_avg_period();
1274
1275 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1276 /*
1277 * Inline assembly required to prevent the compiler
1278 * optimising this loop into a divmod call.
1279 * See __iter_div_u64_rem() for another example of this.
1280 */
1281 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1282 rq->age_stamp += period;
1283 rq->rt_avg /= 2;
1284 }
1285}
1286
1287static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1288{
1289 rq->rt_avg += rt_delta;
1290 sched_avg_update(rq);
1291}
1292
6d6bc0ad 1293#else /* !CONFIG_SMP */
31656519 1294static void resched_task(struct task_struct *p)
c24d20db 1295{
05fa785c 1296 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1297 set_tsk_need_resched(p);
c24d20db 1298}
e9e9250b
PZ
1299
1300static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1301{
1302}
da2b71ed
SS
1303
1304static void sched_avg_update(struct rq *rq)
1305{
1306}
6d6bc0ad 1307#endif /* CONFIG_SMP */
c24d20db 1308
45bf76df
IM
1309#if BITS_PER_LONG == 32
1310# define WMULT_CONST (~0UL)
1311#else
1312# define WMULT_CONST (1UL << 32)
1313#endif
1314
1315#define WMULT_SHIFT 32
1316
194081eb
IM
1317/*
1318 * Shift right and round:
1319 */
cf2ab469 1320#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1321
a7be37ac
PZ
1322/*
1323 * delta *= weight / lw
1324 */
cb1c4fc9 1325static unsigned long
45bf76df
IM
1326calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1327 struct load_weight *lw)
1328{
1329 u64 tmp;
1330
7a232e03
LJ
1331 if (!lw->inv_weight) {
1332 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1333 lw->inv_weight = 1;
1334 else
1335 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1336 / (lw->weight+1);
1337 }
45bf76df
IM
1338
1339 tmp = (u64)delta_exec * weight;
1340 /*
1341 * Check whether we'd overflow the 64-bit multiplication:
1342 */
194081eb 1343 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1344 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1345 WMULT_SHIFT/2);
1346 else
cf2ab469 1347 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1348
ecf691da 1349 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1350}
1351
1091985b 1352static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1353{
1354 lw->weight += inc;
e89996ae 1355 lw->inv_weight = 0;
45bf76df
IM
1356}
1357
1091985b 1358static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1359{
1360 lw->weight -= dec;
e89996ae 1361 lw->inv_weight = 0;
45bf76df
IM
1362}
1363
2069dd75
PZ
1364static inline void update_load_set(struct load_weight *lw, unsigned long w)
1365{
1366 lw->weight = w;
1367 lw->inv_weight = 0;
1368}
1369
2dd73a4f
PW
1370/*
1371 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1372 * of tasks with abnormal "nice" values across CPUs the contribution that
1373 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1374 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1375 * scaled version of the new time slice allocation that they receive on time
1376 * slice expiry etc.
1377 */
1378
cce7ade8
PZ
1379#define WEIGHT_IDLEPRIO 3
1380#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1381
1382/*
1383 * Nice levels are multiplicative, with a gentle 10% change for every
1384 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1385 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1386 * that remained on nice 0.
1387 *
1388 * The "10% effect" is relative and cumulative: from _any_ nice level,
1389 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1390 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1391 * If a task goes up by ~10% and another task goes down by ~10% then
1392 * the relative distance between them is ~25%.)
dd41f596
IM
1393 */
1394static const int prio_to_weight[40] = {
254753dc
IM
1395 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1396 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1397 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1398 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1399 /* 0 */ 1024, 820, 655, 526, 423,
1400 /* 5 */ 335, 272, 215, 172, 137,
1401 /* 10 */ 110, 87, 70, 56, 45,
1402 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1403};
1404
5714d2de
IM
1405/*
1406 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1407 *
1408 * In cases where the weight does not change often, we can use the
1409 * precalculated inverse to speed up arithmetics by turning divisions
1410 * into multiplications:
1411 */
dd41f596 1412static const u32 prio_to_wmult[40] = {
254753dc
IM
1413 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1414 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1415 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1416 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1417 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1418 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1419 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1420 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1421};
2dd73a4f 1422
ef12fefa
BR
1423/* Time spent by the tasks of the cpu accounting group executing in ... */
1424enum cpuacct_stat_index {
1425 CPUACCT_STAT_USER, /* ... user mode */
1426 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1427
1428 CPUACCT_STAT_NSTATS,
1429};
1430
d842de87
SV
1431#ifdef CONFIG_CGROUP_CPUACCT
1432static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1433static void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1435#else
1436static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1437static inline void cpuacct_update_stats(struct task_struct *tsk,
1438 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1439#endif
1440
18d95a28
PZ
1441static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_add(&rq->load, load);
1444}
1445
1446static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1447{
1448 update_load_sub(&rq->load, load);
1449}
1450
7940ca36 1451#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1452typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1453
1454/*
1455 * Iterate the full tree, calling @down when first entering a node and @up when
1456 * leaving it for the final time.
1457 */
eb755805 1458static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1459{
1460 struct task_group *parent, *child;
eb755805 1461 int ret;
c09595f6
PZ
1462
1463 rcu_read_lock();
1464 parent = &root_task_group;
1465down:
eb755805
PZ
1466 ret = (*down)(parent, data);
1467 if (ret)
1468 goto out_unlock;
c09595f6
PZ
1469 list_for_each_entry_rcu(child, &parent->children, siblings) {
1470 parent = child;
1471 goto down;
1472
1473up:
1474 continue;
1475 }
eb755805
PZ
1476 ret = (*up)(parent, data);
1477 if (ret)
1478 goto out_unlock;
c09595f6
PZ
1479
1480 child = parent;
1481 parent = parent->parent;
1482 if (parent)
1483 goto up;
eb755805 1484out_unlock:
c09595f6 1485 rcu_read_unlock();
eb755805
PZ
1486
1487 return ret;
c09595f6
PZ
1488}
1489
eb755805
PZ
1490static int tg_nop(struct task_group *tg, void *data)
1491{
1492 return 0;
c09595f6 1493}
eb755805
PZ
1494#endif
1495
1496#ifdef CONFIG_SMP
f5f08f39
PZ
1497/* Used instead of source_load when we know the type == 0 */
1498static unsigned long weighted_cpuload(const int cpu)
1499{
1500 return cpu_rq(cpu)->load.weight;
1501}
1502
1503/*
1504 * Return a low guess at the load of a migration-source cpu weighted
1505 * according to the scheduling class and "nice" value.
1506 *
1507 * We want to under-estimate the load of migration sources, to
1508 * balance conservatively.
1509 */
1510static unsigned long source_load(int cpu, int type)
1511{
1512 struct rq *rq = cpu_rq(cpu);
1513 unsigned long total = weighted_cpuload(cpu);
1514
1515 if (type == 0 || !sched_feat(LB_BIAS))
1516 return total;
1517
1518 return min(rq->cpu_load[type-1], total);
1519}
1520
1521/*
1522 * Return a high guess at the load of a migration-target cpu weighted
1523 * according to the scheduling class and "nice" value.
1524 */
1525static unsigned long target_load(int cpu, int type)
1526{
1527 struct rq *rq = cpu_rq(cpu);
1528 unsigned long total = weighted_cpuload(cpu);
1529
1530 if (type == 0 || !sched_feat(LB_BIAS))
1531 return total;
1532
1533 return max(rq->cpu_load[type-1], total);
1534}
1535
ae154be1
PZ
1536static unsigned long power_of(int cpu)
1537{
e51fd5e2 1538 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1539}
1540
eb755805
PZ
1541static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1542
1543static unsigned long cpu_avg_load_per_task(int cpu)
1544{
1545 struct rq *rq = cpu_rq(cpu);
af6d596f 1546 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1547
4cd42620
SR
1548 if (nr_running)
1549 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1550 else
1551 rq->avg_load_per_task = 0;
eb755805
PZ
1552
1553 return rq->avg_load_per_task;
1554}
1555
1556#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1557
c09595f6 1558/*
c8cba857
PZ
1559 * Compute the cpu's hierarchical load factor for each task group.
1560 * This needs to be done in a top-down fashion because the load of a child
1561 * group is a fraction of its parents load.
c09595f6 1562 */
eb755805 1563static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1564{
c8cba857 1565 unsigned long load;
eb755805 1566 long cpu = (long)data;
c09595f6 1567
c8cba857
PZ
1568 if (!tg->parent) {
1569 load = cpu_rq(cpu)->load.weight;
1570 } else {
1571 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1572 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1573 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1574 }
c09595f6 1575
c8cba857 1576 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1577
eb755805 1578 return 0;
c09595f6
PZ
1579}
1580
eb755805 1581static void update_h_load(long cpu)
c09595f6 1582{
eb755805 1583 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1584}
1585
18d95a28
PZ
1586#endif
1587
8f45e2b5
GH
1588#ifdef CONFIG_PREEMPT
1589
b78bb868
PZ
1590static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1591
70574a99 1592/*
8f45e2b5
GH
1593 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1594 * way at the expense of forcing extra atomic operations in all
1595 * invocations. This assures that the double_lock is acquired using the
1596 * same underlying policy as the spinlock_t on this architecture, which
1597 * reduces latency compared to the unfair variant below. However, it
1598 * also adds more overhead and therefore may reduce throughput.
70574a99 1599 */
8f45e2b5
GH
1600static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1601 __releases(this_rq->lock)
1602 __acquires(busiest->lock)
1603 __acquires(this_rq->lock)
1604{
05fa785c 1605 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1606 double_rq_lock(this_rq, busiest);
1607
1608 return 1;
1609}
1610
1611#else
1612/*
1613 * Unfair double_lock_balance: Optimizes throughput at the expense of
1614 * latency by eliminating extra atomic operations when the locks are
1615 * already in proper order on entry. This favors lower cpu-ids and will
1616 * grant the double lock to lower cpus over higher ids under contention,
1617 * regardless of entry order into the function.
1618 */
1619static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1620 __releases(this_rq->lock)
1621 __acquires(busiest->lock)
1622 __acquires(this_rq->lock)
1623{
1624 int ret = 0;
1625
05fa785c 1626 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1627 if (busiest < this_rq) {
05fa785c
TG
1628 raw_spin_unlock(&this_rq->lock);
1629 raw_spin_lock(&busiest->lock);
1630 raw_spin_lock_nested(&this_rq->lock,
1631 SINGLE_DEPTH_NESTING);
70574a99
AD
1632 ret = 1;
1633 } else
05fa785c
TG
1634 raw_spin_lock_nested(&busiest->lock,
1635 SINGLE_DEPTH_NESTING);
70574a99
AD
1636 }
1637 return ret;
1638}
1639
8f45e2b5
GH
1640#endif /* CONFIG_PREEMPT */
1641
1642/*
1643 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1644 */
1645static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1646{
1647 if (unlikely(!irqs_disabled())) {
1648 /* printk() doesn't work good under rq->lock */
05fa785c 1649 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1650 BUG_ON(1);
1651 }
1652
1653 return _double_lock_balance(this_rq, busiest);
1654}
1655
70574a99
AD
1656static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1657 __releases(busiest->lock)
1658{
05fa785c 1659 raw_spin_unlock(&busiest->lock);
70574a99
AD
1660 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1661}
1e3c88bd
PZ
1662
1663/*
1664 * double_rq_lock - safely lock two runqueues
1665 *
1666 * Note this does not disable interrupts like task_rq_lock,
1667 * you need to do so manually before calling.
1668 */
1669static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1670 __acquires(rq1->lock)
1671 __acquires(rq2->lock)
1672{
1673 BUG_ON(!irqs_disabled());
1674 if (rq1 == rq2) {
1675 raw_spin_lock(&rq1->lock);
1676 __acquire(rq2->lock); /* Fake it out ;) */
1677 } else {
1678 if (rq1 < rq2) {
1679 raw_spin_lock(&rq1->lock);
1680 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1681 } else {
1682 raw_spin_lock(&rq2->lock);
1683 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1684 }
1685 }
1e3c88bd
PZ
1686}
1687
1688/*
1689 * double_rq_unlock - safely unlock two runqueues
1690 *
1691 * Note this does not restore interrupts like task_rq_unlock,
1692 * you need to do so manually after calling.
1693 */
1694static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1695 __releases(rq1->lock)
1696 __releases(rq2->lock)
1697{
1698 raw_spin_unlock(&rq1->lock);
1699 if (rq1 != rq2)
1700 raw_spin_unlock(&rq2->lock);
1701 else
1702 __release(rq2->lock);
1703}
1704
d95f4122
MG
1705#else /* CONFIG_SMP */
1706
1707/*
1708 * double_rq_lock - safely lock two runqueues
1709 *
1710 * Note this does not disable interrupts like task_rq_lock,
1711 * you need to do so manually before calling.
1712 */
1713static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1714 __acquires(rq1->lock)
1715 __acquires(rq2->lock)
1716{
1717 BUG_ON(!irqs_disabled());
1718 BUG_ON(rq1 != rq2);
1719 raw_spin_lock(&rq1->lock);
1720 __acquire(rq2->lock); /* Fake it out ;) */
1721}
1722
1723/*
1724 * double_rq_unlock - safely unlock two runqueues
1725 *
1726 * Note this does not restore interrupts like task_rq_unlock,
1727 * you need to do so manually after calling.
1728 */
1729static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1730 __releases(rq1->lock)
1731 __releases(rq2->lock)
1732{
1733 BUG_ON(rq1 != rq2);
1734 raw_spin_unlock(&rq1->lock);
1735 __release(rq2->lock);
1736}
1737
18d95a28
PZ
1738#endif
1739
74f5187a 1740static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1741static void update_sysctl(void);
acb4a848 1742static int get_update_sysctl_factor(void);
fdf3e95d 1743static void update_cpu_load(struct rq *this_rq);
dce48a84 1744
cd29fe6f
PZ
1745static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1746{
1747 set_task_rq(p, cpu);
1748#ifdef CONFIG_SMP
1749 /*
1750 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1751 * successfuly executed on another CPU. We must ensure that updates of
1752 * per-task data have been completed by this moment.
1753 */
1754 smp_wmb();
1755 task_thread_info(p)->cpu = cpu;
1756#endif
1757}
dce48a84 1758
1e3c88bd 1759static const struct sched_class rt_sched_class;
dd41f596 1760
34f971f6 1761#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1762#define for_each_class(class) \
1763 for (class = sched_class_highest; class; class = class->next)
dd41f596 1764
1e3c88bd
PZ
1765#include "sched_stats.h"
1766
c09595f6 1767static void inc_nr_running(struct rq *rq)
9c217245
IM
1768{
1769 rq->nr_running++;
9c217245
IM
1770}
1771
c09595f6 1772static void dec_nr_running(struct rq *rq)
9c217245
IM
1773{
1774 rq->nr_running--;
9c217245
IM
1775}
1776
45bf76df
IM
1777static void set_load_weight(struct task_struct *p)
1778{
dd41f596
IM
1779 /*
1780 * SCHED_IDLE tasks get minimal weight:
1781 */
1782 if (p->policy == SCHED_IDLE) {
1783 p->se.load.weight = WEIGHT_IDLEPRIO;
1784 p->se.load.inv_weight = WMULT_IDLEPRIO;
1785 return;
1786 }
71f8bd46 1787
dd41f596
IM
1788 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1789 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1790}
1791
371fd7e7 1792static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1793{
a64692a3 1794 update_rq_clock(rq);
dd41f596 1795 sched_info_queued(p);
371fd7e7 1796 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1797}
1798
371fd7e7 1799static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1800{
a64692a3 1801 update_rq_clock(rq);
46ac22ba 1802 sched_info_dequeued(p);
371fd7e7 1803 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1804}
1805
1e3c88bd
PZ
1806/*
1807 * activate_task - move a task to the runqueue.
1808 */
371fd7e7 1809static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1810{
1811 if (task_contributes_to_load(p))
1812 rq->nr_uninterruptible--;
1813
371fd7e7 1814 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1815 inc_nr_running(rq);
1816}
1817
1818/*
1819 * deactivate_task - remove a task from the runqueue.
1820 */
371fd7e7 1821static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1822{
1823 if (task_contributes_to_load(p))
1824 rq->nr_uninterruptible++;
1825
371fd7e7 1826 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1827 dec_nr_running(rq);
1828}
1829
b52bfee4
VP
1830#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1831
305e6835
VP
1832/*
1833 * There are no locks covering percpu hardirq/softirq time.
1834 * They are only modified in account_system_vtime, on corresponding CPU
1835 * with interrupts disabled. So, writes are safe.
1836 * They are read and saved off onto struct rq in update_rq_clock().
1837 * This may result in other CPU reading this CPU's irq time and can
1838 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1839 * or new value with a side effect of accounting a slice of irq time to wrong
1840 * task when irq is in progress while we read rq->clock. That is a worthy
1841 * compromise in place of having locks on each irq in account_system_time.
305e6835 1842 */
b52bfee4
VP
1843static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1844static DEFINE_PER_CPU(u64, cpu_softirq_time);
1845
1846static DEFINE_PER_CPU(u64, irq_start_time);
1847static int sched_clock_irqtime;
1848
1849void enable_sched_clock_irqtime(void)
1850{
1851 sched_clock_irqtime = 1;
1852}
1853
1854void disable_sched_clock_irqtime(void)
1855{
1856 sched_clock_irqtime = 0;
1857}
1858
8e92c201
PZ
1859#ifndef CONFIG_64BIT
1860static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1861
1862static inline void irq_time_write_begin(void)
1863{
1864 __this_cpu_inc(irq_time_seq.sequence);
1865 smp_wmb();
1866}
1867
1868static inline void irq_time_write_end(void)
1869{
1870 smp_wmb();
1871 __this_cpu_inc(irq_time_seq.sequence);
1872}
1873
1874static inline u64 irq_time_read(int cpu)
1875{
1876 u64 irq_time;
1877 unsigned seq;
1878
1879 do {
1880 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1881 irq_time = per_cpu(cpu_softirq_time, cpu) +
1882 per_cpu(cpu_hardirq_time, cpu);
1883 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1884
1885 return irq_time;
1886}
1887#else /* CONFIG_64BIT */
1888static inline void irq_time_write_begin(void)
1889{
1890}
1891
1892static inline void irq_time_write_end(void)
1893{
1894}
1895
1896static inline u64 irq_time_read(int cpu)
305e6835 1897{
305e6835
VP
1898 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1899}
8e92c201 1900#endif /* CONFIG_64BIT */
305e6835 1901
fe44d621
PZ
1902/*
1903 * Called before incrementing preempt_count on {soft,}irq_enter
1904 * and before decrementing preempt_count on {soft,}irq_exit.
1905 */
b52bfee4
VP
1906void account_system_vtime(struct task_struct *curr)
1907{
1908 unsigned long flags;
fe44d621 1909 s64 delta;
b52bfee4 1910 int cpu;
b52bfee4
VP
1911
1912 if (!sched_clock_irqtime)
1913 return;
1914
1915 local_irq_save(flags);
1916
b52bfee4 1917 cpu = smp_processor_id();
fe44d621
PZ
1918 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1919 __this_cpu_add(irq_start_time, delta);
1920
8e92c201 1921 irq_time_write_begin();
b52bfee4
VP
1922 /*
1923 * We do not account for softirq time from ksoftirqd here.
1924 * We want to continue accounting softirq time to ksoftirqd thread
1925 * in that case, so as not to confuse scheduler with a special task
1926 * that do not consume any time, but still wants to run.
1927 */
1928 if (hardirq_count())
fe44d621 1929 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1930 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1931 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1932
8e92c201 1933 irq_time_write_end();
b52bfee4
VP
1934 local_irq_restore(flags);
1935}
b7dadc38 1936EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1937
fe44d621 1938static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1939{
fe44d621
PZ
1940 s64 irq_delta;
1941
8e92c201 1942 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1943
1944 /*
1945 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1946 * this case when a previous update_rq_clock() happened inside a
1947 * {soft,}irq region.
1948 *
1949 * When this happens, we stop ->clock_task and only update the
1950 * prev_irq_time stamp to account for the part that fit, so that a next
1951 * update will consume the rest. This ensures ->clock_task is
1952 * monotonic.
1953 *
1954 * It does however cause some slight miss-attribution of {soft,}irq
1955 * time, a more accurate solution would be to update the irq_time using
1956 * the current rq->clock timestamp, except that would require using
1957 * atomic ops.
1958 */
1959 if (irq_delta > delta)
1960 irq_delta = delta;
1961
1962 rq->prev_irq_time += irq_delta;
1963 delta -= irq_delta;
1964 rq->clock_task += delta;
1965
1966 if (irq_delta && sched_feat(NONIRQ_POWER))
1967 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1968}
1969
abb74cef
VP
1970static int irqtime_account_hi_update(void)
1971{
1972 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1973 unsigned long flags;
1974 u64 latest_ns;
1975 int ret = 0;
1976
1977 local_irq_save(flags);
1978 latest_ns = this_cpu_read(cpu_hardirq_time);
1979 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1980 ret = 1;
1981 local_irq_restore(flags);
1982 return ret;
1983}
1984
1985static int irqtime_account_si_update(void)
1986{
1987 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1988 unsigned long flags;
1989 u64 latest_ns;
1990 int ret = 0;
1991
1992 local_irq_save(flags);
1993 latest_ns = this_cpu_read(cpu_softirq_time);
1994 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1995 ret = 1;
1996 local_irq_restore(flags);
1997 return ret;
1998}
1999
fe44d621 2000#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2001
abb74cef
VP
2002#define sched_clock_irqtime (0)
2003
fe44d621 2004static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 2005{
fe44d621 2006 rq->clock_task += delta;
305e6835
VP
2007}
2008
fe44d621 2009#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2010
1e3c88bd
PZ
2011#include "sched_idletask.c"
2012#include "sched_fair.c"
2013#include "sched_rt.c"
5091faa4 2014#include "sched_autogroup.c"
34f971f6 2015#include "sched_stoptask.c"
1e3c88bd
PZ
2016#ifdef CONFIG_SCHED_DEBUG
2017# include "sched_debug.c"
2018#endif
2019
34f971f6
PZ
2020void sched_set_stop_task(int cpu, struct task_struct *stop)
2021{
2022 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2023 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2024
2025 if (stop) {
2026 /*
2027 * Make it appear like a SCHED_FIFO task, its something
2028 * userspace knows about and won't get confused about.
2029 *
2030 * Also, it will make PI more or less work without too
2031 * much confusion -- but then, stop work should not
2032 * rely on PI working anyway.
2033 */
2034 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2035
2036 stop->sched_class = &stop_sched_class;
2037 }
2038
2039 cpu_rq(cpu)->stop = stop;
2040
2041 if (old_stop) {
2042 /*
2043 * Reset it back to a normal scheduling class so that
2044 * it can die in pieces.
2045 */
2046 old_stop->sched_class = &rt_sched_class;
2047 }
2048}
2049
14531189 2050/*
dd41f596 2051 * __normal_prio - return the priority that is based on the static prio
14531189 2052 */
14531189
IM
2053static inline int __normal_prio(struct task_struct *p)
2054{
dd41f596 2055 return p->static_prio;
14531189
IM
2056}
2057
b29739f9
IM
2058/*
2059 * Calculate the expected normal priority: i.e. priority
2060 * without taking RT-inheritance into account. Might be
2061 * boosted by interactivity modifiers. Changes upon fork,
2062 * setprio syscalls, and whenever the interactivity
2063 * estimator recalculates.
2064 */
36c8b586 2065static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2066{
2067 int prio;
2068
e05606d3 2069 if (task_has_rt_policy(p))
b29739f9
IM
2070 prio = MAX_RT_PRIO-1 - p->rt_priority;
2071 else
2072 prio = __normal_prio(p);
2073 return prio;
2074}
2075
2076/*
2077 * Calculate the current priority, i.e. the priority
2078 * taken into account by the scheduler. This value might
2079 * be boosted by RT tasks, or might be boosted by
2080 * interactivity modifiers. Will be RT if the task got
2081 * RT-boosted. If not then it returns p->normal_prio.
2082 */
36c8b586 2083static int effective_prio(struct task_struct *p)
b29739f9
IM
2084{
2085 p->normal_prio = normal_prio(p);
2086 /*
2087 * If we are RT tasks or we were boosted to RT priority,
2088 * keep the priority unchanged. Otherwise, update priority
2089 * to the normal priority:
2090 */
2091 if (!rt_prio(p->prio))
2092 return p->normal_prio;
2093 return p->prio;
2094}
2095
1da177e4
LT
2096/**
2097 * task_curr - is this task currently executing on a CPU?
2098 * @p: the task in question.
2099 */
36c8b586 2100inline int task_curr(const struct task_struct *p)
1da177e4
LT
2101{
2102 return cpu_curr(task_cpu(p)) == p;
2103}
2104
cb469845
SR
2105static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2106 const struct sched_class *prev_class,
da7a735e 2107 int oldprio)
cb469845
SR
2108{
2109 if (prev_class != p->sched_class) {
2110 if (prev_class->switched_from)
da7a735e
PZ
2111 prev_class->switched_from(rq, p);
2112 p->sched_class->switched_to(rq, p);
2113 } else if (oldprio != p->prio)
2114 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2115}
2116
1e5a7405
PZ
2117static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2118{
2119 const struct sched_class *class;
2120
2121 if (p->sched_class == rq->curr->sched_class) {
2122 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2123 } else {
2124 for_each_class(class) {
2125 if (class == rq->curr->sched_class)
2126 break;
2127 if (class == p->sched_class) {
2128 resched_task(rq->curr);
2129 break;
2130 }
2131 }
2132 }
2133
2134 /*
2135 * A queue event has occurred, and we're going to schedule. In
2136 * this case, we can save a useless back to back clock update.
2137 */
fd2f4419 2138 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2139 rq->skip_clock_update = 1;
2140}
2141
1da177e4 2142#ifdef CONFIG_SMP
cc367732
IM
2143/*
2144 * Is this task likely cache-hot:
2145 */
e7693a36 2146static int
cc367732
IM
2147task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2148{
2149 s64 delta;
2150
e6c8fba7
PZ
2151 if (p->sched_class != &fair_sched_class)
2152 return 0;
2153
ef8002f6
NR
2154 if (unlikely(p->policy == SCHED_IDLE))
2155 return 0;
2156
f540a608
IM
2157 /*
2158 * Buddy candidates are cache hot:
2159 */
f685ceac 2160 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2161 (&p->se == cfs_rq_of(&p->se)->next ||
2162 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2163 return 1;
2164
6bc1665b
IM
2165 if (sysctl_sched_migration_cost == -1)
2166 return 1;
2167 if (sysctl_sched_migration_cost == 0)
2168 return 0;
2169
cc367732
IM
2170 delta = now - p->se.exec_start;
2171
2172 return delta < (s64)sysctl_sched_migration_cost;
2173}
2174
dd41f596 2175void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2176{
e2912009
PZ
2177#ifdef CONFIG_SCHED_DEBUG
2178 /*
2179 * We should never call set_task_cpu() on a blocked task,
2180 * ttwu() will sort out the placement.
2181 */
077614ee
PZ
2182 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2183 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2184
2185#ifdef CONFIG_LOCKDEP
2186 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2187 lockdep_is_held(&task_rq(p)->lock)));
2188#endif
e2912009
PZ
2189#endif
2190
de1d7286 2191 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2192
0c69774e
PZ
2193 if (task_cpu(p) != new_cpu) {
2194 p->se.nr_migrations++;
2195 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2196 }
dd41f596
IM
2197
2198 __set_task_cpu(p, new_cpu);
c65cc870
IM
2199}
2200
969c7921 2201struct migration_arg {
36c8b586 2202 struct task_struct *task;
1da177e4 2203 int dest_cpu;
70b97a7f 2204};
1da177e4 2205
969c7921
TH
2206static int migration_cpu_stop(void *data);
2207
1da177e4
LT
2208/*
2209 * wait_task_inactive - wait for a thread to unschedule.
2210 *
85ba2d86
RM
2211 * If @match_state is nonzero, it's the @p->state value just checked and
2212 * not expected to change. If it changes, i.e. @p might have woken up,
2213 * then return zero. When we succeed in waiting for @p to be off its CPU,
2214 * we return a positive number (its total switch count). If a second call
2215 * a short while later returns the same number, the caller can be sure that
2216 * @p has remained unscheduled the whole time.
2217 *
1da177e4
LT
2218 * The caller must ensure that the task *will* unschedule sometime soon,
2219 * else this function might spin for a *long* time. This function can't
2220 * be called with interrupts off, or it may introduce deadlock with
2221 * smp_call_function() if an IPI is sent by the same process we are
2222 * waiting to become inactive.
2223 */
85ba2d86 2224unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2225{
2226 unsigned long flags;
dd41f596 2227 int running, on_rq;
85ba2d86 2228 unsigned long ncsw;
70b97a7f 2229 struct rq *rq;
1da177e4 2230
3a5c359a
AK
2231 for (;;) {
2232 /*
2233 * We do the initial early heuristics without holding
2234 * any task-queue locks at all. We'll only try to get
2235 * the runqueue lock when things look like they will
2236 * work out!
2237 */
2238 rq = task_rq(p);
fa490cfd 2239
3a5c359a
AK
2240 /*
2241 * If the task is actively running on another CPU
2242 * still, just relax and busy-wait without holding
2243 * any locks.
2244 *
2245 * NOTE! Since we don't hold any locks, it's not
2246 * even sure that "rq" stays as the right runqueue!
2247 * But we don't care, since "task_running()" will
2248 * return false if the runqueue has changed and p
2249 * is actually now running somewhere else!
2250 */
85ba2d86
RM
2251 while (task_running(rq, p)) {
2252 if (match_state && unlikely(p->state != match_state))
2253 return 0;
3a5c359a 2254 cpu_relax();
85ba2d86 2255 }
fa490cfd 2256
3a5c359a
AK
2257 /*
2258 * Ok, time to look more closely! We need the rq
2259 * lock now, to be *sure*. If we're wrong, we'll
2260 * just go back and repeat.
2261 */
2262 rq = task_rq_lock(p, &flags);
27a9da65 2263 trace_sched_wait_task(p);
3a5c359a 2264 running = task_running(rq, p);
fd2f4419 2265 on_rq = p->on_rq;
85ba2d86 2266 ncsw = 0;
f31e11d8 2267 if (!match_state || p->state == match_state)
93dcf55f 2268 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2269 task_rq_unlock(rq, p, &flags);
fa490cfd 2270
85ba2d86
RM
2271 /*
2272 * If it changed from the expected state, bail out now.
