sched: Fix switch_from_fair()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
335d7afb 78#include <asm/mutex.h>
1da177e4 79
6e0534f2 80#include "sched_cpupri.h"
21aa9af0 81#include "workqueue_sched.h"
5091faa4 82#include "sched_autogroup.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
e05606d3
IM
126static inline int rt_policy(int policy)
127{
3f33a7ce 128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
129 return 1;
130 return 0;
131}
132
133static inline int task_has_rt_policy(struct task_struct *p)
134{
135 return rt_policy(p->policy);
136}
137
1da177e4 138/*
6aa645ea 139 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 140 */
6aa645ea
IM
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
d0b27fa7 146struct rt_bandwidth {
ea736ed5 147 /* nests inside the rq lock: */
0986b11b 148 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
d0b27fa7
PZ
152};
153
154static struct rt_bandwidth def_rt_bandwidth;
155
156static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159{
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177}
178
179static
180void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181{
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
0986b11b 185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 186
d0b27fa7
PZ
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
190}
191
c8bfff6d
KH
192static inline int rt_bandwidth_enabled(void)
193{
194 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
195}
196
197static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198{
199 ktime_t now;
200
cac64d00 201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
0986b11b 207 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 208 for (;;) {
7f1e2ca9
PZ
209 unsigned long delta;
210 ktime_t soft, hard;
211
d0b27fa7
PZ
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 222 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 223 }
0986b11b 224 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
225}
226
227#ifdef CONFIG_RT_GROUP_SCHED
228static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229{
230 hrtimer_cancel(&rt_b->rt_period_timer);
231}
232#endif
233
712555ee
HC
234/*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238static DEFINE_MUTEX(sched_domains_mutex);
239
7c941438 240#ifdef CONFIG_CGROUP_SCHED
29f59db3 241
68318b8e
SV
242#include <linux/cgroup.h>
243
29f59db3
SV
244struct cfs_rq;
245
6f505b16
PZ
246static LIST_HEAD(task_groups);
247
29f59db3 248/* task group related information */
4cf86d77 249struct task_group {
68318b8e 250 struct cgroup_subsys_state css;
6c415b92 251
052f1dc7 252#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
2069dd75
PZ
258
259 atomic_t load_weight;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
5091faa4
MG
275
276#ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278#endif
29f59db3
SV
279};
280
3d4b47b4 281/* task_group_lock serializes the addition/removal of task groups */
8ed36996 282static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 283
e9036b36
CG
284#ifdef CONFIG_FAIR_GROUP_SCHED
285
07e06b01 286# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 287
cb4ad1ff 288/*
2e084786
LJ
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
cb4ad1ff
MX
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
18d95a28 296#define MIN_SHARES 2
2e084786 297#define MAX_SHARES (1UL << 18)
18d95a28 298
07e06b01 299static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
300#endif
301
29f59db3 302/* Default task group.
3a252015 303 * Every task in system belong to this group at bootup.
29f59db3 304 */
07e06b01 305struct task_group root_task_group;
29f59db3 306
7c941438 307#endif /* CONFIG_CGROUP_SCHED */
29f59db3 308
6aa645ea
IM
309/* CFS-related fields in a runqueue */
310struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
6aa645ea 314 u64 exec_clock;
e9acbff6 315 u64 min_vruntime;
6aa645ea
IM
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
4a55bd5e
PZ
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
4793241b 327 struct sched_entity *curr, *next, *last;
ddc97297 328
5ac5c4d6 329 unsigned int nr_spread_over;
ddc97297 330
62160e3f 331#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
41a2d6cf
IM
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
3d4b47b4 342 int on_list;
41a2d6cf
IM
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
345
346#ifdef CONFIG_SMP
c09595f6 347 /*
c8cba857 348 * the part of load.weight contributed by tasks
c09595f6 349 */
c8cba857 350 unsigned long task_weight;
c09595f6 351
c8cba857
PZ
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
c09595f6 359
c8cba857 360 /*
3b3d190e
PT
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 366 */
2069dd75
PZ
367 u64 load_avg;
368 u64 load_period;
3b3d190e 369 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 370
2069dd75 371 unsigned long load_contribution;
c09595f6 372#endif
6aa645ea
IM
373#endif
374};
1da177e4 375
6aa645ea
IM
376/* Real-Time classes' related field in a runqueue: */
377struct rt_rq {
378 struct rt_prio_array active;
63489e45 379 unsigned long rt_nr_running;
052f1dc7 380#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
381 struct {
382 int curr; /* highest queued rt task prio */
398a153b 383#ifdef CONFIG_SMP
e864c499 384 int next; /* next highest */
398a153b 385#endif
e864c499 386 } highest_prio;
6f505b16 387#endif
fa85ae24 388#ifdef CONFIG_SMP
73fe6aae 389 unsigned long rt_nr_migratory;
a1ba4d8b 390 unsigned long rt_nr_total;
a22d7fc1 391 int overloaded;
917b627d 392 struct plist_head pushable_tasks;
fa85ae24 393#endif
6f505b16 394 int rt_throttled;
fa85ae24 395 u64 rt_time;
ac086bc2 396 u64 rt_runtime;
ea736ed5 397 /* Nests inside the rq lock: */
0986b11b 398 raw_spinlock_t rt_runtime_lock;
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
401 unsigned long rt_nr_boosted;
402
6f505b16
PZ
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
6f505b16 406#endif
6aa645ea
IM
407};
408
57d885fe
GH
409#ifdef CONFIG_SMP
410
411/*
412 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
57d885fe
GH
418 */
419struct root_domain {
420 atomic_t refcount;
c6c4927b
RR
421 cpumask_var_t span;
422 cpumask_var_t online;
637f5085 423
0eab9146 424 /*
637f5085
GH
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
c6c4927b 428 cpumask_var_t rto_mask;
0eab9146 429 atomic_t rto_count;
6e0534f2 430 struct cpupri cpupri;
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
ed2d372c 439#endif /* CONFIG_SMP */
57d885fe 440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 459 unsigned long last_load_update_tick;
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
83cd4fe2 462 unsigned char nohz_balance_kick;
46cb4b7c 463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
34f971f6 490 struct task_struct *curr, *idle, *stop;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
305e6835 495 u64 clock_task;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
aa483808
VP
523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525#endif
526
dce48a84
TG
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
8f4d37ec 531#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
532#ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535#endif
8f4d37ec
PZ
536 struct hrtimer hrtick_timer;
537#endif
538
1da177e4
LT
539#ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
9c2c4802
KC
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
544
545 /* sys_sched_yield() stats */
480b9434 546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
5091faa4 606 struct task_group *tg;
dc61b1d6
PZ
607 struct cgroup_subsys_state *css;
608
068c5cc5
PZ
609 if (p->flags & PF_EXITING)
610 return &root_task_group;
611
dc61b1d6
PZ
612 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
613 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
614 tg = container_of(css, struct task_group, css);
615
616 return autogroup_task_group(p, tg);
dc61b1d6
PZ
617}
618
619/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621{
622#ifdef CONFIG_FAIR_GROUP_SCHED
623 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
624 p->se.parent = task_group(p)->se[cpu];
625#endif
626
627#ifdef CONFIG_RT_GROUP_SCHED
628 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
629 p->rt.parent = task_group(p)->rt_se[cpu];
630#endif
631}
632
633#else /* CONFIG_CGROUP_SCHED */
634
635static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
636static inline struct task_group *task_group(struct task_struct *p)
637{
638 return NULL;
639}
640
641#endif /* CONFIG_CGROUP_SCHED */
642
fe44d621 643static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 644
fe44d621 645static void update_rq_clock(struct rq *rq)
3e51f33f 646{
fe44d621 647 s64 delta;
305e6835 648
f26f9aff
MG
649 if (rq->skip_clock_update)
650 return;
aa483808 651
fe44d621
PZ
652 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 rq->clock += delta;
654 update_rq_clock_task(rq, delta);
3e51f33f
PZ
655}
656
bf5c91ba
IM
657/*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660#ifdef CONFIG_SCHED_DEBUG
661# define const_debug __read_mostly
662#else
663# define const_debug static const
664#endif
665
017730c1
IM
666/**
667 * runqueue_is_locked
e17b38bf 668 * @cpu: the processor in question.
017730c1
IM
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
89f19f04 674int runqueue_is_locked(int cpu)
017730c1 675{
05fa785c 676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
7740191c 731 char *cmp;
f00b45c1
PZ
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
7740191c 742 cmp = strstrip(buf);
f00b45c1 743
524429c3 744 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
7740191c 750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
42994724 762 *ppos += cnt;
f00b45c1
PZ
763
764 return cnt;
765}
766
34f3a814
LZ
767static int sched_feat_open(struct inode *inode, struct file *filp)
768{
769 return single_open(filp, sched_feat_show, NULL);
770}
771
828c0950 772static const struct file_operations sched_feat_fops = {
34f3a814
LZ
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
f00b45c1
PZ
778};
779
780static __init int sched_init_debug(void)
781{
f00b45c1
PZ
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786}
787late_initcall(sched_init_debug);
788
789#endif
790
791#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 792
b82d9fdd
PZ
793/*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299 916/*
65cc8e48
PZ
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
0970d299
PZ
919 */
920static inline int task_is_waking(struct task_struct *p)
921{
0017d735 922 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
923}
924
b29739f9
IM
925/*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
3a5c359a 934 for (;;) {
0970d299 935 rq = task_rq(p);
05fa785c 936 raw_spin_lock(&rq->lock);
65cc8e48 937 if (likely(rq == task_rq(p)))
3a5c359a 938 return rq;
05fa785c 939 raw_spin_unlock(&rq->lock);
b29739f9 940 }
b29739f9
IM
941}
942
1da177e4
LT
943/*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 945 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
946 * explicitly disabling preemption.
947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
949 __acquires(rq->lock)
950{
70b97a7f 951 struct rq *rq;
1da177e4 952
3a5c359a
AK
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
05fa785c 956 raw_spin_lock(&rq->lock);
65cc8e48 957 if (likely(rq == task_rq(p)))
3a5c359a 958 return rq;
05fa785c 959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 960 }
1da177e4
LT
961}
962
a9957449 963static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
964 __releases(rq->lock)
965{
05fa785c 966 raw_spin_unlock(&rq->lock);
b29739f9
IM
967}
968
70b97a7f 969static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
970 __releases(rq->lock)
971{
05fa785c 972 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
973}
974
1da177e4 975/*
cc2a73b5 976 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 977 */
a9957449 978static struct rq *this_rq_lock(void)
1da177e4
LT
979 __acquires(rq->lock)
980{
70b97a7f 981 struct rq *rq;
1da177e4
LT
982
983 local_irq_disable();
984 rq = this_rq();
05fa785c 985 raw_spin_lock(&rq->lock);
1da177e4
LT
986
987 return rq;
988}
989
8f4d37ec
PZ
990#ifdef CONFIG_SCHED_HRTICK
991/*
992 * Use HR-timers to deliver accurate preemption points.
993 *
994 * Its all a bit involved since we cannot program an hrt while holding the
995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * reschedule event.
997 *
998 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * rq->lock.
1000 */
8f4d37ec
PZ
1001
1002/*
1003 * Use hrtick when:
1004 * - enabled by features
1005 * - hrtimer is actually high res
1006 */
1007static inline int hrtick_enabled(struct rq *rq)
1008{
1009 if (!sched_feat(HRTICK))
1010 return 0;
ba42059f 1011 if (!cpu_active(cpu_of(rq)))
b328ca18 1012 return 0;
8f4d37ec
PZ
1013 return hrtimer_is_hres_active(&rq->hrtick_timer);
1014}
1015
8f4d37ec
PZ
1016static void hrtick_clear(struct rq *rq)
1017{
1018 if (hrtimer_active(&rq->hrtick_timer))
1019 hrtimer_cancel(&rq->hrtick_timer);
1020}
1021
8f4d37ec
PZ
1022/*
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1025 */
1026static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027{
1028 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
05fa785c 1032 raw_spin_lock(&rq->lock);
3e51f33f 1033 update_rq_clock(rq);
8f4d37ec 1034 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1035 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1036
1037 return HRTIMER_NORESTART;
1038}
1039
95e904c7 1040#ifdef CONFIG_SMP
31656519
PZ
1041/*
1042 * called from hardirq (IPI) context
1043 */
1044static void __hrtick_start(void *arg)
b328ca18 1045{
31656519 1046 struct rq *rq = arg;
b328ca18 1047
05fa785c 1048 raw_spin_lock(&rq->lock);
31656519
PZ
1049 hrtimer_restart(&rq->hrtick_timer);
1050 rq->hrtick_csd_pending = 0;
05fa785c 1051 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1052}
1053
31656519
PZ
1054/*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1060{
31656519
PZ
1061 struct hrtimer *timer = &rq->hrtick_timer;
1062 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1063
cc584b21 1064 hrtimer_set_expires(timer, time);
31656519
PZ
1065
1066 if (rq == this_rq()) {
1067 hrtimer_restart(timer);
1068 } else if (!rq->hrtick_csd_pending) {
6e275637 1069 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1070 rq->hrtick_csd_pending = 1;
1071 }
b328ca18
PZ
1072}
1073
1074static int
1075hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076{
1077 int cpu = (int)(long)hcpu;
1078
1079 switch (action) {
1080 case CPU_UP_CANCELED:
1081 case CPU_UP_CANCELED_FROZEN:
1082 case CPU_DOWN_PREPARE:
1083 case CPU_DOWN_PREPARE_FROZEN:
1084 case CPU_DEAD:
1085 case CPU_DEAD_FROZEN:
31656519 1086 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1087 return NOTIFY_OK;
1088 }
1089
1090 return NOTIFY_DONE;
1091}
1092
fa748203 1093static __init void init_hrtick(void)
b328ca18
PZ
1094{
1095 hotcpu_notifier(hotplug_hrtick, 0);
1096}
31656519
PZ
1097#else
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
1104{
7f1e2ca9 1105 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1106 HRTIMER_MODE_REL_PINNED, 0);
31656519 1107}
b328ca18 1108
006c75f1 1109static inline void init_hrtick(void)
8f4d37ec 1110{
8f4d37ec 1111}
31656519 1112#endif /* CONFIG_SMP */
8f4d37ec 1113
31656519 1114static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1115{
31656519
PZ
1116#ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
8f4d37ec 1118
31656519
PZ
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122#endif
8f4d37ec 1123
31656519
PZ
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
8f4d37ec 1126}
006c75f1 1127#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1128static inline void hrtick_clear(struct rq *rq)
1129{
1130}
1131
8f4d37ec
PZ
1132static inline void init_rq_hrtick(struct rq *rq)
1133{
1134}
1135
b328ca18
PZ
1136static inline void init_hrtick(void)
1137{
1138}
006c75f1 1139#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1140
c24d20db
IM
1141/*
1142 * resched_task - mark a task 'to be rescheduled now'.
1143 *
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1146 * the target CPU.
1147 */
1148#ifdef CONFIG_SMP
1149
1150#ifndef tsk_is_polling
1151#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152#endif
1153
31656519 1154static void resched_task(struct task_struct *p)
c24d20db
IM
1155{
1156 int cpu;
1157
05fa785c 1158 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1159
5ed0cec0 1160 if (test_tsk_need_resched(p))
c24d20db
IM
1161 return;
1162
5ed0cec0 1163 set_tsk_need_resched(p);
c24d20db
IM
1164
1165 cpu = task_cpu(p);
1166 if (cpu == smp_processor_id())
1167 return;
1168
1169 /* NEED_RESCHED must be visible before we test polling */
1170 smp_mb();
1171 if (!tsk_is_polling(p))
1172 smp_send_reschedule(cpu);
1173}
1174
1175static void resched_cpu(int cpu)
1176{
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long flags;
1179
05fa785c 1180 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1181 return;
1182 resched_task(cpu_curr(cpu));
05fa785c 1183 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1184}
06d8308c
TG
1185
1186#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1187/*
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu. This is good for power-savings.
1190 *
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194 */
1195int get_nohz_timer_target(void)
1196{
1197 int cpu = smp_processor_id();
1198 int i;
1199 struct sched_domain *sd;
1200
1201 for_each_domain(cpu, sd) {
1202 for_each_cpu(i, sched_domain_span(sd))
1203 if (!idle_cpu(i))
1204 return i;
1205 }
1206 return cpu;
1207}
06d8308c
TG
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
5ed0cec0 1240 set_tsk_need_resched(rq->idle);
06d8308c
TG
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
39c0cbe2 1247
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1260 /*
1261 * Inline assembly required to prevent the compiler
1262 * optimising this loop into a divmod call.
1263 * See __iter_div_u64_rem() for another example of this.
1264 */
1265 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269}
1270
1271static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272{
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275}
1276
6d6bc0ad 1277#else /* !CONFIG_SMP */
31656519 1278static void resched_task(struct task_struct *p)
c24d20db 1279{
05fa785c 1280 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1281 set_tsk_need_resched(p);
c24d20db 1282}
e9e9250b
PZ
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286}
da2b71ed
SS
1287
1288static void sched_avg_update(struct rq *rq)
1289{
1290}
6d6bc0ad 1291#endif /* CONFIG_SMP */
c24d20db 1292
45bf76df
IM
1293#if BITS_PER_LONG == 32
1294# define WMULT_CONST (~0UL)
1295#else
1296# define WMULT_CONST (1UL << 32)
1297#endif
1298
1299#define WMULT_SHIFT 32
1300
194081eb
IM
1301/*
1302 * Shift right and round:
1303 */
cf2ab469 1304#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1305
a7be37ac
PZ
1306/*
1307 * delta *= weight / lw
1308 */
cb1c4fc9 1309static unsigned long
45bf76df
IM
1310calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311 struct load_weight *lw)
1312{
1313 u64 tmp;
1314
7a232e03
LJ
1315 if (!lw->inv_weight) {
1316 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1;
1318 else
1319 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320 / (lw->weight+1);
1321 }
45bf76df
IM
1322
1323 tmp = (u64)delta_exec * weight;
1324 /*
1325 * Check whether we'd overflow the 64-bit multiplication:
1326 */
194081eb 1327 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1328 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1329 WMULT_SHIFT/2);
1330 else
cf2ab469 1331 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1332
ecf691da 1333 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1337{
1338 lw->weight += inc;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
1091985b 1342static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1343{
1344 lw->weight -= dec;
e89996ae 1345 lw->inv_weight = 0;
45bf76df
IM
1346}
1347
2069dd75
PZ
1348static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349{
1350 lw->weight = w;
1351 lw->inv_weight = 0;
1352}
1353
2dd73a4f
PW
1354/*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
cce7ade8
PZ
1363#define WEIGHT_IDLEPRIO 3
1364#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1365
1366/*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
dd41f596
IM
1377 */
1378static const int prio_to_weight[40] = {
254753dc
IM
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1387};
1388
5714d2de
IM
1389/*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
dd41f596 1396static const u32 prio_to_wmult[40] = {
254753dc
IM
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1405};
2dd73a4f 1406
ef12fefa
BR
1407/* Time spent by the tasks of the cpu accounting group executing in ... */
1408enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413};
1414
d842de87
SV
1415#ifdef CONFIG_CGROUP_CPUACCT
1416static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1417static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1419#else
1420static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1421static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1423#endif
1424
18d95a28
PZ
1425static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426{
1427 update_load_add(&rq->load, load);
1428}
1429
1430static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_sub(&rq->load, load);
1433}
1434
7940ca36 1435#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1436typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1437
1438/*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
eb755805 1442static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
eb755805 1445 int ret;
c09595f6
PZ
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449down:
eb755805
PZ
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
c09595f6
PZ
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457up:
1458 continue;
1459 }
eb755805
PZ
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
eb755805 1468out_unlock:
c09595f6 1469 rcu_read_unlock();
eb755805
PZ
1470
1471 return ret;
c09595f6
PZ
1472}
1473
eb755805
PZ
1474static int tg_nop(struct task_group *tg, void *data)
1475{
1476 return 0;
c09595f6 1477}
eb755805
PZ
1478#endif
1479
1480#ifdef CONFIG_SMP
f5f08f39
PZ
1481/* Used instead of source_load when we know the type == 0 */
1482static unsigned long weighted_cpuload(const int cpu)
1483{
1484 return cpu_rq(cpu)->load.weight;
1485}
1486
1487/*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494static unsigned long source_load(int cpu, int type)
1495{
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503}
1504
1505/*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509static unsigned long target_load(int cpu, int type)
1510{
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518}
1519
ae154be1
PZ
1520static unsigned long power_of(int cpu)
1521{
e51fd5e2 1522 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1523}
1524
eb755805
PZ
1525static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527static unsigned long cpu_avg_load_per_task(int cpu)
1528{
1529 struct rq *rq = cpu_rq(cpu);
af6d596f 1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1531
4cd42620
SR
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1534 else
1535 rq->avg_load_per_task = 0;
eb755805
PZ
1536
1537 return rq->avg_load_per_task;
1538}
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1541
c09595f6 1542/*
c8cba857
PZ
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
c09595f6 1546 */
eb755805 1547static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1548{
c8cba857 1549 unsigned long load;
eb755805 1550 long cpu = (long)data;
c09595f6 1551
c8cba857
PZ
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1556 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
c09595f6 1559
c8cba857 1560 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1561
eb755805 1562 return 0;
c09595f6
PZ
1563}
1564
eb755805 1565static void update_h_load(long cpu)
c09595f6 1566{
eb755805 1567 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1568}
1569
18d95a28
PZ
1570#endif
1571
8f45e2b5
GH
1572#ifdef CONFIG_PREEMPT
1573
b78bb868
PZ
1574static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
70574a99 1576/*
8f45e2b5
GH
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations. This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below. However, it
1582 * also adds more overhead and therefore may reduce throughput.
70574a99 1583 */
8f45e2b5
GH
1584static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585 __releases(this_rq->lock)
1586 __acquires(busiest->lock)
1587 __acquires(this_rq->lock)
1588{
05fa785c 1589 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1590 double_rq_lock(this_rq, busiest);
1591
1592 return 1;
1593}
1594
1595#else
1596/*
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry. This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1602 */
1603static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1604 __releases(this_rq->lock)
1605 __acquires(busiest->lock)
1606 __acquires(this_rq->lock)
1607{
1608 int ret = 0;
1609
05fa785c 1610 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1611 if (busiest < this_rq) {
05fa785c
TG
1612 raw_spin_unlock(&this_rq->lock);
1613 raw_spin_lock(&busiest->lock);
1614 raw_spin_lock_nested(&this_rq->lock,
1615 SINGLE_DEPTH_NESTING);
70574a99
AD
1616 ret = 1;
1617 } else
05fa785c
TG
1618 raw_spin_lock_nested(&busiest->lock,
1619 SINGLE_DEPTH_NESTING);
70574a99
AD
1620 }
1621 return ret;
1622}
1623
8f45e2b5
GH
1624#endif /* CONFIG_PREEMPT */
1625
1626/*
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 */
1629static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630{
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
05fa785c 1633 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1634 BUG_ON(1);
1635 }
1636
1637 return _double_lock_balance(this_rq, busiest);
1638}
1639
70574a99
AD
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
05fa785c 1643 raw_spin_unlock(&busiest->lock);
70574a99
AD
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
1e3c88bd
PZ
1646
1647/*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656{
1657 BUG_ON(!irqs_disabled());
1658 if (rq1 == rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661 } else {
1662 if (rq1 < rq2) {
1663 raw_spin_lock(&rq1->lock);
1664 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665 } else {
1666 raw_spin_lock(&rq2->lock);
1667 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668 }
1669 }
1e3c88bd
PZ
1670}
1671
1672/*
1673 * double_rq_unlock - safely unlock two runqueues
1674 *
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1677 */
1678static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679 __releases(rq1->lock)
1680 __releases(rq2->lock)
1681{
1682 raw_spin_unlock(&rq1->lock);
1683 if (rq1 != rq2)
1684 raw_spin_unlock(&rq2->lock);
1685 else
1686 __release(rq2->lock);
1687}
1688
18d95a28
PZ
1689#endif
1690
74f5187a 1691static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1692static void update_sysctl(void);
acb4a848 1693static int get_update_sysctl_factor(void);
fdf3e95d 1694static void update_cpu_load(struct rq *this_rq);
dce48a84 1695
cd29fe6f
PZ
1696static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1697{
1698 set_task_rq(p, cpu);
1699#ifdef CONFIG_SMP
1700 /*
1701 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1702 * successfuly executed on another CPU. We must ensure that updates of
1703 * per-task data have been completed by this moment.
1704 */
1705 smp_wmb();
1706 task_thread_info(p)->cpu = cpu;
1707#endif
1708}
dce48a84 1709
1e3c88bd 1710static const struct sched_class rt_sched_class;
dd41f596 1711
34f971f6 1712#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1713#define for_each_class(class) \
1714 for (class = sched_class_highest; class; class = class->next)
dd41f596 1715
1e3c88bd
PZ
1716#include "sched_stats.h"
1717
c09595f6 1718static void inc_nr_running(struct rq *rq)
9c217245
IM
1719{
1720 rq->nr_running++;
9c217245
IM
1721}
1722
c09595f6 1723static void dec_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running--;
9c217245
IM
1726}
1727
45bf76df
IM
1728static void set_load_weight(struct task_struct *p)
1729{
dd41f596
IM
1730 /*
1731 * SCHED_IDLE tasks get minimal weight:
1732 */
1733 if (p->policy == SCHED_IDLE) {
1734 p->se.load.weight = WEIGHT_IDLEPRIO;
1735 p->se.load.inv_weight = WMULT_IDLEPRIO;
1736 return;
1737 }
71f8bd46 1738
dd41f596
IM
1739 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1741}
1742
371fd7e7 1743static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1744{
a64692a3 1745 update_rq_clock(rq);
dd41f596 1746 sched_info_queued(p);
371fd7e7 1747 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1748 p->se.on_rq = 1;
71f8bd46
IM
1749}
1750
371fd7e7 1751static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1752{
a64692a3 1753 update_rq_clock(rq);
46ac22ba 1754 sched_info_dequeued(p);
371fd7e7 1755 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1756 p->se.on_rq = 0;
71f8bd46
IM
1757}
1758
1e3c88bd
PZ
1759/*
1760 * activate_task - move a task to the runqueue.
1761 */
371fd7e7 1762static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1763{
1764 if (task_contributes_to_load(p))
1765 rq->nr_uninterruptible--;
1766
371fd7e7 1767 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1768 inc_nr_running(rq);
1769}
1770
1771/*
1772 * deactivate_task - remove a task from the runqueue.
1773 */
371fd7e7 1774static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1775{
1776 if (task_contributes_to_load(p))
1777 rq->nr_uninterruptible++;
1778
371fd7e7 1779 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1780 dec_nr_running(rq);
1781}
1782
b52bfee4
VP
1783#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1784
305e6835
VP
1785/*
1786 * There are no locks covering percpu hardirq/softirq time.
1787 * They are only modified in account_system_vtime, on corresponding CPU
1788 * with interrupts disabled. So, writes are safe.
1789 * They are read and saved off onto struct rq in update_rq_clock().
1790 * This may result in other CPU reading this CPU's irq time and can
1791 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1792 * or new value with a side effect of accounting a slice of irq time to wrong
1793 * task when irq is in progress while we read rq->clock. That is a worthy
1794 * compromise in place of having locks on each irq in account_system_time.
305e6835 1795 */
b52bfee4
VP
1796static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1797static DEFINE_PER_CPU(u64, cpu_softirq_time);
1798
1799static DEFINE_PER_CPU(u64, irq_start_time);
1800static int sched_clock_irqtime;
1801
1802void enable_sched_clock_irqtime(void)
1803{
1804 sched_clock_irqtime = 1;
1805}
1806
1807void disable_sched_clock_irqtime(void)
1808{
1809 sched_clock_irqtime = 0;
1810}
1811
8e92c201
PZ
1812#ifndef CONFIG_64BIT
1813static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1814
1815static inline void irq_time_write_begin(void)
1816{
1817 __this_cpu_inc(irq_time_seq.sequence);
1818 smp_wmb();
1819}
1820
1821static inline void irq_time_write_end(void)
1822{
1823 smp_wmb();
1824 __this_cpu_inc(irq_time_seq.sequence);
1825}
1826
1827static inline u64 irq_time_read(int cpu)
1828{
1829 u64 irq_time;
1830 unsigned seq;
1831
1832 do {
1833 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1834 irq_time = per_cpu(cpu_softirq_time, cpu) +
1835 per_cpu(cpu_hardirq_time, cpu);
1836 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1837
1838 return irq_time;
1839}
1840#else /* CONFIG_64BIT */
1841static inline void irq_time_write_begin(void)
1842{
1843}
1844
1845static inline void irq_time_write_end(void)
1846{
1847}
1848
1849static inline u64 irq_time_read(int cpu)
305e6835 1850{
305e6835
VP
1851 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1852}
8e92c201 1853#endif /* CONFIG_64BIT */
305e6835 1854
fe44d621
PZ
1855/*
1856 * Called before incrementing preempt_count on {soft,}irq_enter
1857 * and before decrementing preempt_count on {soft,}irq_exit.
1858 */
b52bfee4
VP
1859void account_system_vtime(struct task_struct *curr)
1860{
1861 unsigned long flags;
fe44d621 1862 s64 delta;
b52bfee4 1863 int cpu;
b52bfee4
VP
1864
1865 if (!sched_clock_irqtime)
1866 return;
1867
1868 local_irq_save(flags);
1869
b52bfee4 1870 cpu = smp_processor_id();
fe44d621
PZ
1871 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1872 __this_cpu_add(irq_start_time, delta);
1873
8e92c201 1874 irq_time_write_begin();
b52bfee4
VP
1875 /*
1876 * We do not account for softirq time from ksoftirqd here.
1877 * We want to continue accounting softirq time to ksoftirqd thread
1878 * in that case, so as not to confuse scheduler with a special task
1879 * that do not consume any time, but still wants to run.
1880 */
1881 if (hardirq_count())
fe44d621 1882 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1883 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1884 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1885
8e92c201 1886 irq_time_write_end();
b52bfee4
VP
1887 local_irq_restore(flags);
1888}
b7dadc38 1889EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1890
fe44d621 1891static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1892{
fe44d621
PZ
1893 s64 irq_delta;
1894
8e92c201 1895 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1896
1897 /*
1898 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1899 * this case when a previous update_rq_clock() happened inside a
1900 * {soft,}irq region.
1901 *
1902 * When this happens, we stop ->clock_task and only update the
1903 * prev_irq_time stamp to account for the part that fit, so that a next
1904 * update will consume the rest. This ensures ->clock_task is
1905 * monotonic.
1906 *
1907 * It does however cause some slight miss-attribution of {soft,}irq
1908 * time, a more accurate solution would be to update the irq_time using
1909 * the current rq->clock timestamp, except that would require using
1910 * atomic ops.
1911 */
1912 if (irq_delta > delta)
1913 irq_delta = delta;
1914
1915 rq->prev_irq_time += irq_delta;
1916 delta -= irq_delta;
1917 rq->clock_task += delta;
1918
1919 if (irq_delta && sched_feat(NONIRQ_POWER))
1920 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1921}
1922
abb74cef
VP
1923static int irqtime_account_hi_update(void)
1924{
1925 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1926 unsigned long flags;
1927 u64 latest_ns;
1928 int ret = 0;
1929
1930 local_irq_save(flags);
1931 latest_ns = this_cpu_read(cpu_hardirq_time);
1932 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1933 ret = 1;
1934 local_irq_restore(flags);
1935 return ret;
1936}
1937
1938static int irqtime_account_si_update(void)
1939{
1940 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1941 unsigned long flags;
1942 u64 latest_ns;
1943 int ret = 0;
1944
1945 local_irq_save(flags);
1946 latest_ns = this_cpu_read(cpu_softirq_time);
1947 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1948 ret = 1;
1949 local_irq_restore(flags);
1950 return ret;
1951}
1952
fe44d621 1953#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1954
abb74cef
VP
1955#define sched_clock_irqtime (0)
1956
fe44d621 1957static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1958{
fe44d621 1959 rq->clock_task += delta;
305e6835
VP
1960}
1961
fe44d621 1962#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1963
1e3c88bd
PZ
1964#include "sched_idletask.c"
1965#include "sched_fair.c"
1966#include "sched_rt.c"
5091faa4 1967#include "sched_autogroup.c"
34f971f6 1968#include "sched_stoptask.c"
1e3c88bd
PZ
1969#ifdef CONFIG_SCHED_DEBUG
1970# include "sched_debug.c"
1971#endif
1972
34f971f6
PZ
1973void sched_set_stop_task(int cpu, struct task_struct *stop)
1974{
1975 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1976 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1977
1978 if (stop) {
1979 /*
1980 * Make it appear like a SCHED_FIFO task, its something
1981 * userspace knows about and won't get confused about.
1982 *
1983 * Also, it will make PI more or less work without too
1984 * much confusion -- but then, stop work should not
1985 * rely on PI working anyway.
