sched debug: check spread
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
634fa8c9
IM
136#define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
91fcdd4e 139/*
634fa8c9 140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 141 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 142 */
634fa8c9 143static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 144{
634fa8c9
IM
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
152}
153
e05606d3
IM
154static inline int rt_policy(int policy)
155{
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159}
160
161static inline int task_has_rt_policy(struct task_struct *p)
162{
163 return rt_policy(p->policy);
164}
165
1da177e4 166/*
6aa645ea 167 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 168 */
6aa645ea
IM
169struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172};
173
29f59db3
SV
174#ifdef CONFIG_FAIR_GROUP_SCHED
175
29f59db3
SV
176struct cfs_rq;
177
178/* task group related information */
179struct task_grp {
29f59db3
SV
180 /* schedulable entities of this group on each cpu */
181 struct sched_entity **se;
182 /* runqueue "owned" by this group on each cpu */
183 struct cfs_rq **cfs_rq;
184 unsigned long shares;
185};
186
187/* Default task group's sched entity on each cpu */
188static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
189/* Default task group's cfs_rq on each cpu */
190static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
191
9b5b7751
SV
192static struct sched_entity *init_sched_entity_p[NR_CPUS];
193static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
194
195/* Default task group.
196 * Every task in system belong to this group at bootup.
197 */
9b5b7751
SV
198struct task_grp init_task_grp = {
199 .se = init_sched_entity_p,
200 .cfs_rq = init_cfs_rq_p,
201 };
202
24e377a8
SV
203#ifdef CONFIG_FAIR_USER_SCHED
204#define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
205#else
9b5b7751 206#define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
207#endif
208
9b5b7751 209static int init_task_grp_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
210
211/* return group to which a task belongs */
212static inline struct task_grp *task_grp(struct task_struct *p)
213{
9b5b7751
SV
214 struct task_grp *tg;
215
24e377a8
SV
216#ifdef CONFIG_FAIR_USER_SCHED
217 tg = p->user->tg;
218#else
9b5b7751 219 tg = &init_task_grp;
24e377a8 220#endif
9b5b7751
SV
221
222 return tg;
29f59db3
SV
223}
224
225/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
226static inline void set_task_cfs_rq(struct task_struct *p)
227{
228 p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
229 p->se.parent = task_grp(p)->se[task_cpu(p)];
230}
231
232#else
233
234static inline void set_task_cfs_rq(struct task_struct *p) { }
235
236#endif /* CONFIG_FAIR_GROUP_SCHED */
237
6aa645ea
IM
238/* CFS-related fields in a runqueue */
239struct cfs_rq {
240 struct load_weight load;
241 unsigned long nr_running;
242
6aa645ea 243 u64 exec_clock;
e9acbff6 244 u64 min_vruntime;
6aa645ea
IM
245
246 struct rb_root tasks_timeline;
247 struct rb_node *rb_leftmost;
248 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
249 /* 'curr' points to currently running entity on this cfs_rq.
250 * It is set to NULL otherwise (i.e when none are currently running).
251 */
252 struct sched_entity *curr;
ddc97297
PZ
253
254 unsigned long nr_spread_over;
255
62160e3f 256#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
257 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
258
259 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
260 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
261 * (like users, containers etc.)
262 *
263 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
264 * list is used during load balance.
265 */
266 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
29f59db3 267 struct task_grp *tg; /* group that "owns" this runqueue */
9b5b7751 268 struct rcu_head rcu;
6aa645ea
IM
269#endif
270};
1da177e4 271
6aa645ea
IM
272/* Real-Time classes' related field in a runqueue: */
273struct rt_rq {
274 struct rt_prio_array active;
275 int rt_load_balance_idx;
276 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
277};
278
1da177e4
LT
279/*
280 * This is the main, per-CPU runqueue data structure.
281 *
282 * Locking rule: those places that want to lock multiple runqueues
283 * (such as the load balancing or the thread migration code), lock
284 * acquire operations must be ordered by ascending &runqueue.
285 */
70b97a7f 286struct rq {
6aa645ea 287 spinlock_t lock; /* runqueue lock */
1da177e4
LT
288
289 /*
290 * nr_running and cpu_load should be in the same cacheline because
291 * remote CPUs use both these fields when doing load calculation.
292 */
293 unsigned long nr_running;
6aa645ea
IM
294 #define CPU_LOAD_IDX_MAX 5
295 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 296 unsigned char idle_at_tick;
46cb4b7c
SS
297#ifdef CONFIG_NO_HZ
298 unsigned char in_nohz_recently;
299#endif
495eca49 300 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
301 unsigned long nr_load_updates;
302 u64 nr_switches;
303
304 struct cfs_rq cfs;
305#ifdef CONFIG_FAIR_GROUP_SCHED
306 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 307#endif
6aa645ea 308 struct rt_rq rt;
1da177e4
LT
309
310 /*
311 * This is part of a global counter where only the total sum
312 * over all CPUs matters. A task can increase this counter on
313 * one CPU and if it got migrated afterwards it may decrease
314 * it on another CPU. Always updated under the runqueue lock:
315 */
316 unsigned long nr_uninterruptible;
317
36c8b586 318 struct task_struct *curr, *idle;
c9819f45 319 unsigned long next_balance;
1da177e4 320 struct mm_struct *prev_mm;
6aa645ea 321
6aa645ea
IM
322 u64 clock, prev_clock_raw;
323 s64 clock_max_delta;
324
325 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
326 u64 idle_clock;
327 unsigned int clock_deep_idle_events;
529c7726 328 u64 tick_timestamp;
6aa645ea 329
1da177e4
LT
330 atomic_t nr_iowait;
331
332#ifdef CONFIG_SMP
333 struct sched_domain *sd;
334
335 /* For active balancing */
336 int active_balance;
337 int push_cpu;
0a2966b4 338 int cpu; /* cpu of this runqueue */
1da177e4 339
36c8b586 340 struct task_struct *migration_thread;
1da177e4
LT
341 struct list_head migration_queue;
342#endif
343
344#ifdef CONFIG_SCHEDSTATS
345 /* latency stats */
346 struct sched_info rq_sched_info;
347
348 /* sys_sched_yield() stats */
349 unsigned long yld_exp_empty;
350 unsigned long yld_act_empty;
351 unsigned long yld_both_empty;
352 unsigned long yld_cnt;
353
354 /* schedule() stats */
355 unsigned long sched_switch;
356 unsigned long sched_cnt;
357 unsigned long sched_goidle;
358
359 /* try_to_wake_up() stats */
360 unsigned long ttwu_cnt;
361 unsigned long ttwu_local;
b8efb561
IM
362
363 /* BKL stats */
364 unsigned long bkl_cnt;
1da177e4 365#endif
fcb99371 366 struct lock_class_key rq_lock_key;
1da177e4
LT
367};
368
f34e3b61 369static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 370static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 371
dd41f596
IM
372static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
373{
374 rq->curr->sched_class->check_preempt_curr(rq, p);
375}
376
0a2966b4
CL
377static inline int cpu_of(struct rq *rq)
378{
379#ifdef CONFIG_SMP
380 return rq->cpu;
381#else
382 return 0;
383#endif
384}
385
20d315d4 386/*
b04a0f4c
IM
387 * Update the per-runqueue clock, as finegrained as the platform can give
388 * us, but without assuming monotonicity, etc.:
20d315d4 389 */
b04a0f4c 390static void __update_rq_clock(struct rq *rq)
20d315d4
IM
391{
392 u64 prev_raw = rq->prev_clock_raw;
393 u64 now = sched_clock();
394 s64 delta = now - prev_raw;
395 u64 clock = rq->clock;
396
b04a0f4c
IM
397#ifdef CONFIG_SCHED_DEBUG
398 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
399#endif
20d315d4
IM
400 /*
401 * Protect against sched_clock() occasionally going backwards:
402 */
403 if (unlikely(delta < 0)) {
404 clock++;
405 rq->clock_warps++;
406 } else {
407 /*
408 * Catch too large forward jumps too:
409 */
529c7726
IM
410 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
411 if (clock < rq->tick_timestamp + TICK_NSEC)
412 clock = rq->tick_timestamp + TICK_NSEC;
413 else
414 clock++;
20d315d4
IM
415 rq->clock_overflows++;
416 } else {
417 if (unlikely(delta > rq->clock_max_delta))
418 rq->clock_max_delta = delta;
419 clock += delta;
420 }
421 }
422
423 rq->prev_clock_raw = now;
424 rq->clock = clock;
b04a0f4c 425}
20d315d4 426
b04a0f4c
IM
427static void update_rq_clock(struct rq *rq)
428{
429 if (likely(smp_processor_id() == cpu_of(rq)))
430 __update_rq_clock(rq);
20d315d4
IM
431}
432
674311d5
NP
433/*
434 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 435 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
436 *
437 * The domain tree of any CPU may only be accessed from within
438 * preempt-disabled sections.
