sched: Fix signed unsigned comparison in check_preempt_tick()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
335d7afb 78#include <asm/mutex.h>
1da177e4 79
6e0534f2 80#include "sched_cpupri.h"
21aa9af0 81#include "workqueue_sched.h"
5091faa4 82#include "sched_autogroup.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
e05606d3
IM
126static inline int rt_policy(int policy)
127{
3f33a7ce 128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
129 return 1;
130 return 0;
131}
132
133static inline int task_has_rt_policy(struct task_struct *p)
134{
135 return rt_policy(p->policy);
136}
137
1da177e4 138/*
6aa645ea 139 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 140 */
6aa645ea
IM
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
d0b27fa7 146struct rt_bandwidth {
ea736ed5 147 /* nests inside the rq lock: */
0986b11b 148 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
d0b27fa7
PZ
152};
153
154static struct rt_bandwidth def_rt_bandwidth;
155
156static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159{
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177}
178
179static
180void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181{
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
0986b11b 185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 186
d0b27fa7
PZ
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
190}
191
c8bfff6d
KH
192static inline int rt_bandwidth_enabled(void)
193{
194 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
195}
196
197static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198{
199 ktime_t now;
200
cac64d00 201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
0986b11b 207 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 208 for (;;) {
7f1e2ca9
PZ
209 unsigned long delta;
210 ktime_t soft, hard;
211
d0b27fa7
PZ
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 222 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 223 }
0986b11b 224 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
225}
226
227#ifdef CONFIG_RT_GROUP_SCHED
228static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229{
230 hrtimer_cancel(&rt_b->rt_period_timer);
231}
232#endif
233
712555ee
HC
234/*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238static DEFINE_MUTEX(sched_domains_mutex);
239
7c941438 240#ifdef CONFIG_CGROUP_SCHED
29f59db3 241
68318b8e
SV
242#include <linux/cgroup.h>
243
29f59db3
SV
244struct cfs_rq;
245
6f505b16
PZ
246static LIST_HEAD(task_groups);
247
29f59db3 248/* task group related information */
4cf86d77 249struct task_group {
68318b8e 250 struct cgroup_subsys_state css;
6c415b92 251
052f1dc7 252#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
2069dd75
PZ
258
259 atomic_t load_weight;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
5091faa4
MG
275
276#ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278#endif
29f59db3
SV
279};
280
3d4b47b4 281/* task_group_lock serializes the addition/removal of task groups */
8ed36996 282static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 283
e9036b36
CG
284#ifdef CONFIG_FAIR_GROUP_SCHED
285
07e06b01 286# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 287
cb4ad1ff 288/*
2e084786
LJ
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
cb4ad1ff
MX
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
18d95a28 296#define MIN_SHARES 2
2e084786 297#define MAX_SHARES (1UL << 18)
18d95a28 298
07e06b01 299static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
300#endif
301
29f59db3 302/* Default task group.
3a252015 303 * Every task in system belong to this group at bootup.
29f59db3 304 */
07e06b01 305struct task_group root_task_group;
29f59db3 306
7c941438 307#endif /* CONFIG_CGROUP_SCHED */
29f59db3 308
6aa645ea
IM
309/* CFS-related fields in a runqueue */
310struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
6aa645ea 314 u64 exec_clock;
e9acbff6 315 u64 min_vruntime;
6aa645ea
IM
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
4a55bd5e
PZ
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
4793241b 327 struct sched_entity *curr, *next, *last;
ddc97297 328
5ac5c4d6 329 unsigned int nr_spread_over;
ddc97297 330
62160e3f 331#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
41a2d6cf
IM
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
3d4b47b4 342 int on_list;
41a2d6cf
IM
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
345
346#ifdef CONFIG_SMP
c09595f6 347 /*
c8cba857 348 * the part of load.weight contributed by tasks
c09595f6 349 */
c8cba857 350 unsigned long task_weight;
c09595f6 351
c8cba857
PZ
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
c09595f6 359
c8cba857 360 /*
3b3d190e
PT
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 366 */
2069dd75
PZ
367 u64 load_avg;
368 u64 load_period;
3b3d190e 369 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 370
2069dd75 371 unsigned long load_contribution;
c09595f6 372#endif
6aa645ea
IM
373#endif
374};
1da177e4 375
6aa645ea
IM
376/* Real-Time classes' related field in a runqueue: */
377struct rt_rq {
378 struct rt_prio_array active;
63489e45 379 unsigned long rt_nr_running;
052f1dc7 380#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
381 struct {
382 int curr; /* highest queued rt task prio */
398a153b 383#ifdef CONFIG_SMP
e864c499 384 int next; /* next highest */
398a153b 385#endif
e864c499 386 } highest_prio;
6f505b16 387#endif
fa85ae24 388#ifdef CONFIG_SMP
73fe6aae 389 unsigned long rt_nr_migratory;
a1ba4d8b 390 unsigned long rt_nr_total;
a22d7fc1 391 int overloaded;
917b627d 392 struct plist_head pushable_tasks;
fa85ae24 393#endif
6f505b16 394 int rt_throttled;
fa85ae24 395 u64 rt_time;
ac086bc2 396 u64 rt_runtime;
ea736ed5 397 /* Nests inside the rq lock: */
0986b11b 398 raw_spinlock_t rt_runtime_lock;
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
401 unsigned long rt_nr_boosted;
402
6f505b16
PZ
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
6f505b16 406#endif
6aa645ea
IM
407};
408
57d885fe
GH
409#ifdef CONFIG_SMP
410
411/*
412 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
57d885fe
GH
418 */
419struct root_domain {
420 atomic_t refcount;
c6c4927b
RR
421 cpumask_var_t span;
422 cpumask_var_t online;
637f5085 423
0eab9146 424 /*
637f5085
GH
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
c6c4927b 428 cpumask_var_t rto_mask;
0eab9146 429 atomic_t rto_count;
6e0534f2 430 struct cpupri cpupri;
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
ed2d372c 439#endif /* CONFIG_SMP */
57d885fe 440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 459 unsigned long last_load_update_tick;
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
83cd4fe2 462 unsigned char nohz_balance_kick;
46cb4b7c 463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
34f971f6 490 struct task_struct *curr, *idle, *stop;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
305e6835 495 u64 clock_task;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
aa483808
VP
523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525#endif
526
dce48a84
TG
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
8f4d37ec 531#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
532#ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535#endif
8f4d37ec
PZ
536 struct hrtimer hrtick_timer;
537#endif
538
1da177e4
LT
539#ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
9c2c4802
KC
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
544
545 /* sys_sched_yield() stats */
480b9434 546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
5091faa4 606 struct task_group *tg;
dc61b1d6
PZ
607 struct cgroup_subsys_state *css;
608
609 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
610 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
611 tg = container_of(css, struct task_group, css);
612
613 return autogroup_task_group(p, tg);
dc61b1d6
PZ
614}
615
616/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
617static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
618{
619#ifdef CONFIG_FAIR_GROUP_SCHED
620 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
621 p->se.parent = task_group(p)->se[cpu];
622#endif
623
624#ifdef CONFIG_RT_GROUP_SCHED
625 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
626 p->rt.parent = task_group(p)->rt_se[cpu];
627#endif
628}
629
630#else /* CONFIG_CGROUP_SCHED */
631
632static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
633static inline struct task_group *task_group(struct task_struct *p)
634{
635 return NULL;
636}
637
638#endif /* CONFIG_CGROUP_SCHED */
639
fe44d621 640static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 641
fe44d621 642static void update_rq_clock(struct rq *rq)
3e51f33f 643{
fe44d621 644 s64 delta;
305e6835 645
f26f9aff
MG
646 if (rq->skip_clock_update)
647 return;
aa483808 648
fe44d621
PZ
649 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
650 rq->clock += delta;
651 update_rq_clock_task(rq, delta);
3e51f33f
PZ
652}
653
bf5c91ba
IM
654/*
655 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
656 */
657#ifdef CONFIG_SCHED_DEBUG
658# define const_debug __read_mostly
659#else
660# define const_debug static const
661#endif
662
017730c1
IM
663/**
664 * runqueue_is_locked
e17b38bf 665 * @cpu: the processor in question.
017730c1
IM
666 *
667 * Returns true if the current cpu runqueue is locked.
668 * This interface allows printk to be called with the runqueue lock
669 * held and know whether or not it is OK to wake up the klogd.
670 */
89f19f04 671int runqueue_is_locked(int cpu)
017730c1 672{
05fa785c 673 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
674}
675
bf5c91ba
IM
676/*
677 * Debugging: various feature bits
678 */
f00b45c1
PZ
679
680#define SCHED_FEAT(name, enabled) \
681 __SCHED_FEAT_##name ,
682
bf5c91ba 683enum {
f00b45c1 684#include "sched_features.h"
bf5c91ba
IM
685};
686
f00b45c1
PZ
687#undef SCHED_FEAT
688
689#define SCHED_FEAT(name, enabled) \
690 (1UL << __SCHED_FEAT_##name) * enabled |
691
bf5c91ba 692const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
693#include "sched_features.h"
694 0;
695
696#undef SCHED_FEAT
697
698#ifdef CONFIG_SCHED_DEBUG
699#define SCHED_FEAT(name, enabled) \
700 #name ,
701
983ed7a6 702static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
703#include "sched_features.h"
704 NULL
705};
706
707#undef SCHED_FEAT
708
34f3a814 709static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 710{
f00b45c1
PZ
711 int i;
712
713 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
714 if (!(sysctl_sched_features & (1UL << i)))
715 seq_puts(m, "NO_");
716 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 717 }
34f3a814 718 seq_puts(m, "\n");
f00b45c1 719
34f3a814 720 return 0;
f00b45c1
PZ
721}
722
723static ssize_t
724sched_feat_write(struct file *filp, const char __user *ubuf,
725 size_t cnt, loff_t *ppos)
726{
727 char buf[64];
7740191c 728 char *cmp;
f00b45c1
PZ
729 int neg = 0;
730 int i;
731
732 if (cnt > 63)
733 cnt = 63;
734
735 if (copy_from_user(&buf, ubuf, cnt))
736 return -EFAULT;
737
738 buf[cnt] = 0;
7740191c 739 cmp = strstrip(buf);
f00b45c1 740
524429c3 741 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
742 neg = 1;
743 cmp += 3;
744 }
745
746 for (i = 0; sched_feat_names[i]; i++) {
7740191c 747 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
748 if (neg)
749 sysctl_sched_features &= ~(1UL << i);
750 else
751 sysctl_sched_features |= (1UL << i);
752 break;
753 }
754 }
755
756 if (!sched_feat_names[i])
757 return -EINVAL;
758
42994724 759 *ppos += cnt;
f00b45c1
PZ
760
761 return cnt;
762}
763
34f3a814
LZ
764static int sched_feat_open(struct inode *inode, struct file *filp)
765{
766 return single_open(filp, sched_feat_show, NULL);
767}
768
828c0950 769static const struct file_operations sched_feat_fops = {
34f3a814
LZ
770 .open = sched_feat_open,
771 .write = sched_feat_write,
772 .read = seq_read,
773 .llseek = seq_lseek,
774 .release = single_release,
f00b45c1
PZ
775};
776
777static __init int sched_init_debug(void)
778{
f00b45c1
PZ
779 debugfs_create_file("sched_features", 0644, NULL, NULL,
780 &sched_feat_fops);
781
782 return 0;
783}
784late_initcall(sched_init_debug);
785
786#endif
787
788#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 789
b82d9fdd
PZ
790/*
791 * Number of tasks to iterate in a single balance run.
792 * Limited because this is done with IRQs disabled.
793 */
794const_debug unsigned int sysctl_sched_nr_migrate = 32;
795
e9e9250b
PZ
796/*
797 * period over which we average the RT time consumption, measured
798 * in ms.
799 *
800 * default: 1s
801 */
802const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
803
fa85ae24 804/*
9f0c1e56 805 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
806 * default: 1s
807 */
9f0c1e56 808unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 809
6892b75e
IM
810static __read_mostly int scheduler_running;
811
9f0c1e56
PZ
812/*
813 * part of the period that we allow rt tasks to run in us.
814 * default: 0.95s
815 */
816int sysctl_sched_rt_runtime = 950000;
fa85ae24 817
d0b27fa7
PZ
818static inline u64 global_rt_period(void)
819{
820 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
821}
822
823static inline u64 global_rt_runtime(void)
824{
e26873bb 825 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
826 return RUNTIME_INF;
827
828 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
829}
fa85ae24 830
1da177e4 831#ifndef prepare_arch_switch
4866cde0
NP
832# define prepare_arch_switch(next) do { } while (0)
833#endif
834#ifndef finish_arch_switch
835# define finish_arch_switch(prev) do { } while (0)
836#endif
837
051a1d1a
DA
838static inline int task_current(struct rq *rq, struct task_struct *p)
839{
840 return rq->curr == p;
841}
842
4866cde0 843#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 844static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 845{
051a1d1a 846 return task_current(rq, p);
4866cde0
NP
847}
848
70b97a7f 849static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
850{
851}
852
70b97a7f 853static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 854{
da04c035
IM
855#ifdef CONFIG_DEBUG_SPINLOCK
856 /* this is a valid case when another task releases the spinlock */
857 rq->lock.owner = current;
858#endif
8a25d5de
IM
859 /*
860 * If we are tracking spinlock dependencies then we have to
861 * fix up the runqueue lock - which gets 'carried over' from
862 * prev into current:
863 */
864 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
865
05fa785c 866 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
867}
868
869#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 870static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
871{
872#ifdef CONFIG_SMP
873 return p->oncpu;
874#else
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876#endif
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881#ifdef CONFIG_SMP
882 /*
883 * We can optimise this out completely for !SMP, because the
884 * SMP rebalancing from interrupt is the only thing that cares
885 * here.
886 */
887 next->oncpu = 1;
888#endif
889#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 890 raw_spin_unlock_irq(&rq->lock);
4866cde0 891#else
05fa785c 892 raw_spin_unlock(&rq->lock);
4866cde0
NP
893#endif
894}
895
70b97a7f 896static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
897{
898#ifdef CONFIG_SMP
899 /*
900 * After ->oncpu is cleared, the task can be moved to a different CPU.
901 * We must ensure this doesn't happen until the switch is completely
902 * finished.
903 */
904 smp_wmb();
905 prev->oncpu = 0;
906#endif
907#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
908 local_irq_enable();
1da177e4 909#endif
4866cde0
NP
910}
911#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 912
0970d299 913/*
65cc8e48
PZ
914 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
915 * against ttwu().
0970d299
PZ
916 */
917static inline int task_is_waking(struct task_struct *p)
918{
0017d735 919 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
920}
921
b29739f9
IM
922/*
923 * __task_rq_lock - lock the runqueue a given task resides on.
924 * Must be called interrupts disabled.
925 */
70b97a7f 926static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
927 __acquires(rq->lock)
928{
0970d299
PZ
929 struct rq *rq;
930
3a5c359a 931 for (;;) {
0970d299 932 rq = task_rq(p);
05fa785c 933 raw_spin_lock(&rq->lock);
65cc8e48 934 if (likely(rq == task_rq(p)))
3a5c359a 935 return rq;
05fa785c 936 raw_spin_unlock(&rq->lock);
b29739f9 937 }
b29739f9
IM
938}
939
1da177e4
LT
940/*
941 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 942 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
943 * explicitly disabling preemption.
944 */
70b97a7f 945static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
946 __acquires(rq->lock)
947{
70b97a7f 948 struct rq *rq;
1da177e4 949
3a5c359a
AK
950 for (;;) {
951 local_irq_save(*flags);
952 rq = task_rq(p);
05fa785c 953 raw_spin_lock(&rq->lock);
65cc8e48 954 if (likely(rq == task_rq(p)))
3a5c359a 955 return rq;
05fa785c 956 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 957 }
1da177e4
LT
958}
959
a9957449 960static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
961 __releases(rq->lock)
962{
05fa785c 963 raw_spin_unlock(&rq->lock);
b29739f9
IM
964}
965
70b97a7f 966static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
967 __releases(rq->lock)
968{
05fa785c 969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
970}
971
1da177e4 972/*
cc2a73b5 973 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 974 */
a9957449 975static struct rq *this_rq_lock(void)
1da177e4
LT
976 __acquires(rq->lock)
977{
70b97a7f 978 struct rq *rq;
1da177e4
LT
979
980 local_irq_disable();
981 rq = this_rq();
05fa785c 982 raw_spin_lock(&rq->lock);
1da177e4
LT
983
984 return rq;
985}
986
8f4d37ec
PZ
987#ifdef CONFIG_SCHED_HRTICK
988/*
989 * Use HR-timers to deliver accurate preemption points.
990 *
991 * Its all a bit involved since we cannot program an hrt while holding the
992 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993 * reschedule event.
994 *
995 * When we get rescheduled we reprogram the hrtick_timer outside of the
996 * rq->lock.
997 */
8f4d37ec
PZ
998
999/*
1000 * Use hrtick when:
1001 * - enabled by features
1002 * - hrtimer is actually high res
1003 */
1004static inline int hrtick_enabled(struct rq *rq)
1005{
1006 if (!sched_feat(HRTICK))
1007 return 0;
ba42059f 1008 if (!cpu_active(cpu_of(rq)))
b328ca18 1009 return 0;
8f4d37ec
PZ
1010 return hrtimer_is_hres_active(&rq->hrtick_timer);
1011}
1012
8f4d37ec
PZ
1013static void hrtick_clear(struct rq *rq)
1014{
1015 if (hrtimer_active(&rq->hrtick_timer))
1016 hrtimer_cancel(&rq->hrtick_timer);
1017}
1018
8f4d37ec
PZ
1019/*
1020 * High-resolution timer tick.
1021 * Runs from hardirq context with interrupts disabled.
1022 */
1023static enum hrtimer_restart hrtick(struct hrtimer *timer)
1024{
1025 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1026
1027 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1028
05fa785c 1029 raw_spin_lock(&rq->lock);
3e51f33f 1030 update_rq_clock(rq);
8f4d37ec 1031 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1032 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1033
1034 return HRTIMER_NORESTART;
1035}
1036
95e904c7 1037#ifdef CONFIG_SMP
31656519
PZ
1038/*
1039 * called from hardirq (IPI) context
1040 */
1041static void __hrtick_start(void *arg)
b328ca18 1042{
31656519 1043 struct rq *rq = arg;
b328ca18 1044
05fa785c 1045 raw_spin_lock(&rq->lock);
31656519
PZ
1046 hrtimer_restart(&rq->hrtick_timer);
1047 rq->hrtick_csd_pending = 0;
05fa785c 1048 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1049}
1050
31656519
PZ
1051/*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1057{
31656519
PZ
1058 struct hrtimer *timer = &rq->hrtick_timer;
1059 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1060
cc584b21 1061 hrtimer_set_expires(timer, time);
31656519
PZ
1062
1063 if (rq == this_rq()) {
1064 hrtimer_restart(timer);
1065 } else if (!rq->hrtick_csd_pending) {
6e275637 1066 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1067 rq->hrtick_csd_pending = 1;
1068 }
b328ca18
PZ
1069}
1070
1071static int
1072hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1073{
1074 int cpu = (int)(long)hcpu;
1075
1076 switch (action) {
1077 case CPU_UP_CANCELED:
1078 case CPU_UP_CANCELED_FROZEN:
1079 case CPU_DOWN_PREPARE:
1080 case CPU_DOWN_PREPARE_FROZEN:
1081 case CPU_DEAD:
1082 case CPU_DEAD_FROZEN:
31656519 1083 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1084 return NOTIFY_OK;
1085 }
1086
1087 return NOTIFY_DONE;
1088}
1089
fa748203 1090static __init void init_hrtick(void)
b328ca18
PZ
1091{
1092 hotcpu_notifier(hotplug_hrtick, 0);
1093}
31656519
PZ
1094#else
1095/*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100static void hrtick_start(struct rq *rq, u64 delay)
1101{
7f1e2ca9 1102 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1103 HRTIMER_MODE_REL_PINNED, 0);
31656519 1104}
b328ca18 1105
006c75f1 1106static inline void init_hrtick(void)
8f4d37ec 1107{
8f4d37ec 1108}
31656519 1109#endif /* CONFIG_SMP */
8f4d37ec 1110
31656519 1111static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1112{
31656519
PZ
1113#ifdef CONFIG_SMP
1114 rq->hrtick_csd_pending = 0;
8f4d37ec 1115
31656519
PZ
1116 rq->hrtick_csd.flags = 0;
1117 rq->hrtick_csd.func = __hrtick_start;
1118 rq->hrtick_csd.info = rq;
1119#endif
8f4d37ec 1120
31656519
PZ
1121 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1122 rq->hrtick_timer.function = hrtick;
8f4d37ec 1123}
006c75f1 1124#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1125static inline void hrtick_clear(struct rq *rq)
1126{
1127}
1128
8f4d37ec
PZ
1129static inline void init_rq_hrtick(struct rq *rq)
1130{
1131}
1132
b328ca18
PZ
1133static inline void init_hrtick(void)
1134{
1135}
006c75f1 1136#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1137
c24d20db
IM
1138/*
1139 * resched_task - mark a task 'to be rescheduled now'.
1140 *
1141 * On UP this means the setting of the need_resched flag, on SMP it
1142 * might also involve a cross-CPU call to trigger the scheduler on
1143 * the target CPU.
1144 */
1145#ifdef CONFIG_SMP
1146
1147#ifndef tsk_is_polling
1148#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149#endif
1150
31656519 1151static void resched_task(struct task_struct *p)
c24d20db
IM
1152{
1153 int cpu;
1154
05fa785c 1155 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1156
5ed0cec0 1157 if (test_tsk_need_resched(p))
c24d20db
IM
1158 return;
1159
5ed0cec0 1160 set_tsk_need_resched(p);
c24d20db
IM
1161
1162 cpu = task_cpu(p);
1163 if (cpu == smp_processor_id())
1164 return;
1165
1166 /* NEED_RESCHED must be visible before we test polling */
1167 smp_mb();
1168 if (!tsk_is_polling(p))
1169 smp_send_reschedule(cpu);
1170}
1171
1172static void resched_cpu(int cpu)
1173{
1174 struct rq *rq = cpu_rq(cpu);
1175 unsigned long flags;
1176
05fa785c 1177 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1178 return;
1179 resched_task(cpu_curr(cpu));
05fa785c 1180 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1181}
06d8308c
TG
1182
1183#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1184/*
1185 * In the semi idle case, use the nearest busy cpu for migrating timers
1186 * from an idle cpu. This is good for power-savings.
1187 *
1188 * We don't do similar optimization for completely idle system, as
1189 * selecting an idle cpu will add more delays to the timers than intended
1190 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1191 */
1192int get_nohz_timer_target(void)
1193{
1194 int cpu = smp_processor_id();
1195 int i;
1196 struct sched_domain *sd;
1197
1198 for_each_domain(cpu, sd) {
1199 for_each_cpu(i, sched_domain_span(sd))
1200 if (!idle_cpu(i))
1201 return i;
1202 }
1203 return cpu;
1204}
06d8308c
TG
1205/*
1206 * When add_timer_on() enqueues a timer into the timer wheel of an
1207 * idle CPU then this timer might expire before the next timer event
1208 * which is scheduled to wake up that CPU. In case of a completely
1209 * idle system the next event might even be infinite time into the
1210 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1211 * leaves the inner idle loop so the newly added timer is taken into
1212 * account when the CPU goes back to idle and evaluates the timer
1213 * wheel for the next timer event.
1214 */
1215void wake_up_idle_cpu(int cpu)
1216{
1217 struct rq *rq = cpu_rq(cpu);
1218
1219 if (cpu == smp_processor_id())
1220 return;
1221
1222 /*
1223 * This is safe, as this function is called with the timer
1224 * wheel base lock of (cpu) held. When the CPU is on the way
1225 * to idle and has not yet set rq->curr to idle then it will
1226 * be serialized on the timer wheel base lock and take the new
1227 * timer into account automatically.
1228 */
1229 if (rq->curr != rq->idle)
1230 return;
1231
1232 /*
1233 * We can set TIF_RESCHED on the idle task of the other CPU
1234 * lockless. The worst case is that the other CPU runs the
1235 * idle task through an additional NOOP schedule()
1236 */
5ed0cec0 1237 set_tsk_need_resched(rq->idle);
06d8308c
TG
1238
1239 /* NEED_RESCHED must be visible before we test polling */
1240 smp_mb();
1241 if (!tsk_is_polling(rq->idle))
1242 smp_send_reschedule(cpu);
1243}
39c0cbe2 1244
6d6bc0ad 1245#endif /* CONFIG_NO_HZ */
06d8308c 1246
e9e9250b
PZ
1247static u64 sched_avg_period(void)
1248{
1249 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1250}
1251
1252static void sched_avg_update(struct rq *rq)
1253{
1254 s64 period = sched_avg_period();
1255
1256 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1257 /*
1258 * Inline assembly required to prevent the compiler
1259 * optimising this loop into a divmod call.
1260 * See __iter_div_u64_rem() for another example of this.
1261 */
1262 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1263 rq->age_stamp += period;
1264 rq->rt_avg /= 2;
1265 }
1266}
1267
1268static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1269{
1270 rq->rt_avg += rt_delta;
1271 sched_avg_update(rq);
1272}
1273
6d6bc0ad 1274#else /* !CONFIG_SMP */
31656519 1275static void resched_task(struct task_struct *p)
c24d20db 1276{
05fa785c 1277 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1278 set_tsk_need_resched(p);
c24d20db 1279}
e9e9250b
PZ
1280
1281static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282{
1283}
da2b71ed
SS
1284
1285static void sched_avg_update(struct rq *rq)
1286{
1287}
6d6bc0ad 1288#endif /* CONFIG_SMP */
c24d20db 1289
45bf76df
IM
1290#if BITS_PER_LONG == 32
1291# define WMULT_CONST (~0UL)
1292#else
1293# define WMULT_CONST (1UL << 32)
1294#endif
1295
1296#define WMULT_SHIFT 32
1297
194081eb
IM
1298/*
1299 * Shift right and round:
1300 */
cf2ab469 1301#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1302
a7be37ac
PZ
1303/*
1304 * delta *= weight / lw
1305 */
cb1c4fc9 1306static unsigned long
45bf76df
IM
1307calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1308 struct load_weight *lw)
1309{
1310 u64 tmp;
1311
7a232e03
LJ
1312 if (!lw->inv_weight) {
1313 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1314 lw->inv_weight = 1;
1315 else
1316 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1317 / (lw->weight+1);
1318 }
45bf76df
IM
1319
1320 tmp = (u64)delta_exec * weight;
1321 /*
1322 * Check whether we'd overflow the 64-bit multiplication:
1323 */
194081eb 1324 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1325 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1326 WMULT_SHIFT/2);
1327 else
cf2ab469 1328 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1329
ecf691da 1330 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1334{
1335 lw->weight += inc;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
1091985b 1339static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1340{
1341 lw->weight -= dec;
e89996ae 1342 lw->inv_weight = 0;
45bf76df
IM
1343}
1344
2069dd75
PZ
1345static inline void update_load_set(struct load_weight *lw, unsigned long w)
1346{
1347 lw->weight = w;
1348 lw->inv_weight = 0;
1349}
1350
2dd73a4f
PW
1351/*
1352 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1353 * of tasks with abnormal "nice" values across CPUs the contribution that
1354 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1355 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1356 * scaled version of the new time slice allocation that they receive on time
1357 * slice expiry etc.
1358 */
1359
cce7ade8
PZ
1360#define WEIGHT_IDLEPRIO 3
1361#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1362
1363/*
1364 * Nice levels are multiplicative, with a gentle 10% change for every
1365 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1366 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1367 * that remained on nice 0.
1368 *
1369 * The "10% effect" is relative and cumulative: from _any_ nice level,
1370 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1371 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1372 * If a task goes up by ~10% and another task goes down by ~10% then
1373 * the relative distance between them is ~25%.)
dd41f596
IM
1374 */
1375static const int prio_to_weight[40] = {
254753dc
IM
1376 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1377 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1378 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1379 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1380 /* 0 */ 1024, 820, 655, 526, 423,
1381 /* 5 */ 335, 272, 215, 172, 137,
1382 /* 10 */ 110, 87, 70, 56, 45,
1383 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1384};
1385
5714d2de
IM
1386/*
1387 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1388 *
1389 * In cases where the weight does not change often, we can use the
1390 * precalculated inverse to speed up arithmetics by turning divisions
1391 * into multiplications:
1392 */
dd41f596 1393static const u32 prio_to_wmult[40] = {
254753dc
IM
1394 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1395 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1396 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1397 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1398 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1399 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1400 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1401 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1402};
2dd73a4f 1403
ef12fefa
BR
1404/* Time spent by the tasks of the cpu accounting group executing in ... */
1405enum cpuacct_stat_index {
1406 CPUACCT_STAT_USER, /* ... user mode */
1407 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1408
1409 CPUACCT_STAT_NSTATS,
1410};
1411
d842de87
SV
1412#ifdef CONFIG_CGROUP_CPUACCT
1413static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1414static void cpuacct_update_stats(struct task_struct *tsk,
1415 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1416#else
1417static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1418static inline void cpuacct_update_stats(struct task_struct *tsk,
1419 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1420#endif
1421
18d95a28
PZ
1422static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1423{
1424 update_load_add(&rq->load, load);
1425}
1426
1427static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1428{
1429 update_load_sub(&rq->load, load);
1430}
1431
7940ca36 1432#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1433typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1434
1435/*
1436 * Iterate the full tree, calling @down when first entering a node and @up when
1437 * leaving it for the final time.
1438 */
eb755805 1439static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1440{
1441 struct task_group *parent, *child;
eb755805 1442 int ret;
c09595f6
PZ
1443
1444 rcu_read_lock();
1445 parent = &root_task_group;
1446down:
eb755805
PZ
1447 ret = (*down)(parent, data);
1448 if (ret)
1449 goto out_unlock;
c09595f6
PZ
1450 list_for_each_entry_rcu(child, &parent->children, siblings) {
1451 parent = child;
1452 goto down;
1453
1454up:
1455 continue;
1456 }
eb755805
PZ
1457 ret = (*up)(parent, data);
1458 if (ret)
1459 goto out_unlock;
c09595f6
PZ
1460
1461 child = parent;
1462 parent = parent->parent;
1463 if (parent)
1464 goto up;
eb755805 1465out_unlock:
c09595f6 1466 rcu_read_unlock();
eb755805
PZ
1467
1468 return ret;
c09595f6
PZ
1469}
1470
eb755805
PZ
1471static int tg_nop(struct task_group *tg, void *data)
1472{
1473 return 0;
c09595f6 1474}
eb755805
PZ
1475#endif
1476
1477#ifdef CONFIG_SMP
f5f08f39
PZ
1478/* Used instead of source_load when we know the type == 0 */
1479static unsigned long weighted_cpuload(const int cpu)
1480{
1481 return cpu_rq(cpu)->load.weight;
1482}
1483
1484/*
1485 * Return a low guess at the load of a migration-source cpu weighted
1486 * according to the scheduling class and "nice" value.
1487 *
1488 * We want to under-estimate the load of migration sources, to
1489 * balance conservatively.
1490 */
1491static unsigned long source_load(int cpu, int type)
1492{
1493 struct rq *rq = cpu_rq(cpu);
1494 unsigned long total = weighted_cpuload(cpu);
1495
1496 if (type == 0 || !sched_feat(LB_BIAS))
1497 return total;
1498
1499 return min(rq->cpu_load[type-1], total);
1500}
1501
1502/*
1503 * Return a high guess at the load of a migration-target cpu weighted
1504 * according to the scheduling class and "nice" value.
1505 */
1506static unsigned long target_load(int cpu, int type)
1507{
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return max(rq->cpu_load[type-1], total);
1515}
1516
ae154be1
PZ
1517static unsigned long power_of(int cpu)
1518{
e51fd5e2 1519 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1520}
1521
eb755805
PZ
1522static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1523
1524static unsigned long cpu_avg_load_per_task(int cpu)
1525{
1526 struct rq *rq = cpu_rq(cpu);
af6d596f 1527 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1528
4cd42620
SR
1529 if (nr_running)
1530 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1531 else
1532 rq->avg_load_per_task = 0;
eb755805
PZ
1533
1534 return rq->avg_load_per_task;
1535}
1536
1537#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1538
c09595f6 1539/*
c8cba857
PZ
1540 * Compute the cpu's hierarchical load factor for each task group.
1541 * This needs to be done in a top-down fashion because the load of a child
1542 * group is a fraction of its parents load.
c09595f6 1543 */
eb755805 1544static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1545{
c8cba857 1546 unsigned long load;
eb755805 1547 long cpu = (long)data;
c09595f6 1548
c8cba857
PZ
1549 if (!tg->parent) {
1550 load = cpu_rq(cpu)->load.weight;
1551 } else {
1552 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1553 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1554 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1555 }
c09595f6 1556
c8cba857 1557 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1558
eb755805 1559 return 0;
c09595f6
PZ
1560}
1561
eb755805 1562static void update_h_load(long cpu)
c09595f6 1563{
eb755805 1564 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1565}
1566
18d95a28
PZ
1567#endif
1568
8f45e2b5
GH
1569#ifdef CONFIG_PREEMPT
1570
b78bb868
PZ
1571static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1572
70574a99 1573/*
8f45e2b5
GH
1574 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1575 * way at the expense of forcing extra atomic operations in all
1576 * invocations. This assures that the double_lock is acquired using the
1577 * same underlying policy as the spinlock_t on this architecture, which
1578 * reduces latency compared to the unfair variant below. However, it
1579 * also adds more overhead and therefore may reduce throughput.
70574a99 1580 */
8f45e2b5
GH
1581static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1582 __releases(this_rq->lock)
1583 __acquires(busiest->lock)
1584 __acquires(this_rq->lock)
1585{
05fa785c 1586 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1587 double_rq_lock(this_rq, busiest);
1588
1589 return 1;
1590}
1591
1592#else
1593/*
1594 * Unfair double_lock_balance: Optimizes throughput at the expense of
1595 * latency by eliminating extra atomic operations when the locks are
1596 * already in proper order on entry. This favors lower cpu-ids and will
1597 * grant the double lock to lower cpus over higher ids under contention,
1598 * regardless of entry order into the function.