1986 */
1987 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1988
1989 stop->sched_class = &stop_sched_class;
1990 }
1991
1992 cpu_rq(cpu)->stop = stop;
1993
1994 if (old_stop) {
1995 /*
1996 * Reset it back to a normal scheduling class so that
1997 * it can die in pieces.
1998 */
1999 old_stop->sched_class = &rt_sched_class;
2000 }
2001}
2002
14531189 2003/*
dd41f596 2004 * __normal_prio - return the priority that is based on the static prio
14531189 2005 */
14531189
IM
2006static inline int __normal_prio(struct task_struct *p)
2007{
dd41f596 2008 return p->static_prio;
14531189
IM
2009}
2010
b29739f9
IM
2011/*
2012 * Calculate the expected normal priority: i.e. priority
2013 * without taking RT-inheritance into account. Might be
2014 * boosted by interactivity modifiers. Changes upon fork,
2015 * setprio syscalls, and whenever the interactivity
2016 * estimator recalculates.
2017 */
36c8b586 2018static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2019{
2020 int prio;
2021
e05606d3 2022 if (task_has_rt_policy(p))
b29739f9
IM
2023 prio = MAX_RT_PRIO-1 - p->rt_priority;
2024 else
2025 prio = __normal_prio(p);
2026 return prio;
2027}
2028
2029/*
2030 * Calculate the current priority, i.e. the priority
2031 * taken into account by the scheduler. This value might
2032 * be boosted by RT tasks, or might be boosted by
2033 * interactivity modifiers. Will be RT if the task got
2034 * RT-boosted. If not then it returns p->normal_prio.
2035 */
36c8b586 2036static int effective_prio(struct task_struct *p)
b29739f9
IM
2037{
2038 p->normal_prio = normal_prio(p);
2039 /*
2040 * If we are RT tasks or we were boosted to RT priority,
2041 * keep the priority unchanged. Otherwise, update priority
2042 * to the normal priority:
2043 */
2044 if (!rt_prio(p->prio))
2045 return p->normal_prio;
2046 return p->prio;
2047}
2048
1da177e4
LT
2049/**
2050 * task_curr - is this task currently executing on a CPU?
2051 * @p: the task in question.
2052 */
36c8b586 2053inline int task_curr(const struct task_struct *p)
1da177e4
LT
2054{
2055 return cpu_curr(task_cpu(p)) == p;
2056}
2057
cb469845
SR
2058static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2059 const struct sched_class *prev_class,
da7a735e 2060 int oldprio)
cb469845
SR
2061{
2062 if (prev_class != p->sched_class) {
2063 if (prev_class->switched_from)
da7a735e
PZ
2064 prev_class->switched_from(rq, p);
2065 p->sched_class->switched_to(rq, p);
2066 } else if (oldprio != p->prio)
2067 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2068}
2069
1e5a7405
PZ
2070static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2071{
2072 const struct sched_class *class;
2073
2074 if (p->sched_class == rq->curr->sched_class) {
2075 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2076 } else {
2077 for_each_class(class) {
2078 if (class == rq->curr->sched_class)
2079 break;
2080 if (class == p->sched_class) {
2081 resched_task(rq->curr);
2082 break;
2083 }
2084 }
2085 }
2086
2087 /*
2088 * A queue event has occurred, and we're going to schedule. In
2089 * this case, we can save a useless back to back clock update.
2090 */
f26f9aff 2091 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2092 rq->skip_clock_update = 1;
2093}
2094
1da177e4 2095#ifdef CONFIG_SMP
cc367732
IM
2096/*
2097 * Is this task likely cache-hot:
2098 */
e7693a36 2099static int
cc367732
IM
2100task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2101{
2102 s64 delta;
2103
e6c8fba7
PZ
2104 if (p->sched_class != &fair_sched_class)
2105 return 0;
2106
ef8002f6
NR
2107 if (unlikely(p->policy == SCHED_IDLE))
2108 return 0;
2109
f540a608
IM
2110 /*
2111 * Buddy candidates are cache hot:
2112 */
f685ceac 2113 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2114 (&p->se == cfs_rq_of(&p->se)->next ||
2115 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2116 return 1;
2117
6bc1665b
IM
2118 if (sysctl_sched_migration_cost == -1)
2119 return 1;
2120 if (sysctl_sched_migration_cost == 0)
2121 return 0;
2122
cc367732
IM
2123 delta = now - p->se.exec_start;
2124
2125 return delta < (s64)sysctl_sched_migration_cost;
2126}
2127
dd41f596 2128void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2129{
e2912009
PZ
2130#ifdef CONFIG_SCHED_DEBUG
2131 /*
2132 * We should never call set_task_cpu() on a blocked task,
2133 * ttwu() will sort out the placement.
2134 */
077614ee
PZ
2135 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2136 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2137#endif
2138
de1d7286 2139 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2140
0c69774e
PZ
2141 if (task_cpu(p) != new_cpu) {
2142 p->se.nr_migrations++;
2143 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2144 }
dd41f596
IM
2145
2146 __set_task_cpu(p, new_cpu);
c65cc870
IM
2147}
2148
969c7921 2149struct migration_arg {
36c8b586 2150 struct task_struct *task;
1da177e4 2151 int dest_cpu;
70b97a7f 2152};
1da177e4 2153
969c7921
TH
2154static int migration_cpu_stop(void *data);
2155
1da177e4
LT
2156/*
2157 * The task's runqueue lock must be held.
2158 * Returns true if you have to wait for migration thread.
2159 */
b7a2b39d 2160static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2161{
1da177e4
LT
2162 /*
2163 * If the task is not on a runqueue (and not running), then
e2912009 2164 * the next wake-up will properly place the task.
1da177e4 2165 */
969c7921 2166 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2167}
2168
2169/*
2170 * wait_task_inactive - wait for a thread to unschedule.
2171 *
85ba2d86
RM
2172 * If @match_state is nonzero, it's the @p->state value just checked and
2173 * not expected to change. If it changes, i.e. @p might have woken up,
2174 * then return zero. When we succeed in waiting for @p to be off its CPU,
2175 * we return a positive number (its total switch count). If a second call
2176 * a short while later returns the same number, the caller can be sure that
2177 * @p has remained unscheduled the whole time.
2178 *
1da177e4
LT
2179 * The caller must ensure that the task *will* unschedule sometime soon,
2180 * else this function might spin for a *long* time. This function can't
2181 * be called with interrupts off, or it may introduce deadlock with
2182 * smp_call_function() if an IPI is sent by the same process we are
2183 * waiting to become inactive.
2184 */
85ba2d86 2185unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2186{
2187 unsigned long flags;
dd41f596 2188 int running, on_rq;
85ba2d86 2189 unsigned long ncsw;
70b97a7f 2190 struct rq *rq;
1da177e4 2191
3a5c359a
AK
2192 for (;;) {
2193 /*
2194 * We do the initial early heuristics without holding
2195 * any task-queue locks at all. We'll only try to get
2196 * the runqueue lock when things look like they will
2197 * work out!
2198 */
2199 rq = task_rq(p);
fa490cfd 2200
3a5c359a
AK
2201 /*
2202 * If the task is actively running on another CPU
2203 * still, just relax and busy-wait without holding
2204 * any locks.
2205 *
2206 * NOTE! Since we don't hold any locks, it's not
2207 * even sure that "rq" stays as the right runqueue!
2208 * But we don't care, since "task_running()" will
2209 * return false if the runqueue has changed and p
2210 * is actually now running somewhere else!
2211 */
85ba2d86
RM
2212 while (task_running(rq, p)) {
2213 if (match_state && unlikely(p->state != match_state))
2214 return 0;
3a5c359a 2215 cpu_relax();
85ba2d86 2216 }
fa490cfd 2217
3a5c359a
AK
2218 /*
2219 * Ok, time to look more closely! We need the rq
2220 * lock now, to be *sure*. If we're wrong, we'll
2221 * just go back and repeat.
2222 */
2223 rq = task_rq_lock(p, &flags);
27a9da65 2224 trace_sched_wait_task(p);
3a5c359a
AK
2225 running = task_running(rq, p);
2226 on_rq = p->se.on_rq;
85ba2d86 2227 ncsw = 0;
f31e11d8 2228 if (!match_state || p->state == match_state)
93dcf55f 2229 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2230 task_rq_unlock(rq, &flags);
fa490cfd 2231
85ba2d86
RM
2232 /*
2233 * If it changed from the expected state, bail out now.
2234 */
2235 if (unlikely(!ncsw))
2236 break;
2237
3a5c359a
AK
2238 /*
2239 * Was it really running after all now that we
2240 * checked with the proper locks actually held?
2241 *
2242 * Oops. Go back and try again..
2243 */
2244 if (unlikely(running)) {
2245 cpu_relax();
2246 continue;
2247 }
fa490cfd 2248
3a5c359a
AK
2249 /*
2250 * It's not enough that it's not actively running,
2251 * it must be off the runqueue _entirely_, and not
2252 * preempted!
2253 *
80dd99b3 2254 * So if it was still runnable (but just not actively
3a5c359a
AK
2255 * running right now), it's preempted, and we should
2256 * yield - it could be a while.
2257 */
2258 if (unlikely(on_rq)) {
2259 schedule_timeout_uninterruptible(1);
2260 continue;
2261 }
fa490cfd 2262
3a5c359a
AK
2263 /*
2264 * Ahh, all good. It wasn't running, and it wasn't
2265 * runnable, which means that it will never become
2266 * running in the future either. We're all done!
2267 */
2268 break;
2269 }
85ba2d86
RM
2270
2271 return ncsw;
1da177e4
LT
2272}
2273
2274/***
2275 * kick_process - kick a running thread to enter/exit the kernel
2276 * @p: the to-be-kicked thread
2277 *
2278 * Cause a process which is running on another CPU to enter
2279 * kernel-mode, without any delay. (to get signals handled.)
2280 *
2281 * NOTE: this function doesnt have to take the runqueue lock,
2282 * because all it wants to ensure is that the remote task enters
2283 * the kernel. If the IPI races and the task has been migrated
2284 * to another CPU then no harm is done and the purpose has been
2285 * achieved as well.
2286 */
36c8b586 2287void kick_process(struct task_struct *p)
1da177e4
LT
2288{
2289 int cpu;
2290
2291 preempt_disable();
2292 cpu = task_cpu(p);
2293 if ((cpu != smp_processor_id()) && task_curr(p))
2294 smp_send_reschedule(cpu);
2295 preempt_enable();
2296}
b43e3521 2297EXPORT_SYMBOL_GPL(kick_process);
476d139c 2298#endif /* CONFIG_SMP */
1da177e4 2299
0793a61d
TG
2300/**
2301 * task_oncpu_function_call - call a function on the cpu on which a task runs
2302 * @p: the task to evaluate
2303 * @func: the function to be called
2304 * @info: the function call argument
2305 *
2306 * Calls the function @func when the task is currently running. This might
2307 * be on the current CPU, which just calls the function directly
2308 */
2309void task_oncpu_function_call(struct task_struct *p,
2310 void (*func) (void *info), void *info)
2311{
2312 int cpu;
2313
2314 preempt_disable();
2315 cpu = task_cpu(p);
2316 if (task_curr(p))
2317 smp_call_function_single(cpu, func, info, 1);
2318 preempt_enable();
2319}
2320
970b13ba 2321#ifdef CONFIG_SMP
30da688e
ON
2322/*
2323 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2324 */
5da9a0fb
PZ
2325static int select_fallback_rq(int cpu, struct task_struct *p)
2326{
2327 int dest_cpu;
2328 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2329
2330 /* Look for allowed, online CPU in same node. */
2331 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2332 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2333 return dest_cpu;
2334
2335 /* Any allowed, online CPU? */
2336 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2337 if (dest_cpu < nr_cpu_ids)
2338 return dest_cpu;
2339
2340 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2341 dest_cpu = cpuset_cpus_allowed_fallback(p);
2342 /*
2343 * Don't tell them about moving exiting tasks or
2344 * kernel threads (both mm NULL), since they never
2345 * leave kernel.
2346 */
2347 if (p->mm && printk_ratelimit()) {
2348 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2349 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2350 }
2351
2352 return dest_cpu;
2353}
2354
e2912009 2355/*
30da688e 2356 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2357 */
970b13ba 2358static inline
0017d735 2359int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2360{
0017d735 2361 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2362
2363 /*
2364 * In order not to call set_task_cpu() on a blocking task we need
2365 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2366 * cpu.
2367 *
2368 * Since this is common to all placement strategies, this lives here.
2369 *
2370 * [ this allows ->select_task() to simply return task_cpu(p) and
2371 * not worry about this generic constraint ]
2372 */
2373 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2374 !cpu_online(cpu)))
5da9a0fb 2375 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2376
2377 return cpu;
970b13ba 2378}
09a40af5
MG
2379
2380static void update_avg(u64 *avg, u64 sample)
2381{
2382 s64 diff = sample - *avg;
2383 *avg += diff >> 3;
2384}
970b13ba
PZ
2385#endif
2386
9ed3811a
TH
2387static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2388 bool is_sync, bool is_migrate, bool is_local,
2389 unsigned long en_flags)
2390{
2391 schedstat_inc(p, se.statistics.nr_wakeups);
2392 if (is_sync)
2393 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2394 if (is_migrate)
2395 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2396 if (is_local)
2397 schedstat_inc(p, se.statistics.nr_wakeups_local);
2398 else
2399 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2400
2401 activate_task(rq, p, en_flags);
2402}
2403
2404static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2405 int wake_flags, bool success)
2406{
2407 trace_sched_wakeup(p, success);
2408 check_preempt_curr(rq, p, wake_flags);
2409
2410 p->state = TASK_RUNNING;
2411#ifdef CONFIG_SMP
2412 if (p->sched_class->task_woken)
2413 p->sched_class->task_woken(rq, p);
2414
2415 if (unlikely(rq->idle_stamp)) {
2416 u64 delta = rq->clock - rq->idle_stamp;
2417 u64 max = 2*sysctl_sched_migration_cost;
2418
2419 if (delta > max)
2420 rq->avg_idle = max;
2421 else
2422 update_avg(&rq->avg_idle, delta);
2423 rq->idle_stamp = 0;
2424 }
2425#endif
21aa9af0
TH
2426 /* if a worker is waking up, notify workqueue */
2427 if ((p->flags & PF_WQ_WORKER) && success)
2428 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2429}
2430
2431/**
1da177e4 2432 * try_to_wake_up - wake up a thread
9ed3811a 2433 * @p: the thread to be awakened
1da177e4 2434 * @state: the mask of task states that can be woken
9ed3811a 2435 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2436 *
2437 * Put it on the run-queue if it's not already there. The "current"
2438 * thread is always on the run-queue (except when the actual
2439 * re-schedule is in progress), and as such you're allowed to do
2440 * the simpler "current->state = TASK_RUNNING" to mark yourself
2441 * runnable without the overhead of this.
2442 *
9ed3811a
TH
2443 * Returns %true if @p was woken up, %false if it was already running
2444 * or @state didn't match @p's state.
1da177e4 2445 */
7d478721
PZ
2446static int try_to_wake_up(struct task_struct *p, unsigned int state,
2447 int wake_flags)
1da177e4 2448{
cc367732 2449 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2450 unsigned long flags;
371fd7e7 2451 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2452 struct rq *rq;
1da177e4 2453
e9c84311 2454 this_cpu = get_cpu();
2398f2c6 2455
04e2f174 2456 smp_wmb();
ab3b3aa5 2457 rq = task_rq_lock(p, &flags);
e9c84311 2458 if (!(p->state & state))
1da177e4
LT
2459 goto out;
2460
dd41f596 2461 if (p->se.on_rq)
1da177e4
LT
2462 goto out_running;
2463
2464 cpu = task_cpu(p);
cc367732 2465 orig_cpu = cpu;
1da177e4
LT
2466
2467#ifdef CONFIG_SMP
2468 if (unlikely(task_running(rq, p)))
2469 goto out_activate;
2470
e9c84311
PZ
2471 /*
2472 * In order to handle concurrent wakeups and release the rq->lock
2473 * we put the task in TASK_WAKING state.
eb24073b
IM
2474 *
2475 * First fix up the nr_uninterruptible count:
e9c84311 2476 */
cc87f76a
PZ
2477 if (task_contributes_to_load(p)) {
2478 if (likely(cpu_online(orig_cpu)))
2479 rq->nr_uninterruptible--;
2480 else
2481 this_rq()->nr_uninterruptible--;
2482 }
e9c84311 2483 p->state = TASK_WAKING;
efbbd05a 2484
371fd7e7 2485 if (p->sched_class->task_waking) {
efbbd05a 2486 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2487 en_flags |= ENQUEUE_WAKING;
2488 }
efbbd05a 2489
0017d735
PZ
2490 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2491 if (cpu != orig_cpu)
5d2f5a61 2492 set_task_cpu(p, cpu);
0017d735 2493 __task_rq_unlock(rq);
ab19cb23 2494
0970d299
PZ
2495 rq = cpu_rq(cpu);
2496 raw_spin_lock(&rq->lock);
f5dc3753 2497
0970d299
PZ
2498 /*
2499 * We migrated the task without holding either rq->lock, however
2500 * since the task is not on the task list itself, nobody else
2501 * will try and migrate the task, hence the rq should match the
2502 * cpu we just moved it to.
2503 */
2504 WARN_ON(task_cpu(p) != cpu);
e9c84311 2505 WARN_ON(p->state != TASK_WAKING);
1da177e4 2506
e7693a36
GH
2507#ifdef CONFIG_SCHEDSTATS
2508 schedstat_inc(rq, ttwu_count);
2509 if (cpu == this_cpu)
2510 schedstat_inc(rq, ttwu_local);
2511 else {
2512 struct sched_domain *sd;
2513 for_each_domain(this_cpu, sd) {
758b2cdc 2514 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2515 schedstat_inc(sd, ttwu_wake_remote);
2516 break;
2517 }
2518 }
2519 }
6d6bc0ad 2520#endif /* CONFIG_SCHEDSTATS */
e7693a36 2521
1da177e4
LT
2522out_activate:
2523#endif /* CONFIG_SMP */
9ed3811a
TH
2524 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2525 cpu == this_cpu, en_flags);
1da177e4 2526 success = 1;
1da177e4 2527out_running:
9ed3811a 2528 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2529out:
2530 task_rq_unlock(rq, &flags);
e9c84311 2531 put_cpu();
1da177e4
LT
2532
2533 return success;
2534}
2535
21aa9af0
TH
2536/**
2537 * try_to_wake_up_local - try to wake up a local task with rq lock held
2538 * @p: the thread to be awakened
2539 *
b595076a 2540 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2541 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2542 * the current task. this_rq() stays locked over invocation.
2543 */
2544static void try_to_wake_up_local(struct task_struct *p)
2545{
2546 struct rq *rq = task_rq(p);
2547 bool success = false;
2548
2549 BUG_ON(rq != this_rq());
2550 BUG_ON(p == current);
2551 lockdep_assert_held(&rq->lock);
2552
2553 if (!(p->state & TASK_NORMAL))
2554 return;
2555
2556 if (!p->se.on_rq) {
2557 if (likely(!task_running(rq, p))) {
2558 schedstat_inc(rq, ttwu_count);
2559 schedstat_inc(rq, ttwu_local);
2560 }
2561 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2562 success = true;
2563 }
2564 ttwu_post_activation(p, rq, 0, success);
2565}
2566
50fa610a
DH
2567/**
2568 * wake_up_process - Wake up a specific process
2569 * @p: The process to be woken up.
2570 *
2571 * Attempt to wake up the nominated process and move it to the set of runnable
2572 * processes. Returns 1 if the process was woken up, 0 if it was already
2573 * running.
2574 *
2575 * It may be assumed that this function implies a write memory barrier before
2576 * changing the task state if and only if any tasks are woken up.
2577 */
7ad5b3a5 2578int wake_up_process(struct task_struct *p)
1da177e4 2579{
d9514f6c 2580 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2581}
1da177e4
LT
2582EXPORT_SYMBOL(wake_up_process);
2583
7ad5b3a5 2584int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2585{
2586 return try_to_wake_up(p, state, 0);
2587}
2588
1da177e4
LT
2589/*
2590 * Perform scheduler related setup for a newly forked process p.
2591 * p is forked by current.
dd41f596
IM
2592 *
2593 * __sched_fork() is basic setup used by init_idle() too:
2594 */
2595static void __sched_fork(struct task_struct *p)
2596{
dd41f596
IM
2597 p->se.exec_start = 0;
2598 p->se.sum_exec_runtime = 0;
f6cf891c 2599 p->se.prev_sum_exec_runtime = 0;
6c594c21 2600 p->se.nr_migrations = 0;
da7a735e 2601 p->se.vruntime = 0;
6cfb0d5d
IM
2602
2603#ifdef CONFIG_SCHEDSTATS
41acab88 2604 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2605#endif
476d139c 2606
fa717060 2607 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2608 p->se.on_rq = 0;
4a55bd5e 2609 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2610
e107be36
AK
2611#ifdef CONFIG_PREEMPT_NOTIFIERS
2612 INIT_HLIST_HEAD(&p->preempt_notifiers);
2613#endif
dd41f596
IM
2614}
2615
2616/*
2617 * fork()/clone()-time setup:
2618 */
2619void sched_fork(struct task_struct *p, int clone_flags)
2620{
2621 int cpu = get_cpu();
2622
2623 __sched_fork(p);
06b83b5f 2624 /*
0017d735 2625 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2626 * nobody will actually run it, and a signal or other external
2627 * event cannot wake it up and insert it on the runqueue either.
2628 */
0017d735 2629 p->state = TASK_RUNNING;
dd41f596 2630
b9dc29e7
MG
2631 /*
2632 * Revert to default priority/policy on fork if requested.
2633 */
2634 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2635 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2636 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2637 p->normal_prio = p->static_prio;
2638 }
b9dc29e7 2639
6c697bdf
MG
2640 if (PRIO_TO_NICE(p->static_prio) < 0) {
2641 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2642 p->normal_prio = p->static_prio;
6c697bdf
MG
2643 set_load_weight(p);
2644 }
2645
b9dc29e7
MG
2646 /*
2647 * We don't need the reset flag anymore after the fork. It has
2648 * fulfilled its duty:
2649 */
2650 p->sched_reset_on_fork = 0;
2651 }
ca94c442 2652
f83f9ac2
PW
2653 /*
2654 * Make sure we do not leak PI boosting priority to the child.
2655 */
2656 p->prio = current->normal_prio;
2657
2ddbf952
HS
2658 if (!rt_prio(p->prio))
2659 p->sched_class = &fair_sched_class;
b29739f9 2660
cd29fe6f
PZ
2661 if (p->sched_class->task_fork)
2662 p->sched_class->task_fork(p);
2663
86951599
PZ
2664 /*
2665 * The child is not yet in the pid-hash so no cgroup attach races,
2666 * and the cgroup is pinned to this child due to cgroup_fork()
2667 * is ran before sched_fork().
2668 *
2669 * Silence PROVE_RCU.
2670 */
2671 rcu_read_lock();
5f3edc1b 2672 set_task_cpu(p, cpu);
86951599 2673 rcu_read_unlock();
5f3edc1b 2674
52f17b6c 2675#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2676 if (likely(sched_info_on()))
52f17b6c 2677 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2678#endif
d6077cb8 2679#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2680 p->oncpu = 0;
2681#endif
1da177e4 2682#ifdef CONFIG_PREEMPT
4866cde0 2683 /* Want to start with kernel preemption disabled. */
a1261f54 2684 task_thread_info(p)->preempt_count = 1;
1da177e4 2685#endif
806c09a7 2686#ifdef CONFIG_SMP
917b627d 2687 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2688#endif
917b627d 2689
476d139c 2690 put_cpu();
1da177e4
LT
2691}
2692
2693/*
2694 * wake_up_new_task - wake up a newly created task for the first time.
2695 *
2696 * This function will do some initial scheduler statistics housekeeping
2697 * that must be done for every newly created context, then puts the task
2698 * on the runqueue and wakes it.
2699 */
7ad5b3a5 2700void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2701{
2702 unsigned long flags;
dd41f596 2703 struct rq *rq;
c890692b 2704 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2705
2706#ifdef CONFIG_SMP
0017d735
PZ
2707 rq = task_rq_lock(p, &flags);
2708 p->state = TASK_WAKING;
2709
fabf318e
PZ
2710 /*
2711 * Fork balancing, do it here and not earlier because:
2712 * - cpus_allowed can change in the fork path
2713 * - any previously selected cpu might disappear through hotplug
2714 *
0017d735
PZ
2715 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2716 * without people poking at ->cpus_allowed.
fabf318e 2717 */
0017d735 2718 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2719 set_task_cpu(p, cpu);
1da177e4 2720
06b83b5f 2721 p->state = TASK_RUNNING;
0017d735
PZ
2722 task_rq_unlock(rq, &flags);
2723#endif
2724
2725 rq = task_rq_lock(p, &flags);
cd29fe6f 2726 activate_task(rq, p, 0);
27a9da65 2727 trace_sched_wakeup_new(p, 1);
a7558e01 2728 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2729#ifdef CONFIG_SMP
efbbd05a
PZ
2730 if (p->sched_class->task_woken)
2731 p->sched_class->task_woken(rq, p);
9a897c5a 2732#endif
dd41f596 2733 task_rq_unlock(rq, &flags);
fabf318e 2734 put_cpu();
1da177e4
LT
2735}
2736
e107be36
AK
2737#ifdef CONFIG_PREEMPT_NOTIFIERS
2738
2739/**
80dd99b3 2740 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2741 * @notifier: notifier struct to register
e107be36
AK
2742 */
2743void preempt_notifier_register(struct preempt_notifier *notifier)
2744{
2745 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2746}
2747EXPORT_SYMBOL_GPL(preempt_notifier_register);
2748
2749/**
2750 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2751 * @notifier: notifier struct to unregister
e107be36
AK
2752 *
2753 * This is safe to call from within a preemption notifier.
2754 */
2755void preempt_notifier_unregister(struct preempt_notifier *notifier)
2756{
2757 hlist_del(&notifier->link);
2758}
2759EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2760
2761static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2762{
2763 struct preempt_notifier *notifier;
2764 struct hlist_node *node;
2765
2766 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2767 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2768}
2769
2770static void
2771fire_sched_out_preempt_notifiers(struct task_struct *curr,
2772 struct task_struct *next)
2773{
2774 struct preempt_notifier *notifier;
2775 struct hlist_node *node;
2776
2777 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2778 notifier->ops->sched_out(notifier, next);
2779}
2780
6d6bc0ad 2781#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2782
2783static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2784{
2785}
2786
2787static void
2788fire_sched_out_preempt_notifiers(struct task_struct *curr,
2789 struct task_struct *next)
2790{
2791}
2792
6d6bc0ad 2793#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2794
4866cde0
NP
2795/**
2796 * prepare_task_switch - prepare to switch tasks
2797 * @rq: the runqueue preparing to switch
421cee29 2798 * @prev: the current task that is being switched out
4866cde0
NP
2799 * @next: the task we are going to switch to.
2800 *
2801 * This is called with the rq lock held and interrupts off. It must
2802 * be paired with a subsequent finish_task_switch after the context
2803 * switch.
2804 *
2805 * prepare_task_switch sets up locking and calls architecture specific
2806 * hooks.
2807 */
e107be36
AK
2808static inline void
2809prepare_task_switch(struct rq *rq, struct task_struct *prev,
2810 struct task_struct *next)
4866cde0 2811{
e107be36 2812 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2813 prepare_lock_switch(rq, next);
2814 prepare_arch_switch(next);
2815}
2816
1da177e4
LT
2817/**
2818 * finish_task_switch - clean up after a task-switch
344babaa 2819 * @rq: runqueue associated with task-switch
1da177e4
LT
2820 * @prev: the thread we just switched away from.
2821 *
4866cde0
NP
2822 * finish_task_switch must be called after the context switch, paired
2823 * with a prepare_task_switch call before the context switch.
2824 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2825 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2826 *
2827 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2828 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2829 * with the lock held can cause deadlocks; see schedule() for
2830 * details.)
2831 */
a9957449 2832static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2833 __releases(rq->lock)
2834{
1da177e4 2835 struct mm_struct *mm = rq->prev_mm;
55a101f8 2836 long prev_state;
1da177e4
LT
2837
2838 rq->prev_mm = NULL;
2839
2840 /*
2841 * A task struct has one reference for the use as "current".
c394cc9f 2842 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2843 * schedule one last time. The schedule call will never return, and
2844 * the scheduled task must drop that reference.
c394cc9f 2845 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2846 * still held, otherwise prev could be scheduled on another cpu, die
2847 * there before we look at prev->state, and then the reference would
2848 * be dropped twice.
2849 * Manfred Spraul <manfred@colorfullife.com>
2850 */
55a101f8 2851 prev_state = prev->state;
4866cde0 2852 finish_arch_switch(prev);
8381f65d
JI
2853#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2854 local_irq_disable();
2855#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2856 perf_event_task_sched_in(current);
8381f65d
JI
2857#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2858 local_irq_enable();
2859#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2860 finish_lock_switch(rq, prev);
e8fa1362 2861
e107be36 2862 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2863 if (mm)
2864 mmdrop(mm);
c394cc9f 2865 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2866 /*
2867 * Remove function-return probe instances associated with this
2868 * task and put them back on the free list.
9761eea8 2869 */
c6fd91f0 2870 kprobe_flush_task(prev);
1da177e4 2871 put_task_struct(prev);
c6fd91f0 2872 }
1da177e4
LT
2873}
2874
3f029d3c
GH
2875#ifdef CONFIG_SMP
2876
2877/* assumes rq->lock is held */
2878static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2879{
2880 if (prev->sched_class->pre_schedule)
2881 prev->sched_class->pre_schedule(rq, prev);
2882}
2883
2884/* rq->lock is NOT held, but preemption is disabled */
2885static inline void post_schedule(struct rq *rq)
2886{
2887 if (rq->post_schedule) {
2888 unsigned long flags;
2889
05fa785c 2890 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2891 if (rq->curr->sched_class->post_schedule)
2892 rq->curr->sched_class->post_schedule(rq);
05fa785c 2893 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2894
2895 rq->post_schedule = 0;
2896 }
2897}
2898
2899#else
da19ab51 2900
3f029d3c
GH
2901static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2902{
2903}
2904
2905static inline void post_schedule(struct rq *rq)
2906{
1da177e4
LT
2907}
2908
3f029d3c
GH
2909#endif
2910
1da177e4
LT
2911/**
2912 * schedule_tail - first thing a freshly forked thread must call.
2913 * @prev: the thread we just switched away from.
2914 */
36c8b586 2915asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2916 __releases(rq->lock)
2917{
70b97a7f
IM
2918 struct rq *rq = this_rq();
2919
4866cde0 2920 finish_task_switch(rq, prev);
da19ab51 2921
3f029d3c
GH
2922 /*
2923 * FIXME: do we need to worry about rq being invalidated by the
2924 * task_switch?
2925 */
2926 post_schedule(rq);
70b97a7f 2927
4866cde0
NP
2928#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2929 /* In this case, finish_task_switch does not reenable preemption */
2930 preempt_enable();
2931#endif
1da177e4 2932 if (current->set_child_tid)
b488893a 2933 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2934}
2935
2936/*
2937 * context_switch - switch to the new MM and the new
2938 * thread's register state.
2939 */
dd41f596 2940static inline void
70b97a7f 2941context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2942 struct task_struct *next)
1da177e4 2943{
dd41f596 2944 struct mm_struct *mm, *oldmm;
1da177e4 2945
e107be36 2946 prepare_task_switch(rq, prev, next);
27a9da65 2947 trace_sched_switch(prev, next);
dd41f596
IM
2948 mm = next->mm;
2949 oldmm = prev->active_mm;
9226d125
ZA
2950 /*
2951 * For paravirt, this is coupled with an exit in switch_to to
2952 * combine the page table reload and the switch backend into
2953 * one hypercall.
2954 */
224101ed 2955 arch_start_context_switch(prev);
9226d125 2956
31915ab4 2957 if (!mm) {
1da177e4
LT
2958 next->active_mm = oldmm;
2959 atomic_inc(&oldmm->mm_count);
2960 enter_lazy_tlb(oldmm, next);
2961 } else
2962 switch_mm(oldmm, mm, next);
2963
31915ab4 2964 if (!prev->mm) {
1da177e4 2965 prev->active_mm = NULL;
1da177e4
LT
2966 rq->prev_mm = oldmm;
2967 }
3a5f5e48
IM
2968 /*
2969 * Since the runqueue lock will be released by the next
2970 * task (which is an invalid locking op but in the case
2971 * of the scheduler it's an obvious special-case), so we
2972 * do an early lockdep release here:
2973 */
2974#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2975 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2976#endif
1da177e4
LT
2977
2978 /* Here we just switch the register state and the stack. */
2979 switch_to(prev, next, prev);
2980
dd41f596
IM
2981 barrier();
2982 /*
2983 * this_rq must be evaluated again because prev may have moved
2984 * CPUs since it called schedule(), thus the 'rq' on its stack
2985 * frame will be invalid.