2273 */
2274 if (unlikely(!ncsw))
2275 break;
2276
3a5c359a
AK
2277 /*
2278 * Was it really running after all now that we
2279 * checked with the proper locks actually held?
2280 *
2281 * Oops. Go back and try again..
2282 */
2283 if (unlikely(running)) {
2284 cpu_relax();
2285 continue;
2286 }
fa490cfd 2287
3a5c359a
AK
2288 /*
2289 * It's not enough that it's not actively running,
2290 * it must be off the runqueue _entirely_, and not
2291 * preempted!
2292 *
80dd99b3 2293 * So if it was still runnable (but just not actively
3a5c359a
AK
2294 * running right now), it's preempted, and we should
2295 * yield - it could be a while.
2296 */
2297 if (unlikely(on_rq)) {
8eb90c30
TG
2298 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2299
2300 set_current_state(TASK_UNINTERRUPTIBLE);
2301 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2302 continue;
2303 }
fa490cfd 2304
3a5c359a
AK
2305 /*
2306 * Ahh, all good. It wasn't running, and it wasn't
2307 * runnable, which means that it will never become
2308 * running in the future either. We're all done!
2309 */
2310 break;
2311 }
85ba2d86
RM
2312
2313 return ncsw;
1da177e4
LT
2314}
2315
2316/***
2317 * kick_process - kick a running thread to enter/exit the kernel
2318 * @p: the to-be-kicked thread
2319 *
2320 * Cause a process which is running on another CPU to enter
2321 * kernel-mode, without any delay. (to get signals handled.)
2322 *
25985edc 2323 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2324 * because all it wants to ensure is that the remote task enters
2325 * the kernel. If the IPI races and the task has been migrated
2326 * to another CPU then no harm is done and the purpose has been
2327 * achieved as well.
2328 */
36c8b586 2329void kick_process(struct task_struct *p)
1da177e4
LT
2330{
2331 int cpu;
2332
2333 preempt_disable();
2334 cpu = task_cpu(p);
2335 if ((cpu != smp_processor_id()) && task_curr(p))
2336 smp_send_reschedule(cpu);
2337 preempt_enable();
2338}
b43e3521 2339EXPORT_SYMBOL_GPL(kick_process);
476d139c 2340#endif /* CONFIG_SMP */
1da177e4 2341
970b13ba 2342#ifdef CONFIG_SMP
30da688e 2343/*
013fdb80 2344 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2345 */
5da9a0fb
PZ
2346static int select_fallback_rq(int cpu, struct task_struct *p)
2347{
2348 int dest_cpu;
2349 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2350
2351 /* Look for allowed, online CPU in same node. */
2352 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2353 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2354 return dest_cpu;
2355
2356 /* Any allowed, online CPU? */
2357 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2358 if (dest_cpu < nr_cpu_ids)
2359 return dest_cpu;
2360
2361 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2362 dest_cpu = cpuset_cpus_allowed_fallback(p);
2363 /*
2364 * Don't tell them about moving exiting tasks or
2365 * kernel threads (both mm NULL), since they never
2366 * leave kernel.
2367 */
2368 if (p->mm && printk_ratelimit()) {
2369 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2370 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2371 }
2372
2373 return dest_cpu;
2374}
2375
e2912009 2376/*
013fdb80 2377 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2378 */
970b13ba 2379static inline
7608dec2 2380int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2381{
7608dec2 2382 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2383
2384 /*
2385 * In order not to call set_task_cpu() on a blocking task we need
2386 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2387 * cpu.
2388 *
2389 * Since this is common to all placement strategies, this lives here.
2390 *
2391 * [ this allows ->select_task() to simply return task_cpu(p) and
2392 * not worry about this generic constraint ]
2393 */
2394 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2395 !cpu_online(cpu)))
5da9a0fb 2396 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2397
2398 return cpu;
970b13ba 2399}
09a40af5
MG
2400
2401static void update_avg(u64 *avg, u64 sample)
2402{
2403 s64 diff = sample - *avg;
2404 *avg += diff >> 3;
2405}
970b13ba
PZ
2406#endif
2407
d7c01d27 2408static void
b84cb5df 2409ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2410{
d7c01d27 2411#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2412 struct rq *rq = this_rq();
2413
d7c01d27
PZ
2414#ifdef CONFIG_SMP
2415 int this_cpu = smp_processor_id();
2416
2417 if (cpu == this_cpu) {
2418 schedstat_inc(rq, ttwu_local);
2419 schedstat_inc(p, se.statistics.nr_wakeups_local);
2420 } else {
2421 struct sched_domain *sd;
2422
2423 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2424 rcu_read_lock();
d7c01d27
PZ
2425 for_each_domain(this_cpu, sd) {
2426 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2427 schedstat_inc(sd, ttwu_wake_remote);
2428 break;
2429 }
2430 }
057f3fad 2431 rcu_read_unlock();
d7c01d27
PZ
2432 }
2433#endif /* CONFIG_SMP */
2434
2435 schedstat_inc(rq, ttwu_count);
9ed3811a 2436 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2437
2438 if (wake_flags & WF_SYNC)
9ed3811a 2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2440
2441 if (cpu != task_cpu(p))
9ed3811a 2442 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2443
d7c01d27
PZ
2444#endif /* CONFIG_SCHEDSTATS */
2445}
2446
2447static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2448{
9ed3811a 2449 activate_task(rq, p, en_flags);
fd2f4419 2450 p->on_rq = 1;
c2f7115e
PZ
2451
2452 /* if a worker is waking up, notify workqueue */
2453 if (p->flags & PF_WQ_WORKER)
2454 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2455}
2456
23f41eeb
PZ
2457/*
2458 * Mark the task runnable and perform wakeup-preemption.
2459 */
89363381 2460static void
23f41eeb 2461ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2462{
89363381 2463 trace_sched_wakeup(p, true);
9ed3811a
TH
2464 check_preempt_curr(rq, p, wake_flags);
2465
2466 p->state = TASK_RUNNING;
2467#ifdef CONFIG_SMP
2468 if (p->sched_class->task_woken)
2469 p->sched_class->task_woken(rq, p);
2470
2471 if (unlikely(rq->idle_stamp)) {
2472 u64 delta = rq->clock - rq->idle_stamp;
2473 u64 max = 2*sysctl_sched_migration_cost;
2474
2475 if (delta > max)
2476 rq->avg_idle = max;
2477 else
2478 update_avg(&rq->avg_idle, delta);
2479 rq->idle_stamp = 0;
2480 }
2481#endif
2482}
2483
c05fbafb
PZ
2484static void
2485ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2486{
2487#ifdef CONFIG_SMP
2488 if (p->sched_contributes_to_load)
2489 rq->nr_uninterruptible--;
2490#endif
2491
2492 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2493 ttwu_do_wakeup(rq, p, wake_flags);
2494}
2495
2496/*
2497 * Called in case the task @p isn't fully descheduled from its runqueue,
2498 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2499 * since all we need to do is flip p->state to TASK_RUNNING, since
2500 * the task is still ->on_rq.
2501 */
2502static int ttwu_remote(struct task_struct *p, int wake_flags)
2503{
2504 struct rq *rq;
2505 int ret = 0;
2506
2507 rq = __task_rq_lock(p);
2508 if (p->on_rq) {
2509 ttwu_do_wakeup(rq, p, wake_flags);
2510 ret = 1;
2511 }
2512 __task_rq_unlock(rq);
2513
2514 return ret;
2515}
2516
317f3941
PZ
2517#ifdef CONFIG_SMP
2518static void sched_ttwu_pending(void)
2519{
2520 struct rq *rq = this_rq();
2521 struct task_struct *list = xchg(&rq->wake_list, NULL);
2522
2523 if (!list)
2524 return;
2525
2526 raw_spin_lock(&rq->lock);
2527
2528 while (list) {
2529 struct task_struct *p = list;
2530 list = list->wake_entry;
2531 ttwu_do_activate(rq, p, 0);
2532 }
2533
2534 raw_spin_unlock(&rq->lock);
2535}
2536
2537void scheduler_ipi(void)
2538{
2539 sched_ttwu_pending();
2540}
2541
2542static void ttwu_queue_remote(struct task_struct *p, int cpu)
2543{
2544 struct rq *rq = cpu_rq(cpu);
2545 struct task_struct *next = rq->wake_list;
2546
2547 for (;;) {
2548 struct task_struct *old = next;
2549
2550 p->wake_entry = next;
2551 next = cmpxchg(&rq->wake_list, old, p);
2552 if (next == old)
2553 break;
2554 }
2555
2556 if (!next)
2557 smp_send_reschedule(cpu);
2558}
2559#endif
2560
c05fbafb
PZ
2561static void ttwu_queue(struct task_struct *p, int cpu)
2562{
2563 struct rq *rq = cpu_rq(cpu);
2564
317f3941
PZ
2565#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_TTWU_QUEUE)
2566 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2567 ttwu_queue_remote(p, cpu);
2568 return;
2569 }
2570#endif
2571
c05fbafb
PZ
2572 raw_spin_lock(&rq->lock);
2573 ttwu_do_activate(rq, p, 0);
2574 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2575}
2576
2577/**
1da177e4 2578 * try_to_wake_up - wake up a thread
9ed3811a 2579 * @p: the thread to be awakened
1da177e4 2580 * @state: the mask of task states that can be woken
9ed3811a 2581 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2582 *
2583 * Put it on the run-queue if it's not already there. The "current"
2584 * thread is always on the run-queue (except when the actual
2585 * re-schedule is in progress), and as such you're allowed to do
2586 * the simpler "current->state = TASK_RUNNING" to mark yourself
2587 * runnable without the overhead of this.
2588 *
9ed3811a
TH
2589 * Returns %true if @p was woken up, %false if it was already running
2590 * or @state didn't match @p's state.
1da177e4 2591 */
e4a52bcb
PZ
2592static int
2593try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2594{
1da177e4 2595 unsigned long flags;
c05fbafb 2596 int cpu, success = 0;
2398f2c6 2597
04e2f174 2598 smp_wmb();
013fdb80 2599 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2600 if (!(p->state & state))
1da177e4
LT
2601 goto out;
2602
c05fbafb 2603 success = 1; /* we're going to change ->state */
1da177e4 2604 cpu = task_cpu(p);
1da177e4 2605
c05fbafb
PZ
2606 if (p->on_rq && ttwu_remote(p, wake_flags))
2607 goto stat;
1da177e4 2608
1da177e4 2609#ifdef CONFIG_SMP
e9c84311 2610 /*
c05fbafb
PZ
2611 * If the owning (remote) cpu is still in the middle of schedule() with
2612 * this task as prev, wait until its done referencing the task.
e9c84311 2613 */
e4a52bcb
PZ
2614 while (p->on_cpu) {
2615#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2616 /*
2617 * If called from interrupt context we could have landed in the
2618 * middle of schedule(), in this case we should take care not
2619 * to spin on ->on_cpu if p is current, since that would
2620 * deadlock.
2621 */
c05fbafb
PZ
2622 if (p == current) {
2623 ttwu_queue(p, cpu);
2624 goto stat;
2625 }
e4a52bcb
PZ
2626#endif
2627 cpu_relax();
371fd7e7 2628 }
0970d299 2629 /*
e4a52bcb 2630 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2631 */
e4a52bcb 2632 smp_rmb();
1da177e4 2633
a8e4f2ea 2634 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2635 p->state = TASK_WAKING;
e7693a36 2636
e4a52bcb 2637 if (p->sched_class->task_waking)
74f8e4b2 2638 p->sched_class->task_waking(p);
efbbd05a 2639
7608dec2 2640 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
c05fbafb 2641 if (task_cpu(p) != cpu)
e4a52bcb 2642 set_task_cpu(p, cpu);
1da177e4 2643#endif /* CONFIG_SMP */
1da177e4 2644
c05fbafb
PZ
2645 ttwu_queue(p, cpu);
2646stat:
b84cb5df 2647 ttwu_stat(p, cpu, wake_flags);
1da177e4 2648out:
013fdb80 2649 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2650
2651 return success;
2652}
2653
21aa9af0
TH
2654/**
2655 * try_to_wake_up_local - try to wake up a local task with rq lock held
2656 * @p: the thread to be awakened
2657 *
2acca55e 2658 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2659 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2660 * the current task.
21aa9af0
TH
2661 */
2662static void try_to_wake_up_local(struct task_struct *p)
2663{
2664 struct rq *rq = task_rq(p);
21aa9af0
TH
2665
2666 BUG_ON(rq != this_rq());
2667 BUG_ON(p == current);
2668 lockdep_assert_held(&rq->lock);
2669
2acca55e
PZ
2670 if (!raw_spin_trylock(&p->pi_lock)) {
2671 raw_spin_unlock(&rq->lock);
2672 raw_spin_lock(&p->pi_lock);
2673 raw_spin_lock(&rq->lock);
2674 }
2675
21aa9af0 2676 if (!(p->state & TASK_NORMAL))
2acca55e 2677 goto out;
21aa9af0 2678
fd2f4419 2679 if (!p->on_rq)
d7c01d27
PZ
2680 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2681
23f41eeb 2682 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2683 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2684out:
2685 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2686}
2687
50fa610a
DH
2688/**
2689 * wake_up_process - Wake up a specific process
2690 * @p: The process to be woken up.
2691 *
2692 * Attempt to wake up the nominated process and move it to the set of runnable
2693 * processes. Returns 1 if the process was woken up, 0 if it was already
2694 * running.
2695 *
2696 * It may be assumed that this function implies a write memory barrier before
2697 * changing the task state if and only if any tasks are woken up.
2698 */
7ad5b3a5 2699int wake_up_process(struct task_struct *p)
1da177e4 2700{
d9514f6c 2701 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2702}
1da177e4
LT
2703EXPORT_SYMBOL(wake_up_process);
2704
7ad5b3a5 2705int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2706{
2707 return try_to_wake_up(p, state, 0);
2708}
2709
1da177e4
LT
2710/*
2711 * Perform scheduler related setup for a newly forked process p.
2712 * p is forked by current.
dd41f596
IM
2713 *
2714 * __sched_fork() is basic setup used by init_idle() too:
2715 */
2716static void __sched_fork(struct task_struct *p)
2717{
fd2f4419
PZ
2718 p->on_rq = 0;
2719
2720 p->se.on_rq = 0;
dd41f596
IM
2721 p->se.exec_start = 0;
2722 p->se.sum_exec_runtime = 0;
f6cf891c 2723 p->se.prev_sum_exec_runtime = 0;
6c594c21 2724 p->se.nr_migrations = 0;
da7a735e 2725 p->se.vruntime = 0;
fd2f4419 2726 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2727
2728#ifdef CONFIG_SCHEDSTATS
41acab88 2729 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2730#endif
476d139c 2731
fa717060 2732 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2733
e107be36
AK
2734#ifdef CONFIG_PREEMPT_NOTIFIERS
2735 INIT_HLIST_HEAD(&p->preempt_notifiers);
2736#endif
dd41f596
IM
2737}
2738
2739/*
2740 * fork()/clone()-time setup:
2741 */
2742void sched_fork(struct task_struct *p, int clone_flags)
2743{
0122ec5b 2744 unsigned long flags;
dd41f596
IM
2745 int cpu = get_cpu();
2746
2747 __sched_fork(p);
06b83b5f 2748 /*
0017d735 2749 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2750 * nobody will actually run it, and a signal or other external
2751 * event cannot wake it up and insert it on the runqueue either.
2752 */
0017d735 2753 p->state = TASK_RUNNING;
dd41f596 2754
b9dc29e7
MG
2755 /*
2756 * Revert to default priority/policy on fork if requested.
2757 */
2758 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2759 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2760 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2761 p->normal_prio = p->static_prio;
2762 }
b9dc29e7 2763
6c697bdf
MG
2764 if (PRIO_TO_NICE(p->static_prio) < 0) {
2765 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2766 p->normal_prio = p->static_prio;
6c697bdf
MG
2767 set_load_weight(p);
2768 }
2769
b9dc29e7
MG
2770 /*
2771 * We don't need the reset flag anymore after the fork. It has
2772 * fulfilled its duty:
2773 */
2774 p->sched_reset_on_fork = 0;
2775 }
ca94c442 2776
f83f9ac2
PW
2777 /*
2778 * Make sure we do not leak PI boosting priority to the child.
2779 */
2780 p->prio = current->normal_prio;
2781
2ddbf952
HS
2782 if (!rt_prio(p->prio))
2783 p->sched_class = &fair_sched_class;
b29739f9 2784
cd29fe6f
PZ
2785 if (p->sched_class->task_fork)
2786 p->sched_class->task_fork(p);
2787
86951599
PZ
2788 /*
2789 * The child is not yet in the pid-hash so no cgroup attach races,
2790 * and the cgroup is pinned to this child due to cgroup_fork()
2791 * is ran before sched_fork().
2792 *
2793 * Silence PROVE_RCU.
2794 */
0122ec5b 2795 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2796 set_task_cpu(p, cpu);
0122ec5b 2797 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2798
52f17b6c 2799#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2800 if (likely(sched_info_on()))
52f17b6c 2801 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2802#endif
3ca7a440
PZ
2803#if defined(CONFIG_SMP)
2804 p->on_cpu = 0;
4866cde0 2805#endif
1da177e4 2806#ifdef CONFIG_PREEMPT
4866cde0 2807 /* Want to start with kernel preemption disabled. */
a1261f54 2808 task_thread_info(p)->preempt_count = 1;
1da177e4 2809#endif
806c09a7 2810#ifdef CONFIG_SMP
917b627d 2811 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2812#endif
917b627d 2813
476d139c 2814 put_cpu();
1da177e4
LT
2815}
2816
2817/*
2818 * wake_up_new_task - wake up a newly created task for the first time.
2819 *
2820 * This function will do some initial scheduler statistics housekeeping
2821 * that must be done for every newly created context, then puts the task
2822 * on the runqueue and wakes it.
2823 */
7ad5b3a5 2824void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2825{
2826 unsigned long flags;
dd41f596 2827 struct rq *rq;
fabf318e 2828
ab2515c4 2829 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2830#ifdef CONFIG_SMP
2831 /*
2832 * Fork balancing, do it here and not earlier because:
2833 * - cpus_allowed can change in the fork path
2834 * - any previously selected cpu might disappear through hotplug
fabf318e 2835 */
ab2515c4 2836 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2837#endif
2838
ab2515c4 2839 rq = __task_rq_lock(p);
cd29fe6f 2840 activate_task(rq, p, 0);
fd2f4419 2841 p->on_rq = 1;
89363381 2842 trace_sched_wakeup_new(p, true);
a7558e01 2843 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2844#ifdef CONFIG_SMP
efbbd05a
PZ
2845 if (p->sched_class->task_woken)
2846 p->sched_class->task_woken(rq, p);
9a897c5a 2847#endif
0122ec5b 2848 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2849}
2850
e107be36
AK
2851#ifdef CONFIG_PREEMPT_NOTIFIERS
2852
2853/**
80dd99b3 2854 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2855 * @notifier: notifier struct to register
e107be36
AK
2856 */
2857void preempt_notifier_register(struct preempt_notifier *notifier)
2858{
2859 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2860}
2861EXPORT_SYMBOL_GPL(preempt_notifier_register);
2862
2863/**
2864 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2865 * @notifier: notifier struct to unregister
e107be36
AK
2866 *
2867 * This is safe to call from within a preemption notifier.
2868 */
2869void preempt_notifier_unregister(struct preempt_notifier *notifier)
2870{
2871 hlist_del(&notifier->link);
2872}
2873EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2874
2875static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2876{
2877 struct preempt_notifier *notifier;
2878 struct hlist_node *node;
2879
2880 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2881 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2882}
2883
2884static void
2885fire_sched_out_preempt_notifiers(struct task_struct *curr,
2886 struct task_struct *next)
2887{
2888 struct preempt_notifier *notifier;
2889 struct hlist_node *node;
2890
2891 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2892 notifier->ops->sched_out(notifier, next);
2893}
2894
6d6bc0ad 2895#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2896
2897static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2898{
2899}
2900
2901static void
2902fire_sched_out_preempt_notifiers(struct task_struct *curr,
2903 struct task_struct *next)
2904{
2905}
2906
6d6bc0ad 2907#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2908
4866cde0
NP
2909/**
2910 * prepare_task_switch - prepare to switch tasks
2911 * @rq: the runqueue preparing to switch
421cee29 2912 * @prev: the current task that is being switched out
4866cde0
NP
2913 * @next: the task we are going to switch to.
2914 *
2915 * This is called with the rq lock held and interrupts off. It must
2916 * be paired with a subsequent finish_task_switch after the context
2917 * switch.
2918 *
2919 * prepare_task_switch sets up locking and calls architecture specific
2920 * hooks.
2921 */
e107be36
AK
2922static inline void
2923prepare_task_switch(struct rq *rq, struct task_struct *prev,
2924 struct task_struct *next)
4866cde0 2925{
fe4b04fa
PZ
2926 sched_info_switch(prev, next);
2927 perf_event_task_sched_out(prev, next);
e107be36 2928 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2929 prepare_lock_switch(rq, next);
2930 prepare_arch_switch(next);
fe4b04fa 2931 trace_sched_switch(prev, next);
4866cde0
NP
2932}
2933
1da177e4
LT
2934/**
2935 * finish_task_switch - clean up after a task-switch
344babaa 2936 * @rq: runqueue associated with task-switch
1da177e4
LT
2937 * @prev: the thread we just switched away from.
2938 *
4866cde0
NP
2939 * finish_task_switch must be called after the context switch, paired
2940 * with a prepare_task_switch call before the context switch.
2941 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2942 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2943 *
2944 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2945 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2946 * with the lock held can cause deadlocks; see schedule() for
2947 * details.)
2948 */
a9957449 2949static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2950 __releases(rq->lock)
2951{
1da177e4 2952 struct mm_struct *mm = rq->prev_mm;
55a101f8 2953 long prev_state;
1da177e4
LT
2954
2955 rq->prev_mm = NULL;
2956
2957 /*
2958 * A task struct has one reference for the use as "current".
c394cc9f 2959 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2960 * schedule one last time. The schedule call will never return, and
2961 * the scheduled task must drop that reference.
c394cc9f 2962 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2963 * still held, otherwise prev could be scheduled on another cpu, die
2964 * there before we look at prev->state, and then the reference would
2965 * be dropped twice.
2966 * Manfred Spraul <manfred@colorfullife.com>
2967 */
55a101f8 2968 prev_state = prev->state;
4866cde0 2969 finish_arch_switch(prev);
8381f65d
JI
2970#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2971 local_irq_disable();
2972#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2973 perf_event_task_sched_in(current);
8381f65d
JI
2974#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2975 local_irq_enable();
2976#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2977 finish_lock_switch(rq, prev);
e8fa1362 2978
e107be36 2979 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2980 if (mm)
2981 mmdrop(mm);
c394cc9f 2982 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2983 /*
2984 * Remove function-return probe instances associated with this
2985 * task and put them back on the free list.
9761eea8 2986 */
c6fd91f0 2987 kprobe_flush_task(prev);
1da177e4 2988 put_task_struct(prev);
c6fd91f0 2989 }
1da177e4
LT
2990}
2991
3f029d3c
GH
2992#ifdef CONFIG_SMP
2993
2994/* assumes rq->lock is held */
2995static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2996{
2997 if (prev->sched_class->pre_schedule)
2998 prev->sched_class->pre_schedule(rq, prev);
2999}
3000
3001/* rq->lock is NOT held, but preemption is disabled */
3002static inline void post_schedule(struct rq *rq)
3003{
3004 if (rq->post_schedule) {
3005 unsigned long flags;
3006
05fa785c 3007 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3008 if (rq->curr->sched_class->post_schedule)
3009 rq->curr->sched_class->post_schedule(rq);
05fa785c 3010 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3011
3012 rq->post_schedule = 0;
3013 }
3014}
3015
3016#else
da19ab51 3017
3f029d3c
GH
3018static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3019{
3020}
3021
3022static inline void post_schedule(struct rq *rq)
3023{
1da177e4
LT
3024}
3025
3f029d3c
GH
3026#endif
3027
1da177e4
LT
3028/**
3029 * schedule_tail - first thing a freshly forked thread must call.
3030 * @prev: the thread we just switched away from.
3031 */
36c8b586 3032asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3033 __releases(rq->lock)
3034{
70b97a7f
IM
3035 struct rq *rq = this_rq();
3036
4866cde0 3037 finish_task_switch(rq, prev);
da19ab51 3038
3f029d3c
GH
3039 /*
3040 * FIXME: do we need to worry about rq being invalidated by the
3041 * task_switch?
3042 */
3043 post_schedule(rq);
70b97a7f 3044
4866cde0
NP
3045#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3046 /* In this case, finish_task_switch does not reenable preemption */
3047 preempt_enable();
3048#endif
1da177e4 3049 if (current->set_child_tid)
b488893a 3050 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3051}
3052
3053/*
3054 * context_switch - switch to the new MM and the new
3055 * thread's register state.
3056 */
dd41f596 3057static inline void
70b97a7f 3058context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3059 struct task_struct *next)
1da177e4 3060{
dd41f596 3061 struct mm_struct *mm, *oldmm;
1da177e4 3062
e107be36 3063 prepare_task_switch(rq, prev, next);
fe4b04fa 3064
dd41f596
IM
3065 mm = next->mm;
3066 oldmm = prev->active_mm;
9226d125
ZA
3067 /*
3068 * For paravirt, this is coupled with an exit in switch_to to
3069 * combine the page table reload and the switch backend into
3070 * one hypercall.
3071 */
224101ed 3072 arch_start_context_switch(prev);
9226d125 3073
31915ab4 3074 if (!mm) {
1da177e4
LT
3075 next->active_mm = oldmm;
3076 atomic_inc(&oldmm->mm_count);
3077 enter_lazy_tlb(oldmm, next);
3078 } else
3079 switch_mm(oldmm, mm, next);
3080
31915ab4 3081 if (!prev->mm) {
1da177e4 3082 prev->active_mm = NULL;
1da177e4
LT
3083 rq->prev_mm = oldmm;
3084 }
3a5f5e48
IM
3085 /*
3086 * Since the runqueue lock will be released by the next
3087 * task (which is an invalid locking op but in the case
3088 * of the scheduler it's an obvious special-case), so we
3089 * do an early lockdep release here:
3090 */
3091#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3092 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3093#endif
1da177e4
LT
3094
3095 /* Here we just switch the register state and the stack. */
3096 switch_to(prev, next, prev);
3097
dd41f596
IM
3098 barrier();
3099 /*
3100 * this_rq must be evaluated again because prev may have moved
3101 * CPUs since it called schedule(), thus the 'rq' on its stack
3102 * frame will be invalid.
3103 */
3104 finish_task_switch(this_rq(), prev);
1da177e4
LT
3105}
3106
3107/*
3108 * nr_running, nr_uninterruptible and nr_context_switches:
3109 *
3110 * externally visible scheduler statistics: current number of runnable
3111 * threads, current number of uninterruptible-sleeping threads, total
3112 * number of context switches performed since bootup.
3113 */
3114unsigned long nr_running(void)
3115{
3116 unsigned long i, sum = 0;
3117
3118 for_each_online_cpu(i)
3119 sum += cpu_rq(i)->nr_running;
3120
3121 return sum;
f711f609 3122}
1da177e4
LT
3123
3124unsigned long nr_uninterruptible(void)
f711f609 3125{
1da177e4 3126 unsigned long i, sum = 0;
f711f609 3127
0a945022 3128 for_each_possible_cpu(i)
1da177e4 3129 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3130
3131 /*
1da177e4
LT
3132 * Since we read the counters lockless, it might be slightly
3133 * inaccurate. Do not allow it to go below zero though:
f711f609 3134 */
1da177e4
LT
3135 if (unlikely((long)sum < 0))
3136 sum = 0;
f711f609 3137
1da177e4 3138 return sum;
f711f609 3139}
f711f609 3140
1da177e4 3141unsigned long long nr_context_switches(void)
46cb4b7c 3142{
cc94abfc
SR
3143 int i;
3144 unsigned long long sum = 0;
46cb4b7c 3145
0a945022 3146 for_each_possible_cpu(i)
1da177e4 3147 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3148
1da177e4
LT
3149 return sum;
3150}
483b4ee6 3151
1da177e4
LT
3152unsigned long nr_iowait(void)
3153{
3154 unsigned long i, sum = 0;
483b4ee6 3155
0a945022 3156 for_each_possible_cpu(i)
1da177e4 3157 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3158
1da177e4
LT
3159 return sum;
3160}
483b4ee6 3161
8c215bd3 3162unsigned long nr_iowait_cpu(int cpu)
69d25870 3163{
8c215bd3 3164 struct rq *this = cpu_rq(cpu);
69d25870
AV
3165 return atomic_read(&this->nr_iowait);
3166}
46cb4b7c 3167
69d25870
AV
3168unsigned long this_cpu_load(void)
3169{
3170 struct rq *this = this_rq();
3171 return this->cpu_load[0];
3172}
e790fb0b 3173
46cb4b7c 3174
dce48a84
TG
3175/* Variables and functions for calc_load */
3176static atomic_long_t calc_load_tasks;
3177static unsigned long calc_load_update;
3178unsigned long avenrun[3];
3179EXPORT_SYMBOL(avenrun);
46cb4b7c 3180
74f5187a
PZ
3181static long calc_load_fold_active(struct rq *this_rq)
3182{
3183 long nr_active, delta = 0;
3184
3185 nr_active = this_rq->nr_running;
3186 nr_active += (long) this_rq->nr_uninterruptible;
3187
3188 if (nr_active != this_rq->calc_load_active) {
3189 delta = nr_active - this_rq->calc_load_active;
3190 this_rq->calc_load_active = nr_active;
3191 }
3192
3193 return delta;
3194}
3195
0f004f5a
PZ
3196static unsigned long
3197calc_load(unsigned long load, unsigned long exp, unsigned long active)
3198{
3199 load *= exp;
3200 load += active * (FIXED_1 - exp);
3201 load += 1UL << (FSHIFT - 1);
3202 return load >> FSHIFT;
3203}
3204
74f5187a
PZ
3205#ifdef CONFIG_NO_HZ
3206/*
3207 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3208 *
3209 * When making the ILB scale, we should try to pull this in as well.
3210 */
3211static atomic_long_t calc_load_tasks_idle;
3212
3213static void calc_load_account_idle(struct rq *this_rq)
3214{
3215 long delta;
3216
3217 delta = calc_load_fold_active(this_rq);
3218 if (delta)
3219 atomic_long_add(delta, &calc_load_tasks_idle);
3220}
3221
3222static long calc_load_fold_idle(void)
3223{
3224 long delta = 0;
3225
3226 /*
3227 * Its got a race, we don't care...