439 */
48f24c4d
IM
440#define for_each_domain(cpu, __sd) \
441 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
442
443#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
444#define this_rq() (&__get_cpu_var(runqueues))
445#define task_rq(p) cpu_rq(task_cpu(p))
446#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
447
bf5c91ba
IM
448/*
449 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
450 */
451#ifdef CONFIG_SCHED_DEBUG
452# define const_debug __read_mostly
453#else
454# define const_debug static const
455#endif
456
457/*
458 * Debugging: various feature bits
459 */
460enum {
bbdba7c0
IM
461 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
462 SCHED_FEAT_START_DEBIT = 2,
463 SCHED_FEAT_USE_TREE_AVG = 4,
464 SCHED_FEAT_APPROX_AVG = 8,
bf5c91ba
IM
465};
466
467const_debug unsigned int sysctl_sched_features =
bf5c91ba 468 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7
PZ
469 SCHED_FEAT_START_DEBIT *1 |
470 SCHED_FEAT_USE_TREE_AVG *0 |
471 SCHED_FEAT_APPROX_AVG *0;
bf5c91ba
IM
472
473#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474
e436d800
IM
475/*
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
478 */
479unsigned long long cpu_clock(int cpu)
480{
e436d800
IM
481 unsigned long long now;
482 unsigned long flags;
b04a0f4c 483 struct rq *rq;
e436d800 484
2cd4d0ea 485 local_irq_save(flags);
b04a0f4c
IM
486 rq = cpu_rq(cpu);
487 update_rq_clock(rq);
488 now = rq->clock;
2cd4d0ea 489 local_irq_restore(flags);
e436d800
IM
490
491 return now;
492}
493
1da177e4 494#ifndef prepare_arch_switch
4866cde0
NP
495# define prepare_arch_switch(next) do { } while (0)
496#endif
497#ifndef finish_arch_switch
498# define finish_arch_switch(prev) do { } while (0)
499#endif
500
501#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 502static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
503{
504 return rq->curr == p;
505}
506
70b97a7f 507static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
508{
509}
510
70b97a7f 511static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 512{
da04c035
IM
513#ifdef CONFIG_DEBUG_SPINLOCK
514 /* this is a valid case when another task releases the spinlock */
515 rq->lock.owner = current;
516#endif
8a25d5de
IM
517 /*
518 * If we are tracking spinlock dependencies then we have to
519 * fix up the runqueue lock - which gets 'carried over' from
520 * prev into current:
521 */
522 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
523
4866cde0
NP
524 spin_unlock_irq(&rq->lock);
525}
526
527#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 528static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
529{
530#ifdef CONFIG_SMP
531 return p->oncpu;
532#else
533 return rq->curr == p;
534#endif
535}
536
70b97a7f 537static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
538{
539#ifdef CONFIG_SMP
540 /*
541 * We can optimise this out completely for !SMP, because the
542 * SMP rebalancing from interrupt is the only thing that cares
543 * here.
544 */
545 next->oncpu = 1;
546#endif
547#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 spin_unlock_irq(&rq->lock);
549#else
550 spin_unlock(&rq->lock);
551#endif
552}
553
70b97a7f 554static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
555{
556#ifdef CONFIG_SMP
557 /*
558 * After ->oncpu is cleared, the task can be moved to a different CPU.
559 * We must ensure this doesn't happen until the switch is completely
560 * finished.
561 */
562 smp_wmb();
563 prev->oncpu = 0;
564#endif
565#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
566 local_irq_enable();
1da177e4 567#endif
4866cde0
NP
568}
569#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 570
b29739f9
IM
571/*
572 * __task_rq_lock - lock the runqueue a given task resides on.
573 * Must be called interrupts disabled.
574 */
70b97a7f 575static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
576 __acquires(rq->lock)
577{
70b97a7f 578 struct rq *rq;
b29739f9
IM
579
580repeat_lock_task:
581 rq = task_rq(p);
582 spin_lock(&rq->lock);
583 if (unlikely(rq != task_rq(p))) {
584 spin_unlock(&rq->lock);
585 goto repeat_lock_task;
586 }
587 return rq;
588}
589
1da177e4
LT
590/*
591 * task_rq_lock - lock the runqueue a given task resides on and disable
592 * interrupts. Note the ordering: we can safely lookup the task_rq without
593 * explicitly disabling preemption.
594 */
70b97a7f 595static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
596 __acquires(rq->lock)
597{
70b97a7f 598 struct rq *rq;
1da177e4
LT
599
600repeat_lock_task:
601 local_irq_save(*flags);
602 rq = task_rq(p);
603 spin_lock(&rq->lock);
604 if (unlikely(rq != task_rq(p))) {
605 spin_unlock_irqrestore(&rq->lock, *flags);
606 goto repeat_lock_task;
607 }
608 return rq;
609}
610
70b97a7f 611static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
612 __releases(rq->lock)
613{
614 spin_unlock(&rq->lock);
615}
616
70b97a7f 617static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
618 __releases(rq->lock)
619{
620 spin_unlock_irqrestore(&rq->lock, *flags);
621}
622
1da177e4 623/*
cc2a73b5 624 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 625 */
70b97a7f 626static inline struct rq *this_rq_lock(void)
1da177e4
LT
627 __acquires(rq->lock)
628{
70b97a7f 629 struct rq *rq;
1da177e4
LT
630
631 local_irq_disable();
632 rq = this_rq();
633 spin_lock(&rq->lock);
634
635 return rq;
636}
637
1b9f19c2 638/*
2aa44d05 639 * We are going deep-idle (irqs are disabled):
1b9f19c2 640 */
2aa44d05 641void sched_clock_idle_sleep_event(void)
1b9f19c2 642{
2aa44d05
IM
643 struct rq *rq = cpu_rq(smp_processor_id());
644
645 spin_lock(&rq->lock);
646 __update_rq_clock(rq);
647 spin_unlock(&rq->lock);
648 rq->clock_deep_idle_events++;
649}
650EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
651
652/*
653 * We just idled delta nanoseconds (called with irqs disabled):
654 */
655void sched_clock_idle_wakeup_event(u64 delta_ns)
656{
657 struct rq *rq = cpu_rq(smp_processor_id());
658 u64 now = sched_clock();
1b9f19c2 659
2aa44d05
IM
660 rq->idle_clock += delta_ns;
661 /*
662 * Override the previous timestamp and ignore all
663 * sched_clock() deltas that occured while we idled,
664 * and use the PM-provided delta_ns to advance the
665 * rq clock:
666 */
667 spin_lock(&rq->lock);
668 rq->prev_clock_raw = now;
669 rq->clock += delta_ns;
670 spin_unlock(&rq->lock);
1b9f19c2 671}
2aa44d05 672EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 673
c24d20db
IM
674/*
675 * resched_task - mark a task 'to be rescheduled now'.
676 *
677 * On UP this means the setting of the need_resched flag, on SMP it
678 * might also involve a cross-CPU call to trigger the scheduler on
679 * the target CPU.
680 */
681#ifdef CONFIG_SMP
682
683#ifndef tsk_is_polling
684#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
685#endif
686
687static void resched_task(struct task_struct *p)
688{
689 int cpu;
690
691 assert_spin_locked(&task_rq(p)->lock);
692
693 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
694 return;
695
696 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
697
698 cpu = task_cpu(p);
699 if (cpu == smp_processor_id())
700 return;
701
702 /* NEED_RESCHED must be visible before we test polling */
703 smp_mb();
704 if (!tsk_is_polling(p))
705 smp_send_reschedule(cpu);
706}
707
708static void resched_cpu(int cpu)
709{
710 struct rq *rq = cpu_rq(cpu);
711 unsigned long flags;
712
713 if (!spin_trylock_irqsave(&rq->lock, flags))
714 return;
715 resched_task(cpu_curr(cpu));
716 spin_unlock_irqrestore(&rq->lock, flags);
717}
718#else
719static inline void resched_task(struct task_struct *p)
720{
721 assert_spin_locked(&task_rq(p)->lock);
722 set_tsk_need_resched(p);
723}
724#endif
725
45bf76df
IM
726#if BITS_PER_LONG == 32
727# define WMULT_CONST (~0UL)
728#else
729# define WMULT_CONST (1UL << 32)
730#endif
731
732#define WMULT_SHIFT 32
733
194081eb
IM
734/*
735 * Shift right and round:
736 */
cf2ab469 737#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 738
cb1c4fc9 739static unsigned long
45bf76df
IM
740calc_delta_mine(unsigned long delta_exec, unsigned long weight,
741 struct load_weight *lw)
742{
743 u64 tmp;
744
745 if (unlikely(!lw->inv_weight))
194081eb 746 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
747
748 tmp = (u64)delta_exec * weight;
749 /*
750 * Check whether we'd overflow the 64-bit multiplication:
751 */
194081eb 752 if (unlikely(tmp > WMULT_CONST))
cf2ab469 753 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
754 WMULT_SHIFT/2);
755 else
cf2ab469 756 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 757
ecf691da 758 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
759}
760
761static inline unsigned long
762calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
763{
764 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
765}
766
1091985b 767static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
768{
769 lw->weight += inc;
45bf76df
IM
770}
771
1091985b 772static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
773{
774 lw->weight -= dec;
45bf76df
IM
775}
776
2dd73a4f
PW
777/*
778 * To aid in avoiding the subversion of "niceness" due to uneven distribution
779 * of tasks with abnormal "nice" values across CPUs the contribution that
780 * each task makes to its run queue's load is weighted according to its
781 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782 * scaled version of the new time slice allocation that they receive on time
783 * slice expiry etc.
784 */
785
dd41f596
IM
786#define WEIGHT_IDLEPRIO 2
787#define WMULT_IDLEPRIO (1 << 31)
788
789/*
790 * Nice levels are multiplicative, with a gentle 10% change for every
791 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792 * nice 1, it will get ~10% less CPU time than another CPU-bound task
793 * that remained on nice 0.
794 *
795 * The "10% effect" is relative and cumulative: from _any_ nice level,
796 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
797 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798 * If a task goes up by ~10% and another task goes down by ~10% then
799 * the relative distance between them is ~25%.)
dd41f596
IM
800 */
801static const int prio_to_weight[40] = {
254753dc
IM
802 /* -20 */ 88761, 71755, 56483, 46273, 36291,
803 /* -15 */ 29154, 23254, 18705, 14949, 11916,
804 /* -10 */ 9548, 7620, 6100, 4904, 3906,
805 /* -5 */ 3121, 2501, 1991, 1586, 1277,
806 /* 0 */ 1024, 820, 655, 526, 423,
807 /* 5 */ 335, 272, 215, 172, 137,
808 /* 10 */ 110, 87, 70, 56, 45,
809 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
810};
811
5714d2de
IM
812/*
813 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
814 *
815 * In cases where the weight does not change often, we can use the
816 * precalculated inverse to speed up arithmetics by turning divisions
817 * into multiplications:
818 */
dd41f596 819static const u32 prio_to_wmult[40] = {
254753dc
IM
820 /* -20 */ 48388, 59856, 76040, 92818, 118348,
821 /* -15 */ 147320, 184698, 229616, 287308, 360437,
822 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
823 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
824 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
825 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
826 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
827 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 828};
2dd73a4f 829
dd41f596
IM
830static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
831
832/*
833 * runqueue iterator, to support SMP load-balancing between different
834 * scheduling classes, without having to expose their internal data
835 * structures to the load-balancing proper:
836 */
837struct rq_iterator {
838 void *arg;
839 struct task_struct *(*start)(void *);
840 struct task_struct *(*next)(void *);
841};
842
843static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
844 unsigned long max_nr_move, unsigned long max_load_move,
845 struct sched_domain *sd, enum cpu_idle_type idle,
846 int *all_pinned, unsigned long *load_moved,
a4ac01c3 847 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
848
849#include "sched_stats.h"
850#include "sched_rt.c"
851#include "sched_fair.c"
852#include "sched_idletask.c"
853#ifdef CONFIG_SCHED_DEBUG
854# include "sched_debug.c"
855#endif
856
857#define sched_class_highest (&rt_sched_class)
858
9c217245
IM
859/*
860 * Update delta_exec, delta_fair fields for rq.