2986 */
2987 finish_task_switch(this_rq(), prev);
1da177e4
LT
2988}
2989
2990/*
2991 * nr_running, nr_uninterruptible and nr_context_switches:
2992 *
2993 * externally visible scheduler statistics: current number of runnable
2994 * threads, current number of uninterruptible-sleeping threads, total
2995 * number of context switches performed since bootup.
2996 */
2997unsigned long nr_running(void)
2998{
2999 unsigned long i, sum = 0;
3000
3001 for_each_online_cpu(i)
3002 sum += cpu_rq(i)->nr_running;
3003
3004 return sum;
f711f609 3005}
1da177e4
LT
3006
3007unsigned long nr_uninterruptible(void)
f711f609 3008{
1da177e4 3009 unsigned long i, sum = 0;
f711f609 3010
0a945022 3011 for_each_possible_cpu(i)
1da177e4 3012 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3013
3014 /*
1da177e4
LT
3015 * Since we read the counters lockless, it might be slightly
3016 * inaccurate. Do not allow it to go below zero though:
f711f609 3017 */
1da177e4
LT
3018 if (unlikely((long)sum < 0))
3019 sum = 0;
f711f609 3020
1da177e4 3021 return sum;
f711f609 3022}
f711f609 3023
1da177e4 3024unsigned long long nr_context_switches(void)
46cb4b7c 3025{
cc94abfc
SR
3026 int i;
3027 unsigned long long sum = 0;
46cb4b7c 3028
0a945022 3029 for_each_possible_cpu(i)
1da177e4 3030 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3031
1da177e4
LT
3032 return sum;
3033}
483b4ee6 3034
1da177e4
LT
3035unsigned long nr_iowait(void)
3036{
3037 unsigned long i, sum = 0;
483b4ee6 3038
0a945022 3039 for_each_possible_cpu(i)
1da177e4 3040 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3041
1da177e4
LT
3042 return sum;
3043}
483b4ee6 3044
8c215bd3 3045unsigned long nr_iowait_cpu(int cpu)
69d25870 3046{
8c215bd3 3047 struct rq *this = cpu_rq(cpu);
69d25870
AV
3048 return atomic_read(&this->nr_iowait);
3049}
46cb4b7c 3050
69d25870
AV
3051unsigned long this_cpu_load(void)
3052{
3053 struct rq *this = this_rq();
3054 return this->cpu_load[0];
3055}
e790fb0b 3056
46cb4b7c 3057
dce48a84
TG
3058/* Variables and functions for calc_load */
3059static atomic_long_t calc_load_tasks;
3060static unsigned long calc_load_update;
3061unsigned long avenrun[3];
3062EXPORT_SYMBOL(avenrun);
46cb4b7c 3063
74f5187a
PZ
3064static long calc_load_fold_active(struct rq *this_rq)
3065{
3066 long nr_active, delta = 0;
3067
3068 nr_active = this_rq->nr_running;
3069 nr_active += (long) this_rq->nr_uninterruptible;
3070
3071 if (nr_active != this_rq->calc_load_active) {
3072 delta = nr_active - this_rq->calc_load_active;
3073 this_rq->calc_load_active = nr_active;
3074 }
3075
3076 return delta;
3077}
3078
0f004f5a
PZ
3079static unsigned long
3080calc_load(unsigned long load, unsigned long exp, unsigned long active)
3081{
3082 load *= exp;
3083 load += active * (FIXED_1 - exp);
3084 load += 1UL << (FSHIFT - 1);
3085 return load >> FSHIFT;
3086}
3087
74f5187a
PZ
3088#ifdef CONFIG_NO_HZ
3089/*
3090 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3091 *
3092 * When making the ILB scale, we should try to pull this in as well.
3093 */
3094static atomic_long_t calc_load_tasks_idle;
3095
3096static void calc_load_account_idle(struct rq *this_rq)
3097{
3098 long delta;
3099
3100 delta = calc_load_fold_active(this_rq);
3101 if (delta)
3102 atomic_long_add(delta, &calc_load_tasks_idle);
3103}
3104
3105static long calc_load_fold_idle(void)
3106{
3107 long delta = 0;
3108
3109 /*
3110 * Its got a race, we don't care...
3111 */
3112 if (atomic_long_read(&calc_load_tasks_idle))
3113 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3114
3115 return delta;
3116}
0f004f5a
PZ
3117
3118/**
3119 * fixed_power_int - compute: x^n, in O(log n) time
3120 *
3121 * @x: base of the power
3122 * @frac_bits: fractional bits of @x
3123 * @n: power to raise @x to.
3124 *
3125 * By exploiting the relation between the definition of the natural power
3126 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3127 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3128 * (where: n_i \elem {0, 1}, the binary vector representing n),
3129 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3130 * of course trivially computable in O(log_2 n), the length of our binary
3131 * vector.
3132 */
3133static unsigned long
3134fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3135{
3136 unsigned long result = 1UL << frac_bits;
3137
3138 if (n) for (;;) {
3139 if (n & 1) {
3140 result *= x;
3141 result += 1UL << (frac_bits - 1);
3142 result >>= frac_bits;
3143 }
3144 n >>= 1;
3145 if (!n)
3146 break;
3147 x *= x;
3148 x += 1UL << (frac_bits - 1);
3149 x >>= frac_bits;
3150 }
3151
3152 return result;
3153}
3154
3155/*
3156 * a1 = a0 * e + a * (1 - e)
3157 *
3158 * a2 = a1 * e + a * (1 - e)
3159 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3160 * = a0 * e^2 + a * (1 - e) * (1 + e)
3161 *
3162 * a3 = a2 * e + a * (1 - e)
3163 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3164 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3165 *
3166 * ...
3167 *
3168 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3169 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3170 * = a0 * e^n + a * (1 - e^n)
3171 *
3172 * [1] application of the geometric series:
3173 *
3174 * n 1 - x^(n+1)
3175 * S_n := \Sum x^i = -------------
3176 * i=0 1 - x
3177 */
3178static unsigned long
3179calc_load_n(unsigned long load, unsigned long exp,
3180 unsigned long active, unsigned int n)
3181{
3182
3183 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3184}
3185
3186/*
3187 * NO_HZ can leave us missing all per-cpu ticks calling
3188 * calc_load_account_active(), but since an idle CPU folds its delta into
3189 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3190 * in the pending idle delta if our idle period crossed a load cycle boundary.
3191 *
3192 * Once we've updated the global active value, we need to apply the exponential
3193 * weights adjusted to the number of cycles missed.
3194 */
3195static void calc_global_nohz(unsigned long ticks)
3196{
3197 long delta, active, n;
3198
3199 if (time_before(jiffies, calc_load_update))
3200 return;
3201
3202 /*
3203 * If we crossed a calc_load_update boundary, make sure to fold
3204 * any pending idle changes, the respective CPUs might have
3205 * missed the tick driven calc_load_account_active() update
3206 * due to NO_HZ.
3207 */
3208 delta = calc_load_fold_idle();
3209 if (delta)
3210 atomic_long_add(delta, &calc_load_tasks);
3211
3212 /*
3213 * If we were idle for multiple load cycles, apply them.
3214 */
3215 if (ticks >= LOAD_FREQ) {
3216 n = ticks / LOAD_FREQ;
3217
3218 active = atomic_long_read(&calc_load_tasks);
3219 active = active > 0 ? active * FIXED_1 : 0;
3220
3221 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3222 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3223 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3224
3225 calc_load_update += n * LOAD_FREQ;
3226 }
3227
3228 /*
3229 * Its possible the remainder of the above division also crosses
3230 * a LOAD_FREQ period, the regular check in calc_global_load()
3231 * which comes after this will take care of that.
3232 *
3233 * Consider us being 11 ticks before a cycle completion, and us
3234 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3235 * age us 4 cycles, and the test in calc_global_load() will
3236 * pick up the final one.
3237 */
3238}
74f5187a
PZ
3239#else
3240static void calc_load_account_idle(struct rq *this_rq)
3241{
3242}
3243
3244static inline long calc_load_fold_idle(void)
3245{
3246 return 0;
3247}
0f004f5a
PZ
3248
3249static void calc_global_nohz(unsigned long ticks)
3250{
3251}
74f5187a
PZ
3252#endif
3253
2d02494f
TG
3254/**
3255 * get_avenrun - get the load average array
3256 * @loads: pointer to dest load array
3257 * @offset: offset to add
3258 * @shift: shift count to shift the result left
3259 *
3260 * These values are estimates at best, so no need for locking.
3261 */
3262void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3263{
3264 loads[0] = (avenrun[0] + offset) << shift;
3265 loads[1] = (avenrun[1] + offset) << shift;
3266 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3267}
46cb4b7c 3268
46cb4b7c 3269/*
dce48a84
TG
3270 * calc_load - update the avenrun load estimates 10 ticks after the
3271 * CPUs have updated calc_load_tasks.
7835b98b 3272 */
0f004f5a 3273void calc_global_load(unsigned long ticks)
7835b98b 3274{
dce48a84 3275 long active;
1da177e4 3276
0f004f5a
PZ
3277 calc_global_nohz(ticks);
3278
3279 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3280 return;
1da177e4 3281
dce48a84
TG
3282 active = atomic_long_read(&calc_load_tasks);
3283 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3284
dce48a84
TG
3285 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3286 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3287 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3288
dce48a84
TG
3289 calc_load_update += LOAD_FREQ;
3290}
1da177e4 3291
dce48a84 3292/*
74f5187a
PZ
3293 * Called from update_cpu_load() to periodically update this CPU's
3294 * active count.
dce48a84
TG
3295 */
3296static void calc_load_account_active(struct rq *this_rq)
3297{
74f5187a 3298 long delta;
08c183f3 3299
74f5187a
PZ
3300 if (time_before(jiffies, this_rq->calc_load_update))
3301 return;
783609c6 3302
74f5187a
PZ
3303 delta = calc_load_fold_active(this_rq);
3304 delta += calc_load_fold_idle();
3305 if (delta)
dce48a84 3306 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3307
3308 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3309}
3310
fdf3e95d
VP
3311/*
3312 * The exact cpuload at various idx values, calculated at every tick would be
3313 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3314 *
3315 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3316 * on nth tick when cpu may be busy, then we have:
3317 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3318 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3319 *
3320 * decay_load_missed() below does efficient calculation of
3321 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3322 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3323 *
3324 * The calculation is approximated on a 128 point scale.
3325 * degrade_zero_ticks is the number of ticks after which load at any
3326 * particular idx is approximated to be zero.
3327 * degrade_factor is a precomputed table, a row for each load idx.
3328 * Each column corresponds to degradation factor for a power of two ticks,
3329 * based on 128 point scale.
3330 * Example:
3331 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3332 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3333 *
3334 * With this power of 2 load factors, we can degrade the load n times
3335 * by looking at 1 bits in n and doing as many mult/shift instead of
3336 * n mult/shifts needed by the exact degradation.
3337 */
3338#define DEGRADE_SHIFT 7
3339static const unsigned char
3340 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3341static const unsigned char
3342 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3343 {0, 0, 0, 0, 0, 0, 0, 0},
3344 {64, 32, 8, 0, 0, 0, 0, 0},
3345 {96, 72, 40, 12, 1, 0, 0},
3346 {112, 98, 75, 43, 15, 1, 0},
3347 {120, 112, 98, 76, 45, 16, 2} };
3348
3349/*
3350 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3351 * would be when CPU is idle and so we just decay the old load without
3352 * adding any new load.
3353 */
3354static unsigned long
3355decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3356{
3357 int j = 0;
3358
3359 if (!missed_updates)
3360 return load;
3361
3362 if (missed_updates >= degrade_zero_ticks[idx])
3363 return 0;
3364
3365 if (idx == 1)
3366 return load >> missed_updates;
3367
3368 while (missed_updates) {
3369 if (missed_updates % 2)
3370 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3371
3372 missed_updates >>= 1;
3373 j++;
3374 }
3375 return load;
3376}
3377
46cb4b7c 3378/*
dd41f596 3379 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3380 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3381 * every tick. We fix it up based on jiffies.
46cb4b7c 3382 */
dd41f596 3383static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3384{
495eca49 3385 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3386 unsigned long curr_jiffies = jiffies;
3387 unsigned long pending_updates;
dd41f596 3388 int i, scale;
46cb4b7c 3389
dd41f596 3390 this_rq->nr_load_updates++;
46cb4b7c 3391
fdf3e95d
VP
3392 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3393 if (curr_jiffies == this_rq->last_load_update_tick)
3394 return;
3395
3396 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3397 this_rq->last_load_update_tick = curr_jiffies;
3398
dd41f596 3399 /* Update our load: */
fdf3e95d
VP
3400 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3401 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3402 unsigned long old_load, new_load;
7d1e6a9b 3403
dd41f596 3404 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3405
dd41f596 3406 old_load = this_rq->cpu_load[i];
fdf3e95d 3407 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3408 new_load = this_load;
a25707f3
IM
3409 /*
3410 * Round up the averaging division if load is increasing. This
3411 * prevents us from getting stuck on 9 if the load is 10, for
3412 * example.
3413 */
3414 if (new_load > old_load)
fdf3e95d
VP
3415 new_load += scale - 1;
3416
3417 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3418 }
da2b71ed
SS
3419
3420 sched_avg_update(this_rq);
fdf3e95d
VP
3421}
3422
3423static void update_cpu_load_active(struct rq *this_rq)
3424{
3425 update_cpu_load(this_rq);
46cb4b7c 3426
74f5187a 3427 calc_load_account_active(this_rq);
46cb4b7c
SS
3428}
3429
dd41f596 3430#ifdef CONFIG_SMP
8a0be9ef 3431
46cb4b7c 3432/*
38022906
PZ
3433 * sched_exec - execve() is a valuable balancing opportunity, because at
3434 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3435 */
38022906 3436void sched_exec(void)
46cb4b7c 3437{
38022906 3438 struct task_struct *p = current;
1da177e4 3439 unsigned long flags;
70b97a7f 3440 struct rq *rq;
0017d735 3441 int dest_cpu;
46cb4b7c 3442
1da177e4 3443 rq = task_rq_lock(p, &flags);
0017d735
PZ
3444 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3445 if (dest_cpu == smp_processor_id())
3446 goto unlock;
38022906 3447
46cb4b7c 3448 /*
38022906 3449 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3450 */
30da688e 3451 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3452 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3453 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3454
1da177e4 3455 task_rq_unlock(rq, &flags);
969c7921 3456 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3457 return;
3458 }
0017d735 3459unlock:
1da177e4 3460 task_rq_unlock(rq, &flags);
1da177e4 3461}
dd41f596 3462
1da177e4
LT
3463#endif
3464
1da177e4
LT
3465DEFINE_PER_CPU(struct kernel_stat, kstat);
3466
3467EXPORT_PER_CPU_SYMBOL(kstat);
3468
3469/*
c5f8d995 3470 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3471 * @p in case that task is currently running.
c5f8d995
HS
3472 *
3473 * Called with task_rq_lock() held on @rq.
1da177e4 3474 */
c5f8d995
HS
3475static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3476{
3477 u64 ns = 0;
3478
3479 if (task_current(rq, p)) {
3480 update_rq_clock(rq);
305e6835 3481 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3482 if ((s64)ns < 0)
3483 ns = 0;
3484 }
3485
3486 return ns;
3487}
3488
bb34d92f 3489unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3490{
1da177e4 3491 unsigned long flags;
41b86e9c 3492 struct rq *rq;
bb34d92f 3493 u64 ns = 0;
48f24c4d 3494
41b86e9c 3495 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3496 ns = do_task_delta_exec(p, rq);
3497 task_rq_unlock(rq, &flags);
1508487e 3498
c5f8d995
HS
3499 return ns;
3500}
f06febc9 3501
c5f8d995
HS
3502/*
3503 * Return accounted runtime for the task.
3504 * In case the task is currently running, return the runtime plus current's
3505 * pending runtime that have not been accounted yet.
3506 */
3507unsigned long long task_sched_runtime(struct task_struct *p)
3508{
3509 unsigned long flags;
3510 struct rq *rq;
3511 u64 ns = 0;
3512
3513 rq = task_rq_lock(p, &flags);
3514 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3515 task_rq_unlock(rq, &flags);
3516
3517 return ns;
3518}
48f24c4d 3519
c5f8d995
HS
3520/*
3521 * Return sum_exec_runtime for the thread group.
3522 * In case the task is currently running, return the sum plus current's
3523 * pending runtime that have not been accounted yet.
3524 *
3525 * Note that the thread group might have other running tasks as well,
3526 * so the return value not includes other pending runtime that other
3527 * running tasks might have.
3528 */
3529unsigned long long thread_group_sched_runtime(struct task_struct *p)
3530{
3531 struct task_cputime totals;
3532 unsigned long flags;
3533 struct rq *rq;
3534 u64 ns;
3535
3536 rq = task_rq_lock(p, &flags);
3537 thread_group_cputime(p, &totals);
3538 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3539 task_rq_unlock(rq, &flags);
48f24c4d 3540
1da177e4
LT
3541 return ns;
3542}
3543
1da177e4
LT
3544/*
3545 * Account user cpu time to a process.
3546 * @p: the process that the cpu time gets accounted to
1da177e4 3547 * @cputime: the cpu time spent in user space since the last update
457533a7 3548 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3549 */
457533a7
MS
3550void account_user_time(struct task_struct *p, cputime_t cputime,
3551 cputime_t cputime_scaled)
1da177e4
LT
3552{
3553 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3554 cputime64_t tmp;
3555
457533a7 3556 /* Add user time to process. */
1da177e4 3557 p->utime = cputime_add(p->utime, cputime);
457533a7 3558 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3559 account_group_user_time(p, cputime);
1da177e4
LT
3560
3561 /* Add user time to cpustat. */
3562 tmp = cputime_to_cputime64(cputime);
3563 if (TASK_NICE(p) > 0)
3564 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3565 else
3566 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3567
3568 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3569 /* Account for user time used */
3570 acct_update_integrals(p);
1da177e4
LT
3571}
3572
94886b84
LV
3573/*
3574 * Account guest cpu time to a process.
3575 * @p: the process that the cpu time gets accounted to
3576 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3577 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3578 */
457533a7
MS
3579static void account_guest_time(struct task_struct *p, cputime_t cputime,
3580 cputime_t cputime_scaled)
94886b84
LV
3581{
3582 cputime64_t tmp;
3583 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3584
3585 tmp = cputime_to_cputime64(cputime);
3586
457533a7 3587 /* Add guest time to process. */
94886b84 3588 p->utime = cputime_add(p->utime, cputime);
457533a7 3589 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3590 account_group_user_time(p, cputime);
94886b84
LV
3591 p->gtime = cputime_add(p->gtime, cputime);
3592
457533a7 3593 /* Add guest time to cpustat. */
ce0e7b28
RO
3594 if (TASK_NICE(p) > 0) {
3595 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3596 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3597 } else {
3598 cpustat->user = cputime64_add(cpustat->user, tmp);
3599 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3600 }
94886b84
LV
3601}
3602
70a89a66
VP
3603/*
3604 * Account system cpu time to a process and desired cpustat field
3605 * @p: the process that the cpu time gets accounted to
3606 * @cputime: the cpu time spent in kernel space since the last update
3607 * @cputime_scaled: cputime scaled by cpu frequency
3608 * @target_cputime64: pointer to cpustat field that has to be updated
3609 */
3610static inline
3611void __account_system_time(struct task_struct *p, cputime_t cputime,
3612 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3613{
3614 cputime64_t tmp = cputime_to_cputime64(cputime);
3615
3616 /* Add system time to process. */
3617 p->stime = cputime_add(p->stime, cputime);
3618 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3619 account_group_system_time(p, cputime);
3620
3621 /* Add system time to cpustat. */
3622 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3623 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3624
3625 /* Account for system time used */
3626 acct_update_integrals(p);
3627}
3628
1da177e4
LT
3629/*
3630 * Account system cpu time to a process.
3631 * @p: the process that the cpu time gets accounted to
3632 * @hardirq_offset: the offset to subtract from hardirq_count()
3633 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3634 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3635 */
3636void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3637 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3638{
3639 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3640 cputime64_t *target_cputime64;
1da177e4 3641
983ed7a6 3642 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3643 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3644 return;
3645 }
94886b84 3646
1da177e4 3647 if (hardirq_count() - hardirq_offset)
70a89a66 3648 target_cputime64 = &cpustat->irq;
75e1056f 3649 else if (in_serving_softirq())
70a89a66 3650 target_cputime64 = &cpustat->softirq;
1da177e4 3651 else
70a89a66 3652 target_cputime64 = &cpustat->system;
79741dd3 3653
70a89a66 3654 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3655}
3656
abb74cef
VP
3657#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3658/*
3659 * Account a tick to a process and cpustat
3660 * @p: the process that the cpu time gets accounted to
3661 * @user_tick: is the tick from userspace
3662 * @rq: the pointer to rq
3663 *
3664 * Tick demultiplexing follows the order
3665 * - pending hardirq update
3666 * - pending softirq update
3667 * - user_time
3668 * - idle_time
3669 * - system time
3670 * - check for guest_time
3671 * - else account as system_time
3672 *
3673 * Check for hardirq is done both for system and user time as there is
3674 * no timer going off while we are on hardirq and hence we may never get an
3675 * opportunity to update it solely in system time.
3676 * p->stime and friends are only updated on system time and not on irq
3677 * softirq as those do not count in task exec_runtime any more.
3678 */
3679static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3680 struct rq *rq)
3681{
3682 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3683 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3684 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3685
3686 if (irqtime_account_hi_update()) {
3687 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3688 } else if (irqtime_account_si_update()) {
3689 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3690 } else if (this_cpu_ksoftirqd() == p) {
3691 /*
3692 * ksoftirqd time do not get accounted in cpu_softirq_time.
3693 * So, we have to handle it separately here.
3694 * Also, p->stime needs to be updated for ksoftirqd.
3695 */
3696 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3697 &cpustat->softirq);
abb74cef
VP
3698 } else if (user_tick) {
3699 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3700 } else if (p == rq->idle) {
3701 account_idle_time(cputime_one_jiffy);
3702 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3703 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3704 } else {
3705 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3706 &cpustat->system);
3707 }
3708}
3709
3710static void irqtime_account_idle_ticks(int ticks)
3711{
3712 int i;
3713 struct rq *rq = this_rq();
3714
3715 for (i = 0; i < ticks; i++)
3716 irqtime_account_process_tick(current, 0, rq);
3717}
3718#else
3719static void irqtime_account_idle_ticks(int ticks) {}
3720static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3721 struct rq *rq) {}
3722#endif
3723
c66f08be 3724/*
1da177e4 3725 * Account for involuntary wait time.
1da177e4 3726 * @steal: the cpu time spent in involuntary wait
c66f08be 3727 */
79741dd3 3728void account_steal_time(cputime_t cputime)
c66f08be 3729{
79741dd3
MS
3730 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3731 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3732
3733 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3734}
3735
1da177e4 3736/*
79741dd3
MS
3737 * Account for idle time.
3738 * @cputime: the cpu time spent in idle wait
1da177e4 3739 */
79741dd3 3740void account_idle_time(cputime_t cputime)
1da177e4
LT
3741{
3742 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3743 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3744 struct rq *rq = this_rq();
1da177e4 3745
79741dd3
MS
3746 if (atomic_read(&rq->nr_iowait) > 0)
3747 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3748 else
3749 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3750}
3751
79741dd3
MS
3752#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3753
3754/*
3755 * Account a single tick of cpu time.
3756 * @p: the process that the cpu time gets accounted to
3757 * @user_tick: indicates if the tick is a user or a system tick
3758 */
3759void account_process_tick(struct task_struct *p, int user_tick)
3760{
a42548a1 3761 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3762 struct rq *rq = this_rq();
3763
abb74cef
VP
3764 if (sched_clock_irqtime) {
3765 irqtime_account_process_tick(p, user_tick, rq);
3766 return;
3767 }
3768
79741dd3 3769 if (user_tick)
a42548a1 3770 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3771 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3772 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3773 one_jiffy_scaled);
3774 else
a42548a1 3775 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3776}
3777
3778/*
3779 * Account multiple ticks of steal time.
3780 * @p: the process from which the cpu time has been stolen
3781 * @ticks: number of stolen ticks
3782 */
3783void account_steal_ticks(unsigned long ticks)
3784{
3785 account_steal_time(jiffies_to_cputime(ticks));
3786}
3787
3788/*
3789 * Account multiple ticks of idle time.
3790 * @ticks: number of stolen ticks
3791 */
3792void account_idle_ticks(unsigned long ticks)
3793{
abb74cef
VP
3794
3795 if (sched_clock_irqtime) {
3796 irqtime_account_idle_ticks(ticks);
3797 return;
3798 }
3799
79741dd3 3800 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3801}
3802
79741dd3
MS
3803#endif
3804
49048622
BS
3805/*
3806 * Use precise platform statistics if available:
3807 */
3808#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3809void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3810{
d99ca3b9
HS
3811 *ut = p->utime;
3812 *st = p->stime;
49048622
BS
3813}
3814
0cf55e1e 3815void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3816{
0cf55e1e
HS
3817 struct task_cputime cputime;
3818
3819 thread_group_cputime(p, &cputime);
3820
3821 *ut = cputime.utime;
3822 *st = cputime.stime;
49048622
BS
3823}
3824#else
761b1d26
HS
3825
3826#ifndef nsecs_to_cputime
b7b20df9 3827# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3828#endif
3829
d180c5bc 3830void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3831{
d99ca3b9 3832 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3833
3834 /*
3835 * Use CFS's precise accounting:
3836 */
d180c5bc 3837 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3838
3839 if (total) {
e75e863d 3840 u64 temp = rtime;
d180c5bc 3841
e75e863d 3842 temp *= utime;
49048622 3843 do_div(temp, total);
d180c5bc
HS
3844 utime = (cputime_t)temp;
3845 } else
3846 utime = rtime;
49048622 3847
d180c5bc
HS
3848 /*
3849 * Compare with previous values, to keep monotonicity:
3850 */
761b1d26 3851 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3852 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3853
d99ca3b9
HS
3854 *ut = p->prev_utime;
3855 *st = p->prev_stime;
49048622
BS
3856}
3857
0cf55e1e
HS
3858/*
3859 * Must be called with siglock held.
3860 */
3861void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3862{
0cf55e1e
HS
3863 struct signal_struct *sig = p->signal;
3864 struct task_cputime cputime;
3865 cputime_t rtime, utime, total;
49048622 3866
0cf55e1e 3867 thread_group_cputime(p, &cputime);
49048622 3868
0cf55e1e
HS
3869 total = cputime_add(cputime.utime, cputime.stime);
3870 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3871
0cf55e1e 3872 if (total) {
e75e863d 3873 u64 temp = rtime;
49048622 3874
e75e863d 3875 temp *= cputime.utime;
0cf55e1e
HS
3876 do_div(temp, total);
3877 utime = (cputime_t)temp;
3878 } else
3879 utime = rtime;
3880
3881 sig->prev_utime = max(sig->prev_utime, utime);
3882 sig->prev_stime = max(sig->prev_stime,
3883 cputime_sub(rtime, sig->prev_utime));
3884
3885 *ut = sig->prev_utime;
3886 *st = sig->prev_stime;
49048622 3887}
49048622 3888#endif
49048622 3889
7835b98b
CL
3890/*
3891 * This function gets called by the timer code, with HZ frequency.
3892 * We call it with interrupts disabled.
3893 *
3894 * It also gets called by the fork code, when changing the parent's
3895 * timeslices.
3896 */
3897void scheduler_tick(void)
3898{
7835b98b
CL
3899 int cpu = smp_processor_id();
3900 struct rq *rq = cpu_rq(cpu);
dd41f596 3901 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3902
3903 sched_clock_tick();
dd41f596 3904
05fa785c 3905 raw_spin_lock(&rq->lock);
3e51f33f 3906 update_rq_clock(rq);
fdf3e95d 3907 update_cpu_load_active(rq);
fa85ae24 3908 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3909 raw_spin_unlock(&rq->lock);
7835b98b 3910
e9d2b064 3911 perf_event_task_tick();
e220d2dc 3912
e418e1c2 3913#ifdef CONFIG_SMP
dd41f596
IM
3914 rq->idle_at_tick = idle_cpu(cpu);
3915 trigger_load_balance(rq, cpu);
e418e1c2 3916#endif
1da177e4
LT
3917}
3918
132380a0 3919notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3920{
3921 if (in_lock_functions(addr)) {
3922 addr = CALLER_ADDR2;
3923 if (in_lock_functions(addr))
3924 addr = CALLER_ADDR3;
3925 }
3926 return addr;
3927}
1da177e4 3928
7e49fcce
SR
3929#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3930 defined(CONFIG_PREEMPT_TRACER))
3931
43627582 3932void __kprobes add_preempt_count(int val)
1da177e4 3933{
6cd8a4bb 3934#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3935 /*
3936 * Underflow?
3937 */
9a11b49a
IM
3938 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3939 return;
6cd8a4bb 3940#endif
1da177e4 3941 preempt_count() += val;
6cd8a4bb 3942#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3943 /*
3944 * Spinlock count overflowing soon?
3945 */
33859f7f
MOS
3946 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3947 PREEMPT_MASK - 10);
6cd8a4bb
SR
3948#endif
3949 if (preempt_count() == val)
3950 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3951}
3952EXPORT_SYMBOL(add_preempt_count);
3953
43627582 3954void __kprobes sub_preempt_count(int val)
1da177e4 3955{
6cd8a4bb 3956#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3957 /*
3958 * Underflow?
3959 */
01e3eb82 3960 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3961 return;
1da177e4
LT
3962 /*
3963 * Is the spinlock portion underflowing?
3964 */
9a11b49a
IM
3965 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3966 !(preempt_count() & PREEMPT_MASK)))
3967 return;
6cd8a4bb 3968#endif
9a11b49a 3969
6cd8a4bb
SR
3970 if (preempt_count() == val)
3971 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3972 preempt_count() -= val;
3973}
3974EXPORT_SYMBOL(sub_preempt_count);
3975
3976#endif
3977
3978/*
dd41f596 3979 * Print scheduling while atomic bug:
1da177e4 3980 */
dd41f596 3981static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3982{
838225b4
SS
3983 struct pt_regs *regs = get_irq_regs();
3984
3df0fc5b
PZ
3985 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3986 prev->comm, prev->pid, preempt_count());
838225b4 3987
dd41f596 3988 debug_show_held_locks(prev);
e21f5b15 3989 print_modules();
dd41f596
IM
3990 if (irqs_disabled())
3991 print_irqtrace_events(prev);
838225b4
SS
3992
3993 if (regs)
3994 show_regs(regs);
3995 else
3996 dump_stack();
dd41f596 3997}
1da177e4 3998
dd41f596
IM
3999/*
4000 * Various schedule()-time debugging checks and statistics:
4001 */
4002static inline void schedule_debug(struct task_struct *prev)
4003{
1da177e4 4004 /*
41a2d6cf 4005 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4006 * schedule() atomically, we ignore that path for now.
4007 * Otherwise, whine if we are scheduling when we should not be.
4008 */
3f33a7ce 4009 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4010 __schedule_bug(prev);
4011
1da177e4
LT
4012 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4013
2d72376b 4014 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4015#ifdef CONFIG_SCHEDSTATS
4016 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4017 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4018 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4019 }
4020#endif
dd41f596
IM
4021}
4022
6cecd084 4023static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4024{
a64692a3
MG
4025 if (prev->se.on_rq)
4026 update_rq_clock(rq);
6cecd084 4027 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4028}
4029
dd41f596
IM
4030/*
4031 * Pick up the highest-prio task:
4032 */
4033static inline struct task_struct *
b67802ea 4034pick_next_task(struct rq *rq)
dd41f596 4035{
5522d5d5 4036 const struct sched_class *class;
dd41f596 4037 struct task_struct *p;
1da177e4
LT
4038
4039 /*
dd41f596
IM
4040 * Optimization: we know that if all tasks are in
4041 * the fair class we can call that function directly:
1da177e4 4042 */
dd41f596 4043 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4044 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4045 if (likely(p))
4046 return p;
1da177e4
LT
4047 }
4048
34f971f6 4049 for_each_class(class) {
fb8d4724 4050 p = class->pick_next_task(rq);
dd41f596
IM
4051 if (p)
4052 return p;
dd41f596 4053 }
34f971f6
PZ
4054
4055 BUG(); /* the idle class will always have a runnable task */
dd41f596 4056}
1da177e4 4057
dd41f596
IM
4058/*
4059 * schedule() is the main scheduler function.