1599 */
1600static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1601 __releases(this_rq->lock)
1602 __acquires(busiest->lock)
1603 __acquires(this_rq->lock)
1604{
1605 int ret = 0;
1606
05fa785c 1607 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1608 if (busiest < this_rq) {
05fa785c
TG
1609 raw_spin_unlock(&this_rq->lock);
1610 raw_spin_lock(&busiest->lock);
1611 raw_spin_lock_nested(&this_rq->lock,
1612 SINGLE_DEPTH_NESTING);
70574a99
AD
1613 ret = 1;
1614 } else
05fa785c
TG
1615 raw_spin_lock_nested(&busiest->lock,
1616 SINGLE_DEPTH_NESTING);
70574a99
AD
1617 }
1618 return ret;
1619}
1620
8f45e2b5
GH
1621#endif /* CONFIG_PREEMPT */
1622
1623/*
1624 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1625 */
1626static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1627{
1628 if (unlikely(!irqs_disabled())) {
1629 /* printk() doesn't work good under rq->lock */
05fa785c 1630 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1631 BUG_ON(1);
1632 }
1633
1634 return _double_lock_balance(this_rq, busiest);
1635}
1636
70574a99
AD
1637static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1638 __releases(busiest->lock)
1639{
05fa785c 1640 raw_spin_unlock(&busiest->lock);
70574a99
AD
1641 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1642}
1e3c88bd
PZ
1643
1644/*
1645 * double_rq_lock - safely lock two runqueues
1646 *
1647 * Note this does not disable interrupts like task_rq_lock,
1648 * you need to do so manually before calling.
1649 */
1650static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1651 __acquires(rq1->lock)
1652 __acquires(rq2->lock)
1653{
1654 BUG_ON(!irqs_disabled());
1655 if (rq1 == rq2) {
1656 raw_spin_lock(&rq1->lock);
1657 __acquire(rq2->lock); /* Fake it out ;) */
1658 } else {
1659 if (rq1 < rq2) {
1660 raw_spin_lock(&rq1->lock);
1661 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1662 } else {
1663 raw_spin_lock(&rq2->lock);
1664 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1665 }
1666 }
1e3c88bd
PZ
1667}
1668
1669/*
1670 * double_rq_unlock - safely unlock two runqueues
1671 *
1672 * Note this does not restore interrupts like task_rq_unlock,
1673 * you need to do so manually after calling.
1674 */
1675static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1676 __releases(rq1->lock)
1677 __releases(rq2->lock)
1678{
1679 raw_spin_unlock(&rq1->lock);
1680 if (rq1 != rq2)
1681 raw_spin_unlock(&rq2->lock);
1682 else
1683 __release(rq2->lock);
1684}
1685
18d95a28
PZ
1686#endif
1687
74f5187a 1688static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1689static void update_sysctl(void);
acb4a848 1690static int get_update_sysctl_factor(void);
fdf3e95d 1691static void update_cpu_load(struct rq *this_rq);
dce48a84 1692
cd29fe6f
PZ
1693static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1694{
1695 set_task_rq(p, cpu);
1696#ifdef CONFIG_SMP
1697 /*
1698 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1699 * successfuly executed on another CPU. We must ensure that updates of
1700 * per-task data have been completed by this moment.
1701 */
1702 smp_wmb();
1703 task_thread_info(p)->cpu = cpu;
1704#endif
1705}
dce48a84 1706
1e3c88bd 1707static const struct sched_class rt_sched_class;
dd41f596 1708
34f971f6 1709#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1710#define for_each_class(class) \
1711 for (class = sched_class_highest; class; class = class->next)
dd41f596 1712
1e3c88bd
PZ
1713#include "sched_stats.h"
1714
c09595f6 1715static void inc_nr_running(struct rq *rq)
9c217245
IM
1716{
1717 rq->nr_running++;
9c217245
IM
1718}
1719
c09595f6 1720static void dec_nr_running(struct rq *rq)
9c217245
IM
1721{
1722 rq->nr_running--;
9c217245
IM
1723}
1724
45bf76df
IM
1725static void set_load_weight(struct task_struct *p)
1726{
dd41f596
IM
1727 /*
1728 * SCHED_IDLE tasks get minimal weight:
1729 */
1730 if (p->policy == SCHED_IDLE) {
1731 p->se.load.weight = WEIGHT_IDLEPRIO;
1732 p->se.load.inv_weight = WMULT_IDLEPRIO;
1733 return;
1734 }
71f8bd46 1735
dd41f596
IM
1736 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1737 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1738}
1739
371fd7e7 1740static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1741{
a64692a3 1742 update_rq_clock(rq);
dd41f596 1743 sched_info_queued(p);
371fd7e7 1744 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1745 p->se.on_rq = 1;
71f8bd46
IM
1746}
1747
371fd7e7 1748static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1749{
a64692a3 1750 update_rq_clock(rq);
46ac22ba 1751 sched_info_dequeued(p);
371fd7e7 1752 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1753 p->se.on_rq = 0;
71f8bd46
IM
1754}
1755
1e3c88bd
PZ
1756/*
1757 * activate_task - move a task to the runqueue.
1758 */
371fd7e7 1759static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1760{
1761 if (task_contributes_to_load(p))
1762 rq->nr_uninterruptible--;
1763
371fd7e7 1764 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1765 inc_nr_running(rq);
1766}
1767
1768/*
1769 * deactivate_task - remove a task from the runqueue.
1770 */
371fd7e7 1771static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1772{
1773 if (task_contributes_to_load(p))
1774 rq->nr_uninterruptible++;
1775
371fd7e7 1776 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1777 dec_nr_running(rq);
1778}
1779
b52bfee4
VP
1780#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1781
305e6835
VP
1782/*
1783 * There are no locks covering percpu hardirq/softirq time.
1784 * They are only modified in account_system_vtime, on corresponding CPU
1785 * with interrupts disabled. So, writes are safe.
1786 * They are read and saved off onto struct rq in update_rq_clock().
1787 * This may result in other CPU reading this CPU's irq time and can
1788 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1789 * or new value with a side effect of accounting a slice of irq time to wrong
1790 * task when irq is in progress while we read rq->clock. That is a worthy
1791 * compromise in place of having locks on each irq in account_system_time.
305e6835 1792 */
b52bfee4
VP
1793static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1794static DEFINE_PER_CPU(u64, cpu_softirq_time);
1795
1796static DEFINE_PER_CPU(u64, irq_start_time);
1797static int sched_clock_irqtime;
1798
1799void enable_sched_clock_irqtime(void)
1800{
1801 sched_clock_irqtime = 1;
1802}
1803
1804void disable_sched_clock_irqtime(void)
1805{
1806 sched_clock_irqtime = 0;
1807}
1808
8e92c201
PZ
1809#ifndef CONFIG_64BIT
1810static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1811
1812static inline void irq_time_write_begin(void)
1813{
1814 __this_cpu_inc(irq_time_seq.sequence);
1815 smp_wmb();
1816}
1817
1818static inline void irq_time_write_end(void)
1819{
1820 smp_wmb();
1821 __this_cpu_inc(irq_time_seq.sequence);
1822}
1823
1824static inline u64 irq_time_read(int cpu)
1825{
1826 u64 irq_time;
1827 unsigned seq;
1828
1829 do {
1830 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1831 irq_time = per_cpu(cpu_softirq_time, cpu) +
1832 per_cpu(cpu_hardirq_time, cpu);
1833 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1834
1835 return irq_time;
1836}
1837#else /* CONFIG_64BIT */
1838static inline void irq_time_write_begin(void)
1839{
1840}
1841
1842static inline void irq_time_write_end(void)
1843{
1844}
1845
1846static inline u64 irq_time_read(int cpu)
305e6835 1847{
305e6835
VP
1848 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1849}
8e92c201 1850#endif /* CONFIG_64BIT */
305e6835 1851
fe44d621
PZ
1852/*
1853 * Called before incrementing preempt_count on {soft,}irq_enter
1854 * and before decrementing preempt_count on {soft,}irq_exit.
1855 */
b52bfee4
VP
1856void account_system_vtime(struct task_struct *curr)
1857{
1858 unsigned long flags;
fe44d621 1859 s64 delta;
b52bfee4 1860 int cpu;
b52bfee4
VP
1861
1862 if (!sched_clock_irqtime)
1863 return;
1864
1865 local_irq_save(flags);
1866
b52bfee4 1867 cpu = smp_processor_id();
fe44d621
PZ
1868 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1869 __this_cpu_add(irq_start_time, delta);
1870
8e92c201 1871 irq_time_write_begin();
b52bfee4
VP
1872 /*
1873 * We do not account for softirq time from ksoftirqd here.
1874 * We want to continue accounting softirq time to ksoftirqd thread
1875 * in that case, so as not to confuse scheduler with a special task
1876 * that do not consume any time, but still wants to run.
1877 */
1878 if (hardirq_count())
fe44d621 1879 __this_cpu_add(cpu_hardirq_time, delta);
b52bfee4 1880 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
fe44d621 1881 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1882
8e92c201 1883 irq_time_write_end();
b52bfee4
VP
1884 local_irq_restore(flags);
1885}
b7dadc38 1886EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1887
fe44d621 1888static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1889{
fe44d621
PZ
1890 s64 irq_delta;
1891
8e92c201 1892 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1893
1894 /*
1895 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1896 * this case when a previous update_rq_clock() happened inside a
1897 * {soft,}irq region.
1898 *
1899 * When this happens, we stop ->clock_task and only update the
1900 * prev_irq_time stamp to account for the part that fit, so that a next
1901 * update will consume the rest. This ensures ->clock_task is
1902 * monotonic.
1903 *
1904 * It does however cause some slight miss-attribution of {soft,}irq
1905 * time, a more accurate solution would be to update the irq_time using
1906 * the current rq->clock timestamp, except that would require using
1907 * atomic ops.
1908 */
1909 if (irq_delta > delta)
1910 irq_delta = delta;
1911
1912 rq->prev_irq_time += irq_delta;
1913 delta -= irq_delta;
1914 rq->clock_task += delta;
1915
1916 if (irq_delta && sched_feat(NONIRQ_POWER))
1917 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1918}
1919
fe44d621 1920#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1921
fe44d621 1922static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1923{
fe44d621 1924 rq->clock_task += delta;
305e6835
VP
1925}
1926
fe44d621 1927#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1928
1e3c88bd
PZ
1929#include "sched_idletask.c"
1930#include "sched_fair.c"
1931#include "sched_rt.c"
5091faa4 1932#include "sched_autogroup.c"
34f971f6 1933#include "sched_stoptask.c"
1e3c88bd
PZ
1934#ifdef CONFIG_SCHED_DEBUG
1935# include "sched_debug.c"
1936#endif
1937
34f971f6
PZ
1938void sched_set_stop_task(int cpu, struct task_struct *stop)
1939{
1940 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1941 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1942
1943 if (stop) {
1944 /*
1945 * Make it appear like a SCHED_FIFO task, its something
1946 * userspace knows about and won't get confused about.
1947 *
1948 * Also, it will make PI more or less work without too
1949 * much confusion -- but then, stop work should not
1950 * rely on PI working anyway.
1951 */
1952 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1953
1954 stop->sched_class = &stop_sched_class;
1955 }
1956
1957 cpu_rq(cpu)->stop = stop;
1958
1959 if (old_stop) {
1960 /*
1961 * Reset it back to a normal scheduling class so that
1962 * it can die in pieces.
1963 */
1964 old_stop->sched_class = &rt_sched_class;
1965 }
1966}
1967
14531189 1968/*
dd41f596 1969 * __normal_prio - return the priority that is based on the static prio
14531189 1970 */
14531189
IM
1971static inline int __normal_prio(struct task_struct *p)
1972{
dd41f596 1973 return p->static_prio;
14531189
IM
1974}
1975
b29739f9
IM
1976/*
1977 * Calculate the expected normal priority: i.e. priority
1978 * without taking RT-inheritance into account. Might be
1979 * boosted by interactivity modifiers. Changes upon fork,
1980 * setprio syscalls, and whenever the interactivity
1981 * estimator recalculates.
1982 */
36c8b586 1983static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1984{
1985 int prio;
1986
e05606d3 1987 if (task_has_rt_policy(p))
b29739f9
IM
1988 prio = MAX_RT_PRIO-1 - p->rt_priority;
1989 else
1990 prio = __normal_prio(p);
1991 return prio;
1992}
1993
1994/*
1995 * Calculate the current priority, i.e. the priority
1996 * taken into account by the scheduler. This value might
1997 * be boosted by RT tasks, or might be boosted by
1998 * interactivity modifiers. Will be RT if the task got
1999 * RT-boosted. If not then it returns p->normal_prio.
2000 */
36c8b586 2001static int effective_prio(struct task_struct *p)
b29739f9
IM
2002{
2003 p->normal_prio = normal_prio(p);
2004 /*
2005 * If we are RT tasks or we were boosted to RT priority,
2006 * keep the priority unchanged. Otherwise, update priority
2007 * to the normal priority:
2008 */
2009 if (!rt_prio(p->prio))
2010 return p->normal_prio;
2011 return p->prio;
2012}
2013
1da177e4
LT
2014/**
2015 * task_curr - is this task currently executing on a CPU?
2016 * @p: the task in question.
2017 */
36c8b586 2018inline int task_curr(const struct task_struct *p)
1da177e4
LT
2019{
2020 return cpu_curr(task_cpu(p)) == p;
2021}
2022
cb469845
SR
2023static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2024 const struct sched_class *prev_class,
2025 int oldprio, int running)
2026{
2027 if (prev_class != p->sched_class) {
2028 if (prev_class->switched_from)
2029 prev_class->switched_from(rq, p, running);
2030 p->sched_class->switched_to(rq, p, running);
2031 } else
2032 p->sched_class->prio_changed(rq, p, oldprio, running);
2033}
2034
1e5a7405
PZ
2035static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2036{
2037 const struct sched_class *class;
2038
2039 if (p->sched_class == rq->curr->sched_class) {
2040 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2041 } else {
2042 for_each_class(class) {
2043 if (class == rq->curr->sched_class)
2044 break;
2045 if (class == p->sched_class) {
2046 resched_task(rq->curr);
2047 break;
2048 }
2049 }
2050 }
2051
2052 /*
2053 * A queue event has occurred, and we're going to schedule. In
2054 * this case, we can save a useless back to back clock update.
2055 */
f26f9aff 2056 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2057 rq->skip_clock_update = 1;
2058}
2059
1da177e4 2060#ifdef CONFIG_SMP
cc367732
IM
2061/*
2062 * Is this task likely cache-hot:
2063 */
e7693a36 2064static int
cc367732
IM
2065task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2066{
2067 s64 delta;
2068
e6c8fba7
PZ
2069 if (p->sched_class != &fair_sched_class)
2070 return 0;
2071
ef8002f6
NR
2072 if (unlikely(p->policy == SCHED_IDLE))
2073 return 0;
2074
f540a608
IM
2075 /*
2076 * Buddy candidates are cache hot:
2077 */
f685ceac 2078 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2079 (&p->se == cfs_rq_of(&p->se)->next ||
2080 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2081 return 1;
2082
6bc1665b
IM
2083 if (sysctl_sched_migration_cost == -1)
2084 return 1;
2085 if (sysctl_sched_migration_cost == 0)
2086 return 0;
2087
cc367732
IM
2088 delta = now - p->se.exec_start;
2089
2090 return delta < (s64)sysctl_sched_migration_cost;
2091}
2092
dd41f596 2093void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2094{
e2912009
PZ
2095#ifdef CONFIG_SCHED_DEBUG
2096 /*
2097 * We should never call set_task_cpu() on a blocked task,
2098 * ttwu() will sort out the placement.
2099 */
077614ee
PZ
2100 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2101 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2102#endif
2103
de1d7286 2104 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2105
0c69774e
PZ
2106 if (task_cpu(p) != new_cpu) {
2107 p->se.nr_migrations++;
2108 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2109 }
dd41f596
IM
2110
2111 __set_task_cpu(p, new_cpu);
c65cc870
IM
2112}
2113
969c7921 2114struct migration_arg {
36c8b586 2115 struct task_struct *task;
1da177e4 2116 int dest_cpu;
70b97a7f 2117};
1da177e4 2118
969c7921
TH
2119static int migration_cpu_stop(void *data);
2120
1da177e4
LT
2121/*
2122 * The task's runqueue lock must be held.
2123 * Returns true if you have to wait for migration thread.
2124 */
b7a2b39d 2125static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2126{
1da177e4
LT
2127 /*
2128 * If the task is not on a runqueue (and not running), then
e2912009 2129 * the next wake-up will properly place the task.
1da177e4 2130 */
969c7921 2131 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2132}
2133
2134/*
2135 * wait_task_inactive - wait for a thread to unschedule.
2136 *
85ba2d86
RM
2137 * If @match_state is nonzero, it's the @p->state value just checked and
2138 * not expected to change. If it changes, i.e. @p might have woken up,
2139 * then return zero. When we succeed in waiting for @p to be off its CPU,
2140 * we return a positive number (its total switch count). If a second call
2141 * a short while later returns the same number, the caller can be sure that
2142 * @p has remained unscheduled the whole time.
2143 *
1da177e4
LT
2144 * The caller must ensure that the task *will* unschedule sometime soon,
2145 * else this function might spin for a *long* time. This function can't
2146 * be called with interrupts off, or it may introduce deadlock with
2147 * smp_call_function() if an IPI is sent by the same process we are
2148 * waiting to become inactive.
2149 */
85ba2d86 2150unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2151{
2152 unsigned long flags;
dd41f596 2153 int running, on_rq;
85ba2d86 2154 unsigned long ncsw;
70b97a7f 2155 struct rq *rq;
1da177e4 2156
3a5c359a
AK
2157 for (;;) {
2158 /*
2159 * We do the initial early heuristics without holding
2160 * any task-queue locks at all. We'll only try to get
2161 * the runqueue lock when things look like they will
2162 * work out!
2163 */
2164 rq = task_rq(p);
fa490cfd 2165
3a5c359a
AK
2166 /*
2167 * If the task is actively running on another CPU
2168 * still, just relax and busy-wait without holding
2169 * any locks.
2170 *
2171 * NOTE! Since we don't hold any locks, it's not
2172 * even sure that "rq" stays as the right runqueue!
2173 * But we don't care, since "task_running()" will
2174 * return false if the runqueue has changed and p
2175 * is actually now running somewhere else!
2176 */
85ba2d86
RM
2177 while (task_running(rq, p)) {
2178 if (match_state && unlikely(p->state != match_state))
2179 return 0;
3a5c359a 2180 cpu_relax();
85ba2d86 2181 }
fa490cfd 2182
3a5c359a
AK
2183 /*
2184 * Ok, time to look more closely! We need the rq
2185 * lock now, to be *sure*. If we're wrong, we'll
2186 * just go back and repeat.
2187 */
2188 rq = task_rq_lock(p, &flags);
27a9da65 2189 trace_sched_wait_task(p);
3a5c359a
AK
2190 running = task_running(rq, p);
2191 on_rq = p->se.on_rq;
85ba2d86 2192 ncsw = 0;
f31e11d8 2193 if (!match_state || p->state == match_state)
93dcf55f 2194 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2195 task_rq_unlock(rq, &flags);
fa490cfd 2196
85ba2d86
RM
2197 /*
2198 * If it changed from the expected state, bail out now.
2199 */
2200 if (unlikely(!ncsw))
2201 break;
2202
3a5c359a
AK
2203 /*
2204 * Was it really running after all now that we
2205 * checked with the proper locks actually held?
2206 *
2207 * Oops. Go back and try again..
2208 */
2209 if (unlikely(running)) {
2210 cpu_relax();
2211 continue;
2212 }
fa490cfd 2213
3a5c359a
AK
2214 /*
2215 * It's not enough that it's not actively running,
2216 * it must be off the runqueue _entirely_, and not
2217 * preempted!
2218 *
80dd99b3 2219 * So if it was still runnable (but just not actively
3a5c359a
AK
2220 * running right now), it's preempted, and we should
2221 * yield - it could be a while.
2222 */
2223 if (unlikely(on_rq)) {
2224 schedule_timeout_uninterruptible(1);
2225 continue;
2226 }
fa490cfd 2227
3a5c359a
AK
2228 /*
2229 * Ahh, all good. It wasn't running, and it wasn't
2230 * runnable, which means that it will never become
2231 * running in the future either. We're all done!
2232 */
2233 break;
2234 }
85ba2d86
RM
2235
2236 return ncsw;
1da177e4
LT
2237}
2238
2239/***
2240 * kick_process - kick a running thread to enter/exit the kernel
2241 * @p: the to-be-kicked thread
2242 *
2243 * Cause a process which is running on another CPU to enter
2244 * kernel-mode, without any delay. (to get signals handled.)
2245 *
2246 * NOTE: this function doesnt have to take the runqueue lock,
2247 * because all it wants to ensure is that the remote task enters
2248 * the kernel. If the IPI races and the task has been migrated
2249 * to another CPU then no harm is done and the purpose has been
2250 * achieved as well.
2251 */
36c8b586 2252void kick_process(struct task_struct *p)
1da177e4
LT
2253{
2254 int cpu;
2255
2256 preempt_disable();
2257 cpu = task_cpu(p);
2258 if ((cpu != smp_processor_id()) && task_curr(p))
2259 smp_send_reschedule(cpu);
2260 preempt_enable();
2261}
b43e3521 2262EXPORT_SYMBOL_GPL(kick_process);
476d139c 2263#endif /* CONFIG_SMP */
1da177e4 2264
0793a61d
TG
2265/**
2266 * task_oncpu_function_call - call a function on the cpu on which a task runs
2267 * @p: the task to evaluate
2268 * @func: the function to be called
2269 * @info: the function call argument
2270 *
2271 * Calls the function @func when the task is currently running. This might
2272 * be on the current CPU, which just calls the function directly
2273 */
2274void task_oncpu_function_call(struct task_struct *p,
2275 void (*func) (void *info), void *info)
2276{
2277 int cpu;
2278
2279 preempt_disable();
2280 cpu = task_cpu(p);
2281 if (task_curr(p))
2282 smp_call_function_single(cpu, func, info, 1);
2283 preempt_enable();
2284}
2285
970b13ba 2286#ifdef CONFIG_SMP
30da688e
ON
2287/*
2288 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2289 */
5da9a0fb
PZ
2290static int select_fallback_rq(int cpu, struct task_struct *p)
2291{
2292 int dest_cpu;
2293 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2294
2295 /* Look for allowed, online CPU in same node. */
2296 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2297 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2298 return dest_cpu;
2299
2300 /* Any allowed, online CPU? */
2301 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2302 if (dest_cpu < nr_cpu_ids)
2303 return dest_cpu;
2304
2305 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2306 dest_cpu = cpuset_cpus_allowed_fallback(p);
2307 /*
2308 * Don't tell them about moving exiting tasks or
2309 * kernel threads (both mm NULL), since they never
2310 * leave kernel.
2311 */
2312 if (p->mm && printk_ratelimit()) {
2313 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2314 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2315 }
2316
2317 return dest_cpu;
2318}
2319
e2912009 2320/*
30da688e 2321 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2322 */
970b13ba 2323static inline
0017d735 2324int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2325{
0017d735 2326 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2327
2328 /*
2329 * In order not to call set_task_cpu() on a blocking task we need
2330 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2331 * cpu.
2332 *
2333 * Since this is common to all placement strategies, this lives here.
2334 *
2335 * [ this allows ->select_task() to simply return task_cpu(p) and
2336 * not worry about this generic constraint ]
2337 */
2338 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2339 !cpu_online(cpu)))
5da9a0fb 2340 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2341
2342 return cpu;
970b13ba 2343}
09a40af5
MG
2344
2345static void update_avg(u64 *avg, u64 sample)
2346{
2347 s64 diff = sample - *avg;
2348 *avg += diff >> 3;
2349}
970b13ba
PZ
2350#endif
2351
9ed3811a
TH
2352static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2353 bool is_sync, bool is_migrate, bool is_local,
2354 unsigned long en_flags)
2355{
2356 schedstat_inc(p, se.statistics.nr_wakeups);
2357 if (is_sync)
2358 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2359 if (is_migrate)
2360 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2361 if (is_local)
2362 schedstat_inc(p, se.statistics.nr_wakeups_local);
2363 else
2364 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2365
2366 activate_task(rq, p, en_flags);
2367}
2368
2369static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2370 int wake_flags, bool success)
2371{
2372 trace_sched_wakeup(p, success);
2373 check_preempt_curr(rq, p, wake_flags);
2374
2375 p->state = TASK_RUNNING;
2376#ifdef CONFIG_SMP
2377 if (p->sched_class->task_woken)
2378 p->sched_class->task_woken(rq, p);
2379
2380 if (unlikely(rq->idle_stamp)) {
2381 u64 delta = rq->clock - rq->idle_stamp;
2382 u64 max = 2*sysctl_sched_migration_cost;
2383
2384 if (delta > max)
2385 rq->avg_idle = max;
2386 else
2387 update_avg(&rq->avg_idle, delta);
2388 rq->idle_stamp = 0;
2389 }
2390#endif
21aa9af0
TH
2391 /* if a worker is waking up, notify workqueue */
2392 if ((p->flags & PF_WQ_WORKER) && success)
2393 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2394}
2395
2396/**
1da177e4 2397 * try_to_wake_up - wake up a thread
9ed3811a 2398 * @p: the thread to be awakened
1da177e4 2399 * @state: the mask of task states that can be woken
9ed3811a 2400 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2401 *
2402 * Put it on the run-queue if it's not already there. The "current"
2403 * thread is always on the run-queue (except when the actual
2404 * re-schedule is in progress), and as such you're allowed to do
2405 * the simpler "current->state = TASK_RUNNING" to mark yourself
2406 * runnable without the overhead of this.
2407 *
9ed3811a
TH
2408 * Returns %true if @p was woken up, %false if it was already running
2409 * or @state didn't match @p's state.
1da177e4 2410 */
7d478721
PZ
2411static int try_to_wake_up(struct task_struct *p, unsigned int state,
2412 int wake_flags)
1da177e4 2413{
cc367732 2414 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2415 unsigned long flags;
371fd7e7 2416 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2417 struct rq *rq;
1da177e4 2418
e9c84311 2419 this_cpu = get_cpu();
2398f2c6 2420
04e2f174 2421 smp_wmb();
ab3b3aa5 2422 rq = task_rq_lock(p, &flags);
e9c84311 2423 if (!(p->state & state))
1da177e4
LT
2424 goto out;
2425
dd41f596 2426 if (p->se.on_rq)
1da177e4
LT
2427 goto out_running;
2428
2429 cpu = task_cpu(p);
cc367732 2430 orig_cpu = cpu;
1da177e4
LT
2431
2432#ifdef CONFIG_SMP
2433 if (unlikely(task_running(rq, p)))
2434 goto out_activate;
2435
e9c84311
PZ
2436 /*
2437 * In order to handle concurrent wakeups and release the rq->lock
2438 * we put the task in TASK_WAKING state.
eb24073b
IM
2439 *
2440 * First fix up the nr_uninterruptible count:
e9c84311 2441 */
cc87f76a
PZ
2442 if (task_contributes_to_load(p)) {
2443 if (likely(cpu_online(orig_cpu)))
2444 rq->nr_uninterruptible--;
2445 else
2446 this_rq()->nr_uninterruptible--;
2447 }
e9c84311 2448 p->state = TASK_WAKING;
efbbd05a 2449
371fd7e7 2450 if (p->sched_class->task_waking) {
efbbd05a 2451 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2452 en_flags |= ENQUEUE_WAKING;
2453 }
efbbd05a 2454
0017d735
PZ
2455 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2456 if (cpu != orig_cpu)
5d2f5a61 2457 set_task_cpu(p, cpu);
0017d735 2458 __task_rq_unlock(rq);
ab19cb23 2459
0970d299
PZ
2460 rq = cpu_rq(cpu);
2461 raw_spin_lock(&rq->lock);
f5dc3753 2462
0970d299
PZ
2463 /*
2464 * We migrated the task without holding either rq->lock, however
2465 * since the task is not on the task list itself, nobody else
2466 * will try and migrate the task, hence the rq should match the
2467 * cpu we just moved it to.
2468 */
2469 WARN_ON(task_cpu(p) != cpu);
e9c84311 2470 WARN_ON(p->state != TASK_WAKING);
1da177e4 2471
e7693a36
GH
2472#ifdef CONFIG_SCHEDSTATS
2473 schedstat_inc(rq, ttwu_count);
2474 if (cpu == this_cpu)
2475 schedstat_inc(rq, ttwu_local);
2476 else {
2477 struct sched_domain *sd;
2478 for_each_domain(this_cpu, sd) {
758b2cdc 2479 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2480 schedstat_inc(sd, ttwu_wake_remote);
2481 break;
2482 }
2483 }
2484 }
6d6bc0ad 2485#endif /* CONFIG_SCHEDSTATS */
e7693a36 2486
1da177e4
LT
2487out_activate:
2488#endif /* CONFIG_SMP */
9ed3811a
TH
2489 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2490 cpu == this_cpu, en_flags);
1da177e4 2491 success = 1;
1da177e4 2492out_running:
9ed3811a 2493 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2494out:
2495 task_rq_unlock(rq, &flags);
e9c84311 2496 put_cpu();
1da177e4
LT
2497
2498 return success;
2499}
2500
21aa9af0
TH
2501/**
2502 * try_to_wake_up_local - try to wake up a local task with rq lock held
2503 * @p: the thread to be awakened
2504 *
2505 * Put @p on the run-queue if it's not alredy there. The caller must
2506 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2507 * the current task. this_rq() stays locked over invocation.
2508 */
2509static void try_to_wake_up_local(struct task_struct *p)
2510{
2511 struct rq *rq = task_rq(p);
2512 bool success = false;
2513
2514 BUG_ON(rq != this_rq());
2515 BUG_ON(p == current);
2516 lockdep_assert_held(&rq->lock);
2517
2518 if (!(p->state & TASK_NORMAL))
2519 return;
2520
2521 if (!p->se.on_rq) {
2522 if (likely(!task_running(rq, p))) {
2523 schedstat_inc(rq, ttwu_count);
2524 schedstat_inc(rq, ttwu_local);
2525 }
2526 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2527 success = true;
2528 }
2529 ttwu_post_activation(p, rq, 0, success);
2530}
2531
50fa610a
DH
2532/**
2533 * wake_up_process - Wake up a specific process
2534 * @p: The process to be woken up.
2535 *
2536 * Attempt to wake up the nominated process and move it to the set of runnable
2537 * processes. Returns 1 if the process was woken up, 0 if it was already
2538 * running.
2539 *
2540 * It may be assumed that this function implies a write memory barrier before
2541 * changing the task state if and only if any tasks are woken up.
2542 */
7ad5b3a5 2543int wake_up_process(struct task_struct *p)
1da177e4 2544{
d9514f6c 2545 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2546}
1da177e4
LT
2547EXPORT_SYMBOL(wake_up_process);
2548
7ad5b3a5 2549int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2550{
2551 return try_to_wake_up(p, state, 0);
2552}
2553
1da177e4
LT
2554/*
2555 * Perform scheduler related setup for a newly forked process p.
2556 * p is forked by current.
dd41f596
IM
2557 *
2558 * __sched_fork() is basic setup used by init_idle() too:
2559 */
2560static void __sched_fork(struct task_struct *p)
2561{
dd41f596
IM
2562 p->se.exec_start = 0;
2563 p->se.sum_exec_runtime = 0;
f6cf891c 2564 p->se.prev_sum_exec_runtime = 0;
6c594c21 2565 p->se.nr_migrations = 0;
6cfb0d5d
IM
2566
2567#ifdef CONFIG_SCHEDSTATS
41acab88 2568 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2569#endif
476d139c 2570
fa717060 2571 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2572 p->se.on_rq = 0;
4a55bd5e 2573 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2574
e107be36
AK
2575#ifdef CONFIG_PREEMPT_NOTIFIERS
2576 INIT_HLIST_HEAD(&p->preempt_notifiers);
2577#endif
dd41f596
IM
2578}
2579
2580/*
2581 * fork()/clone()-time setup:
2582 */
2583void sched_fork(struct task_struct *p, int clone_flags)
2584{
2585 int cpu = get_cpu();
2586
2587 __sched_fork(p);
06b83b5f 2588 /*
0017d735 2589 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2590 * nobody will actually run it, and a signal or other external
2591 * event cannot wake it up and insert it on the runqueue either.
2592 */
0017d735 2593 p->state = TASK_RUNNING;
dd41f596 2594
b9dc29e7
MG
2595 /*
2596 * Revert to default priority/policy on fork if requested.
2597 */
2598 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2599 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2600 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2601 p->normal_prio = p->static_prio;
2602 }
b9dc29e7 2603
6c697bdf
MG
2604 if (PRIO_TO_NICE(p->static_prio) < 0) {
2605 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2606 p->normal_prio = p->static_prio;
6c697bdf
MG
2607 set_load_weight(p);
2608 }
2609
b9dc29e7
MG
2610 /*
2611 * We don't need the reset flag anymore after the fork. It has
2612 * fulfilled its duty:
2613 */
2614 p->sched_reset_on_fork = 0;
2615 }
ca94c442 2616
f83f9ac2
PW
2617 /*
2618 * Make sure we do not leak PI boosting priority to the child.
2619 */
2620 p->prio = current->normal_prio;
2621
2ddbf952
HS
2622 if (!rt_prio(p->prio))
2623 p->sched_class = &fair_sched_class;
b29739f9 2624
cd29fe6f
PZ
2625 if (p->sched_class->task_fork)
2626 p->sched_class->task_fork(p);
2627
86951599
PZ
2628 /*
2629 * The child is not yet in the pid-hash so no cgroup attach races,
2630 * and the cgroup is pinned to this child due to cgroup_fork()
2631 * is ran before sched_fork().
2632 *
2633 * Silence PROVE_RCU.