3228 */
3229 if (atomic_long_read(&calc_load_tasks_idle))
3230 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3231
3232 return delta;
3233}
0f004f5a
PZ
3234
3235/**
3236 * fixed_power_int - compute: x^n, in O(log n) time
3237 *
3238 * @x: base of the power
3239 * @frac_bits: fractional bits of @x
3240 * @n: power to raise @x to.
3241 *
3242 * By exploiting the relation between the definition of the natural power
3243 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3244 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3245 * (where: n_i \elem {0, 1}, the binary vector representing n),
3246 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3247 * of course trivially computable in O(log_2 n), the length of our binary
3248 * vector.
3249 */
3250static unsigned long
3251fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3252{
3253 unsigned long result = 1UL << frac_bits;
3254
3255 if (n) for (;;) {
3256 if (n & 1) {
3257 result *= x;
3258 result += 1UL << (frac_bits - 1);
3259 result >>= frac_bits;
3260 }
3261 n >>= 1;
3262 if (!n)
3263 break;
3264 x *= x;
3265 x += 1UL << (frac_bits - 1);
3266 x >>= frac_bits;
3267 }
3268
3269 return result;
3270}
3271
3272/*
3273 * a1 = a0 * e + a * (1 - e)
3274 *
3275 * a2 = a1 * e + a * (1 - e)
3276 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3277 * = a0 * e^2 + a * (1 - e) * (1 + e)
3278 *
3279 * a3 = a2 * e + a * (1 - e)
3280 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3281 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3282 *
3283 * ...
3284 *
3285 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3286 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3287 * = a0 * e^n + a * (1 - e^n)
3288 *
3289 * [1] application of the geometric series:
3290 *
3291 * n 1 - x^(n+1)
3292 * S_n := \Sum x^i = -------------
3293 * i=0 1 - x
3294 */
3295static unsigned long
3296calc_load_n(unsigned long load, unsigned long exp,
3297 unsigned long active, unsigned int n)
3298{
3299
3300 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3301}
3302
3303/*
3304 * NO_HZ can leave us missing all per-cpu ticks calling
3305 * calc_load_account_active(), but since an idle CPU folds its delta into
3306 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3307 * in the pending idle delta if our idle period crossed a load cycle boundary.
3308 *
3309 * Once we've updated the global active value, we need to apply the exponential
3310 * weights adjusted to the number of cycles missed.
3311 */
3312static void calc_global_nohz(unsigned long ticks)
3313{
3314 long delta, active, n;
3315
3316 if (time_before(jiffies, calc_load_update))
3317 return;
3318
3319 /*
3320 * If we crossed a calc_load_update boundary, make sure to fold
3321 * any pending idle changes, the respective CPUs might have
3322 * missed the tick driven calc_load_account_active() update
3323 * due to NO_HZ.
3324 */
3325 delta = calc_load_fold_idle();
3326 if (delta)
3327 atomic_long_add(delta, &calc_load_tasks);
3328
3329 /*
3330 * If we were idle for multiple load cycles, apply them.
3331 */
3332 if (ticks >= LOAD_FREQ) {
3333 n = ticks / LOAD_FREQ;
3334
3335 active = atomic_long_read(&calc_load_tasks);
3336 active = active > 0 ? active * FIXED_1 : 0;
3337
3338 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3339 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3340 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3341
3342 calc_load_update += n * LOAD_FREQ;
3343 }
3344
3345 /*
3346 * Its possible the remainder of the above division also crosses
3347 * a LOAD_FREQ period, the regular check in calc_global_load()
3348 * which comes after this will take care of that.
3349 *
3350 * Consider us being 11 ticks before a cycle completion, and us
3351 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3352 * age us 4 cycles, and the test in calc_global_load() will
3353 * pick up the final one.
3354 */
3355}
74f5187a
PZ
3356#else
3357static void calc_load_account_idle(struct rq *this_rq)
3358{
3359}
3360
3361static inline long calc_load_fold_idle(void)
3362{
3363 return 0;
3364}
0f004f5a
PZ
3365
3366static void calc_global_nohz(unsigned long ticks)
3367{
3368}
74f5187a
PZ
3369#endif
3370
2d02494f
TG
3371/**
3372 * get_avenrun - get the load average array
3373 * @loads: pointer to dest load array
3374 * @offset: offset to add
3375 * @shift: shift count to shift the result left
3376 *
3377 * These values are estimates at best, so no need for locking.
3378 */
3379void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3380{
3381 loads[0] = (avenrun[0] + offset) << shift;
3382 loads[1] = (avenrun[1] + offset) << shift;
3383 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3384}
46cb4b7c 3385
46cb4b7c 3386/*
dce48a84
TG
3387 * calc_load - update the avenrun load estimates 10 ticks after the
3388 * CPUs have updated calc_load_tasks.
7835b98b 3389 */
0f004f5a 3390void calc_global_load(unsigned long ticks)
7835b98b 3391{
dce48a84 3392 long active;
1da177e4 3393
0f004f5a
PZ
3394 calc_global_nohz(ticks);
3395
3396 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3397 return;
1da177e4 3398
dce48a84
TG
3399 active = atomic_long_read(&calc_load_tasks);
3400 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3401
dce48a84
TG
3402 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3403 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3404 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3405
dce48a84
TG
3406 calc_load_update += LOAD_FREQ;
3407}
1da177e4 3408
dce48a84 3409/*
74f5187a
PZ
3410 * Called from update_cpu_load() to periodically update this CPU's
3411 * active count.
dce48a84
TG
3412 */
3413static void calc_load_account_active(struct rq *this_rq)
3414{
74f5187a 3415 long delta;
08c183f3 3416
74f5187a
PZ
3417 if (time_before(jiffies, this_rq->calc_load_update))
3418 return;
783609c6 3419
74f5187a
PZ
3420 delta = calc_load_fold_active(this_rq);
3421 delta += calc_load_fold_idle();
3422 if (delta)
dce48a84 3423 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3424
3425 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3426}
3427
fdf3e95d
VP
3428/*
3429 * The exact cpuload at various idx values, calculated at every tick would be
3430 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3431 *
3432 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3433 * on nth tick when cpu may be busy, then we have:
3434 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3435 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3436 *
3437 * decay_load_missed() below does efficient calculation of
3438 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3439 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3440 *
3441 * The calculation is approximated on a 128 point scale.
3442 * degrade_zero_ticks is the number of ticks after which load at any
3443 * particular idx is approximated to be zero.
3444 * degrade_factor is a precomputed table, a row for each load idx.
3445 * Each column corresponds to degradation factor for a power of two ticks,
3446 * based on 128 point scale.
3447 * Example:
3448 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3449 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3450 *
3451 * With this power of 2 load factors, we can degrade the load n times
3452 * by looking at 1 bits in n and doing as many mult/shift instead of
3453 * n mult/shifts needed by the exact degradation.
3454 */
3455#define DEGRADE_SHIFT 7
3456static const unsigned char
3457 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3458static const unsigned char
3459 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3460 {0, 0, 0, 0, 0, 0, 0, 0},
3461 {64, 32, 8, 0, 0, 0, 0, 0},
3462 {96, 72, 40, 12, 1, 0, 0},
3463 {112, 98, 75, 43, 15, 1, 0},
3464 {120, 112, 98, 76, 45, 16, 2} };
3465
3466/*
3467 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3468 * would be when CPU is idle and so we just decay the old load without
3469 * adding any new load.
3470 */
3471static unsigned long
3472decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3473{
3474 int j = 0;
3475
3476 if (!missed_updates)
3477 return load;
3478
3479 if (missed_updates >= degrade_zero_ticks[idx])
3480 return 0;
3481
3482 if (idx == 1)
3483 return load >> missed_updates;
3484
3485 while (missed_updates) {
3486 if (missed_updates % 2)
3487 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3488
3489 missed_updates >>= 1;
3490 j++;
3491 }
3492 return load;
3493}
3494
46cb4b7c 3495/*
dd41f596 3496 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3497 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3498 * every tick. We fix it up based on jiffies.
46cb4b7c 3499 */
dd41f596 3500static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3501{
495eca49 3502 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3503 unsigned long curr_jiffies = jiffies;
3504 unsigned long pending_updates;
dd41f596 3505 int i, scale;
46cb4b7c 3506
dd41f596 3507 this_rq->nr_load_updates++;
46cb4b7c 3508
fdf3e95d
VP
3509 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3510 if (curr_jiffies == this_rq->last_load_update_tick)
3511 return;
3512
3513 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3514 this_rq->last_load_update_tick = curr_jiffies;
3515
dd41f596 3516 /* Update our load: */
fdf3e95d
VP
3517 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3518 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3519 unsigned long old_load, new_load;
7d1e6a9b 3520
dd41f596 3521 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3522
dd41f596 3523 old_load = this_rq->cpu_load[i];
fdf3e95d 3524 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3525 new_load = this_load;
a25707f3
IM
3526 /*
3527 * Round up the averaging division if load is increasing. This
3528 * prevents us from getting stuck on 9 if the load is 10, for
3529 * example.
3530 */
3531 if (new_load > old_load)
fdf3e95d
VP
3532 new_load += scale - 1;
3533
3534 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3535 }
da2b71ed
SS
3536
3537 sched_avg_update(this_rq);
fdf3e95d
VP
3538}
3539
3540static void update_cpu_load_active(struct rq *this_rq)
3541{
3542 update_cpu_load(this_rq);
46cb4b7c 3543
74f5187a 3544 calc_load_account_active(this_rq);
46cb4b7c
SS
3545}
3546
dd41f596 3547#ifdef CONFIG_SMP
8a0be9ef 3548
46cb4b7c 3549/*
38022906
PZ
3550 * sched_exec - execve() is a valuable balancing opportunity, because at
3551 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3552 */
38022906 3553void sched_exec(void)
46cb4b7c 3554{
38022906 3555 struct task_struct *p = current;
1da177e4 3556 unsigned long flags;
0017d735 3557 int dest_cpu;
46cb4b7c 3558
8f42ced9 3559 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3560 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3561 if (dest_cpu == smp_processor_id())
3562 goto unlock;
38022906 3563
8f42ced9 3564 if (likely(cpu_active(dest_cpu))) {
969c7921 3565 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3566
8f42ced9
PZ
3567 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3568 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3569 return;
3570 }
0017d735 3571unlock:
8f42ced9 3572 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3573}
dd41f596 3574
1da177e4
LT
3575#endif
3576
1da177e4
LT
3577DEFINE_PER_CPU(struct kernel_stat, kstat);
3578
3579EXPORT_PER_CPU_SYMBOL(kstat);
3580
3581/*
c5f8d995 3582 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3583 * @p in case that task is currently running.
c5f8d995
HS
3584 *
3585 * Called with task_rq_lock() held on @rq.
1da177e4 3586 */
c5f8d995
HS
3587static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3588{
3589 u64 ns = 0;
3590
3591 if (task_current(rq, p)) {
3592 update_rq_clock(rq);
305e6835 3593 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3594 if ((s64)ns < 0)
3595 ns = 0;
3596 }
3597
3598 return ns;
3599}
3600
bb34d92f 3601unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3602{
1da177e4 3603 unsigned long flags;
41b86e9c 3604 struct rq *rq;
bb34d92f 3605 u64 ns = 0;
48f24c4d 3606
41b86e9c 3607 rq = task_rq_lock(p, &flags);
c5f8d995 3608 ns = do_task_delta_exec(p, rq);
0122ec5b 3609 task_rq_unlock(rq, p, &flags);
1508487e 3610
c5f8d995
HS
3611 return ns;
3612}
f06febc9 3613
c5f8d995
HS
3614/*
3615 * Return accounted runtime for the task.
3616 * In case the task is currently running, return the runtime plus current's
3617 * pending runtime that have not been accounted yet.
3618 */
3619unsigned long long task_sched_runtime(struct task_struct *p)
3620{
3621 unsigned long flags;
3622 struct rq *rq;
3623 u64 ns = 0;
3624
3625 rq = task_rq_lock(p, &flags);
3626 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3627 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3628
3629 return ns;
3630}
48f24c4d 3631
c5f8d995
HS
3632/*
3633 * Return sum_exec_runtime for the thread group.
3634 * In case the task is currently running, return the sum plus current's
3635 * pending runtime that have not been accounted yet.
3636 *
3637 * Note that the thread group might have other running tasks as well,
3638 * so the return value not includes other pending runtime that other
3639 * running tasks might have.
3640 */
3641unsigned long long thread_group_sched_runtime(struct task_struct *p)
3642{
3643 struct task_cputime totals;
3644 unsigned long flags;
3645 struct rq *rq;
3646 u64 ns;
3647
3648 rq = task_rq_lock(p, &flags);
3649 thread_group_cputime(p, &totals);
3650 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3651 task_rq_unlock(rq, p, &flags);
48f24c4d 3652
1da177e4
LT
3653 return ns;
3654}
3655
1da177e4
LT
3656/*
3657 * Account user cpu time to a process.
3658 * @p: the process that the cpu time gets accounted to
1da177e4 3659 * @cputime: the cpu time spent in user space since the last update
457533a7 3660 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3661 */
457533a7
MS
3662void account_user_time(struct task_struct *p, cputime_t cputime,
3663 cputime_t cputime_scaled)
1da177e4
LT
3664{
3665 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3666 cputime64_t tmp;
3667
457533a7 3668 /* Add user time to process. */
1da177e4 3669 p->utime = cputime_add(p->utime, cputime);
457533a7 3670 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3671 account_group_user_time(p, cputime);
1da177e4
LT
3672
3673 /* Add user time to cpustat. */
3674 tmp = cputime_to_cputime64(cputime);
3675 if (TASK_NICE(p) > 0)
3676 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3677 else
3678 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3679
3680 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3681 /* Account for user time used */
3682 acct_update_integrals(p);
1da177e4
LT
3683}
3684
94886b84
LV
3685/*
3686 * Account guest cpu time to a process.
3687 * @p: the process that the cpu time gets accounted to
3688 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3689 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3690 */
457533a7
MS
3691static void account_guest_time(struct task_struct *p, cputime_t cputime,
3692 cputime_t cputime_scaled)
94886b84
LV
3693{
3694 cputime64_t tmp;
3695 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3696
3697 tmp = cputime_to_cputime64(cputime);
3698
457533a7 3699 /* Add guest time to process. */
94886b84 3700 p->utime = cputime_add(p->utime, cputime);
457533a7 3701 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3702 account_group_user_time(p, cputime);
94886b84
LV
3703 p->gtime = cputime_add(p->gtime, cputime);
3704
457533a7 3705 /* Add guest time to cpustat. */
ce0e7b28
RO
3706 if (TASK_NICE(p) > 0) {
3707 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3708 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3709 } else {
3710 cpustat->user = cputime64_add(cpustat->user, tmp);
3711 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3712 }
94886b84
LV
3713}
3714
70a89a66
VP
3715/*
3716 * Account system cpu time to a process and desired cpustat field
3717 * @p: the process that the cpu time gets accounted to
3718 * @cputime: the cpu time spent in kernel space since the last update
3719 * @cputime_scaled: cputime scaled by cpu frequency
3720 * @target_cputime64: pointer to cpustat field that has to be updated
3721 */
3722static inline
3723void __account_system_time(struct task_struct *p, cputime_t cputime,
3724 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3725{
3726 cputime64_t tmp = cputime_to_cputime64(cputime);
3727
3728 /* Add system time to process. */
3729 p->stime = cputime_add(p->stime, cputime);
3730 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3731 account_group_system_time(p, cputime);
3732
3733 /* Add system time to cpustat. */
3734 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3735 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3736
3737 /* Account for system time used */
3738 acct_update_integrals(p);
3739}
3740
1da177e4
LT
3741/*
3742 * Account system cpu time to a process.
3743 * @p: the process that the cpu time gets accounted to
3744 * @hardirq_offset: the offset to subtract from hardirq_count()
3745 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3746 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3747 */
3748void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3749 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3750{
3751 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3752 cputime64_t *target_cputime64;
1da177e4 3753
983ed7a6 3754 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3755 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3756 return;
3757 }
94886b84 3758
1da177e4 3759 if (hardirq_count() - hardirq_offset)
70a89a66 3760 target_cputime64 = &cpustat->irq;
75e1056f 3761 else if (in_serving_softirq())
70a89a66 3762 target_cputime64 = &cpustat->softirq;
1da177e4 3763 else
70a89a66 3764 target_cputime64 = &cpustat->system;
ef12fefa 3765
70a89a66 3766 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3767}
3768
c66f08be 3769/*
1da177e4 3770 * Account for involuntary wait time.
544b4a1f 3771 * @cputime: the cpu time spent in involuntary wait
c66f08be 3772 */
79741dd3 3773void account_steal_time(cputime_t cputime)
c66f08be 3774{
79741dd3
MS
3775 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3776 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3777
3778 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3779}
3780
1da177e4 3781/*
79741dd3
MS
3782 * Account for idle time.
3783 * @cputime: the cpu time spent in idle wait
1da177e4 3784 */
79741dd3 3785void account_idle_time(cputime_t cputime)
1da177e4
LT
3786{
3787 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3788 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3789 struct rq *rq = this_rq();
1da177e4 3790
79741dd3
MS
3791 if (atomic_read(&rq->nr_iowait) > 0)
3792 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3793 else
3794 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3795}
3796
79741dd3
MS
3797#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3798
abb74cef
VP
3799#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3800/*
3801 * Account a tick to a process and cpustat
3802 * @p: the process that the cpu time gets accounted to
3803 * @user_tick: is the tick from userspace
3804 * @rq: the pointer to rq
3805 *
3806 * Tick demultiplexing follows the order
3807 * - pending hardirq update
3808 * - pending softirq update
3809 * - user_time
3810 * - idle_time
3811 * - system time
3812 * - check for guest_time
3813 * - else account as system_time
3814 *
3815 * Check for hardirq is done both for system and user time as there is
3816 * no timer going off while we are on hardirq and hence we may never get an
3817 * opportunity to update it solely in system time.
3818 * p->stime and friends are only updated on system time and not on irq
3819 * softirq as those do not count in task exec_runtime any more.
3820 */
3821static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3822 struct rq *rq)
3823{
3824 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3825 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3826 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3827
3828 if (irqtime_account_hi_update()) {
3829 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3830 } else if (irqtime_account_si_update()) {
3831 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3832 } else if (this_cpu_ksoftirqd() == p) {
3833 /*
3834 * ksoftirqd time do not get accounted in cpu_softirq_time.
3835 * So, we have to handle it separately here.
3836 * Also, p->stime needs to be updated for ksoftirqd.
3837 */
3838 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3839 &cpustat->softirq);
abb74cef
VP
3840 } else if (user_tick) {
3841 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3842 } else if (p == rq->idle) {
3843 account_idle_time(cputime_one_jiffy);
3844 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3845 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3846 } else {
3847 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3848 &cpustat->system);
3849 }
3850}
3851
3852static void irqtime_account_idle_ticks(int ticks)
3853{
3854 int i;
3855 struct rq *rq = this_rq();
3856
3857 for (i = 0; i < ticks; i++)
3858 irqtime_account_process_tick(current, 0, rq);
3859}
544b4a1f 3860#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3861static void irqtime_account_idle_ticks(int ticks) {}
3862static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3863 struct rq *rq) {}
544b4a1f 3864#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3865
3866/*
3867 * Account a single tick of cpu time.
3868 * @p: the process that the cpu time gets accounted to
3869 * @user_tick: indicates if the tick is a user or a system tick
3870 */
3871void account_process_tick(struct task_struct *p, int user_tick)
3872{
a42548a1 3873 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3874 struct rq *rq = this_rq();
3875
abb74cef
VP
3876 if (sched_clock_irqtime) {
3877 irqtime_account_process_tick(p, user_tick, rq);
3878 return;
3879 }
3880
79741dd3 3881 if (user_tick)
a42548a1 3882 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3883 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3884 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3885 one_jiffy_scaled);
3886 else
a42548a1 3887 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3888}
3889
3890/*
3891 * Account multiple ticks of steal time.
3892 * @p: the process from which the cpu time has been stolen
3893 * @ticks: number of stolen ticks
3894 */
3895void account_steal_ticks(unsigned long ticks)
3896{
3897 account_steal_time(jiffies_to_cputime(ticks));
3898}
3899
3900/*
3901 * Account multiple ticks of idle time.
3902 * @ticks: number of stolen ticks
3903 */
3904void account_idle_ticks(unsigned long ticks)
3905{
abb74cef
VP
3906
3907 if (sched_clock_irqtime) {
3908 irqtime_account_idle_ticks(ticks);
3909 return;
3910 }
3911
79741dd3 3912 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3913}
3914
79741dd3
MS
3915#endif
3916
49048622
BS
3917/*
3918 * Use precise platform statistics if available:
3919 */
3920#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3921void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3922{
d99ca3b9
HS
3923 *ut = p->utime;
3924 *st = p->stime;
49048622
BS
3925}
3926
0cf55e1e 3927void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3928{
0cf55e1e
HS
3929 struct task_cputime cputime;
3930
3931 thread_group_cputime(p, &cputime);
3932
3933 *ut = cputime.utime;
3934 *st = cputime.stime;
49048622
BS
3935}
3936#else
761b1d26
HS
3937
3938#ifndef nsecs_to_cputime
b7b20df9 3939# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3940#endif
3941
d180c5bc 3942void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3943{
d99ca3b9 3944 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3945
3946 /*
3947 * Use CFS's precise accounting:
3948 */
d180c5bc 3949 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3950
3951 if (total) {
e75e863d 3952 u64 temp = rtime;
d180c5bc 3953
e75e863d 3954 temp *= utime;
49048622 3955 do_div(temp, total);
d180c5bc
HS
3956 utime = (cputime_t)temp;
3957 } else
3958 utime = rtime;
49048622 3959
d180c5bc
HS
3960 /*
3961 * Compare with previous values, to keep monotonicity:
3962 */
761b1d26 3963 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3964 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3965
d99ca3b9
HS
3966 *ut = p->prev_utime;
3967 *st = p->prev_stime;
49048622
BS
3968}
3969
0cf55e1e
HS
3970/*
3971 * Must be called with siglock held.
3972 */
3973void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3974{
0cf55e1e
HS
3975 struct signal_struct *sig = p->signal;
3976 struct task_cputime cputime;
3977 cputime_t rtime, utime, total;
49048622 3978
0cf55e1e 3979 thread_group_cputime(p, &cputime);
49048622 3980
0cf55e1e
HS
3981 total = cputime_add(cputime.utime, cputime.stime);
3982 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3983
0cf55e1e 3984 if (total) {
e75e863d 3985 u64 temp = rtime;
49048622 3986
e75e863d 3987 temp *= cputime.utime;
0cf55e1e
HS
3988 do_div(temp, total);
3989 utime = (cputime_t)temp;
3990 } else
3991 utime = rtime;
3992
3993 sig->prev_utime = max(sig->prev_utime, utime);
3994 sig->prev_stime = max(sig->prev_stime,
3995 cputime_sub(rtime, sig->prev_utime));
3996
3997 *ut = sig->prev_utime;
3998 *st = sig->prev_stime;
49048622 3999}
49048622 4000#endif
49048622 4001
7835b98b
CL
4002/*
4003 * This function gets called by the timer code, with HZ frequency.
4004 * We call it with interrupts disabled.
7835b98b
CL
4005 */
4006void scheduler_tick(void)
4007{
7835b98b
CL
4008 int cpu = smp_processor_id();
4009 struct rq *rq = cpu_rq(cpu);
dd41f596 4010 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4011
4012 sched_clock_tick();
dd41f596 4013
05fa785c 4014 raw_spin_lock(&rq->lock);
3e51f33f 4015 update_rq_clock(rq);
fdf3e95d 4016 update_cpu_load_active(rq);
fa85ae24 4017 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4018 raw_spin_unlock(&rq->lock);
7835b98b 4019
e9d2b064 4020 perf_event_task_tick();
e220d2dc 4021
e418e1c2 4022#ifdef CONFIG_SMP
dd41f596
IM
4023 rq->idle_at_tick = idle_cpu(cpu);
4024 trigger_load_balance(rq, cpu);
e418e1c2 4025#endif
1da177e4
LT
4026}
4027
132380a0 4028notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4029{
4030 if (in_lock_functions(addr)) {
4031 addr = CALLER_ADDR2;
4032 if (in_lock_functions(addr))
4033 addr = CALLER_ADDR3;
4034 }
4035 return addr;
4036}
1da177e4 4037
7e49fcce
SR
4038#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4039 defined(CONFIG_PREEMPT_TRACER))
4040
43627582 4041void __kprobes add_preempt_count(int val)
1da177e4 4042{
6cd8a4bb 4043#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4044 /*
4045 * Underflow?
4046 */
9a11b49a
IM
4047 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4048 return;
6cd8a4bb 4049#endif
1da177e4 4050 preempt_count() += val;
6cd8a4bb 4051#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4052 /*
4053 * Spinlock count overflowing soon?
4054 */
33859f7f
MOS
4055 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4056 PREEMPT_MASK - 10);
6cd8a4bb
SR
4057#endif
4058 if (preempt_count() == val)
4059 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4060}
4061EXPORT_SYMBOL(add_preempt_count);
4062
43627582 4063void __kprobes sub_preempt_count(int val)
1da177e4 4064{
6cd8a4bb 4065#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4066 /*
4067 * Underflow?
4068 */
01e3eb82 4069 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4070 return;
1da177e4
LT
4071 /*
4072 * Is the spinlock portion underflowing?
4073 */
9a11b49a
IM
4074 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4075 !(preempt_count() & PREEMPT_MASK)))
4076 return;
6cd8a4bb 4077#endif
9a11b49a 4078
6cd8a4bb
SR
4079 if (preempt_count() == val)
4080 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4081 preempt_count() -= val;
4082}
4083EXPORT_SYMBOL(sub_preempt_count);
4084
4085#endif
4086
4087/*
dd41f596 4088 * Print scheduling while atomic bug:
1da177e4 4089 */
dd41f596 4090static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4091{
838225b4
SS
4092 struct pt_regs *regs = get_irq_regs();
4093
3df0fc5b
PZ
4094 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4095 prev->comm, prev->pid, preempt_count());
838225b4 4096
dd41f596 4097 debug_show_held_locks(prev);
e21f5b15 4098 print_modules();
dd41f596
IM
4099 if (irqs_disabled())
4100 print_irqtrace_events(prev);
838225b4
SS
4101
4102 if (regs)
4103 show_regs(regs);
4104 else
4105 dump_stack();
dd41f596 4106}
1da177e4 4107
dd41f596
IM
4108/*
4109 * Various schedule()-time debugging checks and statistics:
4110 */
4111static inline void schedule_debug(struct task_struct *prev)
4112{
1da177e4 4113 /*
41a2d6cf 4114 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4115 * schedule() atomically, we ignore that path for now.
4116 * Otherwise, whine if we are scheduling when we should not be.
4117 */
3f33a7ce 4118 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4119 __schedule_bug(prev);
4120
1da177e4
LT
4121 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4122
2d72376b 4123 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4124#ifdef CONFIG_SCHEDSTATS
4125 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4126 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4127 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4128 }
4129#endif
dd41f596
IM
4130}
4131
6cecd084 4132static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4133{
fd2f4419 4134 if (prev->on_rq)
a64692a3 4135 update_rq_clock(rq);
6cecd084 4136 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4137}
4138
dd41f596
IM
4139/*
4140 * Pick up the highest-prio task:
4141 */
4142static inline struct task_struct *
b67802ea 4143pick_next_task(struct rq *rq)
dd41f596 4144{
5522d5d5 4145 const struct sched_class *class;
dd41f596 4146 struct task_struct *p;
1da177e4
LT
4147
4148 /*
dd41f596
IM
4149 * Optimization: we know that if all tasks are in
4150 * the fair class we can call that function directly:
1da177e4 4151 */
dd41f596 4152 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4153 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4154 if (likely(p))
4155 return p;
1da177e4
LT
4156 }
4157
34f971f6 4158 for_each_class(class) {
fb8d4724 4159 p = class->pick_next_task(rq);
dd41f596
IM
4160 if (p)
4161 return p;
dd41f596 4162 }
34f971f6
PZ
4163
4164 BUG(); /* the idle class will always have a runnable task */
dd41f596 4165}
1da177e4 4166
dd41f596
IM
4167/*
4168 * schedule() is the main scheduler function.
4169 */
ff743345 4170asmlinkage void __sched schedule(void)
dd41f596
IM
4171{
4172 struct task_struct *prev, *next;
67ca7bde 4173 unsigned long *switch_count;
dd41f596 4174 struct rq *rq;
31656519 4175 int cpu;
dd41f596 4176
ff743345
PZ
4177need_resched:
4178 preempt_disable();
dd41f596
IM
4179 cpu = smp_processor_id();
4180 rq = cpu_rq(cpu);
25502a6c 4181 rcu_note_context_switch(cpu);
dd41f596 4182 prev = rq->curr;
dd41f596 4183
dd41f596 4184 schedule_debug(prev);
1da177e4 4185
31656519 4186 if (sched_feat(HRTICK))
f333fdc9 4187 hrtick_clear(rq);
8f4d37ec 4188
05fa785c 4189 raw_spin_lock_irq(&rq->lock);
1da177e4 4190
246d86b5 4191 switch_count = &prev->nivcsw;
1da177e4 4192 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4193 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4194 prev->state = TASK_RUNNING;
21aa9af0 4195 } else {
2acca55e
PZ
4196 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4197 prev->on_rq = 0;
4198
21aa9af0 4199 /*
2acca55e
PZ
4200 * If a worker went to sleep, notify and ask workqueue
4201 * whether it wants to wake up a task to maintain
4202 * concurrency.