861 *
862 * delta_fair clock advances at a rate inversely proportional to
495eca49 863 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
864 * delta_exec advances at the same rate as wall-clock (provided
865 * cpu is not idle).
866 *
867 * delta_exec / delta_fair is a measure of the (smoothened) load on this
868 * runqueue over any given interval. This (smoothened) load is used
869 * during load balance.
870 *
495eca49 871 * This function is called /before/ updating rq->load
9c217245
IM
872 * and when switching tasks.
873 */
29b4b623 874static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 875{
495eca49 876 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
877}
878
79b5dddf 879static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 880{
495eca49 881 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
882}
883
e5fa2237 884static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
885{
886 rq->nr_running++;
29b4b623 887 inc_load(rq, p);
9c217245
IM
888}
889
db53181e 890static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
891{
892 rq->nr_running--;
79b5dddf 893 dec_load(rq, p);
9c217245
IM
894}
895
45bf76df
IM
896static void set_load_weight(struct task_struct *p)
897{
898 if (task_has_rt_policy(p)) {
dd41f596
IM
899 p->se.load.weight = prio_to_weight[0] * 2;
900 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
901 return;
902 }
45bf76df 903
dd41f596
IM
904 /*
905 * SCHED_IDLE tasks get minimal weight:
906 */
907 if (p->policy == SCHED_IDLE) {
908 p->se.load.weight = WEIGHT_IDLEPRIO;
909 p->se.load.inv_weight = WMULT_IDLEPRIO;
910 return;
911 }
71f8bd46 912
dd41f596
IM
913 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
914 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
915}
916
8159f87e 917static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 918{
dd41f596 919 sched_info_queued(p);
fd390f6a 920 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 921 p->se.on_rq = 1;
71f8bd46
IM
922}
923
69be72c1 924static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 925{
f02231e5 926 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 927 p->se.on_rq = 0;
71f8bd46
IM
928}
929
14531189 930/*
dd41f596 931 * __normal_prio - return the priority that is based on the static prio
14531189 932 */
14531189
IM
933static inline int __normal_prio(struct task_struct *p)
934{
dd41f596 935 return p->static_prio;
14531189
IM
936}
937
b29739f9
IM
938/*
939 * Calculate the expected normal priority: i.e. priority
940 * without taking RT-inheritance into account. Might be
941 * boosted by interactivity modifiers. Changes upon fork,
942 * setprio syscalls, and whenever the interactivity
943 * estimator recalculates.
944 */
36c8b586 945static inline int normal_prio(struct task_struct *p)
b29739f9
IM
946{
947 int prio;
948
e05606d3 949 if (task_has_rt_policy(p))
b29739f9
IM
950 prio = MAX_RT_PRIO-1 - p->rt_priority;
951 else
952 prio = __normal_prio(p);
953 return prio;
954}
955
956/*
957 * Calculate the current priority, i.e. the priority
958 * taken into account by the scheduler. This value might
959 * be boosted by RT tasks, or might be boosted by
960 * interactivity modifiers. Will be RT if the task got
961 * RT-boosted. If not then it returns p->normal_prio.
962 */
36c8b586 963static int effective_prio(struct task_struct *p)
b29739f9
IM
964{
965 p->normal_prio = normal_prio(p);
966 /*
967 * If we are RT tasks or we were boosted to RT priority,
968 * keep the priority unchanged. Otherwise, update priority
969 * to the normal priority:
970 */
971 if (!rt_prio(p->prio))
972 return p->normal_prio;
973 return p->prio;
974}
975
1da177e4 976/*
dd41f596 977 * activate_task - move a task to the runqueue.
1da177e4 978 */
dd41f596 979static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 980{
dd41f596
IM
981 if (p->state == TASK_UNINTERRUPTIBLE)
982 rq->nr_uninterruptible--;
1da177e4 983
8159f87e 984 enqueue_task(rq, p, wakeup);
e5fa2237 985 inc_nr_running(p, rq);
1da177e4
LT
986}
987
988/*
dd41f596 989 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 990 */
dd41f596 991static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 992{
a8e504d2 993 update_rq_clock(rq);
1da177e4 994
dd41f596
IM
995 if (p->state == TASK_UNINTERRUPTIBLE)
996 rq->nr_uninterruptible--;
ece8a684 997
8159f87e 998 enqueue_task(rq, p, 0);
e5fa2237 999 inc_nr_running(p, rq);
1da177e4
LT
1000}
1001
1002/*
1003 * deactivate_task - remove a task from the runqueue.
1004 */
2e1cb74a 1005static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1006{
dd41f596
IM
1007 if (p->state == TASK_UNINTERRUPTIBLE)
1008 rq->nr_uninterruptible++;
1009
69be72c1 1010 dequeue_task(rq, p, sleep);
db53181e 1011 dec_nr_running(p, rq);
1da177e4
LT
1012}
1013
1da177e4
LT
1014/**
1015 * task_curr - is this task currently executing on a CPU?
1016 * @p: the task in question.
1017 */
36c8b586 1018inline int task_curr(const struct task_struct *p)
1da177e4
LT
1019{
1020 return cpu_curr(task_cpu(p)) == p;
1021}
1022
2dd73a4f
PW
1023/* Used instead of source_load when we know the type == 0 */
1024unsigned long weighted_cpuload(const int cpu)
1025{
495eca49 1026 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1027}
1028
1029static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1030{
1031#ifdef CONFIG_SMP
1032 task_thread_info(p)->cpu = cpu;
dd41f596 1033#endif
29f59db3 1034 set_task_cfs_rq(p);
2dd73a4f
PW
1035}
1036
1da177e4 1037#ifdef CONFIG_SMP
c65cc870 1038
dd41f596 1039void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1040{
dd41f596
IM
1041 int old_cpu = task_cpu(p);
1042 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
bbdba7c0 1043 u64 clock_offset;
dd41f596
IM
1044
1045 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1046
1047#ifdef CONFIG_SCHEDSTATS
1048 if (p->se.wait_start)
1049 p->se.wait_start -= clock_offset;
dd41f596
IM
1050 if (p->se.sleep_start)
1051 p->se.sleep_start -= clock_offset;
1052 if (p->se.block_start)
1053 p->se.block_start -= clock_offset;
6cfb0d5d 1054#endif
119fe5e0
MG
1055 if (likely(new_rq->cfs.min_vruntime))
1056 p->se.vruntime -= old_rq->cfs.min_vruntime -
1057 new_rq->cfs.min_vruntime;
dd41f596
IM
1058
1059 __set_task_cpu(p, new_cpu);
c65cc870
IM
1060}
1061
70b97a7f 1062struct migration_req {
1da177e4 1063 struct list_head list;
1da177e4 1064
36c8b586 1065 struct task_struct *task;
1da177e4
LT
1066 int dest_cpu;
1067
1da177e4 1068 struct completion done;
70b97a7f 1069};
1da177e4
LT
1070
1071/*
1072 * The task's runqueue lock must be held.
1073 * Returns true if you have to wait for migration thread.
1074 */
36c8b586 1075static int
70b97a7f 1076migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1077{
70b97a7f 1078 struct rq *rq = task_rq(p);
1da177e4
LT
1079
1080 /*
1081 * If the task is not on a runqueue (and not running), then
1082 * it is sufficient to simply update the task's cpu field.
1083 */
dd41f596 1084 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1085 set_task_cpu(p, dest_cpu);
1086 return 0;
1087 }
1088
1089 init_completion(&req->done);
1da177e4
LT
1090 req->task = p;
1091 req->dest_cpu = dest_cpu;
1092 list_add(&req->list, &rq->migration_queue);
48f24c4d 1093
1da177e4
LT
1094 return 1;
1095}
1096
1097/*
1098 * wait_task_inactive - wait for a thread to unschedule.
1099 *
1100 * The caller must ensure that the task *will* unschedule sometime soon,
1101 * else this function might spin for a *long* time. This function can't
1102 * be called with interrupts off, or it may introduce deadlock with
1103 * smp_call_function() if an IPI is sent by the same process we are
1104 * waiting to become inactive.
1105 */
36c8b586 1106void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1107{
1108 unsigned long flags;
dd41f596 1109 int running, on_rq;
70b97a7f 1110 struct rq *rq;
1da177e4
LT
1111
1112repeat:
fa490cfd
LT
1113 /*
1114 * We do the initial early heuristics without holding
1115 * any task-queue locks at all. We'll only try to get
1116 * the runqueue lock when things look like they will
1117 * work out!
1118 */
1119 rq = task_rq(p);
1120
1121 /*
1122 * If the task is actively running on another CPU
1123 * still, just relax and busy-wait without holding
1124 * any locks.
1125 *
1126 * NOTE! Since we don't hold any locks, it's not
1127 * even sure that "rq" stays as the right runqueue!
1128 * But we don't care, since "task_running()" will
1129 * return false if the runqueue has changed and p
1130 * is actually now running somewhere else!
1131 */
1132 while (task_running(rq, p))
1133 cpu_relax();
1134
1135 /*
1136 * Ok, time to look more closely! We need the rq
1137 * lock now, to be *sure*. If we're wrong, we'll
1138 * just go back and repeat.
1139 */
1da177e4 1140 rq = task_rq_lock(p, &flags);
fa490cfd 1141 running = task_running(rq, p);
dd41f596 1142 on_rq = p->se.on_rq;
fa490cfd
LT
1143 task_rq_unlock(rq, &flags);
1144
1145 /*
1146 * Was it really running after all now that we
1147 * checked with the proper locks actually held?