4060 */
ff743345 4061asmlinkage void __sched schedule(void)
dd41f596
IM
4062{
4063 struct task_struct *prev, *next;
67ca7bde 4064 unsigned long *switch_count;
dd41f596 4065 struct rq *rq;
31656519 4066 int cpu;
dd41f596 4067
ff743345
PZ
4068need_resched:
4069 preempt_disable();
dd41f596
IM
4070 cpu = smp_processor_id();
4071 rq = cpu_rq(cpu);
25502a6c 4072 rcu_note_context_switch(cpu);
dd41f596 4073 prev = rq->curr;
dd41f596
IM
4074
4075 release_kernel_lock(prev);
4076need_resched_nonpreemptible:
4077
4078 schedule_debug(prev);
1da177e4 4079
31656519 4080 if (sched_feat(HRTICK))
f333fdc9 4081 hrtick_clear(rq);
8f4d37ec 4082
05fa785c 4083 raw_spin_lock_irq(&rq->lock);
1da177e4 4084
246d86b5 4085 switch_count = &prev->nivcsw;
1da177e4 4086 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4087 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4088 prev->state = TASK_RUNNING;
21aa9af0
TH
4089 } else {
4090 /*
4091 * If a worker is going to sleep, notify and
4092 * ask workqueue whether it wants to wake up a
4093 * task to maintain concurrency. If so, wake
4094 * up the task.
4095 */
4096 if (prev->flags & PF_WQ_WORKER) {
4097 struct task_struct *to_wakeup;
4098
4099 to_wakeup = wq_worker_sleeping(prev, cpu);
4100 if (to_wakeup)
4101 try_to_wake_up_local(to_wakeup);
4102 }
371fd7e7 4103 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4104 }
dd41f596 4105 switch_count = &prev->nvcsw;
1da177e4
LT
4106 }
4107
3f029d3c 4108 pre_schedule(rq, prev);
f65eda4f 4109
dd41f596 4110 if (unlikely(!rq->nr_running))
1da177e4 4111 idle_balance(cpu, rq);
1da177e4 4112
df1c99d4 4113 put_prev_task(rq, prev);
b67802ea 4114 next = pick_next_task(rq);
f26f9aff
MG
4115 clear_tsk_need_resched(prev);
4116 rq->skip_clock_update = 0;
1da177e4 4117
1da177e4 4118 if (likely(prev != next)) {
673a90a1 4119 sched_info_switch(prev, next);
49f47433 4120 perf_event_task_sched_out(prev, next);
673a90a1 4121
1da177e4
LT
4122 rq->nr_switches++;
4123 rq->curr = next;
4124 ++*switch_count;
4125
dd41f596 4126 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4127 /*
246d86b5
ON
4128 * The context switch have flipped the stack from under us
4129 * and restored the local variables which were saved when
4130 * this task called schedule() in the past. prev == current
4131 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4132 */
4133 cpu = smp_processor_id();
4134 rq = cpu_rq(cpu);
1da177e4 4135 } else
05fa785c 4136 raw_spin_unlock_irq(&rq->lock);
1da177e4 4137
3f029d3c 4138 post_schedule(rq);
1da177e4 4139
246d86b5 4140 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4141 goto need_resched_nonpreemptible;
8f4d37ec 4142
1da177e4 4143 preempt_enable_no_resched();
ff743345 4144 if (need_resched())
1da177e4
LT
4145 goto need_resched;
4146}
1da177e4
LT
4147EXPORT_SYMBOL(schedule);
4148
c08f7829 4149#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4150/*
4151 * Look out! "owner" is an entirely speculative pointer
4152 * access and not reliable.
4153 */
4154int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4155{
4156 unsigned int cpu;
4157 struct rq *rq;
4158
4159 if (!sched_feat(OWNER_SPIN))
4160 return 0;
4161
4162#ifdef CONFIG_DEBUG_PAGEALLOC
4163 /*
4164 * Need to access the cpu field knowing that
4165 * DEBUG_PAGEALLOC could have unmapped it if
4166 * the mutex owner just released it and exited.
4167 */
4168 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4169 return 0;
0d66bf6d
PZ
4170#else
4171 cpu = owner->cpu;
4172#endif
4173
4174 /*
4175 * Even if the access succeeded (likely case),
4176 * the cpu field may no longer be valid.
4177 */
4178 if (cpu >= nr_cpumask_bits)
4b402210 4179 return 0;
0d66bf6d
PZ
4180
4181 /*
4182 * We need to validate that we can do a
4183 * get_cpu() and that we have the percpu area.
4184 */
4185 if (!cpu_online(cpu))
4b402210 4186 return 0;
0d66bf6d
PZ
4187
4188 rq = cpu_rq(cpu);
4189
4190 for (;;) {
4191 /*
4192 * Owner changed, break to re-assess state.
4193 */
9d0f4dcc
TC
4194 if (lock->owner != owner) {
4195 /*
4196 * If the lock has switched to a different owner,
4197 * we likely have heavy contention. Return 0 to quit
4198 * optimistic spinning and not contend further:
4199 */
4200 if (lock->owner)
4201 return 0;
0d66bf6d 4202 break;
9d0f4dcc 4203 }
0d66bf6d
PZ
4204
4205 /*
4206 * Is that owner really running on that cpu?
4207 */
4208 if (task_thread_info(rq->curr) != owner || need_resched())
4209 return 0;
4210
335d7afb 4211 arch_mutex_cpu_relax();
0d66bf6d 4212 }
4b402210 4213
0d66bf6d
PZ
4214 return 1;
4215}
4216#endif
4217
1da177e4
LT
4218#ifdef CONFIG_PREEMPT
4219/*
2ed6e34f 4220 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4221 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4222 * occur there and call schedule directly.
4223 */
d1f74e20 4224asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4225{
4226 struct thread_info *ti = current_thread_info();
6478d880 4227
1da177e4
LT
4228 /*
4229 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4230 * we do not want to preempt the current task. Just return..
1da177e4 4231 */
beed33a8 4232 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4233 return;
4234
3a5c359a 4235 do {
d1f74e20 4236 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4237 schedule();
d1f74e20 4238 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4239
3a5c359a
AK
4240 /*
4241 * Check again in case we missed a preemption opportunity
4242 * between schedule and now.
4243 */
4244 barrier();
5ed0cec0 4245 } while (need_resched());
1da177e4 4246}
1da177e4
LT
4247EXPORT_SYMBOL(preempt_schedule);
4248
4249/*
2ed6e34f 4250 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4251 * off of irq context.
4252 * Note, that this is called and return with irqs disabled. This will
4253 * protect us against recursive calling from irq.
4254 */
4255asmlinkage void __sched preempt_schedule_irq(void)
4256{
4257 struct thread_info *ti = current_thread_info();
6478d880 4258
2ed6e34f 4259 /* Catch callers which need to be fixed */
1da177e4
LT
4260 BUG_ON(ti->preempt_count || !irqs_disabled());
4261
3a5c359a
AK
4262 do {
4263 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4264 local_irq_enable();
4265 schedule();
4266 local_irq_disable();
3a5c359a 4267 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4268
3a5c359a
AK
4269 /*
4270 * Check again in case we missed a preemption opportunity
4271 * between schedule and now.
4272 */
4273 barrier();
5ed0cec0 4274 } while (need_resched());
1da177e4
LT
4275}
4276
4277#endif /* CONFIG_PREEMPT */
4278
63859d4f 4279int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4280 void *key)
1da177e4 4281{
63859d4f 4282 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4283}
1da177e4
LT
4284EXPORT_SYMBOL(default_wake_function);
4285
4286/*
41a2d6cf
IM
4287 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4288 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4289 * number) then we wake all the non-exclusive tasks and one exclusive task.
4290 *
4291 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4292 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4293 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4294 */
78ddb08f 4295static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4296 int nr_exclusive, int wake_flags, void *key)
1da177e4 4297{
2e45874c 4298 wait_queue_t *curr, *next;
1da177e4 4299
2e45874c 4300 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4301 unsigned flags = curr->flags;
4302
63859d4f 4303 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4304 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4305 break;
4306 }
4307}
4308
4309/**
4310 * __wake_up - wake up threads blocked on a waitqueue.
4311 * @q: the waitqueue
4312 * @mode: which threads
4313 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4314 * @key: is directly passed to the wakeup function
50fa610a
DH
4315 *
4316 * It may be assumed that this function implies a write memory barrier before
4317 * changing the task state if and only if any tasks are woken up.
1da177e4 4318 */
7ad5b3a5 4319void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4320 int nr_exclusive, void *key)
1da177e4
LT
4321{
4322 unsigned long flags;
4323
4324 spin_lock_irqsave(&q->lock, flags);
4325 __wake_up_common(q, mode, nr_exclusive, 0, key);
4326 spin_unlock_irqrestore(&q->lock, flags);
4327}
1da177e4
LT
4328EXPORT_SYMBOL(__wake_up);
4329
4330/*
4331 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4332 */
7ad5b3a5 4333void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4334{
4335 __wake_up_common(q, mode, 1, 0, NULL);
4336}
22c43c81 4337EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4338
4ede816a
DL
4339void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4340{
4341 __wake_up_common(q, mode, 1, 0, key);
4342}
4343
1da177e4 4344/**
4ede816a 4345 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4346 * @q: the waitqueue
4347 * @mode: which threads
4348 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4349 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4350 *
4351 * The sync wakeup differs that the waker knows that it will schedule
4352 * away soon, so while the target thread will be woken up, it will not
4353 * be migrated to another CPU - ie. the two threads are 'synchronized'
4354 * with each other. This can prevent needless bouncing between CPUs.
4355 *
4356 * On UP it can prevent extra preemption.
50fa610a
DH
4357 *
4358 * It may be assumed that this function implies a write memory barrier before
4359 * changing the task state if and only if any tasks are woken up.
1da177e4 4360 */
4ede816a
DL
4361void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4362 int nr_exclusive, void *key)
1da177e4
LT
4363{
4364 unsigned long flags;
7d478721 4365 int wake_flags = WF_SYNC;
1da177e4
LT
4366
4367 if (unlikely(!q))
4368 return;
4369
4370 if (unlikely(!nr_exclusive))
7d478721 4371 wake_flags = 0;
1da177e4
LT
4372
4373 spin_lock_irqsave(&q->lock, flags);
7d478721 4374 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4375 spin_unlock_irqrestore(&q->lock, flags);
4376}
4ede816a
DL
4377EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4378
4379/*
4380 * __wake_up_sync - see __wake_up_sync_key()
4381 */
4382void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4383{
4384 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4385}
1da177e4
LT
4386EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4387
65eb3dc6
KD
4388/**
4389 * complete: - signals a single thread waiting on this completion
4390 * @x: holds the state of this particular completion
4391 *
4392 * This will wake up a single thread waiting on this completion. Threads will be
4393 * awakened in the same order in which they were queued.
4394 *
4395 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4396 *
4397 * It may be assumed that this function implies a write memory barrier before
4398 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4399 */
b15136e9 4400void complete(struct completion *x)
1da177e4
LT
4401{
4402 unsigned long flags;
4403
4404 spin_lock_irqsave(&x->wait.lock, flags);
4405 x->done++;
d9514f6c 4406 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4407 spin_unlock_irqrestore(&x->wait.lock, flags);
4408}
4409EXPORT_SYMBOL(complete);
4410
65eb3dc6
KD
4411/**
4412 * complete_all: - signals all threads waiting on this completion
4413 * @x: holds the state of this particular completion
4414 *
4415 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4416 *
4417 * It may be assumed that this function implies a write memory barrier before
4418 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4419 */
b15136e9 4420void complete_all(struct completion *x)
1da177e4
LT
4421{
4422 unsigned long flags;
4423
4424 spin_lock_irqsave(&x->wait.lock, flags);
4425 x->done += UINT_MAX/2;
d9514f6c 4426 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4427 spin_unlock_irqrestore(&x->wait.lock, flags);
4428}
4429EXPORT_SYMBOL(complete_all);
4430
8cbbe86d
AK
4431static inline long __sched
4432do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4433{
1da177e4
LT
4434 if (!x->done) {
4435 DECLARE_WAITQUEUE(wait, current);
4436
a93d2f17 4437 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4438 do {
94d3d824 4439 if (signal_pending_state(state, current)) {
ea71a546
ON
4440 timeout = -ERESTARTSYS;
4441 break;
8cbbe86d
AK
4442 }
4443 __set_current_state(state);
1da177e4
LT
4444 spin_unlock_irq(&x->wait.lock);
4445 timeout = schedule_timeout(timeout);
4446 spin_lock_irq(&x->wait.lock);
ea71a546 4447 } while (!x->done && timeout);
1da177e4 4448 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4449 if (!x->done)
4450 return timeout;
1da177e4
LT
4451 }
4452 x->done--;
ea71a546 4453 return timeout ?: 1;
1da177e4 4454}
1da177e4 4455
8cbbe86d
AK
4456static long __sched
4457wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4458{
1da177e4
LT
4459 might_sleep();
4460
4461 spin_lock_irq(&x->wait.lock);
8cbbe86d 4462 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4463 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4464 return timeout;
4465}
1da177e4 4466
65eb3dc6
KD
4467/**
4468 * wait_for_completion: - waits for completion of a task
4469 * @x: holds the state of this particular completion
4470 *
4471 * This waits to be signaled for completion of a specific task. It is NOT
4472 * interruptible and there is no timeout.
4473 *
4474 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4475 * and interrupt capability. Also see complete().
4476 */
b15136e9 4477void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4478{
4479 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4480}
8cbbe86d 4481EXPORT_SYMBOL(wait_for_completion);
1da177e4 4482
65eb3dc6
KD
4483/**
4484 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4485 * @x: holds the state of this particular completion
4486 * @timeout: timeout value in jiffies
4487 *
4488 * This waits for either a completion of a specific task to be signaled or for a
4489 * specified timeout to expire. The timeout is in jiffies. It is not
4490 * interruptible.
4491 */
b15136e9 4492unsigned long __sched
8cbbe86d 4493wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4494{
8cbbe86d 4495 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4496}
8cbbe86d 4497EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4498
65eb3dc6
KD
4499/**
4500 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4501 * @x: holds the state of this particular completion
4502 *
4503 * This waits for completion of a specific task to be signaled. It is
4504 * interruptible.
4505 */
8cbbe86d 4506int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4507{
51e97990
AK
4508 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4509 if (t == -ERESTARTSYS)
4510 return t;
4511 return 0;
0fec171c 4512}
8cbbe86d 4513EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4514
65eb3dc6
KD
4515/**
4516 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4517 * @x: holds the state of this particular completion
4518 * @timeout: timeout value in jiffies
4519 *
4520 * This waits for either a completion of a specific task to be signaled or for a
4521 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4522 */
6bf41237 4523long __sched
8cbbe86d
AK
4524wait_for_completion_interruptible_timeout(struct completion *x,
4525 unsigned long timeout)
0fec171c 4526{
8cbbe86d 4527 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4528}
8cbbe86d 4529EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4530
65eb3dc6
KD
4531/**
4532 * wait_for_completion_killable: - waits for completion of a task (killable)
4533 * @x: holds the state of this particular completion
4534 *
4535 * This waits to be signaled for completion of a specific task. It can be
4536 * interrupted by a kill signal.
4537 */
009e577e
MW
4538int __sched wait_for_completion_killable(struct completion *x)
4539{
4540 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4541 if (t == -ERESTARTSYS)
4542 return t;
4543 return 0;
4544}
4545EXPORT_SYMBOL(wait_for_completion_killable);
4546
0aa12fb4
SW
4547/**
4548 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4549 * @x: holds the state of this particular completion
4550 * @timeout: timeout value in jiffies
4551 *
4552 * This waits for either a completion of a specific task to be
4553 * signaled or for a specified timeout to expire. It can be
4554 * interrupted by a kill signal. The timeout is in jiffies.
4555 */
6bf41237 4556long __sched
0aa12fb4
SW
4557wait_for_completion_killable_timeout(struct completion *x,
4558 unsigned long timeout)
4559{
4560 return wait_for_common(x, timeout, TASK_KILLABLE);
4561}
4562EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4563
be4de352
DC
4564/**
4565 * try_wait_for_completion - try to decrement a completion without blocking
4566 * @x: completion structure
4567 *
4568 * Returns: 0 if a decrement cannot be done without blocking
4569 * 1 if a decrement succeeded.
4570 *
4571 * If a completion is being used as a counting completion,
4572 * attempt to decrement the counter without blocking. This
4573 * enables us to avoid waiting if the resource the completion
4574 * is protecting is not available.
4575 */
4576bool try_wait_for_completion(struct completion *x)
4577{
7539a3b3 4578 unsigned long flags;
be4de352
DC
4579 int ret = 1;
4580
7539a3b3 4581 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4582 if (!x->done)
4583 ret = 0;
4584 else
4585 x->done--;
7539a3b3 4586 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4587 return ret;
4588}
4589EXPORT_SYMBOL(try_wait_for_completion);
4590
4591/**
4592 * completion_done - Test to see if a completion has any waiters
4593 * @x: completion structure
4594 *
4595 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4596 * 1 if there are no waiters.
4597 *
4598 */
4599bool completion_done(struct completion *x)
4600{
7539a3b3 4601 unsigned long flags;
be4de352
DC
4602 int ret = 1;
4603
7539a3b3 4604 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4605 if (!x->done)
4606 ret = 0;
7539a3b3 4607 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4608 return ret;
4609}
4610EXPORT_SYMBOL(completion_done);
4611
8cbbe86d
AK
4612static long __sched
4613sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4614{
0fec171c
IM
4615 unsigned long flags;
4616 wait_queue_t wait;
4617
4618 init_waitqueue_entry(&wait, current);
1da177e4 4619
8cbbe86d 4620 __set_current_state(state);
1da177e4 4621
8cbbe86d
AK
4622 spin_lock_irqsave(&q->lock, flags);
4623 __add_wait_queue(q, &wait);
4624 spin_unlock(&q->lock);
4625 timeout = schedule_timeout(timeout);
4626 spin_lock_irq(&q->lock);
4627 __remove_wait_queue(q, &wait);
4628 spin_unlock_irqrestore(&q->lock, flags);
4629
4630 return timeout;
4631}
4632
4633void __sched interruptible_sleep_on(wait_queue_head_t *q)
4634{
4635 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4636}
1da177e4
LT
4637EXPORT_SYMBOL(interruptible_sleep_on);
4638
0fec171c 4639long __sched
95cdf3b7 4640interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4641{
8cbbe86d 4642 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4643}
1da177e4
LT
4644EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4645
0fec171c 4646void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4647{
8cbbe86d 4648 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4649}
1da177e4
LT
4650EXPORT_SYMBOL(sleep_on);
4651
0fec171c 4652long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4653{
8cbbe86d 4654 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4655}
1da177e4
LT
4656EXPORT_SYMBOL(sleep_on_timeout);
4657
b29739f9
IM
4658#ifdef CONFIG_RT_MUTEXES
4659
4660/*
4661 * rt_mutex_setprio - set the current priority of a task
4662 * @p: task
4663 * @prio: prio value (kernel-internal form)
4664 *
4665 * This function changes the 'effective' priority of a task. It does
4666 * not touch ->normal_prio like __setscheduler().
4667 *
4668 * Used by the rt_mutex code to implement priority inheritance logic.
4669 */
36c8b586 4670void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4671{
4672 unsigned long flags;
83b699ed 4673 int oldprio, on_rq, running;
70b97a7f 4674 struct rq *rq;
83ab0aa0 4675 const struct sched_class *prev_class;
b29739f9
IM
4676
4677 BUG_ON(prio < 0 || prio > MAX_PRIO);
4678
4679 rq = task_rq_lock(p, &flags);
4680
a8027073 4681 trace_sched_pi_setprio(p, prio);
d5f9f942 4682 oldprio = p->prio;
83ab0aa0 4683 prev_class = p->sched_class;
dd41f596 4684 on_rq = p->se.on_rq;
051a1d1a 4685 running = task_current(rq, p);
0e1f3483 4686 if (on_rq)
69be72c1 4687 dequeue_task(rq, p, 0);
0e1f3483
HS
4688 if (running)
4689 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4690
4691 if (rt_prio(prio))
4692 p->sched_class = &rt_sched_class;
4693 else
4694 p->sched_class = &fair_sched_class;
4695
b29739f9
IM
4696 p->prio = prio;
4697
0e1f3483
HS
4698 if (running)
4699 p->sched_class->set_curr_task(rq);
da7a735e 4700 if (on_rq)
371fd7e7 4701 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4702
da7a735e 4703 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4704 task_rq_unlock(rq, &flags);
4705}
4706
4707#endif
4708
36c8b586 4709void set_user_nice(struct task_struct *p, long nice)
1da177e4 4710{
dd41f596 4711 int old_prio, delta, on_rq;
1da177e4 4712 unsigned long flags;
70b97a7f 4713 struct rq *rq;
1da177e4
LT
4714
4715 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4716 return;
4717 /*
4718 * We have to be careful, if called from sys_setpriority(),
4719 * the task might be in the middle of scheduling on another CPU.
4720 */
4721 rq = task_rq_lock(p, &flags);
4722 /*
4723 * The RT priorities are set via sched_setscheduler(), but we still
4724 * allow the 'normal' nice value to be set - but as expected
4725 * it wont have any effect on scheduling until the task is
dd41f596 4726 * SCHED_FIFO/SCHED_RR:
1da177e4 4727 */
e05606d3 4728 if (task_has_rt_policy(p)) {
1da177e4
LT
4729 p->static_prio = NICE_TO_PRIO(nice);
4730 goto out_unlock;
4731 }
dd41f596 4732 on_rq = p->se.on_rq;
c09595f6 4733 if (on_rq)
69be72c1 4734 dequeue_task(rq, p, 0);
1da177e4 4735
1da177e4 4736 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4737 set_load_weight(p);
b29739f9
IM
4738 old_prio = p->prio;
4739 p->prio = effective_prio(p);
4740 delta = p->prio - old_prio;
1da177e4 4741
dd41f596 4742 if (on_rq) {
371fd7e7 4743 enqueue_task(rq, p, 0);
1da177e4 4744 /*
d5f9f942
AM
4745 * If the task increased its priority or is running and
4746 * lowered its priority, then reschedule its CPU:
1da177e4 4747 */
d5f9f942 4748 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4749 resched_task(rq->curr);
4750 }
4751out_unlock:
4752 task_rq_unlock(rq, &flags);
4753}
1da177e4
LT
4754EXPORT_SYMBOL(set_user_nice);
4755
e43379f1
MM
4756/*
4757 * can_nice - check if a task can reduce its nice value
4758 * @p: task
4759 * @nice: nice value
4760 */
36c8b586 4761int can_nice(const struct task_struct *p, const int nice)
e43379f1 4762{
024f4747
MM
4763 /* convert nice value [19,-20] to rlimit style value [1,40] */
4764 int nice_rlim = 20 - nice;
48f24c4d 4765
78d7d407 4766 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4767 capable(CAP_SYS_NICE));
4768}
4769
1da177e4
LT
4770#ifdef __ARCH_WANT_SYS_NICE
4771
4772/*
4773 * sys_nice - change the priority of the current process.
4774 * @increment: priority increment
4775 *
4776 * sys_setpriority is a more generic, but much slower function that
4777 * does similar things.
4778 */
5add95d4 4779SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4780{
48f24c4d 4781 long nice, retval;
1da177e4
LT
4782
4783 /*
4784 * Setpriority might change our priority at the same moment.
4785 * We don't have to worry. Conceptually one call occurs first
4786 * and we have a single winner.
4787 */
e43379f1
MM
4788 if (increment < -40)
4789 increment = -40;
1da177e4
LT
4790 if (increment > 40)
4791 increment = 40;
4792
2b8f836f 4793 nice = TASK_NICE(current) + increment;
1da177e4
LT
4794 if (nice < -20)
4795 nice = -20;
4796 if (nice > 19)
4797 nice = 19;
4798
e43379f1
MM
4799 if (increment < 0 && !can_nice(current, nice))
4800 return -EPERM;
4801
1da177e4
LT
4802 retval = security_task_setnice(current, nice);
4803 if (retval)
4804 return retval;
4805
4806 set_user_nice(current, nice);
4807 return 0;
4808}
4809
4810#endif
4811
4812/**
4813 * task_prio - return the priority value of a given task.
4814 * @p: the task in question.
4815 *
4816 * This is the priority value as seen by users in /proc.
4817 * RT tasks are offset by -200. Normal tasks are centered
4818 * around 0, value goes from -16 to +15.
4819 */
36c8b586 4820int task_prio(const struct task_struct *p)
1da177e4
LT
4821{
4822 return p->prio - MAX_RT_PRIO;
4823}
4824
4825/**
4826 * task_nice - return the nice value of a given task.
4827 * @p: the task in question.
4828 */
36c8b586 4829int task_nice(const struct task_struct *p)
1da177e4
LT
4830{
4831 return TASK_NICE(p);
4832}
150d8bed 4833EXPORT_SYMBOL(task_nice);
1da177e4
LT
4834
4835/**
4836 * idle_cpu - is a given cpu idle currently?
4837 * @cpu: the processor in question.
4838 */
4839int idle_cpu(int cpu)
4840{
4841 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4842}
4843
1da177e4
LT
4844/**
4845 * idle_task - return the idle task for a given cpu.
4846 * @cpu: the processor in question.
4847 */
36c8b586 4848struct task_struct *idle_task(int cpu)
1da177e4
LT
4849{
4850 return cpu_rq(cpu)->idle;
4851}
4852
4853/**
4854 * find_process_by_pid - find a process with a matching PID value.
4855 * @pid: the pid in question.
4856 */
a9957449 4857static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4858{
228ebcbe 4859 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4860}
4861
4862/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4863static void
4864__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4865{
dd41f596 4866 BUG_ON(p->se.on_rq);
48f24c4d 4867
1da177e4
LT
4868 p->policy = policy;
4869 p->rt_priority = prio;
b29739f9
IM
4870 p->normal_prio = normal_prio(p);
4871 /* we are holding p->pi_lock already */
4872 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4873 if (rt_prio(p->prio))
4874 p->sched_class = &rt_sched_class;
4875 else
4876 p->sched_class = &fair_sched_class;
2dd73a4f 4877 set_load_weight(p);
1da177e4
LT
4878}
4879
c69e8d9c
DH
4880/*
4881 * check the target process has a UID that matches the current process's
4882 */
4883static bool check_same_owner(struct task_struct *p)
4884{
4885 const struct cred *cred = current_cred(), *pcred;
4886 bool match;
4887
4888 rcu_read_lock();
4889 pcred = __task_cred(p);
4890 match = (cred->euid == pcred->euid ||
4891 cred->euid == pcred->uid);
4892 rcu_read_unlock();
4893 return match;
4894}
4895
961ccddd 4896static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4897 const struct sched_param *param, bool user)
1da177e4 4898{
83b699ed 4899 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4900 unsigned long flags;
83ab0aa0 4901 const struct sched_class *prev_class;
70b97a7f 4902 struct rq *rq;
ca94c442 4903 int reset_on_fork;
1da177e4 4904
66e5393a
SR
4905 /* may grab non-irq protected spin_locks */
4906 BUG_ON(in_interrupt());
1da177e4
LT
4907recheck:
4908 /* double check policy once rq lock held */
ca94c442
LP
4909 if (policy < 0) {
4910 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4911 policy = oldpolicy = p->policy;
ca94c442
LP
4912 } else {
4913 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4914 policy &= ~SCHED_RESET_ON_FORK;
4915
4916 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4917 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4918 policy != SCHED_IDLE)
4919 return -EINVAL;
4920 }
4921
1da177e4
LT
4922 /*
4923 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4924 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4925 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4926 */
4927 if (param->sched_priority < 0 ||
95cdf3b7 4928 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4929 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4930 return -EINVAL;
e05606d3 4931 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4932 return -EINVAL;
4933
37e4ab3f
OC
4934 /*
4935 * Allow unprivileged RT tasks to decrease priority:
4936 */
961ccddd 4937 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4938 if (rt_policy(policy)) {
a44702e8
ON
4939 unsigned long rlim_rtprio =
4940 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4941
4942 /* can't set/change the rt policy */
4943 if (policy != p->policy && !rlim_rtprio)
4944 return -EPERM;
4945
4946 /* can't increase priority */
4947 if (param->sched_priority > p->rt_priority &&
4948 param->sched_priority > rlim_rtprio)
4949 return -EPERM;
4950 }
dd41f596
IM
4951 /*
4952 * Like positive nice levels, dont allow tasks to
4953 * move out of SCHED_IDLE either:
4954 */
4955 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4956 return -EPERM;
5fe1d75f 4957
37e4ab3f 4958 /* can't change other user's priorities */
c69e8d9c 4959 if (!check_same_owner(p))
37e4ab3f 4960 return -EPERM;
ca94c442
LP
4961
4962 /* Normal users shall not reset the sched_reset_on_fork flag */
4963 if (p->sched_reset_on_fork && !reset_on_fork)
4964 return -EPERM;
37e4ab3f 4965 }
1da177e4 4966
725aad24 4967 if (user) {
b0ae1981 4968 retval = security_task_setscheduler(p);
725aad24
JF
4969 if (retval)
4970 return retval;
4971 }
4972
b29739f9
IM
4973 /*
4974 * make sure no PI-waiters arrive (or leave) while we are
4975 * changing the priority of the task:
4976 */
1d615482 4977 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4978 /*
4979 * To be able to change p->policy safely, the apropriate
4980 * runqueue lock must be held.
4981 */
b29739f9 4982 rq = __task_rq_lock(p);
dc61b1d6 4983
34f971f6
PZ
4984 /*
4985 * Changing the policy of the stop threads its a very bad idea
4986 */
4987 if (p == rq->stop) {
4988 __task_rq_unlock(rq);
4989 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4990 return -EINVAL;
4991 }
4992
dc61b1d6
PZ
4993#ifdef CONFIG_RT_GROUP_SCHED
4994 if (user) {
4995 /*
4996 * Do not allow realtime tasks into groups that have no runtime
4997 * assigned.
4998 */
4999 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5000 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5001 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5002 __task_rq_unlock(rq);
5003 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5004 return -EPERM;
5005 }
5006 }
5007#endif
5008
1da177e4
LT
5009 /* recheck policy now with rq lock held */
5010 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5011 policy = oldpolicy = -1;
b29739f9 5012 __task_rq_unlock(rq);
1d615482 5013 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5014 goto recheck;
5015 }
dd41f596 5016 on_rq = p->se.on_rq;
051a1d1a 5017 running = task_current(rq, p);
0e1f3483 5018 if (on_rq)
2e1cb74a 5019 deactivate_task(rq, p, 0);
0e1f3483
HS
5020 if (running)
5021 p->sched_class->put_prev_task(rq, p);
f6b53205 5022
ca94c442
LP
5023 p->sched_reset_on_fork = reset_on_fork;
5024
1da177e4 5025 oldprio = p->prio;
83ab0aa0 5026 prev_class = p->sched_class;
dd41f596 5027 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5028
0e1f3483
HS
5029 if (running)
5030 p->sched_class->set_curr_task(rq);
da7a735e 5031 if (on_rq)
dd41f596 5032 activate_task(rq, p, 0);
cb469845 5033
da7a735e 5034 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5035 __task_rq_unlock(rq);
1d615482 5036 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5037
95e02ca9
TG
5038 rt_mutex_adjust_pi(p);
5039
1da177e4
LT
5040 return 0;
5041}
961ccddd
RR
5042
5043/**
5044 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5045 * @p: the task in question.
5046 * @policy: new policy.
5047 * @param: structure containing the new RT priority.
5048 *
5049 * NOTE that the task may be already dead.
5050 */
5051int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5052 const struct sched_param *param)
961ccddd
RR
5053{
5054 return __sched_setscheduler(p, policy, param, true);
5055}
1da177e4
LT
5056EXPORT_SYMBOL_GPL(sched_setscheduler);
5057
961ccddd
RR
5058/**
5059 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5060 * @p: the task in question.
5061 * @policy: new policy.
5062 * @param: structure containing the new RT priority.
5063 *
5064 * Just like sched_setscheduler, only don't bother checking if the
5065 * current context has permission. For example, this is needed in
5066 * stop_machine(): we create temporary high priority worker threads,
5067 * but our caller might not have that capability.
5068 */
5069int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5070 const struct sched_param *param)
961ccddd
RR
5071{
5072 return __sched_setscheduler(p, policy, param, false);
5073}
5074
95cdf3b7
IM
5075static int
5076do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5077{
1da177e4
LT
5078 struct sched_param lparam;
5079 struct task_struct *p;
36c8b586 5080 int retval;
1da177e4
LT
5081
5082 if (!param || pid < 0)
5083 return -EINVAL;
5084 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5085 return -EFAULT;
5fe1d75f
ON
5086
5087 rcu_read_lock();
5088 retval = -ESRCH;
1da177e4 5089 p = find_process_by_pid(pid);
5fe1d75f
ON
5090 if (p != NULL)
5091 retval = sched_setscheduler(p, policy, &lparam);
5092 rcu_read_unlock();
36c8b586 5093
1da177e4
LT
5094 return retval;
5095}
5096
5097/**
5098 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5099 * @pid: the pid in question.
5100 * @policy: new policy.
5101 * @param: structure containing the new RT priority.
5102 */
5add95d4
HC
5103SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5104 struct sched_param __user *, param)
1da177e4 5105{
c21761f1
JB
5106 /* negative values for policy are not valid */
5107 if (policy < 0)
5108 return -EINVAL;
5109
1da177e4
LT
5110 return do_sched_setscheduler(pid, policy, param);
5111}
5112
5113/**
5114 * sys_sched_setparam - set/change the RT priority of a thread
5115 * @pid: the pid in question.