2634 */
2635 rcu_read_lock();
5f3edc1b 2636 set_task_cpu(p, cpu);
86951599 2637 rcu_read_unlock();
5f3edc1b 2638
52f17b6c 2639#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2640 if (likely(sched_info_on()))
52f17b6c 2641 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2642#endif
d6077cb8 2643#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2644 p->oncpu = 0;
2645#endif
1da177e4 2646#ifdef CONFIG_PREEMPT
4866cde0 2647 /* Want to start with kernel preemption disabled. */
a1261f54 2648 task_thread_info(p)->preempt_count = 1;
1da177e4 2649#endif
806c09a7 2650#ifdef CONFIG_SMP
917b627d 2651 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2652#endif
917b627d 2653
476d139c 2654 put_cpu();
1da177e4
LT
2655}
2656
2657/*
2658 * wake_up_new_task - wake up a newly created task for the first time.
2659 *
2660 * This function will do some initial scheduler statistics housekeeping
2661 * that must be done for every newly created context, then puts the task
2662 * on the runqueue and wakes it.
2663 */
7ad5b3a5 2664void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2665{
2666 unsigned long flags;
dd41f596 2667 struct rq *rq;
c890692b 2668 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2669
2670#ifdef CONFIG_SMP
0017d735
PZ
2671 rq = task_rq_lock(p, &flags);
2672 p->state = TASK_WAKING;
2673
fabf318e
PZ
2674 /*
2675 * Fork balancing, do it here and not earlier because:
2676 * - cpus_allowed can change in the fork path
2677 * - any previously selected cpu might disappear through hotplug
2678 *
0017d735
PZ
2679 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2680 * without people poking at ->cpus_allowed.
fabf318e 2681 */
0017d735 2682 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2683 set_task_cpu(p, cpu);
1da177e4 2684
06b83b5f 2685 p->state = TASK_RUNNING;
0017d735
PZ
2686 task_rq_unlock(rq, &flags);
2687#endif
2688
2689 rq = task_rq_lock(p, &flags);
cd29fe6f 2690 activate_task(rq, p, 0);
27a9da65 2691 trace_sched_wakeup_new(p, 1);
a7558e01 2692 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2693#ifdef CONFIG_SMP
efbbd05a
PZ
2694 if (p->sched_class->task_woken)
2695 p->sched_class->task_woken(rq, p);
9a897c5a 2696#endif
dd41f596 2697 task_rq_unlock(rq, &flags);
fabf318e 2698 put_cpu();
1da177e4
LT
2699}
2700
e107be36
AK
2701#ifdef CONFIG_PREEMPT_NOTIFIERS
2702
2703/**
80dd99b3 2704 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2705 * @notifier: notifier struct to register
e107be36
AK
2706 */
2707void preempt_notifier_register(struct preempt_notifier *notifier)
2708{
2709 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2710}
2711EXPORT_SYMBOL_GPL(preempt_notifier_register);
2712
2713/**
2714 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2715 * @notifier: notifier struct to unregister
e107be36
AK
2716 *
2717 * This is safe to call from within a preemption notifier.
2718 */
2719void preempt_notifier_unregister(struct preempt_notifier *notifier)
2720{
2721 hlist_del(&notifier->link);
2722}
2723EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2724
2725static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2726{
2727 struct preempt_notifier *notifier;
2728 struct hlist_node *node;
2729
2730 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2731 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2732}
2733
2734static void
2735fire_sched_out_preempt_notifiers(struct task_struct *curr,
2736 struct task_struct *next)
2737{
2738 struct preempt_notifier *notifier;
2739 struct hlist_node *node;
2740
2741 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2742 notifier->ops->sched_out(notifier, next);
2743}
2744
6d6bc0ad 2745#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2746
2747static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2748{
2749}
2750
2751static void
2752fire_sched_out_preempt_notifiers(struct task_struct *curr,
2753 struct task_struct *next)
2754{
2755}
2756
6d6bc0ad 2757#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2758
4866cde0
NP
2759/**
2760 * prepare_task_switch - prepare to switch tasks
2761 * @rq: the runqueue preparing to switch
421cee29 2762 * @prev: the current task that is being switched out
4866cde0
NP
2763 * @next: the task we are going to switch to.
2764 *
2765 * This is called with the rq lock held and interrupts off. It must
2766 * be paired with a subsequent finish_task_switch after the context
2767 * switch.
2768 *
2769 * prepare_task_switch sets up locking and calls architecture specific
2770 * hooks.
2771 */
e107be36
AK
2772static inline void
2773prepare_task_switch(struct rq *rq, struct task_struct *prev,
2774 struct task_struct *next)
4866cde0 2775{
e107be36 2776 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2777 prepare_lock_switch(rq, next);
2778 prepare_arch_switch(next);
2779}
2780
1da177e4
LT
2781/**
2782 * finish_task_switch - clean up after a task-switch
344babaa 2783 * @rq: runqueue associated with task-switch
1da177e4
LT
2784 * @prev: the thread we just switched away from.
2785 *
4866cde0
NP
2786 * finish_task_switch must be called after the context switch, paired
2787 * with a prepare_task_switch call before the context switch.
2788 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2789 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2790 *
2791 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2792 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2793 * with the lock held can cause deadlocks; see schedule() for
2794 * details.)
2795 */
a9957449 2796static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2797 __releases(rq->lock)
2798{
1da177e4 2799 struct mm_struct *mm = rq->prev_mm;
55a101f8 2800 long prev_state;
1da177e4
LT
2801
2802 rq->prev_mm = NULL;
2803
2804 /*
2805 * A task struct has one reference for the use as "current".
c394cc9f 2806 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2807 * schedule one last time. The schedule call will never return, and
2808 * the scheduled task must drop that reference.
c394cc9f 2809 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2810 * still held, otherwise prev could be scheduled on another cpu, die
2811 * there before we look at prev->state, and then the reference would
2812 * be dropped twice.
2813 * Manfred Spraul <manfred@colorfullife.com>
2814 */
55a101f8 2815 prev_state = prev->state;
4866cde0 2816 finish_arch_switch(prev);
8381f65d
JI
2817#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2818 local_irq_disable();
2819#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2820 perf_event_task_sched_in(current);
8381f65d
JI
2821#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2822 local_irq_enable();
2823#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2824 finish_lock_switch(rq, prev);
e8fa1362 2825
e107be36 2826 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2827 if (mm)
2828 mmdrop(mm);
c394cc9f 2829 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2830 /*
2831 * Remove function-return probe instances associated with this
2832 * task and put them back on the free list.
9761eea8 2833 */
c6fd91f0 2834 kprobe_flush_task(prev);
1da177e4 2835 put_task_struct(prev);
c6fd91f0 2836 }
1da177e4
LT
2837}
2838
3f029d3c
GH
2839#ifdef CONFIG_SMP
2840
2841/* assumes rq->lock is held */
2842static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2843{
2844 if (prev->sched_class->pre_schedule)
2845 prev->sched_class->pre_schedule(rq, prev);
2846}
2847
2848/* rq->lock is NOT held, but preemption is disabled */
2849static inline void post_schedule(struct rq *rq)
2850{
2851 if (rq->post_schedule) {
2852 unsigned long flags;
2853
05fa785c 2854 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2855 if (rq->curr->sched_class->post_schedule)
2856 rq->curr->sched_class->post_schedule(rq);
05fa785c 2857 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2858
2859 rq->post_schedule = 0;
2860 }
2861}
2862
2863#else
da19ab51 2864
3f029d3c
GH
2865static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2866{
2867}
2868
2869static inline void post_schedule(struct rq *rq)
2870{
1da177e4
LT
2871}
2872
3f029d3c
GH
2873#endif
2874
1da177e4
LT
2875/**
2876 * schedule_tail - first thing a freshly forked thread must call.
2877 * @prev: the thread we just switched away from.
2878 */
36c8b586 2879asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2880 __releases(rq->lock)
2881{
70b97a7f
IM
2882 struct rq *rq = this_rq();
2883
4866cde0 2884 finish_task_switch(rq, prev);
da19ab51 2885
3f029d3c
GH
2886 /*
2887 * FIXME: do we need to worry about rq being invalidated by the
2888 * task_switch?
2889 */
2890 post_schedule(rq);
70b97a7f 2891
4866cde0
NP
2892#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2893 /* In this case, finish_task_switch does not reenable preemption */
2894 preempt_enable();
2895#endif
1da177e4 2896 if (current->set_child_tid)
b488893a 2897 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2898}
2899
2900/*
2901 * context_switch - switch to the new MM and the new
2902 * thread's register state.
2903 */
dd41f596 2904static inline void
70b97a7f 2905context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2906 struct task_struct *next)
1da177e4 2907{
dd41f596 2908 struct mm_struct *mm, *oldmm;
1da177e4 2909
e107be36 2910 prepare_task_switch(rq, prev, next);
27a9da65 2911 trace_sched_switch(prev, next);
dd41f596
IM
2912 mm = next->mm;
2913 oldmm = prev->active_mm;
9226d125
ZA
2914 /*
2915 * For paravirt, this is coupled with an exit in switch_to to
2916 * combine the page table reload and the switch backend into
2917 * one hypercall.
2918 */
224101ed 2919 arch_start_context_switch(prev);
9226d125 2920
31915ab4 2921 if (!mm) {
1da177e4
LT
2922 next->active_mm = oldmm;
2923 atomic_inc(&oldmm->mm_count);
2924 enter_lazy_tlb(oldmm, next);
2925 } else
2926 switch_mm(oldmm, mm, next);
2927
31915ab4 2928 if (!prev->mm) {
1da177e4 2929 prev->active_mm = NULL;
1da177e4
LT
2930 rq->prev_mm = oldmm;
2931 }
3a5f5e48
IM
2932 /*
2933 * Since the runqueue lock will be released by the next
2934 * task (which is an invalid locking op but in the case
2935 * of the scheduler it's an obvious special-case), so we
2936 * do an early lockdep release here:
2937 */
2938#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2939 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2940#endif
1da177e4
LT
2941
2942 /* Here we just switch the register state and the stack. */
2943 switch_to(prev, next, prev);
2944
dd41f596
IM
2945 barrier();
2946 /*
2947 * this_rq must be evaluated again because prev may have moved
2948 * CPUs since it called schedule(), thus the 'rq' on its stack
2949 * frame will be invalid.
2950 */
2951 finish_task_switch(this_rq(), prev);
1da177e4
LT
2952}
2953
2954/*
2955 * nr_running, nr_uninterruptible and nr_context_switches:
2956 *
2957 * externally visible scheduler statistics: current number of runnable
2958 * threads, current number of uninterruptible-sleeping threads, total
2959 * number of context switches performed since bootup.
2960 */
2961unsigned long nr_running(void)
2962{
2963 unsigned long i, sum = 0;
2964
2965 for_each_online_cpu(i)
2966 sum += cpu_rq(i)->nr_running;
2967
2968 return sum;
f711f609 2969}
1da177e4
LT
2970
2971unsigned long nr_uninterruptible(void)
f711f609 2972{
1da177e4 2973 unsigned long i, sum = 0;
f711f609 2974
0a945022 2975 for_each_possible_cpu(i)
1da177e4 2976 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2977
2978 /*
1da177e4
LT
2979 * Since we read the counters lockless, it might be slightly
2980 * inaccurate. Do not allow it to go below zero though:
f711f609 2981 */
1da177e4
LT
2982 if (unlikely((long)sum < 0))
2983 sum = 0;
f711f609 2984
1da177e4 2985 return sum;
f711f609 2986}
f711f609 2987
1da177e4 2988unsigned long long nr_context_switches(void)
46cb4b7c 2989{
cc94abfc
SR
2990 int i;
2991 unsigned long long sum = 0;
46cb4b7c 2992
0a945022 2993 for_each_possible_cpu(i)
1da177e4 2994 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2995
1da177e4
LT
2996 return sum;
2997}
483b4ee6 2998
1da177e4
LT
2999unsigned long nr_iowait(void)
3000{
3001 unsigned long i, sum = 0;
483b4ee6 3002
0a945022 3003 for_each_possible_cpu(i)
1da177e4 3004 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3005
1da177e4
LT
3006 return sum;
3007}
483b4ee6 3008
8c215bd3 3009unsigned long nr_iowait_cpu(int cpu)
69d25870 3010{
8c215bd3 3011 struct rq *this = cpu_rq(cpu);
69d25870
AV
3012 return atomic_read(&this->nr_iowait);
3013}
46cb4b7c 3014
69d25870
AV
3015unsigned long this_cpu_load(void)
3016{
3017 struct rq *this = this_rq();
3018 return this->cpu_load[0];
3019}
e790fb0b 3020
46cb4b7c 3021
dce48a84
TG
3022/* Variables and functions for calc_load */
3023static atomic_long_t calc_load_tasks;
3024static unsigned long calc_load_update;
3025unsigned long avenrun[3];
3026EXPORT_SYMBOL(avenrun);
46cb4b7c 3027
74f5187a
PZ
3028static long calc_load_fold_active(struct rq *this_rq)
3029{
3030 long nr_active, delta = 0;
3031
3032 nr_active = this_rq->nr_running;
3033 nr_active += (long) this_rq->nr_uninterruptible;
3034
3035 if (nr_active != this_rq->calc_load_active) {
3036 delta = nr_active - this_rq->calc_load_active;
3037 this_rq->calc_load_active = nr_active;
3038 }
3039
3040 return delta;
3041}
3042
0f004f5a
PZ
3043static unsigned long
3044calc_load(unsigned long load, unsigned long exp, unsigned long active)
3045{
3046 load *= exp;
3047 load += active * (FIXED_1 - exp);
3048 load += 1UL << (FSHIFT - 1);
3049 return load >> FSHIFT;
3050}
3051
74f5187a
PZ
3052#ifdef CONFIG_NO_HZ
3053/*
3054 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3055 *
3056 * When making the ILB scale, we should try to pull this in as well.
3057 */
3058static atomic_long_t calc_load_tasks_idle;
3059
3060static void calc_load_account_idle(struct rq *this_rq)
3061{
3062 long delta;
3063
3064 delta = calc_load_fold_active(this_rq);
3065 if (delta)
3066 atomic_long_add(delta, &calc_load_tasks_idle);
3067}
3068
3069static long calc_load_fold_idle(void)
3070{
3071 long delta = 0;
3072
3073 /*
3074 * Its got a race, we don't care...
3075 */
3076 if (atomic_long_read(&calc_load_tasks_idle))
3077 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3078
3079 return delta;
3080}
0f004f5a
PZ
3081
3082/**
3083 * fixed_power_int - compute: x^n, in O(log n) time
3084 *
3085 * @x: base of the power
3086 * @frac_bits: fractional bits of @x
3087 * @n: power to raise @x to.
3088 *
3089 * By exploiting the relation between the definition of the natural power
3090 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3091 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3092 * (where: n_i \elem {0, 1}, the binary vector representing n),
3093 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3094 * of course trivially computable in O(log_2 n), the length of our binary
3095 * vector.
3096 */
3097static unsigned long
3098fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3099{
3100 unsigned long result = 1UL << frac_bits;
3101
3102 if (n) for (;;) {
3103 if (n & 1) {
3104 result *= x;
3105 result += 1UL << (frac_bits - 1);
3106 result >>= frac_bits;
3107 }
3108 n >>= 1;
3109 if (!n)
3110 break;
3111 x *= x;
3112 x += 1UL << (frac_bits - 1);
3113 x >>= frac_bits;
3114 }
3115
3116 return result;
3117}
3118
3119/*
3120 * a1 = a0 * e + a * (1 - e)
3121 *
3122 * a2 = a1 * e + a * (1 - e)
3123 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3124 * = a0 * e^2 + a * (1 - e) * (1 + e)
3125 *
3126 * a3 = a2 * e + a * (1 - e)
3127 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3128 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3129 *
3130 * ...
3131 *
3132 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3133 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3134 * = a0 * e^n + a * (1 - e^n)
3135 *
3136 * [1] application of the geometric series:
3137 *
3138 * n 1 - x^(n+1)
3139 * S_n := \Sum x^i = -------------
3140 * i=0 1 - x
3141 */
3142static unsigned long
3143calc_load_n(unsigned long load, unsigned long exp,
3144 unsigned long active, unsigned int n)
3145{
3146
3147 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3148}
3149
3150/*
3151 * NO_HZ can leave us missing all per-cpu ticks calling
3152 * calc_load_account_active(), but since an idle CPU folds its delta into
3153 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3154 * in the pending idle delta if our idle period crossed a load cycle boundary.
3155 *
3156 * Once we've updated the global active value, we need to apply the exponential
3157 * weights adjusted to the number of cycles missed.
3158 */
3159static void calc_global_nohz(unsigned long ticks)
3160{
3161 long delta, active, n;
3162
3163 if (time_before(jiffies, calc_load_update))
3164 return;
3165
3166 /*
3167 * If we crossed a calc_load_update boundary, make sure to fold
3168 * any pending idle changes, the respective CPUs might have
3169 * missed the tick driven calc_load_account_active() update
3170 * due to NO_HZ.
3171 */
3172 delta = calc_load_fold_idle();
3173 if (delta)
3174 atomic_long_add(delta, &calc_load_tasks);
3175
3176 /*
3177 * If we were idle for multiple load cycles, apply them.
3178 */
3179 if (ticks >= LOAD_FREQ) {
3180 n = ticks / LOAD_FREQ;
3181
3182 active = atomic_long_read(&calc_load_tasks);
3183 active = active > 0 ? active * FIXED_1 : 0;
3184
3185 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3186 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3187 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3188
3189 calc_load_update += n * LOAD_FREQ;
3190 }
3191
3192 /*
3193 * Its possible the remainder of the above division also crosses
3194 * a LOAD_FREQ period, the regular check in calc_global_load()
3195 * which comes after this will take care of that.
3196 *
3197 * Consider us being 11 ticks before a cycle completion, and us
3198 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3199 * age us 4 cycles, and the test in calc_global_load() will
3200 * pick up the final one.
3201 */
3202}
74f5187a
PZ
3203#else
3204static void calc_load_account_idle(struct rq *this_rq)
3205{
3206}
3207
3208static inline long calc_load_fold_idle(void)
3209{
3210 return 0;
3211}
0f004f5a
PZ
3212
3213static void calc_global_nohz(unsigned long ticks)
3214{
3215}
74f5187a
PZ
3216#endif
3217
2d02494f
TG
3218/**
3219 * get_avenrun - get the load average array
3220 * @loads: pointer to dest load array
3221 * @offset: offset to add
3222 * @shift: shift count to shift the result left
3223 *
3224 * These values are estimates at best, so no need for locking.
3225 */
3226void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3227{
3228 loads[0] = (avenrun[0] + offset) << shift;
3229 loads[1] = (avenrun[1] + offset) << shift;
3230 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3231}
46cb4b7c 3232
46cb4b7c 3233/*
dce48a84
TG
3234 * calc_load - update the avenrun load estimates 10 ticks after the
3235 * CPUs have updated calc_load_tasks.
7835b98b 3236 */
0f004f5a 3237void calc_global_load(unsigned long ticks)
7835b98b 3238{
dce48a84 3239 long active;
1da177e4 3240
0f004f5a
PZ
3241 calc_global_nohz(ticks);
3242
3243 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3244 return;
1da177e4 3245
dce48a84
TG
3246 active = atomic_long_read(&calc_load_tasks);
3247 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3248
dce48a84
TG
3249 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3250 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3251 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3252
dce48a84
TG
3253 calc_load_update += LOAD_FREQ;
3254}
1da177e4 3255
dce48a84 3256/*
74f5187a
PZ
3257 * Called from update_cpu_load() to periodically update this CPU's
3258 * active count.
dce48a84
TG
3259 */
3260static void calc_load_account_active(struct rq *this_rq)
3261{
74f5187a 3262 long delta;
08c183f3 3263
74f5187a
PZ
3264 if (time_before(jiffies, this_rq->calc_load_update))
3265 return;
783609c6 3266
74f5187a
PZ
3267 delta = calc_load_fold_active(this_rq);
3268 delta += calc_load_fold_idle();
3269 if (delta)
dce48a84 3270 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3271
3272 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3273}
3274
fdf3e95d
VP
3275/*
3276 * The exact cpuload at various idx values, calculated at every tick would be
3277 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3278 *
3279 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3280 * on nth tick when cpu may be busy, then we have:
3281 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3282 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3283 *
3284 * decay_load_missed() below does efficient calculation of
3285 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3286 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3287 *
3288 * The calculation is approximated on a 128 point scale.
3289 * degrade_zero_ticks is the number of ticks after which load at any
3290 * particular idx is approximated to be zero.
3291 * degrade_factor is a precomputed table, a row for each load idx.
3292 * Each column corresponds to degradation factor for a power of two ticks,
3293 * based on 128 point scale.
3294 * Example:
3295 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3296 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3297 *
3298 * With this power of 2 load factors, we can degrade the load n times
3299 * by looking at 1 bits in n and doing as many mult/shift instead of
3300 * n mult/shifts needed by the exact degradation.
3301 */
3302#define DEGRADE_SHIFT 7
3303static const unsigned char
3304 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3305static const unsigned char
3306 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3307 {0, 0, 0, 0, 0, 0, 0, 0},
3308 {64, 32, 8, 0, 0, 0, 0, 0},
3309 {96, 72, 40, 12, 1, 0, 0},
3310 {112, 98, 75, 43, 15, 1, 0},
3311 {120, 112, 98, 76, 45, 16, 2} };
3312
3313/*
3314 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3315 * would be when CPU is idle and so we just decay the old load without
3316 * adding any new load.
3317 */
3318static unsigned long
3319decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3320{
3321 int j = 0;
3322
3323 if (!missed_updates)
3324 return load;
3325
3326 if (missed_updates >= degrade_zero_ticks[idx])
3327 return 0;
3328
3329 if (idx == 1)
3330 return load >> missed_updates;
3331
3332 while (missed_updates) {
3333 if (missed_updates % 2)
3334 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3335
3336 missed_updates >>= 1;
3337 j++;
3338 }
3339 return load;
3340}
3341
46cb4b7c 3342/*
dd41f596 3343 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3344 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3345 * every tick. We fix it up based on jiffies.
46cb4b7c 3346 */
dd41f596 3347static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3348{
495eca49 3349 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3350 unsigned long curr_jiffies = jiffies;
3351 unsigned long pending_updates;
dd41f596 3352 int i, scale;
46cb4b7c 3353
dd41f596 3354 this_rq->nr_load_updates++;
46cb4b7c 3355
fdf3e95d
VP
3356 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3357 if (curr_jiffies == this_rq->last_load_update_tick)
3358 return;
3359
3360 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3361 this_rq->last_load_update_tick = curr_jiffies;
3362
dd41f596 3363 /* Update our load: */
fdf3e95d
VP
3364 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3365 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3366 unsigned long old_load, new_load;
7d1e6a9b 3367
dd41f596 3368 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3369
dd41f596 3370 old_load = this_rq->cpu_load[i];
fdf3e95d 3371 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3372 new_load = this_load;
a25707f3
IM
3373 /*
3374 * Round up the averaging division if load is increasing. This
3375 * prevents us from getting stuck on 9 if the load is 10, for
3376 * example.
3377 */
3378 if (new_load > old_load)
fdf3e95d
VP
3379 new_load += scale - 1;
3380
3381 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3382 }
da2b71ed
SS
3383
3384 sched_avg_update(this_rq);
fdf3e95d
VP
3385}
3386
3387static void update_cpu_load_active(struct rq *this_rq)
3388{
3389 update_cpu_load(this_rq);
46cb4b7c 3390
74f5187a 3391 calc_load_account_active(this_rq);
46cb4b7c
SS
3392}
3393
dd41f596 3394#ifdef CONFIG_SMP
8a0be9ef 3395
46cb4b7c 3396/*
38022906
PZ
3397 * sched_exec - execve() is a valuable balancing opportunity, because at
3398 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3399 */
38022906 3400void sched_exec(void)
46cb4b7c 3401{
38022906 3402 struct task_struct *p = current;
1da177e4 3403 unsigned long flags;
70b97a7f 3404 struct rq *rq;
0017d735 3405 int dest_cpu;
46cb4b7c 3406
1da177e4 3407 rq = task_rq_lock(p, &flags);
0017d735
PZ
3408 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3409 if (dest_cpu == smp_processor_id())
3410 goto unlock;
38022906 3411
46cb4b7c 3412 /*
38022906 3413 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3414 */
30da688e 3415 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3416 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3417 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3418
1da177e4 3419 task_rq_unlock(rq, &flags);
969c7921 3420 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3421 return;
3422 }
0017d735 3423unlock:
1da177e4 3424 task_rq_unlock(rq, &flags);
1da177e4 3425}
dd41f596 3426
1da177e4
LT
3427#endif
3428
1da177e4
LT
3429DEFINE_PER_CPU(struct kernel_stat, kstat);
3430
3431EXPORT_PER_CPU_SYMBOL(kstat);
3432
3433/*
c5f8d995 3434 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3435 * @p in case that task is currently running.
c5f8d995
HS
3436 *
3437 * Called with task_rq_lock() held on @rq.
1da177e4 3438 */
c5f8d995
HS
3439static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3440{
3441 u64 ns = 0;
3442
3443 if (task_current(rq, p)) {
3444 update_rq_clock(rq);
305e6835 3445 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3446 if ((s64)ns < 0)
3447 ns = 0;
3448 }
3449
3450 return ns;
3451}
3452
bb34d92f 3453unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3454{
1da177e4 3455 unsigned long flags;
41b86e9c 3456 struct rq *rq;
bb34d92f 3457 u64 ns = 0;
48f24c4d 3458
41b86e9c 3459 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3460 ns = do_task_delta_exec(p, rq);
3461 task_rq_unlock(rq, &flags);
1508487e 3462
c5f8d995
HS
3463 return ns;
3464}
f06febc9 3465
c5f8d995
HS
3466/*
3467 * Return accounted runtime for the task.
3468 * In case the task is currently running, return the runtime plus current's
3469 * pending runtime that have not been accounted yet.
3470 */
3471unsigned long long task_sched_runtime(struct task_struct *p)
3472{
3473 unsigned long flags;
3474 struct rq *rq;
3475 u64 ns = 0;
3476
3477 rq = task_rq_lock(p, &flags);
3478 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3479 task_rq_unlock(rq, &flags);
3480
3481 return ns;
3482}
48f24c4d 3483
c5f8d995
HS
3484/*
3485 * Return sum_exec_runtime for the thread group.
3486 * In case the task is currently running, return the sum plus current's
3487 * pending runtime that have not been accounted yet.
3488 *
3489 * Note that the thread group might have other running tasks as well,
3490 * so the return value not includes other pending runtime that other
3491 * running tasks might have.
3492 */
3493unsigned long long thread_group_sched_runtime(struct task_struct *p)
3494{
3495 struct task_cputime totals;
3496 unsigned long flags;
3497 struct rq *rq;
3498 u64 ns;
3499
3500 rq = task_rq_lock(p, &flags);
3501 thread_group_cputime(p, &totals);
3502 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3503 task_rq_unlock(rq, &flags);
48f24c4d 3504
1da177e4
LT
3505 return ns;
3506}
3507
1da177e4
LT
3508/*
3509 * Account user cpu time to a process.
3510 * @p: the process that the cpu time gets accounted to
1da177e4 3511 * @cputime: the cpu time spent in user space since the last update
457533a7 3512 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3513 */
457533a7
MS
3514void account_user_time(struct task_struct *p, cputime_t cputime,
3515 cputime_t cputime_scaled)
1da177e4
LT
3516{
3517 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3518 cputime64_t tmp;
3519
457533a7 3520 /* Add user time to process. */
1da177e4 3521 p->utime = cputime_add(p->utime, cputime);
457533a7 3522 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3523 account_group_user_time(p, cputime);
1da177e4
LT
3524
3525 /* Add user time to cpustat. */
3526 tmp = cputime_to_cputime64(cputime);
3527 if (TASK_NICE(p) > 0)
3528 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3529 else
3530 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3531
3532 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3533 /* Account for user time used */
3534 acct_update_integrals(p);
1da177e4
LT
3535}
3536
94886b84
LV
3537/*
3538 * Account guest cpu time to a process.
3539 * @p: the process that the cpu time gets accounted to
3540 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3541 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3542 */
457533a7
MS
3543static void account_guest_time(struct task_struct *p, cputime_t cputime,
3544 cputime_t cputime_scaled)
94886b84
LV
3545{
3546 cputime64_t tmp;
3547 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3548
3549 tmp = cputime_to_cputime64(cputime);
3550
457533a7 3551 /* Add guest time to process. */
94886b84 3552 p->utime = cputime_add(p->utime, cputime);
457533a7 3553 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3554 account_group_user_time(p, cputime);
94886b84
LV
3555 p->gtime = cputime_add(p->gtime, cputime);
3556
457533a7 3557 /* Add guest time to cpustat. */
ce0e7b28
RO
3558 if (TASK_NICE(p) > 0) {
3559 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3560 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3561 } else {
3562 cpustat->user = cputime64_add(cpustat->user, tmp);
3563 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3564 }
94886b84
LV
3565}
3566
1da177e4
LT
3567/*
3568 * Account system cpu time to a process.
3569 * @p: the process that the cpu time gets accounted to
3570 * @hardirq_offset: the offset to subtract from hardirq_count()
3571 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3572 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3573 */
3574void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3575 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3576{
3577 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3578 cputime64_t tmp;
3579
983ed7a6 3580 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3581 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3582 return;
3583 }
94886b84 3584
457533a7 3585 /* Add system time to process. */
1da177e4 3586 p->stime = cputime_add(p->stime, cputime);
457533a7 3587 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3588 account_group_system_time(p, cputime);
1da177e4
LT
3589
3590 /* Add system time to cpustat. */
3591 tmp = cputime_to_cputime64(cputime);
3592 if (hardirq_count() - hardirq_offset)
3593 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3594 else if (in_serving_softirq())
1da177e4 3595 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3596 else
79741dd3
MS
3597 cpustat->system = cputime64_add(cpustat->system, tmp);
3598
ef12fefa
BR
3599 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3600
1da177e4
LT
3601 /* Account for system time used */
3602 acct_update_integrals(p);
1da177e4
LT
3603}
3604
c66f08be 3605/*
1da177e4 3606 * Account for involuntary wait time.
1da177e4 3607 * @steal: the cpu time spent in involuntary wait
c66f08be 3608 */
79741dd3 3609void account_steal_time(cputime_t cputime)
c66f08be 3610{
79741dd3
MS
3611 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3612 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3613
3614 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3615}
3616
1da177e4 3617/*
79741dd3
MS
3618 * Account for idle time.
3619 * @cputime: the cpu time spent in idle wait
1da177e4 3620 */
79741dd3 3621void account_idle_time(cputime_t cputime)
1da177e4
LT
3622{
3623 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3624 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3625 struct rq *rq = this_rq();
1da177e4 3626
79741dd3
MS
3627 if (atomic_read(&rq->nr_iowait) > 0)
3628 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3629 else
3630 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3631}
3632
79741dd3
MS
3633#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3634
3635/*
3636 * Account a single tick of cpu time.
3637 * @p: the process that the cpu time gets accounted to
3638 * @user_tick: indicates if the tick is a user or a system tick
3639 */
3640void account_process_tick(struct task_struct *p, int user_tick)
3641{
a42548a1 3642 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3643 struct rq *rq = this_rq();
3644
3645 if (user_tick)
a42548a1 3646 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3647 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3648 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3649 one_jiffy_scaled);
3650 else
a42548a1 3651 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3652}
3653
3654/*
3655 * Account multiple ticks of steal time.
3656 * @p: the process from which the cpu time has been stolen
3657 * @ticks: number of stolen ticks
3658 */
3659void account_steal_ticks(unsigned long ticks)
3660{
3661 account_steal_time(jiffies_to_cputime(ticks));
3662}
3663
3664/*
3665 * Account multiple ticks of idle time.
3666 * @ticks: number of stolen ticks
3667 */
3668void account_idle_ticks(unsigned long ticks)
3669{
3670 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3671}
3672
79741dd3
MS
3673#endif
3674
49048622
BS
3675/*
3676 * Use precise platform statistics if available:
3677 */
3678#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3679void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3680{
d99ca3b9
HS
3681 *ut = p->utime;
3682 *st = p->stime;
49048622
BS
3683}
3684
0cf55e1e 3685void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3686{
0cf55e1e
HS
3687 struct task_cputime cputime;
3688
3689 thread_group_cputime(p, &cputime);
3690
3691 *ut = cputime.utime;
3692 *st = cputime.stime;
49048622
BS
3693}
3694#else
761b1d26
HS
3695
3696#ifndef nsecs_to_cputime
b7b20df9 3697# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3698#endif
3699
d180c5bc 3700void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3701{
d99ca3b9 3702 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3703
3704 /*
3705 * Use CFS's precise accounting:
3706 */
d180c5bc 3707 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3708
3709 if (total) {
e75e863d 3710 u64 temp = rtime;
d180c5bc 3711
e75e863d 3712 temp *= utime;
49048622 3713 do_div(temp, total);
d180c5bc
HS
3714 utime = (cputime_t)temp;
3715 } else
3716 utime = rtime;
49048622 3717
d180c5bc
HS
3718 /*
3719 * Compare with previous values, to keep monotonicity:
3720 */
761b1d26 3721 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3722 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3723
d99ca3b9
HS
3724 *ut = p->prev_utime;
3725 *st = p->prev_stime;
49048622
BS
3726}
3727
0cf55e1e
HS
3728/*
3729 * Must be called with siglock held.
3730 */
3731void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3732{
0cf55e1e
HS
3733 struct signal_struct *sig = p->signal;
3734 struct task_cputime cputime;
3735 cputime_t rtime, utime, total;
49048622 3736
0cf55e1e 3737 thread_group_cputime(p, &cputime);
49048622 3738
0cf55e1e
HS
3739 total = cputime_add(cputime.utime, cputime.stime);
3740 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3741
0cf55e1e 3742 if (total) {
e75e863d 3743 u64 temp = rtime;
49048622 3744
e75e863d 3745 temp *= cputime.utime;
0cf55e1e
HS
3746 do_div(temp, total);
3747 utime = (cputime_t)temp;
3748 } else
3749 utime = rtime;
3750
3751 sig->prev_utime = max(sig->prev_utime, utime);
3752 sig->prev_stime = max(sig->prev_stime,
3753 cputime_sub(rtime, sig->prev_utime));
3754
3755 *ut = sig->prev_utime;
3756 *st = sig->prev_stime;
49048622 3757}
49048622 3758#endif
49048622 3759
7835b98b
CL
3760/*
3761 * This function gets called by the timer code, with HZ frequency.