1148 *
1149 * Oops. Go back and try again..
1150 */
1151 if (unlikely(running)) {
1da177e4 1152 cpu_relax();
1da177e4
LT
1153 goto repeat;
1154 }
fa490cfd
LT
1155
1156 /*
1157 * It's not enough that it's not actively running,
1158 * it must be off the runqueue _entirely_, and not
1159 * preempted!
1160 *
1161 * So if it wa still runnable (but just not actively
1162 * running right now), it's preempted, and we should
1163 * yield - it could be a while.
1164 */
dd41f596 1165 if (unlikely(on_rq)) {
fa490cfd
LT
1166 yield();
1167 goto repeat;
1168 }
1169
1170 /*
1171 * Ahh, all good. It wasn't running, and it wasn't
1172 * runnable, which means that it will never become
1173 * running in the future either. We're all done!
1174 */
1da177e4
LT
1175}
1176
1177/***
1178 * kick_process - kick a running thread to enter/exit the kernel
1179 * @p: the to-be-kicked thread
1180 *
1181 * Cause a process which is running on another CPU to enter
1182 * kernel-mode, without any delay. (to get signals handled.)
1183 *
1184 * NOTE: this function doesnt have to take the runqueue lock,
1185 * because all it wants to ensure is that the remote task enters
1186 * the kernel. If the IPI races and the task has been migrated
1187 * to another CPU then no harm is done and the purpose has been
1188 * achieved as well.
1189 */
36c8b586 1190void kick_process(struct task_struct *p)
1da177e4
LT
1191{
1192 int cpu;
1193
1194 preempt_disable();
1195 cpu = task_cpu(p);
1196 if ((cpu != smp_processor_id()) && task_curr(p))
1197 smp_send_reschedule(cpu);
1198 preempt_enable();
1199}
1200
1201/*
2dd73a4f
PW
1202 * Return a low guess at the load of a migration-source cpu weighted
1203 * according to the scheduling class and "nice" value.
1da177e4
LT
1204 *
1205 * We want to under-estimate the load of migration sources, to
1206 * balance conservatively.
1207 */
a2000572 1208static inline unsigned long source_load(int cpu, int type)
1da177e4 1209{
70b97a7f 1210 struct rq *rq = cpu_rq(cpu);
dd41f596 1211 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1212
3b0bd9bc 1213 if (type == 0)
dd41f596 1214 return total;
b910472d 1215
dd41f596 1216 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1217}
1218
1219/*
2dd73a4f
PW
1220 * Return a high guess at the load of a migration-target cpu weighted
1221 * according to the scheduling class and "nice" value.
1da177e4 1222 */
a2000572 1223static inline unsigned long target_load(int cpu, int type)
1da177e4 1224{
70b97a7f 1225 struct rq *rq = cpu_rq(cpu);
dd41f596 1226 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1227
7897986b 1228 if (type == 0)
dd41f596 1229 return total;
3b0bd9bc 1230
dd41f596 1231 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1232}
1233
1234/*
1235 * Return the average load per task on the cpu's run queue
1236 */
1237static inline unsigned long cpu_avg_load_per_task(int cpu)
1238{
70b97a7f 1239 struct rq *rq = cpu_rq(cpu);
dd41f596 1240 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1241 unsigned long n = rq->nr_running;
1242
dd41f596 1243 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1244}
1245
147cbb4b
NP
1246/*
1247 * find_idlest_group finds and returns the least busy CPU group within the
1248 * domain.
1249 */
1250static struct sched_group *
1251find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1252{
1253 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1254 unsigned long min_load = ULONG_MAX, this_load = 0;
1255 int load_idx = sd->forkexec_idx;
1256 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1257
1258 do {
1259 unsigned long load, avg_load;
1260 int local_group;
1261 int i;
1262
da5a5522
BD
1263 /* Skip over this group if it has no CPUs allowed */
1264 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1265 goto nextgroup;
1266
147cbb4b 1267 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1268
1269 /* Tally up the load of all CPUs in the group */
1270 avg_load = 0;
1271
1272 for_each_cpu_mask(i, group->cpumask) {
1273 /* Bias balancing toward cpus of our domain */
1274 if (local_group)
1275 load = source_load(i, load_idx);
1276 else
1277 load = target_load(i, load_idx);
1278
1279 avg_load += load;
1280 }
1281
1282 /* Adjust by relative CPU power of the group */
5517d86b
ED
1283 avg_load = sg_div_cpu_power(group,
1284 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1285
1286 if (local_group) {
1287 this_load = avg_load;
1288 this = group;
1289 } else if (avg_load < min_load) {
1290 min_load = avg_load;
1291 idlest = group;
1292 }
da5a5522 1293nextgroup:
147cbb4b
NP
1294 group = group->next;
1295 } while (group != sd->groups);
1296
1297 if (!idlest || 100*this_load < imbalance*min_load)
1298 return NULL;
1299 return idlest;
1300}
1301
1302/*
0feaece9 1303 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1304 */
95cdf3b7
IM
1305static int
1306find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1307{
da5a5522 1308 cpumask_t tmp;
147cbb4b
NP
1309 unsigned long load, min_load = ULONG_MAX;
1310 int idlest = -1;
1311 int i;
1312
da5a5522
BD
1313 /* Traverse only the allowed CPUs */
1314 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1315
1316 for_each_cpu_mask(i, tmp) {
2dd73a4f 1317 load = weighted_cpuload(i);
147cbb4b
NP
1318
1319 if (load < min_load || (load == min_load && i == this_cpu)) {
1320 min_load = load;
1321 idlest = i;
1322 }
1323 }
1324
1325 return idlest;
1326}
1327
476d139c
NP
1328/*
1329 * sched_balance_self: balance the current task (running on cpu) in domains
1330 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1331 * SD_BALANCE_EXEC.
1332 *
1333 * Balance, ie. select the least loaded group.
1334 *
1335 * Returns the target CPU number, or the same CPU if no balancing is needed.
1336 *
1337 * preempt must be disabled.
1338 */
1339static int sched_balance_self(int cpu, int flag)
1340{
1341 struct task_struct *t = current;
1342 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1343
c96d145e 1344 for_each_domain(cpu, tmp) {
9761eea8
IM
1345 /*
1346 * If power savings logic is enabled for a domain, stop there.
1347 */
5c45bf27
SS
1348 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1349 break;
476d139c
NP
1350 if (tmp->flags & flag)
1351 sd = tmp;
c96d145e 1352 }
476d139c
NP
1353
1354 while (sd) {
1355 cpumask_t span;
1356 struct sched_group *group;
1a848870
SS
1357 int new_cpu, weight;
1358
1359 if (!(sd->flags & flag)) {
1360 sd = sd->child;
1361 continue;
1362 }
476d139c
NP
1363
1364 span = sd->span;
1365 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1366 if (!group) {
1367 sd = sd->child;
1368 continue;
1369 }
476d139c 1370
da5a5522 1371 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1372 if (new_cpu == -1 || new_cpu == cpu) {
1373 /* Now try balancing at a lower domain level of cpu */
1374 sd = sd->child;
1375 continue;
1376 }
476d139c 1377
1a848870 1378 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1379 cpu = new_cpu;
476d139c
NP
1380 sd = NULL;
1381 weight = cpus_weight(span);
1382 for_each_domain(cpu, tmp) {
1383 if (weight <= cpus_weight(tmp->span))
1384 break;
1385 if (tmp->flags & flag)
1386 sd = tmp;
1387 }
1388 /* while loop will break here if sd == NULL */
1389 }
1390
1391 return cpu;
1392}
1393
1394#endif /* CONFIG_SMP */
1da177e4
LT
1395
1396/*
1397 * wake_idle() will wake a task on an idle cpu if task->cpu is
1398 * not idle and an idle cpu is available. The span of cpus to
1399 * search starts with cpus closest then further out as needed,
1400 * so we always favor a closer, idle cpu.
1401 *
1402 * Returns the CPU we should wake onto.
1403 */
1404#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1405static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1406{
1407 cpumask_t tmp;
1408 struct sched_domain *sd;
1409 int i;
1410
4953198b
SS
1411 /*
1412 * If it is idle, then it is the best cpu to run this task.
1413 *
1414 * This cpu is also the best, if it has more than one task already.
1415 * Siblings must be also busy(in most cases) as they didn't already
1416 * pickup the extra load from this cpu and hence we need not check
1417 * sibling runqueue info. This will avoid the checks and cache miss
1418 * penalities associated with that.
1419 */
1420 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1421 return cpu;
1422
1423 for_each_domain(cpu, sd) {
1424 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1425 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1426 for_each_cpu_mask(i, tmp) {
1427 if (idle_cpu(i))
1428 return i;
1429 }
9761eea8 1430 } else {
e0f364f4 1431 break;
9761eea8 1432 }
1da177e4
LT
1433 }
1434 return cpu;
1435}
1436#else
36c8b586 1437static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1438{
1439 return cpu;
1440}
1441#endif
1442
1443/***
1444 * try_to_wake_up - wake up a thread
1445 * @p: the to-be-woken-up thread
1446 * @state: the mask of task states that can be woken
1447 * @sync: do a synchronous wakeup?
1448 *
1449 * Put it on the run-queue if it's not already there. The "current"
1450 * thread is always on the run-queue (except when the actual
1451 * re-schedule is in progress), and as such you're allowed to do
1452 * the simpler "current->state = TASK_RUNNING" to mark yourself
1453 * runnable without the overhead of this.
1454 *
1455 * returns failure only if the task is already active.