21aa9af0
TH
4203 */
4204 if (prev->flags & PF_WQ_WORKER) {
4205 struct task_struct *to_wakeup;
4206
4207 to_wakeup = wq_worker_sleeping(prev, cpu);
4208 if (to_wakeup)
4209 try_to_wake_up_local(to_wakeup);
4210 }
fd2f4419 4211
6631e635 4212 /*
2acca55e
PZ
4213 * If we are going to sleep and we have plugged IO
4214 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4215 */
4216 if (blk_needs_flush_plug(prev)) {
4217 raw_spin_unlock(&rq->lock);
a237c1c5 4218 blk_schedule_flush_plug(prev);
6631e635
LT
4219 raw_spin_lock(&rq->lock);
4220 }
21aa9af0 4221 }
dd41f596 4222 switch_count = &prev->nvcsw;
1da177e4
LT
4223 }
4224
3f029d3c 4225 pre_schedule(rq, prev);
f65eda4f 4226
dd41f596 4227 if (unlikely(!rq->nr_running))
1da177e4 4228 idle_balance(cpu, rq);
1da177e4 4229
df1c99d4 4230 put_prev_task(rq, prev);
b67802ea 4231 next = pick_next_task(rq);
f26f9aff
MG
4232 clear_tsk_need_resched(prev);
4233 rq->skip_clock_update = 0;
1da177e4 4234
1da177e4 4235 if (likely(prev != next)) {
1da177e4
LT
4236 rq->nr_switches++;
4237 rq->curr = next;
4238 ++*switch_count;
4239
dd41f596 4240 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4241 /*
246d86b5
ON
4242 * The context switch have flipped the stack from under us
4243 * and restored the local variables which were saved when
4244 * this task called schedule() in the past. prev == current
4245 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4246 */
4247 cpu = smp_processor_id();
4248 rq = cpu_rq(cpu);
1da177e4 4249 } else
05fa785c 4250 raw_spin_unlock_irq(&rq->lock);
1da177e4 4251
3f029d3c 4252 post_schedule(rq);
1da177e4 4253
1da177e4 4254 preempt_enable_no_resched();
ff743345 4255 if (need_resched())
1da177e4
LT
4256 goto need_resched;
4257}
1da177e4
LT
4258EXPORT_SYMBOL(schedule);
4259
c08f7829 4260#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4261
c6eb3dda
PZ
4262static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4263{
4264 bool ret = false;
0d66bf6d 4265
c6eb3dda
PZ
4266 rcu_read_lock();
4267 if (lock->owner != owner)
4268 goto fail;
0d66bf6d
PZ
4269
4270 /*
c6eb3dda
PZ
4271 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4272 * lock->owner still matches owner, if that fails, owner might
4273 * point to free()d memory, if it still matches, the rcu_read_lock()
4274 * ensures the memory stays valid.
0d66bf6d 4275 */
c6eb3dda 4276 barrier();
0d66bf6d 4277
c6eb3dda
PZ
4278 ret = owner->on_cpu;
4279fail:
4280 rcu_read_unlock();
0d66bf6d 4281
c6eb3dda
PZ
4282 return ret;
4283}
0d66bf6d 4284
c6eb3dda
PZ
4285/*
4286 * Look out! "owner" is an entirely speculative pointer
4287 * access and not reliable.
4288 */
4289int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4290{
4291 if (!sched_feat(OWNER_SPIN))
4292 return 0;
0d66bf6d 4293
c6eb3dda
PZ
4294 while (owner_running(lock, owner)) {
4295 if (need_resched())
0d66bf6d
PZ
4296 return 0;
4297
335d7afb 4298 arch_mutex_cpu_relax();
0d66bf6d 4299 }
4b402210 4300
c6eb3dda
PZ
4301 /*
4302 * If the owner changed to another task there is likely
4303 * heavy contention, stop spinning.
4304 */
4305 if (lock->owner)
4306 return 0;
4307
0d66bf6d
PZ
4308 return 1;
4309}
4310#endif
4311
1da177e4
LT
4312#ifdef CONFIG_PREEMPT
4313/*
2ed6e34f 4314 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4315 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4316 * occur there and call schedule directly.
4317 */
d1f74e20 4318asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4319{
4320 struct thread_info *ti = current_thread_info();
6478d880 4321
1da177e4
LT
4322 /*
4323 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4324 * we do not want to preempt the current task. Just return..
1da177e4 4325 */
beed33a8 4326 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4327 return;
4328
3a5c359a 4329 do {
d1f74e20 4330 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4331 schedule();
d1f74e20 4332 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4333
3a5c359a
AK
4334 /*
4335 * Check again in case we missed a preemption opportunity
4336 * between schedule and now.
4337 */
4338 barrier();
5ed0cec0 4339 } while (need_resched());
1da177e4 4340}
1da177e4
LT
4341EXPORT_SYMBOL(preempt_schedule);
4342
4343/*
2ed6e34f 4344 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4345 * off of irq context.
4346 * Note, that this is called and return with irqs disabled. This will
4347 * protect us against recursive calling from irq.
4348 */
4349asmlinkage void __sched preempt_schedule_irq(void)
4350{
4351 struct thread_info *ti = current_thread_info();
6478d880 4352
2ed6e34f 4353 /* Catch callers which need to be fixed */
1da177e4
LT
4354 BUG_ON(ti->preempt_count || !irqs_disabled());
4355
3a5c359a
AK
4356 do {
4357 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4358 local_irq_enable();
4359 schedule();
4360 local_irq_disable();
3a5c359a 4361 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4362
3a5c359a
AK
4363 /*
4364 * Check again in case we missed a preemption opportunity
4365 * between schedule and now.
4366 */
4367 barrier();
5ed0cec0 4368 } while (need_resched());
1da177e4
LT
4369}
4370
4371#endif /* CONFIG_PREEMPT */
4372
63859d4f 4373int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4374 void *key)
1da177e4 4375{
63859d4f 4376 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4377}
1da177e4
LT
4378EXPORT_SYMBOL(default_wake_function);
4379
4380/*
41a2d6cf
IM
4381 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4382 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4383 * number) then we wake all the non-exclusive tasks and one exclusive task.
4384 *
4385 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4386 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4387 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4388 */
78ddb08f 4389static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4390 int nr_exclusive, int wake_flags, void *key)
1da177e4 4391{
2e45874c 4392 wait_queue_t *curr, *next;
1da177e4 4393
2e45874c 4394 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4395 unsigned flags = curr->flags;
4396
63859d4f 4397 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4398 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4399 break;
4400 }
4401}
4402
4403/**
4404 * __wake_up - wake up threads blocked on a waitqueue.
4405 * @q: the waitqueue
4406 * @mode: which threads
4407 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4408 * @key: is directly passed to the wakeup function
50fa610a
DH
4409 *
4410 * It may be assumed that this function implies a write memory barrier before
4411 * changing the task state if and only if any tasks are woken up.
1da177e4 4412 */
7ad5b3a5 4413void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4414 int nr_exclusive, void *key)
1da177e4
LT
4415{
4416 unsigned long flags;
4417
4418 spin_lock_irqsave(&q->lock, flags);
4419 __wake_up_common(q, mode, nr_exclusive, 0, key);
4420 spin_unlock_irqrestore(&q->lock, flags);
4421}
1da177e4
LT
4422EXPORT_SYMBOL(__wake_up);
4423
4424/*
4425 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4426 */
7ad5b3a5 4427void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4428{
4429 __wake_up_common(q, mode, 1, 0, NULL);
4430}
22c43c81 4431EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4432
4ede816a
DL
4433void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4434{
4435 __wake_up_common(q, mode, 1, 0, key);
4436}
bf294b41 4437EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4438
1da177e4 4439/**
4ede816a 4440 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4441 * @q: the waitqueue
4442 * @mode: which threads
4443 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4444 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4445 *
4446 * The sync wakeup differs that the waker knows that it will schedule
4447 * away soon, so while the target thread will be woken up, it will not
4448 * be migrated to another CPU - ie. the two threads are 'synchronized'
4449 * with each other. This can prevent needless bouncing between CPUs.
4450 *
4451 * On UP it can prevent extra preemption.
50fa610a
DH
4452 *
4453 * It may be assumed that this function implies a write memory barrier before
4454 * changing the task state if and only if any tasks are woken up.
1da177e4 4455 */
4ede816a
DL
4456void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4457 int nr_exclusive, void *key)
1da177e4
LT
4458{
4459 unsigned long flags;
7d478721 4460 int wake_flags = WF_SYNC;
1da177e4
LT
4461
4462 if (unlikely(!q))
4463 return;
4464
4465 if (unlikely(!nr_exclusive))
7d478721 4466 wake_flags = 0;
1da177e4
LT
4467
4468 spin_lock_irqsave(&q->lock, flags);
7d478721 4469 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4470 spin_unlock_irqrestore(&q->lock, flags);
4471}
4ede816a
DL
4472EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4473
4474/*
4475 * __wake_up_sync - see __wake_up_sync_key()
4476 */
4477void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4478{
4479 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4480}
1da177e4
LT
4481EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4482
65eb3dc6
KD
4483/**
4484 * complete: - signals a single thread waiting on this completion
4485 * @x: holds the state of this particular completion
4486 *
4487 * This will wake up a single thread waiting on this completion. Threads will be
4488 * awakened in the same order in which they were queued.
4489 *
4490 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4491 *
4492 * It may be assumed that this function implies a write memory barrier before
4493 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4494 */
b15136e9 4495void complete(struct completion *x)
1da177e4
LT
4496{
4497 unsigned long flags;
4498
4499 spin_lock_irqsave(&x->wait.lock, flags);
4500 x->done++;
d9514f6c 4501 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4502 spin_unlock_irqrestore(&x->wait.lock, flags);
4503}
4504EXPORT_SYMBOL(complete);
4505
65eb3dc6
KD
4506/**
4507 * complete_all: - signals all threads waiting on this completion
4508 * @x: holds the state of this particular completion
4509 *
4510 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4511 *
4512 * It may be assumed that this function implies a write memory barrier before
4513 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4514 */
b15136e9 4515void complete_all(struct completion *x)
1da177e4
LT
4516{
4517 unsigned long flags;
4518
4519 spin_lock_irqsave(&x->wait.lock, flags);
4520 x->done += UINT_MAX/2;
d9514f6c 4521 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4522 spin_unlock_irqrestore(&x->wait.lock, flags);
4523}
4524EXPORT_SYMBOL(complete_all);
4525
8cbbe86d
AK
4526static inline long __sched
4527do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4528{
1da177e4
LT
4529 if (!x->done) {
4530 DECLARE_WAITQUEUE(wait, current);
4531
a93d2f17 4532 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4533 do {
94d3d824 4534 if (signal_pending_state(state, current)) {
ea71a546
ON
4535 timeout = -ERESTARTSYS;
4536 break;
8cbbe86d
AK
4537 }
4538 __set_current_state(state);
1da177e4
LT
4539 spin_unlock_irq(&x->wait.lock);
4540 timeout = schedule_timeout(timeout);
4541 spin_lock_irq(&x->wait.lock);
ea71a546 4542 } while (!x->done && timeout);
1da177e4 4543 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4544 if (!x->done)
4545 return timeout;
1da177e4
LT
4546 }
4547 x->done--;
ea71a546 4548 return timeout ?: 1;
1da177e4 4549}
1da177e4 4550
8cbbe86d
AK
4551static long __sched
4552wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4553{
1da177e4
LT
4554 might_sleep();
4555
4556 spin_lock_irq(&x->wait.lock);
8cbbe86d 4557 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4558 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4559 return timeout;
4560}
1da177e4 4561
65eb3dc6
KD
4562/**
4563 * wait_for_completion: - waits for completion of a task
4564 * @x: holds the state of this particular completion
4565 *
4566 * This waits to be signaled for completion of a specific task. It is NOT
4567 * interruptible and there is no timeout.
4568 *
4569 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4570 * and interrupt capability. Also see complete().
4571 */
b15136e9 4572void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4573{
4574 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4575}
8cbbe86d 4576EXPORT_SYMBOL(wait_for_completion);
1da177e4 4577
65eb3dc6
KD
4578/**
4579 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4580 * @x: holds the state of this particular completion
4581 * @timeout: timeout value in jiffies
4582 *
4583 * This waits for either a completion of a specific task to be signaled or for a
4584 * specified timeout to expire. The timeout is in jiffies. It is not
4585 * interruptible.
4586 */
b15136e9 4587unsigned long __sched
8cbbe86d 4588wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4589{
8cbbe86d 4590 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4591}
8cbbe86d 4592EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4593
65eb3dc6
KD
4594/**
4595 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4596 * @x: holds the state of this particular completion
4597 *
4598 * This waits for completion of a specific task to be signaled. It is
4599 * interruptible.
4600 */
8cbbe86d 4601int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4602{
51e97990
AK
4603 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4604 if (t == -ERESTARTSYS)
4605 return t;
4606 return 0;
0fec171c 4607}
8cbbe86d 4608EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4609
65eb3dc6
KD
4610/**
4611 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4612 * @x: holds the state of this particular completion
4613 * @timeout: timeout value in jiffies
4614 *
4615 * This waits for either a completion of a specific task to be signaled or for a
4616 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4617 */
6bf41237 4618long __sched
8cbbe86d
AK
4619wait_for_completion_interruptible_timeout(struct completion *x,
4620 unsigned long timeout)
0fec171c 4621{
8cbbe86d 4622 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4623}
8cbbe86d 4624EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4625
65eb3dc6
KD
4626/**
4627 * wait_for_completion_killable: - waits for completion of a task (killable)
4628 * @x: holds the state of this particular completion
4629 *
4630 * This waits to be signaled for completion of a specific task. It can be
4631 * interrupted by a kill signal.
4632 */
009e577e
MW
4633int __sched wait_for_completion_killable(struct completion *x)
4634{
4635 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4636 if (t == -ERESTARTSYS)
4637 return t;
4638 return 0;
4639}
4640EXPORT_SYMBOL(wait_for_completion_killable);
4641
0aa12fb4
SW
4642/**
4643 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4644 * @x: holds the state of this particular completion
4645 * @timeout: timeout value in jiffies
4646 *
4647 * This waits for either a completion of a specific task to be
4648 * signaled or for a specified timeout to expire. It can be
4649 * interrupted by a kill signal. The timeout is in jiffies.
4650 */
6bf41237 4651long __sched
0aa12fb4
SW
4652wait_for_completion_killable_timeout(struct completion *x,
4653 unsigned long timeout)
4654{
4655 return wait_for_common(x, timeout, TASK_KILLABLE);
4656}
4657EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4658
be4de352
DC
4659/**
4660 * try_wait_for_completion - try to decrement a completion without blocking
4661 * @x: completion structure
4662 *
4663 * Returns: 0 if a decrement cannot be done without blocking
4664 * 1 if a decrement succeeded.
4665 *
4666 * If a completion is being used as a counting completion,
4667 * attempt to decrement the counter without blocking. This
4668 * enables us to avoid waiting if the resource the completion
4669 * is protecting is not available.
4670 */
4671bool try_wait_for_completion(struct completion *x)
4672{
7539a3b3 4673 unsigned long flags;
be4de352
DC
4674 int ret = 1;
4675
7539a3b3 4676 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4677 if (!x->done)
4678 ret = 0;
4679 else
4680 x->done--;
7539a3b3 4681 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4682 return ret;
4683}
4684EXPORT_SYMBOL(try_wait_for_completion);
4685
4686/**
4687 * completion_done - Test to see if a completion has any waiters
4688 * @x: completion structure
4689 *
4690 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4691 * 1 if there are no waiters.
4692 *
4693 */
4694bool completion_done(struct completion *x)
4695{
7539a3b3 4696 unsigned long flags;
be4de352
DC
4697 int ret = 1;
4698
7539a3b3 4699 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4700 if (!x->done)
4701 ret = 0;
7539a3b3 4702 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4703 return ret;
4704}
4705EXPORT_SYMBOL(completion_done);
4706
8cbbe86d
AK
4707static long __sched
4708sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4709{
0fec171c
IM
4710 unsigned long flags;
4711 wait_queue_t wait;
4712
4713 init_waitqueue_entry(&wait, current);
1da177e4 4714
8cbbe86d 4715 __set_current_state(state);
1da177e4 4716
8cbbe86d
AK
4717 spin_lock_irqsave(&q->lock, flags);
4718 __add_wait_queue(q, &wait);
4719 spin_unlock(&q->lock);
4720 timeout = schedule_timeout(timeout);
4721 spin_lock_irq(&q->lock);
4722 __remove_wait_queue(q, &wait);
4723 spin_unlock_irqrestore(&q->lock, flags);
4724
4725 return timeout;
4726}
4727
4728void __sched interruptible_sleep_on(wait_queue_head_t *q)
4729{
4730 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4731}
1da177e4
LT
4732EXPORT_SYMBOL(interruptible_sleep_on);
4733
0fec171c 4734long __sched
95cdf3b7 4735interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4736{
8cbbe86d 4737 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4738}
1da177e4
LT
4739EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4740
0fec171c 4741void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4742{
8cbbe86d 4743 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4744}
1da177e4
LT
4745EXPORT_SYMBOL(sleep_on);
4746
0fec171c 4747long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4748{
8cbbe86d 4749 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4750}
1da177e4
LT
4751EXPORT_SYMBOL(sleep_on_timeout);
4752
b29739f9
IM
4753#ifdef CONFIG_RT_MUTEXES
4754
4755/*
4756 * rt_mutex_setprio - set the current priority of a task
4757 * @p: task
4758 * @prio: prio value (kernel-internal form)
4759 *
4760 * This function changes the 'effective' priority of a task. It does
4761 * not touch ->normal_prio like __setscheduler().
4762 *
4763 * Used by the rt_mutex code to implement priority inheritance logic.
4764 */
36c8b586 4765void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4766{
83b699ed 4767 int oldprio, on_rq, running;
70b97a7f 4768 struct rq *rq;
83ab0aa0 4769 const struct sched_class *prev_class;
b29739f9
IM
4770
4771 BUG_ON(prio < 0 || prio > MAX_PRIO);
4772
0122ec5b 4773 rq = __task_rq_lock(p);
b29739f9 4774
a8027073 4775 trace_sched_pi_setprio(p, prio);
d5f9f942 4776 oldprio = p->prio;
83ab0aa0 4777 prev_class = p->sched_class;
fd2f4419 4778 on_rq = p->on_rq;
051a1d1a 4779 running = task_current(rq, p);
0e1f3483 4780 if (on_rq)
69be72c1 4781 dequeue_task(rq, p, 0);
0e1f3483
HS
4782 if (running)
4783 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4784
4785 if (rt_prio(prio))
4786 p->sched_class = &rt_sched_class;
4787 else
4788 p->sched_class = &fair_sched_class;
4789
b29739f9
IM
4790 p->prio = prio;
4791
0e1f3483
HS
4792 if (running)
4793 p->sched_class->set_curr_task(rq);
da7a735e 4794 if (on_rq)
371fd7e7 4795 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4796
da7a735e 4797 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4798 __task_rq_unlock(rq);
b29739f9
IM
4799}
4800
4801#endif
4802
36c8b586 4803void set_user_nice(struct task_struct *p, long nice)
1da177e4 4804{
dd41f596 4805 int old_prio, delta, on_rq;
1da177e4 4806 unsigned long flags;
70b97a7f 4807 struct rq *rq;
1da177e4
LT
4808
4809 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4810 return;
4811 /*
4812 * We have to be careful, if called from sys_setpriority(),
4813 * the task might be in the middle of scheduling on another CPU.
4814 */
4815 rq = task_rq_lock(p, &flags);
4816 /*
4817 * The RT priorities are set via sched_setscheduler(), but we still
4818 * allow the 'normal' nice value to be set - but as expected
4819 * it wont have any effect on scheduling until the task is
dd41f596 4820 * SCHED_FIFO/SCHED_RR:
1da177e4 4821 */
e05606d3 4822 if (task_has_rt_policy(p)) {
1da177e4
LT
4823 p->static_prio = NICE_TO_PRIO(nice);
4824 goto out_unlock;
4825 }
fd2f4419 4826 on_rq = p->on_rq;
c09595f6 4827 if (on_rq)
69be72c1 4828 dequeue_task(rq, p, 0);
1da177e4 4829
1da177e4 4830 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4831 set_load_weight(p);
b29739f9
IM
4832 old_prio = p->prio;
4833 p->prio = effective_prio(p);
4834 delta = p->prio - old_prio;
1da177e4 4835
dd41f596 4836 if (on_rq) {
371fd7e7 4837 enqueue_task(rq, p, 0);
1da177e4 4838 /*
d5f9f942
AM
4839 * If the task increased its priority or is running and
4840 * lowered its priority, then reschedule its CPU:
1da177e4 4841 */
d5f9f942 4842 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4843 resched_task(rq->curr);
4844 }
4845out_unlock:
0122ec5b 4846 task_rq_unlock(rq, p, &flags);
1da177e4 4847}
1da177e4
LT
4848EXPORT_SYMBOL(set_user_nice);
4849
e43379f1
MM
4850/*
4851 * can_nice - check if a task can reduce its nice value
4852 * @p: task
4853 * @nice: nice value
4854 */
36c8b586 4855int can_nice(const struct task_struct *p, const int nice)
e43379f1 4856{
024f4747
MM
4857 /* convert nice value [19,-20] to rlimit style value [1,40] */
4858 int nice_rlim = 20 - nice;
48f24c4d 4859
78d7d407 4860 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4861 capable(CAP_SYS_NICE));
4862}
4863
1da177e4
LT
4864#ifdef __ARCH_WANT_SYS_NICE
4865
4866/*
4867 * sys_nice - change the priority of the current process.
4868 * @increment: priority increment
4869 *
4870 * sys_setpriority is a more generic, but much slower function that
4871 * does similar things.
4872 */
5add95d4 4873SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4874{
48f24c4d 4875 long nice, retval;
1da177e4
LT
4876
4877 /*
4878 * Setpriority might change our priority at the same moment.
4879 * We don't have to worry. Conceptually one call occurs first
4880 * and we have a single winner.
4881 */
e43379f1
MM
4882 if (increment < -40)
4883 increment = -40;
1da177e4
LT
4884 if (increment > 40)
4885 increment = 40;
4886
2b8f836f 4887 nice = TASK_NICE(current) + increment;
1da177e4
LT
4888 if (nice < -20)
4889 nice = -20;
4890 if (nice > 19)
4891 nice = 19;
4892
e43379f1
MM
4893 if (increment < 0 && !can_nice(current, nice))
4894 return -EPERM;
4895
1da177e4
LT
4896 retval = security_task_setnice(current, nice);
4897 if (retval)
4898 return retval;
4899
4900 set_user_nice(current, nice);
4901 return 0;
4902}
4903
4904#endif
4905
4906/**
4907 * task_prio - return the priority value of a given task.
4908 * @p: the task in question.
4909 *
4910 * This is the priority value as seen by users in /proc.
4911 * RT tasks are offset by -200. Normal tasks are centered
4912 * around 0, value goes from -16 to +15.
4913 */
36c8b586 4914int task_prio(const struct task_struct *p)
1da177e4
LT
4915{
4916 return p->prio - MAX_RT_PRIO;
4917}
4918
4919/**
4920 * task_nice - return the nice value of a given task.
4921 * @p: the task in question.
4922 */
36c8b586 4923int task_nice(const struct task_struct *p)
1da177e4
LT
4924{
4925 return TASK_NICE(p);
4926}
150d8bed 4927EXPORT_SYMBOL(task_nice);
1da177e4
LT
4928
4929/**
4930 * idle_cpu - is a given cpu idle currently?
4931 * @cpu: the processor in question.
4932 */
4933int idle_cpu(int cpu)
4934{
4935 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4936}
4937
1da177e4
LT
4938/**
4939 * idle_task - return the idle task for a given cpu.
4940 * @cpu: the processor in question.
4941 */
36c8b586 4942struct task_struct *idle_task(int cpu)
1da177e4
LT
4943{
4944 return cpu_rq(cpu)->idle;
4945}
4946
4947/**
4948 * find_process_by_pid - find a process with a matching PID value.
4949 * @pid: the pid in question.
4950 */
a9957449 4951static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4952{
228ebcbe 4953 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4954}
4955
4956/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4957static void
4958__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4959{
1da177e4
LT
4960 p->policy = policy;
4961 p->rt_priority = prio;
b29739f9
IM
4962 p->normal_prio = normal_prio(p);
4963 /* we are holding p->pi_lock already */
4964 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4965 if (rt_prio(p->prio))
4966 p->sched_class = &rt_sched_class;
4967 else
4968 p->sched_class = &fair_sched_class;
2dd73a4f 4969 set_load_weight(p);
1da177e4
LT
4970}
4971
c69e8d9c
DH
4972/*
4973 * check the target process has a UID that matches the current process's
4974 */
4975static bool check_same_owner(struct task_struct *p)
4976{
4977 const struct cred *cred = current_cred(), *pcred;
4978 bool match;
4979
4980 rcu_read_lock();
4981 pcred = __task_cred(p);
b0e77598
SH
4982 if (cred->user->user_ns == pcred->user->user_ns)
4983 match = (cred->euid == pcred->euid ||
4984 cred->euid == pcred->uid);
4985 else
4986 match = false;
c69e8d9c
DH
4987 rcu_read_unlock();
4988 return match;
4989}
4990
961ccddd 4991static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4992 const struct sched_param *param, bool user)
1da177e4 4993{
83b699ed 4994 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4995 unsigned long flags;
83ab0aa0 4996 const struct sched_class *prev_class;
70b97a7f 4997 struct rq *rq;
ca94c442 4998 int reset_on_fork;
1da177e4 4999
66e5393a
SR
5000 /* may grab non-irq protected spin_locks */
5001 BUG_ON(in_interrupt());
1da177e4
LT
5002recheck:
5003 /* double check policy once rq lock held */
ca94c442
LP
5004 if (policy < 0) {
5005 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5006 policy = oldpolicy = p->policy;
ca94c442
LP
5007 } else {
5008 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5009 policy &= ~SCHED_RESET_ON_FORK;
5010
5011 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5012 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5013 policy != SCHED_IDLE)
5014 return -EINVAL;
5015 }
5016
1da177e4
LT
5017 /*
5018 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5019 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5020 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5021 */
5022 if (param->sched_priority < 0 ||
95cdf3b7 5023 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5024 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5025 return -EINVAL;
e05606d3 5026 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5027 return -EINVAL;
5028
37e4ab3f
OC
5029 /*
5030 * Allow unprivileged RT tasks to decrease priority:
5031 */
961ccddd 5032 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5033 if (rt_policy(policy)) {
a44702e8
ON
5034 unsigned long rlim_rtprio =
5035 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5036
5037 /* can't set/change the rt policy */
5038 if (policy != p->policy && !rlim_rtprio)
5039 return -EPERM;
5040
5041 /* can't increase priority */
5042 if (param->sched_priority > p->rt_priority &&
5043 param->sched_priority > rlim_rtprio)
5044 return -EPERM;
5045 }
c02aa73b 5046
dd41f596 5047 /*
c02aa73b
DH
5048 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5049 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5050 */
c02aa73b
DH
5051 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5052 if (!can_nice(p, TASK_NICE(p)))
5053 return -EPERM;
5054 }
5fe1d75f 5055
37e4ab3f 5056 /* can't change other user's priorities */
c69e8d9c 5057 if (!check_same_owner(p))
37e4ab3f 5058 return -EPERM;
ca94c442
LP
5059
5060 /* Normal users shall not reset the sched_reset_on_fork flag */
5061 if (p->sched_reset_on_fork && !reset_on_fork)
5062 return -EPERM;
37e4ab3f 5063 }
1da177e4 5064
725aad24 5065 if (user) {
b0ae1981 5066 retval = security_task_setscheduler(p);
725aad24
JF
5067 if (retval)
5068 return retval;
5069 }
5070
b29739f9
IM
5071 /*
5072 * make sure no PI-waiters arrive (or leave) while we are
5073 * changing the priority of the task:
0122ec5b 5074 *
25985edc 5075 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5076 * runqueue lock must be held.
5077 */
0122ec5b 5078 rq = task_rq_lock(p, &flags);
dc61b1d6 5079
34f971f6
PZ
5080 /*
5081 * Changing the policy of the stop threads its a very bad idea
5082 */
5083 if (p == rq->stop) {
0122ec5b 5084 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5085 return -EINVAL;
5086 }
5087
a51e9198
DF
5088 /*
5089 * If not changing anything there's no need to proceed further:
5090 */
5091 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5092 param->sched_priority == p->rt_priority))) {
5093
5094 __task_rq_unlock(rq);
5095 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5096 return 0;
5097 }
5098
dc61b1d6
PZ
5099#ifdef CONFIG_RT_GROUP_SCHED
5100 if (user) {
5101 /*
5102 * Do not allow realtime tasks into groups that have no runtime
5103 * assigned.
5104 */
5105 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5106 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5107 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5108 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5109 return -EPERM;
5110 }
5111 }
5112#endif
5113
1da177e4
LT
5114 /* recheck policy now with rq lock held */
5115 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5116 policy = oldpolicy = -1;
0122ec5b 5117 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5118 goto recheck;
5119 }
fd2f4419 5120 on_rq = p->on_rq;
051a1d1a 5121 running = task_current(rq, p);
0e1f3483 5122 if (on_rq)
2e1cb74a 5123 deactivate_task(rq, p, 0);
0e1f3483
HS
5124 if (running)
5125 p->sched_class->put_prev_task(rq, p);
f6b53205 5126
ca94c442
LP
5127 p->sched_reset_on_fork = reset_on_fork;
5128
1da177e4 5129 oldprio = p->prio;
83ab0aa0 5130 prev_class = p->sched_class;
dd41f596 5131 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5132
0e1f3483
HS
5133 if (running)
5134 p->sched_class->set_curr_task(rq);
da7a735e 5135 if (on_rq)
dd41f596 5136 activate_task(rq, p, 0);
cb469845 5137
da7a735e 5138 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5139 task_rq_unlock(rq, p, &flags);
b29739f9 5140
95e02ca9
TG
5141 rt_mutex_adjust_pi(p);
5142
1da177e4
LT
5143 return 0;
5144}
961ccddd
RR
5145
5146/**
5147 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5148 * @p: the task in question.
5149 * @policy: new policy.
5150 * @param: structure containing the new RT priority.
5151 *
5152 * NOTE that the task may be already dead.
5153 */
5154int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5155 const struct sched_param *param)
961ccddd
RR
5156{
5157 return __sched_setscheduler(p, policy, param, true);
5158}
1da177e4
LT
5159EXPORT_SYMBOL_GPL(sched_setscheduler);
5160
961ccddd
RR
5161/**
5162 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5163 * @p: the task in question.
5164 * @policy: new policy.
5165 * @param: structure containing the new RT priority.
5166 *
5167 * Just like sched_setscheduler, only don't bother checking if the
5168 * current context has permission. For example, this is needed in
5169 * stop_machine(): we create temporary high priority worker threads,
5170 * but our caller might not have that capability.
5171 */
5172int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5173 const struct sched_param *param)
961ccddd
RR
5174{
5175 return __sched_setscheduler(p, policy, param, false);
5176}
5177
95cdf3b7
IM
5178static int
5179do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5180{
1da177e4
LT
5181 struct sched_param lparam;
5182 struct task_struct *p;
36c8b586 5183 int retval;
1da177e4
LT
5184
5185 if (!param || pid < 0)
5186 return -EINVAL;
5187 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5188 return -EFAULT;
5fe1d75f
ON
5189
5190 rcu_read_lock();
5191 retval = -ESRCH;
1da177e4 5192 p = find_process_by_pid(pid);
5fe1d75f
ON
5193 if (p != NULL)
5194 retval = sched_setscheduler(p, policy, &lparam);
5195 rcu_read_unlock();
36c8b586 5196
1da177e4
LT
5197 return retval;
5198}
5199
5200/**
5201 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5202 * @pid: the pid in question.