3762 * We call it with interrupts disabled.
3763 *
3764 * It also gets called by the fork code, when changing the parent's
3765 * timeslices.
3766 */
3767void scheduler_tick(void)
3768{
7835b98b
CL
3769 int cpu = smp_processor_id();
3770 struct rq *rq = cpu_rq(cpu);
dd41f596 3771 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3772
3773 sched_clock_tick();
dd41f596 3774
05fa785c 3775 raw_spin_lock(&rq->lock);
3e51f33f 3776 update_rq_clock(rq);
fdf3e95d 3777 update_cpu_load_active(rq);
fa85ae24 3778 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3779 raw_spin_unlock(&rq->lock);
7835b98b 3780
e9d2b064 3781 perf_event_task_tick();
e220d2dc 3782
e418e1c2 3783#ifdef CONFIG_SMP
dd41f596
IM
3784 rq->idle_at_tick = idle_cpu(cpu);
3785 trigger_load_balance(rq, cpu);
e418e1c2 3786#endif
1da177e4
LT
3787}
3788
132380a0 3789notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3790{
3791 if (in_lock_functions(addr)) {
3792 addr = CALLER_ADDR2;
3793 if (in_lock_functions(addr))
3794 addr = CALLER_ADDR3;
3795 }
3796 return addr;
3797}
1da177e4 3798
7e49fcce
SR
3799#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3800 defined(CONFIG_PREEMPT_TRACER))
3801
43627582 3802void __kprobes add_preempt_count(int val)
1da177e4 3803{
6cd8a4bb 3804#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3805 /*
3806 * Underflow?
3807 */
9a11b49a
IM
3808 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3809 return;
6cd8a4bb 3810#endif
1da177e4 3811 preempt_count() += val;
6cd8a4bb 3812#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3813 /*
3814 * Spinlock count overflowing soon?
3815 */
33859f7f
MOS
3816 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3817 PREEMPT_MASK - 10);
6cd8a4bb
SR
3818#endif
3819 if (preempt_count() == val)
3820 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3821}
3822EXPORT_SYMBOL(add_preempt_count);
3823
43627582 3824void __kprobes sub_preempt_count(int val)
1da177e4 3825{
6cd8a4bb 3826#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3827 /*
3828 * Underflow?
3829 */
01e3eb82 3830 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3831 return;
1da177e4
LT
3832 /*
3833 * Is the spinlock portion underflowing?
3834 */
9a11b49a
IM
3835 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3836 !(preempt_count() & PREEMPT_MASK)))
3837 return;
6cd8a4bb 3838#endif
9a11b49a 3839
6cd8a4bb
SR
3840 if (preempt_count() == val)
3841 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3842 preempt_count() -= val;
3843}
3844EXPORT_SYMBOL(sub_preempt_count);
3845
3846#endif
3847
3848/*
dd41f596 3849 * Print scheduling while atomic bug:
1da177e4 3850 */
dd41f596 3851static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3852{
838225b4
SS
3853 struct pt_regs *regs = get_irq_regs();
3854
3df0fc5b
PZ
3855 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3856 prev->comm, prev->pid, preempt_count());
838225b4 3857
dd41f596 3858 debug_show_held_locks(prev);
e21f5b15 3859 print_modules();
dd41f596
IM
3860 if (irqs_disabled())
3861 print_irqtrace_events(prev);
838225b4
SS
3862
3863 if (regs)
3864 show_regs(regs);
3865 else
3866 dump_stack();
dd41f596 3867}
1da177e4 3868
dd41f596
IM
3869/*
3870 * Various schedule()-time debugging checks and statistics:
3871 */
3872static inline void schedule_debug(struct task_struct *prev)
3873{
1da177e4 3874 /*
41a2d6cf 3875 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3876 * schedule() atomically, we ignore that path for now.
3877 * Otherwise, whine if we are scheduling when we should not be.
3878 */
3f33a7ce 3879 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3880 __schedule_bug(prev);
3881
1da177e4
LT
3882 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3883
2d72376b 3884 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3885#ifdef CONFIG_SCHEDSTATS
3886 if (unlikely(prev->lock_depth >= 0)) {
fce20979 3887 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 3888 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3889 }
3890#endif
dd41f596
IM
3891}
3892
6cecd084 3893static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3894{
a64692a3
MG
3895 if (prev->se.on_rq)
3896 update_rq_clock(rq);
6cecd084 3897 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3898}
3899
dd41f596
IM
3900/*
3901 * Pick up the highest-prio task:
3902 */
3903static inline struct task_struct *
b67802ea 3904pick_next_task(struct rq *rq)
dd41f596 3905{
5522d5d5 3906 const struct sched_class *class;
dd41f596 3907 struct task_struct *p;
1da177e4
LT
3908
3909 /*
dd41f596
IM
3910 * Optimization: we know that if all tasks are in
3911 * the fair class we can call that function directly:
1da177e4 3912 */
dd41f596 3913 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3914 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3915 if (likely(p))
3916 return p;
1da177e4
LT
3917 }
3918
34f971f6 3919 for_each_class(class) {
fb8d4724 3920 p = class->pick_next_task(rq);
dd41f596
IM
3921 if (p)
3922 return p;
dd41f596 3923 }
34f971f6
PZ
3924
3925 BUG(); /* the idle class will always have a runnable task */
dd41f596 3926}
1da177e4 3927
dd41f596
IM
3928/*
3929 * schedule() is the main scheduler function.
3930 */
ff743345 3931asmlinkage void __sched schedule(void)
dd41f596
IM
3932{
3933 struct task_struct *prev, *next;
67ca7bde 3934 unsigned long *switch_count;
dd41f596 3935 struct rq *rq;
31656519 3936 int cpu;
dd41f596 3937
ff743345
PZ
3938need_resched:
3939 preempt_disable();
dd41f596
IM
3940 cpu = smp_processor_id();
3941 rq = cpu_rq(cpu);
25502a6c 3942 rcu_note_context_switch(cpu);
dd41f596 3943 prev = rq->curr;
dd41f596
IM
3944
3945 release_kernel_lock(prev);
3946need_resched_nonpreemptible:
3947
3948 schedule_debug(prev);
1da177e4 3949
31656519 3950 if (sched_feat(HRTICK))
f333fdc9 3951 hrtick_clear(rq);
8f4d37ec 3952
05fa785c 3953 raw_spin_lock_irq(&rq->lock);
1da177e4 3954
246d86b5 3955 switch_count = &prev->nivcsw;
1da177e4 3956 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3957 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3958 prev->state = TASK_RUNNING;
21aa9af0
TH
3959 } else {
3960 /*
3961 * If a worker is going to sleep, notify and
3962 * ask workqueue whether it wants to wake up a
3963 * task to maintain concurrency. If so, wake
3964 * up the task.
3965 */
3966 if (prev->flags & PF_WQ_WORKER) {
3967 struct task_struct *to_wakeup;
3968
3969 to_wakeup = wq_worker_sleeping(prev, cpu);
3970 if (to_wakeup)
3971 try_to_wake_up_local(to_wakeup);
3972 }
371fd7e7 3973 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3974 }
dd41f596 3975 switch_count = &prev->nvcsw;
1da177e4
LT
3976 }
3977
3f029d3c 3978 pre_schedule(rq, prev);
f65eda4f 3979
dd41f596 3980 if (unlikely(!rq->nr_running))
1da177e4 3981 idle_balance(cpu, rq);
1da177e4 3982
df1c99d4 3983 put_prev_task(rq, prev);
b67802ea 3984 next = pick_next_task(rq);
f26f9aff
MG
3985 clear_tsk_need_resched(prev);
3986 rq->skip_clock_update = 0;
1da177e4 3987
1da177e4 3988 if (likely(prev != next)) {
673a90a1 3989 sched_info_switch(prev, next);
49f47433 3990 perf_event_task_sched_out(prev, next);
673a90a1 3991
1da177e4
LT
3992 rq->nr_switches++;
3993 rq->curr = next;
3994 ++*switch_count;
3995
dd41f596 3996 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3997 /*
246d86b5
ON
3998 * The context switch have flipped the stack from under us
3999 * and restored the local variables which were saved when
4000 * this task called schedule() in the past. prev == current
4001 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4002 */
4003 cpu = smp_processor_id();
4004 rq = cpu_rq(cpu);
1da177e4 4005 } else
05fa785c 4006 raw_spin_unlock_irq(&rq->lock);
1da177e4 4007
3f029d3c 4008 post_schedule(rq);
1da177e4 4009
246d86b5 4010 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4011 goto need_resched_nonpreemptible;
8f4d37ec 4012
1da177e4 4013 preempt_enable_no_resched();
ff743345 4014 if (need_resched())
1da177e4
LT
4015 goto need_resched;
4016}
1da177e4
LT
4017EXPORT_SYMBOL(schedule);
4018
c08f7829 4019#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4020/*
4021 * Look out! "owner" is an entirely speculative pointer
4022 * access and not reliable.
4023 */
4024int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4025{
4026 unsigned int cpu;
4027 struct rq *rq;
4028
4029 if (!sched_feat(OWNER_SPIN))
4030 return 0;
4031
4032#ifdef CONFIG_DEBUG_PAGEALLOC
4033 /*
4034 * Need to access the cpu field knowing that
4035 * DEBUG_PAGEALLOC could have unmapped it if
4036 * the mutex owner just released it and exited.
4037 */
4038 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4039 return 0;
0d66bf6d
PZ
4040#else
4041 cpu = owner->cpu;
4042#endif
4043
4044 /*
4045 * Even if the access succeeded (likely case),
4046 * the cpu field may no longer be valid.
4047 */
4048 if (cpu >= nr_cpumask_bits)
4b402210 4049 return 0;
0d66bf6d
PZ
4050
4051 /*
4052 * We need to validate that we can do a
4053 * get_cpu() and that we have the percpu area.
4054 */
4055 if (!cpu_online(cpu))
4b402210 4056 return 0;
0d66bf6d
PZ
4057
4058 rq = cpu_rq(cpu);
4059
4060 for (;;) {
4061 /*
4062 * Owner changed, break to re-assess state.
4063 */
9d0f4dcc
TC
4064 if (lock->owner != owner) {
4065 /*
4066 * If the lock has switched to a different owner,
4067 * we likely have heavy contention. Return 0 to quit
4068 * optimistic spinning and not contend further:
4069 */
4070 if (lock->owner)
4071 return 0;
0d66bf6d 4072 break;
9d0f4dcc 4073 }
0d66bf6d
PZ
4074
4075 /*
4076 * Is that owner really running on that cpu?
4077 */
4078 if (task_thread_info(rq->curr) != owner || need_resched())
4079 return 0;
4080
335d7afb 4081 arch_mutex_cpu_relax();
0d66bf6d 4082 }
4b402210 4083
0d66bf6d
PZ
4084 return 1;
4085}
4086#endif
4087
1da177e4
LT
4088#ifdef CONFIG_PREEMPT
4089/*
2ed6e34f 4090 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4091 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4092 * occur there and call schedule directly.
4093 */
d1f74e20 4094asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4095{
4096 struct thread_info *ti = current_thread_info();
6478d880 4097
1da177e4
LT
4098 /*
4099 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4100 * we do not want to preempt the current task. Just return..
1da177e4 4101 */
beed33a8 4102 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4103 return;
4104
3a5c359a 4105 do {
d1f74e20 4106 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4107 schedule();
d1f74e20 4108 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4109
3a5c359a
AK
4110 /*
4111 * Check again in case we missed a preemption opportunity
4112 * between schedule and now.
4113 */
4114 barrier();
5ed0cec0 4115 } while (need_resched());
1da177e4 4116}
1da177e4
LT
4117EXPORT_SYMBOL(preempt_schedule);
4118
4119/*
2ed6e34f 4120 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4121 * off of irq context.
4122 * Note, that this is called and return with irqs disabled. This will
4123 * protect us against recursive calling from irq.
4124 */
4125asmlinkage void __sched preempt_schedule_irq(void)
4126{
4127 struct thread_info *ti = current_thread_info();
6478d880 4128
2ed6e34f 4129 /* Catch callers which need to be fixed */
1da177e4
LT
4130 BUG_ON(ti->preempt_count || !irqs_disabled());
4131
3a5c359a
AK
4132 do {
4133 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4134 local_irq_enable();
4135 schedule();
4136 local_irq_disable();
3a5c359a 4137 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4138
3a5c359a
AK
4139 /*
4140 * Check again in case we missed a preemption opportunity
4141 * between schedule and now.
4142 */
4143 barrier();
5ed0cec0 4144 } while (need_resched());
1da177e4
LT
4145}
4146
4147#endif /* CONFIG_PREEMPT */
4148
63859d4f 4149int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4150 void *key)
1da177e4 4151{
63859d4f 4152 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4153}
1da177e4
LT
4154EXPORT_SYMBOL(default_wake_function);
4155
4156/*
41a2d6cf
IM
4157 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4158 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4159 * number) then we wake all the non-exclusive tasks and one exclusive task.
4160 *
4161 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4162 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4163 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4164 */
78ddb08f 4165static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4166 int nr_exclusive, int wake_flags, void *key)
1da177e4 4167{
2e45874c 4168 wait_queue_t *curr, *next;
1da177e4 4169
2e45874c 4170 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4171 unsigned flags = curr->flags;
4172
63859d4f 4173 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4174 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4175 break;
4176 }
4177}
4178
4179/**
4180 * __wake_up - wake up threads blocked on a waitqueue.
4181 * @q: the waitqueue
4182 * @mode: which threads
4183 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4184 * @key: is directly passed to the wakeup function
50fa610a
DH
4185 *
4186 * It may be assumed that this function implies a write memory barrier before
4187 * changing the task state if and only if any tasks are woken up.
1da177e4 4188 */
7ad5b3a5 4189void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4190 int nr_exclusive, void *key)
1da177e4
LT
4191{
4192 unsigned long flags;
4193
4194 spin_lock_irqsave(&q->lock, flags);
4195 __wake_up_common(q, mode, nr_exclusive, 0, key);
4196 spin_unlock_irqrestore(&q->lock, flags);
4197}
1da177e4
LT
4198EXPORT_SYMBOL(__wake_up);
4199
4200/*
4201 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4202 */
7ad5b3a5 4203void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4204{
4205 __wake_up_common(q, mode, 1, 0, NULL);
4206}
22c43c81 4207EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4208
4ede816a
DL
4209void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4210{
4211 __wake_up_common(q, mode, 1, 0, key);
4212}
4213
1da177e4 4214/**
4ede816a 4215 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4216 * @q: the waitqueue
4217 * @mode: which threads
4218 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4219 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4220 *
4221 * The sync wakeup differs that the waker knows that it will schedule
4222 * away soon, so while the target thread will be woken up, it will not
4223 * be migrated to another CPU - ie. the two threads are 'synchronized'
4224 * with each other. This can prevent needless bouncing between CPUs.
4225 *
4226 * On UP it can prevent extra preemption.
50fa610a
DH
4227 *
4228 * It may be assumed that this function implies a write memory barrier before
4229 * changing the task state if and only if any tasks are woken up.
1da177e4 4230 */
4ede816a
DL
4231void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4232 int nr_exclusive, void *key)
1da177e4
LT
4233{
4234 unsigned long flags;
7d478721 4235 int wake_flags = WF_SYNC;
1da177e4
LT
4236
4237 if (unlikely(!q))
4238 return;
4239
4240 if (unlikely(!nr_exclusive))
7d478721 4241 wake_flags = 0;
1da177e4
LT
4242
4243 spin_lock_irqsave(&q->lock, flags);
7d478721 4244 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4245 spin_unlock_irqrestore(&q->lock, flags);
4246}
4ede816a
DL
4247EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4248
4249/*
4250 * __wake_up_sync - see __wake_up_sync_key()
4251 */
4252void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4253{
4254 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4255}
1da177e4
LT
4256EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4257
65eb3dc6
KD
4258/**
4259 * complete: - signals a single thread waiting on this completion
4260 * @x: holds the state of this particular completion
4261 *
4262 * This will wake up a single thread waiting on this completion. Threads will be
4263 * awakened in the same order in which they were queued.
4264 *
4265 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4266 *
4267 * It may be assumed that this function implies a write memory barrier before
4268 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4269 */
b15136e9 4270void complete(struct completion *x)
1da177e4
LT
4271{
4272 unsigned long flags;
4273
4274 spin_lock_irqsave(&x->wait.lock, flags);
4275 x->done++;
d9514f6c 4276 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4277 spin_unlock_irqrestore(&x->wait.lock, flags);
4278}
4279EXPORT_SYMBOL(complete);
4280
65eb3dc6
KD
4281/**
4282 * complete_all: - signals all threads waiting on this completion
4283 * @x: holds the state of this particular completion
4284 *
4285 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4286 *
4287 * It may be assumed that this function implies a write memory barrier before
4288 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4289 */
b15136e9 4290void complete_all(struct completion *x)
1da177e4
LT
4291{
4292 unsigned long flags;
4293
4294 spin_lock_irqsave(&x->wait.lock, flags);
4295 x->done += UINT_MAX/2;
d9514f6c 4296 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4297 spin_unlock_irqrestore(&x->wait.lock, flags);
4298}
4299EXPORT_SYMBOL(complete_all);
4300
8cbbe86d
AK
4301static inline long __sched
4302do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4303{
1da177e4
LT
4304 if (!x->done) {
4305 DECLARE_WAITQUEUE(wait, current);
4306
a93d2f17 4307 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4308 do {
94d3d824 4309 if (signal_pending_state(state, current)) {
ea71a546
ON
4310 timeout = -ERESTARTSYS;
4311 break;
8cbbe86d
AK
4312 }
4313 __set_current_state(state);
1da177e4
LT
4314 spin_unlock_irq(&x->wait.lock);
4315 timeout = schedule_timeout(timeout);
4316 spin_lock_irq(&x->wait.lock);
ea71a546 4317 } while (!x->done && timeout);
1da177e4 4318 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4319 if (!x->done)
4320 return timeout;
1da177e4
LT
4321 }
4322 x->done--;
ea71a546 4323 return timeout ?: 1;
1da177e4 4324}
1da177e4 4325
8cbbe86d
AK
4326static long __sched
4327wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4328{
1da177e4
LT
4329 might_sleep();
4330
4331 spin_lock_irq(&x->wait.lock);
8cbbe86d 4332 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4333 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4334 return timeout;
4335}
1da177e4 4336
65eb3dc6
KD
4337/**
4338 * wait_for_completion: - waits for completion of a task
4339 * @x: holds the state of this particular completion
4340 *
4341 * This waits to be signaled for completion of a specific task. It is NOT
4342 * interruptible and there is no timeout.
4343 *
4344 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4345 * and interrupt capability. Also see complete().
4346 */
b15136e9 4347void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4348{
4349 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4350}
8cbbe86d 4351EXPORT_SYMBOL(wait_for_completion);
1da177e4 4352
65eb3dc6
KD
4353/**
4354 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4355 * @x: holds the state of this particular completion
4356 * @timeout: timeout value in jiffies
4357 *
4358 * This waits for either a completion of a specific task to be signaled or for a
4359 * specified timeout to expire. The timeout is in jiffies. It is not
4360 * interruptible.
4361 */
b15136e9 4362unsigned long __sched
8cbbe86d 4363wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4364{
8cbbe86d 4365 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4366}
8cbbe86d 4367EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4368
65eb3dc6
KD
4369/**
4370 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4371 * @x: holds the state of this particular completion
4372 *
4373 * This waits for completion of a specific task to be signaled. It is
4374 * interruptible.
4375 */
8cbbe86d 4376int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4377{
51e97990
AK
4378 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4379 if (t == -ERESTARTSYS)
4380 return t;
4381 return 0;
0fec171c 4382}
8cbbe86d 4383EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4384
65eb3dc6
KD
4385/**
4386 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4387 * @x: holds the state of this particular completion
4388 * @timeout: timeout value in jiffies
4389 *
4390 * This waits for either a completion of a specific task to be signaled or for a
4391 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4392 */
6bf41237 4393long __sched
8cbbe86d
AK
4394wait_for_completion_interruptible_timeout(struct completion *x,
4395 unsigned long timeout)
0fec171c 4396{
8cbbe86d 4397 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4398}
8cbbe86d 4399EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4400
65eb3dc6
KD
4401/**
4402 * wait_for_completion_killable: - waits for completion of a task (killable)
4403 * @x: holds the state of this particular completion
4404 *
4405 * This waits to be signaled for completion of a specific task. It can be
4406 * interrupted by a kill signal.
4407 */
009e577e
MW
4408int __sched wait_for_completion_killable(struct completion *x)
4409{
4410 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4411 if (t == -ERESTARTSYS)
4412 return t;
4413 return 0;
4414}
4415EXPORT_SYMBOL(wait_for_completion_killable);
4416
0aa12fb4
SW
4417/**
4418 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4419 * @x: holds the state of this particular completion
4420 * @timeout: timeout value in jiffies
4421 *
4422 * This waits for either a completion of a specific task to be
4423 * signaled or for a specified timeout to expire. It can be
4424 * interrupted by a kill signal. The timeout is in jiffies.
4425 */
6bf41237 4426long __sched
0aa12fb4
SW
4427wait_for_completion_killable_timeout(struct completion *x,
4428 unsigned long timeout)
4429{
4430 return wait_for_common(x, timeout, TASK_KILLABLE);
4431}
4432EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4433
be4de352
DC
4434/**
4435 * try_wait_for_completion - try to decrement a completion without blocking
4436 * @x: completion structure
4437 *
4438 * Returns: 0 if a decrement cannot be done without blocking
4439 * 1 if a decrement succeeded.
4440 *
4441 * If a completion is being used as a counting completion,
4442 * attempt to decrement the counter without blocking. This
4443 * enables us to avoid waiting if the resource the completion
4444 * is protecting is not available.
4445 */
4446bool try_wait_for_completion(struct completion *x)
4447{
7539a3b3 4448 unsigned long flags;
be4de352
DC
4449 int ret = 1;
4450
7539a3b3 4451 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4452 if (!x->done)
4453 ret = 0;
4454 else
4455 x->done--;
7539a3b3 4456 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4457 return ret;
4458}
4459EXPORT_SYMBOL(try_wait_for_completion);
4460
4461/**
4462 * completion_done - Test to see if a completion has any waiters
4463 * @x: completion structure
4464 *
4465 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4466 * 1 if there are no waiters.
4467 *
4468 */
4469bool completion_done(struct completion *x)
4470{
7539a3b3 4471 unsigned long flags;
be4de352
DC
4472 int ret = 1;
4473
7539a3b3 4474 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4475 if (!x->done)
4476 ret = 0;
7539a3b3 4477 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4478 return ret;
4479}
4480EXPORT_SYMBOL(completion_done);
4481
8cbbe86d
AK
4482static long __sched
4483sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4484{
0fec171c
IM
4485 unsigned long flags;
4486 wait_queue_t wait;
4487
4488 init_waitqueue_entry(&wait, current);
1da177e4 4489
8cbbe86d 4490 __set_current_state(state);
1da177e4 4491
8cbbe86d
AK
4492 spin_lock_irqsave(&q->lock, flags);
4493 __add_wait_queue(q, &wait);
4494 spin_unlock(&q->lock);
4495 timeout = schedule_timeout(timeout);
4496 spin_lock_irq(&q->lock);
4497 __remove_wait_queue(q, &wait);
4498 spin_unlock_irqrestore(&q->lock, flags);
4499
4500 return timeout;
4501}
4502
4503void __sched interruptible_sleep_on(wait_queue_head_t *q)
4504{
4505 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4506}
1da177e4
LT
4507EXPORT_SYMBOL(interruptible_sleep_on);
4508
0fec171c 4509long __sched
95cdf3b7 4510interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4511{
8cbbe86d 4512 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4513}
1da177e4
LT
4514EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4515
0fec171c 4516void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4517{
8cbbe86d 4518 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4519}
1da177e4
LT
4520EXPORT_SYMBOL(sleep_on);
4521
0fec171c 4522long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4523{
8cbbe86d 4524 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4525}
1da177e4
LT
4526EXPORT_SYMBOL(sleep_on_timeout);
4527
b29739f9
IM
4528#ifdef CONFIG_RT_MUTEXES
4529
4530/*
4531 * rt_mutex_setprio - set the current priority of a task
4532 * @p: task
4533 * @prio: prio value (kernel-internal form)
4534 *
4535 * This function changes the 'effective' priority of a task. It does
4536 * not touch ->normal_prio like __setscheduler().
4537 *
4538 * Used by the rt_mutex code to implement priority inheritance logic.
4539 */
36c8b586 4540void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4541{
4542 unsigned long flags;
83b699ed 4543 int oldprio, on_rq, running;
70b97a7f 4544 struct rq *rq;
83ab0aa0 4545 const struct sched_class *prev_class;
b29739f9
IM
4546
4547 BUG_ON(prio < 0 || prio > MAX_PRIO);
4548
4549 rq = task_rq_lock(p, &flags);
4550
a8027073 4551 trace_sched_pi_setprio(p, prio);
d5f9f942 4552 oldprio = p->prio;
83ab0aa0 4553 prev_class = p->sched_class;
dd41f596 4554 on_rq = p->se.on_rq;
051a1d1a 4555 running = task_current(rq, p);
0e1f3483 4556 if (on_rq)
69be72c1 4557 dequeue_task(rq, p, 0);
0e1f3483
HS
4558 if (running)
4559 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4560
4561 if (rt_prio(prio))
4562 p->sched_class = &rt_sched_class;
4563 else
4564 p->sched_class = &fair_sched_class;
4565
b29739f9
IM
4566 p->prio = prio;
4567
0e1f3483
HS
4568 if (running)
4569 p->sched_class->set_curr_task(rq);
dd41f596 4570 if (on_rq) {
371fd7e7 4571 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4572
4573 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4574 }
4575 task_rq_unlock(rq, &flags);
4576}
4577
4578#endif
4579
36c8b586 4580void set_user_nice(struct task_struct *p, long nice)
1da177e4 4581{
dd41f596 4582 int old_prio, delta, on_rq;
1da177e4 4583 unsigned long flags;
70b97a7f 4584 struct rq *rq;
1da177e4
LT
4585
4586 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4587 return;
4588 /*
4589 * We have to be careful, if called from sys_setpriority(),
4590 * the task might be in the middle of scheduling on another CPU.
4591 */
4592 rq = task_rq_lock(p, &flags);
4593 /*
4594 * The RT priorities are set via sched_setscheduler(), but we still
4595 * allow the 'normal' nice value to be set - but as expected
4596 * it wont have any effect on scheduling until the task is
dd41f596 4597 * SCHED_FIFO/SCHED_RR:
1da177e4 4598 */
e05606d3 4599 if (task_has_rt_policy(p)) {
1da177e4
LT
4600 p->static_prio = NICE_TO_PRIO(nice);
4601 goto out_unlock;
4602 }
dd41f596 4603 on_rq = p->se.on_rq;
c09595f6 4604 if (on_rq)
69be72c1 4605 dequeue_task(rq, p, 0);
1da177e4 4606
1da177e4 4607 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4608 set_load_weight(p);
b29739f9
IM
4609 old_prio = p->prio;
4610 p->prio = effective_prio(p);
4611 delta = p->prio - old_prio;
1da177e4 4612
dd41f596 4613 if (on_rq) {
371fd7e7 4614 enqueue_task(rq, p, 0);
1da177e4 4615 /*
d5f9f942
AM
4616 * If the task increased its priority or is running and
4617 * lowered its priority, then reschedule its CPU:
1da177e4 4618 */
d5f9f942 4619 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4620 resched_task(rq->curr);
4621 }
4622out_unlock:
4623 task_rq_unlock(rq, &flags);
4624}
1da177e4
LT
4625EXPORT_SYMBOL(set_user_nice);
4626
e43379f1
MM
4627/*
4628 * can_nice - check if a task can reduce its nice value
4629 * @p: task
4630 * @nice: nice value
4631 */
36c8b586 4632int can_nice(const struct task_struct *p, const int nice)
e43379f1 4633{
024f4747
MM
4634 /* convert nice value [19,-20] to rlimit style value [1,40] */
4635 int nice_rlim = 20 - nice;
48f24c4d 4636
78d7d407 4637 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4638 capable(CAP_SYS_NICE));
4639}
4640
1da177e4
LT
4641#ifdef __ARCH_WANT_SYS_NICE
4642
4643/*
4644 * sys_nice - change the priority of the current process.
4645 * @increment: priority increment
4646 *
4647 * sys_setpriority is a more generic, but much slower function that
4648 * does similar things.
4649 */
5add95d4 4650SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4651{
48f24c4d 4652 long nice, retval;
1da177e4
LT
4653
4654 /*
4655 * Setpriority might change our priority at the same moment.
4656 * We don't have to worry. Conceptually one call occurs first
4657 * and we have a single winner.
4658 */
e43379f1
MM
4659 if (increment < -40)
4660 increment = -40;
1da177e4
LT
4661 if (increment > 40)
4662 increment = 40;
4663
2b8f836f 4664 nice = TASK_NICE(current) + increment;
1da177e4
LT
4665 if (nice < -20)
4666 nice = -20;
4667 if (nice > 19)
4668 nice = 19;
4669
e43379f1
MM
4670 if (increment < 0 && !can_nice(current, nice))
4671 return -EPERM;
4672
1da177e4
LT
4673 retval = security_task_setnice(current, nice);
4674 if (retval)
4675 return retval;
4676
4677 set_user_nice(current, nice);
4678 return 0;
4679}
4680
4681#endif
4682
4683/**
4684 * task_prio - return the priority value of a given task.
4685 * @p: the task in question.
4686 *
4687 * This is the priority value as seen by users in /proc.
4688 * RT tasks are offset by -200. Normal tasks are centered
4689 * around 0, value goes from -16 to +15.
4690 */
36c8b586 4691int task_prio(const struct task_struct *p)
1da177e4
LT
4692{
4693 return p->prio - MAX_RT_PRIO;
4694}
4695
4696/**
4697 * task_nice - return the nice value of a given task.
4698 * @p: the task in question.
4699 */
36c8b586 4700int task_nice(const struct task_struct *p)
1da177e4
LT
4701{
4702 return TASK_NICE(p);
4703}
150d8bed 4704EXPORT_SYMBOL(task_nice);
1da177e4
LT
4705
4706/**
4707 * idle_cpu - is a given cpu idle currently?
4708 * @cpu: the processor in question.
4709 */
4710int idle_cpu(int cpu)
4711{
4712 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4713}
4714
1da177e4
LT
4715/**
4716 * idle_task - return the idle task for a given cpu.
4717 * @cpu: the processor in question.
4718 */
36c8b586 4719struct task_struct *idle_task(int cpu)
1da177e4
LT
4720{
4721 return cpu_rq(cpu)->idle;
4722}
4723
4724/**
4725 * find_process_by_pid - find a process with a matching PID value.
4726 * @pid: the pid in question.
4727 */
a9957449 4728static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4729{
228ebcbe 4730 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4731}
4732
4733/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4734static void
4735__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4736{
dd41f596 4737 BUG_ON(p->se.on_rq);
48f24c4d 4738
1da177e4
LT
4739 p->policy = policy;
4740 p->rt_priority = prio;
b29739f9
IM
4741 p->normal_prio = normal_prio(p);
4742 /* we are holding p->pi_lock already */
4743 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4744 if (rt_prio(p->prio))
4745 p->sched_class = &rt_sched_class;
4746 else
4747 p->sched_class = &fair_sched_class;
2dd73a4f 4748 set_load_weight(p);
1da177e4
LT
4749}
4750
c69e8d9c
DH
4751/*
4752 * check the target process has a UID that matches the current process's
4753 */
4754static bool check_same_owner(struct task_struct *p)
4755{
4756 const struct cred *cred = current_cred(), *pcred;
4757 bool match;
4758
4759 rcu_read_lock();
4760 pcred = __task_cred(p);
4761 match = (cred->euid == pcred->euid ||
4762 cred->euid == pcred->uid);
4763 rcu_read_unlock();
4764 return match;
4765}
4766
961ccddd 4767static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4768 const struct sched_param *param, bool user)
1da177e4 4769{
83b699ed 4770 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4771 unsigned long flags;
83ab0aa0 4772 const struct sched_class *prev_class;
70b97a7f 4773 struct rq *rq;
ca94c442 4774 int reset_on_fork;
1da177e4 4775
66e5393a
SR
4776 /* may grab non-irq protected spin_locks */
4777 BUG_ON(in_interrupt());
1da177e4
LT
4778recheck:
4779 /* double check policy once rq lock held */
ca94c442
LP
4780 if (policy < 0) {
4781 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4782 policy = oldpolicy = p->policy;
ca94c442
LP
4783 } else {
4784 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4785 policy &= ~SCHED_RESET_ON_FORK;
4786
4787 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4788 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4789 policy != SCHED_IDLE)
4790 return -EINVAL;
4791 }
4792
1da177e4
LT
4793 /*
4794 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4795 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4796 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4797 */
4798 if (param->sched_priority < 0 ||
95cdf3b7 4799 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4800 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4801 return -EINVAL;
e05606d3 4802 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4803 return -EINVAL;
4804
37e4ab3f
OC
4805 /*
4806 * Allow unprivileged RT tasks to decrease priority:
4807 */
961ccddd 4808 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4809 if (rt_policy(policy)) {
a44702e8
ON
4810 unsigned long rlim_rtprio =
4811 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4812
4813 /* can't set/change the rt policy */
4814 if (policy != p->policy && !rlim_rtprio)
4815 return -EPERM;
4816
4817 /* can't increase priority */
4818 if (param->sched_priority > p->rt_priority &&
4819 param->sched_priority > rlim_rtprio)
4820 return -EPERM;
4821 }
dd41f596
IM
4822 /*
4823 * Like positive nice levels, dont allow tasks to
4824 * move out of SCHED_IDLE either:
4825 */
4826 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4827 return -EPERM;
5fe1d75f 4828
37e4ab3f 4829 /* can't change other user's priorities */
c69e8d9c 4830 if (!check_same_owner(p))
37e4ab3f 4831 return -EPERM;
ca94c442
LP
4832
4833 /* Normal users shall not reset the sched_reset_on_fork flag */
4834 if (p->sched_reset_on_fork && !reset_on_fork)
4835 return -EPERM;
37e4ab3f 4836 }
1da177e4 4837
725aad24 4838 if (user) {
b0ae1981 4839 retval = security_task_setscheduler(p);
725aad24
JF
4840 if (retval)
4841 return retval;
4842 }
4843
b29739f9
IM
4844 /*
4845 * make sure no PI-waiters arrive (or leave) while we are
4846 * changing the priority of the task:
4847 */
1d615482 4848 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4849 /*
4850 * To be able to change p->policy safely, the apropriate
4851 * runqueue lock must be held.