1456 */
36c8b586 1457static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1458{
1459 int cpu, this_cpu, success = 0;
1460 unsigned long flags;
1461 long old_state;
70b97a7f 1462 struct rq *rq;
1da177e4 1463#ifdef CONFIG_SMP
7897986b 1464 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1465 unsigned long load, this_load;
1da177e4
LT
1466 int new_cpu;
1467#endif
1468
1469 rq = task_rq_lock(p, &flags);
1470 old_state = p->state;
1471 if (!(old_state & state))
1472 goto out;
1473
dd41f596 1474 if (p->se.on_rq)
1da177e4
LT
1475 goto out_running;
1476
1477 cpu = task_cpu(p);
1478 this_cpu = smp_processor_id();
1479
1480#ifdef CONFIG_SMP
1481 if (unlikely(task_running(rq, p)))
1482 goto out_activate;
1483
7897986b
NP
1484 new_cpu = cpu;
1485
1da177e4
LT
1486 schedstat_inc(rq, ttwu_cnt);
1487 if (cpu == this_cpu) {
1488 schedstat_inc(rq, ttwu_local);
7897986b
NP
1489 goto out_set_cpu;
1490 }
1491
1492 for_each_domain(this_cpu, sd) {
1493 if (cpu_isset(cpu, sd->span)) {
1494 schedstat_inc(sd, ttwu_wake_remote);
1495 this_sd = sd;
1496 break;
1da177e4
LT
1497 }
1498 }
1da177e4 1499
7897986b 1500 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1501 goto out_set_cpu;
1502
1da177e4 1503 /*
7897986b 1504 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1505 */
7897986b
NP
1506 if (this_sd) {
1507 int idx = this_sd->wake_idx;
1508 unsigned int imbalance;
1da177e4 1509
a3f21bce
NP
1510 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1511
7897986b
NP
1512 load = source_load(cpu, idx);
1513 this_load = target_load(this_cpu, idx);
1da177e4 1514
7897986b
NP
1515 new_cpu = this_cpu; /* Wake to this CPU if we can */
1516
a3f21bce
NP
1517 if (this_sd->flags & SD_WAKE_AFFINE) {
1518 unsigned long tl = this_load;
33859f7f
MOS
1519 unsigned long tl_per_task;
1520
1521 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1522
1da177e4 1523 /*
a3f21bce
NP
1524 * If sync wakeup then subtract the (maximum possible)
1525 * effect of the currently running task from the load
1526 * of the current CPU:
1da177e4 1527 */
a3f21bce 1528 if (sync)
dd41f596 1529 tl -= current->se.load.weight;
a3f21bce
NP
1530
1531 if ((tl <= load &&
2dd73a4f 1532 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1533 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1534 /*
1535 * This domain has SD_WAKE_AFFINE and
1536 * p is cache cold in this domain, and
1537 * there is no bad imbalance.
1538 */
1539 schedstat_inc(this_sd, ttwu_move_affine);
1540 goto out_set_cpu;
1541 }
1542 }
1543
1544 /*
1545 * Start passive balancing when half the imbalance_pct
1546 * limit is reached.
1547 */
1548 if (this_sd->flags & SD_WAKE_BALANCE) {
1549 if (imbalance*this_load <= 100*load) {
1550 schedstat_inc(this_sd, ttwu_move_balance);
1551 goto out_set_cpu;
1552 }
1da177e4
LT
1553 }
1554 }
1555
1556 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1557out_set_cpu:
1558 new_cpu = wake_idle(new_cpu, p);
1559 if (new_cpu != cpu) {
1560 set_task_cpu(p, new_cpu);
1561 task_rq_unlock(rq, &flags);
1562 /* might preempt at this point */
1563 rq = task_rq_lock(p, &flags);
1564 old_state = p->state;
1565 if (!(old_state & state))
1566 goto out;
dd41f596 1567 if (p->se.on_rq)
1da177e4
LT
1568 goto out_running;
1569
1570 this_cpu = smp_processor_id();
1571 cpu = task_cpu(p);
1572 }
1573
1574out_activate:
1575#endif /* CONFIG_SMP */
2daa3577 1576 update_rq_clock(rq);
dd41f596 1577 activate_task(rq, p, 1);
1da177e4
LT
1578 /*
1579 * Sync wakeups (i.e. those types of wakeups where the waker
1580 * has indicated that it will leave the CPU in short order)
1581 * don't trigger a preemption, if the woken up task will run on
1582 * this cpu. (in this case the 'I will reschedule' promise of
1583 * the waker guarantees that the freshly woken up task is going
1584 * to be considered on this CPU.)
1585 */
dd41f596
IM
1586 if (!sync || cpu != this_cpu)
1587 check_preempt_curr(rq, p);
1da177e4
LT
1588 success = 1;
1589
1590out_running:
1591 p->state = TASK_RUNNING;
1592out:
1593 task_rq_unlock(rq, &flags);
1594
1595 return success;
1596}
1597
36c8b586 1598int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1599{
1600 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1601 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1602}
1da177e4
LT
1603EXPORT_SYMBOL(wake_up_process);
1604
36c8b586 1605int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1606{
1607 return try_to_wake_up(p, state, 0);
1608}
1609
1da177e4
LT
1610/*
1611 * Perform scheduler related setup for a newly forked process p.
1612 * p is forked by current.
dd41f596
IM
1613 *
1614 * __sched_fork() is basic setup used by init_idle() too:
1615 */
1616static void __sched_fork(struct task_struct *p)
1617{
dd41f596
IM
1618 p->se.exec_start = 0;
1619 p->se.sum_exec_runtime = 0;
f6cf891c 1620 p->se.prev_sum_exec_runtime = 0;
67e9fb2a 1621 p->se.last_min_vruntime = 0;
6cfb0d5d
IM
1622
1623#ifdef CONFIG_SCHEDSTATS
1624 p->se.wait_start = 0;
dd41f596
IM
1625 p->se.sum_sleep_runtime = 0;
1626 p->se.sleep_start = 0;
dd41f596
IM
1627 p->se.block_start = 0;
1628 p->se.sleep_max = 0;
1629 p->se.block_max = 0;
1630 p->se.exec_max = 0;
eba1ed4b 1631 p->se.slice_max = 0;
dd41f596 1632 p->se.wait_max = 0;
6cfb0d5d 1633#endif
476d139c 1634
dd41f596
IM
1635 INIT_LIST_HEAD(&p->run_list);
1636 p->se.on_rq = 0;
476d139c 1637
e107be36
AK
1638#ifdef CONFIG_PREEMPT_NOTIFIERS
1639 INIT_HLIST_HEAD(&p->preempt_notifiers);
1640#endif
1641
1da177e4
LT
1642 /*
1643 * We mark the process as running here, but have not actually
1644 * inserted it onto the runqueue yet. This guarantees that
1645 * nobody will actually run it, and a signal or other external
1646 * event cannot wake it up and insert it on the runqueue either.
1647 */
1648 p->state = TASK_RUNNING;
dd41f596
IM
1649}
1650
1651/*
1652 * fork()/clone()-time setup:
1653 */
1654void sched_fork(struct task_struct *p, int clone_flags)
1655{
1656 int cpu = get_cpu();
1657
1658 __sched_fork(p);
1659
1660#ifdef CONFIG_SMP
1661 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1662#endif
1663 __set_task_cpu(p, cpu);
b29739f9
IM
1664
1665 /*
1666 * Make sure we do not leak PI boosting priority to the child:
1667 */
1668 p->prio = current->normal_prio;
1669
52f17b6c 1670#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1671 if (likely(sched_info_on()))
52f17b6c 1672 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1673#endif
d6077cb8 1674#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1675 p->oncpu = 0;
1676#endif
1da177e4 1677#ifdef CONFIG_PREEMPT
4866cde0 1678 /* Want to start with kernel preemption disabled. */
a1261f54 1679 task_thread_info(p)->preempt_count = 1;
1da177e4 1680#endif
476d139c 1681 put_cpu();
1da177e4
LT
1682}
1683
1684/*
1685 * wake_up_new_task - wake up a newly created task for the first time.
1686 *
1687 * This function will do some initial scheduler statistics housekeeping
1688 * that must be done for every newly created context, then puts the task
1689 * on the runqueue and wakes it.
1690 */
36c8b586 1691void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1692{
1693 unsigned long flags;
dd41f596
IM
1694 struct rq *rq;
1695 int this_cpu;
1da177e4
LT
1696
1697 rq = task_rq_lock(p, &flags);
147cbb4b 1698 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1699 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2 1700 update_rq_clock(rq);
1da177e4
LT
1701
1702 p->prio = effective_prio(p);
1703
9c95e731
HS
1704 if (rt_prio(p->prio))
1705 p->sched_class = &rt_sched_class;
1706 else
1707 p->sched_class = &fair_sched_class;
1708
44142fac
IM
1709 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1710 !current->se.on_rq) {
dd41f596 1711 activate_task(rq, p, 0);
1da177e4 1712 } else {
1da177e4 1713 /*
dd41f596
IM
1714 * Let the scheduling class do new task startup
1715 * management (if any):
1da177e4 1716 */
ee0827d8 1717 p->sched_class->task_new(rq, p);
e5fa2237 1718 inc_nr_running(p, rq);
1da177e4 1719 }
dd41f596
IM
1720 check_preempt_curr(rq, p);
1721 task_rq_unlock(rq, &flags);
1da177e4
LT
1722}
1723
e107be36
AK
1724#ifdef CONFIG_PREEMPT_NOTIFIERS
1725
1726/**
421cee29
RD
1727 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1728 * @notifier: notifier struct to register
e107be36
AK
1729 */
1730void preempt_notifier_register(struct preempt_notifier *notifier)
1731{
1732 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1733}
1734EXPORT_SYMBOL_GPL(preempt_notifier_register);
1735
1736/**
1737 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1738 * @notifier: notifier struct to unregister
e107be36
AK
1739 *
1740 * This is safe to call from within a preemption notifier.
1741 */
1742void preempt_notifier_unregister(struct preempt_notifier *notifier)
1743{
1744 hlist_del(&notifier->link);
1745}
1746EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1747
1748static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1749{
1750 struct preempt_notifier *notifier;
1751 struct hlist_node *node;
1752
1753 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1754 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1755}
1756
1757static void
1758fire_sched_out_preempt_notifiers(struct task_struct *curr,
1759 struct task_struct *next)
1760{
1761 struct preempt_notifier *notifier;
1762 struct hlist_node *node;
1763
1764 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1765 notifier->ops->sched_out(notifier, next);
1766}
1767
1768#else
1769
1770static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1771{
1772}
1773
1774static void
1775fire_sched_out_preempt_notifiers(struct task_struct *curr,
1776 struct task_struct *next)
1777{
1778}
1779
1780#endif
1781
4866cde0
NP
1782/**
1783 * prepare_task_switch - prepare to switch tasks
1784 * @rq: the runqueue preparing to switch
421cee29 1785 * @prev: the current task that is being switched out
4866cde0
NP
1786 * @next: the task we are going to switch to.