5116 * @param: structure containing the new RT priority.
5117 */
5add95d4 5118SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5119{
5120 return do_sched_setscheduler(pid, -1, param);
5121}
5122
5123/**
5124 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5125 * @pid: the pid in question.
5126 */
5add95d4 5127SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5128{
36c8b586 5129 struct task_struct *p;
3a5c359a 5130 int retval;
1da177e4
LT
5131
5132 if (pid < 0)
3a5c359a 5133 return -EINVAL;
1da177e4
LT
5134
5135 retval = -ESRCH;
5fe85be0 5136 rcu_read_lock();
1da177e4
LT
5137 p = find_process_by_pid(pid);
5138 if (p) {
5139 retval = security_task_getscheduler(p);
5140 if (!retval)
ca94c442
LP
5141 retval = p->policy
5142 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5143 }
5fe85be0 5144 rcu_read_unlock();
1da177e4
LT
5145 return retval;
5146}
5147
5148/**
ca94c442 5149 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5150 * @pid: the pid in question.
5151 * @param: structure containing the RT priority.
5152 */
5add95d4 5153SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5154{
5155 struct sched_param lp;
36c8b586 5156 struct task_struct *p;
3a5c359a 5157 int retval;
1da177e4
LT
5158
5159 if (!param || pid < 0)
3a5c359a 5160 return -EINVAL;
1da177e4 5161
5fe85be0 5162 rcu_read_lock();
1da177e4
LT
5163 p = find_process_by_pid(pid);
5164 retval = -ESRCH;
5165 if (!p)
5166 goto out_unlock;
5167
5168 retval = security_task_getscheduler(p);
5169 if (retval)
5170 goto out_unlock;
5171
5172 lp.sched_priority = p->rt_priority;
5fe85be0 5173 rcu_read_unlock();
1da177e4
LT
5174
5175 /*
5176 * This one might sleep, we cannot do it with a spinlock held ...
5177 */
5178 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5179
1da177e4
LT
5180 return retval;
5181
5182out_unlock:
5fe85be0 5183 rcu_read_unlock();
1da177e4
LT
5184 return retval;
5185}
5186
96f874e2 5187long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5188{
5a16f3d3 5189 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5190 struct task_struct *p;
5191 int retval;
1da177e4 5192
95402b38 5193 get_online_cpus();
23f5d142 5194 rcu_read_lock();
1da177e4
LT
5195
5196 p = find_process_by_pid(pid);
5197 if (!p) {
23f5d142 5198 rcu_read_unlock();
95402b38 5199 put_online_cpus();
1da177e4
LT
5200 return -ESRCH;
5201 }
5202
23f5d142 5203 /* Prevent p going away */
1da177e4 5204 get_task_struct(p);
23f5d142 5205 rcu_read_unlock();
1da177e4 5206
5a16f3d3
RR
5207 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5208 retval = -ENOMEM;
5209 goto out_put_task;
5210 }
5211 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5212 retval = -ENOMEM;
5213 goto out_free_cpus_allowed;
5214 }
1da177e4 5215 retval = -EPERM;
c69e8d9c 5216 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5217 goto out_unlock;
5218
b0ae1981 5219 retval = security_task_setscheduler(p);
e7834f8f
DQ
5220 if (retval)
5221 goto out_unlock;
5222
5a16f3d3
RR
5223 cpuset_cpus_allowed(p, cpus_allowed);
5224 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5225again:
5a16f3d3 5226 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5227
8707d8b8 5228 if (!retval) {
5a16f3d3
RR
5229 cpuset_cpus_allowed(p, cpus_allowed);
5230 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5231 /*
5232 * We must have raced with a concurrent cpuset
5233 * update. Just reset the cpus_allowed to the
5234 * cpuset's cpus_allowed
5235 */
5a16f3d3 5236 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5237 goto again;
5238 }
5239 }
1da177e4 5240out_unlock:
5a16f3d3
RR
5241 free_cpumask_var(new_mask);
5242out_free_cpus_allowed:
5243 free_cpumask_var(cpus_allowed);
5244out_put_task:
1da177e4 5245 put_task_struct(p);
95402b38 5246 put_online_cpus();
1da177e4
LT
5247 return retval;
5248}
5249
5250static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5251 struct cpumask *new_mask)
1da177e4 5252{
96f874e2
RR
5253 if (len < cpumask_size())
5254 cpumask_clear(new_mask);
5255 else if (len > cpumask_size())
5256 len = cpumask_size();
5257
1da177e4
LT
5258 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5259}
5260
5261/**
5262 * sys_sched_setaffinity - set the cpu affinity of a process
5263 * @pid: pid of the process
5264 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5265 * @user_mask_ptr: user-space pointer to the new cpu mask
5266 */
5add95d4
HC
5267SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5268 unsigned long __user *, user_mask_ptr)
1da177e4 5269{
5a16f3d3 5270 cpumask_var_t new_mask;
1da177e4
LT
5271 int retval;
5272
5a16f3d3
RR
5273 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5274 return -ENOMEM;
1da177e4 5275
5a16f3d3
RR
5276 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5277 if (retval == 0)
5278 retval = sched_setaffinity(pid, new_mask);
5279 free_cpumask_var(new_mask);
5280 return retval;
1da177e4
LT
5281}
5282
96f874e2 5283long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5284{
36c8b586 5285 struct task_struct *p;
31605683
TG
5286 unsigned long flags;
5287 struct rq *rq;
1da177e4 5288 int retval;
1da177e4 5289
95402b38 5290 get_online_cpus();
23f5d142 5291 rcu_read_lock();
1da177e4
LT
5292
5293 retval = -ESRCH;
5294 p = find_process_by_pid(pid);
5295 if (!p)
5296 goto out_unlock;
5297
e7834f8f
DQ
5298 retval = security_task_getscheduler(p);
5299 if (retval)
5300 goto out_unlock;
5301
31605683 5302 rq = task_rq_lock(p, &flags);
96f874e2 5303 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5304 task_rq_unlock(rq, &flags);
1da177e4
LT
5305
5306out_unlock:
23f5d142 5307 rcu_read_unlock();
95402b38 5308 put_online_cpus();
1da177e4 5309
9531b62f 5310 return retval;
1da177e4
LT
5311}
5312
5313/**
5314 * sys_sched_getaffinity - get the cpu affinity of a process
5315 * @pid: pid of the process
5316 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5317 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5318 */
5add95d4
HC
5319SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5320 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5321{
5322 int ret;
f17c8607 5323 cpumask_var_t mask;
1da177e4 5324
84fba5ec 5325 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5326 return -EINVAL;
5327 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5328 return -EINVAL;
5329
f17c8607
RR
5330 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5331 return -ENOMEM;
1da177e4 5332
f17c8607
RR
5333 ret = sched_getaffinity(pid, mask);
5334 if (ret == 0) {
8bc037fb 5335 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5336
5337 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5338 ret = -EFAULT;
5339 else
cd3d8031 5340 ret = retlen;
f17c8607
RR
5341 }
5342 free_cpumask_var(mask);
1da177e4 5343
f17c8607 5344 return ret;
1da177e4
LT
5345}
5346
5347/**
5348 * sys_sched_yield - yield the current processor to other threads.
5349 *
dd41f596
IM
5350 * This function yields the current CPU to other tasks. If there are no
5351 * other threads running on this CPU then this function will return.
1da177e4 5352 */
5add95d4 5353SYSCALL_DEFINE0(sched_yield)
1da177e4 5354{
70b97a7f 5355 struct rq *rq = this_rq_lock();
1da177e4 5356
2d72376b 5357 schedstat_inc(rq, yld_count);
4530d7ab 5358 current->sched_class->yield_task(rq);
1da177e4
LT
5359
5360 /*
5361 * Since we are going to call schedule() anyway, there's
5362 * no need to preempt or enable interrupts:
5363 */
5364 __release(rq->lock);
8a25d5de 5365 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5366 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5367 preempt_enable_no_resched();
5368
5369 schedule();
5370
5371 return 0;
5372}
5373
d86ee480
PZ
5374static inline int should_resched(void)
5375{
5376 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5377}
5378
e7b38404 5379static void __cond_resched(void)
1da177e4 5380{
e7aaaa69
FW
5381 add_preempt_count(PREEMPT_ACTIVE);
5382 schedule();
5383 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5384}
5385
02b67cc3 5386int __sched _cond_resched(void)
1da177e4 5387{
d86ee480 5388 if (should_resched()) {
1da177e4
LT
5389 __cond_resched();
5390 return 1;
5391 }
5392 return 0;
5393}
02b67cc3 5394EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5395
5396/*
613afbf8 5397 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5398 * call schedule, and on return reacquire the lock.
5399 *
41a2d6cf 5400 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5401 * operations here to prevent schedule() from being called twice (once via
5402 * spin_unlock(), once by hand).
5403 */
613afbf8 5404int __cond_resched_lock(spinlock_t *lock)
1da177e4 5405{
d86ee480 5406 int resched = should_resched();
6df3cecb
JK
5407 int ret = 0;
5408
f607c668
PZ
5409 lockdep_assert_held(lock);
5410
95c354fe 5411 if (spin_needbreak(lock) || resched) {
1da177e4 5412 spin_unlock(lock);
d86ee480 5413 if (resched)
95c354fe
NP
5414 __cond_resched();
5415 else
5416 cpu_relax();
6df3cecb 5417 ret = 1;
1da177e4 5418 spin_lock(lock);
1da177e4 5419 }
6df3cecb 5420 return ret;
1da177e4 5421}
613afbf8 5422EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5423
613afbf8 5424int __sched __cond_resched_softirq(void)
1da177e4
LT
5425{
5426 BUG_ON(!in_softirq());
5427
d86ee480 5428 if (should_resched()) {
98d82567 5429 local_bh_enable();
1da177e4
LT
5430 __cond_resched();
5431 local_bh_disable();
5432 return 1;
5433 }
5434 return 0;
5435}
613afbf8 5436EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5437
1da177e4
LT
5438/**
5439 * yield - yield the current processor to other threads.
5440 *
72fd4a35 5441 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5442 * thread runnable and calls sys_sched_yield().
5443 */
5444void __sched yield(void)
5445{
5446 set_current_state(TASK_RUNNING);
5447 sys_sched_yield();
5448}
1da177e4
LT
5449EXPORT_SYMBOL(yield);
5450
5451/*
41a2d6cf 5452 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5453 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5454 */
5455void __sched io_schedule(void)
5456{
54d35f29 5457 struct rq *rq = raw_rq();
1da177e4 5458
0ff92245 5459 delayacct_blkio_start();
1da177e4 5460 atomic_inc(&rq->nr_iowait);
8f0dfc34 5461 current->in_iowait = 1;
1da177e4 5462 schedule();
8f0dfc34 5463 current->in_iowait = 0;
1da177e4 5464 atomic_dec(&rq->nr_iowait);
0ff92245 5465 delayacct_blkio_end();
1da177e4 5466}
1da177e4
LT
5467EXPORT_SYMBOL(io_schedule);
5468
5469long __sched io_schedule_timeout(long timeout)
5470{
54d35f29 5471 struct rq *rq = raw_rq();
1da177e4
LT
5472 long ret;
5473
0ff92245 5474 delayacct_blkio_start();
1da177e4 5475 atomic_inc(&rq->nr_iowait);
8f0dfc34 5476 current->in_iowait = 1;
1da177e4 5477 ret = schedule_timeout(timeout);
8f0dfc34 5478 current->in_iowait = 0;
1da177e4 5479 atomic_dec(&rq->nr_iowait);
0ff92245 5480 delayacct_blkio_end();
1da177e4
LT
5481 return ret;
5482}
5483
5484/**
5485 * sys_sched_get_priority_max - return maximum RT priority.
5486 * @policy: scheduling class.
5487 *
5488 * this syscall returns the maximum rt_priority that can be used
5489 * by a given scheduling class.
5490 */
5add95d4 5491SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5492{
5493 int ret = -EINVAL;
5494
5495 switch (policy) {
5496 case SCHED_FIFO:
5497 case SCHED_RR:
5498 ret = MAX_USER_RT_PRIO-1;
5499 break;
5500 case SCHED_NORMAL:
b0a9499c 5501 case SCHED_BATCH:
dd41f596 5502 case SCHED_IDLE:
1da177e4
LT
5503 ret = 0;
5504 break;
5505 }
5506 return ret;
5507}
5508
5509/**
5510 * sys_sched_get_priority_min - return minimum RT priority.
5511 * @policy: scheduling class.
5512 *
5513 * this syscall returns the minimum rt_priority that can be used
5514 * by a given scheduling class.
5515 */
5add95d4 5516SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5517{
5518 int ret = -EINVAL;
5519
5520 switch (policy) {
5521 case SCHED_FIFO:
5522 case SCHED_RR:
5523 ret = 1;
5524 break;
5525 case SCHED_NORMAL:
b0a9499c 5526 case SCHED_BATCH:
dd41f596 5527 case SCHED_IDLE:
1da177e4
LT
5528 ret = 0;
5529 }
5530 return ret;
5531}
5532
5533/**
5534 * sys_sched_rr_get_interval - return the default timeslice of a process.
5535 * @pid: pid of the process.
5536 * @interval: userspace pointer to the timeslice value.
5537 *
5538 * this syscall writes the default timeslice value of a given process
5539 * into the user-space timespec buffer. A value of '0' means infinity.
5540 */
17da2bd9 5541SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5542 struct timespec __user *, interval)
1da177e4 5543{
36c8b586 5544 struct task_struct *p;
a4ec24b4 5545 unsigned int time_slice;
dba091b9
TG
5546 unsigned long flags;
5547 struct rq *rq;
3a5c359a 5548 int retval;
1da177e4 5549 struct timespec t;
1da177e4
LT
5550
5551 if (pid < 0)
3a5c359a 5552 return -EINVAL;
1da177e4
LT
5553
5554 retval = -ESRCH;
1a551ae7 5555 rcu_read_lock();
1da177e4
LT
5556 p = find_process_by_pid(pid);
5557 if (!p)
5558 goto out_unlock;
5559
5560 retval = security_task_getscheduler(p);
5561 if (retval)
5562 goto out_unlock;
5563
dba091b9
TG
5564 rq = task_rq_lock(p, &flags);
5565 time_slice = p->sched_class->get_rr_interval(rq, p);
5566 task_rq_unlock(rq, &flags);
a4ec24b4 5567
1a551ae7 5568 rcu_read_unlock();
a4ec24b4 5569 jiffies_to_timespec(time_slice, &t);
1da177e4 5570 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5571 return retval;
3a5c359a 5572
1da177e4 5573out_unlock:
1a551ae7 5574 rcu_read_unlock();
1da177e4
LT
5575 return retval;
5576}
5577
7c731e0a 5578static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5579
82a1fcb9 5580void sched_show_task(struct task_struct *p)
1da177e4 5581{
1da177e4 5582 unsigned long free = 0;
36c8b586 5583 unsigned state;
1da177e4 5584
1da177e4 5585 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5586 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5587 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5588#if BITS_PER_LONG == 32
1da177e4 5589 if (state == TASK_RUNNING)
3df0fc5b 5590 printk(KERN_CONT " running ");
1da177e4 5591 else
3df0fc5b 5592 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5593#else
5594 if (state == TASK_RUNNING)
3df0fc5b 5595 printk(KERN_CONT " running task ");
1da177e4 5596 else
3df0fc5b 5597 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5598#endif
5599#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5600 free = stack_not_used(p);
1da177e4 5601#endif
3df0fc5b 5602 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5603 task_pid_nr(p), task_pid_nr(p->real_parent),
5604 (unsigned long)task_thread_info(p)->flags);
1da177e4 5605
5fb5e6de 5606 show_stack(p, NULL);
1da177e4
LT
5607}
5608
e59e2ae2 5609void show_state_filter(unsigned long state_filter)
1da177e4 5610{
36c8b586 5611 struct task_struct *g, *p;
1da177e4 5612
4bd77321 5613#if BITS_PER_LONG == 32
3df0fc5b
PZ
5614 printk(KERN_INFO
5615 " task PC stack pid father\n");
1da177e4 5616#else
3df0fc5b
PZ
5617 printk(KERN_INFO
5618 " task PC stack pid father\n");
1da177e4
LT
5619#endif
5620 read_lock(&tasklist_lock);
5621 do_each_thread(g, p) {
5622 /*
5623 * reset the NMI-timeout, listing all files on a slow
5624 * console might take alot of time:
5625 */
5626 touch_nmi_watchdog();
39bc89fd 5627 if (!state_filter || (p->state & state_filter))
82a1fcb9 5628 sched_show_task(p);
1da177e4
LT
5629 } while_each_thread(g, p);
5630
04c9167f
JF
5631 touch_all_softlockup_watchdogs();
5632
dd41f596
IM
5633#ifdef CONFIG_SCHED_DEBUG
5634 sysrq_sched_debug_show();
5635#endif
1da177e4 5636 read_unlock(&tasklist_lock);
e59e2ae2
IM
5637 /*
5638 * Only show locks if all tasks are dumped:
5639 */
93335a21 5640 if (!state_filter)
e59e2ae2 5641 debug_show_all_locks();
1da177e4
LT
5642}
5643
1df21055
IM
5644void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5645{
dd41f596 5646 idle->sched_class = &idle_sched_class;
1df21055
IM
5647}
5648
f340c0d1
IM
5649/**
5650 * init_idle - set up an idle thread for a given CPU
5651 * @idle: task in question
5652 * @cpu: cpu the idle task belongs to
5653 *
5654 * NOTE: this function does not set the idle thread's NEED_RESCHED
5655 * flag, to make booting more robust.
5656 */
5c1e1767 5657void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5658{
70b97a7f 5659 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5660 unsigned long flags;
5661
05fa785c 5662 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5663
dd41f596 5664 __sched_fork(idle);
06b83b5f 5665 idle->state = TASK_RUNNING;
dd41f596
IM
5666 idle->se.exec_start = sched_clock();
5667
96f874e2 5668 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5669 /*
5670 * We're having a chicken and egg problem, even though we are
5671 * holding rq->lock, the cpu isn't yet set to this cpu so the
5672 * lockdep check in task_group() will fail.
5673 *
5674 * Similar case to sched_fork(). / Alternatively we could
5675 * use task_rq_lock() here and obtain the other rq->lock.
5676 *
5677 * Silence PROVE_RCU
5678 */
5679 rcu_read_lock();
dd41f596 5680 __set_task_cpu(idle, cpu);
6506cf6c 5681 rcu_read_unlock();
1da177e4 5682
1da177e4 5683 rq->curr = rq->idle = idle;
4866cde0
NP
5684#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5685 idle->oncpu = 1;
5686#endif
05fa785c 5687 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5688
5689 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5690#if defined(CONFIG_PREEMPT)
5691 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5692#else
a1261f54 5693 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5694#endif
dd41f596
IM
5695 /*
5696 * The idle tasks have their own, simple scheduling class:
5697 */
5698 idle->sched_class = &idle_sched_class;
fb52607a 5699 ftrace_graph_init_task(idle);
1da177e4
LT
5700}
5701
5702/*
5703 * In a system that switches off the HZ timer nohz_cpu_mask
5704 * indicates which cpus entered this state. This is used
5705 * in the rcu update to wait only for active cpus. For system
5706 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5707 * always be CPU_BITS_NONE.
1da177e4 5708 */
6a7b3dc3 5709cpumask_var_t nohz_cpu_mask;
1da177e4 5710
19978ca6
IM
5711/*
5712 * Increase the granularity value when there are more CPUs,
5713 * because with more CPUs the 'effective latency' as visible
5714 * to users decreases. But the relationship is not linear,
5715 * so pick a second-best guess by going with the log2 of the
5716 * number of CPUs.
5717 *
5718 * This idea comes from the SD scheduler of Con Kolivas:
5719 */
acb4a848 5720static int get_update_sysctl_factor(void)
19978ca6 5721{
4ca3ef71 5722 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5723 unsigned int factor;
5724
5725 switch (sysctl_sched_tunable_scaling) {
5726 case SCHED_TUNABLESCALING_NONE:
5727 factor = 1;
5728 break;
5729 case SCHED_TUNABLESCALING_LINEAR:
5730 factor = cpus;
5731 break;
5732 case SCHED_TUNABLESCALING_LOG:
5733 default:
5734 factor = 1 + ilog2(cpus);
5735 break;
5736 }
19978ca6 5737
acb4a848
CE
5738 return factor;
5739}
19978ca6 5740
acb4a848
CE
5741static void update_sysctl(void)
5742{
5743 unsigned int factor = get_update_sysctl_factor();
19978ca6 5744
0bcdcf28
CE
5745#define SET_SYSCTL(name) \
5746 (sysctl_##name = (factor) * normalized_sysctl_##name)
5747 SET_SYSCTL(sched_min_granularity);
5748 SET_SYSCTL(sched_latency);
5749 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5750#undef SET_SYSCTL
5751}
55cd5340 5752
0bcdcf28
CE
5753static inline void sched_init_granularity(void)
5754{
5755 update_sysctl();
19978ca6
IM
5756}
5757
1da177e4
LT
5758#ifdef CONFIG_SMP
5759/*
5760 * This is how migration works:
5761 *
969c7921
TH
5762 * 1) we invoke migration_cpu_stop() on the target CPU using
5763 * stop_one_cpu().
5764 * 2) stopper starts to run (implicitly forcing the migrated thread
5765 * off the CPU)
5766 * 3) it checks whether the migrated task is still in the wrong runqueue.
5767 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5768 * it and puts it into the right queue.
969c7921
TH
5769 * 5) stopper completes and stop_one_cpu() returns and the migration
5770 * is done.
1da177e4
LT
5771 */
5772
5773/*
5774 * Change a given task's CPU affinity. Migrate the thread to a
5775 * proper CPU and schedule it away if the CPU it's executing on
5776 * is removed from the allowed bitmask.
5777 *
5778 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5779 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5780 * call is not atomic; no spinlocks may be held.
5781 */
96f874e2 5782int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5783{
5784 unsigned long flags;
70b97a7f 5785 struct rq *rq;
969c7921 5786 unsigned int dest_cpu;
48f24c4d 5787 int ret = 0;
1da177e4 5788
65cc8e48
PZ
5789 /*
5790 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5791 * drop the rq->lock and still rely on ->cpus_allowed.
5792 */
5793again:
5794 while (task_is_waking(p))
5795 cpu_relax();
1da177e4 5796 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5797 if (task_is_waking(p)) {
5798 task_rq_unlock(rq, &flags);
5799 goto again;
5800 }
e2912009 5801
6ad4c188 5802 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5803 ret = -EINVAL;
5804 goto out;
5805 }
5806
9985b0ba 5807 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5808 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5809 ret = -EINVAL;
5810 goto out;
5811 }
5812
73fe6aae 5813 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5814 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5815 else {
96f874e2
RR
5816 cpumask_copy(&p->cpus_allowed, new_mask);
5817 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5818 }
5819
1da177e4 5820 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5821 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5822 goto out;
5823
969c7921 5824 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5825 if (migrate_task(p, rq)) {
969c7921 5826 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5827 /* Need help from migration thread: drop lock and wait. */
5828 task_rq_unlock(rq, &flags);
969c7921 5829 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5830 tlb_migrate_finish(p->mm);
5831 return 0;
5832 }
5833out:
5834 task_rq_unlock(rq, &flags);
48f24c4d 5835
1da177e4
LT
5836 return ret;
5837}
cd8ba7cd 5838EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5839
5840/*
41a2d6cf 5841 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5842 * this because either it can't run here any more (set_cpus_allowed()
5843 * away from this CPU, or CPU going down), or because we're
5844 * attempting to rebalance this task on exec (sched_exec).
5845 *
5846 * So we race with normal scheduler movements, but that's OK, as long
5847 * as the task is no longer on this CPU.
efc30814
KK
5848 *
5849 * Returns non-zero if task was successfully migrated.
1da177e4 5850 */
efc30814 5851static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5852{
70b97a7f 5853 struct rq *rq_dest, *rq_src;
e2912009 5854 int ret = 0;
1da177e4 5855
e761b772 5856 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5857 return ret;
1da177e4
LT
5858
5859 rq_src = cpu_rq(src_cpu);
5860 rq_dest = cpu_rq(dest_cpu);
5861
5862 double_rq_lock(rq_src, rq_dest);
5863 /* Already moved. */
5864 if (task_cpu(p) != src_cpu)
b1e38734 5865 goto done;
1da177e4 5866 /* Affinity changed (again). */
96f874e2 5867 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5868 goto fail;
1da177e4 5869
e2912009
PZ
5870 /*
5871 * If we're not on a rq, the next wake-up will ensure we're
5872 * placed properly.
5873 */
5874 if (p->se.on_rq) {
2e1cb74a 5875 deactivate_task(rq_src, p, 0);
e2912009 5876 set_task_cpu(p, dest_cpu);
dd41f596 5877 activate_task(rq_dest, p, 0);
15afe09b 5878 check_preempt_curr(rq_dest, p, 0);
1da177e4 5879 }
b1e38734 5880done:
efc30814 5881 ret = 1;
b1e38734 5882fail:
1da177e4 5883 double_rq_unlock(rq_src, rq_dest);
efc30814 5884 return ret;
1da177e4
LT
5885}
5886
5887/*
969c7921
TH
5888 * migration_cpu_stop - this will be executed by a highprio stopper thread
5889 * and performs thread migration by bumping thread off CPU then
5890 * 'pushing' onto another runqueue.
1da177e4 5891 */
969c7921 5892static int migration_cpu_stop(void *data)
1da177e4 5893{
969c7921 5894 struct migration_arg *arg = data;
f7b4cddc 5895
969c7921
TH
5896 /*
5897 * The original target cpu might have gone down and we might
5898 * be on another cpu but it doesn't matter.
5899 */
f7b4cddc 5900 local_irq_disable();
969c7921 5901 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5902 local_irq_enable();
1da177e4 5903 return 0;
f7b4cddc
ON
5904}
5905
1da177e4 5906#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5907
054b9108 5908/*
48c5ccae
PZ
5909 * Ensures that the idle task is using init_mm right before its cpu goes
5910 * offline.
054b9108 5911 */
48c5ccae 5912void idle_task_exit(void)
1da177e4 5913{
48c5ccae 5914 struct mm_struct *mm = current->active_mm;
e76bd8d9 5915
48c5ccae 5916 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5917
48c5ccae
PZ
5918 if (mm != &init_mm)
5919 switch_mm(mm, &init_mm, current);
5920 mmdrop(mm);
1da177e4
LT
5921}
5922
5923/*
5924 * While a dead CPU has no uninterruptible tasks queued at this point,
5925 * it might still have a nonzero ->nr_uninterruptible counter, because
5926 * for performance reasons the counter is not stricly tracking tasks to
5927 * their home CPUs. So we just add the counter to another CPU's counter,
5928 * to keep the global sum constant after CPU-down:
5929 */
70b97a7f 5930static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5931{
6ad4c188 5932 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5933
1da177e4
LT
5934 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5935 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5936}
5937
dd41f596 5938/*
48c5ccae 5939 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5940 */
48c5ccae 5941static void calc_global_load_remove(struct rq *rq)
1da177e4 5942{
48c5ccae
PZ
5943 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5944 rq->calc_load_active = 0;
1da177e4
LT
5945}
5946
48f24c4d 5947/*
48c5ccae
PZ
5948 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5949 * try_to_wake_up()->select_task_rq().
5950 *
5951 * Called with rq->lock held even though we'er in stop_machine() and
5952 * there's no concurrency possible, we hold the required locks anyway
5953 * because of lock validation efforts.
1da177e4 5954 */
48c5ccae 5955static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5956{
70b97a7f 5957 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5958 struct task_struct *next, *stop = rq->stop;
5959 int dest_cpu;
1da177e4
LT
5960
5961 /*
48c5ccae
PZ
5962 * Fudge the rq selection such that the below task selection loop
5963 * doesn't get stuck on the currently eligible stop task.
5964 *
5965 * We're currently inside stop_machine() and the rq is either stuck
5966 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5967 * either way we should never end up calling schedule() until we're
5968 * done here.
1da177e4 5969 */
48c5ccae 5970 rq->stop = NULL;
48f24c4d 5971
dd41f596 5972 for ( ; ; ) {
48c5ccae
PZ
5973 /*
5974 * There's this thread running, bail when that's the only
5975 * remaining thread.
5976 */
5977 if (rq->nr_running == 1)
dd41f596 5978 break;
48c5ccae 5979
b67802ea 5980 next = pick_next_task(rq);
48c5ccae 5981 BUG_ON(!next);
79c53799 5982 next->sched_class->put_prev_task(rq, next);
e692ab53 5983
48c5ccae
PZ
5984 /* Find suitable destination for @next, with force if needed. */
5985 dest_cpu = select_fallback_rq(dead_cpu, next);
5986 raw_spin_unlock(&rq->lock);
5987
5988 __migrate_task(next, dead_cpu, dest_cpu);
5989
5990 raw_spin_lock(&rq->lock);
1da177e4 5991 }
dce48a84 5992
48c5ccae 5993 rq->stop = stop;
dce48a84 5994}
48c5ccae 5995
1da177e4
LT
5996#endif /* CONFIG_HOTPLUG_CPU */
5997
e692ab53
NP
5998#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5999
6000static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6001 {
6002 .procname = "sched_domain",
c57baf1e 6003 .mode = 0555,
e0361851 6004 },
56992309 6005 {}
e692ab53
NP
6006};
6007
6008static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6009 {
6010 .procname = "kernel",
c57baf1e 6011 .mode = 0555,
e0361851
AD
6012 .child = sd_ctl_dir,
6013 },
56992309 6014 {}
e692ab53
NP
6015};
6016
6017static struct ctl_table *sd_alloc_ctl_entry(int n)
6018{
6019 struct ctl_table *entry =
5cf9f062 6020 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6021
e692ab53
NP
6022 return entry;
6023}
6024
6382bc90
MM
6025static void sd_free_ctl_entry(struct ctl_table **tablep)
6026{
cd790076 6027 struct ctl_table *entry;
6382bc90 6028
cd790076
MM
6029 /*
6030 * In the intermediate directories, both the child directory and
6031 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6032 * will always be set. In the lowest directory the names are
cd790076
MM
6033 * static strings and all have proc handlers.
6034 */
6035 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6036 if (entry->child)
6037 sd_free_ctl_entry(&entry->child);
cd790076
MM
6038 if (entry->proc_handler == NULL)
6039 kfree(entry->procname);
6040 }
6382bc90
MM
6041
6042 kfree(*tablep);
6043 *tablep = NULL;
6044}
6045
e692ab53 6046static void
e0361851 6047set_table_entry(struct ctl_table *entry,
e692ab53
NP
6048 const char *procname, void *data, int maxlen,
6049 mode_t mode, proc_handler *proc_handler)
6050{
e692ab53
NP
6051 entry->procname = procname;
6052 entry->data = data;
6053 entry->maxlen = maxlen;
6054 entry->mode = mode;
6055 entry->proc_handler = proc_handler;
6056}
6057
6058static struct ctl_table *
6059sd_alloc_ctl_domain_table(struct sched_domain *sd)
6060{
a5d8c348 6061 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6062
ad1cdc1d
MM
6063 if (table == NULL)
6064 return NULL;
6065
e0361851 6066 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6067 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6068 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6069 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6070 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6071 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6072 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6073 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6074 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6075 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6076 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6077 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6078 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6079 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6080 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6081 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6082 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6083 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6084 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6085 &sd->cache_nice_tries,
6086 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6087 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6088 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6089 set_table_entry(&table[11], "name", sd->name,
6090 CORENAME_MAX_SIZE, 0444, proc_dostring);
6091 /* &table[12] is terminator */
e692ab53
NP
6092
6093 return table;
6094}
6095
9a4e7159 6096static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6097{
6098 struct ctl_table *entry, *table;
6099 struct sched_domain *sd;
6100 int domain_num = 0, i;
6101 char buf[32];
6102
6103 for_each_domain(cpu, sd)
6104 domain_num++;
6105 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6106 if (table == NULL)
6107 return NULL;
e692ab53
NP
6108
6109 i = 0;
6110 for_each_domain(cpu, sd) {
6111 snprintf(buf, 32, "domain%d", i);
e692ab53 6112 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6113 entry->mode = 0555;
e692ab53
NP
6114 entry->child = sd_alloc_ctl_domain_table(sd);
6115 entry++;
6116 i++;
6117 }
6118 return table;
6119}
6120
6121static struct ctl_table_header *sd_sysctl_header;
6382bc90 6122static void register_sched_domain_sysctl(void)
e692ab53 6123{
6ad4c188 6124 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6125 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6126 char buf[32];
6127
7378547f
MM
6128 WARN_ON(sd_ctl_dir[0].child);
6129 sd_ctl_dir[0].child = entry;
6130
ad1cdc1d
MM
6131 if (entry == NULL)
6132 return;
6133
6ad4c188 6134 for_each_possible_cpu(i) {
e692ab53 6135 snprintf(buf, 32, "cpu%d", i);
e692ab53 6136 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6137 entry->mode = 0555;
e692ab53 6138 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6139 entry++;
e692ab53 6140 }
7378547f
MM
6141
6142 WARN_ON(sd_sysctl_header);
e692ab53
NP
6143 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6144}
6382bc90 6145
7378547f 6146/* may be called multiple times per register */
6382bc90
MM
6147static void unregister_sched_domain_sysctl(void)
6148{
7378547f
MM
6149 if (sd_sysctl_header)
6150 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6151 sd_sysctl_header = NULL;
7378547f
MM
6152 if (sd_ctl_dir[0].child)
6153 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6154}
e692ab53 6155#else
6382bc90
MM
6156static void register_sched_domain_sysctl(void)
6157{
6158}
6159static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6160{
6161}
6162#endif
6163
1f11eb6a
GH
6164static void set_rq_online(struct rq *rq)
6165{
6166 if (!rq->online) {
6167 const struct sched_class *class;
6168
c6c4927b 6169 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6170 rq->online = 1;
6171
6172 for_each_class(class) {
6173 if (class->rq_online)
6174 class->rq_online(rq);
6175 }
6176 }
6177}
6178
6179static void set_rq_offline(struct rq *rq)
6180{
6181 if (rq->online) {
6182 const struct sched_class *class;
6183
6184 for_each_class(class) {
6185 if (class->rq_offline)
6186 class->rq_offline(rq);
6187 }
6188
c6c4927b 6189 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6190 rq->online = 0;
6191 }
6192}
6193
1da177e4
LT
6194/*
6195 * migration_call - callback that gets triggered when a CPU is added.