4852 */
b29739f9 4853 rq = __task_rq_lock(p);
dc61b1d6 4854
34f971f6
PZ
4855 /*
4856 * Changing the policy of the stop threads its a very bad idea
4857 */
4858 if (p == rq->stop) {
4859 __task_rq_unlock(rq);
4860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4861 return -EINVAL;
4862 }
4863
dc61b1d6
PZ
4864#ifdef CONFIG_RT_GROUP_SCHED
4865 if (user) {
4866 /*
4867 * Do not allow realtime tasks into groups that have no runtime
4868 * assigned.
4869 */
4870 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4871 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4872 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
4873 __task_rq_unlock(rq);
4874 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4875 return -EPERM;
4876 }
4877 }
4878#endif
4879
1da177e4
LT
4880 /* recheck policy now with rq lock held */
4881 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4882 policy = oldpolicy = -1;
b29739f9 4883 __task_rq_unlock(rq);
1d615482 4884 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4885 goto recheck;
4886 }
dd41f596 4887 on_rq = p->se.on_rq;
051a1d1a 4888 running = task_current(rq, p);
0e1f3483 4889 if (on_rq)
2e1cb74a 4890 deactivate_task(rq, p, 0);
0e1f3483
HS
4891 if (running)
4892 p->sched_class->put_prev_task(rq, p);
f6b53205 4893
ca94c442
LP
4894 p->sched_reset_on_fork = reset_on_fork;
4895
1da177e4 4896 oldprio = p->prio;
83ab0aa0 4897 prev_class = p->sched_class;
dd41f596 4898 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4899
0e1f3483
HS
4900 if (running)
4901 p->sched_class->set_curr_task(rq);
dd41f596
IM
4902 if (on_rq) {
4903 activate_task(rq, p, 0);
cb469845
SR
4904
4905 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4906 }
b29739f9 4907 __task_rq_unlock(rq);
1d615482 4908 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4909
95e02ca9
TG
4910 rt_mutex_adjust_pi(p);
4911
1da177e4
LT
4912 return 0;
4913}
961ccddd
RR
4914
4915/**
4916 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4917 * @p: the task in question.
4918 * @policy: new policy.
4919 * @param: structure containing the new RT priority.
4920 *
4921 * NOTE that the task may be already dead.
4922 */
4923int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4924 const struct sched_param *param)
961ccddd
RR
4925{
4926 return __sched_setscheduler(p, policy, param, true);
4927}
1da177e4
LT
4928EXPORT_SYMBOL_GPL(sched_setscheduler);
4929
961ccddd
RR
4930/**
4931 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4932 * @p: the task in question.
4933 * @policy: new policy.
4934 * @param: structure containing the new RT priority.
4935 *
4936 * Just like sched_setscheduler, only don't bother checking if the
4937 * current context has permission. For example, this is needed in
4938 * stop_machine(): we create temporary high priority worker threads,
4939 * but our caller might not have that capability.
4940 */
4941int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4942 const struct sched_param *param)
961ccddd
RR
4943{
4944 return __sched_setscheduler(p, policy, param, false);
4945}
4946
95cdf3b7
IM
4947static int
4948do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4949{
1da177e4
LT
4950 struct sched_param lparam;
4951 struct task_struct *p;
36c8b586 4952 int retval;
1da177e4
LT
4953
4954 if (!param || pid < 0)
4955 return -EINVAL;
4956 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4957 return -EFAULT;
5fe1d75f
ON
4958
4959 rcu_read_lock();
4960 retval = -ESRCH;
1da177e4 4961 p = find_process_by_pid(pid);
5fe1d75f
ON
4962 if (p != NULL)
4963 retval = sched_setscheduler(p, policy, &lparam);
4964 rcu_read_unlock();
36c8b586 4965
1da177e4
LT
4966 return retval;
4967}
4968
4969/**
4970 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4971 * @pid: the pid in question.
4972 * @policy: new policy.
4973 * @param: structure containing the new RT priority.
4974 */
5add95d4
HC
4975SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4976 struct sched_param __user *, param)
1da177e4 4977{
c21761f1
JB
4978 /* negative values for policy are not valid */
4979 if (policy < 0)
4980 return -EINVAL;
4981
1da177e4
LT
4982 return do_sched_setscheduler(pid, policy, param);
4983}
4984
4985/**
4986 * sys_sched_setparam - set/change the RT priority of a thread
4987 * @pid: the pid in question.
4988 * @param: structure containing the new RT priority.
4989 */
5add95d4 4990SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4991{
4992 return do_sched_setscheduler(pid, -1, param);
4993}
4994
4995/**
4996 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4997 * @pid: the pid in question.
4998 */
5add95d4 4999SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5000{
36c8b586 5001 struct task_struct *p;
3a5c359a 5002 int retval;
1da177e4
LT
5003
5004 if (pid < 0)
3a5c359a 5005 return -EINVAL;
1da177e4
LT
5006
5007 retval = -ESRCH;
5fe85be0 5008 rcu_read_lock();
1da177e4
LT
5009 p = find_process_by_pid(pid);
5010 if (p) {
5011 retval = security_task_getscheduler(p);
5012 if (!retval)
ca94c442
LP
5013 retval = p->policy
5014 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5015 }
5fe85be0 5016 rcu_read_unlock();
1da177e4
LT
5017 return retval;
5018}
5019
5020/**
ca94c442 5021 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5022 * @pid: the pid in question.
5023 * @param: structure containing the RT priority.
5024 */
5add95d4 5025SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5026{
5027 struct sched_param lp;
36c8b586 5028 struct task_struct *p;
3a5c359a 5029 int retval;
1da177e4
LT
5030
5031 if (!param || pid < 0)
3a5c359a 5032 return -EINVAL;
1da177e4 5033
5fe85be0 5034 rcu_read_lock();
1da177e4
LT
5035 p = find_process_by_pid(pid);
5036 retval = -ESRCH;
5037 if (!p)
5038 goto out_unlock;
5039
5040 retval = security_task_getscheduler(p);
5041 if (retval)
5042 goto out_unlock;
5043
5044 lp.sched_priority = p->rt_priority;
5fe85be0 5045 rcu_read_unlock();
1da177e4
LT
5046
5047 /*
5048 * This one might sleep, we cannot do it with a spinlock held ...
5049 */
5050 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5051
1da177e4
LT
5052 return retval;
5053
5054out_unlock:
5fe85be0 5055 rcu_read_unlock();
1da177e4
LT
5056 return retval;
5057}
5058
96f874e2 5059long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5060{
5a16f3d3 5061 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5062 struct task_struct *p;
5063 int retval;
1da177e4 5064
95402b38 5065 get_online_cpus();
23f5d142 5066 rcu_read_lock();
1da177e4
LT
5067
5068 p = find_process_by_pid(pid);
5069 if (!p) {
23f5d142 5070 rcu_read_unlock();
95402b38 5071 put_online_cpus();
1da177e4
LT
5072 return -ESRCH;
5073 }
5074
23f5d142 5075 /* Prevent p going away */
1da177e4 5076 get_task_struct(p);
23f5d142 5077 rcu_read_unlock();
1da177e4 5078
5a16f3d3
RR
5079 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5080 retval = -ENOMEM;
5081 goto out_put_task;
5082 }
5083 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5084 retval = -ENOMEM;
5085 goto out_free_cpus_allowed;
5086 }
1da177e4 5087 retval = -EPERM;
c69e8d9c 5088 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5089 goto out_unlock;
5090
b0ae1981 5091 retval = security_task_setscheduler(p);
e7834f8f
DQ
5092 if (retval)
5093 goto out_unlock;
5094
5a16f3d3
RR
5095 cpuset_cpus_allowed(p, cpus_allowed);
5096 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5097again:
5a16f3d3 5098 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5099
8707d8b8 5100 if (!retval) {
5a16f3d3
RR
5101 cpuset_cpus_allowed(p, cpus_allowed);
5102 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5103 /*
5104 * We must have raced with a concurrent cpuset
5105 * update. Just reset the cpus_allowed to the
5106 * cpuset's cpus_allowed
5107 */
5a16f3d3 5108 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5109 goto again;
5110 }
5111 }
1da177e4 5112out_unlock:
5a16f3d3
RR
5113 free_cpumask_var(new_mask);
5114out_free_cpus_allowed:
5115 free_cpumask_var(cpus_allowed);
5116out_put_task:
1da177e4 5117 put_task_struct(p);
95402b38 5118 put_online_cpus();
1da177e4
LT
5119 return retval;
5120}
5121
5122static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5123 struct cpumask *new_mask)
1da177e4 5124{
96f874e2
RR
5125 if (len < cpumask_size())
5126 cpumask_clear(new_mask);
5127 else if (len > cpumask_size())
5128 len = cpumask_size();
5129
1da177e4
LT
5130 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5131}
5132
5133/**
5134 * sys_sched_setaffinity - set the cpu affinity of a process
5135 * @pid: pid of the process
5136 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5137 * @user_mask_ptr: user-space pointer to the new cpu mask
5138 */
5add95d4
HC
5139SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5140 unsigned long __user *, user_mask_ptr)
1da177e4 5141{
5a16f3d3 5142 cpumask_var_t new_mask;
1da177e4
LT
5143 int retval;
5144
5a16f3d3
RR
5145 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5146 return -ENOMEM;
1da177e4 5147
5a16f3d3
RR
5148 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5149 if (retval == 0)
5150 retval = sched_setaffinity(pid, new_mask);
5151 free_cpumask_var(new_mask);
5152 return retval;
1da177e4
LT
5153}
5154
96f874e2 5155long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5156{
36c8b586 5157 struct task_struct *p;
31605683
TG
5158 unsigned long flags;
5159 struct rq *rq;
1da177e4 5160 int retval;
1da177e4 5161
95402b38 5162 get_online_cpus();
23f5d142 5163 rcu_read_lock();
1da177e4
LT
5164
5165 retval = -ESRCH;
5166 p = find_process_by_pid(pid);
5167 if (!p)
5168 goto out_unlock;
5169
e7834f8f
DQ
5170 retval = security_task_getscheduler(p);
5171 if (retval)
5172 goto out_unlock;
5173
31605683 5174 rq = task_rq_lock(p, &flags);
96f874e2 5175 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5176 task_rq_unlock(rq, &flags);
1da177e4
LT
5177
5178out_unlock:
23f5d142 5179 rcu_read_unlock();
95402b38 5180 put_online_cpus();
1da177e4 5181
9531b62f 5182 return retval;
1da177e4
LT
5183}
5184
5185/**
5186 * sys_sched_getaffinity - get the cpu affinity of a process
5187 * @pid: pid of the process
5188 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5189 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5190 */
5add95d4
HC
5191SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5192 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5193{
5194 int ret;
f17c8607 5195 cpumask_var_t mask;
1da177e4 5196
84fba5ec 5197 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5198 return -EINVAL;
5199 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5200 return -EINVAL;
5201
f17c8607
RR
5202 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5203 return -ENOMEM;
1da177e4 5204
f17c8607
RR
5205 ret = sched_getaffinity(pid, mask);
5206 if (ret == 0) {
8bc037fb 5207 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5208
5209 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5210 ret = -EFAULT;
5211 else
cd3d8031 5212 ret = retlen;
f17c8607
RR
5213 }
5214 free_cpumask_var(mask);
1da177e4 5215
f17c8607 5216 return ret;
1da177e4
LT
5217}
5218
5219/**
5220 * sys_sched_yield - yield the current processor to other threads.
5221 *
dd41f596
IM
5222 * This function yields the current CPU to other tasks. If there are no
5223 * other threads running on this CPU then this function will return.
1da177e4 5224 */
5add95d4 5225SYSCALL_DEFINE0(sched_yield)
1da177e4 5226{
70b97a7f 5227 struct rq *rq = this_rq_lock();
1da177e4 5228
2d72376b 5229 schedstat_inc(rq, yld_count);
4530d7ab 5230 current->sched_class->yield_task(rq);
1da177e4
LT
5231
5232 /*
5233 * Since we are going to call schedule() anyway, there's
5234 * no need to preempt or enable interrupts:
5235 */
5236 __release(rq->lock);
8a25d5de 5237 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5238 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5239 preempt_enable_no_resched();
5240
5241 schedule();
5242
5243 return 0;
5244}
5245
d86ee480
PZ
5246static inline int should_resched(void)
5247{
5248 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5249}
5250
e7b38404 5251static void __cond_resched(void)
1da177e4 5252{
e7aaaa69
FW
5253 add_preempt_count(PREEMPT_ACTIVE);
5254 schedule();
5255 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5256}
5257
02b67cc3 5258int __sched _cond_resched(void)
1da177e4 5259{
d86ee480 5260 if (should_resched()) {
1da177e4
LT
5261 __cond_resched();
5262 return 1;
5263 }
5264 return 0;
5265}
02b67cc3 5266EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5267
5268/*
613afbf8 5269 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5270 * call schedule, and on return reacquire the lock.
5271 *
41a2d6cf 5272 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5273 * operations here to prevent schedule() from being called twice (once via
5274 * spin_unlock(), once by hand).
5275 */
613afbf8 5276int __cond_resched_lock(spinlock_t *lock)
1da177e4 5277{
d86ee480 5278 int resched = should_resched();
6df3cecb
JK
5279 int ret = 0;
5280
f607c668
PZ
5281 lockdep_assert_held(lock);
5282
95c354fe 5283 if (spin_needbreak(lock) || resched) {
1da177e4 5284 spin_unlock(lock);
d86ee480 5285 if (resched)
95c354fe
NP
5286 __cond_resched();
5287 else
5288 cpu_relax();
6df3cecb 5289 ret = 1;
1da177e4 5290 spin_lock(lock);
1da177e4 5291 }
6df3cecb 5292 return ret;
1da177e4 5293}
613afbf8 5294EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5295
613afbf8 5296int __sched __cond_resched_softirq(void)
1da177e4
LT
5297{
5298 BUG_ON(!in_softirq());
5299
d86ee480 5300 if (should_resched()) {
98d82567 5301 local_bh_enable();
1da177e4
LT
5302 __cond_resched();
5303 local_bh_disable();
5304 return 1;
5305 }
5306 return 0;
5307}
613afbf8 5308EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5309
1da177e4
LT
5310/**
5311 * yield - yield the current processor to other threads.
5312 *
72fd4a35 5313 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5314 * thread runnable and calls sys_sched_yield().
5315 */
5316void __sched yield(void)
5317{
5318 set_current_state(TASK_RUNNING);
5319 sys_sched_yield();
5320}
1da177e4
LT
5321EXPORT_SYMBOL(yield);
5322
5323/*
41a2d6cf 5324 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5325 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5326 */
5327void __sched io_schedule(void)
5328{
54d35f29 5329 struct rq *rq = raw_rq();
1da177e4 5330
0ff92245 5331 delayacct_blkio_start();
1da177e4 5332 atomic_inc(&rq->nr_iowait);
8f0dfc34 5333 current->in_iowait = 1;
1da177e4 5334 schedule();
8f0dfc34 5335 current->in_iowait = 0;
1da177e4 5336 atomic_dec(&rq->nr_iowait);
0ff92245 5337 delayacct_blkio_end();
1da177e4 5338}
1da177e4
LT
5339EXPORT_SYMBOL(io_schedule);
5340
5341long __sched io_schedule_timeout(long timeout)
5342{
54d35f29 5343 struct rq *rq = raw_rq();
1da177e4
LT
5344 long ret;
5345
0ff92245 5346 delayacct_blkio_start();
1da177e4 5347 atomic_inc(&rq->nr_iowait);
8f0dfc34 5348 current->in_iowait = 1;
1da177e4 5349 ret = schedule_timeout(timeout);
8f0dfc34 5350 current->in_iowait = 0;
1da177e4 5351 atomic_dec(&rq->nr_iowait);
0ff92245 5352 delayacct_blkio_end();
1da177e4
LT
5353 return ret;
5354}
5355
5356/**
5357 * sys_sched_get_priority_max - return maximum RT priority.
5358 * @policy: scheduling class.
5359 *
5360 * this syscall returns the maximum rt_priority that can be used
5361 * by a given scheduling class.
5362 */
5add95d4 5363SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5364{
5365 int ret = -EINVAL;
5366
5367 switch (policy) {
5368 case SCHED_FIFO:
5369 case SCHED_RR:
5370 ret = MAX_USER_RT_PRIO-1;
5371 break;
5372 case SCHED_NORMAL:
b0a9499c 5373 case SCHED_BATCH:
dd41f596 5374 case SCHED_IDLE:
1da177e4
LT
5375 ret = 0;
5376 break;
5377 }
5378 return ret;
5379}
5380
5381/**
5382 * sys_sched_get_priority_min - return minimum RT priority.
5383 * @policy: scheduling class.
5384 *
5385 * this syscall returns the minimum rt_priority that can be used
5386 * by a given scheduling class.
5387 */
5add95d4 5388SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5389{
5390 int ret = -EINVAL;
5391
5392 switch (policy) {
5393 case SCHED_FIFO:
5394 case SCHED_RR:
5395 ret = 1;
5396 break;
5397 case SCHED_NORMAL:
b0a9499c 5398 case SCHED_BATCH:
dd41f596 5399 case SCHED_IDLE:
1da177e4
LT
5400 ret = 0;
5401 }
5402 return ret;
5403}
5404
5405/**
5406 * sys_sched_rr_get_interval - return the default timeslice of a process.
5407 * @pid: pid of the process.
5408 * @interval: userspace pointer to the timeslice value.
5409 *
5410 * this syscall writes the default timeslice value of a given process
5411 * into the user-space timespec buffer. A value of '0' means infinity.
5412 */
17da2bd9 5413SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5414 struct timespec __user *, interval)
1da177e4 5415{
36c8b586 5416 struct task_struct *p;
a4ec24b4 5417 unsigned int time_slice;
dba091b9
TG
5418 unsigned long flags;
5419 struct rq *rq;
3a5c359a 5420 int retval;
1da177e4 5421 struct timespec t;
1da177e4
LT
5422
5423 if (pid < 0)
3a5c359a 5424 return -EINVAL;
1da177e4
LT
5425
5426 retval = -ESRCH;
1a551ae7 5427 rcu_read_lock();
1da177e4
LT
5428 p = find_process_by_pid(pid);
5429 if (!p)
5430 goto out_unlock;
5431
5432 retval = security_task_getscheduler(p);
5433 if (retval)
5434 goto out_unlock;
5435
dba091b9
TG
5436 rq = task_rq_lock(p, &flags);
5437 time_slice = p->sched_class->get_rr_interval(rq, p);
5438 task_rq_unlock(rq, &flags);
a4ec24b4 5439
1a551ae7 5440 rcu_read_unlock();
a4ec24b4 5441 jiffies_to_timespec(time_slice, &t);
1da177e4 5442 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5443 return retval;
3a5c359a 5444
1da177e4 5445out_unlock:
1a551ae7 5446 rcu_read_unlock();
1da177e4
LT
5447 return retval;
5448}
5449
7c731e0a 5450static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5451
82a1fcb9 5452void sched_show_task(struct task_struct *p)
1da177e4 5453{
1da177e4 5454 unsigned long free = 0;
36c8b586 5455 unsigned state;
1da177e4 5456
1da177e4 5457 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5458 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5459 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5460#if BITS_PER_LONG == 32
1da177e4 5461 if (state == TASK_RUNNING)
3df0fc5b 5462 printk(KERN_CONT " running ");
1da177e4 5463 else
3df0fc5b 5464 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5465#else
5466 if (state == TASK_RUNNING)
3df0fc5b 5467 printk(KERN_CONT " running task ");
1da177e4 5468 else
3df0fc5b 5469 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5470#endif
5471#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5472 free = stack_not_used(p);
1da177e4 5473#endif
3df0fc5b 5474 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5475 task_pid_nr(p), task_pid_nr(p->real_parent),
5476 (unsigned long)task_thread_info(p)->flags);
1da177e4 5477
5fb5e6de 5478 show_stack(p, NULL);
1da177e4
LT
5479}
5480
e59e2ae2 5481void show_state_filter(unsigned long state_filter)
1da177e4 5482{
36c8b586 5483 struct task_struct *g, *p;
1da177e4 5484
4bd77321 5485#if BITS_PER_LONG == 32
3df0fc5b
PZ
5486 printk(KERN_INFO
5487 " task PC stack pid father\n");
1da177e4 5488#else
3df0fc5b
PZ
5489 printk(KERN_INFO
5490 " task PC stack pid father\n");
1da177e4
LT
5491#endif
5492 read_lock(&tasklist_lock);
5493 do_each_thread(g, p) {
5494 /*
5495 * reset the NMI-timeout, listing all files on a slow
5496 * console might take alot of time:
5497 */
5498 touch_nmi_watchdog();
39bc89fd 5499 if (!state_filter || (p->state & state_filter))
82a1fcb9 5500 sched_show_task(p);
1da177e4
LT
5501 } while_each_thread(g, p);
5502
04c9167f
JF
5503 touch_all_softlockup_watchdogs();
5504
dd41f596
IM
5505#ifdef CONFIG_SCHED_DEBUG
5506 sysrq_sched_debug_show();
5507#endif
1da177e4 5508 read_unlock(&tasklist_lock);
e59e2ae2
IM
5509 /*
5510 * Only show locks if all tasks are dumped:
5511 */
93335a21 5512 if (!state_filter)
e59e2ae2 5513 debug_show_all_locks();
1da177e4
LT
5514}
5515
1df21055
IM
5516void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5517{
dd41f596 5518 idle->sched_class = &idle_sched_class;
1df21055
IM
5519}
5520
f340c0d1
IM
5521/**
5522 * init_idle - set up an idle thread for a given CPU
5523 * @idle: task in question
5524 * @cpu: cpu the idle task belongs to
5525 *
5526 * NOTE: this function does not set the idle thread's NEED_RESCHED
5527 * flag, to make booting more robust.
5528 */
5c1e1767 5529void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5530{
70b97a7f 5531 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5532 unsigned long flags;
5533
05fa785c 5534 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5535
dd41f596 5536 __sched_fork(idle);
06b83b5f 5537 idle->state = TASK_RUNNING;
dd41f596
IM
5538 idle->se.exec_start = sched_clock();
5539
96f874e2 5540 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5541 /*
5542 * We're having a chicken and egg problem, even though we are
5543 * holding rq->lock, the cpu isn't yet set to this cpu so the
5544 * lockdep check in task_group() will fail.
5545 *
5546 * Similar case to sched_fork(). / Alternatively we could
5547 * use task_rq_lock() here and obtain the other rq->lock.
5548 *
5549 * Silence PROVE_RCU
5550 */
5551 rcu_read_lock();
dd41f596 5552 __set_task_cpu(idle, cpu);
6506cf6c 5553 rcu_read_unlock();
1da177e4 5554
1da177e4 5555 rq->curr = rq->idle = idle;
4866cde0
NP
5556#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5557 idle->oncpu = 1;
5558#endif
05fa785c 5559 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5560
5561 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5562#if defined(CONFIG_PREEMPT)
5563 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5564#else
a1261f54 5565 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5566#endif
dd41f596
IM
5567 /*
5568 * The idle tasks have their own, simple scheduling class:
5569 */
5570 idle->sched_class = &idle_sched_class;
fb52607a 5571 ftrace_graph_init_task(idle);
1da177e4
LT
5572}
5573
5574/*
5575 * In a system that switches off the HZ timer nohz_cpu_mask
5576 * indicates which cpus entered this state. This is used
5577 * in the rcu update to wait only for active cpus. For system
5578 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5579 * always be CPU_BITS_NONE.
1da177e4 5580 */
6a7b3dc3 5581cpumask_var_t nohz_cpu_mask;
1da177e4 5582
19978ca6
IM
5583/*
5584 * Increase the granularity value when there are more CPUs,
5585 * because with more CPUs the 'effective latency' as visible
5586 * to users decreases. But the relationship is not linear,
5587 * so pick a second-best guess by going with the log2 of the
5588 * number of CPUs.
5589 *
5590 * This idea comes from the SD scheduler of Con Kolivas:
5591 */
acb4a848 5592static int get_update_sysctl_factor(void)
19978ca6 5593{
4ca3ef71 5594 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5595 unsigned int factor;
5596
5597 switch (sysctl_sched_tunable_scaling) {
5598 case SCHED_TUNABLESCALING_NONE:
5599 factor = 1;
5600 break;
5601 case SCHED_TUNABLESCALING_LINEAR:
5602 factor = cpus;
5603 break;
5604 case SCHED_TUNABLESCALING_LOG:
5605 default:
5606 factor = 1 + ilog2(cpus);
5607 break;
5608 }
19978ca6 5609
acb4a848
CE
5610 return factor;
5611}
19978ca6 5612
acb4a848
CE
5613static void update_sysctl(void)
5614{
5615 unsigned int factor = get_update_sysctl_factor();
19978ca6 5616
0bcdcf28
CE
5617#define SET_SYSCTL(name) \
5618 (sysctl_##name = (factor) * normalized_sysctl_##name)
5619 SET_SYSCTL(sched_min_granularity);
5620 SET_SYSCTL(sched_latency);
5621 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5622#undef SET_SYSCTL
5623}
55cd5340 5624
0bcdcf28
CE
5625static inline void sched_init_granularity(void)
5626{
5627 update_sysctl();
19978ca6
IM
5628}
5629
1da177e4
LT
5630#ifdef CONFIG_SMP
5631/*
5632 * This is how migration works:
5633 *
969c7921
TH
5634 * 1) we invoke migration_cpu_stop() on the target CPU using
5635 * stop_one_cpu().
5636 * 2) stopper starts to run (implicitly forcing the migrated thread
5637 * off the CPU)
5638 * 3) it checks whether the migrated task is still in the wrong runqueue.
5639 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5640 * it and puts it into the right queue.
969c7921
TH
5641 * 5) stopper completes and stop_one_cpu() returns and the migration
5642 * is done.
1da177e4
LT
5643 */
5644
5645/*
5646 * Change a given task's CPU affinity. Migrate the thread to a
5647 * proper CPU and schedule it away if the CPU it's executing on
5648 * is removed from the allowed bitmask.
5649 *
5650 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5651 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5652 * call is not atomic; no spinlocks may be held.
5653 */
96f874e2 5654int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5655{
5656 unsigned long flags;
70b97a7f 5657 struct rq *rq;
969c7921 5658 unsigned int dest_cpu;
48f24c4d 5659 int ret = 0;
1da177e4 5660
65cc8e48
PZ
5661 /*
5662 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5663 * drop the rq->lock and still rely on ->cpus_allowed.
5664 */
5665again:
5666 while (task_is_waking(p))
5667 cpu_relax();
1da177e4 5668 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5669 if (task_is_waking(p)) {
5670 task_rq_unlock(rq, &flags);
5671 goto again;
5672 }
e2912009 5673
6ad4c188 5674 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5675 ret = -EINVAL;
5676 goto out;
5677 }
5678
9985b0ba 5679 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5680 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5681 ret = -EINVAL;
5682 goto out;
5683 }
5684
73fe6aae 5685 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5686 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5687 else {
96f874e2
RR
5688 cpumask_copy(&p->cpus_allowed, new_mask);
5689 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5690 }
5691
1da177e4 5692 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5693 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5694 goto out;
5695
969c7921 5696 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5697 if (migrate_task(p, rq)) {
969c7921 5698 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5699 /* Need help from migration thread: drop lock and wait. */
5700 task_rq_unlock(rq, &flags);
969c7921 5701 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5702 tlb_migrate_finish(p->mm);
5703 return 0;
5704 }
5705out:
5706 task_rq_unlock(rq, &flags);
48f24c4d 5707
1da177e4
LT
5708 return ret;
5709}
cd8ba7cd 5710EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5711
5712/*
41a2d6cf 5713 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5714 * this because either it can't run here any more (set_cpus_allowed()
5715 * away from this CPU, or CPU going down), or because we're
5716 * attempting to rebalance this task on exec (sched_exec).
5717 *
5718 * So we race with normal scheduler movements, but that's OK, as long
5719 * as the task is no longer on this CPU.
efc30814
KK
5720 *
5721 * Returns non-zero if task was successfully migrated.
1da177e4 5722 */
efc30814 5723static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5724{
70b97a7f 5725 struct rq *rq_dest, *rq_src;
e2912009 5726 int ret = 0;
1da177e4 5727
e761b772 5728 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5729 return ret;
1da177e4
LT
5730
5731 rq_src = cpu_rq(src_cpu);
5732 rq_dest = cpu_rq(dest_cpu);
5733
5734 double_rq_lock(rq_src, rq_dest);
5735 /* Already moved. */
5736 if (task_cpu(p) != src_cpu)
b1e38734 5737 goto done;
1da177e4 5738 /* Affinity changed (again). */
96f874e2 5739 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5740 goto fail;
1da177e4 5741
e2912009
PZ
5742 /*
5743 * If we're not on a rq, the next wake-up will ensure we're
5744 * placed properly.
5745 */
5746 if (p->se.on_rq) {
2e1cb74a 5747 deactivate_task(rq_src, p, 0);
e2912009 5748 set_task_cpu(p, dest_cpu);
dd41f596 5749 activate_task(rq_dest, p, 0);
15afe09b 5750 check_preempt_curr(rq_dest, p, 0);
1da177e4 5751 }
b1e38734 5752done:
efc30814 5753 ret = 1;
b1e38734 5754fail:
1da177e4 5755 double_rq_unlock(rq_src, rq_dest);
efc30814 5756 return ret;
1da177e4
LT
5757}
5758
5759/*
969c7921
TH
5760 * migration_cpu_stop - this will be executed by a highprio stopper thread
5761 * and performs thread migration by bumping thread off CPU then
5762 * 'pushing' onto another runqueue.
1da177e4 5763 */
969c7921 5764static int migration_cpu_stop(void *data)
1da177e4 5765{
969c7921 5766 struct migration_arg *arg = data;
f7b4cddc 5767
969c7921
TH
5768 /*
5769 * The original target cpu might have gone down and we might
5770 * be on another cpu but it doesn't matter.
5771 */
f7b4cddc 5772 local_irq_disable();
969c7921 5773 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5774 local_irq_enable();
1da177e4 5775 return 0;
f7b4cddc
ON
5776}
5777
1da177e4 5778#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5779
054b9108 5780/*
48c5ccae
PZ
5781 * Ensures that the idle task is using init_mm right before its cpu goes
5782 * offline.
054b9108 5783 */
48c5ccae 5784void idle_task_exit(void)
1da177e4 5785{
48c5ccae 5786 struct mm_struct *mm = current->active_mm;
e76bd8d9 5787
48c5ccae 5788 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5789
48c5ccae
PZ
5790 if (mm != &init_mm)
5791 switch_mm(mm, &init_mm, current);
5792 mmdrop(mm);
1da177e4
LT
5793}
5794
5795/*
5796 * While a dead CPU has no uninterruptible tasks queued at this point,
5797 * it might still have a nonzero ->nr_uninterruptible counter, because
5798 * for performance reasons the counter is not stricly tracking tasks to
5799 * their home CPUs. So we just add the counter to another CPU's counter,
5800 * to keep the global sum constant after CPU-down:
5801 */
70b97a7f 5802static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5803{
6ad4c188 5804 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5805
1da177e4
LT
5806 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5807 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5808}
5809
dd41f596 5810/*
48c5ccae 5811 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5812 */
48c5ccae 5813static void calc_global_load_remove(struct rq *rq)
1da177e4 5814{
48c5ccae
PZ
5815 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5816 rq->calc_load_active = 0;
1da177e4
LT
5817}
5818
48f24c4d 5819/*
48c5ccae
PZ
5820 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5821 * try_to_wake_up()->select_task_rq().
5822 *
5823 * Called with rq->lock held even though we'er in stop_machine() and
5824 * there's no concurrency possible, we hold the required locks anyway
5825 * because of lock validation efforts.
1da177e4 5826 */
48c5ccae 5827static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5828{
70b97a7f 5829 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5830 struct task_struct *next, *stop = rq->stop;
5831 int dest_cpu;
1da177e4
LT
5832
5833 /*
48c5ccae
PZ
5834 * Fudge the rq selection such that the below task selection loop
5835 * doesn't get stuck on the currently eligible stop task.
5836 *
5837 * We're currently inside stop_machine() and the rq is either stuck
5838 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5839 * either way we should never end up calling schedule() until we're
5840 * done here.
1da177e4 5841 */
48c5ccae 5842 rq->stop = NULL;
48f24c4d 5843
dd41f596 5844 for ( ; ; ) {
48c5ccae
PZ
5845 /*
5846 * There's this thread running, bail when that's the only
5847 * remaining thread.