1787 *
1788 * This is called with the rq lock held and interrupts off. It must
1789 * be paired with a subsequent finish_task_switch after the context
1790 * switch.
1791 *
1792 * prepare_task_switch sets up locking and calls architecture specific
1793 * hooks.
1794 */
e107be36
AK
1795static inline void
1796prepare_task_switch(struct rq *rq, struct task_struct *prev,
1797 struct task_struct *next)
4866cde0 1798{
e107be36 1799 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1800 prepare_lock_switch(rq, next);
1801 prepare_arch_switch(next);
1802}
1803
1da177e4
LT
1804/**
1805 * finish_task_switch - clean up after a task-switch
344babaa 1806 * @rq: runqueue associated with task-switch
1da177e4
LT
1807 * @prev: the thread we just switched away from.
1808 *
4866cde0
NP
1809 * finish_task_switch must be called after the context switch, paired
1810 * with a prepare_task_switch call before the context switch.
1811 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1812 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1813 *
1814 * Note that we may have delayed dropping an mm in context_switch(). If
1815 * so, we finish that here outside of the runqueue lock. (Doing it
1816 * with the lock held can cause deadlocks; see schedule() for
1817 * details.)
1818 */
70b97a7f 1819static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1820 __releases(rq->lock)
1821{
1da177e4 1822 struct mm_struct *mm = rq->prev_mm;
55a101f8 1823 long prev_state;
1da177e4
LT
1824
1825 rq->prev_mm = NULL;
1826
1827 /*
1828 * A task struct has one reference for the use as "current".
c394cc9f 1829 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1830 * schedule one last time. The schedule call will never return, and
1831 * the scheduled task must drop that reference.
c394cc9f 1832 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1833 * still held, otherwise prev could be scheduled on another cpu, die
1834 * there before we look at prev->state, and then the reference would
1835 * be dropped twice.
1836 * Manfred Spraul <manfred@colorfullife.com>
1837 */
55a101f8 1838 prev_state = prev->state;
4866cde0
NP
1839 finish_arch_switch(prev);
1840 finish_lock_switch(rq, prev);
e107be36 1841 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1842 if (mm)
1843 mmdrop(mm);
c394cc9f 1844 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1845 /*
1846 * Remove function-return probe instances associated with this
1847 * task and put them back on the free list.
9761eea8 1848 */
c6fd91f0 1849 kprobe_flush_task(prev);
1da177e4 1850 put_task_struct(prev);
c6fd91f0 1851 }
1da177e4
LT
1852}
1853
1854/**
1855 * schedule_tail - first thing a freshly forked thread must call.
1856 * @prev: the thread we just switched away from.
1857 */
36c8b586 1858asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1859 __releases(rq->lock)
1860{
70b97a7f
IM
1861 struct rq *rq = this_rq();
1862
4866cde0
NP
1863 finish_task_switch(rq, prev);
1864#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1865 /* In this case, finish_task_switch does not reenable preemption */
1866 preempt_enable();
1867#endif
1da177e4
LT
1868 if (current->set_child_tid)
1869 put_user(current->pid, current->set_child_tid);
1870}
1871
1872/*
1873 * context_switch - switch to the new MM and the new
1874 * thread's register state.
1875 */
dd41f596 1876static inline void
70b97a7f 1877context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1878 struct task_struct *next)
1da177e4 1879{
dd41f596 1880 struct mm_struct *mm, *oldmm;
1da177e4 1881
e107be36 1882 prepare_task_switch(rq, prev, next);
dd41f596
IM
1883 mm = next->mm;
1884 oldmm = prev->active_mm;
9226d125
ZA
1885 /*
1886 * For paravirt, this is coupled with an exit in switch_to to
1887 * combine the page table reload and the switch backend into
1888 * one hypercall.
1889 */
1890 arch_enter_lazy_cpu_mode();
1891
dd41f596 1892 if (unlikely(!mm)) {
1da177e4
LT
1893 next->active_mm = oldmm;
1894 atomic_inc(&oldmm->mm_count);
1895 enter_lazy_tlb(oldmm, next);
1896 } else
1897 switch_mm(oldmm, mm, next);
1898
dd41f596 1899 if (unlikely(!prev->mm)) {
1da177e4 1900 prev->active_mm = NULL;
1da177e4
LT
1901 rq->prev_mm = oldmm;
1902 }
3a5f5e48
IM
1903 /*
1904 * Since the runqueue lock will be released by the next
1905 * task (which is an invalid locking op but in the case
1906 * of the scheduler it's an obvious special-case), so we
1907 * do an early lockdep release here:
1908 */
1909#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1910 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1911#endif
1da177e4
LT
1912
1913 /* Here we just switch the register state and the stack. */
1914 switch_to(prev, next, prev);
1915
dd41f596
IM
1916 barrier();
1917 /*
1918 * this_rq must be evaluated again because prev may have moved
1919 * CPUs since it called schedule(), thus the 'rq' on its stack
1920 * frame will be invalid.
1921 */
1922 finish_task_switch(this_rq(), prev);
1da177e4
LT
1923}
1924
1925/*
1926 * nr_running, nr_uninterruptible and nr_context_switches:
1927 *
1928 * externally visible scheduler statistics: current number of runnable
1929 * threads, current number of uninterruptible-sleeping threads, total
1930 * number of context switches performed since bootup.
1931 */
1932unsigned long nr_running(void)
1933{
1934 unsigned long i, sum = 0;
1935
1936 for_each_online_cpu(i)
1937 sum += cpu_rq(i)->nr_running;
1938
1939 return sum;
1940}
1941
1942unsigned long nr_uninterruptible(void)
1943{
1944 unsigned long i, sum = 0;
1945
0a945022 1946 for_each_possible_cpu(i)
1da177e4
LT
1947 sum += cpu_rq(i)->nr_uninterruptible;
1948
1949 /*
1950 * Since we read the counters lockless, it might be slightly
1951 * inaccurate. Do not allow it to go below zero though:
1952 */
1953 if (unlikely((long)sum < 0))
1954 sum = 0;
1955
1956 return sum;
1957}
1958
1959unsigned long long nr_context_switches(void)
1960{
cc94abfc
SR
1961 int i;
1962 unsigned long long sum = 0;
1da177e4 1963
0a945022 1964 for_each_possible_cpu(i)
1da177e4
LT
1965 sum += cpu_rq(i)->nr_switches;
1966
1967 return sum;
1968}
1969
1970unsigned long nr_iowait(void)
1971{
1972 unsigned long i, sum = 0;
1973
0a945022 1974 for_each_possible_cpu(i)
1da177e4
LT
1975 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1976
1977 return sum;
1978}
1979
db1b1fef
JS
1980unsigned long nr_active(void)
1981{
1982 unsigned long i, running = 0, uninterruptible = 0;
1983
1984 for_each_online_cpu(i) {
1985 running += cpu_rq(i)->nr_running;
1986 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1987 }
1988
1989 if (unlikely((long)uninterruptible < 0))
1990 uninterruptible = 0;
1991
1992 return running + uninterruptible;
1993}
1994
48f24c4d 1995/*
dd41f596
IM
1996 * Update rq->cpu_load[] statistics. This function is usually called every
1997 * scheduler tick (TICK_NSEC).
48f24c4d 1998 */
dd41f596 1999static void update_cpu_load(struct rq *this_rq)
48f24c4d 2000{
495eca49 2001 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2002 int i, scale;
2003
2004 this_rq->nr_load_updates++;
dd41f596
IM
2005
2006 /* Update our load: */
2007 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2008 unsigned long old_load, new_load;
2009
2010 /* scale is effectively 1 << i now, and >> i divides by scale */
2011
2012 old_load = this_rq->cpu_load[i];
2013 new_load = this_load;
a25707f3
IM
2014 /*
2015 * Round up the averaging division if load is increasing. This
2016 * prevents us from getting stuck on 9 if the load is 10, for
2017 * example.
2018 */
2019 if (new_load > old_load)
2020 new_load += scale-1;
dd41f596
IM
2021 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2022 }
48f24c4d
IM
2023}
2024
dd41f596
IM
2025#ifdef CONFIG_SMP
2026
1da177e4
LT
2027/*
2028 * double_rq_lock - safely lock two runqueues
2029 *
2030 * Note this does not disable interrupts like task_rq_lock,
2031 * you need to do so manually before calling.
2032 */
70b97a7f 2033static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2034 __acquires(rq1->lock)
2035 __acquires(rq2->lock)
2036{
054b9108 2037 BUG_ON(!irqs_disabled());
1da177e4
LT
2038 if (rq1 == rq2) {
2039 spin_lock(&rq1->lock);
2040 __acquire(rq2->lock); /* Fake it out ;) */
2041 } else {
c96d145e 2042 if (rq1 < rq2) {
1da177e4
LT
2043 spin_lock(&rq1->lock);
2044 spin_lock(&rq2->lock);
2045 } else {
2046 spin_lock(&rq2->lock);
2047 spin_lock(&rq1->lock);
2048 }
2049 }
6e82a3be
IM
2050 update_rq_clock(rq1);
2051 update_rq_clock(rq2);
1da177e4
LT
2052}
2053
2054/*
2055 * double_rq_unlock - safely unlock two runqueues
2056 *
2057 * Note this does not restore interrupts like task_rq_unlock,
2058 * you need to do so manually after calling.
2059 */
70b97a7f 2060static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2061 __releases(rq1->lock)
2062 __releases(rq2->lock)
2063{
2064 spin_unlock(&rq1->lock);
2065 if (rq1 != rq2)
2066 spin_unlock(&rq2->lock);
2067 else
2068 __release(rq2->lock);
2069}
2070
2071/*
2072 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2073 */
70b97a7f 2074static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2075 __releases(this_rq->lock)
2076 __acquires(busiest->lock)
2077 __acquires(this_rq->lock)
2078{
054b9108
KK
2079 if (unlikely(!irqs_disabled())) {
2080 /* printk() doesn't work good under rq->lock */
2081 spin_unlock(&this_rq->lock);
2082 BUG_ON(1);
2083 }
1da177e4 2084 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2085 if (busiest < this_rq) {
1da177e4
LT
2086 spin_unlock(&this_rq->lock);
2087 spin_lock(&busiest->lock);
2088 spin_lock(&this_rq->lock);
2089 } else
2090 spin_lock(&busiest->lock);
2091 }
2092}
2093
1da177e4
LT
2094/*
2095 * If dest_cpu is allowed for this process, migrate the task to it.