6196 * Here we can start up the necessary migration thread for the new CPU.
6197 */
48f24c4d
IM
6198static int __cpuinit
6199migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6200{
48f24c4d 6201 int cpu = (long)hcpu;
1da177e4 6202 unsigned long flags;
969c7921 6203 struct rq *rq = cpu_rq(cpu);
1da177e4 6204
48c5ccae 6205 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6206
1da177e4 6207 case CPU_UP_PREPARE:
a468d389 6208 rq->calc_load_update = calc_load_update;
1da177e4 6209 break;
48f24c4d 6210
1da177e4 6211 case CPU_ONLINE:
1f94ef59 6212 /* Update our root-domain */
05fa785c 6213 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6214 if (rq->rd) {
c6c4927b 6215 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6216
6217 set_rq_online(rq);
1f94ef59 6218 }
05fa785c 6219 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6220 break;
48f24c4d 6221
1da177e4 6222#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6223 case CPU_DYING:
57d885fe 6224 /* Update our root-domain */
05fa785c 6225 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6226 if (rq->rd) {
c6c4927b 6227 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6228 set_rq_offline(rq);
57d885fe 6229 }
48c5ccae
PZ
6230 migrate_tasks(cpu);
6231 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6232 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6233
6234 migrate_nr_uninterruptible(rq);
6235 calc_global_load_remove(rq);
57d885fe 6236 break;
1da177e4
LT
6237#endif
6238 }
6239 return NOTIFY_OK;
6240}
6241
f38b0820
PM
6242/*
6243 * Register at high priority so that task migration (migrate_all_tasks)
6244 * happens before everything else. This has to be lower priority than
cdd6c482 6245 * the notifier in the perf_event subsystem, though.
1da177e4 6246 */
26c2143b 6247static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6248 .notifier_call = migration_call,
50a323b7 6249 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6250};
6251
3a101d05
TH
6252static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6253 unsigned long action, void *hcpu)
6254{
6255 switch (action & ~CPU_TASKS_FROZEN) {
6256 case CPU_ONLINE:
6257 case CPU_DOWN_FAILED:
6258 set_cpu_active((long)hcpu, true);
6259 return NOTIFY_OK;
6260 default:
6261 return NOTIFY_DONE;
6262 }
6263}
6264
6265static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6266 unsigned long action, void *hcpu)
6267{
6268 switch (action & ~CPU_TASKS_FROZEN) {
6269 case CPU_DOWN_PREPARE:
6270 set_cpu_active((long)hcpu, false);
6271 return NOTIFY_OK;
6272 default:
6273 return NOTIFY_DONE;
6274 }
6275}
6276
7babe8db 6277static int __init migration_init(void)
1da177e4
LT
6278{
6279 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6280 int err;
48f24c4d 6281
3a101d05 6282 /* Initialize migration for the boot CPU */
07dccf33
AM
6283 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6284 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6285 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6286 register_cpu_notifier(&migration_notifier);
7babe8db 6287
3a101d05
TH
6288 /* Register cpu active notifiers */
6289 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6290 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6291
a004cd42 6292 return 0;
1da177e4 6293}
7babe8db 6294early_initcall(migration_init);
1da177e4
LT
6295#endif
6296
6297#ifdef CONFIG_SMP
476f3534 6298
3e9830dc 6299#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6300
f6630114
MT
6301static __read_mostly int sched_domain_debug_enabled;
6302
6303static int __init sched_domain_debug_setup(char *str)
6304{
6305 sched_domain_debug_enabled = 1;
6306
6307 return 0;
6308}
6309early_param("sched_debug", sched_domain_debug_setup);
6310
7c16ec58 6311static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6312 struct cpumask *groupmask)
1da177e4 6313{
4dcf6aff 6314 struct sched_group *group = sd->groups;
434d53b0 6315 char str[256];
1da177e4 6316
968ea6d8 6317 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6318 cpumask_clear(groupmask);
4dcf6aff
IM
6319
6320 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6321
6322 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6323 printk("does not load-balance\n");
4dcf6aff 6324 if (sd->parent)
3df0fc5b
PZ
6325 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6326 " has parent");
4dcf6aff 6327 return -1;
41c7ce9a
NP
6328 }
6329
3df0fc5b 6330 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6331
758b2cdc 6332 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6333 printk(KERN_ERR "ERROR: domain->span does not contain "
6334 "CPU%d\n", cpu);
4dcf6aff 6335 }
758b2cdc 6336 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6337 printk(KERN_ERR "ERROR: domain->groups does not contain"
6338 " CPU%d\n", cpu);
4dcf6aff 6339 }
1da177e4 6340
4dcf6aff 6341 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6342 do {
4dcf6aff 6343 if (!group) {
3df0fc5b
PZ
6344 printk("\n");
6345 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6346 break;
6347 }
6348
18a3885f 6349 if (!group->cpu_power) {
3df0fc5b
PZ
6350 printk(KERN_CONT "\n");
6351 printk(KERN_ERR "ERROR: domain->cpu_power not "
6352 "set\n");
4dcf6aff
IM
6353 break;
6354 }
1da177e4 6355
758b2cdc 6356 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6357 printk(KERN_CONT "\n");
6358 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6359 break;
6360 }
1da177e4 6361
758b2cdc 6362 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6363 printk(KERN_CONT "\n");
6364 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6365 break;
6366 }
1da177e4 6367
758b2cdc 6368 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6369
968ea6d8 6370 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6371
3df0fc5b 6372 printk(KERN_CONT " %s", str);
18a3885f 6373 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6374 printk(KERN_CONT " (cpu_power = %d)",
6375 group->cpu_power);
381512cf 6376 }
1da177e4 6377
4dcf6aff
IM
6378 group = group->next;
6379 } while (group != sd->groups);
3df0fc5b 6380 printk(KERN_CONT "\n");
1da177e4 6381
758b2cdc 6382 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6383 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6384
758b2cdc
RR
6385 if (sd->parent &&
6386 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6387 printk(KERN_ERR "ERROR: parent span is not a superset "
6388 "of domain->span\n");
4dcf6aff
IM
6389 return 0;
6390}
1da177e4 6391
4dcf6aff
IM
6392static void sched_domain_debug(struct sched_domain *sd, int cpu)
6393{
d5dd3db1 6394 cpumask_var_t groupmask;
4dcf6aff 6395 int level = 0;
1da177e4 6396
f6630114
MT
6397 if (!sched_domain_debug_enabled)
6398 return;
6399
4dcf6aff
IM
6400 if (!sd) {
6401 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6402 return;
6403 }
1da177e4 6404
4dcf6aff
IM
6405 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6406
d5dd3db1 6407 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6408 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6409 return;
6410 }
6411
4dcf6aff 6412 for (;;) {
7c16ec58 6413 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6414 break;
1da177e4
LT
6415 level++;
6416 sd = sd->parent;
33859f7f 6417 if (!sd)
4dcf6aff
IM
6418 break;
6419 }
d5dd3db1 6420 free_cpumask_var(groupmask);
1da177e4 6421}
6d6bc0ad 6422#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6423# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6424#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6425
1a20ff27 6426static int sd_degenerate(struct sched_domain *sd)
245af2c7 6427{
758b2cdc 6428 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6429 return 1;
6430
6431 /* Following flags need at least 2 groups */
6432 if (sd->flags & (SD_LOAD_BALANCE |
6433 SD_BALANCE_NEWIDLE |
6434 SD_BALANCE_FORK |
89c4710e
SS
6435 SD_BALANCE_EXEC |
6436 SD_SHARE_CPUPOWER |
6437 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6438 if (sd->groups != sd->groups->next)
6439 return 0;
6440 }
6441
6442 /* Following flags don't use groups */
c88d5910 6443 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6444 return 0;
6445
6446 return 1;
6447}
6448
48f24c4d
IM
6449static int
6450sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6451{
6452 unsigned long cflags = sd->flags, pflags = parent->flags;
6453
6454 if (sd_degenerate(parent))
6455 return 1;
6456
758b2cdc 6457 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6458 return 0;
6459
245af2c7
SS
6460 /* Flags needing groups don't count if only 1 group in parent */
6461 if (parent->groups == parent->groups->next) {
6462 pflags &= ~(SD_LOAD_BALANCE |
6463 SD_BALANCE_NEWIDLE |
6464 SD_BALANCE_FORK |
89c4710e
SS
6465 SD_BALANCE_EXEC |
6466 SD_SHARE_CPUPOWER |
6467 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6468 if (nr_node_ids == 1)
6469 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6470 }
6471 if (~cflags & pflags)
6472 return 0;
6473
6474 return 1;
6475}
6476
c6c4927b
RR
6477static void free_rootdomain(struct root_domain *rd)
6478{
047106ad
PZ
6479 synchronize_sched();
6480
68e74568
RR
6481 cpupri_cleanup(&rd->cpupri);
6482
c6c4927b
RR
6483 free_cpumask_var(rd->rto_mask);
6484 free_cpumask_var(rd->online);
6485 free_cpumask_var(rd->span);
6486 kfree(rd);
6487}
6488
57d885fe
GH
6489static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6490{
a0490fa3 6491 struct root_domain *old_rd = NULL;
57d885fe 6492 unsigned long flags;
57d885fe 6493
05fa785c 6494 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6495
6496 if (rq->rd) {
a0490fa3 6497 old_rd = rq->rd;
57d885fe 6498
c6c4927b 6499 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6500 set_rq_offline(rq);
57d885fe 6501
c6c4927b 6502 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6503
a0490fa3
IM
6504 /*
6505 * If we dont want to free the old_rt yet then
6506 * set old_rd to NULL to skip the freeing later
6507 * in this function:
6508 */
6509 if (!atomic_dec_and_test(&old_rd->refcount))
6510 old_rd = NULL;
57d885fe
GH
6511 }
6512
6513 atomic_inc(&rd->refcount);
6514 rq->rd = rd;
6515
c6c4927b 6516 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6517 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6518 set_rq_online(rq);
57d885fe 6519
05fa785c 6520 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6521
6522 if (old_rd)
6523 free_rootdomain(old_rd);
57d885fe
GH
6524}
6525
68c38fc3 6526static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6527{
6528 memset(rd, 0, sizeof(*rd));
6529
68c38fc3 6530 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6531 goto out;
68c38fc3 6532 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6533 goto free_span;
68c38fc3 6534 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6535 goto free_online;
6e0534f2 6536
68c38fc3 6537 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6538 goto free_rto_mask;
c6c4927b 6539 return 0;
6e0534f2 6540
68e74568
RR
6541free_rto_mask:
6542 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6543free_online:
6544 free_cpumask_var(rd->online);
6545free_span:
6546 free_cpumask_var(rd->span);
0c910d28 6547out:
c6c4927b 6548 return -ENOMEM;
57d885fe
GH
6549}
6550
6551static void init_defrootdomain(void)
6552{
68c38fc3 6553 init_rootdomain(&def_root_domain);
c6c4927b 6554
57d885fe
GH
6555 atomic_set(&def_root_domain.refcount, 1);
6556}
6557
dc938520 6558static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6559{
6560 struct root_domain *rd;
6561
6562 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6563 if (!rd)
6564 return NULL;
6565
68c38fc3 6566 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6567 kfree(rd);
6568 return NULL;
6569 }
57d885fe
GH
6570
6571 return rd;
6572}
6573
1da177e4 6574/*
0eab9146 6575 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6576 * hold the hotplug lock.
6577 */
0eab9146
IM
6578static void
6579cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6580{
70b97a7f 6581 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6582 struct sched_domain *tmp;
6583
669c55e9
PZ
6584 for (tmp = sd; tmp; tmp = tmp->parent)
6585 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6586
245af2c7 6587 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6588 for (tmp = sd; tmp; ) {
245af2c7
SS
6589 struct sched_domain *parent = tmp->parent;
6590 if (!parent)
6591 break;
f29c9b1c 6592
1a848870 6593 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6594 tmp->parent = parent->parent;
1a848870
SS
6595 if (parent->parent)
6596 parent->parent->child = tmp;
f29c9b1c
LZ
6597 } else
6598 tmp = tmp->parent;
245af2c7
SS
6599 }
6600
1a848870 6601 if (sd && sd_degenerate(sd)) {
245af2c7 6602 sd = sd->parent;
1a848870
SS
6603 if (sd)
6604 sd->child = NULL;
6605 }
1da177e4
LT
6606
6607 sched_domain_debug(sd, cpu);
6608
57d885fe 6609 rq_attach_root(rq, rd);
674311d5 6610 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6611}
6612
6613/* cpus with isolated domains */
dcc30a35 6614static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6615
6616/* Setup the mask of cpus configured for isolated domains */
6617static int __init isolated_cpu_setup(char *str)
6618{
bdddd296 6619 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6620 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6621 return 1;
6622}
6623
8927f494 6624__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6625
6626/*
6711cab4
SS
6627 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6628 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6629 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6630 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6631 *
6632 * init_sched_build_groups will build a circular linked list of the groups
6633 * covered by the given span, and will set each group's ->cpumask correctly,
6634 * and ->cpu_power to 0.
6635 */
a616058b 6636static void
96f874e2
RR
6637init_sched_build_groups(const struct cpumask *span,
6638 const struct cpumask *cpu_map,
6639 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6640 struct sched_group **sg,
96f874e2
RR
6641 struct cpumask *tmpmask),
6642 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6643{
6644 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6645 int i;
6646
96f874e2 6647 cpumask_clear(covered);
7c16ec58 6648
abcd083a 6649 for_each_cpu(i, span) {
6711cab4 6650 struct sched_group *sg;
7c16ec58 6651 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6652 int j;
6653
758b2cdc 6654 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6655 continue;
6656
758b2cdc 6657 cpumask_clear(sched_group_cpus(sg));
18a3885f 6658 sg->cpu_power = 0;
1da177e4 6659
abcd083a 6660 for_each_cpu(j, span) {
7c16ec58 6661 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6662 continue;
6663
96f874e2 6664 cpumask_set_cpu(j, covered);
758b2cdc 6665 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6666 }
6667 if (!first)
6668 first = sg;
6669 if (last)
6670 last->next = sg;
6671 last = sg;
6672 }
6673 last->next = first;
6674}
6675
9c1cfda2 6676#define SD_NODES_PER_DOMAIN 16
1da177e4 6677
9c1cfda2 6678#ifdef CONFIG_NUMA
198e2f18 6679
9c1cfda2
JH
6680/**
6681 * find_next_best_node - find the next node to include in a sched_domain
6682 * @node: node whose sched_domain we're building
6683 * @used_nodes: nodes already in the sched_domain
6684 *
41a2d6cf 6685 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6686 * finds the closest node not already in the @used_nodes map.
6687 *
6688 * Should use nodemask_t.
6689 */
c5f59f08 6690static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6691{
6692 int i, n, val, min_val, best_node = 0;
6693
6694 min_val = INT_MAX;
6695
076ac2af 6696 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6697 /* Start at @node */
076ac2af 6698 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6699
6700 if (!nr_cpus_node(n))
6701 continue;
6702
6703 /* Skip already used nodes */
c5f59f08 6704 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6705 continue;
6706
6707 /* Simple min distance search */
6708 val = node_distance(node, n);
6709
6710 if (val < min_val) {
6711 min_val = val;
6712 best_node = n;
6713 }
6714 }
6715
c5f59f08 6716 node_set(best_node, *used_nodes);
9c1cfda2
JH
6717 return best_node;
6718}
6719
6720/**
6721 * sched_domain_node_span - get a cpumask for a node's sched_domain
6722 * @node: node whose cpumask we're constructing
73486722 6723 * @span: resulting cpumask
9c1cfda2 6724 *
41a2d6cf 6725 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6726 * should be one that prevents unnecessary balancing, but also spreads tasks
6727 * out optimally.
6728 */
96f874e2 6729static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6730{
c5f59f08 6731 nodemask_t used_nodes;
48f24c4d 6732 int i;
9c1cfda2 6733
6ca09dfc 6734 cpumask_clear(span);
c5f59f08 6735 nodes_clear(used_nodes);
9c1cfda2 6736
6ca09dfc 6737 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6738 node_set(node, used_nodes);
9c1cfda2
JH
6739
6740 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6741 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6742
6ca09dfc 6743 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6744 }
9c1cfda2 6745}
6d6bc0ad 6746#endif /* CONFIG_NUMA */
9c1cfda2 6747
5c45bf27 6748int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6749
6c99e9ad
RR
6750/*
6751 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6752 *
6753 * ( See the the comments in include/linux/sched.h:struct sched_group
6754 * and struct sched_domain. )
6c99e9ad
RR
6755 */
6756struct static_sched_group {
6757 struct sched_group sg;
6758 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6759};
6760
6761struct static_sched_domain {
6762 struct sched_domain sd;
6763 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6764};
6765
49a02c51
AH
6766struct s_data {
6767#ifdef CONFIG_NUMA
6768 int sd_allnodes;
6769 cpumask_var_t domainspan;
6770 cpumask_var_t covered;
6771 cpumask_var_t notcovered;
6772#endif
6773 cpumask_var_t nodemask;
6774 cpumask_var_t this_sibling_map;
6775 cpumask_var_t this_core_map;
01a08546 6776 cpumask_var_t this_book_map;
49a02c51
AH
6777 cpumask_var_t send_covered;
6778 cpumask_var_t tmpmask;
6779 struct sched_group **sched_group_nodes;
6780 struct root_domain *rd;
6781};
6782
2109b99e
AH
6783enum s_alloc {
6784 sa_sched_groups = 0,
6785 sa_rootdomain,
6786 sa_tmpmask,
6787 sa_send_covered,
01a08546 6788 sa_this_book_map,
2109b99e
AH
6789 sa_this_core_map,
6790 sa_this_sibling_map,
6791 sa_nodemask,
6792 sa_sched_group_nodes,
6793#ifdef CONFIG_NUMA
6794 sa_notcovered,
6795 sa_covered,
6796 sa_domainspan,
6797#endif
6798 sa_none,
6799};
6800
9c1cfda2 6801/*
48f24c4d 6802 * SMT sched-domains:
9c1cfda2 6803 */
1da177e4 6804#ifdef CONFIG_SCHED_SMT
6c99e9ad 6805static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6806static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6807
41a2d6cf 6808static int
96f874e2
RR
6809cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6810 struct sched_group **sg, struct cpumask *unused)
1da177e4 6811{
6711cab4 6812 if (sg)
1871e52c 6813 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6814 return cpu;
6815}
6d6bc0ad 6816#endif /* CONFIG_SCHED_SMT */
1da177e4 6817
48f24c4d
IM
6818/*
6819 * multi-core sched-domains:
6820 */
1e9f28fa 6821#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6822static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6823static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6824
41a2d6cf 6825static int
96f874e2
RR
6826cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6827 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6828{
6711cab4 6829 int group;
f269893c 6830#ifdef CONFIG_SCHED_SMT
c69fc56d 6831 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6832 group = cpumask_first(mask);
f269893c
HC
6833#else
6834 group = cpu;
6835#endif
6711cab4 6836 if (sg)
6c99e9ad 6837 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6838 return group;
1e9f28fa 6839}
f269893c 6840#endif /* CONFIG_SCHED_MC */
1e9f28fa 6841
01a08546
HC
6842/*
6843 * book sched-domains:
6844 */
6845#ifdef CONFIG_SCHED_BOOK
6846static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6847static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6848
41a2d6cf 6849static int
01a08546
HC
6850cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6851 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6852{
01a08546
HC
6853 int group = cpu;
6854#ifdef CONFIG_SCHED_MC
6855 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6856 group = cpumask_first(mask);
6857#elif defined(CONFIG_SCHED_SMT)
6858 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6859 group = cpumask_first(mask);
6860#endif
6711cab4 6861 if (sg)
01a08546
HC
6862 *sg = &per_cpu(sched_group_book, group).sg;
6863 return group;
1e9f28fa 6864}
01a08546 6865#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6866
6c99e9ad
RR
6867static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6868static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6869
41a2d6cf 6870static int
96f874e2
RR
6871cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6872 struct sched_group **sg, struct cpumask *mask)
1da177e4 6873{
6711cab4 6874 int group;
01a08546
HC
6875#ifdef CONFIG_SCHED_BOOK
6876 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6877 group = cpumask_first(mask);
6878#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6879 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6880 group = cpumask_first(mask);
1e9f28fa 6881#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6882 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6883 group = cpumask_first(mask);
1da177e4 6884#else
6711cab4 6885 group = cpu;
1da177e4 6886#endif
6711cab4 6887 if (sg)
6c99e9ad 6888 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6889 return group;
1da177e4
LT
6890}
6891
6892#ifdef CONFIG_NUMA
1da177e4 6893/*
9c1cfda2
JH
6894 * The init_sched_build_groups can't handle what we want to do with node
6895 * groups, so roll our own. Now each node has its own list of groups which
6896 * gets dynamically allocated.
1da177e4 6897 */
62ea9ceb 6898static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6899static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6900
62ea9ceb 6901static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6902static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6903
96f874e2
RR
6904static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6905 struct sched_group **sg,
6906 struct cpumask *nodemask)
9c1cfda2 6907{
6711cab4
SS
6908 int group;
6909
6ca09dfc 6910 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6911 group = cpumask_first(nodemask);
6711cab4
SS
6912
6913 if (sg)
6c99e9ad 6914 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6915 return group;
1da177e4 6916}
6711cab4 6917
08069033
SS
6918static void init_numa_sched_groups_power(struct sched_group *group_head)
6919{
6920 struct sched_group *sg = group_head;
6921 int j;
6922
6923 if (!sg)
6924 return;
3a5c359a 6925 do {
758b2cdc 6926 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6927 struct sched_domain *sd;
08069033 6928
6c99e9ad 6929 sd = &per_cpu(phys_domains, j).sd;
13318a71 6930 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6931 /*
6932 * Only add "power" once for each
6933 * physical package.
6934 */
6935 continue;
6936 }
08069033 6937
18a3885f 6938 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6939 }
6940 sg = sg->next;
6941 } while (sg != group_head);
08069033 6942}
0601a88d
AH
6943
6944static int build_numa_sched_groups(struct s_data *d,
6945 const struct cpumask *cpu_map, int num)
6946{
6947 struct sched_domain *sd;
6948 struct sched_group *sg, *prev;
6949 int n, j;
6950
6951 cpumask_clear(d->covered);
6952 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6953 if (cpumask_empty(d->nodemask)) {
6954 d->sched_group_nodes[num] = NULL;
6955 goto out;
6956 }
6957
6958 sched_domain_node_span(num, d->domainspan);
6959 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6960
6961 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6962 GFP_KERNEL, num);
6963 if (!sg) {
3df0fc5b
PZ
6964 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6965 num);
0601a88d
AH
6966 return -ENOMEM;
6967 }
6968 d->sched_group_nodes[num] = sg;
6969
6970 for_each_cpu(j, d->nodemask) {
6971 sd = &per_cpu(node_domains, j).sd;
6972 sd->groups = sg;
6973 }
6974
18a3885f 6975 sg->cpu_power = 0;
0601a88d
AH
6976 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6977 sg->next = sg;
6978 cpumask_or(d->covered, d->covered, d->nodemask);
6979
6980 prev = sg;
6981 for (j = 0; j < nr_node_ids; j++) {
6982 n = (num + j) % nr_node_ids;
6983 cpumask_complement(d->notcovered, d->covered);
6984 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6985 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6986 if (cpumask_empty(d->tmpmask))
6987 break;
6988 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6989 if (cpumask_empty(d->tmpmask))
6990 continue;
6991 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6992 GFP_KERNEL, num);
6993 if (!sg) {
3df0fc5b
PZ
6994 printk(KERN_WARNING
6995 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6996 return -ENOMEM;
6997 }
18a3885f 6998 sg->cpu_power = 0;
0601a88d
AH
6999 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7000 sg->next = prev->next;
7001 cpumask_or(d->covered, d->covered, d->tmpmask);
7002 prev->next = sg;
7003 prev = sg;
7004 }
7005out:
7006 return 0;
7007}
6d6bc0ad 7008#endif /* CONFIG_NUMA */
1da177e4 7009
a616058b 7010#ifdef CONFIG_NUMA
51888ca2 7011/* Free memory allocated for various sched_group structures */
96f874e2
RR
7012static void free_sched_groups(const struct cpumask *cpu_map,
7013 struct cpumask *nodemask)
51888ca2 7014{
a616058b 7015 int cpu, i;
51888ca2 7016
abcd083a 7017 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7018 struct sched_group **sched_group_nodes
7019 = sched_group_nodes_bycpu[cpu];
7020
51888ca2
SV
7021 if (!sched_group_nodes)
7022 continue;
7023
076ac2af 7024 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7025 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7026
6ca09dfc 7027 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7028 if (cpumask_empty(nodemask))
51888ca2
SV
7029 continue;
7030
7031 if (sg == NULL)
7032 continue;
7033 sg = sg->next;
7034next_sg:
7035 oldsg = sg;
7036 sg = sg->next;
7037 kfree(oldsg);
7038 if (oldsg != sched_group_nodes[i])
7039 goto next_sg;
7040 }
7041 kfree(sched_group_nodes);
7042 sched_group_nodes_bycpu[cpu] = NULL;
7043 }
51888ca2 7044}
6d6bc0ad 7045#else /* !CONFIG_NUMA */
96f874e2
RR
7046static void free_sched_groups(const struct cpumask *cpu_map,
7047 struct cpumask *nodemask)
a616058b
SS
7048{
7049}
6d6bc0ad 7050#endif /* CONFIG_NUMA */
51888ca2 7051
89c4710e
SS
7052/*
7053 * Initialize sched groups cpu_power.
7054 *
7055 * cpu_power indicates the capacity of sched group, which is used while
7056 * distributing the load between different sched groups in a sched domain.
7057 * Typically cpu_power for all the groups in a sched domain will be same unless
7058 * there are asymmetries in the topology. If there are asymmetries, group
7059 * having more cpu_power will pickup more load compared to the group having
7060 * less cpu_power.
89c4710e
SS
7061 */
7062static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7063{
7064 struct sched_domain *child;
7065 struct sched_group *group;
f93e65c1
PZ
7066 long power;
7067 int weight;
89c4710e
SS
7068
7069 WARN_ON(!sd || !sd->groups);
7070
13318a71 7071 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7072 return;
7073
aae6d3dd
SS
7074 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7075
89c4710e
SS
7076 child = sd->child;
7077
18a3885f 7078 sd->groups->cpu_power = 0;
5517d86b 7079
f93e65c1
PZ
7080 if (!child) {
7081 power = SCHED_LOAD_SCALE;
7082 weight = cpumask_weight(sched_domain_span(sd));
7083 /*
7084 * SMT siblings share the power of a single core.
a52bfd73
PZ
7085 * Usually multiple threads get a better yield out of
7086 * that one core than a single thread would have,
7087 * reflect that in sd->smt_gain.