5848 */
5849 if (rq->nr_running == 1)
dd41f596 5850 break;
48c5ccae 5851
b67802ea 5852 next = pick_next_task(rq);
48c5ccae 5853 BUG_ON(!next);
79c53799 5854 next->sched_class->put_prev_task(rq, next);
e692ab53 5855
48c5ccae
PZ
5856 /* Find suitable destination for @next, with force if needed. */
5857 dest_cpu = select_fallback_rq(dead_cpu, next);
5858 raw_spin_unlock(&rq->lock);
5859
5860 __migrate_task(next, dead_cpu, dest_cpu);
5861
5862 raw_spin_lock(&rq->lock);
1da177e4 5863 }
dce48a84 5864
48c5ccae 5865 rq->stop = stop;
dce48a84 5866}
48c5ccae 5867
1da177e4
LT
5868#endif /* CONFIG_HOTPLUG_CPU */
5869
e692ab53
NP
5870#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5871
5872static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5873 {
5874 .procname = "sched_domain",
c57baf1e 5875 .mode = 0555,
e0361851 5876 },
56992309 5877 {}
e692ab53
NP
5878};
5879
5880static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5881 {
5882 .procname = "kernel",
c57baf1e 5883 .mode = 0555,
e0361851
AD
5884 .child = sd_ctl_dir,
5885 },
56992309 5886 {}
e692ab53
NP
5887};
5888
5889static struct ctl_table *sd_alloc_ctl_entry(int n)
5890{
5891 struct ctl_table *entry =
5cf9f062 5892 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5893
e692ab53
NP
5894 return entry;
5895}
5896
6382bc90
MM
5897static void sd_free_ctl_entry(struct ctl_table **tablep)
5898{
cd790076 5899 struct ctl_table *entry;
6382bc90 5900
cd790076
MM
5901 /*
5902 * In the intermediate directories, both the child directory and
5903 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5904 * will always be set. In the lowest directory the names are
cd790076
MM
5905 * static strings and all have proc handlers.
5906 */
5907 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5908 if (entry->child)
5909 sd_free_ctl_entry(&entry->child);
cd790076
MM
5910 if (entry->proc_handler == NULL)
5911 kfree(entry->procname);
5912 }
6382bc90
MM
5913
5914 kfree(*tablep);
5915 *tablep = NULL;
5916}
5917
e692ab53 5918static void
e0361851 5919set_table_entry(struct ctl_table *entry,
e692ab53
NP
5920 const char *procname, void *data, int maxlen,
5921 mode_t mode, proc_handler *proc_handler)
5922{
e692ab53
NP
5923 entry->procname = procname;
5924 entry->data = data;
5925 entry->maxlen = maxlen;
5926 entry->mode = mode;
5927 entry->proc_handler = proc_handler;
5928}
5929
5930static struct ctl_table *
5931sd_alloc_ctl_domain_table(struct sched_domain *sd)
5932{
a5d8c348 5933 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5934
ad1cdc1d
MM
5935 if (table == NULL)
5936 return NULL;
5937
e0361851 5938 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5939 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5940 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5941 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5942 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5943 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5944 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5945 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5946 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5947 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5948 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5949 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5950 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5951 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5952 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5953 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5954 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5955 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5956 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5957 &sd->cache_nice_tries,
5958 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5959 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5960 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5961 set_table_entry(&table[11], "name", sd->name,
5962 CORENAME_MAX_SIZE, 0444, proc_dostring);
5963 /* &table[12] is terminator */
e692ab53
NP
5964
5965 return table;
5966}
5967
9a4e7159 5968static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5969{
5970 struct ctl_table *entry, *table;
5971 struct sched_domain *sd;
5972 int domain_num = 0, i;
5973 char buf[32];
5974
5975 for_each_domain(cpu, sd)
5976 domain_num++;
5977 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5978 if (table == NULL)
5979 return NULL;
e692ab53
NP
5980
5981 i = 0;
5982 for_each_domain(cpu, sd) {
5983 snprintf(buf, 32, "domain%d", i);
e692ab53 5984 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5985 entry->mode = 0555;
e692ab53
NP
5986 entry->child = sd_alloc_ctl_domain_table(sd);
5987 entry++;
5988 i++;
5989 }
5990 return table;
5991}
5992
5993static struct ctl_table_header *sd_sysctl_header;
6382bc90 5994static void register_sched_domain_sysctl(void)
e692ab53 5995{
6ad4c188 5996 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5997 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5998 char buf[32];
5999
7378547f
MM
6000 WARN_ON(sd_ctl_dir[0].child);
6001 sd_ctl_dir[0].child = entry;
6002
ad1cdc1d
MM
6003 if (entry == NULL)
6004 return;
6005
6ad4c188 6006 for_each_possible_cpu(i) {
e692ab53 6007 snprintf(buf, 32, "cpu%d", i);
e692ab53 6008 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6009 entry->mode = 0555;
e692ab53 6010 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6011 entry++;
e692ab53 6012 }
7378547f
MM
6013
6014 WARN_ON(sd_sysctl_header);
e692ab53
NP
6015 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6016}
6382bc90 6017
7378547f 6018/* may be called multiple times per register */
6382bc90
MM
6019static void unregister_sched_domain_sysctl(void)
6020{
7378547f
MM
6021 if (sd_sysctl_header)
6022 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6023 sd_sysctl_header = NULL;
7378547f
MM
6024 if (sd_ctl_dir[0].child)
6025 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6026}
e692ab53 6027#else
6382bc90
MM
6028static void register_sched_domain_sysctl(void)
6029{
6030}
6031static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6032{
6033}
6034#endif
6035
1f11eb6a
GH
6036static void set_rq_online(struct rq *rq)
6037{
6038 if (!rq->online) {
6039 const struct sched_class *class;
6040
c6c4927b 6041 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6042 rq->online = 1;
6043
6044 for_each_class(class) {
6045 if (class->rq_online)
6046 class->rq_online(rq);
6047 }
6048 }
6049}
6050
6051static void set_rq_offline(struct rq *rq)
6052{
6053 if (rq->online) {
6054 const struct sched_class *class;
6055
6056 for_each_class(class) {
6057 if (class->rq_offline)
6058 class->rq_offline(rq);
6059 }
6060
c6c4927b 6061 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6062 rq->online = 0;
6063 }
6064}
6065
1da177e4
LT
6066/*
6067 * migration_call - callback that gets triggered when a CPU is added.
6068 * Here we can start up the necessary migration thread for the new CPU.
6069 */
48f24c4d
IM
6070static int __cpuinit
6071migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6072{
48f24c4d 6073 int cpu = (long)hcpu;
1da177e4 6074 unsigned long flags;
969c7921 6075 struct rq *rq = cpu_rq(cpu);
1da177e4 6076
48c5ccae 6077 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6078
1da177e4 6079 case CPU_UP_PREPARE:
a468d389 6080 rq->calc_load_update = calc_load_update;
1da177e4 6081 break;
48f24c4d 6082
1da177e4 6083 case CPU_ONLINE:
1f94ef59 6084 /* Update our root-domain */
05fa785c 6085 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6086 if (rq->rd) {
c6c4927b 6087 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6088
6089 set_rq_online(rq);
1f94ef59 6090 }
05fa785c 6091 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6092 break;
48f24c4d 6093
1da177e4 6094#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6095 case CPU_DYING:
57d885fe 6096 /* Update our root-domain */
05fa785c 6097 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6098 if (rq->rd) {
c6c4927b 6099 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6100 set_rq_offline(rq);
57d885fe 6101 }
48c5ccae
PZ
6102 migrate_tasks(cpu);
6103 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6104 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6105
6106 migrate_nr_uninterruptible(rq);
6107 calc_global_load_remove(rq);
57d885fe 6108 break;
1da177e4
LT
6109#endif
6110 }
6111 return NOTIFY_OK;
6112}
6113
f38b0820
PM
6114/*
6115 * Register at high priority so that task migration (migrate_all_tasks)
6116 * happens before everything else. This has to be lower priority than
cdd6c482 6117 * the notifier in the perf_event subsystem, though.
1da177e4 6118 */
26c2143b 6119static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6120 .notifier_call = migration_call,
50a323b7 6121 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6122};
6123
3a101d05
TH
6124static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6125 unsigned long action, void *hcpu)
6126{
6127 switch (action & ~CPU_TASKS_FROZEN) {
6128 case CPU_ONLINE:
6129 case CPU_DOWN_FAILED:
6130 set_cpu_active((long)hcpu, true);
6131 return NOTIFY_OK;
6132 default:
6133 return NOTIFY_DONE;
6134 }
6135}
6136
6137static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6138 unsigned long action, void *hcpu)
6139{
6140 switch (action & ~CPU_TASKS_FROZEN) {
6141 case CPU_DOWN_PREPARE:
6142 set_cpu_active((long)hcpu, false);
6143 return NOTIFY_OK;
6144 default:
6145 return NOTIFY_DONE;
6146 }
6147}
6148
7babe8db 6149static int __init migration_init(void)
1da177e4
LT
6150{
6151 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6152 int err;
48f24c4d 6153
3a101d05 6154 /* Initialize migration for the boot CPU */
07dccf33
AM
6155 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6156 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6157 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6158 register_cpu_notifier(&migration_notifier);
7babe8db 6159
3a101d05
TH
6160 /* Register cpu active notifiers */
6161 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6162 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6163
a004cd42 6164 return 0;
1da177e4 6165}
7babe8db 6166early_initcall(migration_init);
1da177e4
LT
6167#endif
6168
6169#ifdef CONFIG_SMP
476f3534 6170
3e9830dc 6171#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6172
f6630114
MT
6173static __read_mostly int sched_domain_debug_enabled;
6174
6175static int __init sched_domain_debug_setup(char *str)
6176{
6177 sched_domain_debug_enabled = 1;
6178
6179 return 0;
6180}
6181early_param("sched_debug", sched_domain_debug_setup);
6182
7c16ec58 6183static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6184 struct cpumask *groupmask)
1da177e4 6185{
4dcf6aff 6186 struct sched_group *group = sd->groups;
434d53b0 6187 char str[256];
1da177e4 6188
968ea6d8 6189 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6190 cpumask_clear(groupmask);
4dcf6aff
IM
6191
6192 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6193
6194 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6195 printk("does not load-balance\n");
4dcf6aff 6196 if (sd->parent)
3df0fc5b
PZ
6197 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6198 " has parent");
4dcf6aff 6199 return -1;
41c7ce9a
NP
6200 }
6201
3df0fc5b 6202 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6203
758b2cdc 6204 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6205 printk(KERN_ERR "ERROR: domain->span does not contain "
6206 "CPU%d\n", cpu);
4dcf6aff 6207 }
758b2cdc 6208 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6209 printk(KERN_ERR "ERROR: domain->groups does not contain"
6210 " CPU%d\n", cpu);
4dcf6aff 6211 }
1da177e4 6212
4dcf6aff 6213 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6214 do {
4dcf6aff 6215 if (!group) {
3df0fc5b
PZ
6216 printk("\n");
6217 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6218 break;
6219 }
6220
18a3885f 6221 if (!group->cpu_power) {
3df0fc5b
PZ
6222 printk(KERN_CONT "\n");
6223 printk(KERN_ERR "ERROR: domain->cpu_power not "
6224 "set\n");
4dcf6aff
IM
6225 break;
6226 }
1da177e4 6227
758b2cdc 6228 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6229 printk(KERN_CONT "\n");
6230 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6231 break;
6232 }
1da177e4 6233
758b2cdc 6234 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6235 printk(KERN_CONT "\n");
6236 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6237 break;
6238 }
1da177e4 6239
758b2cdc 6240 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6241
968ea6d8 6242 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6243
3df0fc5b 6244 printk(KERN_CONT " %s", str);
18a3885f 6245 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6246 printk(KERN_CONT " (cpu_power = %d)",
6247 group->cpu_power);
381512cf 6248 }
1da177e4 6249
4dcf6aff
IM
6250 group = group->next;
6251 } while (group != sd->groups);
3df0fc5b 6252 printk(KERN_CONT "\n");
1da177e4 6253
758b2cdc 6254 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6255 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6256
758b2cdc
RR
6257 if (sd->parent &&
6258 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6259 printk(KERN_ERR "ERROR: parent span is not a superset "
6260 "of domain->span\n");
4dcf6aff
IM
6261 return 0;
6262}
1da177e4 6263
4dcf6aff
IM
6264static void sched_domain_debug(struct sched_domain *sd, int cpu)
6265{
d5dd3db1 6266 cpumask_var_t groupmask;
4dcf6aff 6267 int level = 0;
1da177e4 6268
f6630114
MT
6269 if (!sched_domain_debug_enabled)
6270 return;
6271
4dcf6aff
IM
6272 if (!sd) {
6273 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6274 return;
6275 }
1da177e4 6276
4dcf6aff
IM
6277 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6278
d5dd3db1 6279 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6280 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6281 return;
6282 }
6283
4dcf6aff 6284 for (;;) {
7c16ec58 6285 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6286 break;
1da177e4
LT
6287 level++;
6288 sd = sd->parent;
33859f7f 6289 if (!sd)
4dcf6aff
IM
6290 break;
6291 }
d5dd3db1 6292 free_cpumask_var(groupmask);
1da177e4 6293}
6d6bc0ad 6294#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6295# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6296#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6297
1a20ff27 6298static int sd_degenerate(struct sched_domain *sd)
245af2c7 6299{
758b2cdc 6300 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6301 return 1;
6302
6303 /* Following flags need at least 2 groups */
6304 if (sd->flags & (SD_LOAD_BALANCE |
6305 SD_BALANCE_NEWIDLE |
6306 SD_BALANCE_FORK |
89c4710e
SS
6307 SD_BALANCE_EXEC |
6308 SD_SHARE_CPUPOWER |
6309 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6310 if (sd->groups != sd->groups->next)
6311 return 0;
6312 }
6313
6314 /* Following flags don't use groups */
c88d5910 6315 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6316 return 0;
6317
6318 return 1;
6319}
6320
48f24c4d
IM
6321static int
6322sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6323{
6324 unsigned long cflags = sd->flags, pflags = parent->flags;
6325
6326 if (sd_degenerate(parent))
6327 return 1;
6328
758b2cdc 6329 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6330 return 0;
6331
245af2c7
SS
6332 /* Flags needing groups don't count if only 1 group in parent */
6333 if (parent->groups == parent->groups->next) {
6334 pflags &= ~(SD_LOAD_BALANCE |
6335 SD_BALANCE_NEWIDLE |
6336 SD_BALANCE_FORK |
89c4710e
SS
6337 SD_BALANCE_EXEC |
6338 SD_SHARE_CPUPOWER |
6339 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6340 if (nr_node_ids == 1)
6341 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6342 }
6343 if (~cflags & pflags)
6344 return 0;
6345
6346 return 1;
6347}
6348
c6c4927b
RR
6349static void free_rootdomain(struct root_domain *rd)
6350{
047106ad
PZ
6351 synchronize_sched();
6352
68e74568
RR
6353 cpupri_cleanup(&rd->cpupri);
6354
c6c4927b
RR
6355 free_cpumask_var(rd->rto_mask);
6356 free_cpumask_var(rd->online);
6357 free_cpumask_var(rd->span);
6358 kfree(rd);
6359}
6360
57d885fe
GH
6361static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6362{
a0490fa3 6363 struct root_domain *old_rd = NULL;
57d885fe 6364 unsigned long flags;
57d885fe 6365
05fa785c 6366 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6367
6368 if (rq->rd) {
a0490fa3 6369 old_rd = rq->rd;
57d885fe 6370
c6c4927b 6371 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6372 set_rq_offline(rq);
57d885fe 6373
c6c4927b 6374 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6375
a0490fa3
IM
6376 /*
6377 * If we dont want to free the old_rt yet then
6378 * set old_rd to NULL to skip the freeing later
6379 * in this function:
6380 */
6381 if (!atomic_dec_and_test(&old_rd->refcount))
6382 old_rd = NULL;
57d885fe
GH
6383 }
6384
6385 atomic_inc(&rd->refcount);
6386 rq->rd = rd;
6387
c6c4927b 6388 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6389 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6390 set_rq_online(rq);
57d885fe 6391
05fa785c 6392 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6393
6394 if (old_rd)
6395 free_rootdomain(old_rd);
57d885fe
GH
6396}
6397
68c38fc3 6398static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6399{
6400 memset(rd, 0, sizeof(*rd));
6401
68c38fc3 6402 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6403 goto out;
68c38fc3 6404 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6405 goto free_span;
68c38fc3 6406 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6407 goto free_online;
6e0534f2 6408
68c38fc3 6409 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6410 goto free_rto_mask;
c6c4927b 6411 return 0;
6e0534f2 6412
68e74568
RR
6413free_rto_mask:
6414 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6415free_online:
6416 free_cpumask_var(rd->online);
6417free_span:
6418 free_cpumask_var(rd->span);
0c910d28 6419out:
c6c4927b 6420 return -ENOMEM;
57d885fe
GH
6421}
6422
6423static void init_defrootdomain(void)
6424{
68c38fc3 6425 init_rootdomain(&def_root_domain);
c6c4927b 6426
57d885fe
GH
6427 atomic_set(&def_root_domain.refcount, 1);
6428}
6429
dc938520 6430static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6431{
6432 struct root_domain *rd;
6433
6434 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6435 if (!rd)
6436 return NULL;
6437
68c38fc3 6438 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6439 kfree(rd);
6440 return NULL;
6441 }
57d885fe
GH
6442
6443 return rd;
6444}
6445
1da177e4 6446/*
0eab9146 6447 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6448 * hold the hotplug lock.
6449 */
0eab9146
IM
6450static void
6451cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6452{
70b97a7f 6453 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6454 struct sched_domain *tmp;
6455
669c55e9
PZ
6456 for (tmp = sd; tmp; tmp = tmp->parent)
6457 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6458
245af2c7 6459 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6460 for (tmp = sd; tmp; ) {
245af2c7
SS
6461 struct sched_domain *parent = tmp->parent;
6462 if (!parent)
6463 break;
f29c9b1c 6464
1a848870 6465 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6466 tmp->parent = parent->parent;
1a848870
SS
6467 if (parent->parent)
6468 parent->parent->child = tmp;
f29c9b1c
LZ
6469 } else
6470 tmp = tmp->parent;
245af2c7
SS
6471 }
6472
1a848870 6473 if (sd && sd_degenerate(sd)) {
245af2c7 6474 sd = sd->parent;
1a848870
SS
6475 if (sd)
6476 sd->child = NULL;
6477 }
1da177e4
LT
6478
6479 sched_domain_debug(sd, cpu);
6480
57d885fe 6481 rq_attach_root(rq, rd);
674311d5 6482 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6483}
6484
6485/* cpus with isolated domains */
dcc30a35 6486static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6487
6488/* Setup the mask of cpus configured for isolated domains */
6489static int __init isolated_cpu_setup(char *str)
6490{
bdddd296 6491 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6492 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6493 return 1;
6494}
6495
8927f494 6496__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6497
6498/*
6711cab4
SS
6499 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6500 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6501 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6502 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6503 *
6504 * init_sched_build_groups will build a circular linked list of the groups
6505 * covered by the given span, and will set each group's ->cpumask correctly,
6506 * and ->cpu_power to 0.
6507 */
a616058b 6508static void
96f874e2
RR
6509init_sched_build_groups(const struct cpumask *span,
6510 const struct cpumask *cpu_map,
6511 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6512 struct sched_group **sg,
96f874e2
RR
6513 struct cpumask *tmpmask),
6514 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6515{
6516 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6517 int i;
6518
96f874e2 6519 cpumask_clear(covered);
7c16ec58 6520
abcd083a 6521 for_each_cpu(i, span) {
6711cab4 6522 struct sched_group *sg;
7c16ec58 6523 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6524 int j;
6525
758b2cdc 6526 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6527 continue;
6528
758b2cdc 6529 cpumask_clear(sched_group_cpus(sg));
18a3885f 6530 sg->cpu_power = 0;
1da177e4 6531
abcd083a 6532 for_each_cpu(j, span) {
7c16ec58 6533 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6534 continue;
6535
96f874e2 6536 cpumask_set_cpu(j, covered);
758b2cdc 6537 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6538 }
6539 if (!first)
6540 first = sg;
6541 if (last)
6542 last->next = sg;
6543 last = sg;
6544 }
6545 last->next = first;
6546}
6547
9c1cfda2 6548#define SD_NODES_PER_DOMAIN 16
1da177e4 6549
9c1cfda2 6550#ifdef CONFIG_NUMA
198e2f18 6551
9c1cfda2
JH
6552/**
6553 * find_next_best_node - find the next node to include in a sched_domain
6554 * @node: node whose sched_domain we're building
6555 * @used_nodes: nodes already in the sched_domain
6556 *
41a2d6cf 6557 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6558 * finds the closest node not already in the @used_nodes map.
6559 *
6560 * Should use nodemask_t.
6561 */
c5f59f08 6562static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6563{
6564 int i, n, val, min_val, best_node = 0;
6565
6566 min_val = INT_MAX;
6567
076ac2af 6568 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6569 /* Start at @node */
076ac2af 6570 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6571
6572 if (!nr_cpus_node(n))
6573 continue;
6574
6575 /* Skip already used nodes */
c5f59f08 6576 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6577 continue;
6578
6579 /* Simple min distance search */
6580 val = node_distance(node, n);
6581
6582 if (val < min_val) {
6583 min_val = val;
6584 best_node = n;
6585 }
6586 }
6587
c5f59f08 6588 node_set(best_node, *used_nodes);
9c1cfda2
JH
6589 return best_node;
6590}
6591
6592/**
6593 * sched_domain_node_span - get a cpumask for a node's sched_domain
6594 * @node: node whose cpumask we're constructing
73486722 6595 * @span: resulting cpumask
9c1cfda2 6596 *
41a2d6cf 6597 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6598 * should be one that prevents unnecessary balancing, but also spreads tasks
6599 * out optimally.
6600 */
96f874e2 6601static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6602{
c5f59f08 6603 nodemask_t used_nodes;
48f24c4d 6604 int i;
9c1cfda2 6605
6ca09dfc 6606 cpumask_clear(span);
c5f59f08 6607 nodes_clear(used_nodes);
9c1cfda2 6608
6ca09dfc 6609 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6610 node_set(node, used_nodes);
9c1cfda2
JH
6611
6612 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6613 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6614
6ca09dfc 6615 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6616 }
9c1cfda2 6617}
6d6bc0ad 6618#endif /* CONFIG_NUMA */
9c1cfda2 6619
5c45bf27 6620int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6621
6c99e9ad
RR
6622/*
6623 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6624 *
6625 * ( See the the comments in include/linux/sched.h:struct sched_group
6626 * and struct sched_domain. )
6c99e9ad
RR
6627 */
6628struct static_sched_group {
6629 struct sched_group sg;
6630 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6631};
6632
6633struct static_sched_domain {
6634 struct sched_domain sd;
6635 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6636};
6637
49a02c51
AH
6638struct s_data {
6639#ifdef CONFIG_NUMA
6640 int sd_allnodes;
6641 cpumask_var_t domainspan;
6642 cpumask_var_t covered;
6643 cpumask_var_t notcovered;
6644#endif
6645 cpumask_var_t nodemask;
6646 cpumask_var_t this_sibling_map;
6647 cpumask_var_t this_core_map;
01a08546 6648 cpumask_var_t this_book_map;
49a02c51
AH
6649 cpumask_var_t send_covered;
6650 cpumask_var_t tmpmask;
6651 struct sched_group **sched_group_nodes;
6652 struct root_domain *rd;
6653};
6654
2109b99e
AH
6655enum s_alloc {
6656 sa_sched_groups = 0,
6657 sa_rootdomain,
6658 sa_tmpmask,
6659 sa_send_covered,
01a08546 6660 sa_this_book_map,
2109b99e
AH
6661 sa_this_core_map,
6662 sa_this_sibling_map,
6663 sa_nodemask,
6664 sa_sched_group_nodes,
6665#ifdef CONFIG_NUMA
6666 sa_notcovered,
6667 sa_covered,
6668 sa_domainspan,
6669#endif
6670 sa_none,
6671};
6672
9c1cfda2 6673/*
48f24c4d 6674 * SMT sched-domains:
9c1cfda2 6675 */
1da177e4 6676#ifdef CONFIG_SCHED_SMT
6c99e9ad 6677static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6678static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6679
41a2d6cf 6680static int
96f874e2
RR
6681cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6682 struct sched_group **sg, struct cpumask *unused)
1da177e4 6683{
6711cab4 6684 if (sg)
1871e52c 6685 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6686 return cpu;
6687}
6d6bc0ad 6688#endif /* CONFIG_SCHED_SMT */
1da177e4 6689
48f24c4d
IM
6690/*
6691 * multi-core sched-domains:
6692 */
1e9f28fa 6693#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6694static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6695static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6696
41a2d6cf 6697static int
96f874e2
RR
6698cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6699 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6700{
6711cab4 6701 int group;
f269893c 6702#ifdef CONFIG_SCHED_SMT
c69fc56d 6703 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6704 group = cpumask_first(mask);
f269893c
HC
6705#else
6706 group = cpu;
6707#endif
6711cab4 6708 if (sg)
6c99e9ad 6709 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6710 return group;
1e9f28fa 6711}
f269893c 6712#endif /* CONFIG_SCHED_MC */
1e9f28fa 6713
01a08546
HC
6714/*
6715 * book sched-domains:
6716 */
6717#ifdef CONFIG_SCHED_BOOK
6718static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6719static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6720
41a2d6cf 6721static int
01a08546
HC
6722cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6723 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6724{
01a08546
HC
6725 int group = cpu;
6726#ifdef CONFIG_SCHED_MC
6727 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6728 group = cpumask_first(mask);
6729#elif defined(CONFIG_SCHED_SMT)
6730 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6731 group = cpumask_first(mask);
6732#endif
6711cab4 6733 if (sg)
01a08546
HC
6734 *sg = &per_cpu(sched_group_book, group).sg;
6735 return group;
1e9f28fa 6736}
01a08546 6737#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6738
6c99e9ad
RR
6739static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6740static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6741
41a2d6cf 6742static int
96f874e2
RR
6743cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6744 struct sched_group **sg, struct cpumask *mask)
1da177e4 6745{
6711cab4 6746 int group;
01a08546
HC
6747#ifdef CONFIG_SCHED_BOOK
6748 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6749 group = cpumask_first(mask);
6750#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6751 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6752 group = cpumask_first(mask);
1e9f28fa 6753#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6754 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6755 group = cpumask_first(mask);
1da177e4 6756#else
6711cab4 6757 group = cpu;
1da177e4 6758#endif
6711cab4 6759 if (sg)
6c99e9ad 6760 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6761 return group;
1da177e4
LT
6762}
6763
6764#ifdef CONFIG_NUMA
1da177e4 6765/*
9c1cfda2
JH
6766 * The init_sched_build_groups can't handle what we want to do with node
6767 * groups, so roll our own. Now each node has its own list of groups which
6768 * gets dynamically allocated.
1da177e4 6769 */
62ea9ceb 6770static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6771static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6772
62ea9ceb 6773static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6774static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6775
96f874e2
RR
6776static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6777 struct sched_group **sg,
6778 struct cpumask *nodemask)
9c1cfda2 6779{
6711cab4
SS
6780 int group;
6781
6ca09dfc 6782 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6783 group = cpumask_first(nodemask);
6711cab4
SS
6784
6785 if (sg)
6c99e9ad 6786 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6787 return group;
1da177e4 6788}
6711cab4 6789
08069033
SS
6790static void init_numa_sched_groups_power(struct sched_group *group_head)
6791{
6792 struct sched_group *sg = group_head;
6793 int j;
6794
6795 if (!sg)
6796 return;
3a5c359a 6797 do {
758b2cdc 6798 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6799 struct sched_domain *sd;
08069033 6800
6c99e9ad 6801 sd = &per_cpu(phys_domains, j).sd;
13318a71 6802 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6803 /*
6804 * Only add "power" once for each
6805 * physical package.
6806 */
6807 continue;
6808 }
08069033 6809
18a3885f 6810 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6811 }
6812 sg = sg->next;
6813 } while (sg != group_head);
08069033 6814}
0601a88d
AH
6815
6816static int build_numa_sched_groups(struct s_data *d,
6817 const struct cpumask *cpu_map, int num)
6818{
6819 struct sched_domain *sd;
6820 struct sched_group *sg, *prev;
6821 int n, j;
6822
6823 cpumask_clear(d->covered);
6824 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6825 if (cpumask_empty(d->nodemask)) {
6826 d->sched_group_nodes[num] = NULL;
6827 goto out;
6828 }
6829
6830 sched_domain_node_span(num, d->domainspan);
6831 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6832
6833 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6834 GFP_KERNEL, num);
6835 if (!sg) {
3df0fc5b
PZ
6836 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6837 num);
0601a88d
AH
6838 return -ENOMEM;
6839 }
6840 d->sched_group_nodes[num] = sg;
6841
6842 for_each_cpu(j, d->nodemask) {
6843 sd = &per_cpu(node_domains, j).sd;
6844 sd->groups = sg;
6845 }
6846
18a3885f 6847 sg->cpu_power = 0;
0601a88d
AH
6848 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6849 sg->next = sg;
6850 cpumask_or(d->covered, d->covered, d->nodemask);
6851
6852 prev = sg;
6853 for (j = 0; j < nr_node_ids; j++) {
6854 n = (num + j) % nr_node_ids;
6855 cpumask_complement(d->notcovered, d->covered);
6856 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6857 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6858 if (cpumask_empty(d->tmpmask))
6859 break;
6860 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6861 if (cpumask_empty(d->tmpmask))
6862 continue;
6863 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6864 GFP_KERNEL, num);
6865 if (!sg) {
3df0fc5b
PZ
6866 printk(KERN_WARNING
6867 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6868 return -ENOMEM;
6869 }
18a3885f 6870 sg->cpu_power = 0;
0601a88d
AH
6871 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6872 sg->next = prev->next;
6873 cpumask_or(d->covered, d->covered, d->tmpmask);
6874 prev->next = sg;
6875 prev = sg;
6876 }
6877out:
6878 return 0;
6879}
6d6bc0ad 6880#endif /* CONFIG_NUMA */
1da177e4 6881
a616058b 6882#ifdef CONFIG_NUMA
51888ca2 6883/* Free memory allocated for various sched_group structures */
96f874e2
RR
6884static void free_sched_groups(const struct cpumask *cpu_map,
6885 struct cpumask *nodemask)
51888ca2 6886{
a616058b 6887 int cpu, i;
51888ca2 6888
abcd083a 6889 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6890 struct sched_group **sched_group_nodes
6891 = sched_group_nodes_bycpu[cpu];
6892
51888ca2
SV
6893 if (!sched_group_nodes)
6894 continue;
6895
076ac2af 6896 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6897 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6898
6ca09dfc 6899 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6900 if (cpumask_empty(nodemask))
51888ca2
SV
6901 continue;
6902
6903 if (sg == NULL)
6904 continue;
6905 sg = sg->next;
6906next_sg:
6907 oldsg = sg;
6908 sg = sg->next;
6909 kfree(oldsg);
6910 if (oldsg != sched_group_nodes[i])
6911 goto next_sg;
6912 }
6913 kfree(sched_group_nodes);
6914 sched_group_nodes_bycpu[cpu] = NULL;
6915 }
51888ca2 6916}
6d6bc0ad 6917#else /* !CONFIG_NUMA */
96f874e2
RR
6918static void free_sched_groups(const struct cpumask *cpu_map,
6919 struct cpumask *nodemask)
a616058b
SS
6920{
6921}
6d6bc0ad 6922#endif /* CONFIG_NUMA */
51888ca2 6923
89c4710e
SS
6924/*
6925 * Initialize sched groups cpu_power.
6926 *
6927 * cpu_power indicates the capacity of sched group, which is used while
6928 * distributing the load between different sched groups in a sched domain.
6929 * Typically cpu_power for all the groups in a sched domain will be same unless
6930 * there are asymmetries in the topology. If there are asymmetries, group
6931 * having more cpu_power will pickup more load compared to the group having
6932 * less cpu_power.