2096 * This is accomplished by forcing the cpu_allowed mask to only
2097 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2098 * the cpu_allowed mask is restored.
2099 */
36c8b586 2100static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2101{
70b97a7f 2102 struct migration_req req;
1da177e4 2103 unsigned long flags;
70b97a7f 2104 struct rq *rq;
1da177e4
LT
2105
2106 rq = task_rq_lock(p, &flags);
2107 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2108 || unlikely(cpu_is_offline(dest_cpu)))
2109 goto out;
2110
2111 /* force the process onto the specified CPU */
2112 if (migrate_task(p, dest_cpu, &req)) {
2113 /* Need to wait for migration thread (might exit: take ref). */
2114 struct task_struct *mt = rq->migration_thread;
36c8b586 2115
1da177e4
LT
2116 get_task_struct(mt);
2117 task_rq_unlock(rq, &flags);
2118 wake_up_process(mt);
2119 put_task_struct(mt);
2120 wait_for_completion(&req.done);
36c8b586 2121
1da177e4
LT
2122 return;
2123 }
2124out:
2125 task_rq_unlock(rq, &flags);
2126}
2127
2128/*
476d139c
NP
2129 * sched_exec - execve() is a valuable balancing opportunity, because at
2130 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2131 */
2132void sched_exec(void)
2133{
1da177e4 2134 int new_cpu, this_cpu = get_cpu();
476d139c 2135 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2136 put_cpu();
476d139c
NP
2137 if (new_cpu != this_cpu)
2138 sched_migrate_task(current, new_cpu);
1da177e4
LT
2139}
2140
2141/*
2142 * pull_task - move a task from a remote runqueue to the local runqueue.
2143 * Both runqueues must be locked.
2144 */
dd41f596
IM
2145static void pull_task(struct rq *src_rq, struct task_struct *p,
2146 struct rq *this_rq, int this_cpu)
1da177e4 2147{
2e1cb74a 2148 deactivate_task(src_rq, p, 0);
1da177e4 2149 set_task_cpu(p, this_cpu);
dd41f596 2150 activate_task(this_rq, p, 0);
1da177e4
LT
2151 /*
2152 * Note that idle threads have a prio of MAX_PRIO, for this test
2153 * to be always true for them.
2154 */
dd41f596 2155 check_preempt_curr(this_rq, p);
1da177e4
LT
2156}
2157
2158/*
2159 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2160 */
858119e1 2161static
70b97a7f 2162int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2163 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2164 int *all_pinned)
1da177e4
LT
2165{
2166 /*
2167 * We do not migrate tasks that are:
2168 * 1) running (obviously), or
2169 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2170 * 3) are cache-hot on their current CPU.
2171 */
1da177e4
LT
2172 if (!cpu_isset(this_cpu, p->cpus_allowed))
2173 return 0;
81026794
NP
2174 *all_pinned = 0;
2175
2176 if (task_running(rq, p))
2177 return 0;
1da177e4 2178
1da177e4
LT
2179 return 1;
2180}
2181
dd41f596 2182static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2183 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2184 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2185 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2186 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2187{
dd41f596
IM
2188 int pulled = 0, pinned = 0, skip_for_load;
2189 struct task_struct *p;
2190 long rem_load_move = max_load_move;
1da177e4 2191
2dd73a4f 2192 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2193 goto out;
2194
81026794
NP
2195 pinned = 1;
2196
1da177e4 2197 /*
dd41f596 2198 * Start the load-balancing iterator:
1da177e4 2199 */
dd41f596
IM
2200 p = iterator->start(iterator->arg);
2201next:
2202 if (!p)
1da177e4 2203 goto out;
50ddd969
PW
2204 /*
2205 * To help distribute high priority tasks accross CPUs we don't
2206 * skip a task if it will be the highest priority task (i.e. smallest
2207 * prio value) on its new queue regardless of its load weight
2208 */
dd41f596
IM
2209 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2210 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2211 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2212 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2213 p = iterator->next(iterator->arg);
2214 goto next;
1da177e4
LT
2215 }
2216
dd41f596 2217 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2218 pulled++;
dd41f596 2219 rem_load_move -= p->se.load.weight;
1da177e4 2220
2dd73a4f
PW
2221 /*
2222 * We only want to steal up to the prescribed number of tasks
2223 * and the prescribed amount of weighted load.
2224 */
2225 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2226 if (p->prio < *this_best_prio)
2227 *this_best_prio = p->prio;
dd41f596
IM
2228 p = iterator->next(iterator->arg);
2229 goto next;
1da177e4
LT
2230 }
2231out:
2232 /*
2233 * Right now, this is the only place pull_task() is called,
2234 * so we can safely collect pull_task() stats here rather than
2235 * inside pull_task().
2236 */
2237 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2238
2239 if (all_pinned)
2240 *all_pinned = pinned;
dd41f596 2241 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2242 return pulled;
2243}
2244
dd41f596 2245/*
43010659
PW
2246 * move_tasks tries to move up to max_load_move weighted load from busiest to
2247 * this_rq, as part of a balancing operation within domain "sd".
2248 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2249 *
2250 * Called with both runqueues locked.
2251 */
2252static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2253 unsigned long max_load_move,
dd41f596
IM
2254 struct sched_domain *sd, enum cpu_idle_type idle,
2255 int *all_pinned)
2256{
2257 struct sched_class *class = sched_class_highest;
43010659 2258 unsigned long total_load_moved = 0;
a4ac01c3 2259 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2260
2261 do {
43010659
PW
2262 total_load_moved +=
2263 class->load_balance(this_rq, this_cpu, busiest,
2264 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2265 sd, idle, all_pinned, &this_best_prio);
dd41f596 2266 class = class->next;
43010659 2267 } while (class && max_load_move > total_load_moved);
dd41f596 2268
43010659
PW
2269 return total_load_moved > 0;
2270}
2271
2272/*
2273 * move_one_task tries to move exactly one task from busiest to this_rq, as
2274 * part of active balancing operations within "domain".
2275 * Returns 1 if successful and 0 otherwise.
2276 *
2277 * Called with both runqueues locked.
2278 */
2279static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2280 struct sched_domain *sd, enum cpu_idle_type idle)
2281{
2282 struct sched_class *class;
a4ac01c3 2283 int this_best_prio = MAX_PRIO;
43010659
PW
2284
2285 for (class = sched_class_highest; class; class = class->next)
2286 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2287 1, ULONG_MAX, sd, idle, NULL,
2288 &this_best_prio))
43010659
PW
2289 return 1;
2290
2291 return 0;
dd41f596
IM
2292}
2293
1da177e4
LT
2294/*
2295 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2296 * domain. It calculates and returns the amount of weighted load which
2297 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2298 */
2299static struct sched_group *
2300find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2301 unsigned long *imbalance, enum cpu_idle_type idle,
2302 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2303{
2304 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2305 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2306 unsigned long max_pull;
2dd73a4f
PW
2307 unsigned long busiest_load_per_task, busiest_nr_running;
2308 unsigned long this_load_per_task, this_nr_running;
7897986b 2309 int load_idx;
5c45bf27
SS
2310#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2311 int power_savings_balance = 1;
2312 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2313 unsigned long min_nr_running = ULONG_MAX;
2314 struct sched_group *group_min = NULL, *group_leader = NULL;
2315#endif
1da177e4
LT
2316
2317 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2318 busiest_load_per_task = busiest_nr_running = 0;
2319 this_load_per_task = this_nr_running = 0;
d15bcfdb 2320 if (idle == CPU_NOT_IDLE)
7897986b 2321 load_idx = sd->busy_idx;
d15bcfdb 2322 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2323 load_idx = sd->newidle_idx;
2324 else
2325 load_idx = sd->idle_idx;
1da177e4
LT
2326
2327 do {
5c45bf27 2328 unsigned long load, group_capacity;
1da177e4
LT
2329 int local_group;
2330 int i;
783609c6 2331 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2332 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2333
2334 local_group = cpu_isset(this_cpu, group->cpumask);
2335
783609c6
SS
2336 if (local_group)
2337 balance_cpu = first_cpu(group->cpumask);
2338
1da177e4 2339 /* Tally up the load of all CPUs in the group */
2dd73a4f 2340 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2341
2342 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2343 struct rq *rq;
2344
2345 if (!cpu_isset(i, *cpus))
2346 continue;
2347
2348 rq = cpu_rq(i);
2dd73a4f 2349
9439aab8 2350 if (*sd_idle && rq->nr_running)
5969fe06
NP
2351 *sd_idle = 0;
2352
1da177e4 2353 /* Bias balancing toward cpus of our domain */
783609c6
SS
2354 if (local_group) {
2355 if (idle_cpu(i) && !first_idle_cpu) {
2356 first_idle_cpu = 1;
2357 balance_cpu = i;
2358 }
2359
a2000572 2360 load = target_load(i, load_idx);
783609c6 2361 } else
a2000572 2362 load = source_load(i, load_idx);
1da177e4
LT
2363
2364 avg_load += load;
2dd73a4f 2365 sum_nr_running += rq->nr_running;
dd41f596 2366 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2367 }
2368
783609c6
SS
2369 /*
2370 * First idle cpu or the first cpu(busiest) in this sched group
2371 * is eligible for doing load balancing at this and above
9439aab8
SS
2372 * domains. In the newly idle case, we will allow all the cpu's
2373 * to do the newly idle load balance.