f93e65c1 7088 */
a52bfd73
PZ
7089 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7090 power *= sd->smt_gain;
f93e65c1 7091 power /= weight;
a52bfd73
PZ
7092 power >>= SCHED_LOAD_SHIFT;
7093 }
18a3885f 7094 sd->groups->cpu_power += power;
89c4710e
SS
7095 return;
7096 }
7097
89c4710e 7098 /*
f93e65c1 7099 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7100 */
7101 group = child->groups;
7102 do {
18a3885f 7103 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7104 group = group->next;
7105 } while (group != child->groups);
7106}
7107
7c16ec58
MT
7108/*
7109 * Initializers for schedule domains
7110 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7111 */
7112
a5d8c348
IM
7113#ifdef CONFIG_SCHED_DEBUG
7114# define SD_INIT_NAME(sd, type) sd->name = #type
7115#else
7116# define SD_INIT_NAME(sd, type) do { } while (0)
7117#endif
7118
7c16ec58 7119#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7120
7c16ec58
MT
7121#define SD_INIT_FUNC(type) \
7122static noinline void sd_init_##type(struct sched_domain *sd) \
7123{ \
7124 memset(sd, 0, sizeof(*sd)); \
7125 *sd = SD_##type##_INIT; \
1d3504fc 7126 sd->level = SD_LV_##type; \
a5d8c348 7127 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7128}
7129
7130SD_INIT_FUNC(CPU)
7131#ifdef CONFIG_NUMA
7132 SD_INIT_FUNC(ALLNODES)
7133 SD_INIT_FUNC(NODE)
7134#endif
7135#ifdef CONFIG_SCHED_SMT
7136 SD_INIT_FUNC(SIBLING)
7137#endif
7138#ifdef CONFIG_SCHED_MC
7139 SD_INIT_FUNC(MC)
7140#endif
01a08546
HC
7141#ifdef CONFIG_SCHED_BOOK
7142 SD_INIT_FUNC(BOOK)
7143#endif
7c16ec58 7144
1d3504fc
HS
7145static int default_relax_domain_level = -1;
7146
7147static int __init setup_relax_domain_level(char *str)
7148{
30e0e178
LZ
7149 unsigned long val;
7150
7151 val = simple_strtoul(str, NULL, 0);
7152 if (val < SD_LV_MAX)
7153 default_relax_domain_level = val;
7154
1d3504fc
HS
7155 return 1;
7156}
7157__setup("relax_domain_level=", setup_relax_domain_level);
7158
7159static void set_domain_attribute(struct sched_domain *sd,
7160 struct sched_domain_attr *attr)
7161{
7162 int request;
7163
7164 if (!attr || attr->relax_domain_level < 0) {
7165 if (default_relax_domain_level < 0)
7166 return;
7167 else
7168 request = default_relax_domain_level;
7169 } else
7170 request = attr->relax_domain_level;
7171 if (request < sd->level) {
7172 /* turn off idle balance on this domain */
c88d5910 7173 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7174 } else {
7175 /* turn on idle balance on this domain */
c88d5910 7176 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7177 }
7178}
7179
2109b99e
AH
7180static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7181 const struct cpumask *cpu_map)
7182{
7183 switch (what) {
7184 case sa_sched_groups:
7185 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7186 d->sched_group_nodes = NULL;
7187 case sa_rootdomain:
7188 free_rootdomain(d->rd); /* fall through */
7189 case sa_tmpmask:
7190 free_cpumask_var(d->tmpmask); /* fall through */
7191 case sa_send_covered:
7192 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7193 case sa_this_book_map:
7194 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7195 case sa_this_core_map:
7196 free_cpumask_var(d->this_core_map); /* fall through */
7197 case sa_this_sibling_map:
7198 free_cpumask_var(d->this_sibling_map); /* fall through */
7199 case sa_nodemask:
7200 free_cpumask_var(d->nodemask); /* fall through */
7201 case sa_sched_group_nodes:
d1b55138 7202#ifdef CONFIG_NUMA
2109b99e
AH
7203 kfree(d->sched_group_nodes); /* fall through */
7204 case sa_notcovered:
7205 free_cpumask_var(d->notcovered); /* fall through */
7206 case sa_covered:
7207 free_cpumask_var(d->covered); /* fall through */
7208 case sa_domainspan:
7209 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7210#endif
2109b99e
AH
7211 case sa_none:
7212 break;
7213 }
7214}
3404c8d9 7215
2109b99e
AH
7216static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7217 const struct cpumask *cpu_map)
7218{
3404c8d9 7219#ifdef CONFIG_NUMA
2109b99e
AH
7220 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7221 return sa_none;
7222 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7223 return sa_domainspan;
7224 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7225 return sa_covered;
7226 /* Allocate the per-node list of sched groups */
7227 d->sched_group_nodes = kcalloc(nr_node_ids,
7228 sizeof(struct sched_group *), GFP_KERNEL);
7229 if (!d->sched_group_nodes) {
3df0fc5b 7230 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7231 return sa_notcovered;
d1b55138 7232 }
2109b99e 7233 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7234#endif
2109b99e
AH
7235 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7236 return sa_sched_group_nodes;
7237 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7238 return sa_nodemask;
7239 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7240 return sa_this_sibling_map;
01a08546 7241 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7242 return sa_this_core_map;
01a08546
HC
7243 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7244 return sa_this_book_map;
2109b99e
AH
7245 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7246 return sa_send_covered;
7247 d->rd = alloc_rootdomain();
7248 if (!d->rd) {
3df0fc5b 7249 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7250 return sa_tmpmask;
57d885fe 7251 }
2109b99e
AH
7252 return sa_rootdomain;
7253}
57d885fe 7254
7f4588f3
AH
7255static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7256 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7257{
7258 struct sched_domain *sd = NULL;
7c16ec58 7259#ifdef CONFIG_NUMA
7f4588f3 7260 struct sched_domain *parent;
1da177e4 7261
7f4588f3
AH
7262 d->sd_allnodes = 0;
7263 if (cpumask_weight(cpu_map) >
7264 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7265 sd = &per_cpu(allnodes_domains, i).sd;
7266 SD_INIT(sd, ALLNODES);
1d3504fc 7267 set_domain_attribute(sd, attr);
7f4588f3
AH
7268 cpumask_copy(sched_domain_span(sd), cpu_map);
7269 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7270 d->sd_allnodes = 1;
7271 }
7272 parent = sd;
7273
7274 sd = &per_cpu(node_domains, i).sd;
7275 SD_INIT(sd, NODE);
7276 set_domain_attribute(sd, attr);
7277 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7278 sd->parent = parent;
7279 if (parent)
7280 parent->child = sd;
7281 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7282#endif
7f4588f3
AH
7283 return sd;
7284}
1da177e4 7285
87cce662
AH
7286static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7287 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7288 struct sched_domain *parent, int i)
7289{
7290 struct sched_domain *sd;
7291 sd = &per_cpu(phys_domains, i).sd;
7292 SD_INIT(sd, CPU);
7293 set_domain_attribute(sd, attr);
7294 cpumask_copy(sched_domain_span(sd), d->nodemask);
7295 sd->parent = parent;
7296 if (parent)
7297 parent->child = sd;
7298 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7299 return sd;
7300}
1da177e4 7301
01a08546
HC
7302static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7303 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7304 struct sched_domain *parent, int i)
7305{
7306 struct sched_domain *sd = parent;
7307#ifdef CONFIG_SCHED_BOOK
7308 sd = &per_cpu(book_domains, i).sd;
7309 SD_INIT(sd, BOOK);
7310 set_domain_attribute(sd, attr);
7311 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7312 sd->parent = parent;
7313 parent->child = sd;
7314 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7315#endif
7316 return sd;
7317}
7318
410c4081
AH
7319static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7320 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7321 struct sched_domain *parent, int i)
7322{
7323 struct sched_domain *sd = parent;
1e9f28fa 7324#ifdef CONFIG_SCHED_MC
410c4081
AH
7325 sd = &per_cpu(core_domains, i).sd;
7326 SD_INIT(sd, MC);
7327 set_domain_attribute(sd, attr);
7328 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7329 sd->parent = parent;
7330 parent->child = sd;
7331 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7332#endif
410c4081
AH
7333 return sd;
7334}
1e9f28fa 7335
d8173535
AH
7336static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7337 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7338 struct sched_domain *parent, int i)
7339{
7340 struct sched_domain *sd = parent;
1da177e4 7341#ifdef CONFIG_SCHED_SMT
d8173535
AH
7342 sd = &per_cpu(cpu_domains, i).sd;
7343 SD_INIT(sd, SIBLING);
7344 set_domain_attribute(sd, attr);
7345 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7346 sd->parent = parent;
7347 parent->child = sd;
7348 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7349#endif
d8173535
AH
7350 return sd;
7351}
1da177e4 7352
0e8e85c9
AH
7353static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7354 const struct cpumask *cpu_map, int cpu)
7355{
7356 switch (l) {
1da177e4 7357#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7358 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7359 cpumask_and(d->this_sibling_map, cpu_map,
7360 topology_thread_cpumask(cpu));
7361 if (cpu == cpumask_first(d->this_sibling_map))
7362 init_sched_build_groups(d->this_sibling_map, cpu_map,
7363 &cpu_to_cpu_group,
7364 d->send_covered, d->tmpmask);
7365 break;
1da177e4 7366#endif
1e9f28fa 7367#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7368 case SD_LV_MC: /* set up multi-core groups */
7369 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7370 if (cpu == cpumask_first(d->this_core_map))
7371 init_sched_build_groups(d->this_core_map, cpu_map,
7372 &cpu_to_core_group,
7373 d->send_covered, d->tmpmask);
7374 break;
01a08546
HC
7375#endif
7376#ifdef CONFIG_SCHED_BOOK
7377 case SD_LV_BOOK: /* set up book groups */
7378 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7379 if (cpu == cpumask_first(d->this_book_map))
7380 init_sched_build_groups(d->this_book_map, cpu_map,
7381 &cpu_to_book_group,
7382 d->send_covered, d->tmpmask);
7383 break;
1e9f28fa 7384#endif
86548096
AH
7385 case SD_LV_CPU: /* set up physical groups */
7386 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7387 if (!cpumask_empty(d->nodemask))
7388 init_sched_build_groups(d->nodemask, cpu_map,
7389 &cpu_to_phys_group,
7390 d->send_covered, d->tmpmask);
7391 break;
1da177e4 7392#ifdef CONFIG_NUMA
de616e36
AH
7393 case SD_LV_ALLNODES:
7394 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7395 d->send_covered, d->tmpmask);
7396 break;
7397#endif
0e8e85c9
AH
7398 default:
7399 break;
7c16ec58 7400 }
0e8e85c9 7401}
9c1cfda2 7402
2109b99e
AH
7403/*
7404 * Build sched domains for a given set of cpus and attach the sched domains
7405 * to the individual cpus
7406 */
7407static int __build_sched_domains(const struct cpumask *cpu_map,
7408 struct sched_domain_attr *attr)
7409{
7410 enum s_alloc alloc_state = sa_none;
7411 struct s_data d;
294b0c96 7412 struct sched_domain *sd;
2109b99e 7413 int i;
7c16ec58 7414#ifdef CONFIG_NUMA
2109b99e 7415 d.sd_allnodes = 0;
7c16ec58 7416#endif
9c1cfda2 7417
2109b99e
AH
7418 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7419 if (alloc_state != sa_rootdomain)
7420 goto error;
7421 alloc_state = sa_sched_groups;
9c1cfda2 7422
1da177e4 7423 /*
1a20ff27 7424 * Set up domains for cpus specified by the cpu_map.
1da177e4 7425 */
abcd083a 7426 for_each_cpu(i, cpu_map) {
49a02c51
AH
7427 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7428 cpu_map);
9761eea8 7429
7f4588f3 7430 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7431 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7432 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7433 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7434 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7435 }
9c1cfda2 7436
abcd083a 7437 for_each_cpu(i, cpu_map) {
0e8e85c9 7438 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7439 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7440 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7441 }
9c1cfda2 7442
1da177e4 7443 /* Set up physical groups */
86548096
AH
7444 for (i = 0; i < nr_node_ids; i++)
7445 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7446
1da177e4
LT
7447#ifdef CONFIG_NUMA
7448 /* Set up node groups */
de616e36
AH
7449 if (d.sd_allnodes)
7450 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7451
0601a88d
AH
7452 for (i = 0; i < nr_node_ids; i++)
7453 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7454 goto error;
1da177e4
LT
7455#endif
7456
7457 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7458#ifdef CONFIG_SCHED_SMT
abcd083a 7459 for_each_cpu(i, cpu_map) {
294b0c96 7460 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7461 init_sched_groups_power(i, sd);
5c45bf27 7462 }
1da177e4 7463#endif
1e9f28fa 7464#ifdef CONFIG_SCHED_MC
abcd083a 7465 for_each_cpu(i, cpu_map) {
294b0c96 7466 sd = &per_cpu(core_domains, i).sd;
89c4710e 7467 init_sched_groups_power(i, sd);
5c45bf27
SS
7468 }
7469#endif
01a08546
HC
7470#ifdef CONFIG_SCHED_BOOK
7471 for_each_cpu(i, cpu_map) {
7472 sd = &per_cpu(book_domains, i).sd;
7473 init_sched_groups_power(i, sd);
7474 }
7475#endif
1e9f28fa 7476
abcd083a 7477 for_each_cpu(i, cpu_map) {
294b0c96 7478 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7479 init_sched_groups_power(i, sd);
1da177e4
LT
7480 }
7481
9c1cfda2 7482#ifdef CONFIG_NUMA
076ac2af 7483 for (i = 0; i < nr_node_ids; i++)
49a02c51 7484 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7485
49a02c51 7486 if (d.sd_allnodes) {
6711cab4 7487 struct sched_group *sg;
f712c0c7 7488
96f874e2 7489 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7490 d.tmpmask);
f712c0c7
SS
7491 init_numa_sched_groups_power(sg);
7492 }
9c1cfda2
JH
7493#endif
7494
1da177e4 7495 /* Attach the domains */
abcd083a 7496 for_each_cpu(i, cpu_map) {
1da177e4 7497#ifdef CONFIG_SCHED_SMT
6c99e9ad 7498 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7499#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7500 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7501#elif defined(CONFIG_SCHED_BOOK)
7502 sd = &per_cpu(book_domains, i).sd;
1da177e4 7503#else
6c99e9ad 7504 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7505#endif
49a02c51 7506 cpu_attach_domain(sd, d.rd, i);
1da177e4 7507 }
51888ca2 7508
2109b99e
AH
7509 d.sched_group_nodes = NULL; /* don't free this we still need it */
7510 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7511 return 0;
51888ca2 7512
51888ca2 7513error:
2109b99e
AH
7514 __free_domain_allocs(&d, alloc_state, cpu_map);
7515 return -ENOMEM;
1da177e4 7516}
029190c5 7517
96f874e2 7518static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7519{
7520 return __build_sched_domains(cpu_map, NULL);
7521}
7522
acc3f5d7 7523static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7524static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7525static struct sched_domain_attr *dattr_cur;
7526 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7527
7528/*
7529 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7530 * cpumask) fails, then fallback to a single sched domain,
7531 * as determined by the single cpumask fallback_doms.
029190c5 7532 */
4212823f 7533static cpumask_var_t fallback_doms;
029190c5 7534
ee79d1bd
HC
7535/*
7536 * arch_update_cpu_topology lets virtualized architectures update the
7537 * cpu core maps. It is supposed to return 1 if the topology changed
7538 * or 0 if it stayed the same.
7539 */
7540int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7541{
ee79d1bd 7542 return 0;
22e52b07
HC
7543}
7544
acc3f5d7
RR
7545cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7546{
7547 int i;
7548 cpumask_var_t *doms;
7549
7550 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7551 if (!doms)
7552 return NULL;
7553 for (i = 0; i < ndoms; i++) {
7554 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7555 free_sched_domains(doms, i);
7556 return NULL;
7557 }
7558 }
7559 return doms;
7560}
7561
7562void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7563{
7564 unsigned int i;
7565 for (i = 0; i < ndoms; i++)
7566 free_cpumask_var(doms[i]);
7567 kfree(doms);
7568}
7569
1a20ff27 7570/*
41a2d6cf 7571 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7572 * For now this just excludes isolated cpus, but could be used to
7573 * exclude other special cases in the future.
1a20ff27 7574 */
96f874e2 7575static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7576{
7378547f
MM
7577 int err;
7578
22e52b07 7579 arch_update_cpu_topology();
029190c5 7580 ndoms_cur = 1;
acc3f5d7 7581 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7582 if (!doms_cur)
acc3f5d7
RR
7583 doms_cur = &fallback_doms;
7584 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7585 dattr_cur = NULL;
acc3f5d7 7586 err = build_sched_domains(doms_cur[0]);
6382bc90 7587 register_sched_domain_sysctl();
7378547f
MM
7588
7589 return err;
1a20ff27
DG
7590}
7591
96f874e2
RR
7592static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7593 struct cpumask *tmpmask)
1da177e4 7594{
7c16ec58 7595 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7596}
1da177e4 7597
1a20ff27
DG
7598/*
7599 * Detach sched domains from a group of cpus specified in cpu_map
7600 * These cpus will now be attached to the NULL domain
7601 */
96f874e2 7602static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7603{
96f874e2
RR
7604 /* Save because hotplug lock held. */
7605 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7606 int i;
7607
abcd083a 7608 for_each_cpu(i, cpu_map)
57d885fe 7609 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7610 synchronize_sched();
96f874e2 7611 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7612}
7613
1d3504fc
HS
7614/* handle null as "default" */
7615static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7616 struct sched_domain_attr *new, int idx_new)
7617{
7618 struct sched_domain_attr tmp;
7619
7620 /* fast path */
7621 if (!new && !cur)
7622 return 1;
7623
7624 tmp = SD_ATTR_INIT;
7625 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7626 new ? (new + idx_new) : &tmp,
7627 sizeof(struct sched_domain_attr));
7628}
7629
029190c5
PJ
7630/*
7631 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7632 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7633 * doms_new[] to the current sched domain partitioning, doms_cur[].
7634 * It destroys each deleted domain and builds each new domain.
7635 *
acc3f5d7 7636 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7637 * The masks don't intersect (don't overlap.) We should setup one
7638 * sched domain for each mask. CPUs not in any of the cpumasks will
7639 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7640 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7641 * it as it is.
7642 *
acc3f5d7
RR
7643 * The passed in 'doms_new' should be allocated using
7644 * alloc_sched_domains. This routine takes ownership of it and will
7645 * free_sched_domains it when done with it. If the caller failed the
7646 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7647 * and partition_sched_domains() will fallback to the single partition
7648 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7649 *
96f874e2 7650 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7651 * ndoms_new == 0 is a special case for destroying existing domains,
7652 * and it will not create the default domain.
dfb512ec 7653 *
029190c5
PJ
7654 * Call with hotplug lock held
7655 */
acc3f5d7 7656void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7657 struct sched_domain_attr *dattr_new)
029190c5 7658{
dfb512ec 7659 int i, j, n;
d65bd5ec 7660 int new_topology;
029190c5 7661
712555ee 7662 mutex_lock(&sched_domains_mutex);
a1835615 7663
7378547f
MM
7664 /* always unregister in case we don't destroy any domains */
7665 unregister_sched_domain_sysctl();
7666
d65bd5ec
HC
7667 /* Let architecture update cpu core mappings. */
7668 new_topology = arch_update_cpu_topology();
7669
dfb512ec 7670 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7671
7672 /* Destroy deleted domains */
7673 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7674 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7675 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7676 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7677 goto match1;
7678 }
7679 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7680 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7681match1:
7682 ;
7683 }
7684
e761b772
MK
7685 if (doms_new == NULL) {
7686 ndoms_cur = 0;
acc3f5d7 7687 doms_new = &fallback_doms;
6ad4c188 7688 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7689 WARN_ON_ONCE(dattr_new);
e761b772
MK
7690 }
7691
029190c5
PJ
7692 /* Build new domains */
7693 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7694 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7695 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7696 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7697 goto match2;
7698 }
7699 /* no match - add a new doms_new */
acc3f5d7 7700 __build_sched_domains(doms_new[i],
1d3504fc 7701 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7702match2:
7703 ;
7704 }
7705
7706 /* Remember the new sched domains */
acc3f5d7
RR
7707 if (doms_cur != &fallback_doms)
7708 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7709 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7710 doms_cur = doms_new;
1d3504fc 7711 dattr_cur = dattr_new;
029190c5 7712 ndoms_cur = ndoms_new;
7378547f
MM
7713
7714 register_sched_domain_sysctl();
a1835615 7715
712555ee 7716 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7717}
7718
5c45bf27 7719#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7720static void arch_reinit_sched_domains(void)
5c45bf27 7721{
95402b38 7722 get_online_cpus();
dfb512ec
MK
7723
7724 /* Destroy domains first to force the rebuild */
7725 partition_sched_domains(0, NULL, NULL);
7726
e761b772 7727 rebuild_sched_domains();
95402b38 7728 put_online_cpus();
5c45bf27
SS
7729}
7730
7731static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7732{
afb8a9b7 7733 unsigned int level = 0;
5c45bf27 7734
afb8a9b7
GS
7735 if (sscanf(buf, "%u", &level) != 1)
7736 return -EINVAL;
7737
7738 /*
7739 * level is always be positive so don't check for
7740 * level < POWERSAVINGS_BALANCE_NONE which is 0
7741 * What happens on 0 or 1 byte write,
7742 * need to check for count as well?
7743 */
7744
7745 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7746 return -EINVAL;
7747
7748 if (smt)
afb8a9b7 7749 sched_smt_power_savings = level;
5c45bf27 7750 else
afb8a9b7 7751 sched_mc_power_savings = level;
5c45bf27 7752
c70f22d2 7753 arch_reinit_sched_domains();
5c45bf27 7754
c70f22d2 7755 return count;
5c45bf27
SS
7756}
7757
5c45bf27 7758#ifdef CONFIG_SCHED_MC
f718cd4a 7759static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7760 struct sysdev_class_attribute *attr,
f718cd4a 7761 char *page)
5c45bf27
SS
7762{
7763 return sprintf(page, "%u\n", sched_mc_power_savings);
7764}
f718cd4a 7765static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7766 struct sysdev_class_attribute *attr,
48f24c4d 7767 const char *buf, size_t count)
5c45bf27
SS
7768{
7769 return sched_power_savings_store(buf, count, 0);
7770}
f718cd4a
AK
7771static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7772 sched_mc_power_savings_show,
7773 sched_mc_power_savings_store);
5c45bf27
SS
7774#endif
7775
7776#ifdef CONFIG_SCHED_SMT
f718cd4a 7777static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7778 struct sysdev_class_attribute *attr,
f718cd4a 7779 char *page)
5c45bf27
SS
7780{
7781 return sprintf(page, "%u\n", sched_smt_power_savings);
7782}
f718cd4a 7783static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7784 struct sysdev_class_attribute *attr,
48f24c4d 7785 const char *buf, size_t count)
5c45bf27
SS
7786{
7787 return sched_power_savings_store(buf, count, 1);
7788}
f718cd4a
AK
7789static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7790 sched_smt_power_savings_show,
6707de00
AB
7791 sched_smt_power_savings_store);
7792#endif
7793
39aac648 7794int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7795{
7796 int err = 0;
7797
7798#ifdef CONFIG_SCHED_SMT
7799 if (smt_capable())
7800 err = sysfs_create_file(&cls->kset.kobj,
7801 &attr_sched_smt_power_savings.attr);
7802#endif
7803#ifdef CONFIG_SCHED_MC
7804 if (!err && mc_capable())
7805 err = sysfs_create_file(&cls->kset.kobj,
7806 &attr_sched_mc_power_savings.attr);
7807#endif
7808 return err;
7809}
6d6bc0ad 7810#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7811
1da177e4 7812/*
3a101d05
TH
7813 * Update cpusets according to cpu_active mask. If cpusets are
7814 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7815 * around partition_sched_domains().
1da177e4 7816 */
0b2e918a
TH
7817static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7818 void *hcpu)
e761b772 7819{
3a101d05 7820 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7821 case CPU_ONLINE:
6ad4c188 7822 case CPU_DOWN_FAILED:
3a101d05 7823 cpuset_update_active_cpus();
e761b772 7824 return NOTIFY_OK;
3a101d05
TH
7825 default:
7826 return NOTIFY_DONE;
7827 }
7828}
e761b772 7829
0b2e918a
TH
7830static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7831 void *hcpu)
3a101d05
TH
7832{
7833 switch (action & ~CPU_TASKS_FROZEN) {
7834 case CPU_DOWN_PREPARE:
7835 cpuset_update_active_cpus();
7836 return NOTIFY_OK;
e761b772
MK
7837 default:
7838 return NOTIFY_DONE;
7839 }
7840}
e761b772
MK
7841
7842static int update_runtime(struct notifier_block *nfb,
7843 unsigned long action, void *hcpu)
1da177e4 7844{
7def2be1
PZ
7845 int cpu = (int)(long)hcpu;
7846
1da177e4 7847 switch (action) {
1da177e4 7848 case CPU_DOWN_PREPARE:
8bb78442 7849 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7850 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7851 return NOTIFY_OK;
7852
1da177e4 7853 case CPU_DOWN_FAILED:
8bb78442 7854 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7855 case CPU_ONLINE:
8bb78442 7856 case CPU_ONLINE_FROZEN:
7def2be1 7857 enable_runtime(cpu_rq(cpu));
e761b772
MK
7858 return NOTIFY_OK;
7859
1da177e4
LT
7860 default:
7861 return NOTIFY_DONE;
7862 }
1da177e4 7863}
1da177e4
LT
7864
7865void __init sched_init_smp(void)
7866{
dcc30a35
RR
7867 cpumask_var_t non_isolated_cpus;
7868
7869 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7870 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7871
434d53b0
MT
7872#if defined(CONFIG_NUMA)
7873 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7874 GFP_KERNEL);
7875 BUG_ON(sched_group_nodes_bycpu == NULL);
7876#endif
95402b38 7877 get_online_cpus();
712555ee 7878 mutex_lock(&sched_domains_mutex);
6ad4c188 7879 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7880 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7881 if (cpumask_empty(non_isolated_cpus))
7882 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7883 mutex_unlock(&sched_domains_mutex);
95402b38 7884 put_online_cpus();
e761b772 7885
3a101d05
TH
7886 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7887 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7888
7889 /* RT runtime code needs to handle some hotplug events */
7890 hotcpu_notifier(update_runtime, 0);
7891
b328ca18 7892 init_hrtick();
5c1e1767
NP
7893
7894 /* Move init over to a non-isolated CPU */
dcc30a35 7895 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7896 BUG();
19978ca6 7897 sched_init_granularity();
dcc30a35 7898 free_cpumask_var(non_isolated_cpus);
4212823f 7899
0e3900e6 7900 init_sched_rt_class();
1da177e4
LT
7901}
7902#else
7903void __init sched_init_smp(void)
7904{
19978ca6 7905 sched_init_granularity();
1da177e4
LT
7906}
7907#endif /* CONFIG_SMP */
7908
cd1bb94b
AB
7909const_debug unsigned int sysctl_timer_migration = 1;
7910
1da177e4
LT
7911int in_sched_functions(unsigned long addr)
7912{
1da177e4
LT
7913 return in_lock_functions(addr) ||
7914 (addr >= (unsigned long)__sched_text_start
7915 && addr < (unsigned long)__sched_text_end);
7916}
7917
a9957449 7918static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7919{
7920 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7921 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7922#ifdef CONFIG_FAIR_GROUP_SCHED
7923 cfs_rq->rq = rq;
f07333bf
PT
7924 /* allow initial update_cfs_load() to truncate */
7925 cfs_rq->load_stamp = 1;
dd41f596 7926#endif
67e9fb2a 7927 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7928}
7929
fa85ae24
PZ
7930static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7931{
7932 struct rt_prio_array *array;
7933 int i;
7934
7935 array = &rt_rq->active;
7936 for (i = 0; i < MAX_RT_PRIO; i++) {
7937 INIT_LIST_HEAD(array->queue + i);
7938 __clear_bit(i, array->bitmap);
7939 }
7940 /* delimiter for bitsearch: */
7941 __set_bit(MAX_RT_PRIO, array->bitmap);
7942
052f1dc7 7943#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7944 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7945#ifdef CONFIG_SMP
e864c499 7946 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7947#endif
48d5e258 7948#endif
fa85ae24
PZ
7949#ifdef CONFIG_SMP
7950 rt_rq->rt_nr_migratory = 0;
fa85ae24 7951 rt_rq->overloaded = 0;
05fa785c 7952 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7953#endif
7954
7955 rt_rq->rt_time = 0;
7956 rt_rq->rt_throttled = 0;
ac086bc2 7957 rt_rq->rt_runtime = 0;
0986b11b 7958 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7959
052f1dc7 7960#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7961 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7962 rt_rq->rq = rq;
7963#endif
fa85ae24
PZ
7964}
7965
6f505b16 7966#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7967static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7968 struct sched_entity *se, int cpu,
ec7dc8ac 7969 struct sched_entity *parent)
6f505b16 7970{
ec7dc8ac 7971 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7972 tg->cfs_rq[cpu] = cfs_rq;
7973 init_cfs_rq(cfs_rq, rq);
7974 cfs_rq->tg = tg;
6f505b16
PZ
7975
7976 tg->se[cpu] = se;
07e06b01 7977 /* se could be NULL for root_task_group */
354d60c2
DG
7978 if (!se)
7979 return;
7980
ec7dc8ac
DG
7981 if (!parent)
7982 se->cfs_rq = &rq->cfs;
7983 else
7984 se->cfs_rq = parent->my_q;
7985
6f505b16 7986 se->my_q = cfs_rq;
9437178f 7987 update_load_set(&se->load, 0);
ec7dc8ac 7988 se->parent = parent;
6f505b16 7989}
052f1dc7 7990#endif
6f505b16 7991
052f1dc7 7992#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7993static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7994 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7995 struct sched_rt_entity *parent)
6f505b16 7996{
ec7dc8ac
DG
7997 struct rq *rq = cpu_rq(cpu);
7998
6f505b16
PZ
7999 tg->rt_rq[cpu] = rt_rq;
8000 init_rt_rq(rt_rq, rq);
8001 rt_rq->tg = tg;
ac086bc2 8002 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8003
8004 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8005 if (!rt_se)
8006 return;
8007
ec7dc8ac
DG
8008 if (!parent)
8009 rt_se->rt_rq = &rq->rt;
8010 else
8011 rt_se->rt_rq = parent->my_q;
8012
6f505b16 8013 rt_se->my_q = rt_rq;
ec7dc8ac 8014 rt_se->parent = parent;
6f505b16
PZ
8015 INIT_LIST_HEAD(&rt_se->run_list);
8016}
8017#endif
8018
1da177e4
LT
8019void __init sched_init(void)
8020{
dd41f596 8021 int i, j;
434d53b0
MT
8022 unsigned long alloc_size = 0, ptr;
8023
8024#ifdef CONFIG_FAIR_GROUP_SCHED
8025 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8026#endif
8027#ifdef CONFIG_RT_GROUP_SCHED
8028 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8029#endif
df7c8e84 8030#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8031 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8032#endif
434d53b0 8033 if (alloc_size) {
36b7b6d4 8034 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8035
8036#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8037 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8038 ptr += nr_cpu_ids * sizeof(void **);
8039
07e06b01 8040 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8041 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8042
6d6bc0ad 8043#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8044#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8045 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8046 ptr += nr_cpu_ids * sizeof(void **);
8047
07e06b01 8048 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8049 ptr += nr_cpu_ids * sizeof(void **);
8050
6d6bc0ad 8051#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8052#ifdef CONFIG_CPUMASK_OFFSTACK
8053 for_each_possible_cpu(i) {
8054 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8055 ptr += cpumask_size();
8056 }
8057#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8058 }
dd41f596 8059
57d885fe
GH
8060#ifdef CONFIG_SMP
8061 init_defrootdomain();
8062#endif
8063
d0b27fa7
PZ
8064 init_rt_bandwidth(&def_rt_bandwidth,
8065 global_rt_period(), global_rt_runtime());
8066
8067#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8068 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8069 global_rt_period(), global_rt_runtime());
6d6bc0ad 8070#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8071
7c941438 8072#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8073 list_add(&root_task_group.list, &task_groups);
8074 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8075 autogroup_init(&init_task);
7c941438 8076#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8077
0a945022 8078 for_each_possible_cpu(i) {
70b97a7f 8079 struct rq *rq;
1da177e4
LT
8080
8081 rq = cpu_rq(i);
05fa785c 8082 raw_spin_lock_init(&rq->lock);
7897986b 8083 rq->nr_running = 0;
dce48a84
TG
8084 rq->calc_load_active = 0;
8085 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8086 init_cfs_rq(&rq->cfs, rq);
6f505b16 8087 init_rt_rq(&rq->rt, rq);
dd41f596 8088#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8089 root_task_group.shares = root_task_group_load;
6f505b16 8090 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8091 /*
07e06b01 8092 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8093 *
8094 * In case of task-groups formed thr' the cgroup filesystem, it
8095 * gets 100% of the cpu resources in the system. This overall
8096 * system cpu resource is divided among the tasks of
07e06b01 8097 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8098 * based on each entity's (task or task-group's) weight
8099 * (se->load.weight).
8100 *
07e06b01 8101 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8102 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8103 * then A0's share of the cpu resource is:
8104 *
0d905bca 8105 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8106 *
07e06b01
YZ
8107 * We achieve this by letting root_task_group's tasks sit
8108 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8109 */
07e06b01 8110 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8111#endif /* CONFIG_FAIR_GROUP_SCHED */
8112
8113 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8114#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8115 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8116 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8117#endif
1da177e4 8118
dd41f596
IM
8119 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8120 rq->cpu_load[j] = 0;
fdf3e95d
VP
8121
8122 rq->last_load_update_tick = jiffies;
8123
1da177e4 8124#ifdef CONFIG_SMP
41c7ce9a 8125 rq->sd = NULL;
57d885fe 8126 rq->rd = NULL;
e51fd5e2 8127 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8128 rq->post_schedule = 0;
1da177e4 8129 rq->active_balance = 0;
dd41f596 8130 rq->next_balance = jiffies;
1da177e4 8131 rq->push_cpu = 0;
0a2966b4 8132 rq->cpu = i;
1f11eb6a 8133 rq->online = 0;
eae0c9df
MG
8134 rq->idle_stamp = 0;
8135 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8136 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8137#ifdef CONFIG_NO_HZ
8138 rq->nohz_balance_kick = 0;
8139 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8140#endif
1da177e4 8141#endif
8f4d37ec 8142 init_rq_hrtick(rq);
1da177e4 8143 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8144 }
8145
2dd73a4f 8146 set_load_weight(&init_task);
b50f60ce 8147
e107be36
AK
8148#ifdef CONFIG_PREEMPT_NOTIFIERS
8149 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8150#endif
8151
c9819f45 8152#ifdef CONFIG_SMP
962cf36c 8153 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8154#endif
8155
b50f60ce 8156#ifdef CONFIG_RT_MUTEXES
1d615482 8157 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8158#endif
8159
1da177e4
LT
8160 /*
8161 * The boot idle thread does lazy MMU switching as well:
8162 */
8163 atomic_inc(&init_mm.mm_count);
8164 enter_lazy_tlb(&init_mm, current);
8165
8166 /*
8167 * Make us the idle thread. Technically, schedule() should not be
8168 * called from this thread, however somewhere below it might be,
8169 * but because we are the idle thread, we just pick up running again
8170 * when this runqueue becomes "idle".