5203 * @policy: new policy.
5204 * @param: structure containing the new RT priority.
5205 */
5add95d4
HC
5206SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5207 struct sched_param __user *, param)
1da177e4 5208{
c21761f1
JB
5209 /* negative values for policy are not valid */
5210 if (policy < 0)
5211 return -EINVAL;
5212
1da177e4
LT
5213 return do_sched_setscheduler(pid, policy, param);
5214}
5215
5216/**
5217 * sys_sched_setparam - set/change the RT priority of a thread
5218 * @pid: the pid in question.
5219 * @param: structure containing the new RT priority.
5220 */
5add95d4 5221SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5222{
5223 return do_sched_setscheduler(pid, -1, param);
5224}
5225
5226/**
5227 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5228 * @pid: the pid in question.
5229 */
5add95d4 5230SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5231{
36c8b586 5232 struct task_struct *p;
3a5c359a 5233 int retval;
1da177e4
LT
5234
5235 if (pid < 0)
3a5c359a 5236 return -EINVAL;
1da177e4
LT
5237
5238 retval = -ESRCH;
5fe85be0 5239 rcu_read_lock();
1da177e4
LT
5240 p = find_process_by_pid(pid);
5241 if (p) {
5242 retval = security_task_getscheduler(p);
5243 if (!retval)
ca94c442
LP
5244 retval = p->policy
5245 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5246 }
5fe85be0 5247 rcu_read_unlock();
1da177e4
LT
5248 return retval;
5249}
5250
5251/**
ca94c442 5252 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5253 * @pid: the pid in question.
5254 * @param: structure containing the RT priority.
5255 */
5add95d4 5256SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5257{
5258 struct sched_param lp;
36c8b586 5259 struct task_struct *p;
3a5c359a 5260 int retval;
1da177e4
LT
5261
5262 if (!param || pid < 0)
3a5c359a 5263 return -EINVAL;
1da177e4 5264
5fe85be0 5265 rcu_read_lock();
1da177e4
LT
5266 p = find_process_by_pid(pid);
5267 retval = -ESRCH;
5268 if (!p)
5269 goto out_unlock;
5270
5271 retval = security_task_getscheduler(p);
5272 if (retval)
5273 goto out_unlock;
5274
5275 lp.sched_priority = p->rt_priority;
5fe85be0 5276 rcu_read_unlock();
1da177e4
LT
5277
5278 /*
5279 * This one might sleep, we cannot do it with a spinlock held ...
5280 */
5281 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5282
1da177e4
LT
5283 return retval;
5284
5285out_unlock:
5fe85be0 5286 rcu_read_unlock();
1da177e4
LT
5287 return retval;
5288}
5289
96f874e2 5290long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5291{
5a16f3d3 5292 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5293 struct task_struct *p;
5294 int retval;
1da177e4 5295
95402b38 5296 get_online_cpus();
23f5d142 5297 rcu_read_lock();
1da177e4
LT
5298
5299 p = find_process_by_pid(pid);
5300 if (!p) {
23f5d142 5301 rcu_read_unlock();
95402b38 5302 put_online_cpus();
1da177e4
LT
5303 return -ESRCH;
5304 }
5305
23f5d142 5306 /* Prevent p going away */
1da177e4 5307 get_task_struct(p);
23f5d142 5308 rcu_read_unlock();
1da177e4 5309
5a16f3d3
RR
5310 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5311 retval = -ENOMEM;
5312 goto out_put_task;
5313 }
5314 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5315 retval = -ENOMEM;
5316 goto out_free_cpus_allowed;
5317 }
1da177e4 5318 retval = -EPERM;
b0e77598 5319 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5320 goto out_unlock;
5321
b0ae1981 5322 retval = security_task_setscheduler(p);
e7834f8f
DQ
5323 if (retval)
5324 goto out_unlock;
5325
5a16f3d3
RR
5326 cpuset_cpus_allowed(p, cpus_allowed);
5327 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5328again:
5a16f3d3 5329 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5330
8707d8b8 5331 if (!retval) {
5a16f3d3
RR
5332 cpuset_cpus_allowed(p, cpus_allowed);
5333 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5334 /*
5335 * We must have raced with a concurrent cpuset
5336 * update. Just reset the cpus_allowed to the
5337 * cpuset's cpus_allowed
5338 */
5a16f3d3 5339 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5340 goto again;
5341 }
5342 }
1da177e4 5343out_unlock:
5a16f3d3
RR
5344 free_cpumask_var(new_mask);
5345out_free_cpus_allowed:
5346 free_cpumask_var(cpus_allowed);
5347out_put_task:
1da177e4 5348 put_task_struct(p);
95402b38 5349 put_online_cpus();
1da177e4
LT
5350 return retval;
5351}
5352
5353static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5354 struct cpumask *new_mask)
1da177e4 5355{
96f874e2
RR
5356 if (len < cpumask_size())
5357 cpumask_clear(new_mask);
5358 else if (len > cpumask_size())
5359 len = cpumask_size();
5360
1da177e4
LT
5361 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5362}
5363
5364/**
5365 * sys_sched_setaffinity - set the cpu affinity of a process
5366 * @pid: pid of the process
5367 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5368 * @user_mask_ptr: user-space pointer to the new cpu mask
5369 */
5add95d4
HC
5370SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5371 unsigned long __user *, user_mask_ptr)
1da177e4 5372{
5a16f3d3 5373 cpumask_var_t new_mask;
1da177e4
LT
5374 int retval;
5375
5a16f3d3
RR
5376 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5377 return -ENOMEM;
1da177e4 5378
5a16f3d3
RR
5379 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5380 if (retval == 0)
5381 retval = sched_setaffinity(pid, new_mask);
5382 free_cpumask_var(new_mask);
5383 return retval;
1da177e4
LT
5384}
5385
96f874e2 5386long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5387{
36c8b586 5388 struct task_struct *p;
31605683 5389 unsigned long flags;
1da177e4 5390 int retval;
1da177e4 5391
95402b38 5392 get_online_cpus();
23f5d142 5393 rcu_read_lock();
1da177e4
LT
5394
5395 retval = -ESRCH;
5396 p = find_process_by_pid(pid);
5397 if (!p)
5398 goto out_unlock;
5399
e7834f8f
DQ
5400 retval = security_task_getscheduler(p);
5401 if (retval)
5402 goto out_unlock;
5403
013fdb80 5404 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5405 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5406 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5407
5408out_unlock:
23f5d142 5409 rcu_read_unlock();
95402b38 5410 put_online_cpus();
1da177e4 5411
9531b62f 5412 return retval;
1da177e4
LT
5413}
5414
5415/**
5416 * sys_sched_getaffinity - get the cpu affinity of a process
5417 * @pid: pid of the process
5418 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5419 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5420 */
5add95d4
HC
5421SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5422 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5423{
5424 int ret;
f17c8607 5425 cpumask_var_t mask;
1da177e4 5426
84fba5ec 5427 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5428 return -EINVAL;
5429 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5430 return -EINVAL;
5431
f17c8607
RR
5432 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5433 return -ENOMEM;
1da177e4 5434
f17c8607
RR
5435 ret = sched_getaffinity(pid, mask);
5436 if (ret == 0) {
8bc037fb 5437 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5438
5439 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5440 ret = -EFAULT;
5441 else
cd3d8031 5442 ret = retlen;
f17c8607
RR
5443 }
5444 free_cpumask_var(mask);
1da177e4 5445
f17c8607 5446 return ret;
1da177e4
LT
5447}
5448
5449/**
5450 * sys_sched_yield - yield the current processor to other threads.
5451 *
dd41f596
IM
5452 * This function yields the current CPU to other tasks. If there are no
5453 * other threads running on this CPU then this function will return.
1da177e4 5454 */
5add95d4 5455SYSCALL_DEFINE0(sched_yield)
1da177e4 5456{
70b97a7f 5457 struct rq *rq = this_rq_lock();
1da177e4 5458
2d72376b 5459 schedstat_inc(rq, yld_count);
4530d7ab 5460 current->sched_class->yield_task(rq);
1da177e4
LT
5461
5462 /*
5463 * Since we are going to call schedule() anyway, there's
5464 * no need to preempt or enable interrupts:
5465 */
5466 __release(rq->lock);
8a25d5de 5467 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5468 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5469 preempt_enable_no_resched();
5470
5471 schedule();
5472
5473 return 0;
5474}
5475
d86ee480
PZ
5476static inline int should_resched(void)
5477{
5478 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5479}
5480
e7b38404 5481static void __cond_resched(void)
1da177e4 5482{
e7aaaa69
FW
5483 add_preempt_count(PREEMPT_ACTIVE);
5484 schedule();
5485 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5486}
5487
02b67cc3 5488int __sched _cond_resched(void)
1da177e4 5489{
d86ee480 5490 if (should_resched()) {
1da177e4
LT
5491 __cond_resched();
5492 return 1;
5493 }
5494 return 0;
5495}
02b67cc3 5496EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5497
5498/*
613afbf8 5499 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5500 * call schedule, and on return reacquire the lock.
5501 *
41a2d6cf 5502 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5503 * operations here to prevent schedule() from being called twice (once via
5504 * spin_unlock(), once by hand).
5505 */
613afbf8 5506int __cond_resched_lock(spinlock_t *lock)
1da177e4 5507{
d86ee480 5508 int resched = should_resched();
6df3cecb
JK
5509 int ret = 0;
5510
f607c668
PZ
5511 lockdep_assert_held(lock);
5512
95c354fe 5513 if (spin_needbreak(lock) || resched) {
1da177e4 5514 spin_unlock(lock);
d86ee480 5515 if (resched)
95c354fe
NP
5516 __cond_resched();
5517 else
5518 cpu_relax();
6df3cecb 5519 ret = 1;
1da177e4 5520 spin_lock(lock);
1da177e4 5521 }
6df3cecb 5522 return ret;
1da177e4 5523}
613afbf8 5524EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5525
613afbf8 5526int __sched __cond_resched_softirq(void)
1da177e4
LT
5527{
5528 BUG_ON(!in_softirq());
5529
d86ee480 5530 if (should_resched()) {
98d82567 5531 local_bh_enable();
1da177e4
LT
5532 __cond_resched();
5533 local_bh_disable();
5534 return 1;
5535 }
5536 return 0;
5537}
613afbf8 5538EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5539
1da177e4
LT
5540/**
5541 * yield - yield the current processor to other threads.
5542 *
72fd4a35 5543 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5544 * thread runnable and calls sys_sched_yield().
5545 */
5546void __sched yield(void)
5547{
5548 set_current_state(TASK_RUNNING);
5549 sys_sched_yield();
5550}
1da177e4
LT
5551EXPORT_SYMBOL(yield);
5552
d95f4122
MG
5553/**
5554 * yield_to - yield the current processor to another thread in
5555 * your thread group, or accelerate that thread toward the
5556 * processor it's on.
16addf95
RD
5557 * @p: target task
5558 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5559 *
5560 * It's the caller's job to ensure that the target task struct
5561 * can't go away on us before we can do any checks.
5562 *
5563 * Returns true if we indeed boosted the target task.
5564 */
5565bool __sched yield_to(struct task_struct *p, bool preempt)
5566{
5567 struct task_struct *curr = current;
5568 struct rq *rq, *p_rq;
5569 unsigned long flags;
5570 bool yielded = 0;
5571
5572 local_irq_save(flags);
5573 rq = this_rq();
5574
5575again:
5576 p_rq = task_rq(p);
5577 double_rq_lock(rq, p_rq);
5578 while (task_rq(p) != p_rq) {
5579 double_rq_unlock(rq, p_rq);
5580 goto again;
5581 }
5582
5583 if (!curr->sched_class->yield_to_task)
5584 goto out;
5585
5586 if (curr->sched_class != p->sched_class)
5587 goto out;
5588
5589 if (task_running(p_rq, p) || p->state)
5590 goto out;
5591
5592 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5593 if (yielded) {
d95f4122 5594 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5595 /*
5596 * Make p's CPU reschedule; pick_next_entity takes care of
5597 * fairness.
5598 */
5599 if (preempt && rq != p_rq)
5600 resched_task(p_rq->curr);
5601 }
d95f4122
MG
5602
5603out:
5604 double_rq_unlock(rq, p_rq);
5605 local_irq_restore(flags);
5606
5607 if (yielded)
5608 schedule();
5609
5610 return yielded;
5611}
5612EXPORT_SYMBOL_GPL(yield_to);
5613
1da177e4 5614/*
41a2d6cf 5615 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5616 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5617 */
5618void __sched io_schedule(void)
5619{
54d35f29 5620 struct rq *rq = raw_rq();
1da177e4 5621
0ff92245 5622 delayacct_blkio_start();
1da177e4 5623 atomic_inc(&rq->nr_iowait);
73c10101 5624 blk_flush_plug(current);
8f0dfc34 5625 current->in_iowait = 1;
1da177e4 5626 schedule();
8f0dfc34 5627 current->in_iowait = 0;
1da177e4 5628 atomic_dec(&rq->nr_iowait);
0ff92245 5629 delayacct_blkio_end();
1da177e4 5630}
1da177e4
LT
5631EXPORT_SYMBOL(io_schedule);
5632
5633long __sched io_schedule_timeout(long timeout)
5634{
54d35f29 5635 struct rq *rq = raw_rq();
1da177e4
LT
5636 long ret;
5637
0ff92245 5638 delayacct_blkio_start();
1da177e4 5639 atomic_inc(&rq->nr_iowait);
73c10101 5640 blk_flush_plug(current);
8f0dfc34 5641 current->in_iowait = 1;
1da177e4 5642 ret = schedule_timeout(timeout);
8f0dfc34 5643 current->in_iowait = 0;
1da177e4 5644 atomic_dec(&rq->nr_iowait);
0ff92245 5645 delayacct_blkio_end();
1da177e4
LT
5646 return ret;
5647}
5648
5649/**
5650 * sys_sched_get_priority_max - return maximum RT priority.
5651 * @policy: scheduling class.
5652 *
5653 * this syscall returns the maximum rt_priority that can be used
5654 * by a given scheduling class.
5655 */
5add95d4 5656SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5657{
5658 int ret = -EINVAL;
5659
5660 switch (policy) {
5661 case SCHED_FIFO:
5662 case SCHED_RR:
5663 ret = MAX_USER_RT_PRIO-1;
5664 break;
5665 case SCHED_NORMAL:
b0a9499c 5666 case SCHED_BATCH:
dd41f596 5667 case SCHED_IDLE:
1da177e4
LT
5668 ret = 0;
5669 break;
5670 }
5671 return ret;
5672}
5673
5674/**
5675 * sys_sched_get_priority_min - return minimum RT priority.
5676 * @policy: scheduling class.
5677 *
5678 * this syscall returns the minimum rt_priority that can be used
5679 * by a given scheduling class.
5680 */
5add95d4 5681SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5682{
5683 int ret = -EINVAL;
5684
5685 switch (policy) {
5686 case SCHED_FIFO:
5687 case SCHED_RR:
5688 ret = 1;
5689 break;
5690 case SCHED_NORMAL:
b0a9499c 5691 case SCHED_BATCH:
dd41f596 5692 case SCHED_IDLE:
1da177e4
LT
5693 ret = 0;
5694 }
5695 return ret;
5696}
5697
5698/**
5699 * sys_sched_rr_get_interval - return the default timeslice of a process.
5700 * @pid: pid of the process.
5701 * @interval: userspace pointer to the timeslice value.
5702 *
5703 * this syscall writes the default timeslice value of a given process
5704 * into the user-space timespec buffer. A value of '0' means infinity.
5705 */
17da2bd9 5706SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5707 struct timespec __user *, interval)
1da177e4 5708{
36c8b586 5709 struct task_struct *p;
a4ec24b4 5710 unsigned int time_slice;
dba091b9
TG
5711 unsigned long flags;
5712 struct rq *rq;
3a5c359a 5713 int retval;
1da177e4 5714 struct timespec t;
1da177e4
LT
5715
5716 if (pid < 0)
3a5c359a 5717 return -EINVAL;
1da177e4
LT
5718
5719 retval = -ESRCH;
1a551ae7 5720 rcu_read_lock();
1da177e4
LT
5721 p = find_process_by_pid(pid);
5722 if (!p)
5723 goto out_unlock;
5724
5725 retval = security_task_getscheduler(p);
5726 if (retval)
5727 goto out_unlock;
5728
dba091b9
TG
5729 rq = task_rq_lock(p, &flags);
5730 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5731 task_rq_unlock(rq, p, &flags);
a4ec24b4 5732
1a551ae7 5733 rcu_read_unlock();
a4ec24b4 5734 jiffies_to_timespec(time_slice, &t);
1da177e4 5735 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5736 return retval;
3a5c359a 5737
1da177e4 5738out_unlock:
1a551ae7 5739 rcu_read_unlock();
1da177e4
LT
5740 return retval;
5741}
5742
7c731e0a 5743static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5744
82a1fcb9 5745void sched_show_task(struct task_struct *p)
1da177e4 5746{
1da177e4 5747 unsigned long free = 0;
36c8b586 5748 unsigned state;
1da177e4 5749
1da177e4 5750 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5751 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5752 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5753#if BITS_PER_LONG == 32
1da177e4 5754 if (state == TASK_RUNNING)
3df0fc5b 5755 printk(KERN_CONT " running ");
1da177e4 5756 else
3df0fc5b 5757 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5758#else
5759 if (state == TASK_RUNNING)
3df0fc5b 5760 printk(KERN_CONT " running task ");
1da177e4 5761 else
3df0fc5b 5762 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5763#endif
5764#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5765 free = stack_not_used(p);
1da177e4 5766#endif
3df0fc5b 5767 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5768 task_pid_nr(p), task_pid_nr(p->real_parent),
5769 (unsigned long)task_thread_info(p)->flags);
1da177e4 5770
5fb5e6de 5771 show_stack(p, NULL);
1da177e4
LT
5772}
5773
e59e2ae2 5774void show_state_filter(unsigned long state_filter)
1da177e4 5775{
36c8b586 5776 struct task_struct *g, *p;
1da177e4 5777
4bd77321 5778#if BITS_PER_LONG == 32
3df0fc5b
PZ
5779 printk(KERN_INFO
5780 " task PC stack pid father\n");
1da177e4 5781#else
3df0fc5b
PZ
5782 printk(KERN_INFO
5783 " task PC stack pid father\n");
1da177e4
LT
5784#endif
5785 read_lock(&tasklist_lock);
5786 do_each_thread(g, p) {
5787 /*
5788 * reset the NMI-timeout, listing all files on a slow
25985edc 5789 * console might take a lot of time:
1da177e4
LT
5790 */
5791 touch_nmi_watchdog();
39bc89fd 5792 if (!state_filter || (p->state & state_filter))
82a1fcb9 5793 sched_show_task(p);
1da177e4
LT
5794 } while_each_thread(g, p);
5795
04c9167f
JF
5796 touch_all_softlockup_watchdogs();
5797
dd41f596
IM
5798#ifdef CONFIG_SCHED_DEBUG
5799 sysrq_sched_debug_show();
5800#endif
1da177e4 5801 read_unlock(&tasklist_lock);
e59e2ae2
IM
5802 /*
5803 * Only show locks if all tasks are dumped:
5804 */
93335a21 5805 if (!state_filter)
e59e2ae2 5806 debug_show_all_locks();
1da177e4
LT
5807}
5808
1df21055
IM
5809void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5810{
dd41f596 5811 idle->sched_class = &idle_sched_class;
1df21055
IM
5812}
5813
f340c0d1
IM
5814/**
5815 * init_idle - set up an idle thread for a given CPU
5816 * @idle: task in question
5817 * @cpu: cpu the idle task belongs to
5818 *
5819 * NOTE: this function does not set the idle thread's NEED_RESCHED
5820 * flag, to make booting more robust.
5821 */
5c1e1767 5822void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5823{
70b97a7f 5824 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5825 unsigned long flags;
5826
05fa785c 5827 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5828
dd41f596 5829 __sched_fork(idle);
06b83b5f 5830 idle->state = TASK_RUNNING;
dd41f596
IM
5831 idle->se.exec_start = sched_clock();
5832
96f874e2 5833 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5834 /*
5835 * We're having a chicken and egg problem, even though we are
5836 * holding rq->lock, the cpu isn't yet set to this cpu so the
5837 * lockdep check in task_group() will fail.
5838 *
5839 * Similar case to sched_fork(). / Alternatively we could
5840 * use task_rq_lock() here and obtain the other rq->lock.
5841 *
5842 * Silence PROVE_RCU
5843 */
5844 rcu_read_lock();
dd41f596 5845 __set_task_cpu(idle, cpu);
6506cf6c 5846 rcu_read_unlock();
1da177e4 5847
1da177e4 5848 rq->curr = rq->idle = idle;
3ca7a440
PZ
5849#if defined(CONFIG_SMP)
5850 idle->on_cpu = 1;
4866cde0 5851#endif
05fa785c 5852 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5853
5854 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5855#if defined(CONFIG_PREEMPT)
5856 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5857#else
a1261f54 5858 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5859#endif
dd41f596
IM
5860 /*
5861 * The idle tasks have their own, simple scheduling class:
5862 */
5863 idle->sched_class = &idle_sched_class;
868baf07 5864 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5865}
5866
5867/*
5868 * In a system that switches off the HZ timer nohz_cpu_mask
5869 * indicates which cpus entered this state. This is used
5870 * in the rcu update to wait only for active cpus. For system
5871 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5872 * always be CPU_BITS_NONE.
1da177e4 5873 */
6a7b3dc3 5874cpumask_var_t nohz_cpu_mask;
1da177e4 5875
19978ca6
IM
5876/*
5877 * Increase the granularity value when there are more CPUs,
5878 * because with more CPUs the 'effective latency' as visible
5879 * to users decreases. But the relationship is not linear,
5880 * so pick a second-best guess by going with the log2 of the
5881 * number of CPUs.
5882 *
5883 * This idea comes from the SD scheduler of Con Kolivas:
5884 */
acb4a848 5885static int get_update_sysctl_factor(void)
19978ca6 5886{
4ca3ef71 5887 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5888 unsigned int factor;
5889
5890 switch (sysctl_sched_tunable_scaling) {
5891 case SCHED_TUNABLESCALING_NONE:
5892 factor = 1;
5893 break;
5894 case SCHED_TUNABLESCALING_LINEAR:
5895 factor = cpus;
5896 break;
5897 case SCHED_TUNABLESCALING_LOG:
5898 default:
5899 factor = 1 + ilog2(cpus);
5900 break;
5901 }
19978ca6 5902
acb4a848
CE
5903 return factor;
5904}
19978ca6 5905
acb4a848
CE
5906static void update_sysctl(void)
5907{
5908 unsigned int factor = get_update_sysctl_factor();
19978ca6 5909
0bcdcf28
CE
5910#define SET_SYSCTL(name) \
5911 (sysctl_##name = (factor) * normalized_sysctl_##name)
5912 SET_SYSCTL(sched_min_granularity);
5913 SET_SYSCTL(sched_latency);
5914 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5915#undef SET_SYSCTL
5916}
55cd5340 5917
0bcdcf28
CE
5918static inline void sched_init_granularity(void)
5919{
5920 update_sysctl();
19978ca6
IM
5921}
5922
1da177e4
LT
5923#ifdef CONFIG_SMP
5924/*
5925 * This is how migration works:
5926 *
969c7921
TH
5927 * 1) we invoke migration_cpu_stop() on the target CPU using
5928 * stop_one_cpu().
5929 * 2) stopper starts to run (implicitly forcing the migrated thread
5930 * off the CPU)
5931 * 3) it checks whether the migrated task is still in the wrong runqueue.
5932 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5933 * it and puts it into the right queue.
969c7921
TH
5934 * 5) stopper completes and stop_one_cpu() returns and the migration
5935 * is done.
1da177e4
LT
5936 */
5937
5938/*
5939 * Change a given task's CPU affinity. Migrate the thread to a
5940 * proper CPU and schedule it away if the CPU it's executing on
5941 * is removed from the allowed bitmask.
5942 *
5943 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5944 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5945 * call is not atomic; no spinlocks may be held.
5946 */
96f874e2 5947int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5948{
5949 unsigned long flags;
70b97a7f 5950 struct rq *rq;
969c7921 5951 unsigned int dest_cpu;
48f24c4d 5952 int ret = 0;
1da177e4
LT
5953
5954 rq = task_rq_lock(p, &flags);
e2912009 5955
6ad4c188 5956 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5957 ret = -EINVAL;
5958 goto out;
5959 }
5960
9985b0ba 5961 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5962 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5963 ret = -EINVAL;
5964 goto out;
5965 }
5966
73fe6aae 5967 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5968 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5969 else {
96f874e2
RR
5970 cpumask_copy(&p->cpus_allowed, new_mask);
5971 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5972 }
5973
1da177e4 5974 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5975 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5976 goto out;
5977
969c7921 5978 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5979 if (p->on_rq) {
969c7921 5980 struct migration_arg arg = { p, dest_cpu };
1da177e4 5981 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5982 task_rq_unlock(rq, p, &flags);
969c7921 5983 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5984 tlb_migrate_finish(p->mm);
5985 return 0;
5986 }
5987out:
0122ec5b 5988 task_rq_unlock(rq, p, &flags);
48f24c4d 5989
1da177e4
LT
5990 return ret;
5991}
cd8ba7cd 5992EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5993
5994/*
41a2d6cf 5995 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5996 * this because either it can't run here any more (set_cpus_allowed()
5997 * away from this CPU, or CPU going down), or because we're
5998 * attempting to rebalance this task on exec (sched_exec).
5999 *
6000 * So we race with normal scheduler movements, but that's OK, as long
6001 * as the task is no longer on this CPU.
efc30814
KK
6002 *
6003 * Returns non-zero if task was successfully migrated.
1da177e4 6004 */
efc30814 6005static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6006{
70b97a7f 6007 struct rq *rq_dest, *rq_src;
e2912009 6008 int ret = 0;
1da177e4 6009
e761b772 6010 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6011 return ret;
1da177e4
LT
6012
6013 rq_src = cpu_rq(src_cpu);
6014 rq_dest = cpu_rq(dest_cpu);
6015
0122ec5b 6016 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6017 double_rq_lock(rq_src, rq_dest);
6018 /* Already moved. */
6019 if (task_cpu(p) != src_cpu)
b1e38734 6020 goto done;
1da177e4 6021 /* Affinity changed (again). */
96f874e2 6022 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6023 goto fail;
1da177e4 6024
e2912009
PZ
6025 /*
6026 * If we're not on a rq, the next wake-up will ensure we're
6027 * placed properly.
6028 */
fd2f4419 6029 if (p->on_rq) {
2e1cb74a 6030 deactivate_task(rq_src, p, 0);
e2912009 6031 set_task_cpu(p, dest_cpu);
dd41f596 6032 activate_task(rq_dest, p, 0);
15afe09b 6033 check_preempt_curr(rq_dest, p, 0);
1da177e4 6034 }
b1e38734 6035done:
efc30814 6036 ret = 1;
b1e38734 6037fail:
1da177e4 6038 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6039 raw_spin_unlock(&p->pi_lock);
efc30814 6040 return ret;
1da177e4
LT
6041}
6042
6043/*
969c7921
TH
6044 * migration_cpu_stop - this will be executed by a highprio stopper thread
6045 * and performs thread migration by bumping thread off CPU then
6046 * 'pushing' onto another runqueue.
1da177e4 6047 */
969c7921 6048static int migration_cpu_stop(void *data)
1da177e4 6049{
969c7921 6050 struct migration_arg *arg = data;
f7b4cddc 6051
969c7921
TH
6052 /*
6053 * The original target cpu might have gone down and we might
6054 * be on another cpu but it doesn't matter.
6055 */
f7b4cddc 6056 local_irq_disable();
969c7921 6057 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6058 local_irq_enable();
1da177e4 6059 return 0;
f7b4cddc
ON
6060}
6061
1da177e4 6062#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6063
054b9108 6064/*
48c5ccae
PZ
6065 * Ensures that the idle task is using init_mm right before its cpu goes
6066 * offline.
054b9108 6067 */
48c5ccae 6068void idle_task_exit(void)
1da177e4 6069{
48c5ccae 6070 struct mm_struct *mm = current->active_mm;
e76bd8d9 6071
48c5ccae 6072 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6073
48c5ccae
PZ
6074 if (mm != &init_mm)
6075 switch_mm(mm, &init_mm, current);
6076 mmdrop(mm);
1da177e4
LT
6077}
6078
6079/*
6080 * While a dead CPU has no uninterruptible tasks queued at this point,
6081 * it might still have a nonzero ->nr_uninterruptible counter, because
6082 * for performance reasons the counter is not stricly tracking tasks to
6083 * their home CPUs. So we just add the counter to another CPU's counter,
6084 * to keep the global sum constant after CPU-down:
6085 */
70b97a7f 6086static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6087{
6ad4c188 6088 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6089
1da177e4
LT
6090 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6091 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6092}
6093
dd41f596 6094/*
48c5ccae 6095 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6096 */
48c5ccae 6097static void calc_global_load_remove(struct rq *rq)
1da177e4 6098{
48c5ccae
PZ
6099 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6100 rq->calc_load_active = 0;
1da177e4
LT
6101}
6102
48f24c4d 6103/*
48c5ccae
PZ
6104 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6105 * try_to_wake_up()->select_task_rq().
6106 *
6107 * Called with rq->lock held even though we'er in stop_machine() and
6108 * there's no concurrency possible, we hold the required locks anyway
6109 * because of lock validation efforts.
1da177e4 6110 */
48c5ccae 6111static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6112{
70b97a7f 6113 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6114 struct task_struct *next, *stop = rq->stop;
6115 int dest_cpu;
1da177e4
LT
6116
6117 /*
48c5ccae
PZ
6118 * Fudge the rq selection such that the below task selection loop
6119 * doesn't get stuck on the currently eligible stop task.
6120 *
6121 * We're currently inside stop_machine() and the rq is either stuck
6122 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6123 * either way we should never end up calling schedule() until we're
6124 * done here.