89c4710e
SS
6933 */
6934static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6935{
6936 struct sched_domain *child;
6937 struct sched_group *group;
f93e65c1
PZ
6938 long power;
6939 int weight;
89c4710e
SS
6940
6941 WARN_ON(!sd || !sd->groups);
6942
13318a71 6943 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6944 return;
6945
aae6d3dd
SS
6946 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6947
89c4710e
SS
6948 child = sd->child;
6949
18a3885f 6950 sd->groups->cpu_power = 0;
5517d86b 6951
f93e65c1
PZ
6952 if (!child) {
6953 power = SCHED_LOAD_SCALE;
6954 weight = cpumask_weight(sched_domain_span(sd));
6955 /*
6956 * SMT siblings share the power of a single core.
a52bfd73
PZ
6957 * Usually multiple threads get a better yield out of
6958 * that one core than a single thread would have,
6959 * reflect that in sd->smt_gain.
f93e65c1 6960 */
a52bfd73
PZ
6961 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6962 power *= sd->smt_gain;
f93e65c1 6963 power /= weight;
a52bfd73
PZ
6964 power >>= SCHED_LOAD_SHIFT;
6965 }
18a3885f 6966 sd->groups->cpu_power += power;
89c4710e
SS
6967 return;
6968 }
6969
89c4710e 6970 /*
f93e65c1 6971 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6972 */
6973 group = child->groups;
6974 do {
18a3885f 6975 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6976 group = group->next;
6977 } while (group != child->groups);
6978}
6979
7c16ec58
MT
6980/*
6981 * Initializers for schedule domains
6982 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6983 */
6984
a5d8c348
IM
6985#ifdef CONFIG_SCHED_DEBUG
6986# define SD_INIT_NAME(sd, type) sd->name = #type
6987#else
6988# define SD_INIT_NAME(sd, type) do { } while (0)
6989#endif
6990
7c16ec58 6991#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6992
7c16ec58
MT
6993#define SD_INIT_FUNC(type) \
6994static noinline void sd_init_##type(struct sched_domain *sd) \
6995{ \
6996 memset(sd, 0, sizeof(*sd)); \
6997 *sd = SD_##type##_INIT; \
1d3504fc 6998 sd->level = SD_LV_##type; \
a5d8c348 6999 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7000}
7001
7002SD_INIT_FUNC(CPU)
7003#ifdef CONFIG_NUMA
7004 SD_INIT_FUNC(ALLNODES)
7005 SD_INIT_FUNC(NODE)
7006#endif
7007#ifdef CONFIG_SCHED_SMT
7008 SD_INIT_FUNC(SIBLING)
7009#endif
7010#ifdef CONFIG_SCHED_MC
7011 SD_INIT_FUNC(MC)
7012#endif
01a08546
HC
7013#ifdef CONFIG_SCHED_BOOK
7014 SD_INIT_FUNC(BOOK)
7015#endif
7c16ec58 7016
1d3504fc
HS
7017static int default_relax_domain_level = -1;
7018
7019static int __init setup_relax_domain_level(char *str)
7020{
30e0e178
LZ
7021 unsigned long val;
7022
7023 val = simple_strtoul(str, NULL, 0);
7024 if (val < SD_LV_MAX)
7025 default_relax_domain_level = val;
7026
1d3504fc
HS
7027 return 1;
7028}
7029__setup("relax_domain_level=", setup_relax_domain_level);
7030
7031static void set_domain_attribute(struct sched_domain *sd,
7032 struct sched_domain_attr *attr)
7033{
7034 int request;
7035
7036 if (!attr || attr->relax_domain_level < 0) {
7037 if (default_relax_domain_level < 0)
7038 return;
7039 else
7040 request = default_relax_domain_level;
7041 } else
7042 request = attr->relax_domain_level;
7043 if (request < sd->level) {
7044 /* turn off idle balance on this domain */
c88d5910 7045 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7046 } else {
7047 /* turn on idle balance on this domain */
c88d5910 7048 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7049 }
7050}
7051
2109b99e
AH
7052static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7053 const struct cpumask *cpu_map)
7054{
7055 switch (what) {
7056 case sa_sched_groups:
7057 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7058 d->sched_group_nodes = NULL;
7059 case sa_rootdomain:
7060 free_rootdomain(d->rd); /* fall through */
7061 case sa_tmpmask:
7062 free_cpumask_var(d->tmpmask); /* fall through */
7063 case sa_send_covered:
7064 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7065 case sa_this_book_map:
7066 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7067 case sa_this_core_map:
7068 free_cpumask_var(d->this_core_map); /* fall through */
7069 case sa_this_sibling_map:
7070 free_cpumask_var(d->this_sibling_map); /* fall through */
7071 case sa_nodemask:
7072 free_cpumask_var(d->nodemask); /* fall through */
7073 case sa_sched_group_nodes:
d1b55138 7074#ifdef CONFIG_NUMA
2109b99e
AH
7075 kfree(d->sched_group_nodes); /* fall through */
7076 case sa_notcovered:
7077 free_cpumask_var(d->notcovered); /* fall through */
7078 case sa_covered:
7079 free_cpumask_var(d->covered); /* fall through */
7080 case sa_domainspan:
7081 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7082#endif
2109b99e
AH
7083 case sa_none:
7084 break;
7085 }
7086}
3404c8d9 7087
2109b99e
AH
7088static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7089 const struct cpumask *cpu_map)
7090{
3404c8d9 7091#ifdef CONFIG_NUMA
2109b99e
AH
7092 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7093 return sa_none;
7094 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7095 return sa_domainspan;
7096 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7097 return sa_covered;
7098 /* Allocate the per-node list of sched groups */
7099 d->sched_group_nodes = kcalloc(nr_node_ids,
7100 sizeof(struct sched_group *), GFP_KERNEL);
7101 if (!d->sched_group_nodes) {
3df0fc5b 7102 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7103 return sa_notcovered;
d1b55138 7104 }
2109b99e 7105 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7106#endif
2109b99e
AH
7107 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7108 return sa_sched_group_nodes;
7109 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7110 return sa_nodemask;
7111 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7112 return sa_this_sibling_map;
01a08546 7113 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7114 return sa_this_core_map;
01a08546
HC
7115 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7116 return sa_this_book_map;
2109b99e
AH
7117 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7118 return sa_send_covered;
7119 d->rd = alloc_rootdomain();
7120 if (!d->rd) {
3df0fc5b 7121 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7122 return sa_tmpmask;
57d885fe 7123 }
2109b99e
AH
7124 return sa_rootdomain;
7125}
57d885fe 7126
7f4588f3
AH
7127static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7128 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7129{
7130 struct sched_domain *sd = NULL;
7c16ec58 7131#ifdef CONFIG_NUMA
7f4588f3 7132 struct sched_domain *parent;
1da177e4 7133
7f4588f3
AH
7134 d->sd_allnodes = 0;
7135 if (cpumask_weight(cpu_map) >
7136 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7137 sd = &per_cpu(allnodes_domains, i).sd;
7138 SD_INIT(sd, ALLNODES);
1d3504fc 7139 set_domain_attribute(sd, attr);
7f4588f3
AH
7140 cpumask_copy(sched_domain_span(sd), cpu_map);
7141 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7142 d->sd_allnodes = 1;
7143 }
7144 parent = sd;
7145
7146 sd = &per_cpu(node_domains, i).sd;
7147 SD_INIT(sd, NODE);
7148 set_domain_attribute(sd, attr);
7149 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7150 sd->parent = parent;
7151 if (parent)
7152 parent->child = sd;
7153 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7154#endif
7f4588f3
AH
7155 return sd;
7156}
1da177e4 7157
87cce662
AH
7158static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7159 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7160 struct sched_domain *parent, int i)
7161{
7162 struct sched_domain *sd;
7163 sd = &per_cpu(phys_domains, i).sd;
7164 SD_INIT(sd, CPU);
7165 set_domain_attribute(sd, attr);
7166 cpumask_copy(sched_domain_span(sd), d->nodemask);
7167 sd->parent = parent;
7168 if (parent)
7169 parent->child = sd;
7170 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7171 return sd;
7172}
1da177e4 7173
01a08546
HC
7174static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7175 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7176 struct sched_domain *parent, int i)
7177{
7178 struct sched_domain *sd = parent;
7179#ifdef CONFIG_SCHED_BOOK
7180 sd = &per_cpu(book_domains, i).sd;
7181 SD_INIT(sd, BOOK);
7182 set_domain_attribute(sd, attr);
7183 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7184 sd->parent = parent;
7185 parent->child = sd;
7186 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7187#endif
7188 return sd;
7189}
7190
410c4081
AH
7191static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7192 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7193 struct sched_domain *parent, int i)
7194{
7195 struct sched_domain *sd = parent;
1e9f28fa 7196#ifdef CONFIG_SCHED_MC
410c4081
AH
7197 sd = &per_cpu(core_domains, i).sd;
7198 SD_INIT(sd, MC);
7199 set_domain_attribute(sd, attr);
7200 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7201 sd->parent = parent;
7202 parent->child = sd;
7203 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7204#endif
410c4081
AH
7205 return sd;
7206}
1e9f28fa 7207
d8173535
AH
7208static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7209 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7210 struct sched_domain *parent, int i)
7211{
7212 struct sched_domain *sd = parent;
1da177e4 7213#ifdef CONFIG_SCHED_SMT
d8173535
AH
7214 sd = &per_cpu(cpu_domains, i).sd;
7215 SD_INIT(sd, SIBLING);
7216 set_domain_attribute(sd, attr);
7217 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7218 sd->parent = parent;
7219 parent->child = sd;
7220 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7221#endif
d8173535
AH
7222 return sd;
7223}
1da177e4 7224
0e8e85c9
AH
7225static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7226 const struct cpumask *cpu_map, int cpu)
7227{
7228 switch (l) {
1da177e4 7229#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7230 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7231 cpumask_and(d->this_sibling_map, cpu_map,
7232 topology_thread_cpumask(cpu));
7233 if (cpu == cpumask_first(d->this_sibling_map))
7234 init_sched_build_groups(d->this_sibling_map, cpu_map,
7235 &cpu_to_cpu_group,
7236 d->send_covered, d->tmpmask);
7237 break;
1da177e4 7238#endif
1e9f28fa 7239#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7240 case SD_LV_MC: /* set up multi-core groups */
7241 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7242 if (cpu == cpumask_first(d->this_core_map))
7243 init_sched_build_groups(d->this_core_map, cpu_map,
7244 &cpu_to_core_group,
7245 d->send_covered, d->tmpmask);
7246 break;
01a08546
HC
7247#endif
7248#ifdef CONFIG_SCHED_BOOK
7249 case SD_LV_BOOK: /* set up book groups */
7250 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7251 if (cpu == cpumask_first(d->this_book_map))
7252 init_sched_build_groups(d->this_book_map, cpu_map,
7253 &cpu_to_book_group,
7254 d->send_covered, d->tmpmask);
7255 break;
1e9f28fa 7256#endif
86548096
AH
7257 case SD_LV_CPU: /* set up physical groups */
7258 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7259 if (!cpumask_empty(d->nodemask))
7260 init_sched_build_groups(d->nodemask, cpu_map,
7261 &cpu_to_phys_group,
7262 d->send_covered, d->tmpmask);
7263 break;
1da177e4 7264#ifdef CONFIG_NUMA
de616e36
AH
7265 case SD_LV_ALLNODES:
7266 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7267 d->send_covered, d->tmpmask);
7268 break;
7269#endif
0e8e85c9
AH
7270 default:
7271 break;
7c16ec58 7272 }
0e8e85c9 7273}
9c1cfda2 7274
2109b99e
AH
7275/*
7276 * Build sched domains for a given set of cpus and attach the sched domains
7277 * to the individual cpus
7278 */
7279static int __build_sched_domains(const struct cpumask *cpu_map,
7280 struct sched_domain_attr *attr)
7281{
7282 enum s_alloc alloc_state = sa_none;
7283 struct s_data d;
294b0c96 7284 struct sched_domain *sd;
2109b99e 7285 int i;
7c16ec58 7286#ifdef CONFIG_NUMA
2109b99e 7287 d.sd_allnodes = 0;
7c16ec58 7288#endif
9c1cfda2 7289
2109b99e
AH
7290 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7291 if (alloc_state != sa_rootdomain)
7292 goto error;
7293 alloc_state = sa_sched_groups;
9c1cfda2 7294
1da177e4 7295 /*
1a20ff27 7296 * Set up domains for cpus specified by the cpu_map.
1da177e4 7297 */
abcd083a 7298 for_each_cpu(i, cpu_map) {
49a02c51
AH
7299 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7300 cpu_map);
9761eea8 7301
7f4588f3 7302 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7303 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7304 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7305 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7306 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7307 }
9c1cfda2 7308
abcd083a 7309 for_each_cpu(i, cpu_map) {
0e8e85c9 7310 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7311 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7312 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7313 }
9c1cfda2 7314
1da177e4 7315 /* Set up physical groups */
86548096
AH
7316 for (i = 0; i < nr_node_ids; i++)
7317 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7318
1da177e4
LT
7319#ifdef CONFIG_NUMA
7320 /* Set up node groups */
de616e36
AH
7321 if (d.sd_allnodes)
7322 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7323
0601a88d
AH
7324 for (i = 0; i < nr_node_ids; i++)
7325 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7326 goto error;
1da177e4
LT
7327#endif
7328
7329 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7330#ifdef CONFIG_SCHED_SMT
abcd083a 7331 for_each_cpu(i, cpu_map) {
294b0c96 7332 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7333 init_sched_groups_power(i, sd);
5c45bf27 7334 }
1da177e4 7335#endif
1e9f28fa 7336#ifdef CONFIG_SCHED_MC
abcd083a 7337 for_each_cpu(i, cpu_map) {
294b0c96 7338 sd = &per_cpu(core_domains, i).sd;
89c4710e 7339 init_sched_groups_power(i, sd);
5c45bf27
SS
7340 }
7341#endif
01a08546
HC
7342#ifdef CONFIG_SCHED_BOOK
7343 for_each_cpu(i, cpu_map) {
7344 sd = &per_cpu(book_domains, i).sd;
7345 init_sched_groups_power(i, sd);
7346 }
7347#endif
1e9f28fa 7348
abcd083a 7349 for_each_cpu(i, cpu_map) {
294b0c96 7350 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7351 init_sched_groups_power(i, sd);
1da177e4
LT
7352 }
7353
9c1cfda2 7354#ifdef CONFIG_NUMA
076ac2af 7355 for (i = 0; i < nr_node_ids; i++)
49a02c51 7356 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7357
49a02c51 7358 if (d.sd_allnodes) {
6711cab4 7359 struct sched_group *sg;
f712c0c7 7360
96f874e2 7361 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7362 d.tmpmask);
f712c0c7
SS
7363 init_numa_sched_groups_power(sg);
7364 }
9c1cfda2
JH
7365#endif
7366
1da177e4 7367 /* Attach the domains */
abcd083a 7368 for_each_cpu(i, cpu_map) {
1da177e4 7369#ifdef CONFIG_SCHED_SMT
6c99e9ad 7370 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7371#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7372 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7373#elif defined(CONFIG_SCHED_BOOK)
7374 sd = &per_cpu(book_domains, i).sd;
1da177e4 7375#else
6c99e9ad 7376 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7377#endif
49a02c51 7378 cpu_attach_domain(sd, d.rd, i);
1da177e4 7379 }
51888ca2 7380
2109b99e
AH
7381 d.sched_group_nodes = NULL; /* don't free this we still need it */
7382 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7383 return 0;
51888ca2 7384
51888ca2 7385error:
2109b99e
AH
7386 __free_domain_allocs(&d, alloc_state, cpu_map);
7387 return -ENOMEM;
1da177e4 7388}
029190c5 7389
96f874e2 7390static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7391{
7392 return __build_sched_domains(cpu_map, NULL);
7393}
7394
acc3f5d7 7395static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7396static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7397static struct sched_domain_attr *dattr_cur;
7398 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7399
7400/*
7401 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7402 * cpumask) fails, then fallback to a single sched domain,
7403 * as determined by the single cpumask fallback_doms.
029190c5 7404 */
4212823f 7405static cpumask_var_t fallback_doms;
029190c5 7406
ee79d1bd
HC
7407/*
7408 * arch_update_cpu_topology lets virtualized architectures update the
7409 * cpu core maps. It is supposed to return 1 if the topology changed
7410 * or 0 if it stayed the same.
7411 */
7412int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7413{
ee79d1bd 7414 return 0;
22e52b07
HC
7415}
7416
acc3f5d7
RR
7417cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7418{
7419 int i;
7420 cpumask_var_t *doms;
7421
7422 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7423 if (!doms)
7424 return NULL;
7425 for (i = 0; i < ndoms; i++) {
7426 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7427 free_sched_domains(doms, i);
7428 return NULL;
7429 }
7430 }
7431 return doms;
7432}
7433
7434void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7435{
7436 unsigned int i;
7437 for (i = 0; i < ndoms; i++)
7438 free_cpumask_var(doms[i]);
7439 kfree(doms);
7440}
7441
1a20ff27 7442/*
41a2d6cf 7443 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7444 * For now this just excludes isolated cpus, but could be used to
7445 * exclude other special cases in the future.
1a20ff27 7446 */
96f874e2 7447static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7448{
7378547f
MM
7449 int err;
7450
22e52b07 7451 arch_update_cpu_topology();
029190c5 7452 ndoms_cur = 1;
acc3f5d7 7453 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7454 if (!doms_cur)
acc3f5d7
RR
7455 doms_cur = &fallback_doms;
7456 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7457 dattr_cur = NULL;
acc3f5d7 7458 err = build_sched_domains(doms_cur[0]);
6382bc90 7459 register_sched_domain_sysctl();
7378547f
MM
7460
7461 return err;
1a20ff27
DG
7462}
7463
96f874e2
RR
7464static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7465 struct cpumask *tmpmask)
1da177e4 7466{
7c16ec58 7467 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7468}
1da177e4 7469
1a20ff27
DG
7470/*
7471 * Detach sched domains from a group of cpus specified in cpu_map
7472 * These cpus will now be attached to the NULL domain
7473 */
96f874e2 7474static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7475{
96f874e2
RR
7476 /* Save because hotplug lock held. */
7477 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7478 int i;
7479
abcd083a 7480 for_each_cpu(i, cpu_map)
57d885fe 7481 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7482 synchronize_sched();
96f874e2 7483 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7484}
7485
1d3504fc
HS
7486/* handle null as "default" */
7487static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7488 struct sched_domain_attr *new, int idx_new)
7489{
7490 struct sched_domain_attr tmp;
7491
7492 /* fast path */
7493 if (!new && !cur)
7494 return 1;
7495
7496 tmp = SD_ATTR_INIT;
7497 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7498 new ? (new + idx_new) : &tmp,
7499 sizeof(struct sched_domain_attr));
7500}
7501
029190c5
PJ
7502/*
7503 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7504 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7505 * doms_new[] to the current sched domain partitioning, doms_cur[].
7506 * It destroys each deleted domain and builds each new domain.
7507 *
acc3f5d7 7508 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7509 * The masks don't intersect (don't overlap.) We should setup one
7510 * sched domain for each mask. CPUs not in any of the cpumasks will
7511 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7512 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7513 * it as it is.
7514 *
acc3f5d7
RR
7515 * The passed in 'doms_new' should be allocated using
7516 * alloc_sched_domains. This routine takes ownership of it and will
7517 * free_sched_domains it when done with it. If the caller failed the
7518 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7519 * and partition_sched_domains() will fallback to the single partition
7520 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7521 *
96f874e2 7522 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7523 * ndoms_new == 0 is a special case for destroying existing domains,
7524 * and it will not create the default domain.
dfb512ec 7525 *
029190c5
PJ
7526 * Call with hotplug lock held
7527 */
acc3f5d7 7528void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7529 struct sched_domain_attr *dattr_new)
029190c5 7530{
dfb512ec 7531 int i, j, n;
d65bd5ec 7532 int new_topology;
029190c5 7533
712555ee 7534 mutex_lock(&sched_domains_mutex);
a1835615 7535
7378547f
MM
7536 /* always unregister in case we don't destroy any domains */
7537 unregister_sched_domain_sysctl();
7538
d65bd5ec
HC
7539 /* Let architecture update cpu core mappings. */
7540 new_topology = arch_update_cpu_topology();
7541
dfb512ec 7542 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7543
7544 /* Destroy deleted domains */
7545 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7546 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7547 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7548 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7549 goto match1;
7550 }
7551 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7552 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7553match1:
7554 ;
7555 }
7556
e761b772
MK
7557 if (doms_new == NULL) {
7558 ndoms_cur = 0;
acc3f5d7 7559 doms_new = &fallback_doms;
6ad4c188 7560 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7561 WARN_ON_ONCE(dattr_new);
e761b772
MK
7562 }
7563
029190c5
PJ
7564 /* Build new domains */
7565 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7566 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7567 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7568 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7569 goto match2;
7570 }
7571 /* no match - add a new doms_new */
acc3f5d7 7572 __build_sched_domains(doms_new[i],
1d3504fc 7573 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7574match2:
7575 ;
7576 }
7577
7578 /* Remember the new sched domains */
acc3f5d7
RR
7579 if (doms_cur != &fallback_doms)
7580 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7581 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7582 doms_cur = doms_new;
1d3504fc 7583 dattr_cur = dattr_new;
029190c5 7584 ndoms_cur = ndoms_new;
7378547f
MM
7585
7586 register_sched_domain_sysctl();
a1835615 7587
712555ee 7588 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7589}
7590
5c45bf27 7591#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7592static void arch_reinit_sched_domains(void)
5c45bf27 7593{
95402b38 7594 get_online_cpus();
dfb512ec
MK
7595
7596 /* Destroy domains first to force the rebuild */
7597 partition_sched_domains(0, NULL, NULL);
7598
e761b772 7599 rebuild_sched_domains();
95402b38 7600 put_online_cpus();
5c45bf27
SS
7601}
7602
7603static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7604{
afb8a9b7 7605 unsigned int level = 0;
5c45bf27 7606
afb8a9b7
GS
7607 if (sscanf(buf, "%u", &level) != 1)
7608 return -EINVAL;
7609
7610 /*
7611 * level is always be positive so don't check for
7612 * level < POWERSAVINGS_BALANCE_NONE which is 0
7613 * What happens on 0 or 1 byte write,
7614 * need to check for count as well?
7615 */
7616
7617 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7618 return -EINVAL;
7619
7620 if (smt)
afb8a9b7 7621 sched_smt_power_savings = level;
5c45bf27 7622 else
afb8a9b7 7623 sched_mc_power_savings = level;
5c45bf27 7624
c70f22d2 7625 arch_reinit_sched_domains();
5c45bf27 7626
c70f22d2 7627 return count;
5c45bf27
SS
7628}
7629
5c45bf27 7630#ifdef CONFIG_SCHED_MC
f718cd4a 7631static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7632 struct sysdev_class_attribute *attr,
f718cd4a 7633 char *page)
5c45bf27
SS
7634{
7635 return sprintf(page, "%u\n", sched_mc_power_savings);
7636}
f718cd4a 7637static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7638 struct sysdev_class_attribute *attr,
48f24c4d 7639 const char *buf, size_t count)
5c45bf27
SS
7640{
7641 return sched_power_savings_store(buf, count, 0);
7642}
f718cd4a
AK
7643static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7644 sched_mc_power_savings_show,
7645 sched_mc_power_savings_store);
5c45bf27
SS
7646#endif
7647
7648#ifdef CONFIG_SCHED_SMT
f718cd4a 7649static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7650 struct sysdev_class_attribute *attr,
f718cd4a 7651 char *page)
5c45bf27
SS
7652{
7653 return sprintf(page, "%u\n", sched_smt_power_savings);
7654}
f718cd4a 7655static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7656 struct sysdev_class_attribute *attr,
48f24c4d 7657 const char *buf, size_t count)
5c45bf27
SS
7658{
7659 return sched_power_savings_store(buf, count, 1);
7660}
f718cd4a
AK
7661static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7662 sched_smt_power_savings_show,
6707de00
AB
7663 sched_smt_power_savings_store);
7664#endif
7665
39aac648 7666int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7667{
7668 int err = 0;
7669
7670#ifdef CONFIG_SCHED_SMT
7671 if (smt_capable())
7672 err = sysfs_create_file(&cls->kset.kobj,
7673 &attr_sched_smt_power_savings.attr);
7674#endif
7675#ifdef CONFIG_SCHED_MC
7676 if (!err && mc_capable())
7677 err = sysfs_create_file(&cls->kset.kobj,
7678 &attr_sched_mc_power_savings.attr);
7679#endif
7680 return err;
7681}
6d6bc0ad 7682#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7683
1da177e4 7684/*
3a101d05
TH
7685 * Update cpusets according to cpu_active mask. If cpusets are
7686 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7687 * around partition_sched_domains().
1da177e4 7688 */
0b2e918a
TH
7689static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7690 void *hcpu)
e761b772 7691{
3a101d05 7692 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7693 case CPU_ONLINE:
6ad4c188 7694 case CPU_DOWN_FAILED:
3a101d05 7695 cpuset_update_active_cpus();
e761b772 7696 return NOTIFY_OK;
3a101d05
TH
7697 default:
7698 return NOTIFY_DONE;
7699 }
7700}
e761b772 7701
0b2e918a
TH
7702static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7703 void *hcpu)
3a101d05
TH
7704{
7705 switch (action & ~CPU_TASKS_FROZEN) {
7706 case CPU_DOWN_PREPARE:
7707 cpuset_update_active_cpus();
7708 return NOTIFY_OK;
e761b772
MK
7709 default:
7710 return NOTIFY_DONE;
7711 }
7712}
e761b772
MK
7713
7714static int update_runtime(struct notifier_block *nfb,
7715 unsigned long action, void *hcpu)
1da177e4 7716{
7def2be1
PZ
7717 int cpu = (int)(long)hcpu;
7718
1da177e4 7719 switch (action) {
1da177e4 7720 case CPU_DOWN_PREPARE:
8bb78442 7721 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7722 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7723 return NOTIFY_OK;
7724
1da177e4 7725 case CPU_DOWN_FAILED:
8bb78442 7726 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7727 case CPU_ONLINE:
8bb78442 7728 case CPU_ONLINE_FROZEN:
7def2be1 7729 enable_runtime(cpu_rq(cpu));
e761b772
MK
7730 return NOTIFY_OK;
7731
1da177e4
LT
7732 default:
7733 return NOTIFY_DONE;
7734 }
1da177e4 7735}
1da177e4
LT
7736
7737void __init sched_init_smp(void)
7738{
dcc30a35
RR
7739 cpumask_var_t non_isolated_cpus;
7740
7741 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7742 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7743
434d53b0
MT
7744#if defined(CONFIG_NUMA)
7745 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7746 GFP_KERNEL);
7747 BUG_ON(sched_group_nodes_bycpu == NULL);
7748#endif
95402b38 7749 get_online_cpus();
712555ee 7750 mutex_lock(&sched_domains_mutex);
6ad4c188 7751 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7752 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7753 if (cpumask_empty(non_isolated_cpus))
7754 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7755 mutex_unlock(&sched_domains_mutex);
95402b38 7756 put_online_cpus();
e761b772 7757
3a101d05
TH
7758 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7759 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7760
7761 /* RT runtime code needs to handle some hotplug events */
7762 hotcpu_notifier(update_runtime, 0);
7763
b328ca18 7764 init_hrtick();
5c1e1767
NP
7765
7766 /* Move init over to a non-isolated CPU */
dcc30a35 7767 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7768 BUG();
19978ca6 7769 sched_init_granularity();
dcc30a35 7770 free_cpumask_var(non_isolated_cpus);
4212823f 7771
0e3900e6 7772 init_sched_rt_class();
1da177e4
LT
7773}
7774#else
7775void __init sched_init_smp(void)
7776{
19978ca6 7777 sched_init_granularity();
1da177e4
LT
7778}
7779#endif /* CONFIG_SMP */
7780
cd1bb94b
AB
7781const_debug unsigned int sysctl_timer_migration = 1;
7782
1da177e4
LT
7783int in_sched_functions(unsigned long addr)
7784{
1da177e4
LT
7785 return in_lock_functions(addr) ||
7786 (addr >= (unsigned long)__sched_text_start
7787 && addr < (unsigned long)__sched_text_end);
7788}
7789
a9957449 7790static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7791{
7792 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7793 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7794#ifdef CONFIG_FAIR_GROUP_SCHED
7795 cfs_rq->rq = rq;
7796#endif
67e9fb2a 7797 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7798}
7799
fa85ae24
PZ
7800static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7801{
7802 struct rt_prio_array *array;
7803 int i;
7804
7805 array = &rt_rq->active;
7806 for (i = 0; i < MAX_RT_PRIO; i++) {
7807 INIT_LIST_HEAD(array->queue + i);
7808 __clear_bit(i, array->bitmap);
7809 }
7810 /* delimiter for bitsearch: */
7811 __set_bit(MAX_RT_PRIO, array->bitmap);
7812
052f1dc7 7813#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7814 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7815#ifdef CONFIG_SMP
e864c499 7816 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7817#endif
48d5e258 7818#endif
fa85ae24
PZ
7819#ifdef CONFIG_SMP
7820 rt_rq->rt_nr_migratory = 0;
fa85ae24 7821 rt_rq->overloaded = 0;
05fa785c 7822 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7823#endif
7824
7825 rt_rq->rt_time = 0;
7826 rt_rq->rt_throttled = 0;
ac086bc2 7827 rt_rq->rt_runtime = 0;
0986b11b 7828 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7829
052f1dc7 7830#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7831 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7832 rt_rq->rq = rq;
7833#endif
fa85ae24
PZ
7834}
7835
6f505b16 7836#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7837static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7838 struct sched_entity *se, int cpu,
ec7dc8ac 7839 struct sched_entity *parent)
6f505b16 7840{
ec7dc8ac 7841 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7842 tg->cfs_rq[cpu] = cfs_rq;
7843 init_cfs_rq(cfs_rq, rq);
7844 cfs_rq->tg = tg;
6f505b16
PZ
7845
7846 tg->se[cpu] = se;
07e06b01 7847 /* se could be NULL for root_task_group */
354d60c2
DG
7848 if (!se)
7849 return;
7850
ec7dc8ac
DG
7851 if (!parent)
7852 se->cfs_rq = &rq->cfs;
7853 else
7854 se->cfs_rq = parent->my_q;
7855
6f505b16 7856 se->my_q = cfs_rq;
9437178f 7857 update_load_set(&se->load, 0);
ec7dc8ac 7858 se->parent = parent;
6f505b16 7859}
052f1dc7 7860#endif
6f505b16 7861
052f1dc7 7862#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7863static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7864 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7865 struct sched_rt_entity *parent)
6f505b16 7866{
ec7dc8ac
DG
7867 struct rq *rq = cpu_rq(cpu);
7868
6f505b16
PZ
7869 tg->rt_rq[cpu] = rt_rq;
7870 init_rt_rq(rt_rq, rq);
7871 rt_rq->tg = tg;
ac086bc2 7872 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7873
7874 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7875 if (!rt_se)
7876 return;
7877
ec7dc8ac
DG
7878 if (!parent)
7879 rt_se->rt_rq = &rq->rt;
7880 else
7881 rt_se->rt_rq = parent->my_q;
7882
6f505b16 7883 rt_se->my_q = rt_rq;
ec7dc8ac 7884 rt_se->parent = parent;
6f505b16
PZ
7885 INIT_LIST_HEAD(&rt_se->run_list);
7886}
7887#endif
7888
1da177e4
LT
7889void __init sched_init(void)
7890{
dd41f596 7891 int i, j;
434d53b0
MT
7892 unsigned long alloc_size = 0, ptr;
7893
7894#ifdef CONFIG_FAIR_GROUP_SCHED
7895 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7896#endif
7897#ifdef CONFIG_RT_GROUP_SCHED
7898 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7899#endif
df7c8e84 7900#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7901 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7902#endif
434d53b0 7903 if (alloc_size) {
36b7b6d4 7904 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7905
7906#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7907 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7908 ptr += nr_cpu_ids * sizeof(void **);
7909
07e06b01 7910 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7911 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7912
6d6bc0ad 7913#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7914#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7915 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7916 ptr += nr_cpu_ids * sizeof(void **);
7917
07e06b01 7918 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7919 ptr += nr_cpu_ids * sizeof(void **);
7920
6d6bc0ad 7921#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7922#ifdef CONFIG_CPUMASK_OFFSTACK
7923 for_each_possible_cpu(i) {
7924 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7925 ptr += cpumask_size();
7926 }
7927#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7928 }
dd41f596 7929
57d885fe
GH
7930#ifdef CONFIG_SMP
7931 init_defrootdomain();
7932#endif
7933
d0b27fa7
PZ
7934 init_rt_bandwidth(&def_rt_bandwidth,
7935 global_rt_period(), global_rt_runtime());
7936
7937#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7938 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7939 global_rt_period(), global_rt_runtime());
6d6bc0ad 7940#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7941
7c941438 7942#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7943 list_add(&root_task_group.list, &task_groups);
7944 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7945 autogroup_init(&init_task);
7c941438 7946#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7947
0a945022 7948 for_each_possible_cpu(i) {
70b97a7f 7949 struct rq *rq;
1da177e4
LT
7950
7951 rq = cpu_rq(i);
05fa785c 7952 raw_spin_lock_init(&rq->lock);
7897986b 7953 rq->nr_running = 0;
dce48a84
TG
7954 rq->calc_load_active = 0;
7955 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7956 init_cfs_rq(&rq->cfs, rq);
6f505b16 7957 init_rt_rq(&rq->rt, rq);
dd41f596 7958#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7959 root_task_group.shares = root_task_group_load;
6f505b16 7960 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7961 /*
07e06b01 7962 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7963 *
7964 * In case of task-groups formed thr' the cgroup filesystem, it
7965 * gets 100% of the cpu resources in the system. This overall
7966 * system cpu resource is divided among the tasks of
07e06b01 7967 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7968 * based on each entity's (task or task-group's) weight
7969 * (se->load.weight).
7970 *
07e06b01 7971 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7972 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7973 * then A0's share of the cpu resource is:
7974 *
0d905bca 7975 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7976 *
07e06b01
YZ
7977 * We achieve this by letting root_task_group's tasks sit
7978 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7979 */
07e06b01 7980 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7981#endif /* CONFIG_FAIR_GROUP_SCHED */
7982
7983 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7984#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7985 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7986 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7987#endif
1da177e4 7988
dd41f596
IM
7989 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7990 rq->cpu_load[j] = 0;
fdf3e95d
VP
7991
7992 rq->last_load_update_tick = jiffies;
7993
1da177e4 7994#ifdef CONFIG_SMP
41c7ce9a 7995 rq->sd = NULL;
57d885fe 7996 rq->rd = NULL;
e51fd5e2 7997 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7998 rq->post_schedule = 0;
1da177e4 7999 rq->active_balance = 0;
dd41f596 8000 rq->next_balance = jiffies;
1da177e4 8001 rq->push_cpu = 0;
0a2966b4 8002 rq->cpu = i;
1f11eb6a 8003 rq->online = 0;
eae0c9df
MG
8004 rq->idle_stamp = 0;
8005 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8006 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8007#ifdef CONFIG_NO_HZ
8008 rq->nohz_balance_kick = 0;
8009 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8010#endif
1da177e4 8011#endif
8f4d37ec 8012 init_rq_hrtick(rq);
1da177e4 8013 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8014 }
8015
2dd73a4f 8016 set_load_weight(&init_task);
b50f60ce 8017
e107be36
AK
8018#ifdef CONFIG_PREEMPT_NOTIFIERS
8019 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8020#endif
8021
c9819f45 8022#ifdef CONFIG_SMP
962cf36c 8023 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8024#endif
8025
b50f60ce 8026#ifdef CONFIG_RT_MUTEXES
1d615482 8027 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8028#endif
8029
1da177e4
LT
8030 /*
8031 * The boot idle thread does lazy MMU switching as well:
8032 */
8033 atomic_inc(&init_mm.mm_count);
8034 enter_lazy_tlb(&init_mm, current);
8035
8036 /*
8037 * Make us the idle thread. Technically, schedule() should not be
8038 * called from this thread, however somewhere below it might be,
8039 * but because we are the idle thread, we just pick up running again
8040 * when this runqueue becomes "idle".