8171 */
8172 init_idle(current, smp_processor_id());
dce48a84
TG
8173
8174 calc_load_update = jiffies + LOAD_FREQ;
8175
dd41f596
IM
8176 /*
8177 * During early bootup we pretend to be a normal task:
8178 */
8179 current->sched_class = &fair_sched_class;
6892b75e 8180
6a7b3dc3 8181 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8182 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8183#ifdef CONFIG_SMP
7d1e6a9b 8184#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8185 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8186 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8187 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8188 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8189 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8190#endif
bdddd296
RR
8191 /* May be allocated at isolcpus cmdline parse time */
8192 if (cpu_isolated_map == NULL)
8193 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8194#endif /* SMP */
6a7b3dc3 8195
6892b75e 8196 scheduler_running = 1;
1da177e4
LT
8197}
8198
8199#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8200static inline int preempt_count_equals(int preempt_offset)
8201{
234da7bc 8202 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8203
8204 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8205}
8206
d894837f 8207void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8208{
48f24c4d 8209#ifdef in_atomic
1da177e4
LT
8210 static unsigned long prev_jiffy; /* ratelimiting */
8211
e4aafea2
FW
8212 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8213 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8214 return;
8215 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8216 return;
8217 prev_jiffy = jiffies;
8218
3df0fc5b
PZ
8219 printk(KERN_ERR
8220 "BUG: sleeping function called from invalid context at %s:%d\n",
8221 file, line);
8222 printk(KERN_ERR
8223 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8224 in_atomic(), irqs_disabled(),
8225 current->pid, current->comm);
aef745fc
IM
8226
8227 debug_show_held_locks(current);
8228 if (irqs_disabled())
8229 print_irqtrace_events(current);
8230 dump_stack();
1da177e4
LT
8231#endif
8232}
8233EXPORT_SYMBOL(__might_sleep);
8234#endif
8235
8236#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8237static void normalize_task(struct rq *rq, struct task_struct *p)
8238{
da7a735e
PZ
8239 const struct sched_class *prev_class = p->sched_class;
8240 int old_prio = p->prio;
3a5e4dc1 8241 int on_rq;
3e51f33f 8242
3a5e4dc1
AK
8243 on_rq = p->se.on_rq;
8244 if (on_rq)
8245 deactivate_task(rq, p, 0);
8246 __setscheduler(rq, p, SCHED_NORMAL, 0);
8247 if (on_rq) {
8248 activate_task(rq, p, 0);
8249 resched_task(rq->curr);
8250 }
da7a735e
PZ
8251
8252 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8253}
8254
1da177e4
LT
8255void normalize_rt_tasks(void)
8256{
a0f98a1c 8257 struct task_struct *g, *p;
1da177e4 8258 unsigned long flags;
70b97a7f 8259 struct rq *rq;
1da177e4 8260
4cf5d77a 8261 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8262 do_each_thread(g, p) {
178be793
IM
8263 /*
8264 * Only normalize user tasks:
8265 */
8266 if (!p->mm)
8267 continue;
8268
6cfb0d5d 8269 p->se.exec_start = 0;
6cfb0d5d 8270#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8271 p->se.statistics.wait_start = 0;
8272 p->se.statistics.sleep_start = 0;
8273 p->se.statistics.block_start = 0;
6cfb0d5d 8274#endif
dd41f596
IM
8275
8276 if (!rt_task(p)) {
8277 /*
8278 * Renice negative nice level userspace
8279 * tasks back to 0:
8280 */
8281 if (TASK_NICE(p) < 0 && p->mm)
8282 set_user_nice(p, 0);
1da177e4 8283 continue;
dd41f596 8284 }
1da177e4 8285
1d615482 8286 raw_spin_lock(&p->pi_lock);
b29739f9 8287 rq = __task_rq_lock(p);
1da177e4 8288
178be793 8289 normalize_task(rq, p);
3a5e4dc1 8290
b29739f9 8291 __task_rq_unlock(rq);
1d615482 8292 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8293 } while_each_thread(g, p);
8294
4cf5d77a 8295 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8296}
8297
8298#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8299
67fc4e0c 8300#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8301/*
67fc4e0c 8302 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8303 *
8304 * They can only be called when the whole system has been
8305 * stopped - every CPU needs to be quiescent, and no scheduling
8306 * activity can take place. Using them for anything else would
8307 * be a serious bug, and as a result, they aren't even visible
8308 * under any other configuration.
8309 */
8310
8311/**
8312 * curr_task - return the current task for a given cpu.
8313 * @cpu: the processor in question.
8314 *
8315 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8316 */
36c8b586 8317struct task_struct *curr_task(int cpu)
1df5c10a
LT
8318{
8319 return cpu_curr(cpu);
8320}
8321
67fc4e0c
JW
8322#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8323
8324#ifdef CONFIG_IA64
1df5c10a
LT
8325/**
8326 * set_curr_task - set the current task for a given cpu.
8327 * @cpu: the processor in question.
8328 * @p: the task pointer to set.
8329 *
8330 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8331 * are serviced on a separate stack. It allows the architecture to switch the
8332 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8333 * must be called with all CPU's synchronized, and interrupts disabled, the
8334 * and caller must save the original value of the current task (see
8335 * curr_task() above) and restore that value before reenabling interrupts and
8336 * re-starting the system.
8337 *
8338 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8339 */
36c8b586 8340void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8341{
8342 cpu_curr(cpu) = p;
8343}
8344
8345#endif
29f59db3 8346
bccbe08a
PZ
8347#ifdef CONFIG_FAIR_GROUP_SCHED
8348static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8349{
8350 int i;
8351
8352 for_each_possible_cpu(i) {
8353 if (tg->cfs_rq)
8354 kfree(tg->cfs_rq[i]);
8355 if (tg->se)
8356 kfree(tg->se[i]);
6f505b16
PZ
8357 }
8358
8359 kfree(tg->cfs_rq);
8360 kfree(tg->se);
6f505b16
PZ
8361}
8362
ec7dc8ac
DG
8363static
8364int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8365{
29f59db3 8366 struct cfs_rq *cfs_rq;
eab17229 8367 struct sched_entity *se;
9b5b7751 8368 struct rq *rq;
29f59db3
SV
8369 int i;
8370
434d53b0 8371 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8372 if (!tg->cfs_rq)
8373 goto err;
434d53b0 8374 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8375 if (!tg->se)
8376 goto err;
052f1dc7
PZ
8377
8378 tg->shares = NICE_0_LOAD;
29f59db3
SV
8379
8380 for_each_possible_cpu(i) {
9b5b7751 8381 rq = cpu_rq(i);
29f59db3 8382
eab17229
LZ
8383 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8384 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8385 if (!cfs_rq)
8386 goto err;
8387
eab17229
LZ
8388 se = kzalloc_node(sizeof(struct sched_entity),
8389 GFP_KERNEL, cpu_to_node(i));
29f59db3 8390 if (!se)
dfc12eb2 8391 goto err_free_rq;
29f59db3 8392
3d4b47b4 8393 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8394 }
8395
8396 return 1;
8397
49246274 8398err_free_rq:
dfc12eb2 8399 kfree(cfs_rq);
49246274 8400err:
bccbe08a
PZ
8401 return 0;
8402}
8403
bccbe08a
PZ
8404static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8405{
3d4b47b4
PZ
8406 struct rq *rq = cpu_rq(cpu);
8407 unsigned long flags;
3d4b47b4
PZ
8408
8409 /*
8410 * Only empty task groups can be destroyed; so we can speculatively
8411 * check on_list without danger of it being re-added.
8412 */
8413 if (!tg->cfs_rq[cpu]->on_list)
8414 return;
8415
8416 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8417 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8418 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8419}
6d6bc0ad 8420#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8421static inline void free_fair_sched_group(struct task_group *tg)
8422{
8423}
8424
ec7dc8ac
DG
8425static inline
8426int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8427{
8428 return 1;
8429}
8430
bccbe08a
PZ
8431static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8432{
8433}
6d6bc0ad 8434#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8435
8436#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8437static void free_rt_sched_group(struct task_group *tg)
8438{
8439 int i;
8440
d0b27fa7
PZ
8441 destroy_rt_bandwidth(&tg->rt_bandwidth);
8442
bccbe08a
PZ
8443 for_each_possible_cpu(i) {
8444 if (tg->rt_rq)
8445 kfree(tg->rt_rq[i]);
8446 if (tg->rt_se)
8447 kfree(tg->rt_se[i]);
8448 }
8449
8450 kfree(tg->rt_rq);
8451 kfree(tg->rt_se);
8452}
8453
ec7dc8ac
DG
8454static
8455int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8456{
8457 struct rt_rq *rt_rq;
eab17229 8458 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8459 struct rq *rq;
8460 int i;
8461
434d53b0 8462 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8463 if (!tg->rt_rq)
8464 goto err;
434d53b0 8465 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8466 if (!tg->rt_se)
8467 goto err;
8468
d0b27fa7
PZ
8469 init_rt_bandwidth(&tg->rt_bandwidth,
8470 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8471
8472 for_each_possible_cpu(i) {
8473 rq = cpu_rq(i);
8474
eab17229
LZ
8475 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8476 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8477 if (!rt_rq)
8478 goto err;
29f59db3 8479
eab17229
LZ
8480 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8481 GFP_KERNEL, cpu_to_node(i));
6f505b16 8482 if (!rt_se)
dfc12eb2 8483 goto err_free_rq;
29f59db3 8484
3d4b47b4 8485 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8486 }
8487
bccbe08a
PZ
8488 return 1;
8489
49246274 8490err_free_rq:
dfc12eb2 8491 kfree(rt_rq);
49246274 8492err:
bccbe08a
PZ
8493 return 0;
8494}
6d6bc0ad 8495#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8496static inline void free_rt_sched_group(struct task_group *tg)
8497{
8498}
8499
ec7dc8ac
DG
8500static inline
8501int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8502{
8503 return 1;
8504}
6d6bc0ad 8505#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8506
7c941438 8507#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8508static void free_sched_group(struct task_group *tg)
8509{
8510 free_fair_sched_group(tg);
8511 free_rt_sched_group(tg);
e9aa1dd1 8512 autogroup_free(tg);
bccbe08a
PZ
8513 kfree(tg);
8514}
8515
8516/* allocate runqueue etc for a new task group */
ec7dc8ac 8517struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8518{
8519 struct task_group *tg;
8520 unsigned long flags;
bccbe08a
PZ
8521
8522 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8523 if (!tg)
8524 return ERR_PTR(-ENOMEM);
8525
ec7dc8ac 8526 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8527 goto err;
8528
ec7dc8ac 8529 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8530 goto err;
8531
8ed36996 8532 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8533 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8534
8535 WARN_ON(!parent); /* root should already exist */
8536
8537 tg->parent = parent;
f473aa5e 8538 INIT_LIST_HEAD(&tg->children);
09f2724a 8539 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8540 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8541
9b5b7751 8542 return tg;
29f59db3
SV
8543
8544err:
6f505b16 8545 free_sched_group(tg);
29f59db3
SV
8546 return ERR_PTR(-ENOMEM);
8547}
8548
9b5b7751 8549/* rcu callback to free various structures associated with a task group */
6f505b16 8550static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8551{
29f59db3 8552 /* now it should be safe to free those cfs_rqs */
6f505b16 8553 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8554}
8555
9b5b7751 8556/* Destroy runqueue etc associated with a task group */
4cf86d77 8557void sched_destroy_group(struct task_group *tg)
29f59db3 8558{
8ed36996 8559 unsigned long flags;
9b5b7751 8560 int i;
29f59db3 8561
3d4b47b4
PZ
8562 /* end participation in shares distribution */
8563 for_each_possible_cpu(i)
bccbe08a 8564 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8565
8566 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8567 list_del_rcu(&tg->list);
f473aa5e 8568 list_del_rcu(&tg->siblings);
8ed36996 8569 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8570
9b5b7751 8571 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8572 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8573}
8574
9b5b7751 8575/* change task's runqueue when it moves between groups.
3a252015
IM
8576 * The caller of this function should have put the task in its new group
8577 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8578 * reflect its new group.
9b5b7751
SV
8579 */
8580void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8581{
8582 int on_rq, running;
8583 unsigned long flags;
8584 struct rq *rq;
8585
8586 rq = task_rq_lock(tsk, &flags);
8587
051a1d1a 8588 running = task_current(rq, tsk);
29f59db3
SV
8589 on_rq = tsk->se.on_rq;
8590
0e1f3483 8591 if (on_rq)
29f59db3 8592 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8593 if (unlikely(running))
8594 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8595
810b3817 8596#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8597 if (tsk->sched_class->task_move_group)
8598 tsk->sched_class->task_move_group(tsk, on_rq);
8599 else
810b3817 8600#endif
b2b5ce02 8601 set_task_rq(tsk, task_cpu(tsk));
810b3817 8602
0e1f3483
HS
8603 if (unlikely(running))
8604 tsk->sched_class->set_curr_task(rq);
8605 if (on_rq)
371fd7e7 8606 enqueue_task(rq, tsk, 0);
29f59db3 8607
29f59db3
SV
8608 task_rq_unlock(rq, &flags);
8609}
7c941438 8610#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8611
052f1dc7 8612#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8613static DEFINE_MUTEX(shares_mutex);
8614
4cf86d77 8615int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8616{
8617 int i;
8ed36996 8618 unsigned long flags;
c61935fd 8619
ec7dc8ac
DG
8620 /*
8621 * We can't change the weight of the root cgroup.
8622 */
8623 if (!tg->se[0])
8624 return -EINVAL;
8625
18d95a28
PZ
8626 if (shares < MIN_SHARES)
8627 shares = MIN_SHARES;
cb4ad1ff
MX
8628 else if (shares > MAX_SHARES)
8629 shares = MAX_SHARES;
62fb1851 8630
8ed36996 8631 mutex_lock(&shares_mutex);
9b5b7751 8632 if (tg->shares == shares)
5cb350ba 8633 goto done;
29f59db3 8634
9b5b7751 8635 tg->shares = shares;
c09595f6 8636 for_each_possible_cpu(i) {
9437178f
PT
8637 struct rq *rq = cpu_rq(i);
8638 struct sched_entity *se;
8639
8640 se = tg->se[i];
8641 /* Propagate contribution to hierarchy */
8642 raw_spin_lock_irqsave(&rq->lock, flags);
8643 for_each_sched_entity(se)
6d5ab293 8644 update_cfs_shares(group_cfs_rq(se));
9437178f 8645 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8646 }
29f59db3 8647
5cb350ba 8648done:
8ed36996 8649 mutex_unlock(&shares_mutex);
9b5b7751 8650 return 0;
29f59db3
SV
8651}
8652
5cb350ba
DG
8653unsigned long sched_group_shares(struct task_group *tg)
8654{
8655 return tg->shares;
8656}
052f1dc7 8657#endif
5cb350ba 8658
052f1dc7 8659#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8660/*
9f0c1e56 8661 * Ensure that the real time constraints are schedulable.
6f505b16 8662 */
9f0c1e56
PZ
8663static DEFINE_MUTEX(rt_constraints_mutex);
8664
8665static unsigned long to_ratio(u64 period, u64 runtime)
8666{
8667 if (runtime == RUNTIME_INF)
9a7e0b18 8668 return 1ULL << 20;
9f0c1e56 8669
9a7e0b18 8670 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8671}
8672
9a7e0b18
PZ
8673/* Must be called with tasklist_lock held */
8674static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8675{
9a7e0b18 8676 struct task_struct *g, *p;
b40b2e8e 8677
9a7e0b18
PZ
8678 do_each_thread(g, p) {
8679 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8680 return 1;
8681 } while_each_thread(g, p);
b40b2e8e 8682
9a7e0b18
PZ
8683 return 0;
8684}
b40b2e8e 8685
9a7e0b18
PZ
8686struct rt_schedulable_data {
8687 struct task_group *tg;
8688 u64 rt_period;
8689 u64 rt_runtime;
8690};
b40b2e8e 8691
9a7e0b18
PZ
8692static int tg_schedulable(struct task_group *tg, void *data)
8693{
8694 struct rt_schedulable_data *d = data;
8695 struct task_group *child;
8696 unsigned long total, sum = 0;
8697 u64 period, runtime;
b40b2e8e 8698
9a7e0b18
PZ
8699 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8700 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8701
9a7e0b18
PZ
8702 if (tg == d->tg) {
8703 period = d->rt_period;
8704 runtime = d->rt_runtime;
b40b2e8e 8705 }
b40b2e8e 8706
4653f803
PZ
8707 /*
8708 * Cannot have more runtime than the period.
8709 */
8710 if (runtime > period && runtime != RUNTIME_INF)
8711 return -EINVAL;
6f505b16 8712
4653f803
PZ
8713 /*
8714 * Ensure we don't starve existing RT tasks.
8715 */
9a7e0b18
PZ
8716 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8717 return -EBUSY;
6f505b16 8718
9a7e0b18 8719 total = to_ratio(period, runtime);
6f505b16 8720
4653f803
PZ
8721 /*
8722 * Nobody can have more than the global setting allows.
8723 */
8724 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8725 return -EINVAL;
6f505b16 8726
4653f803
PZ
8727 /*
8728 * The sum of our children's runtime should not exceed our own.
8729 */
9a7e0b18
PZ
8730 list_for_each_entry_rcu(child, &tg->children, siblings) {
8731 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8732 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8733
9a7e0b18
PZ
8734 if (child == d->tg) {
8735 period = d->rt_period;
8736 runtime = d->rt_runtime;
8737 }
6f505b16 8738
9a7e0b18 8739 sum += to_ratio(period, runtime);
9f0c1e56 8740 }
6f505b16 8741
9a7e0b18
PZ
8742 if (sum > total)
8743 return -EINVAL;
8744
8745 return 0;
6f505b16
PZ
8746}
8747
9a7e0b18 8748static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8749{
9a7e0b18
PZ
8750 struct rt_schedulable_data data = {
8751 .tg = tg,
8752 .rt_period = period,
8753 .rt_runtime = runtime,
8754 };
8755
8756 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8757}
8758
d0b27fa7
PZ
8759static int tg_set_bandwidth(struct task_group *tg,
8760 u64 rt_period, u64 rt_runtime)
6f505b16 8761{
ac086bc2 8762 int i, err = 0;
9f0c1e56 8763
9f0c1e56 8764 mutex_lock(&rt_constraints_mutex);
521f1a24 8765 read_lock(&tasklist_lock);
9a7e0b18
PZ
8766 err = __rt_schedulable(tg, rt_period, rt_runtime);
8767 if (err)
9f0c1e56 8768 goto unlock;
ac086bc2 8769
0986b11b 8770 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8771 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8772 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8773
8774 for_each_possible_cpu(i) {
8775 struct rt_rq *rt_rq = tg->rt_rq[i];
8776
0986b11b 8777 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8778 rt_rq->rt_runtime = rt_runtime;
0986b11b 8779 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8780 }
0986b11b 8781 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8782unlock:
521f1a24 8783 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8784 mutex_unlock(&rt_constraints_mutex);
8785
8786 return err;
6f505b16
PZ
8787}
8788
d0b27fa7
PZ
8789int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8790{
8791 u64 rt_runtime, rt_period;
8792
8793 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8794 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8795 if (rt_runtime_us < 0)
8796 rt_runtime = RUNTIME_INF;
8797
8798 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8799}
8800
9f0c1e56
PZ
8801long sched_group_rt_runtime(struct task_group *tg)
8802{
8803 u64 rt_runtime_us;
8804
d0b27fa7 8805 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8806 return -1;
8807
d0b27fa7 8808 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8809 do_div(rt_runtime_us, NSEC_PER_USEC);
8810 return rt_runtime_us;
8811}
d0b27fa7
PZ
8812
8813int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8814{
8815 u64 rt_runtime, rt_period;
8816
8817 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8818 rt_runtime = tg->rt_bandwidth.rt_runtime;
8819
619b0488
R
8820 if (rt_period == 0)
8821 return -EINVAL;
8822
d0b27fa7
PZ
8823 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8824}
8825
8826long sched_group_rt_period(struct task_group *tg)
8827{
8828 u64 rt_period_us;
8829
8830 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8831 do_div(rt_period_us, NSEC_PER_USEC);
8832 return rt_period_us;
8833}
8834
8835static int sched_rt_global_constraints(void)
8836{
4653f803 8837 u64 runtime, period;
d0b27fa7
PZ
8838 int ret = 0;
8839
ec5d4989
HS
8840 if (sysctl_sched_rt_period <= 0)
8841 return -EINVAL;
8842
4653f803
PZ
8843 runtime = global_rt_runtime();
8844 period = global_rt_period();
8845
8846 /*
8847 * Sanity check on the sysctl variables.
8848 */
8849 if (runtime > period && runtime != RUNTIME_INF)
8850 return -EINVAL;
10b612f4 8851
d0b27fa7 8852 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8853 read_lock(&tasklist_lock);
4653f803 8854 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8855 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8856 mutex_unlock(&rt_constraints_mutex);
8857
8858 return ret;
8859}
54e99124
DG
8860
8861int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8862{
8863 /* Don't accept realtime tasks when there is no way for them to run */
8864 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8865 return 0;
8866
8867 return 1;
8868}
8869
6d6bc0ad 8870#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8871static int sched_rt_global_constraints(void)
8872{
ac086bc2
PZ
8873 unsigned long flags;
8874 int i;
8875
ec5d4989
HS
8876 if (sysctl_sched_rt_period <= 0)
8877 return -EINVAL;
8878
60aa605d
PZ
8879 /*
8880 * There's always some RT tasks in the root group
8881 * -- migration, kstopmachine etc..
8882 */
8883 if (sysctl_sched_rt_runtime == 0)
8884 return -EBUSY;
8885
0986b11b 8886 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8887 for_each_possible_cpu(i) {
8888 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8889
0986b11b 8890 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8891 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8892 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8893 }
0986b11b 8894 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8895
d0b27fa7
PZ
8896 return 0;
8897}
6d6bc0ad 8898#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8899
8900int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8901 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8902 loff_t *ppos)
8903{
8904 int ret;
8905 int old_period, old_runtime;
8906 static DEFINE_MUTEX(mutex);
8907
8908 mutex_lock(&mutex);
8909 old_period = sysctl_sched_rt_period;
8910 old_runtime = sysctl_sched_rt_runtime;
8911
8d65af78 8912 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8913
8914 if (!ret && write) {
8915 ret = sched_rt_global_constraints();
8916 if (ret) {
8917 sysctl_sched_rt_period = old_period;
8918 sysctl_sched_rt_runtime = old_runtime;
8919 } else {
8920 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8921 def_rt_bandwidth.rt_period =
8922 ns_to_ktime(global_rt_period());
8923 }
8924 }
8925 mutex_unlock(&mutex);
8926
8927 return ret;
8928}
68318b8e 8929
052f1dc7 8930#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8931
8932/* return corresponding task_group object of a cgroup */
2b01dfe3 8933static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8934{
2b01dfe3
PM
8935 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8936 struct task_group, css);
68318b8e
SV
8937}
8938
8939static struct cgroup_subsys_state *
2b01dfe3 8940cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8941{
ec7dc8ac 8942 struct task_group *tg, *parent;
68318b8e 8943
2b01dfe3 8944 if (!cgrp->parent) {
68318b8e 8945 /* This is early initialization for the top cgroup */
07e06b01 8946 return &root_task_group.css;
68318b8e
SV
8947 }
8948
ec7dc8ac
DG
8949 parent = cgroup_tg(cgrp->parent);
8950 tg = sched_create_group(parent);
68318b8e
SV
8951 if (IS_ERR(tg))
8952 return ERR_PTR(-ENOMEM);
8953
68318b8e
SV
8954 return &tg->css;
8955}
8956
41a2d6cf
IM
8957static void
8958cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8959{
2b01dfe3 8960 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8961
8962 sched_destroy_group(tg);
8963}
8964
41a2d6cf 8965static int
be367d09 8966cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8967{
b68aa230 8968#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8969 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8970 return -EINVAL;
8971#else
68318b8e
SV
8972 /* We don't support RT-tasks being in separate groups */
8973 if (tsk->sched_class != &fair_sched_class)
8974 return -EINVAL;
b68aa230 8975#endif
be367d09
BB
8976 return 0;
8977}
68318b8e 8978
be367d09
BB
8979static int
8980cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8981 struct task_struct *tsk, bool threadgroup)
8982{
8983 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8984 if (retval)
8985 return retval;
8986 if (threadgroup) {
8987 struct task_struct *c;
8988 rcu_read_lock();
8989 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8990 retval = cpu_cgroup_can_attach_task(cgrp, c);
8991 if (retval) {
8992 rcu_read_unlock();
8993 return retval;
8994 }
8995 }
8996 rcu_read_unlock();
8997 }
68318b8e
SV
8998 return 0;
8999}
9000
9001static void
2b01dfe3 9002cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9003 struct cgroup *old_cont, struct task_struct *tsk,
9004 bool threadgroup)
68318b8e
SV
9005{
9006 sched_move_task(tsk);
be367d09
BB
9007 if (threadgroup) {
9008 struct task_struct *c;
9009 rcu_read_lock();
9010 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9011 sched_move_task(c);
9012 }
9013 rcu_read_unlock();
9014 }
68318b8e
SV
9015}
9016
068c5cc5
PZ
9017static void
9018cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
9019{
9020 /*
9021 * cgroup_exit() is called in the copy_process() failure path.
9022 * Ignore this case since the task hasn't ran yet, this avoids
9023 * trying to poke a half freed task state from generic code.
9024 */
9025 if (!(task->flags & PF_EXITING))
9026 return;
9027
9028 sched_move_task(task);
9029}
9030
052f1dc7 9031#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9032static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9033 u64 shareval)
68318b8e 9034{
2b01dfe3 9035 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9036}
9037
f4c753b7 9038static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9039{
2b01dfe3 9040 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9041
9042 return (u64) tg->shares;
9043}
6d6bc0ad 9044#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9045
052f1dc7 9046#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9047static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9048 s64 val)
6f505b16 9049{
06ecb27c 9050 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9051}
9052
06ecb27c 9053static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9054{
06ecb27c 9055 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9056}
d0b27fa7
PZ
9057
9058static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9059 u64 rt_period_us)
9060{
9061 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9062}
9063
9064static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9065{
9066 return sched_group_rt_period(cgroup_tg(cgrp));
9067}
6d6bc0ad 9068#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9069
fe5c7cc2 9070static struct cftype cpu_files[] = {
052f1dc7 9071#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9072 {
9073 .name = "shares",
f4c753b7
PM
9074 .read_u64 = cpu_shares_read_u64,
9075 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9076 },
052f1dc7
PZ
9077#endif
9078#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9079 {
9f0c1e56 9080 .name = "rt_runtime_us",
06ecb27c
PM
9081 .read_s64 = cpu_rt_runtime_read,
9082 .write_s64 = cpu_rt_runtime_write,
6f505b16 9083 },
d0b27fa7
PZ
9084 {
9085 .name = "rt_period_us",
f4c753b7
PM
9086 .read_u64 = cpu_rt_period_read_uint,
9087 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9088 },
052f1dc7 9089#endif
68318b8e
SV
9090};
9091
9092static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9093{
fe5c7cc2 9094 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9095}
9096
9097struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9098 .name = "cpu",
9099 .create = cpu_cgroup_create,
9100 .destroy = cpu_cgroup_destroy,
9101 .can_attach = cpu_cgroup_can_attach,
9102 .attach = cpu_cgroup_attach,
068c5cc5 9103 .exit = cpu_cgroup_exit,
38605cae
IM
9104 .populate = cpu_cgroup_populate,
9105 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9106 .early_init = 1,
9107};
9108
052f1dc7 9109#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9110
9111#ifdef CONFIG_CGROUP_CPUACCT
9112
9113/*
9114 * CPU accounting code for task groups.
9115 *
9116 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9117 * (balbir@in.ibm.com).
9118 */
9119
934352f2 9120/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9121struct cpuacct {
9122 struct cgroup_subsys_state css;
9123 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9124 u64 __percpu *cpuusage;
ef12fefa 9125 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9126 struct cpuacct *parent;
d842de87
SV
9127};
9128
9129struct cgroup_subsys cpuacct_subsys;
9130
9131/* return cpu accounting group corresponding to this container */
32cd756a 9132static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9133{
32cd756a 9134 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9135 struct cpuacct, css);
9136}
9137
9138/* return cpu accounting group to which this task belongs */
9139static inline struct cpuacct *task_ca(struct task_struct *tsk)
9140{
9141 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9142 struct cpuacct, css);
9143}
9144
9145/* create a new cpu accounting group */
9146static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9147 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9148{
9149 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9150 int i;
d842de87
SV
9151
9152 if (!ca)
ef12fefa 9153 goto out;
d842de87
SV
9154
9155 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9156 if (!ca->cpuusage)
9157 goto out_free_ca;
9158
9159 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9160 if (percpu_counter_init(&ca->cpustat[i], 0))
9161 goto out_free_counters;
d842de87 9162
934352f2
BR
9163 if (cgrp->parent)
9164 ca->parent = cgroup_ca(cgrp->parent);
9165
d842de87 9166 return &ca->css;
ef12fefa
BR
9167
9168out_free_counters:
9169 while (--i >= 0)
9170 percpu_counter_destroy(&ca->cpustat[i]);
9171 free_percpu(ca->cpuusage);
9172out_free_ca:
9173 kfree(ca);
9174out:
9175 return ERR_PTR(-ENOMEM);
d842de87
SV
9176}
9177
9178/* destroy an existing cpu accounting group */
41a2d6cf 9179static void
32cd756a 9180cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9181{
32cd756a 9182 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9183 int i;
d842de87 9184
ef12fefa
BR
9185 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9186 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9187 free_percpu(ca->cpuusage);
9188 kfree(ca);
9189}
9190
720f5498
KC
9191static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9192{
b36128c8 9193 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9194 u64 data;
9195
9196#ifndef CONFIG_64BIT
9197 /*
9198 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9199 */
05fa785c 9200 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9201 data = *cpuusage;
05fa785c 9202 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9203#else
9204 data = *cpuusage;
9205#endif
9206
9207 return data;
9208}
9209
9210static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9211{
b36128c8 9212 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9213
9214#ifndef CONFIG_64BIT
9215 /*
9216 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9217 */
05fa785c 9218 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9219 *cpuusage = val;
05fa785c 9220 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9221#else
9222 *cpuusage = val;
9223#endif
9224}
9225
d842de87 9226/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9227static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9228{
32cd756a 9229 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9230 u64 totalcpuusage = 0;
9231 int i;
9232
720f5498
KC
9233 for_each_present_cpu(i)
9234 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9235
9236 return totalcpuusage;
9237}
9238
0297b803
DG
9239static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9240 u64 reset)
9241{
9242 struct cpuacct *ca = cgroup_ca(cgrp);
9243 int err = 0;
9244 int i;
9245
9246 if (reset) {
9247 err = -EINVAL;
9248 goto out;
9249 }
9250
720f5498
KC
9251 for_each_present_cpu(i)
9252 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9253
0297b803
DG
9254out:
9255 return err;
9256}
9257
e9515c3c
KC
9258static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9259 struct seq_file *m)
9260{
9261 struct cpuacct *ca = cgroup_ca(cgroup);
9262 u64 percpu;
9263 int i;
9264
9265 for_each_present_cpu(i) {
9266 percpu = cpuacct_cpuusage_read(ca, i);
9267 seq_printf(m, "%llu ", (unsigned long long) percpu);
9268 }
9269 seq_printf(m, "\n");
9270 return 0;
9271}
9272
ef12fefa
BR
9273static const char *cpuacct_stat_desc[] = {
9274 [CPUACCT_STAT_USER] = "user",
9275 [CPUACCT_STAT_SYSTEM] = "system",
9276};
9277
9278static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9279 struct cgroup_map_cb *cb)
9280{
9281 struct cpuacct *ca = cgroup_ca(cgrp);
9282 int i;
9283
9284 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9285 s64 val = percpu_counter_read(&ca->cpustat[i]);
9286 val = cputime64_to_clock_t(val);
9287 cb->fill(cb, cpuacct_stat_desc[i], val);
9288 }
9289 return 0;
9290}
9291
d842de87
SV
9292static struct cftype files[] = {
9293 {
9294 .name = "usage",
f4c753b7
PM
9295 .read_u64 = cpuusage_read,
9296 .write_u64 = cpuusage_write,
d842de87 9297 },
e9515c3c
KC
9298 {
9299 .name = "usage_percpu",
9300 .read_seq_string = cpuacct_percpu_seq_read,
9301 },
ef12fefa
BR
9302 {
9303 .name = "stat",
9304 .read_map = cpuacct_stats_show,
9305 },
d842de87
SV
9306};
9307
32cd756a 9308static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9309{
32cd756a 9310 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9311}
9312
9313/*
9314 * charge this task's execution time to its accounting group.
9315 *
9316 * called with rq->lock held.
9317 */
9318static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9319{
9320 struct cpuacct *ca;
934352f2 9321 int cpu;
d842de87 9322
c40c6f85 9323 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9324 return;
9325
934352f2 9326 cpu = task_cpu(tsk);
a18b83b7
BR
9327
9328 rcu_read_lock();
9329
d842de87 9330 ca = task_ca(tsk);
d842de87 9331
934352f2 9332 for (; ca; ca = ca->parent) {
b36128c8 9333 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9334 *cpuusage += cputime;
9335 }
a18b83b7
BR
9336
9337 rcu_read_unlock();
d842de87
SV
9338}
9339
fa535a77
AB
9340/*
9341 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9342 * in cputime_t units. As a result, cpuacct_update_stats calls
9343 * percpu_counter_add with values large enough to always overflow the
9344 * per cpu batch limit causing bad SMP scalability.
9345 *
9346 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9347 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9348 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9349 */
9350#ifdef CONFIG_SMP
9351#define CPUACCT_BATCH \
9352 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9353#else
9354#define CPUACCT_BATCH 0
9355#endif
9356
ef12fefa
BR
9357/*
9358 * Charge the system/user time to the task's accounting group.
9359 */
9360static void cpuacct_update_stats(struct task_struct *tsk,
9361 enum cpuacct_stat_index idx, cputime_t val)
9362{
9363 struct cpuacct *ca;
fa535a77 9364 int batch = CPUACCT_BATCH;
ef12fefa
BR
9365
9366 if (unlikely(!cpuacct_subsys.active))
9367 return;
9368
9369 rcu_read_lock();
9370 ca = task_ca(tsk);
9371
9372 do {
fa535a77 9373 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9374 ca = ca->parent;
9375 } while (ca);
9376 rcu_read_unlock();
9377}
9378
d842de87
SV
9379struct cgroup_subsys cpuacct_subsys = {
9380 .name = "cpuacct",
9381 .create = cpuacct_create,
9382 .destroy = cpuacct_destroy,
9383 .populate = cpuacct_populate,
9384 .subsys_id = cpuacct_subsys_id,
9385};
9386#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9387
This page took 1.958707 seconds and 5 git commands to generate.