1da177e4 6125 */
48c5ccae 6126 rq->stop = NULL;
48f24c4d 6127
dd41f596 6128 for ( ; ; ) {
48c5ccae
PZ
6129 /*
6130 * There's this thread running, bail when that's the only
6131 * remaining thread.
6132 */
6133 if (rq->nr_running == 1)
dd41f596 6134 break;
48c5ccae 6135
b67802ea 6136 next = pick_next_task(rq);
48c5ccae 6137 BUG_ON(!next);
79c53799 6138 next->sched_class->put_prev_task(rq, next);
e692ab53 6139
48c5ccae
PZ
6140 /* Find suitable destination for @next, with force if needed. */
6141 dest_cpu = select_fallback_rq(dead_cpu, next);
6142 raw_spin_unlock(&rq->lock);
6143
6144 __migrate_task(next, dead_cpu, dest_cpu);
6145
6146 raw_spin_lock(&rq->lock);
1da177e4 6147 }
dce48a84 6148
48c5ccae 6149 rq->stop = stop;
dce48a84 6150}
48c5ccae 6151
1da177e4
LT
6152#endif /* CONFIG_HOTPLUG_CPU */
6153
e692ab53
NP
6154#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6155
6156static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6157 {
6158 .procname = "sched_domain",
c57baf1e 6159 .mode = 0555,
e0361851 6160 },
56992309 6161 {}
e692ab53
NP
6162};
6163
6164static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6165 {
6166 .procname = "kernel",
c57baf1e 6167 .mode = 0555,
e0361851
AD
6168 .child = sd_ctl_dir,
6169 },
56992309 6170 {}
e692ab53
NP
6171};
6172
6173static struct ctl_table *sd_alloc_ctl_entry(int n)
6174{
6175 struct ctl_table *entry =
5cf9f062 6176 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6177
e692ab53
NP
6178 return entry;
6179}
6180
6382bc90
MM
6181static void sd_free_ctl_entry(struct ctl_table **tablep)
6182{
cd790076 6183 struct ctl_table *entry;
6382bc90 6184
cd790076
MM
6185 /*
6186 * In the intermediate directories, both the child directory and
6187 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6188 * will always be set. In the lowest directory the names are
cd790076
MM
6189 * static strings and all have proc handlers.
6190 */
6191 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6192 if (entry->child)
6193 sd_free_ctl_entry(&entry->child);
cd790076
MM
6194 if (entry->proc_handler == NULL)
6195 kfree(entry->procname);
6196 }
6382bc90
MM
6197
6198 kfree(*tablep);
6199 *tablep = NULL;
6200}
6201
e692ab53 6202static void
e0361851 6203set_table_entry(struct ctl_table *entry,
e692ab53
NP
6204 const char *procname, void *data, int maxlen,
6205 mode_t mode, proc_handler *proc_handler)
6206{
e692ab53
NP
6207 entry->procname = procname;
6208 entry->data = data;
6209 entry->maxlen = maxlen;
6210 entry->mode = mode;
6211 entry->proc_handler = proc_handler;
6212}
6213
6214static struct ctl_table *
6215sd_alloc_ctl_domain_table(struct sched_domain *sd)
6216{
a5d8c348 6217 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6218
ad1cdc1d
MM
6219 if (table == NULL)
6220 return NULL;
6221
e0361851 6222 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6223 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6224 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6225 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6226 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6227 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6228 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6229 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6230 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6231 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6232 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6233 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6234 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6235 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6236 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6237 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6238 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6239 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6240 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6241 &sd->cache_nice_tries,
6242 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6243 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6244 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6245 set_table_entry(&table[11], "name", sd->name,
6246 CORENAME_MAX_SIZE, 0444, proc_dostring);
6247 /* &table[12] is terminator */
e692ab53
NP
6248
6249 return table;
6250}
6251
9a4e7159 6252static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6253{
6254 struct ctl_table *entry, *table;
6255 struct sched_domain *sd;
6256 int domain_num = 0, i;
6257 char buf[32];
6258
6259 for_each_domain(cpu, sd)
6260 domain_num++;
6261 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6262 if (table == NULL)
6263 return NULL;
e692ab53
NP
6264
6265 i = 0;
6266 for_each_domain(cpu, sd) {
6267 snprintf(buf, 32, "domain%d", i);
e692ab53 6268 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6269 entry->mode = 0555;
e692ab53
NP
6270 entry->child = sd_alloc_ctl_domain_table(sd);
6271 entry++;
6272 i++;
6273 }
6274 return table;
6275}
6276
6277static struct ctl_table_header *sd_sysctl_header;
6382bc90 6278static void register_sched_domain_sysctl(void)
e692ab53 6279{
6ad4c188 6280 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6281 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6282 char buf[32];
6283
7378547f
MM
6284 WARN_ON(sd_ctl_dir[0].child);
6285 sd_ctl_dir[0].child = entry;
6286
ad1cdc1d
MM
6287 if (entry == NULL)
6288 return;
6289
6ad4c188 6290 for_each_possible_cpu(i) {
e692ab53 6291 snprintf(buf, 32, "cpu%d", i);
e692ab53 6292 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6293 entry->mode = 0555;
e692ab53 6294 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6295 entry++;
e692ab53 6296 }
7378547f
MM
6297
6298 WARN_ON(sd_sysctl_header);
e692ab53
NP
6299 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6300}
6382bc90 6301
7378547f 6302/* may be called multiple times per register */
6382bc90
MM
6303static void unregister_sched_domain_sysctl(void)
6304{
7378547f
MM
6305 if (sd_sysctl_header)
6306 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6307 sd_sysctl_header = NULL;
7378547f
MM
6308 if (sd_ctl_dir[0].child)
6309 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6310}
e692ab53 6311#else
6382bc90
MM
6312static void register_sched_domain_sysctl(void)
6313{
6314}
6315static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6316{
6317}
6318#endif
6319
1f11eb6a
GH
6320static void set_rq_online(struct rq *rq)
6321{
6322 if (!rq->online) {
6323 const struct sched_class *class;
6324
c6c4927b 6325 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6326 rq->online = 1;
6327
6328 for_each_class(class) {
6329 if (class->rq_online)
6330 class->rq_online(rq);
6331 }
6332 }
6333}
6334
6335static void set_rq_offline(struct rq *rq)
6336{
6337 if (rq->online) {
6338 const struct sched_class *class;
6339
6340 for_each_class(class) {
6341 if (class->rq_offline)
6342 class->rq_offline(rq);
6343 }
6344
c6c4927b 6345 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6346 rq->online = 0;
6347 }
6348}
6349
1da177e4
LT
6350/*
6351 * migration_call - callback that gets triggered when a CPU is added.
6352 * Here we can start up the necessary migration thread for the new CPU.
6353 */
48f24c4d
IM
6354static int __cpuinit
6355migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6356{
48f24c4d 6357 int cpu = (long)hcpu;
1da177e4 6358 unsigned long flags;
969c7921 6359 struct rq *rq = cpu_rq(cpu);
1da177e4 6360
48c5ccae 6361 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6362
1da177e4 6363 case CPU_UP_PREPARE:
a468d389 6364 rq->calc_load_update = calc_load_update;
1da177e4 6365 break;
48f24c4d 6366
1da177e4 6367 case CPU_ONLINE:
1f94ef59 6368 /* Update our root-domain */
05fa785c 6369 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6370 if (rq->rd) {
c6c4927b 6371 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6372
6373 set_rq_online(rq);
1f94ef59 6374 }
05fa785c 6375 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6376 break;
48f24c4d 6377
1da177e4 6378#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6379 case CPU_DYING:
317f3941 6380 sched_ttwu_pending();
57d885fe 6381 /* Update our root-domain */
05fa785c 6382 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6383 if (rq->rd) {
c6c4927b 6384 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6385 set_rq_offline(rq);
57d885fe 6386 }
48c5ccae
PZ
6387 migrate_tasks(cpu);
6388 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6389 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6390
6391 migrate_nr_uninterruptible(rq);
6392 calc_global_load_remove(rq);
57d885fe 6393 break;
1da177e4
LT
6394#endif
6395 }
49c022e6
PZ
6396
6397 update_max_interval();
6398
1da177e4
LT
6399 return NOTIFY_OK;
6400}
6401
f38b0820
PM
6402/*
6403 * Register at high priority so that task migration (migrate_all_tasks)
6404 * happens before everything else. This has to be lower priority than
cdd6c482 6405 * the notifier in the perf_event subsystem, though.
1da177e4 6406 */
26c2143b 6407static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6408 .notifier_call = migration_call,
50a323b7 6409 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6410};
6411
3a101d05
TH
6412static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6413 unsigned long action, void *hcpu)
6414{
6415 switch (action & ~CPU_TASKS_FROZEN) {
6416 case CPU_ONLINE:
6417 case CPU_DOWN_FAILED:
6418 set_cpu_active((long)hcpu, true);
6419 return NOTIFY_OK;
6420 default:
6421 return NOTIFY_DONE;
6422 }
6423}
6424
6425static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6426 unsigned long action, void *hcpu)
6427{
6428 switch (action & ~CPU_TASKS_FROZEN) {
6429 case CPU_DOWN_PREPARE:
6430 set_cpu_active((long)hcpu, false);
6431 return NOTIFY_OK;
6432 default:
6433 return NOTIFY_DONE;
6434 }
6435}
6436
7babe8db 6437static int __init migration_init(void)
1da177e4
LT
6438{
6439 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6440 int err;
48f24c4d 6441
3a101d05 6442 /* Initialize migration for the boot CPU */
07dccf33
AM
6443 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6444 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6445 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6446 register_cpu_notifier(&migration_notifier);
7babe8db 6447
3a101d05
TH
6448 /* Register cpu active notifiers */
6449 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6450 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6451
a004cd42 6452 return 0;
1da177e4 6453}
7babe8db 6454early_initcall(migration_init);
1da177e4
LT
6455#endif
6456
6457#ifdef CONFIG_SMP
476f3534 6458
4cb98839
PZ
6459static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6460
3e9830dc 6461#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6462
f6630114
MT
6463static __read_mostly int sched_domain_debug_enabled;
6464
6465static int __init sched_domain_debug_setup(char *str)
6466{
6467 sched_domain_debug_enabled = 1;
6468
6469 return 0;
6470}
6471early_param("sched_debug", sched_domain_debug_setup);
6472
7c16ec58 6473static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6474 struct cpumask *groupmask)
1da177e4 6475{
4dcf6aff 6476 struct sched_group *group = sd->groups;
434d53b0 6477 char str[256];
1da177e4 6478
968ea6d8 6479 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6480 cpumask_clear(groupmask);
4dcf6aff
IM
6481
6482 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6483
6484 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6485 printk("does not load-balance\n");
4dcf6aff 6486 if (sd->parent)
3df0fc5b
PZ
6487 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6488 " has parent");
4dcf6aff 6489 return -1;
41c7ce9a
NP
6490 }
6491
3df0fc5b 6492 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6493
758b2cdc 6494 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6495 printk(KERN_ERR "ERROR: domain->span does not contain "
6496 "CPU%d\n", cpu);
4dcf6aff 6497 }
758b2cdc 6498 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6499 printk(KERN_ERR "ERROR: domain->groups does not contain"
6500 " CPU%d\n", cpu);
4dcf6aff 6501 }
1da177e4 6502
4dcf6aff 6503 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6504 do {
4dcf6aff 6505 if (!group) {
3df0fc5b
PZ
6506 printk("\n");
6507 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6508 break;
6509 }
6510
18a3885f 6511 if (!group->cpu_power) {
3df0fc5b
PZ
6512 printk(KERN_CONT "\n");
6513 printk(KERN_ERR "ERROR: domain->cpu_power not "
6514 "set\n");
4dcf6aff
IM
6515 break;
6516 }
1da177e4 6517
758b2cdc 6518 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6519 printk(KERN_CONT "\n");
6520 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6521 break;
6522 }
1da177e4 6523
758b2cdc 6524 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6525 printk(KERN_CONT "\n");
6526 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6527 break;
6528 }
1da177e4 6529
758b2cdc 6530 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6531
968ea6d8 6532 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6533
3df0fc5b 6534 printk(KERN_CONT " %s", str);
18a3885f 6535 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6536 printk(KERN_CONT " (cpu_power = %d)",
6537 group->cpu_power);
381512cf 6538 }
1da177e4 6539
4dcf6aff
IM
6540 group = group->next;
6541 } while (group != sd->groups);
3df0fc5b 6542 printk(KERN_CONT "\n");
1da177e4 6543
758b2cdc 6544 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6545 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6546
758b2cdc
RR
6547 if (sd->parent &&
6548 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6549 printk(KERN_ERR "ERROR: parent span is not a superset "
6550 "of domain->span\n");
4dcf6aff
IM
6551 return 0;
6552}
1da177e4 6553
4dcf6aff
IM
6554static void sched_domain_debug(struct sched_domain *sd, int cpu)
6555{
6556 int level = 0;
1da177e4 6557
f6630114
MT
6558 if (!sched_domain_debug_enabled)
6559 return;
6560
4dcf6aff
IM
6561 if (!sd) {
6562 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6563 return;
6564 }
1da177e4 6565
4dcf6aff
IM
6566 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6567
6568 for (;;) {
4cb98839 6569 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6570 break;
1da177e4
LT
6571 level++;
6572 sd = sd->parent;
33859f7f 6573 if (!sd)
4dcf6aff
IM
6574 break;
6575 }
1da177e4 6576}
6d6bc0ad 6577#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6578# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6579#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6580
1a20ff27 6581static int sd_degenerate(struct sched_domain *sd)
245af2c7 6582{
758b2cdc 6583 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6584 return 1;
6585
6586 /* Following flags need at least 2 groups */
6587 if (sd->flags & (SD_LOAD_BALANCE |
6588 SD_BALANCE_NEWIDLE |
6589 SD_BALANCE_FORK |
89c4710e
SS
6590 SD_BALANCE_EXEC |
6591 SD_SHARE_CPUPOWER |
6592 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6593 if (sd->groups != sd->groups->next)
6594 return 0;
6595 }
6596
6597 /* Following flags don't use groups */
c88d5910 6598 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6599 return 0;
6600
6601 return 1;
6602}
6603
48f24c4d
IM
6604static int
6605sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6606{
6607 unsigned long cflags = sd->flags, pflags = parent->flags;
6608
6609 if (sd_degenerate(parent))
6610 return 1;
6611
758b2cdc 6612 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6613 return 0;
6614
245af2c7
SS
6615 /* Flags needing groups don't count if only 1 group in parent */
6616 if (parent->groups == parent->groups->next) {
6617 pflags &= ~(SD_LOAD_BALANCE |
6618 SD_BALANCE_NEWIDLE |
6619 SD_BALANCE_FORK |
89c4710e
SS
6620 SD_BALANCE_EXEC |
6621 SD_SHARE_CPUPOWER |
6622 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6623 if (nr_node_ids == 1)
6624 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6625 }
6626 if (~cflags & pflags)
6627 return 0;
6628
6629 return 1;
6630}
6631
dce840a0 6632static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6633{
dce840a0 6634 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6635
68e74568 6636 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6637 free_cpumask_var(rd->rto_mask);
6638 free_cpumask_var(rd->online);
6639 free_cpumask_var(rd->span);
6640 kfree(rd);
6641}
6642
57d885fe
GH
6643static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6644{
a0490fa3 6645 struct root_domain *old_rd = NULL;
57d885fe 6646 unsigned long flags;
57d885fe 6647
05fa785c 6648 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6649
6650 if (rq->rd) {
a0490fa3 6651 old_rd = rq->rd;
57d885fe 6652
c6c4927b 6653 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6654 set_rq_offline(rq);
57d885fe 6655
c6c4927b 6656 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6657
a0490fa3
IM
6658 /*
6659 * If we dont want to free the old_rt yet then
6660 * set old_rd to NULL to skip the freeing later
6661 * in this function:
6662 */
6663 if (!atomic_dec_and_test(&old_rd->refcount))
6664 old_rd = NULL;
57d885fe
GH
6665 }
6666
6667 atomic_inc(&rd->refcount);
6668 rq->rd = rd;
6669
c6c4927b 6670 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6671 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6672 set_rq_online(rq);
57d885fe 6673
05fa785c 6674 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6675
6676 if (old_rd)
dce840a0 6677 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6678}
6679
68c38fc3 6680static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6681{
6682 memset(rd, 0, sizeof(*rd));
6683
68c38fc3 6684 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6685 goto out;
68c38fc3 6686 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6687 goto free_span;
68c38fc3 6688 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6689 goto free_online;
6e0534f2 6690
68c38fc3 6691 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6692 goto free_rto_mask;
c6c4927b 6693 return 0;
6e0534f2 6694
68e74568
RR
6695free_rto_mask:
6696 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6697free_online:
6698 free_cpumask_var(rd->online);
6699free_span:
6700 free_cpumask_var(rd->span);
0c910d28 6701out:
c6c4927b 6702 return -ENOMEM;
57d885fe
GH
6703}
6704
6705static void init_defrootdomain(void)
6706{
68c38fc3 6707 init_rootdomain(&def_root_domain);
c6c4927b 6708
57d885fe
GH
6709 atomic_set(&def_root_domain.refcount, 1);
6710}
6711
dc938520 6712static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6713{
6714 struct root_domain *rd;
6715
6716 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6717 if (!rd)
6718 return NULL;
6719
68c38fc3 6720 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6721 kfree(rd);
6722 return NULL;
6723 }
57d885fe
GH
6724
6725 return rd;
6726}
6727
dce840a0
PZ
6728static void free_sched_domain(struct rcu_head *rcu)
6729{
6730 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6731 if (atomic_dec_and_test(&sd->groups->ref))
6732 kfree(sd->groups);
6733 kfree(sd);
6734}
6735
6736static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6737{
6738 call_rcu(&sd->rcu, free_sched_domain);
6739}
6740
6741static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6742{
6743 for (; sd; sd = sd->parent)
6744 destroy_sched_domain(sd, cpu);
6745}
6746
1da177e4 6747/*
0eab9146 6748 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6749 * hold the hotplug lock.
6750 */
0eab9146
IM
6751static void
6752cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6753{
70b97a7f 6754 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6755 struct sched_domain *tmp;
6756
6757 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6758 for (tmp = sd; tmp; ) {
245af2c7
SS
6759 struct sched_domain *parent = tmp->parent;
6760 if (!parent)
6761 break;
f29c9b1c 6762
1a848870 6763 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6764 tmp->parent = parent->parent;
1a848870
SS
6765 if (parent->parent)
6766 parent->parent->child = tmp;
dce840a0 6767 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6768 } else
6769 tmp = tmp->parent;
245af2c7
SS
6770 }
6771
1a848870 6772 if (sd && sd_degenerate(sd)) {
dce840a0 6773 tmp = sd;
245af2c7 6774 sd = sd->parent;
dce840a0 6775 destroy_sched_domain(tmp, cpu);
1a848870
SS
6776 if (sd)
6777 sd->child = NULL;
6778 }
1da177e4 6779
4cb98839 6780 sched_domain_debug(sd, cpu);
1da177e4 6781
57d885fe 6782 rq_attach_root(rq, rd);
dce840a0 6783 tmp = rq->sd;
674311d5 6784 rcu_assign_pointer(rq->sd, sd);
dce840a0 6785 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6786}
6787
6788/* cpus with isolated domains */
dcc30a35 6789static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6790
6791/* Setup the mask of cpus configured for isolated domains */
6792static int __init isolated_cpu_setup(char *str)
6793{
bdddd296 6794 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6795 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6796 return 1;
6797}
6798
8927f494 6799__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6800
9c1cfda2 6801#define SD_NODES_PER_DOMAIN 16
1da177e4 6802
9c1cfda2 6803#ifdef CONFIG_NUMA
198e2f18 6804
9c1cfda2
JH
6805/**
6806 * find_next_best_node - find the next node to include in a sched_domain
6807 * @node: node whose sched_domain we're building
6808 * @used_nodes: nodes already in the sched_domain
6809 *
41a2d6cf 6810 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6811 * finds the closest node not already in the @used_nodes map.
6812 *
6813 * Should use nodemask_t.
6814 */
c5f59f08 6815static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6816{
6817 int i, n, val, min_val, best_node = 0;
6818
6819 min_val = INT_MAX;
6820
076ac2af 6821 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6822 /* Start at @node */
076ac2af 6823 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6824
6825 if (!nr_cpus_node(n))
6826 continue;
6827
6828 /* Skip already used nodes */
c5f59f08 6829 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6830 continue;
6831
6832 /* Simple min distance search */
6833 val = node_distance(node, n);
6834
6835 if (val < min_val) {
6836 min_val = val;
6837 best_node = n;
6838 }
6839 }
6840
c5f59f08 6841 node_set(best_node, *used_nodes);
9c1cfda2
JH
6842 return best_node;
6843}
6844
6845/**
6846 * sched_domain_node_span - get a cpumask for a node's sched_domain
6847 * @node: node whose cpumask we're constructing
73486722 6848 * @span: resulting cpumask
9c1cfda2 6849 *
41a2d6cf 6850 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6851 * should be one that prevents unnecessary balancing, but also spreads tasks
6852 * out optimally.
6853 */
96f874e2 6854static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6855{
c5f59f08 6856 nodemask_t used_nodes;
48f24c4d 6857 int i;
9c1cfda2 6858
6ca09dfc 6859 cpumask_clear(span);
c5f59f08 6860 nodes_clear(used_nodes);
9c1cfda2 6861
6ca09dfc 6862 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6863 node_set(node, used_nodes);
9c1cfda2
JH
6864
6865 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6866 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6867
6ca09dfc 6868 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6869 }
9c1cfda2 6870}
d3081f52
PZ
6871
6872static const struct cpumask *cpu_node_mask(int cpu)
6873{
6874 lockdep_assert_held(&sched_domains_mutex);
6875
6876 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6877
6878 return sched_domains_tmpmask;
6879}
2c402dc3
PZ
6880
6881static const struct cpumask *cpu_allnodes_mask(int cpu)
6882{
6883 return cpu_possible_mask;
6884}
6d6bc0ad 6885#endif /* CONFIG_NUMA */
9c1cfda2 6886
d3081f52
PZ
6887static const struct cpumask *cpu_cpu_mask(int cpu)
6888{
6889 return cpumask_of_node(cpu_to_node(cpu));
6890}
6891
5c45bf27 6892int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6893
dce840a0
PZ
6894struct sd_data {
6895 struct sched_domain **__percpu sd;
6896 struct sched_group **__percpu sg;
6897};
6898
49a02c51 6899struct s_data {
21d42ccf 6900 struct sched_domain ** __percpu sd;
49a02c51
AH
6901 struct root_domain *rd;
6902};
6903
2109b99e 6904enum s_alloc {
2109b99e 6905 sa_rootdomain,
21d42ccf 6906 sa_sd,
dce840a0 6907 sa_sd_storage,
2109b99e
AH
6908 sa_none,
6909};
6910
54ab4ff4
PZ
6911struct sched_domain_topology_level;
6912
6913typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6914typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6915
6916struct sched_domain_topology_level {
2c402dc3
PZ
6917 sched_domain_init_f init;
6918 sched_domain_mask_f mask;
54ab4ff4 6919 struct sd_data data;
eb7a74e6
PZ
6920};
6921
9c1cfda2 6922/*
dce840a0 6923 * Assumes the sched_domain tree is fully constructed
9c1cfda2 6924 */
dce840a0 6925static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6926{
dce840a0
PZ
6927 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6928 struct sched_domain *child = sd->child;
1da177e4 6929
dce840a0
PZ
6930 if (child)
6931 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6932
6711cab4 6933 if (sg)
dce840a0
PZ
6934 *sg = *per_cpu_ptr(sdd->sg, cpu);
6935
6936 return cpu;
1e9f28fa 6937}
1e9f28fa 6938
01a08546 6939/*
dce840a0
PZ
6940 * build_sched_groups takes the cpumask we wish to span, and a pointer
6941 * to a function which identifies what group(along with sched group) a CPU
6942 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6943 * (due to the fact that we keep track of groups covered with a struct cpumask).
6944 *
6945 * build_sched_groups will build a circular linked list of the groups
6946 * covered by the given span, and will set each group's ->cpumask correctly,
6947 * and ->cpu_power to 0.
01a08546 6948 */
dce840a0 6949static void
f96225fd 6950build_sched_groups(struct sched_domain *sd)
1da177e4 6951{
dce840a0
PZ
6952 struct sched_group *first = NULL, *last = NULL;
6953 struct sd_data *sdd = sd->private;
6954 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6955 struct cpumask *covered;
dce840a0 6956 int i;
9c1cfda2 6957
f96225fd
PZ
6958 lockdep_assert_held(&sched_domains_mutex);
6959 covered = sched_domains_tmpmask;
6960
dce840a0 6961 cpumask_clear(covered);
6711cab4 6962
dce840a0
PZ
6963 for_each_cpu(i, span) {
6964 struct sched_group *sg;
6965 int group = get_group(i, sdd, &sg);
6966 int j;
6711cab4 6967
dce840a0
PZ
6968 if (cpumask_test_cpu(i, covered))
6969 continue;
6711cab4 6970
dce840a0
PZ
6971 cpumask_clear(sched_group_cpus(sg));
6972 sg->cpu_power = 0;
0601a88d 6973
dce840a0
PZ
6974 for_each_cpu(j, span) {
6975 if (get_group(j, sdd, NULL) != group)
6976 continue;
0601a88d 6977
dce840a0
PZ
6978 cpumask_set_cpu(j, covered);
6979 cpumask_set_cpu(j, sched_group_cpus(sg));
6980 }
0601a88d 6981
dce840a0
PZ
6982 if (!first)
6983 first = sg;
6984 if (last)
6985 last->next = sg;
6986 last = sg;
6987 }
6988 last->next = first;
0601a88d 6989}
51888ca2 6990
89c4710e
SS
6991/*
6992 * Initialize sched groups cpu_power.
6993 *
6994 * cpu_power indicates the capacity of sched group, which is used while
6995 * distributing the load between different sched groups in a sched domain.
6996 * Typically cpu_power for all the groups in a sched domain will be same unless
6997 * there are asymmetries in the topology. If there are asymmetries, group
6998 * having more cpu_power will pickup more load compared to the group having
6999 * less cpu_power.
89c4710e
SS
7000 */
7001static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7002{
89c4710e
SS
7003 WARN_ON(!sd || !sd->groups);
7004
13318a71 7005 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7006 return;
7007
aae6d3dd
SS
7008 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7009
d274cb30 7010 update_group_power(sd, cpu);
89c4710e
SS
7011}
7012
7c16ec58
MT
7013/*
7014 * Initializers for schedule domains
7015 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7016 */
7017
a5d8c348
IM
7018#ifdef CONFIG_SCHED_DEBUG
7019# define SD_INIT_NAME(sd, type) sd->name = #type
7020#else
7021# define SD_INIT_NAME(sd, type) do { } while (0)
7022#endif
7023
54ab4ff4
PZ
7024#define SD_INIT_FUNC(type) \
7025static noinline struct sched_domain * \
7026sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7027{ \
7028 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7029 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7030 SD_INIT_NAME(sd, type); \
7031 sd->private = &tl->data; \
7032 return sd; \
7c16ec58
MT
7033}
7034
7035SD_INIT_FUNC(CPU)
7036#ifdef CONFIG_NUMA
7037 SD_INIT_FUNC(ALLNODES)
7038 SD_INIT_FUNC(NODE)
7039#endif
7040#ifdef CONFIG_SCHED_SMT
7041 SD_INIT_FUNC(SIBLING)
7042#endif
7043#ifdef CONFIG_SCHED_MC
7044 SD_INIT_FUNC(MC)
7045#endif
01a08546
HC
7046#ifdef CONFIG_SCHED_BOOK
7047 SD_INIT_FUNC(BOOK)
7048#endif
7c16ec58 7049
1d3504fc 7050static int default_relax_domain_level = -1;
60495e77 7051int sched_domain_level_max;
1d3504fc
HS
7052
7053static int __init setup_relax_domain_level(char *str)
7054{
30e0e178
LZ
7055 unsigned long val;
7056
7057 val = simple_strtoul(str, NULL, 0);
60495e77 7058 if (val < sched_domain_level_max)
30e0e178
LZ
7059 default_relax_domain_level = val;
7060
1d3504fc
HS
7061 return 1;
7062}
7063__setup("relax_domain_level=", setup_relax_domain_level);
7064
7065static void set_domain_attribute(struct sched_domain *sd,
7066 struct sched_domain_attr *attr)
7067{
7068 int request;
7069
7070 if (!attr || attr->relax_domain_level < 0) {
7071 if (default_relax_domain_level < 0)
7072 return;
7073 else
7074 request = default_relax_domain_level;
7075 } else
7076 request = attr->relax_domain_level;
7077 if (request < sd->level) {
7078 /* turn off idle balance on this domain */
c88d5910 7079 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7080 } else {
7081 /* turn on idle balance on this domain */
c88d5910 7082 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7083 }
7084}
7085
54ab4ff4
PZ
7086static void __sdt_free(const struct cpumask *cpu_map);
7087static int __sdt_alloc(const struct cpumask *cpu_map);
7088
2109b99e
AH
7089static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7090 const struct cpumask *cpu_map)
7091{
7092 switch (what) {
2109b99e 7093 case sa_rootdomain:
822ff793
PZ
7094 if (!atomic_read(&d->rd->refcount))
7095 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7096 case sa_sd:
7097 free_percpu(d->sd); /* fall through */
dce840a0 7098 case sa_sd_storage:
54ab4ff4 7099 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7100 case sa_none:
7101 break;
7102 }
7103}
3404c8d9 7104
2109b99e
AH
7105static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7106 const struct cpumask *cpu_map)
7107{
dce840a0
PZ
7108 memset(d, 0, sizeof(*d));
7109
54ab4ff4
PZ
7110 if (__sdt_alloc(cpu_map))
7111 return sa_sd_storage;
dce840a0
PZ
7112 d->sd = alloc_percpu(struct sched_domain *);
7113 if (!d->sd)
7114 return sa_sd_storage;
2109b99e 7115 d->rd = alloc_rootdomain();
dce840a0 7116 if (!d->rd)
21d42ccf 7117 return sa_sd;
2109b99e
AH
7118 return sa_rootdomain;
7119}
57d885fe 7120
dce840a0
PZ
7121/*
7122 * NULL the sd_data elements we've used to build the sched_domain and
7123 * sched_group structure so that the subsequent __free_domain_allocs()
7124 * will not free the data we're using.