8041 */
8042 init_idle(current, smp_processor_id());
dce48a84
TG
8043
8044 calc_load_update = jiffies + LOAD_FREQ;
8045
dd41f596
IM
8046 /*
8047 * During early bootup we pretend to be a normal task:
8048 */
8049 current->sched_class = &fair_sched_class;
6892b75e 8050
6a7b3dc3 8051 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8052 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8053#ifdef CONFIG_SMP
7d1e6a9b 8054#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8055 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8056 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8057 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8058 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8059 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8060#endif
bdddd296
RR
8061 /* May be allocated at isolcpus cmdline parse time */
8062 if (cpu_isolated_map == NULL)
8063 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8064#endif /* SMP */
6a7b3dc3 8065
6892b75e 8066 scheduler_running = 1;
1da177e4
LT
8067}
8068
8069#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8070static inline int preempt_count_equals(int preempt_offset)
8071{
234da7bc 8072 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8073
8074 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8075}
8076
d894837f 8077void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8078{
48f24c4d 8079#ifdef in_atomic
1da177e4
LT
8080 static unsigned long prev_jiffy; /* ratelimiting */
8081
e4aafea2
FW
8082 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8083 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8084 return;
8085 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8086 return;
8087 prev_jiffy = jiffies;
8088
3df0fc5b
PZ
8089 printk(KERN_ERR
8090 "BUG: sleeping function called from invalid context at %s:%d\n",
8091 file, line);
8092 printk(KERN_ERR
8093 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8094 in_atomic(), irqs_disabled(),
8095 current->pid, current->comm);
aef745fc
IM
8096
8097 debug_show_held_locks(current);
8098 if (irqs_disabled())
8099 print_irqtrace_events(current);
8100 dump_stack();
1da177e4
LT
8101#endif
8102}
8103EXPORT_SYMBOL(__might_sleep);
8104#endif
8105
8106#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8107static void normalize_task(struct rq *rq, struct task_struct *p)
8108{
8109 int on_rq;
3e51f33f 8110
3a5e4dc1
AK
8111 on_rq = p->se.on_rq;
8112 if (on_rq)
8113 deactivate_task(rq, p, 0);
8114 __setscheduler(rq, p, SCHED_NORMAL, 0);
8115 if (on_rq) {
8116 activate_task(rq, p, 0);
8117 resched_task(rq->curr);
8118 }
8119}
8120
1da177e4
LT
8121void normalize_rt_tasks(void)
8122{
a0f98a1c 8123 struct task_struct *g, *p;
1da177e4 8124 unsigned long flags;
70b97a7f 8125 struct rq *rq;
1da177e4 8126
4cf5d77a 8127 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8128 do_each_thread(g, p) {
178be793
IM
8129 /*
8130 * Only normalize user tasks:
8131 */
8132 if (!p->mm)
8133 continue;
8134
6cfb0d5d 8135 p->se.exec_start = 0;
6cfb0d5d 8136#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8137 p->se.statistics.wait_start = 0;
8138 p->se.statistics.sleep_start = 0;
8139 p->se.statistics.block_start = 0;
6cfb0d5d 8140#endif
dd41f596
IM
8141
8142 if (!rt_task(p)) {
8143 /*
8144 * Renice negative nice level userspace
8145 * tasks back to 0:
8146 */
8147 if (TASK_NICE(p) < 0 && p->mm)
8148 set_user_nice(p, 0);
1da177e4 8149 continue;
dd41f596 8150 }
1da177e4 8151
1d615482 8152 raw_spin_lock(&p->pi_lock);
b29739f9 8153 rq = __task_rq_lock(p);
1da177e4 8154
178be793 8155 normalize_task(rq, p);
3a5e4dc1 8156
b29739f9 8157 __task_rq_unlock(rq);
1d615482 8158 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8159 } while_each_thread(g, p);
8160
4cf5d77a 8161 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8162}
8163
8164#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8165
67fc4e0c 8166#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8167/*
67fc4e0c 8168 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8169 *
8170 * They can only be called when the whole system has been
8171 * stopped - every CPU needs to be quiescent, and no scheduling
8172 * activity can take place. Using them for anything else would
8173 * be a serious bug, and as a result, they aren't even visible
8174 * under any other configuration.
8175 */
8176
8177/**
8178 * curr_task - return the current task for a given cpu.
8179 * @cpu: the processor in question.
8180 *
8181 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8182 */
36c8b586 8183struct task_struct *curr_task(int cpu)
1df5c10a
LT
8184{
8185 return cpu_curr(cpu);
8186}
8187
67fc4e0c
JW
8188#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8189
8190#ifdef CONFIG_IA64
1df5c10a
LT
8191/**
8192 * set_curr_task - set the current task for a given cpu.
8193 * @cpu: the processor in question.
8194 * @p: the task pointer to set.
8195 *
8196 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8197 * are serviced on a separate stack. It allows the architecture to switch the
8198 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8199 * must be called with all CPU's synchronized, and interrupts disabled, the
8200 * and caller must save the original value of the current task (see
8201 * curr_task() above) and restore that value before reenabling interrupts and
8202 * re-starting the system.
8203 *
8204 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8205 */
36c8b586 8206void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8207{
8208 cpu_curr(cpu) = p;
8209}
8210
8211#endif
29f59db3 8212
bccbe08a
PZ
8213#ifdef CONFIG_FAIR_GROUP_SCHED
8214static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8215{
8216 int i;
8217
8218 for_each_possible_cpu(i) {
8219 if (tg->cfs_rq)
8220 kfree(tg->cfs_rq[i]);
8221 if (tg->se)
8222 kfree(tg->se[i]);
6f505b16
PZ
8223 }
8224
8225 kfree(tg->cfs_rq);
8226 kfree(tg->se);
6f505b16
PZ
8227}
8228
ec7dc8ac
DG
8229static
8230int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8231{
29f59db3 8232 struct cfs_rq *cfs_rq;
eab17229 8233 struct sched_entity *se;
9b5b7751 8234 struct rq *rq;
29f59db3
SV
8235 int i;
8236
434d53b0 8237 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8238 if (!tg->cfs_rq)
8239 goto err;
434d53b0 8240 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8241 if (!tg->se)
8242 goto err;
052f1dc7
PZ
8243
8244 tg->shares = NICE_0_LOAD;
29f59db3
SV
8245
8246 for_each_possible_cpu(i) {
9b5b7751 8247 rq = cpu_rq(i);
29f59db3 8248
eab17229
LZ
8249 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8250 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8251 if (!cfs_rq)
8252 goto err;
8253
eab17229
LZ
8254 se = kzalloc_node(sizeof(struct sched_entity),
8255 GFP_KERNEL, cpu_to_node(i));
29f59db3 8256 if (!se)
dfc12eb2 8257 goto err_free_rq;
29f59db3 8258
3d4b47b4 8259 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8260 }
8261
8262 return 1;
8263
49246274 8264err_free_rq:
dfc12eb2 8265 kfree(cfs_rq);
49246274 8266err:
bccbe08a
PZ
8267 return 0;
8268}
8269
bccbe08a
PZ
8270static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8271{
3d4b47b4
PZ
8272 struct rq *rq = cpu_rq(cpu);
8273 unsigned long flags;
3d4b47b4
PZ
8274
8275 /*
8276 * Only empty task groups can be destroyed; so we can speculatively
8277 * check on_list without danger of it being re-added.
8278 */
8279 if (!tg->cfs_rq[cpu]->on_list)
8280 return;
8281
8282 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8283 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8284 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8285}
6d6bc0ad 8286#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8287static inline void free_fair_sched_group(struct task_group *tg)
8288{
8289}
8290
ec7dc8ac
DG
8291static inline
8292int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8293{
8294 return 1;
8295}
8296
bccbe08a
PZ
8297static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8298{
8299}
6d6bc0ad 8300#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8301
8302#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8303static void free_rt_sched_group(struct task_group *tg)
8304{
8305 int i;
8306
d0b27fa7
PZ
8307 destroy_rt_bandwidth(&tg->rt_bandwidth);
8308
bccbe08a
PZ
8309 for_each_possible_cpu(i) {
8310 if (tg->rt_rq)
8311 kfree(tg->rt_rq[i]);
8312 if (tg->rt_se)
8313 kfree(tg->rt_se[i]);
8314 }
8315
8316 kfree(tg->rt_rq);
8317 kfree(tg->rt_se);
8318}
8319
ec7dc8ac
DG
8320static
8321int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8322{
8323 struct rt_rq *rt_rq;
eab17229 8324 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8325 struct rq *rq;
8326 int i;
8327
434d53b0 8328 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8329 if (!tg->rt_rq)
8330 goto err;
434d53b0 8331 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8332 if (!tg->rt_se)
8333 goto err;
8334
d0b27fa7
PZ
8335 init_rt_bandwidth(&tg->rt_bandwidth,
8336 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8337
8338 for_each_possible_cpu(i) {
8339 rq = cpu_rq(i);
8340
eab17229
LZ
8341 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8342 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8343 if (!rt_rq)
8344 goto err;
29f59db3 8345
eab17229
LZ
8346 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8347 GFP_KERNEL, cpu_to_node(i));
6f505b16 8348 if (!rt_se)
dfc12eb2 8349 goto err_free_rq;
29f59db3 8350
3d4b47b4 8351 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8352 }
8353
bccbe08a
PZ
8354 return 1;
8355
49246274 8356err_free_rq:
dfc12eb2 8357 kfree(rt_rq);
49246274 8358err:
bccbe08a
PZ
8359 return 0;
8360}
6d6bc0ad 8361#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8362static inline void free_rt_sched_group(struct task_group *tg)
8363{
8364}
8365
ec7dc8ac
DG
8366static inline
8367int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8368{
8369 return 1;
8370}
6d6bc0ad 8371#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8372
7c941438 8373#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8374static void free_sched_group(struct task_group *tg)
8375{
8376 free_fair_sched_group(tg);
8377 free_rt_sched_group(tg);
e9aa1dd1 8378 autogroup_free(tg);
bccbe08a
PZ
8379 kfree(tg);
8380}
8381
8382/* allocate runqueue etc for a new task group */
ec7dc8ac 8383struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8384{
8385 struct task_group *tg;
8386 unsigned long flags;
bccbe08a
PZ
8387
8388 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8389 if (!tg)
8390 return ERR_PTR(-ENOMEM);
8391
ec7dc8ac 8392 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8393 goto err;
8394
ec7dc8ac 8395 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8396 goto err;
8397
8ed36996 8398 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8399 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8400
8401 WARN_ON(!parent); /* root should already exist */
8402
8403 tg->parent = parent;
f473aa5e 8404 INIT_LIST_HEAD(&tg->children);
09f2724a 8405 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8406 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8407
9b5b7751 8408 return tg;
29f59db3
SV
8409
8410err:
6f505b16 8411 free_sched_group(tg);
29f59db3
SV
8412 return ERR_PTR(-ENOMEM);
8413}
8414
9b5b7751 8415/* rcu callback to free various structures associated with a task group */
6f505b16 8416static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8417{
29f59db3 8418 /* now it should be safe to free those cfs_rqs */
6f505b16 8419 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8420}
8421
9b5b7751 8422/* Destroy runqueue etc associated with a task group */
4cf86d77 8423void sched_destroy_group(struct task_group *tg)
29f59db3 8424{
8ed36996 8425 unsigned long flags;
9b5b7751 8426 int i;
29f59db3 8427
3d4b47b4
PZ
8428 /* end participation in shares distribution */
8429 for_each_possible_cpu(i)
bccbe08a 8430 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8431
8432 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8433 list_del_rcu(&tg->list);
f473aa5e 8434 list_del_rcu(&tg->siblings);
8ed36996 8435 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8436
9b5b7751 8437 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8438 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8439}
8440
9b5b7751 8441/* change task's runqueue when it moves between groups.
3a252015
IM
8442 * The caller of this function should have put the task in its new group
8443 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8444 * reflect its new group.
9b5b7751
SV
8445 */
8446void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8447{
8448 int on_rq, running;
8449 unsigned long flags;
8450 struct rq *rq;
8451
8452 rq = task_rq_lock(tsk, &flags);
8453
051a1d1a 8454 running = task_current(rq, tsk);
29f59db3
SV
8455 on_rq = tsk->se.on_rq;
8456
0e1f3483 8457 if (on_rq)
29f59db3 8458 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8459 if (unlikely(running))
8460 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8461
810b3817 8462#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8463 if (tsk->sched_class->task_move_group)
8464 tsk->sched_class->task_move_group(tsk, on_rq);
8465 else
810b3817 8466#endif
b2b5ce02 8467 set_task_rq(tsk, task_cpu(tsk));
810b3817 8468
0e1f3483
HS
8469 if (unlikely(running))
8470 tsk->sched_class->set_curr_task(rq);
8471 if (on_rq)
371fd7e7 8472 enqueue_task(rq, tsk, 0);
29f59db3 8473
29f59db3
SV
8474 task_rq_unlock(rq, &flags);
8475}
7c941438 8476#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8477
052f1dc7 8478#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8479static DEFINE_MUTEX(shares_mutex);
8480
4cf86d77 8481int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8482{
8483 int i;
8ed36996 8484 unsigned long flags;
c61935fd 8485
ec7dc8ac
DG
8486 /*
8487 * We can't change the weight of the root cgroup.
8488 */
8489 if (!tg->se[0])
8490 return -EINVAL;
8491
18d95a28
PZ
8492 if (shares < MIN_SHARES)
8493 shares = MIN_SHARES;
cb4ad1ff
MX
8494 else if (shares > MAX_SHARES)
8495 shares = MAX_SHARES;
62fb1851 8496
8ed36996 8497 mutex_lock(&shares_mutex);
9b5b7751 8498 if (tg->shares == shares)
5cb350ba 8499 goto done;
29f59db3 8500
9b5b7751 8501 tg->shares = shares;
c09595f6 8502 for_each_possible_cpu(i) {
9437178f
PT
8503 struct rq *rq = cpu_rq(i);
8504 struct sched_entity *se;
8505
8506 se = tg->se[i];
8507 /* Propagate contribution to hierarchy */
8508 raw_spin_lock_irqsave(&rq->lock, flags);
8509 for_each_sched_entity(se)
8510 update_cfs_shares(group_cfs_rq(se), 0);
8511 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8512 }
29f59db3 8513
5cb350ba 8514done:
8ed36996 8515 mutex_unlock(&shares_mutex);
9b5b7751 8516 return 0;
29f59db3
SV
8517}
8518
5cb350ba
DG
8519unsigned long sched_group_shares(struct task_group *tg)
8520{
8521 return tg->shares;
8522}
052f1dc7 8523#endif
5cb350ba 8524
052f1dc7 8525#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8526/*
9f0c1e56 8527 * Ensure that the real time constraints are schedulable.
6f505b16 8528 */
9f0c1e56
PZ
8529static DEFINE_MUTEX(rt_constraints_mutex);
8530
8531static unsigned long to_ratio(u64 period, u64 runtime)
8532{
8533 if (runtime == RUNTIME_INF)
9a7e0b18 8534 return 1ULL << 20;
9f0c1e56 8535
9a7e0b18 8536 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8537}
8538
9a7e0b18
PZ
8539/* Must be called with tasklist_lock held */
8540static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8541{
9a7e0b18 8542 struct task_struct *g, *p;
b40b2e8e 8543
9a7e0b18
PZ
8544 do_each_thread(g, p) {
8545 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8546 return 1;
8547 } while_each_thread(g, p);
b40b2e8e 8548
9a7e0b18
PZ
8549 return 0;
8550}
b40b2e8e 8551
9a7e0b18
PZ
8552struct rt_schedulable_data {
8553 struct task_group *tg;
8554 u64 rt_period;
8555 u64 rt_runtime;
8556};
b40b2e8e 8557
9a7e0b18
PZ
8558static int tg_schedulable(struct task_group *tg, void *data)
8559{
8560 struct rt_schedulable_data *d = data;
8561 struct task_group *child;
8562 unsigned long total, sum = 0;
8563 u64 period, runtime;
b40b2e8e 8564
9a7e0b18
PZ
8565 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8566 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8567
9a7e0b18
PZ
8568 if (tg == d->tg) {
8569 period = d->rt_period;
8570 runtime = d->rt_runtime;
b40b2e8e 8571 }
b40b2e8e 8572
4653f803
PZ
8573 /*
8574 * Cannot have more runtime than the period.
8575 */
8576 if (runtime > period && runtime != RUNTIME_INF)
8577 return -EINVAL;
6f505b16 8578
4653f803
PZ
8579 /*
8580 * Ensure we don't starve existing RT tasks.
8581 */
9a7e0b18
PZ
8582 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8583 return -EBUSY;
6f505b16 8584
9a7e0b18 8585 total = to_ratio(period, runtime);
6f505b16 8586
4653f803
PZ
8587 /*
8588 * Nobody can have more than the global setting allows.
8589 */
8590 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8591 return -EINVAL;
6f505b16 8592
4653f803
PZ
8593 /*
8594 * The sum of our children's runtime should not exceed our own.
8595 */
9a7e0b18
PZ
8596 list_for_each_entry_rcu(child, &tg->children, siblings) {
8597 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8598 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8599
9a7e0b18
PZ
8600 if (child == d->tg) {
8601 period = d->rt_period;
8602 runtime = d->rt_runtime;
8603 }
6f505b16 8604
9a7e0b18 8605 sum += to_ratio(period, runtime);
9f0c1e56 8606 }
6f505b16 8607
9a7e0b18
PZ
8608 if (sum > total)
8609 return -EINVAL;
8610
8611 return 0;
6f505b16
PZ
8612}
8613
9a7e0b18 8614static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8615{
9a7e0b18
PZ
8616 struct rt_schedulable_data data = {
8617 .tg = tg,
8618 .rt_period = period,
8619 .rt_runtime = runtime,
8620 };
8621
8622 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8623}
8624
d0b27fa7
PZ
8625static int tg_set_bandwidth(struct task_group *tg,
8626 u64 rt_period, u64 rt_runtime)
6f505b16 8627{
ac086bc2 8628 int i, err = 0;
9f0c1e56 8629
9f0c1e56 8630 mutex_lock(&rt_constraints_mutex);
521f1a24 8631 read_lock(&tasklist_lock);
9a7e0b18
PZ
8632 err = __rt_schedulable(tg, rt_period, rt_runtime);
8633 if (err)
9f0c1e56 8634 goto unlock;
ac086bc2 8635
0986b11b 8636 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8637 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8638 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8639
8640 for_each_possible_cpu(i) {
8641 struct rt_rq *rt_rq = tg->rt_rq[i];
8642
0986b11b 8643 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8644 rt_rq->rt_runtime = rt_runtime;
0986b11b 8645 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8646 }
0986b11b 8647 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8648unlock:
521f1a24 8649 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8650 mutex_unlock(&rt_constraints_mutex);
8651
8652 return err;
6f505b16
PZ
8653}
8654
d0b27fa7
PZ
8655int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8656{
8657 u64 rt_runtime, rt_period;
8658
8659 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8660 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8661 if (rt_runtime_us < 0)
8662 rt_runtime = RUNTIME_INF;
8663
8664 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8665}
8666
9f0c1e56
PZ
8667long sched_group_rt_runtime(struct task_group *tg)
8668{
8669 u64 rt_runtime_us;
8670
d0b27fa7 8671 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8672 return -1;
8673
d0b27fa7 8674 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8675 do_div(rt_runtime_us, NSEC_PER_USEC);
8676 return rt_runtime_us;
8677}
d0b27fa7
PZ
8678
8679int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8680{
8681 u64 rt_runtime, rt_period;
8682
8683 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8684 rt_runtime = tg->rt_bandwidth.rt_runtime;
8685
619b0488
R
8686 if (rt_period == 0)
8687 return -EINVAL;
8688
d0b27fa7
PZ
8689 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8690}
8691
8692long sched_group_rt_period(struct task_group *tg)
8693{
8694 u64 rt_period_us;
8695
8696 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8697 do_div(rt_period_us, NSEC_PER_USEC);
8698 return rt_period_us;
8699}
8700
8701static int sched_rt_global_constraints(void)
8702{
4653f803 8703 u64 runtime, period;
d0b27fa7
PZ
8704 int ret = 0;
8705
ec5d4989
HS
8706 if (sysctl_sched_rt_period <= 0)
8707 return -EINVAL;
8708
4653f803
PZ
8709 runtime = global_rt_runtime();
8710 period = global_rt_period();
8711
8712 /*
8713 * Sanity check on the sysctl variables.
8714 */
8715 if (runtime > period && runtime != RUNTIME_INF)
8716 return -EINVAL;
10b612f4 8717
d0b27fa7 8718 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8719 read_lock(&tasklist_lock);
4653f803 8720 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8721 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8722 mutex_unlock(&rt_constraints_mutex);
8723
8724 return ret;
8725}
54e99124
DG
8726
8727int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8728{
8729 /* Don't accept realtime tasks when there is no way for them to run */
8730 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8731 return 0;
8732
8733 return 1;
8734}
8735
6d6bc0ad 8736#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8737static int sched_rt_global_constraints(void)
8738{
ac086bc2
PZ
8739 unsigned long flags;
8740 int i;
8741
ec5d4989
HS
8742 if (sysctl_sched_rt_period <= 0)
8743 return -EINVAL;
8744
60aa605d
PZ
8745 /*
8746 * There's always some RT tasks in the root group
8747 * -- migration, kstopmachine etc..
8748 */
8749 if (sysctl_sched_rt_runtime == 0)
8750 return -EBUSY;
8751
0986b11b 8752 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8753 for_each_possible_cpu(i) {
8754 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8755
0986b11b 8756 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8757 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8758 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8759 }
0986b11b 8760 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8761
d0b27fa7
PZ
8762 return 0;
8763}
6d6bc0ad 8764#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8765
8766int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8767 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8768 loff_t *ppos)
8769{
8770 int ret;
8771 int old_period, old_runtime;
8772 static DEFINE_MUTEX(mutex);
8773
8774 mutex_lock(&mutex);
8775 old_period = sysctl_sched_rt_period;
8776 old_runtime = sysctl_sched_rt_runtime;
8777
8d65af78 8778 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8779
8780 if (!ret && write) {
8781 ret = sched_rt_global_constraints();
8782 if (ret) {
8783 sysctl_sched_rt_period = old_period;
8784 sysctl_sched_rt_runtime = old_runtime;
8785 } else {
8786 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8787 def_rt_bandwidth.rt_period =
8788 ns_to_ktime(global_rt_period());
8789 }
8790 }
8791 mutex_unlock(&mutex);
8792
8793 return ret;
8794}
68318b8e 8795
052f1dc7 8796#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8797
8798/* return corresponding task_group object of a cgroup */
2b01dfe3 8799static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8800{
2b01dfe3
PM
8801 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8802 struct task_group, css);
68318b8e
SV
8803}
8804
8805static struct cgroup_subsys_state *
2b01dfe3 8806cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8807{
ec7dc8ac 8808 struct task_group *tg, *parent;
68318b8e 8809
2b01dfe3 8810 if (!cgrp->parent) {
68318b8e 8811 /* This is early initialization for the top cgroup */
07e06b01 8812 return &root_task_group.css;
68318b8e
SV
8813 }
8814
ec7dc8ac
DG
8815 parent = cgroup_tg(cgrp->parent);
8816 tg = sched_create_group(parent);
68318b8e
SV
8817 if (IS_ERR(tg))
8818 return ERR_PTR(-ENOMEM);
8819
68318b8e
SV
8820 return &tg->css;
8821}
8822
41a2d6cf
IM
8823static void
8824cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8825{
2b01dfe3 8826 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8827
8828 sched_destroy_group(tg);
8829}
8830
41a2d6cf 8831static int
be367d09 8832cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8833{
b68aa230 8834#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8835 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8836 return -EINVAL;
8837#else
68318b8e
SV
8838 /* We don't support RT-tasks being in separate groups */
8839 if (tsk->sched_class != &fair_sched_class)
8840 return -EINVAL;
b68aa230 8841#endif
be367d09
BB
8842 return 0;
8843}
68318b8e 8844
be367d09
BB
8845static int
8846cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8847 struct task_struct *tsk, bool threadgroup)
8848{
8849 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8850 if (retval)
8851 return retval;
8852 if (threadgroup) {
8853 struct task_struct *c;
8854 rcu_read_lock();
8855 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8856 retval = cpu_cgroup_can_attach_task(cgrp, c);
8857 if (retval) {
8858 rcu_read_unlock();
8859 return retval;
8860 }
8861 }
8862 rcu_read_unlock();
8863 }
68318b8e
SV
8864 return 0;
8865}
8866
8867static void
2b01dfe3 8868cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8869 struct cgroup *old_cont, struct task_struct *tsk,
8870 bool threadgroup)
68318b8e
SV
8871{
8872 sched_move_task(tsk);
be367d09
BB
8873 if (threadgroup) {
8874 struct task_struct *c;
8875 rcu_read_lock();
8876 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8877 sched_move_task(c);
8878 }
8879 rcu_read_unlock();
8880 }
68318b8e
SV
8881}
8882
052f1dc7 8883#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8884static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8885 u64 shareval)
68318b8e 8886{
2b01dfe3 8887 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8888}
8889
f4c753b7 8890static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8891{
2b01dfe3 8892 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8893
8894 return (u64) tg->shares;
8895}
6d6bc0ad 8896#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8897
052f1dc7 8898#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8899static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8900 s64 val)
6f505b16 8901{
06ecb27c 8902 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8903}
8904
06ecb27c 8905static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8906{
06ecb27c 8907 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8908}
d0b27fa7
PZ
8909
8910static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8911 u64 rt_period_us)
8912{
8913 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8914}
8915
8916static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8917{
8918 return sched_group_rt_period(cgroup_tg(cgrp));
8919}
6d6bc0ad 8920#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8921
fe5c7cc2 8922static struct cftype cpu_files[] = {
052f1dc7 8923#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8924 {
8925 .name = "shares",
f4c753b7
PM
8926 .read_u64 = cpu_shares_read_u64,
8927 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8928 },
052f1dc7
PZ
8929#endif
8930#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8931 {
9f0c1e56 8932 .name = "rt_runtime_us",
06ecb27c
PM
8933 .read_s64 = cpu_rt_runtime_read,
8934 .write_s64 = cpu_rt_runtime_write,
6f505b16 8935 },
d0b27fa7
PZ
8936 {
8937 .name = "rt_period_us",
f4c753b7
PM
8938 .read_u64 = cpu_rt_period_read_uint,
8939 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8940 },
052f1dc7 8941#endif
68318b8e
SV
8942};
8943
8944static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8945{
fe5c7cc2 8946 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8947}
8948
8949struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8950 .name = "cpu",
8951 .create = cpu_cgroup_create,
8952 .destroy = cpu_cgroup_destroy,
8953 .can_attach = cpu_cgroup_can_attach,
8954 .attach = cpu_cgroup_attach,
8955 .populate = cpu_cgroup_populate,
8956 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8957 .early_init = 1,
8958};
8959
052f1dc7 8960#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8961
8962#ifdef CONFIG_CGROUP_CPUACCT
8963
8964/*
8965 * CPU accounting code for task groups.
8966 *
8967 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8968 * (balbir@in.ibm.com).
8969 */
8970
934352f2 8971/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8972struct cpuacct {
8973 struct cgroup_subsys_state css;
8974 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8975 u64 __percpu *cpuusage;
ef12fefa 8976 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8977 struct cpuacct *parent;
d842de87
SV
8978};
8979
8980struct cgroup_subsys cpuacct_subsys;
8981
8982/* return cpu accounting group corresponding to this container */
32cd756a 8983static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8984{
32cd756a 8985 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8986 struct cpuacct, css);
8987}
8988
8989/* return cpu accounting group to which this task belongs */
8990static inline struct cpuacct *task_ca(struct task_struct *tsk)
8991{
8992 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8993 struct cpuacct, css);
8994}
8995
8996/* create a new cpu accounting group */
8997static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8998 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8999{
9000 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9001 int i;
d842de87
SV
9002
9003 if (!ca)
ef12fefa 9004 goto out;
d842de87
SV
9005
9006 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9007 if (!ca->cpuusage)
9008 goto out_free_ca;
9009
9010 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9011 if (percpu_counter_init(&ca->cpustat[i], 0))
9012 goto out_free_counters;
d842de87 9013
934352f2
BR
9014 if (cgrp->parent)
9015 ca->parent = cgroup_ca(cgrp->parent);
9016
d842de87 9017 return &ca->css;
ef12fefa
BR
9018
9019out_free_counters:
9020 while (--i >= 0)
9021 percpu_counter_destroy(&ca->cpustat[i]);
9022 free_percpu(ca->cpuusage);
9023out_free_ca:
9024 kfree(ca);
9025out:
9026 return ERR_PTR(-ENOMEM);
d842de87
SV
9027}
9028
9029/* destroy an existing cpu accounting group */
41a2d6cf 9030static void
32cd756a 9031cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9032{
32cd756a 9033 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9034 int i;
d842de87 9035
ef12fefa
BR
9036 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9037 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9038 free_percpu(ca->cpuusage);
9039 kfree(ca);
9040}
9041
720f5498
KC
9042static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9043{
b36128c8 9044 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9045 u64 data;
9046
9047#ifndef CONFIG_64BIT
9048 /*
9049 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9050 */
05fa785c 9051 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9052 data = *cpuusage;
05fa785c 9053 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9054#else
9055 data = *cpuusage;
9056#endif
9057
9058 return data;
9059}
9060
9061static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9062{
b36128c8 9063 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9064
9065#ifndef CONFIG_64BIT
9066 /*
9067 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9068 */
05fa785c 9069 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9070 *cpuusage = val;
05fa785c 9071 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9072#else
9073 *cpuusage = val;
9074#endif
9075}
9076
d842de87 9077/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9078static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9079{
32cd756a 9080 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9081 u64 totalcpuusage = 0;
9082 int i;
9083
720f5498
KC
9084 for_each_present_cpu(i)
9085 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9086
9087 return totalcpuusage;
9088}
9089
0297b803
DG
9090static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9091 u64 reset)
9092{
9093 struct cpuacct *ca = cgroup_ca(cgrp);
9094 int err = 0;
9095 int i;
9096
9097 if (reset) {
9098 err = -EINVAL;
9099 goto out;
9100 }
9101
720f5498
KC
9102 for_each_present_cpu(i)
9103 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9104
0297b803
DG
9105out:
9106 return err;
9107}
9108
e9515c3c
KC
9109static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9110 struct seq_file *m)
9111{
9112 struct cpuacct *ca = cgroup_ca(cgroup);
9113 u64 percpu;
9114 int i;
9115
9116 for_each_present_cpu(i) {
9117 percpu = cpuacct_cpuusage_read(ca, i);
9118 seq_printf(m, "%llu ", (unsigned long long) percpu);
9119 }
9120 seq_printf(m, "\n");
9121 return 0;
9122}
9123
ef12fefa
BR
9124static const char *cpuacct_stat_desc[] = {
9125 [CPUACCT_STAT_USER] = "user",
9126 [CPUACCT_STAT_SYSTEM] = "system",
9127};
9128
9129static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9130 struct cgroup_map_cb *cb)
9131{
9132 struct cpuacct *ca = cgroup_ca(cgrp);
9133 int i;
9134
9135 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9136 s64 val = percpu_counter_read(&ca->cpustat[i]);
9137 val = cputime64_to_clock_t(val);
9138 cb->fill(cb, cpuacct_stat_desc[i], val);
9139 }
9140 return 0;
9141}
9142
d842de87
SV
9143static struct cftype files[] = {
9144 {
9145 .name = "usage",
f4c753b7
PM
9146 .read_u64 = cpuusage_read,
9147 .write_u64 = cpuusage_write,
d842de87 9148 },
e9515c3c
KC
9149 {
9150 .name = "usage_percpu",
9151 .read_seq_string = cpuacct_percpu_seq_read,
9152 },
ef12fefa
BR
9153 {
9154 .name = "stat",
9155 .read_map = cpuacct_stats_show,
9156 },
d842de87
SV
9157};
9158
32cd756a 9159static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9160{
32cd756a 9161 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9162}
9163
9164/*
9165 * charge this task's execution time to its accounting group.
9166 *
9167 * called with rq->lock held.
9168 */
9169static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9170{
9171 struct cpuacct *ca;
934352f2 9172 int cpu;
d842de87 9173
c40c6f85 9174 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9175 return;
9176
934352f2 9177 cpu = task_cpu(tsk);
a18b83b7
BR
9178
9179 rcu_read_lock();
9180
d842de87 9181 ca = task_ca(tsk);
d842de87 9182
934352f2 9183 for (; ca; ca = ca->parent) {
b36128c8 9184 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9185 *cpuusage += cputime;
9186 }
a18b83b7
BR
9187
9188 rcu_read_unlock();
d842de87
SV
9189}
9190
fa535a77
AB
9191/*
9192 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9193 * in cputime_t units. As a result, cpuacct_update_stats calls
9194 * percpu_counter_add with values large enough to always overflow the
9195 * per cpu batch limit causing bad SMP scalability.
9196 *
9197 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9198 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9199 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9200 */
9201#ifdef CONFIG_SMP
9202#define CPUACCT_BATCH \
9203 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9204#else
9205#define CPUACCT_BATCH 0
9206#endif
9207
ef12fefa
BR
9208/*
9209 * Charge the system/user time to the task's accounting group.
9210 */
9211static void cpuacct_update_stats(struct task_struct *tsk,
9212 enum cpuacct_stat_index idx, cputime_t val)
9213{
9214 struct cpuacct *ca;
fa535a77 9215 int batch = CPUACCT_BATCH;
ef12fefa
BR
9216
9217 if (unlikely(!cpuacct_subsys.active))
9218 return;
9219
9220 rcu_read_lock();
9221 ca = task_ca(tsk);
9222
9223 do {
fa535a77 9224 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9225 ca = ca->parent;
9226 } while (ca);
9227 rcu_read_unlock();
9228}
9229
d842de87
SV
9230struct cgroup_subsys cpuacct_subsys = {
9231 .name = "cpuacct",
9232 .create = cpuacct_create,
9233 .destroy = cpuacct_destroy,
9234 .populate = cpuacct_populate,
9235 .subsys_id = cpuacct_subsys_id,
9236};
9237#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9238
This page took 2.280414 seconds and 5 git commands to generate.