7125 */
7126static void claim_allocations(int cpu, struct sched_domain *sd)
7127{
7128 struct sd_data *sdd = sd->private;
7129 struct sched_group *sg = sd->groups;
7130
7131 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7132 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7133
7134 if (cpu == cpumask_first(sched_group_cpus(sg))) {
7135 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7136 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7137 }
7138}
7139
2c402dc3
PZ
7140#ifdef CONFIG_SCHED_SMT
7141static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7142{
2c402dc3 7143 return topology_thread_cpumask(cpu);
3bd65a80 7144}
2c402dc3 7145#endif
7f4588f3 7146
d069b916
PZ
7147/*
7148 * Topology list, bottom-up.
7149 */
2c402dc3 7150static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7151#ifdef CONFIG_SCHED_SMT
7152 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7153#endif
1e9f28fa 7154#ifdef CONFIG_SCHED_MC
2c402dc3 7155 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7156#endif
d069b916
PZ
7157#ifdef CONFIG_SCHED_BOOK
7158 { sd_init_BOOK, cpu_book_mask, },
7159#endif
7160 { sd_init_CPU, cpu_cpu_mask, },
7161#ifdef CONFIG_NUMA
7162 { sd_init_NODE, cpu_node_mask, },
7163 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7164#endif
eb7a74e6
PZ
7165 { NULL, },
7166};
7167
7168static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7169
54ab4ff4
PZ
7170static int __sdt_alloc(const struct cpumask *cpu_map)
7171{
7172 struct sched_domain_topology_level *tl;
7173 int j;
7174
7175 for (tl = sched_domain_topology; tl->init; tl++) {
7176 struct sd_data *sdd = &tl->data;
7177
7178 sdd->sd = alloc_percpu(struct sched_domain *);
7179 if (!sdd->sd)
7180 return -ENOMEM;
7181
7182 sdd->sg = alloc_percpu(struct sched_group *);
7183 if (!sdd->sg)
7184 return -ENOMEM;
7185
7186 for_each_cpu(j, cpu_map) {
7187 struct sched_domain *sd;
7188 struct sched_group *sg;
7189
7190 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7191 GFP_KERNEL, cpu_to_node(j));
7192 if (!sd)
7193 return -ENOMEM;
7194
7195 *per_cpu_ptr(sdd->sd, j) = sd;
7196
7197 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7198 GFP_KERNEL, cpu_to_node(j));
7199 if (!sg)
7200 return -ENOMEM;
7201
7202 *per_cpu_ptr(sdd->sg, j) = sg;
7203 }
7204 }
7205
7206 return 0;
7207}
7208
7209static void __sdt_free(const struct cpumask *cpu_map)
7210{
7211 struct sched_domain_topology_level *tl;
7212 int j;
7213
7214 for (tl = sched_domain_topology; tl->init; tl++) {
7215 struct sd_data *sdd = &tl->data;
7216
7217 for_each_cpu(j, cpu_map) {
7218 kfree(*per_cpu_ptr(sdd->sd, j));
7219 kfree(*per_cpu_ptr(sdd->sg, j));
7220 }
7221 free_percpu(sdd->sd);
7222 free_percpu(sdd->sg);
7223 }
7224}
7225
2c402dc3
PZ
7226struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7227 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7228 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7229 int cpu)
7230{
54ab4ff4 7231 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7232 if (!sd)
d069b916 7233 return child;
2c402dc3
PZ
7234
7235 set_domain_attribute(sd, attr);
7236 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7237 if (child) {
7238 sd->level = child->level + 1;
7239 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7240 child->parent = sd;
60495e77 7241 }
d069b916 7242 sd->child = child;
2c402dc3
PZ
7243
7244 return sd;
7245}
7246
2109b99e
AH
7247/*
7248 * Build sched domains for a given set of cpus and attach the sched domains
7249 * to the individual cpus
7250 */
dce840a0
PZ
7251static int build_sched_domains(const struct cpumask *cpu_map,
7252 struct sched_domain_attr *attr)
2109b99e
AH
7253{
7254 enum s_alloc alloc_state = sa_none;
dce840a0 7255 struct sched_domain *sd;
2109b99e 7256 struct s_data d;
822ff793 7257 int i, ret = -ENOMEM;
9c1cfda2 7258
2109b99e
AH
7259 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7260 if (alloc_state != sa_rootdomain)
7261 goto error;
9c1cfda2 7262
dce840a0 7263 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7264 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7265 struct sched_domain_topology_level *tl;
7266
3bd65a80 7267 sd = NULL;
2c402dc3
PZ
7268 for (tl = sched_domain_topology; tl->init; tl++)
7269 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
d274cb30 7270
d069b916
PZ
7271 while (sd->child)
7272 sd = sd->child;
7273
21d42ccf 7274 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7275 }
7276
7277 /* Build the groups for the domains */
7278 for_each_cpu(i, cpu_map) {
7279 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7280 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7281 get_group(i, sd->private, &sd->groups);
7282 atomic_inc(&sd->groups->ref);
21d42ccf 7283
dce840a0
PZ
7284 if (i != cpumask_first(sched_domain_span(sd)))
7285 continue;
7286
f96225fd 7287 build_sched_groups(sd);
1cf51902 7288 }
a06dadbe 7289 }
9c1cfda2 7290
1da177e4 7291 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7292 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7293 if (!cpumask_test_cpu(i, cpu_map))
7294 continue;
9c1cfda2 7295
dce840a0
PZ
7296 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7297 claim_allocations(i, sd);
cd4ea6ae 7298 init_sched_groups_power(i, sd);
dce840a0 7299 }
f712c0c7 7300 }
9c1cfda2 7301
1da177e4 7302 /* Attach the domains */
dce840a0 7303 rcu_read_lock();
abcd083a 7304 for_each_cpu(i, cpu_map) {
21d42ccf 7305 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7306 cpu_attach_domain(sd, d.rd, i);
1da177e4 7307 }
dce840a0 7308 rcu_read_unlock();
51888ca2 7309
822ff793 7310 ret = 0;
51888ca2 7311error:
2109b99e 7312 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7313 return ret;
1da177e4 7314}
029190c5 7315
acc3f5d7 7316static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7317static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7318static struct sched_domain_attr *dattr_cur;
7319 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7320
7321/*
7322 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7323 * cpumask) fails, then fallback to a single sched domain,
7324 * as determined by the single cpumask fallback_doms.
029190c5 7325 */
4212823f 7326static cpumask_var_t fallback_doms;
029190c5 7327
ee79d1bd
HC
7328/*
7329 * arch_update_cpu_topology lets virtualized architectures update the
7330 * cpu core maps. It is supposed to return 1 if the topology changed
7331 * or 0 if it stayed the same.
7332 */
7333int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7334{
ee79d1bd 7335 return 0;
22e52b07
HC
7336}
7337
acc3f5d7
RR
7338cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7339{
7340 int i;
7341 cpumask_var_t *doms;
7342
7343 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7344 if (!doms)
7345 return NULL;
7346 for (i = 0; i < ndoms; i++) {
7347 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7348 free_sched_domains(doms, i);
7349 return NULL;
7350 }
7351 }
7352 return doms;
7353}
7354
7355void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7356{
7357 unsigned int i;
7358 for (i = 0; i < ndoms; i++)
7359 free_cpumask_var(doms[i]);
7360 kfree(doms);
7361}
7362
1a20ff27 7363/*
41a2d6cf 7364 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7365 * For now this just excludes isolated cpus, but could be used to
7366 * exclude other special cases in the future.
1a20ff27 7367 */
c4a8849a 7368static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7369{
7378547f
MM
7370 int err;
7371
22e52b07 7372 arch_update_cpu_topology();
029190c5 7373 ndoms_cur = 1;
acc3f5d7 7374 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7375 if (!doms_cur)
acc3f5d7
RR
7376 doms_cur = &fallback_doms;
7377 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7378 dattr_cur = NULL;
dce840a0 7379 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7380 register_sched_domain_sysctl();
7378547f
MM
7381
7382 return err;
1a20ff27
DG
7383}
7384
1a20ff27
DG
7385/*
7386 * Detach sched domains from a group of cpus specified in cpu_map
7387 * These cpus will now be attached to the NULL domain
7388 */
96f874e2 7389static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7390{
7391 int i;
7392
dce840a0 7393 rcu_read_lock();
abcd083a 7394 for_each_cpu(i, cpu_map)
57d885fe 7395 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7396 rcu_read_unlock();
1a20ff27
DG
7397}
7398
1d3504fc
HS
7399/* handle null as "default" */
7400static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7401 struct sched_domain_attr *new, int idx_new)
7402{
7403 struct sched_domain_attr tmp;
7404
7405 /* fast path */
7406 if (!new && !cur)
7407 return 1;
7408
7409 tmp = SD_ATTR_INIT;
7410 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7411 new ? (new + idx_new) : &tmp,
7412 sizeof(struct sched_domain_attr));
7413}
7414
029190c5
PJ
7415/*
7416 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7417 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7418 * doms_new[] to the current sched domain partitioning, doms_cur[].
7419 * It destroys each deleted domain and builds each new domain.
7420 *
acc3f5d7 7421 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7422 * The masks don't intersect (don't overlap.) We should setup one
7423 * sched domain for each mask. CPUs not in any of the cpumasks will
7424 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7425 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7426 * it as it is.
7427 *
acc3f5d7
RR
7428 * The passed in 'doms_new' should be allocated using
7429 * alloc_sched_domains. This routine takes ownership of it and will
7430 * free_sched_domains it when done with it. If the caller failed the
7431 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7432 * and partition_sched_domains() will fallback to the single partition
7433 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7434 *
96f874e2 7435 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7436 * ndoms_new == 0 is a special case for destroying existing domains,
7437 * and it will not create the default domain.
dfb512ec 7438 *
029190c5
PJ
7439 * Call with hotplug lock held
7440 */
acc3f5d7 7441void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7442 struct sched_domain_attr *dattr_new)
029190c5 7443{
dfb512ec 7444 int i, j, n;
d65bd5ec 7445 int new_topology;
029190c5 7446
712555ee 7447 mutex_lock(&sched_domains_mutex);
a1835615 7448
7378547f
MM
7449 /* always unregister in case we don't destroy any domains */
7450 unregister_sched_domain_sysctl();
7451
d65bd5ec
HC
7452 /* Let architecture update cpu core mappings. */
7453 new_topology = arch_update_cpu_topology();
7454
dfb512ec 7455 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7456
7457 /* Destroy deleted domains */
7458 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7459 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7460 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7461 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7462 goto match1;
7463 }
7464 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7465 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7466match1:
7467 ;
7468 }
7469
e761b772
MK
7470 if (doms_new == NULL) {
7471 ndoms_cur = 0;
acc3f5d7 7472 doms_new = &fallback_doms;
6ad4c188 7473 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7474 WARN_ON_ONCE(dattr_new);
e761b772
MK
7475 }
7476
029190c5
PJ
7477 /* Build new domains */
7478 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7479 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7480 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7481 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7482 goto match2;
7483 }
7484 /* no match - add a new doms_new */
dce840a0 7485 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7486match2:
7487 ;
7488 }
7489
7490 /* Remember the new sched domains */
acc3f5d7
RR
7491 if (doms_cur != &fallback_doms)
7492 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7493 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7494 doms_cur = doms_new;
1d3504fc 7495 dattr_cur = dattr_new;
029190c5 7496 ndoms_cur = ndoms_new;
7378547f
MM
7497
7498 register_sched_domain_sysctl();
a1835615 7499
712555ee 7500 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7501}
7502
5c45bf27 7503#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7504static void reinit_sched_domains(void)
5c45bf27 7505{
95402b38 7506 get_online_cpus();
dfb512ec
MK
7507
7508 /* Destroy domains first to force the rebuild */
7509 partition_sched_domains(0, NULL, NULL);
7510
e761b772 7511 rebuild_sched_domains();
95402b38 7512 put_online_cpus();
5c45bf27
SS
7513}
7514
7515static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7516{
afb8a9b7 7517 unsigned int level = 0;
5c45bf27 7518
afb8a9b7
GS
7519 if (sscanf(buf, "%u", &level) != 1)
7520 return -EINVAL;
7521
7522 /*
7523 * level is always be positive so don't check for
7524 * level < POWERSAVINGS_BALANCE_NONE which is 0
7525 * What happens on 0 or 1 byte write,
7526 * need to check for count as well?
7527 */
7528
7529 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7530 return -EINVAL;
7531
7532 if (smt)
afb8a9b7 7533 sched_smt_power_savings = level;
5c45bf27 7534 else
afb8a9b7 7535 sched_mc_power_savings = level;
5c45bf27 7536
c4a8849a 7537 reinit_sched_domains();
5c45bf27 7538
c70f22d2 7539 return count;
5c45bf27
SS
7540}
7541
5c45bf27 7542#ifdef CONFIG_SCHED_MC
f718cd4a 7543static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7544 struct sysdev_class_attribute *attr,
f718cd4a 7545 char *page)
5c45bf27
SS
7546{
7547 return sprintf(page, "%u\n", sched_mc_power_savings);
7548}
f718cd4a 7549static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7550 struct sysdev_class_attribute *attr,
48f24c4d 7551 const char *buf, size_t count)
5c45bf27
SS
7552{
7553 return sched_power_savings_store(buf, count, 0);
7554}
f718cd4a
AK
7555static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7556 sched_mc_power_savings_show,
7557 sched_mc_power_savings_store);
5c45bf27
SS
7558#endif
7559
7560#ifdef CONFIG_SCHED_SMT
f718cd4a 7561static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7562 struct sysdev_class_attribute *attr,
f718cd4a 7563 char *page)
5c45bf27
SS
7564{
7565 return sprintf(page, "%u\n", sched_smt_power_savings);
7566}
f718cd4a 7567static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7568 struct sysdev_class_attribute *attr,
48f24c4d 7569 const char *buf, size_t count)
5c45bf27
SS
7570{
7571 return sched_power_savings_store(buf, count, 1);
7572}
f718cd4a
AK
7573static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7574 sched_smt_power_savings_show,
6707de00
AB
7575 sched_smt_power_savings_store);
7576#endif
7577
39aac648 7578int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7579{
7580 int err = 0;
7581
7582#ifdef CONFIG_SCHED_SMT
7583 if (smt_capable())
7584 err = sysfs_create_file(&cls->kset.kobj,
7585 &attr_sched_smt_power_savings.attr);
7586#endif
7587#ifdef CONFIG_SCHED_MC
7588 if (!err && mc_capable())
7589 err = sysfs_create_file(&cls->kset.kobj,
7590 &attr_sched_mc_power_savings.attr);
7591#endif
7592 return err;
7593}
6d6bc0ad 7594#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7595
1da177e4 7596/*
3a101d05
TH
7597 * Update cpusets according to cpu_active mask. If cpusets are
7598 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7599 * around partition_sched_domains().
1da177e4 7600 */
0b2e918a
TH
7601static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7602 void *hcpu)
e761b772 7603{
3a101d05 7604 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7605 case CPU_ONLINE:
6ad4c188 7606 case CPU_DOWN_FAILED:
3a101d05 7607 cpuset_update_active_cpus();
e761b772 7608 return NOTIFY_OK;
3a101d05
TH
7609 default:
7610 return NOTIFY_DONE;
7611 }
7612}
e761b772 7613
0b2e918a
TH
7614static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7615 void *hcpu)
3a101d05
TH
7616{
7617 switch (action & ~CPU_TASKS_FROZEN) {
7618 case CPU_DOWN_PREPARE:
7619 cpuset_update_active_cpus();
7620 return NOTIFY_OK;
e761b772
MK
7621 default:
7622 return NOTIFY_DONE;
7623 }
7624}
e761b772
MK
7625
7626static int update_runtime(struct notifier_block *nfb,
7627 unsigned long action, void *hcpu)
1da177e4 7628{
7def2be1
PZ
7629 int cpu = (int)(long)hcpu;
7630
1da177e4 7631 switch (action) {
1da177e4 7632 case CPU_DOWN_PREPARE:
8bb78442 7633 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7634 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7635 return NOTIFY_OK;
7636
1da177e4 7637 case CPU_DOWN_FAILED:
8bb78442 7638 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7639 case CPU_ONLINE:
8bb78442 7640 case CPU_ONLINE_FROZEN:
7def2be1 7641 enable_runtime(cpu_rq(cpu));
e761b772
MK
7642 return NOTIFY_OK;
7643
1da177e4
LT
7644 default:
7645 return NOTIFY_DONE;
7646 }
1da177e4 7647}
1da177e4
LT
7648
7649void __init sched_init_smp(void)
7650{
dcc30a35
RR
7651 cpumask_var_t non_isolated_cpus;
7652
7653 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7654 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7655
95402b38 7656 get_online_cpus();
712555ee 7657 mutex_lock(&sched_domains_mutex);
c4a8849a 7658 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7659 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7660 if (cpumask_empty(non_isolated_cpus))
7661 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7662 mutex_unlock(&sched_domains_mutex);
95402b38 7663 put_online_cpus();
e761b772 7664
3a101d05
TH
7665 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7666 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7667
7668 /* RT runtime code needs to handle some hotplug events */
7669 hotcpu_notifier(update_runtime, 0);
7670
b328ca18 7671 init_hrtick();
5c1e1767
NP
7672
7673 /* Move init over to a non-isolated CPU */
dcc30a35 7674 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7675 BUG();
19978ca6 7676 sched_init_granularity();
dcc30a35 7677 free_cpumask_var(non_isolated_cpus);
4212823f 7678
0e3900e6 7679 init_sched_rt_class();
1da177e4
LT
7680}
7681#else
7682void __init sched_init_smp(void)
7683{
19978ca6 7684 sched_init_granularity();
1da177e4
LT
7685}
7686#endif /* CONFIG_SMP */
7687
cd1bb94b
AB
7688const_debug unsigned int sysctl_timer_migration = 1;
7689
1da177e4
LT
7690int in_sched_functions(unsigned long addr)
7691{
1da177e4
LT
7692 return in_lock_functions(addr) ||
7693 (addr >= (unsigned long)__sched_text_start
7694 && addr < (unsigned long)__sched_text_end);
7695}
7696
a9957449 7697static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7698{
7699 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7700 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7701#ifdef CONFIG_FAIR_GROUP_SCHED
7702 cfs_rq->rq = rq;
f07333bf 7703 /* allow initial update_cfs_load() to truncate */
6ea72f12 7704#ifdef CONFIG_SMP
f07333bf 7705 cfs_rq->load_stamp = 1;
6ea72f12 7706#endif
dd41f596 7707#endif
67e9fb2a 7708 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7709}
7710
fa85ae24
PZ
7711static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7712{
7713 struct rt_prio_array *array;
7714 int i;
7715
7716 array = &rt_rq->active;
7717 for (i = 0; i < MAX_RT_PRIO; i++) {
7718 INIT_LIST_HEAD(array->queue + i);
7719 __clear_bit(i, array->bitmap);
7720 }
7721 /* delimiter for bitsearch: */
7722 __set_bit(MAX_RT_PRIO, array->bitmap);
7723
052f1dc7 7724#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7725 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7726#ifdef CONFIG_SMP
e864c499 7727 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7728#endif
48d5e258 7729#endif
fa85ae24
PZ
7730#ifdef CONFIG_SMP
7731 rt_rq->rt_nr_migratory = 0;
fa85ae24 7732 rt_rq->overloaded = 0;
05fa785c 7733 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7734#endif
7735
7736 rt_rq->rt_time = 0;
7737 rt_rq->rt_throttled = 0;
ac086bc2 7738 rt_rq->rt_runtime = 0;
0986b11b 7739 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7740
052f1dc7 7741#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7742 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7743 rt_rq->rq = rq;
7744#endif
fa85ae24
PZ
7745}
7746
6f505b16 7747#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7748static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7749 struct sched_entity *se, int cpu,
ec7dc8ac 7750 struct sched_entity *parent)
6f505b16 7751{
ec7dc8ac 7752 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7753 tg->cfs_rq[cpu] = cfs_rq;
7754 init_cfs_rq(cfs_rq, rq);
7755 cfs_rq->tg = tg;
6f505b16
PZ
7756
7757 tg->se[cpu] = se;
07e06b01 7758 /* se could be NULL for root_task_group */
354d60c2
DG
7759 if (!se)
7760 return;
7761
ec7dc8ac
DG
7762 if (!parent)
7763 se->cfs_rq = &rq->cfs;
7764 else
7765 se->cfs_rq = parent->my_q;
7766
6f505b16 7767 se->my_q = cfs_rq;
9437178f 7768 update_load_set(&se->load, 0);
ec7dc8ac 7769 se->parent = parent;
6f505b16 7770}
052f1dc7 7771#endif
6f505b16 7772
052f1dc7 7773#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7774static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7775 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7776 struct sched_rt_entity *parent)
6f505b16 7777{
ec7dc8ac
DG
7778 struct rq *rq = cpu_rq(cpu);
7779
6f505b16
PZ
7780 tg->rt_rq[cpu] = rt_rq;
7781 init_rt_rq(rt_rq, rq);
7782 rt_rq->tg = tg;
ac086bc2 7783 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7784
7785 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7786 if (!rt_se)
7787 return;
7788
ec7dc8ac
DG
7789 if (!parent)
7790 rt_se->rt_rq = &rq->rt;
7791 else
7792 rt_se->rt_rq = parent->my_q;
7793
6f505b16 7794 rt_se->my_q = rt_rq;
ec7dc8ac 7795 rt_se->parent = parent;
6f505b16
PZ
7796 INIT_LIST_HEAD(&rt_se->run_list);
7797}
7798#endif
7799
1da177e4
LT
7800void __init sched_init(void)
7801{
dd41f596 7802 int i, j;
434d53b0
MT
7803 unsigned long alloc_size = 0, ptr;
7804
7805#ifdef CONFIG_FAIR_GROUP_SCHED
7806 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7807#endif
7808#ifdef CONFIG_RT_GROUP_SCHED
7809 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7810#endif
df7c8e84 7811#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7812 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7813#endif
434d53b0 7814 if (alloc_size) {
36b7b6d4 7815 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7816
7817#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7818 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7819 ptr += nr_cpu_ids * sizeof(void **);
7820
07e06b01 7821 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7822 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7823
6d6bc0ad 7824#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7825#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7826 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7827 ptr += nr_cpu_ids * sizeof(void **);
7828
07e06b01 7829 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7830 ptr += nr_cpu_ids * sizeof(void **);
7831
6d6bc0ad 7832#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7833#ifdef CONFIG_CPUMASK_OFFSTACK
7834 for_each_possible_cpu(i) {
7835 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7836 ptr += cpumask_size();
7837 }
7838#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7839 }
dd41f596 7840
57d885fe
GH
7841#ifdef CONFIG_SMP
7842 init_defrootdomain();
7843#endif
7844
d0b27fa7
PZ
7845 init_rt_bandwidth(&def_rt_bandwidth,
7846 global_rt_period(), global_rt_runtime());
7847
7848#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7849 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7850 global_rt_period(), global_rt_runtime());
6d6bc0ad 7851#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7852
7c941438 7853#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7854 list_add(&root_task_group.list, &task_groups);
7855 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7856 autogroup_init(&init_task);
7c941438 7857#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7858
0a945022 7859 for_each_possible_cpu(i) {
70b97a7f 7860 struct rq *rq;
1da177e4
LT
7861
7862 rq = cpu_rq(i);
05fa785c 7863 raw_spin_lock_init(&rq->lock);
7897986b 7864 rq->nr_running = 0;
dce48a84
TG
7865 rq->calc_load_active = 0;
7866 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7867 init_cfs_rq(&rq->cfs, rq);
6f505b16 7868 init_rt_rq(&rq->rt, rq);
dd41f596 7869#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7870 root_task_group.shares = root_task_group_load;
6f505b16 7871 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7872 /*
07e06b01 7873 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7874 *
7875 * In case of task-groups formed thr' the cgroup filesystem, it
7876 * gets 100% of the cpu resources in the system. This overall
7877 * system cpu resource is divided among the tasks of
07e06b01 7878 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7879 * based on each entity's (task or task-group's) weight
7880 * (se->load.weight).
7881 *
07e06b01 7882 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7883 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7884 * then A0's share of the cpu resource is:
7885 *
0d905bca 7886 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7887 *
07e06b01
YZ
7888 * We achieve this by letting root_task_group's tasks sit
7889 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7890 */
07e06b01 7891 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7892#endif /* CONFIG_FAIR_GROUP_SCHED */
7893
7894 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7895#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7896 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7897 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7898#endif
1da177e4 7899
dd41f596
IM
7900 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7901 rq->cpu_load[j] = 0;
fdf3e95d
VP
7902
7903 rq->last_load_update_tick = jiffies;
7904
1da177e4 7905#ifdef CONFIG_SMP
41c7ce9a 7906 rq->sd = NULL;
57d885fe 7907 rq->rd = NULL;
e51fd5e2 7908 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7909 rq->post_schedule = 0;
1da177e4 7910 rq->active_balance = 0;
dd41f596 7911 rq->next_balance = jiffies;
1da177e4 7912 rq->push_cpu = 0;
0a2966b4 7913 rq->cpu = i;
1f11eb6a 7914 rq->online = 0;
eae0c9df
MG
7915 rq->idle_stamp = 0;
7916 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7917 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7918#ifdef CONFIG_NO_HZ
7919 rq->nohz_balance_kick = 0;
7920 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7921#endif
1da177e4 7922#endif
8f4d37ec 7923 init_rq_hrtick(rq);
1da177e4 7924 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7925 }
7926
2dd73a4f 7927 set_load_weight(&init_task);
b50f60ce 7928
e107be36
AK
7929#ifdef CONFIG_PREEMPT_NOTIFIERS
7930 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7931#endif
7932
c9819f45 7933#ifdef CONFIG_SMP
962cf36c 7934 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7935#endif
7936
b50f60ce 7937#ifdef CONFIG_RT_MUTEXES
1d615482 7938 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7939#endif
7940
1da177e4
LT
7941 /*
7942 * The boot idle thread does lazy MMU switching as well:
7943 */
7944 atomic_inc(&init_mm.mm_count);
7945 enter_lazy_tlb(&init_mm, current);
7946
7947 /*
7948 * Make us the idle thread. Technically, schedule() should not be
7949 * called from this thread, however somewhere below it might be,
7950 * but because we are the idle thread, we just pick up running again
7951 * when this runqueue becomes "idle".
7952 */
7953 init_idle(current, smp_processor_id());
dce48a84
TG
7954
7955 calc_load_update = jiffies + LOAD_FREQ;
7956
dd41f596
IM
7957 /*
7958 * During early bootup we pretend to be a normal task:
7959 */
7960 current->sched_class = &fair_sched_class;
6892b75e 7961
6a7b3dc3 7962 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7963 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7964#ifdef CONFIG_SMP
4cb98839 7965 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 7966#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7967 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7968 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7969 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7970 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7971 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7972#endif
bdddd296
RR
7973 /* May be allocated at isolcpus cmdline parse time */
7974 if (cpu_isolated_map == NULL)
7975 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7976#endif /* SMP */
6a7b3dc3 7977
6892b75e 7978 scheduler_running = 1;
1da177e4
LT
7979}
7980
7981#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7982static inline int preempt_count_equals(int preempt_offset)
7983{
234da7bc 7984 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7985
4ba8216c 7986 return (nested == preempt_offset);
e4aafea2
FW
7987}
7988
d894837f 7989void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7990{
48f24c4d 7991#ifdef in_atomic
1da177e4
LT
7992 static unsigned long prev_jiffy; /* ratelimiting */
7993
e4aafea2
FW
7994 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7995 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7996 return;
7997 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7998 return;
7999 prev_jiffy = jiffies;
8000
3df0fc5b
PZ
8001 printk(KERN_ERR
8002 "BUG: sleeping function called from invalid context at %s:%d\n",
8003 file, line);
8004 printk(KERN_ERR
8005 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8006 in_atomic(), irqs_disabled(),
8007 current->pid, current->comm);
aef745fc
IM
8008
8009 debug_show_held_locks(current);
8010 if (irqs_disabled())
8011 print_irqtrace_events(current);
8012 dump_stack();
1da177e4
LT
8013#endif
8014}
8015EXPORT_SYMBOL(__might_sleep);
8016#endif
8017
8018#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8019static void normalize_task(struct rq *rq, struct task_struct *p)
8020{
da7a735e
PZ
8021 const struct sched_class *prev_class = p->sched_class;
8022 int old_prio = p->prio;
3a5e4dc1 8023 int on_rq;
3e51f33f 8024
fd2f4419 8025 on_rq = p->on_rq;
3a5e4dc1
AK
8026 if (on_rq)
8027 deactivate_task(rq, p, 0);
8028 __setscheduler(rq, p, SCHED_NORMAL, 0);
8029 if (on_rq) {
8030 activate_task(rq, p, 0);
8031 resched_task(rq->curr);
8032 }
da7a735e
PZ
8033
8034 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8035}
8036
1da177e4
LT
8037void normalize_rt_tasks(void)
8038{
a0f98a1c 8039 struct task_struct *g, *p;
1da177e4 8040 unsigned long flags;
70b97a7f 8041 struct rq *rq;
1da177e4 8042
4cf5d77a 8043 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8044 do_each_thread(g, p) {
178be793
IM
8045 /*
8046 * Only normalize user tasks:
8047 */
8048 if (!p->mm)
8049 continue;
8050
6cfb0d5d 8051 p->se.exec_start = 0;
6cfb0d5d 8052#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8053 p->se.statistics.wait_start = 0;
8054 p->se.statistics.sleep_start = 0;
8055 p->se.statistics.block_start = 0;
6cfb0d5d 8056#endif
dd41f596
IM
8057
8058 if (!rt_task(p)) {
8059 /*
8060 * Renice negative nice level userspace
8061 * tasks back to 0:
8062 */
8063 if (TASK_NICE(p) < 0 && p->mm)
8064 set_user_nice(p, 0);
1da177e4 8065 continue;
dd41f596 8066 }
1da177e4 8067
1d615482 8068 raw_spin_lock(&p->pi_lock);
b29739f9 8069 rq = __task_rq_lock(p);
1da177e4 8070
178be793 8071 normalize_task(rq, p);
3a5e4dc1 8072
b29739f9 8073 __task_rq_unlock(rq);
1d615482 8074 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8075 } while_each_thread(g, p);
8076
4cf5d77a 8077 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8078}
8079
8080#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8081
67fc4e0c 8082#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8083/*
67fc4e0c 8084 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8085 *
8086 * They can only be called when the whole system has been
8087 * stopped - every CPU needs to be quiescent, and no scheduling
8088 * activity can take place. Using them for anything else would
8089 * be a serious bug, and as a result, they aren't even visible
8090 * under any other configuration.
8091 */
8092
8093/**
8094 * curr_task - return the current task for a given cpu.
8095 * @cpu: the processor in question.
8096 *
8097 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8098 */
36c8b586 8099struct task_struct *curr_task(int cpu)
1df5c10a
LT
8100{
8101 return cpu_curr(cpu);
8102}
8103
67fc4e0c
JW
8104#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8105
8106#ifdef CONFIG_IA64
1df5c10a
LT
8107/**
8108 * set_curr_task - set the current task for a given cpu.
8109 * @cpu: the processor in question.
8110 * @p: the task pointer to set.
8111 *
8112 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8113 * are serviced on a separate stack. It allows the architecture to switch the
8114 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8115 * must be called with all CPU's synchronized, and interrupts disabled, the
8116 * and caller must save the original value of the current task (see
8117 * curr_task() above) and restore that value before reenabling interrupts and
8118 * re-starting the system.
8119 *
8120 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8121 */
36c8b586 8122void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8123{
8124 cpu_curr(cpu) = p;
8125}
8126
8127#endif
29f59db3 8128
bccbe08a
PZ
8129#ifdef CONFIG_FAIR_GROUP_SCHED
8130static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8131{
8132 int i;
8133
8134 for_each_possible_cpu(i) {
8135 if (tg->cfs_rq)
8136 kfree(tg->cfs_rq[i]);
8137 if (tg->se)
8138 kfree(tg->se[i]);
6f505b16
PZ
8139 }
8140
8141 kfree(tg->cfs_rq);
8142 kfree(tg->se);
6f505b16
PZ
8143}
8144
ec7dc8ac
DG
8145static
8146int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8147{
29f59db3 8148 struct cfs_rq *cfs_rq;
eab17229 8149 struct sched_entity *se;
29f59db3
SV
8150 int i;
8151
434d53b0 8152 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8153 if (!tg->cfs_rq)
8154 goto err;
434d53b0 8155 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8156 if (!tg->se)
8157 goto err;
052f1dc7
PZ
8158
8159 tg->shares = NICE_0_LOAD;
29f59db3
SV
8160
8161 for_each_possible_cpu(i) {
eab17229
LZ
8162 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8163 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8164 if (!cfs_rq)
8165 goto err;
8166
eab17229
LZ
8167 se = kzalloc_node(sizeof(struct sched_entity),
8168 GFP_KERNEL, cpu_to_node(i));
29f59db3 8169 if (!se)
dfc12eb2 8170 goto err_free_rq;
29f59db3 8171
3d4b47b4 8172 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8173 }
8174
8175 return 1;
8176
49246274 8177err_free_rq:
dfc12eb2 8178 kfree(cfs_rq);
49246274 8179err:
bccbe08a
PZ
8180 return 0;
8181}
8182
bccbe08a
PZ
8183static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8184{
3d4b47b4
PZ
8185 struct rq *rq = cpu_rq(cpu);
8186 unsigned long flags;
3d4b47b4
PZ
8187
8188 /*
8189 * Only empty task groups can be destroyed; so we can speculatively
8190 * check on_list without danger of it being re-added.
8191 */
8192 if (!tg->cfs_rq[cpu]->on_list)
8193 return;
8194
8195 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8196 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8197 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8198}
6d6bc0ad 8199#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8200static inline void free_fair_sched_group(struct task_group *tg)
8201{
8202}
8203
ec7dc8ac
DG
8204static inline
8205int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8206{
8207 return 1;
8208}
8209
bccbe08a
PZ
8210static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8211{
8212}
6d6bc0ad 8213#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8214
8215#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8216static void free_rt_sched_group(struct task_group *tg)
8217{
8218 int i;
8219
d0b27fa7
PZ
8220 destroy_rt_bandwidth(&tg->rt_bandwidth);
8221
bccbe08a
PZ
8222 for_each_possible_cpu(i) {
8223 if (tg->rt_rq)
8224 kfree(tg->rt_rq[i]);
8225 if (tg->rt_se)
8226 kfree(tg->rt_se[i]);
8227 }
8228
8229 kfree(tg->rt_rq);
8230 kfree(tg->rt_se);
8231}
8232
ec7dc8ac
DG
8233static
8234int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8235{
8236 struct rt_rq *rt_rq;
eab17229 8237 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8238 struct rq *rq;
8239 int i;
8240
434d53b0 8241 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8242 if (!tg->rt_rq)
8243 goto err;
434d53b0 8244 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8245 if (!tg->rt_se)
8246 goto err;
8247
d0b27fa7
PZ
8248 init_rt_bandwidth(&tg->rt_bandwidth,
8249 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8250
8251 for_each_possible_cpu(i) {
8252 rq = cpu_rq(i);
8253
eab17229
LZ
8254 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8255 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8256 if (!rt_rq)
8257 goto err;
29f59db3 8258
eab17229
LZ
8259 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8260 GFP_KERNEL, cpu_to_node(i));
6f505b16 8261 if (!rt_se)
dfc12eb2 8262 goto err_free_rq;
29f59db3 8263
3d4b47b4 8264 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8265 }
8266
bccbe08a
PZ
8267 return 1;
8268
49246274 8269err_free_rq:
dfc12eb2 8270 kfree(rt_rq);
49246274 8271err:
bccbe08a
PZ
8272 return 0;
8273}
6d6bc0ad 8274#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8275static inline void free_rt_sched_group(struct task_group *tg)
8276{
8277}
8278
ec7dc8ac
DG
8279static inline
8280int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8281{
8282 return 1;
8283}
6d6bc0ad 8284#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8285
7c941438 8286#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8287static void free_sched_group(struct task_group *tg)
8288{
8289 free_fair_sched_group(tg);
8290 free_rt_sched_group(tg);
e9aa1dd1 8291 autogroup_free(tg);
bccbe08a
PZ
8292 kfree(tg);
8293}
8294
8295/* allocate runqueue etc for a new task group */
ec7dc8ac 8296struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8297{
8298 struct task_group *tg;
8299 unsigned long flags;
bccbe08a
PZ
8300
8301 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8302 if (!tg)
8303 return ERR_PTR(-ENOMEM);
8304
ec7dc8ac 8305 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8306 goto err;
8307
ec7dc8ac 8308 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8309 goto err;
8310
8ed36996 8311 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8312 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8313
8314 WARN_ON(!parent); /* root should already exist */
8315
8316 tg->parent = parent;
f473aa5e 8317 INIT_LIST_HEAD(&tg->children);
09f2724a 8318 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8319 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8320
9b5b7751 8321 return tg;
29f59db3
SV
8322
8323err:
6f505b16 8324 free_sched_group(tg);
29f59db3
SV
8325 return ERR_PTR(-ENOMEM);
8326}
8327
9b5b7751 8328/* rcu callback to free various structures associated with a task group */
6f505b16 8329static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8330{
29f59db3 8331 /* now it should be safe to free those cfs_rqs */
6f505b16 8332 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8333}
8334
9b5b7751 8335/* Destroy runqueue etc associated with a task group */
4cf86d77 8336void sched_destroy_group(struct task_group *tg)
29f59db3 8337{
8ed36996 8338 unsigned long flags;
9b5b7751 8339 int i;
29f59db3 8340
3d4b47b4
PZ
8341 /* end participation in shares distribution */
8342 for_each_possible_cpu(i)
bccbe08a 8343 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8344
8345 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8346 list_del_rcu(&tg->list);
f473aa5e 8347 list_del_rcu(&tg->siblings);
8ed36996 8348 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8349
9b5b7751 8350 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8351 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8352}
8353
9b5b7751 8354/* change task's runqueue when it moves between groups.
3a252015
IM
8355 * The caller of this function should have put the task in its new group
8356 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8357 * reflect its new group.
9b5b7751
SV
8358 */
8359void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8360{
8361 int on_rq, running;
8362 unsigned long flags;
8363 struct rq *rq;
8364
8365 rq = task_rq_lock(tsk, &flags);
8366
051a1d1a 8367 running = task_current(rq, tsk);
fd2f4419 8368 on_rq = tsk->on_rq;
29f59db3 8369
0e1f3483 8370 if (on_rq)
29f59db3 8371 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8372 if (unlikely(running))
8373 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8374
810b3817 8375#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8376 if (tsk->sched_class->task_move_group)
8377 tsk->sched_class->task_move_group(tsk, on_rq);
8378 else
810b3817 8379#endif
b2b5ce02 8380 set_task_rq(tsk, task_cpu(tsk));
810b3817 8381
0e1f3483
HS
8382 if (unlikely(running))
8383 tsk->sched_class->set_curr_task(rq);
8384 if (on_rq)
371fd7e7 8385 enqueue_task(rq, tsk, 0);
29f59db3 8386
0122ec5b 8387 task_rq_unlock(rq, tsk, &flags);
29f59db3 8388}
7c941438 8389#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8390
052f1dc7 8391#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8392static DEFINE_MUTEX(shares_mutex);
8393
4cf86d77 8394int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8395{
8396 int i;
8ed36996 8397 unsigned long flags;
c61935fd 8398
ec7dc8ac
DG
8399 /*
8400 * We can't change the weight of the root cgroup.
8401 */
8402 if (!tg->se[0])
8403 return -EINVAL;
8404
18d95a28
PZ
8405 if (shares < MIN_SHARES)
8406 shares = MIN_SHARES;
cb4ad1ff
MX
8407 else if (shares > MAX_SHARES)
8408 shares = MAX_SHARES;
62fb1851 8409
8ed36996 8410 mutex_lock(&shares_mutex);
9b5b7751 8411 if (tg->shares == shares)
5cb350ba 8412 goto done;
29f59db3 8413
9b5b7751 8414 tg->shares = shares;
c09595f6 8415 for_each_possible_cpu(i) {
9437178f
PT
8416 struct rq *rq = cpu_rq(i);
8417 struct sched_entity *se;
8418
8419 se = tg->se[i];
8420 /* Propagate contribution to hierarchy */
8421 raw_spin_lock_irqsave(&rq->lock, flags);
8422 for_each_sched_entity(se)
6d5ab293 8423 update_cfs_shares(group_cfs_rq(se));
9437178f 8424 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8425 }
29f59db3 8426
5cb350ba 8427done:
8ed36996 8428 mutex_unlock(&shares_mutex);
9b5b7751 8429 return 0;
29f59db3
SV
8430}
8431
5cb350ba
DG
8432unsigned long sched_group_shares(struct task_group *tg)
8433{
8434 return tg->shares;
8435}
052f1dc7 8436#endif
5cb350ba 8437
052f1dc7 8438#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8439/*
9f0c1e56 8440 * Ensure that the real time constraints are schedulable.
6f505b16 8441 */
9f0c1e56
PZ
8442static DEFINE_MUTEX(rt_constraints_mutex);
8443
8444static unsigned long to_ratio(u64 period, u64 runtime)
8445{
8446 if (runtime == RUNTIME_INF)
9a7e0b18 8447 return 1ULL << 20;
9f0c1e56 8448
9a7e0b18 8449 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8450}
8451
9a7e0b18
PZ
8452/* Must be called with tasklist_lock held */
8453static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8454{
9a7e0b18 8455 struct task_struct *g, *p;
b40b2e8e 8456
9a7e0b18
PZ
8457 do_each_thread(g, p) {
8458 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8459 return 1;
8460 } while_each_thread(g, p);
b40b2e8e 8461
9a7e0b18
PZ
8462 return 0;
8463}
b40b2e8e 8464
9a7e0b18
PZ
8465struct rt_schedulable_data {
8466 struct task_group *tg;
8467 u64 rt_period;
8468 u64 rt_runtime;
8469};
b40b2e8e 8470
9a7e0b18
PZ
8471static int tg_schedulable(struct task_group *tg, void *data)
8472{
8473 struct rt_schedulable_data *d = data;
8474 struct task_group *child;
8475 unsigned long total, sum = 0;
8476 u64 period, runtime;
b40b2e8e 8477
9a7e0b18
PZ
8478 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8479 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8480
9a7e0b18
PZ
8481 if (tg == d->tg) {
8482 period = d->rt_period;
8483 runtime = d->rt_runtime;
b40b2e8e 8484 }
b40b2e8e 8485
4653f803
PZ
8486 /*
8487 * Cannot have more runtime than the period.
8488 */
8489 if (runtime > period && runtime != RUNTIME_INF)
8490 return -EINVAL;
6f505b16 8491
4653f803
PZ
8492 /*
8493 * Ensure we don't starve existing RT tasks.
8494 */
9a7e0b18
PZ
8495 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8496 return -EBUSY;
6f505b16 8497
9a7e0b18 8498 total = to_ratio(period, runtime);
6f505b16 8499
4653f803
PZ
8500 /*
8501 * Nobody can have more than the global setting allows.
8502 */
8503 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8504 return -EINVAL;
6f505b16 8505
4653f803
PZ
8506 /*
8507 * The sum of our children's runtime should not exceed our own.
8508 */
9a7e0b18
PZ
8509 list_for_each_entry_rcu(child, &tg->children, siblings) {
8510 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8511 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8512
9a7e0b18
PZ
8513 if (child == d->tg) {
8514 period = d->rt_period;
8515 runtime = d->rt_runtime;
8516 }
6f505b16 8517
9a7e0b18 8518 sum += to_ratio(period, runtime);
9f0c1e56 8519 }
6f505b16 8520
9a7e0b18
PZ
8521 if (sum > total)
8522 return -EINVAL;
8523
8524 return 0;
6f505b16
PZ
8525}
8526
9a7e0b18 8527static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8528{
9a7e0b18
PZ
8529 struct rt_schedulable_data data = {
8530 .tg = tg,
8531 .rt_period = period,
8532 .rt_runtime = runtime,
8533 };
8534
8535 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8536}
8537
d0b27fa7
PZ
8538static int tg_set_bandwidth(struct task_group *tg,
8539 u64 rt_period, u64 rt_runtime)
6f505b16 8540{
ac086bc2 8541 int i, err = 0;
9f0c1e56 8542
9f0c1e56 8543 mutex_lock(&rt_constraints_mutex);
521f1a24 8544 read_lock(&tasklist_lock);
9a7e0b18
PZ
8545 err = __rt_schedulable(tg, rt_period, rt_runtime);
8546 if (err)
9f0c1e56 8547 goto unlock;
ac086bc2 8548
0986b11b 8549 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8550 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8551 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8552
8553 for_each_possible_cpu(i) {
8554 struct rt_rq *rt_rq = tg->rt_rq[i];
8555
0986b11b 8556 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8557 rt_rq->rt_runtime = rt_runtime;
0986b11b 8558 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8559 }
0986b11b 8560 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8561unlock:
521f1a24 8562 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8563 mutex_unlock(&rt_constraints_mutex);
8564
8565 return err;
6f505b16
PZ
8566}
8567
d0b27fa7
PZ
8568int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8569{
8570 u64 rt_runtime, rt_period;
8571
8572 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8573 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8574 if (rt_runtime_us < 0)
8575 rt_runtime = RUNTIME_INF;
8576
8577 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8578}
8579
9f0c1e56
PZ
8580long sched_group_rt_runtime(struct task_group *tg)
8581{
8582 u64 rt_runtime_us;
8583
d0b27fa7 8584 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8585 return -1;
8586
d0b27fa7 8587 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8588 do_div(rt_runtime_us, NSEC_PER_USEC);
8589 return rt_runtime_us;
8590}
d0b27fa7
PZ
8591
8592int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8593{
8594 u64 rt_runtime, rt_period;
8595
8596 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8597 rt_runtime = tg->rt_bandwidth.rt_runtime;
8598
619b0488
R
8599 if (rt_period == 0)
8600 return -EINVAL;
8601
d0b27fa7
PZ
8602 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8603}
8604
8605long sched_group_rt_period(struct task_group *tg)
8606{
8607 u64 rt_period_us;
8608
8609 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8610 do_div(rt_period_us, NSEC_PER_USEC);
8611 return rt_period_us;
8612}
8613
8614static int sched_rt_global_constraints(void)
8615{
4653f803 8616 u64 runtime, period;
d0b27fa7
PZ
8617 int ret = 0;
8618
ec5d4989
HS
8619 if (sysctl_sched_rt_period <= 0)
8620 return -EINVAL;
8621
4653f803
PZ
8622 runtime = global_rt_runtime();
8623 period = global_rt_period();
8624
8625 /*
8626 * Sanity check on the sysctl variables.
8627 */
8628 if (runtime > period && runtime != RUNTIME_INF)
8629 return -EINVAL;
10b612f4 8630
d0b27fa7 8631 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8632 read_lock(&tasklist_lock);
4653f803 8633 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8634 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8635 mutex_unlock(&rt_constraints_mutex);
8636
8637 return ret;
8638}
54e99124
DG
8639
8640int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8641{
8642 /* Don't accept realtime tasks when there is no way for them to run */
8643 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8644 return 0;
8645
8646 return 1;
8647}
8648
6d6bc0ad 8649#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8650static int sched_rt_global_constraints(void)
8651{
ac086bc2
PZ
8652 unsigned long flags;
8653 int i;
8654
ec5d4989
HS
8655 if (sysctl_sched_rt_period <= 0)
8656 return -EINVAL;
8657
60aa605d
PZ
8658 /*
8659 * There's always some RT tasks in the root group
8660 * -- migration, kstopmachine etc..
8661 */
8662 if (sysctl_sched_rt_runtime == 0)
8663 return -EBUSY;
8664
0986b11b 8665 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8666 for_each_possible_cpu(i) {
8667 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8668
0986b11b 8669 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8670 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8671 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8672 }
0986b11b 8673 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8674
d0b27fa7
PZ
8675 return 0;
8676}
6d6bc0ad 8677#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8678
8679int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8680 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8681 loff_t *ppos)
8682{
8683 int ret;
8684 int old_period, old_runtime;
8685 static DEFINE_MUTEX(mutex);
8686
8687 mutex_lock(&mutex);
8688 old_period = sysctl_sched_rt_period;
8689 old_runtime = sysctl_sched_rt_runtime;
8690
8d65af78 8691 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8692
8693 if (!ret && write) {
8694 ret = sched_rt_global_constraints();
8695 if (ret) {
8696 sysctl_sched_rt_period = old_period;
8697 sysctl_sched_rt_runtime = old_runtime;
8698 } else {
8699 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8700 def_rt_bandwidth.rt_period =
8701 ns_to_ktime(global_rt_period());
8702 }
8703 }
8704 mutex_unlock(&mutex);
8705
8706 return ret;
8707}
68318b8e 8708
052f1dc7 8709#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8710
8711/* return corresponding task_group object of a cgroup */
2b01dfe3 8712static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8713{
2b01dfe3
PM
8714 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8715 struct task_group, css);
68318b8e
SV
8716}
8717
8718static struct cgroup_subsys_state *
2b01dfe3 8719cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8720{
ec7dc8ac 8721 struct task_group *tg, *parent;
68318b8e 8722
2b01dfe3 8723 if (!cgrp->parent) {
68318b8e 8724 /* This is early initialization for the top cgroup */
07e06b01 8725 return &root_task_group.css;
68318b8e
SV
8726 }
8727
ec7dc8ac
DG
8728 parent = cgroup_tg(cgrp->parent);
8729 tg = sched_create_group(parent);
68318b8e
SV
8730 if (IS_ERR(tg))
8731 return ERR_PTR(-ENOMEM);
8732
68318b8e
SV
8733 return &tg->css;
8734}
8735
41a2d6cf
IM
8736static void
8737cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8738{
2b01dfe3 8739 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8740
8741 sched_destroy_group(tg);
8742}
8743
41a2d6cf 8744static int
be367d09 8745cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8746{
b68aa230 8747#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8748 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8749 return -EINVAL;
8750#else
68318b8e
SV
8751 /* We don't support RT-tasks being in separate groups */
8752 if (tsk->sched_class != &fair_sched_class)
8753 return -EINVAL;
b68aa230 8754#endif
be367d09
BB
8755 return 0;
8756}
68318b8e 8757
be367d09
BB
8758static int
8759cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8760 struct task_struct *tsk, bool threadgroup)
8761{
8762 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8763 if (retval)
8764 return retval;
8765 if (threadgroup) {
8766 struct task_struct *c;
8767 rcu_read_lock();
8768 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8769 retval = cpu_cgroup_can_attach_task(cgrp, c);
8770 if (retval) {
8771 rcu_read_unlock();
8772 return retval;
8773 }
8774 }
8775 rcu_read_unlock();
8776 }
68318b8e
SV
8777 return 0;
8778}
8779
8780static void
2b01dfe3 8781cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8782 struct cgroup *old_cont, struct task_struct *tsk,
8783 bool threadgroup)
68318b8e
SV
8784{
8785 sched_move_task(tsk);
be367d09
BB
8786 if (threadgroup) {
8787 struct task_struct *c;
8788 rcu_read_lock();
8789 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8790 sched_move_task(c);
8791 }
8792 rcu_read_unlock();
8793 }
68318b8e
SV
8794}
8795
068c5cc5 8796static void
d41d5a01
PZ
8797cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8798 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8799{
8800 /*
8801 * cgroup_exit() is called in the copy_process() failure path.
8802 * Ignore this case since the task hasn't ran yet, this avoids
8803 * trying to poke a half freed task state from generic code.
8804 */
8805 if (!(task->flags & PF_EXITING))
8806 return;
8807
8808 sched_move_task(task);
8809}
8810
052f1dc7 8811#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8812static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8813 u64 shareval)
68318b8e 8814{
2b01dfe3 8815 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8816}
8817
f4c753b7 8818static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8819{
2b01dfe3 8820 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8821
8822 return (u64) tg->shares;
8823}
6d6bc0ad 8824#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8825
052f1dc7 8826#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8827static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8828 s64 val)
6f505b16 8829{
06ecb27c 8830 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8831}
8832
06ecb27c 8833static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8834{
06ecb27c 8835 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8836}
d0b27fa7
PZ
8837
8838static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8839 u64 rt_period_us)
8840{
8841 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8842}
8843
8844static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8845{
8846 return sched_group_rt_period(cgroup_tg(cgrp));
8847}
6d6bc0ad 8848#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8849
fe5c7cc2 8850static struct cftype cpu_files[] = {
052f1dc7 8851#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8852 {
8853 .name = "shares",
f4c753b7
PM
8854 .read_u64 = cpu_shares_read_u64,
8855 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8856 },
052f1dc7
PZ
8857#endif
8858#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8859 {
9f0c1e56 8860 .name = "rt_runtime_us",
06ecb27c
PM
8861 .read_s64 = cpu_rt_runtime_read,
8862 .write_s64 = cpu_rt_runtime_write,
6f505b16 8863 },
d0b27fa7
PZ
8864 {
8865 .name = "rt_period_us",
f4c753b7
PM
8866 .read_u64 = cpu_rt_period_read_uint,
8867 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8868 },
052f1dc7 8869#endif
68318b8e
SV
8870};
8871
8872static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8873{
fe5c7cc2 8874 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8875}
8876
8877struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8878 .name = "cpu",
8879 .create = cpu_cgroup_create,
8880 .destroy = cpu_cgroup_destroy,
8881 .can_attach = cpu_cgroup_can_attach,
8882 .attach = cpu_cgroup_attach,
068c5cc5 8883 .exit = cpu_cgroup_exit,
38605cae
IM
8884 .populate = cpu_cgroup_populate,
8885 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8886 .early_init = 1,
8887};
8888
052f1dc7 8889#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8890
8891#ifdef CONFIG_CGROUP_CPUACCT
8892
8893/*
8894 * CPU accounting code for task groups.
8895 *
8896 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8897 * (balbir@in.ibm.com).
8898 */
8899
934352f2 8900/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8901struct cpuacct {
8902 struct cgroup_subsys_state css;
8903 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8904 u64 __percpu *cpuusage;
ef12fefa 8905 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8906 struct cpuacct *parent;
d842de87
SV
8907};
8908
8909struct cgroup_subsys cpuacct_subsys;
8910
8911/* return cpu accounting group corresponding to this container */
32cd756a 8912static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8913{
32cd756a 8914 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8915 struct cpuacct, css);
8916}
8917
8918/* return cpu accounting group to which this task belongs */
8919static inline struct cpuacct *task_ca(struct task_struct *tsk)
8920{
8921 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8922 struct cpuacct, css);
8923}
8924
8925/* create a new cpu accounting group */
8926static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8927 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8928{
8929 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8930 int i;
d842de87
SV
8931
8932 if (!ca)
ef12fefa 8933 goto out;
d842de87
SV
8934
8935 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8936 if (!ca->cpuusage)
8937 goto out_free_ca;
8938
8939 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8940 if (percpu_counter_init(&ca->cpustat[i], 0))
8941 goto out_free_counters;
d842de87 8942
934352f2
BR
8943 if (cgrp->parent)
8944 ca->parent = cgroup_ca(cgrp->parent);
8945
d842de87 8946 return &ca->css;
ef12fefa
BR
8947
8948out_free_counters:
8949 while (--i >= 0)
8950 percpu_counter_destroy(&ca->cpustat[i]);
8951 free_percpu(ca->cpuusage);
8952out_free_ca:
8953 kfree(ca);
8954out:
8955 return ERR_PTR(-ENOMEM);
d842de87
SV
8956}
8957
8958/* destroy an existing cpu accounting group */
41a2d6cf 8959static void
32cd756a 8960cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8961{
32cd756a 8962 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8963 int i;
d842de87 8964
ef12fefa
BR
8965 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8966 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8967 free_percpu(ca->cpuusage);
8968 kfree(ca);
8969}
8970
720f5498
KC
8971static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8972{
b36128c8 8973 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8974 u64 data;
8975
8976#ifndef CONFIG_64BIT
8977 /*
8978 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8979 */
05fa785c 8980 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8981 data = *cpuusage;
05fa785c 8982 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8983#else
8984 data = *cpuusage;
8985#endif
8986
8987 return data;
8988}
8989
8990static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8991{
b36128c8 8992 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8993
8994#ifndef CONFIG_64BIT
8995 /*
8996 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8997 */
05fa785c 8998 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8999 *cpuusage = val;
05fa785c 9000 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9001#else
9002 *cpuusage = val;
9003#endif
9004}
9005
d842de87 9006/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9007static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9008{
32cd756a 9009 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9010 u64 totalcpuusage = 0;
9011 int i;
9012
720f5498
KC
9013 for_each_present_cpu(i)
9014 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9015
9016 return totalcpuusage;
9017}
9018
0297b803
DG
9019static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9020 u64 reset)
9021{
9022 struct cpuacct *ca = cgroup_ca(cgrp);
9023 int err = 0;
9024 int i;
9025
9026 if (reset) {
9027 err = -EINVAL;
9028 goto out;
9029 }
9030
720f5498
KC
9031 for_each_present_cpu(i)
9032 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9033
0297b803
DG
9034out:
9035 return err;
9036}
9037
e9515c3c
KC
9038static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9039 struct seq_file *m)
9040{
9041 struct cpuacct *ca = cgroup_ca(cgroup);
9042 u64 percpu;
9043 int i;
9044
9045 for_each_present_cpu(i) {
9046 percpu = cpuacct_cpuusage_read(ca, i);
9047 seq_printf(m, "%llu ", (unsigned long long) percpu);
9048 }
9049 seq_printf(m, "\n");
9050 return 0;
9051}
9052
ef12fefa
BR
9053static const char *cpuacct_stat_desc[] = {
9054 [CPUACCT_STAT_USER] = "user",
9055 [CPUACCT_STAT_SYSTEM] = "system",
9056};
9057
9058static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9059 struct cgroup_map_cb *cb)
9060{
9061 struct cpuacct *ca = cgroup_ca(cgrp);
9062 int i;
9063
9064 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9065 s64 val = percpu_counter_read(&ca->cpustat[i]);
9066 val = cputime64_to_clock_t(val);
9067 cb->fill(cb, cpuacct_stat_desc[i], val);
9068 }
9069 return 0;
9070}
9071
d842de87
SV
9072static struct cftype files[] = {
9073 {
9074 .name = "usage",
f4c753b7
PM
9075 .read_u64 = cpuusage_read,
9076 .write_u64 = cpuusage_write,
d842de87 9077 },
e9515c3c
KC
9078 {
9079 .name = "usage_percpu",
9080 .read_seq_string = cpuacct_percpu_seq_read,
9081 },
ef12fefa
BR
9082 {
9083 .name = "stat",
9084 .read_map = cpuacct_stats_show,
9085 },
d842de87
SV
9086};
9087
32cd756a 9088static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9089{
32cd756a 9090 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9091}
9092
9093/*
9094 * charge this task's execution time to its accounting group.
9095 *
9096 * called with rq->lock held.
9097 */
9098static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9099{
9100 struct cpuacct *ca;
934352f2 9101 int cpu;
d842de87 9102
c40c6f85 9103 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9104 return;
9105
934352f2 9106 cpu = task_cpu(tsk);
a18b83b7
BR
9107
9108 rcu_read_lock();
9109
d842de87 9110 ca = task_ca(tsk);
d842de87 9111
934352f2 9112 for (; ca; ca = ca->parent) {
b36128c8 9113 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9114 *cpuusage += cputime;
9115 }
a18b83b7
BR
9116
9117 rcu_read_unlock();
d842de87
SV
9118}
9119
fa535a77
AB
9120/*
9121 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9122 * in cputime_t units. As a result, cpuacct_update_stats calls
9123 * percpu_counter_add with values large enough to always overflow the
9124 * per cpu batch limit causing bad SMP scalability.
9125 *
9126 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9127 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9128 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9129 */
9130#ifdef CONFIG_SMP
9131#define CPUACCT_BATCH \
9132 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9133#else
9134#define CPUACCT_BATCH 0
9135#endif
9136
ef12fefa
BR
9137/*
9138 * Charge the system/user time to the task's accounting group.
9139 */
9140static void cpuacct_update_stats(struct task_struct *tsk,
9141 enum cpuacct_stat_index idx, cputime_t val)
9142{
9143 struct cpuacct *ca;
fa535a77 9144 int batch = CPUACCT_BATCH;
ef12fefa
BR
9145
9146 if (unlikely(!cpuacct_subsys.active))
9147 return;
9148
9149 rcu_read_lock();
9150 ca = task_ca(tsk);
9151
9152 do {
fa535a77 9153 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9154 ca = ca->parent;
9155 } while (ca);
9156 rcu_read_unlock();
9157}
9158
d842de87
SV
9159struct cgroup_subsys cpuacct_subsys = {
9160 .name = "cpuacct",
9161 .create = cpuacct_create,
9162 .destroy = cpuacct_destroy,
9163 .populate = cpuacct_populate,
9164 .subsys_id = cpuacct_subsys_id,
9165};
9166#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9167
This page took 3.807986 seconds and 5 git commands to generate.