783609c6 2374 */
9439aab8
SS
2375 if (idle != CPU_NEWLY_IDLE && local_group &&
2376 balance_cpu != this_cpu && balance) {
783609c6
SS
2377 *balance = 0;
2378 goto ret;
2379 }
2380
1da177e4 2381 total_load += avg_load;
5517d86b 2382 total_pwr += group->__cpu_power;
1da177e4
LT
2383
2384 /* Adjust by relative CPU power of the group */
5517d86b
ED
2385 avg_load = sg_div_cpu_power(group,
2386 avg_load * SCHED_LOAD_SCALE);
1da177e4 2387
5517d86b 2388 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2389
1da177e4
LT
2390 if (local_group) {
2391 this_load = avg_load;
2392 this = group;
2dd73a4f
PW
2393 this_nr_running = sum_nr_running;
2394 this_load_per_task = sum_weighted_load;
2395 } else if (avg_load > max_load &&
5c45bf27 2396 sum_nr_running > group_capacity) {
1da177e4
LT
2397 max_load = avg_load;
2398 busiest = group;
2dd73a4f
PW
2399 busiest_nr_running = sum_nr_running;
2400 busiest_load_per_task = sum_weighted_load;
1da177e4 2401 }
5c45bf27
SS
2402
2403#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2404 /*
2405 * Busy processors will not participate in power savings
2406 * balance.
2407 */
dd41f596
IM
2408 if (idle == CPU_NOT_IDLE ||
2409 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2410 goto group_next;
5c45bf27
SS
2411
2412 /*
2413 * If the local group is idle or completely loaded
2414 * no need to do power savings balance at this domain
2415 */
2416 if (local_group && (this_nr_running >= group_capacity ||
2417 !this_nr_running))
2418 power_savings_balance = 0;
2419
dd41f596 2420 /*
5c45bf27
SS
2421 * If a group is already running at full capacity or idle,
2422 * don't include that group in power savings calculations
dd41f596
IM
2423 */
2424 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2425 || !sum_nr_running)
dd41f596 2426 goto group_next;
5c45bf27 2427
dd41f596 2428 /*
5c45bf27 2429 * Calculate the group which has the least non-idle load.
dd41f596
IM
2430 * This is the group from where we need to pick up the load
2431 * for saving power
2432 */
2433 if ((sum_nr_running < min_nr_running) ||
2434 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2435 first_cpu(group->cpumask) <
2436 first_cpu(group_min->cpumask))) {
dd41f596
IM
2437 group_min = group;
2438 min_nr_running = sum_nr_running;
5c45bf27
SS
2439 min_load_per_task = sum_weighted_load /
2440 sum_nr_running;
dd41f596 2441 }
5c45bf27 2442
dd41f596 2443 /*
5c45bf27 2444 * Calculate the group which is almost near its
dd41f596
IM
2445 * capacity but still has some space to pick up some load
2446 * from other group and save more power
2447 */
2448 if (sum_nr_running <= group_capacity - 1) {
2449 if (sum_nr_running > leader_nr_running ||
2450 (sum_nr_running == leader_nr_running &&
2451 first_cpu(group->cpumask) >
2452 first_cpu(group_leader->cpumask))) {
2453 group_leader = group;
2454 leader_nr_running = sum_nr_running;
2455 }
48f24c4d 2456 }
5c45bf27
SS
2457group_next:
2458#endif
1da177e4
LT
2459 group = group->next;
2460 } while (group != sd->groups);
2461
2dd73a4f 2462 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2463 goto out_balanced;
2464
2465 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2466
2467 if (this_load >= avg_load ||
2468 100*max_load <= sd->imbalance_pct*this_load)
2469 goto out_balanced;
2470
2dd73a4f 2471 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2472 /*
2473 * We're trying to get all the cpus to the average_load, so we don't
2474 * want to push ourselves above the average load, nor do we wish to
2475 * reduce the max loaded cpu below the average load, as either of these
2476 * actions would just result in more rebalancing later, and ping-pong
2477 * tasks around. Thus we look for the minimum possible imbalance.
2478 * Negative imbalances (*we* are more loaded than anyone else) will
2479 * be counted as no imbalance for these purposes -- we can't fix that
2480 * by pulling tasks to us. Be careful of negative numbers as they'll
2481 * appear as very large values with unsigned longs.
2482 */
2dd73a4f
PW
2483 if (max_load <= busiest_load_per_task)
2484 goto out_balanced;
2485
2486 /*
2487 * In the presence of smp nice balancing, certain scenarios can have
2488 * max load less than avg load(as we skip the groups at or below
2489 * its cpu_power, while calculating max_load..)
2490 */
2491 if (max_load < avg_load) {
2492 *imbalance = 0;
2493 goto small_imbalance;
2494 }
0c117f1b
SS
2495
2496 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2497 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2498
1da177e4 2499 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2500 *imbalance = min(max_pull * busiest->__cpu_power,
2501 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2502 / SCHED_LOAD_SCALE;
2503
2dd73a4f
PW
2504 /*
2505 * if *imbalance is less than the average load per runnable task
2506 * there is no gaurantee that any tasks will be moved so we'll have
2507 * a think about bumping its value to force at least one task to be
2508 * moved
2509 */
7fd0d2dd 2510 if (*imbalance < busiest_load_per_task) {
48f24c4d 2511 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2512 unsigned int imbn;
2513
2514small_imbalance:
2515 pwr_move = pwr_now = 0;
2516 imbn = 2;
2517 if (this_nr_running) {
2518 this_load_per_task /= this_nr_running;
2519 if (busiest_load_per_task > this_load_per_task)
2520 imbn = 1;
2521 } else
2522 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2523
dd41f596
IM
2524 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2525 busiest_load_per_task * imbn) {
2dd73a4f 2526 *imbalance = busiest_load_per_task;
1da177e4
LT
2527 return busiest;
2528 }
2529
2530 /*
2531 * OK, we don't have enough imbalance to justify moving tasks,
2532 * however we may be able to increase total CPU power used by
2533 * moving them.
2534 */
2535
5517d86b
ED
2536 pwr_now += busiest->__cpu_power *
2537 min(busiest_load_per_task, max_load);
2538 pwr_now += this->__cpu_power *
2539 min(this_load_per_task, this_load);
1da177e4
LT
2540 pwr_now /= SCHED_LOAD_SCALE;
2541
2542 /* Amount of load we'd subtract */
5517d86b
ED
2543 tmp = sg_div_cpu_power(busiest,
2544 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2545 if (max_load > tmp)
5517d86b 2546 pwr_move += busiest->__cpu_power *
2dd73a4f 2547 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2548
2549 /* Amount of load we'd add */
5517d86b 2550 if (max_load * busiest->__cpu_power <
33859f7f 2551 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2552 tmp = sg_div_cpu_power(this,
2553 max_load * busiest->__cpu_power);
1da177e4 2554 else
5517d86b
ED
2555 tmp = sg_div_cpu_power(this,
2556 busiest_load_per_task * SCHED_LOAD_SCALE);
2557 pwr_move += this->__cpu_power *
2558 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2559 pwr_move /= SCHED_LOAD_SCALE;
2560
2561 /* Move if we gain throughput */
7fd0d2dd
SS
2562 if (pwr_move > pwr_now)
2563 *imbalance = busiest_load_per_task;
1da177e4
LT
2564 }
2565
1da177e4
LT
2566 return busiest;
2567
2568out_balanced:
5c45bf27 2569#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2570 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2571 goto ret;
1da177e4 2572
5c45bf27
SS
2573 if (this == group_leader && group_leader != group_min) {
2574 *imbalance = min_load_per_task;
2575 return group_min;
2576 }
5c45bf27 2577#endif
783609c6 2578ret:
1da177e4
LT
2579 *imbalance = 0;
2580 return NULL;
2581}
2582
2583/*
2584 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2585 */
70b97a7f 2586static struct rq *
d15bcfdb 2587find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2588 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2589{
70b97a7f 2590 struct rq *busiest = NULL, *rq;
2dd73a4f 2591 unsigned long max_load = 0;
1da177e4
LT
2592 int i;
2593
2594 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2595 unsigned long wl;
0a2966b4
CL
2596
2597 if (!cpu_isset(i, *cpus))
2598 continue;
2599
48f24c4d 2600 rq = cpu_rq(i);
dd41f596 2601 wl = weighted_cpuload(i);
2dd73a4f 2602
dd41f596 2603 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2604 continue;
1da177e4 2605
dd41f596
IM
2606 if (wl > max_load) {
2607 max_load = wl;
48f24c4d 2608 busiest = rq;
1da177e4
LT
2609 }
2610 }
2611
2612 return busiest;
2613}
2614
77391d71
NP
2615/*
2616 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2617 * so long as it is large enough.
2618 */
2619#define MAX_PINNED_INTERVAL 512
2620
1da177e4
LT
2621/*
2622 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2623 * tasks if there is an imbalance.
1da177e4 2624 */
70b97a7f 2625static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2626 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2627 int *balance)
1da177e4 2628{
43010659 2629 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2630 struct sched_group *group;
1da177e4 2631 unsigned long imbalance;
70b97a7f 2632 struct rq *busiest;
0a2966b4 2633 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2634 unsigned long flags;
5969fe06 2635
89c4710e
SS
2636 /*
2637 * When power savings policy is enabled for the parent domain, idle
2638 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2639 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2640 * portraying it as CPU_NOT_IDLE.
89c4710e 2641 */
d15bcfdb 2642 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2643 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2644 sd_idle = 1;
1da177e4 2645
1da177e4
LT
2646 schedstat_inc(sd, lb_cnt[idle]);
2647
0a2966b4
CL
2648redo:
2649 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2650 &cpus, balance);
2651
06066714 2652 if (*balance == 0)
783609c6 2653 goto out_balanced;
783609c6 2654
1da177e4
LT
2655 if (!group) {
2656 schedstat_inc(sd, lb_nobusyg[idle]);
2657 goto out_balanced;
2658 }
2659
0a2966b4 2660 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2661 if (!busiest) {
2662 schedstat_inc(sd, lb_nobusyq[idle]);
2663 goto out_balanced;
2664 }
2665
db935dbd 2666 BUG_ON(busiest == this_rq);
1da177e4
LT
2667
2668 schedstat_add(sd, lb_imbalance[idle], imbalance);
2669
43010659 2670 ld_moved = 0;
1da177e4
LT
2671 if (busiest->nr_running > 1) {
2672 /*
2673 * Attempt to move tasks. If find_busiest_group has found
2674 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2675 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2676 * correctly treated as an imbalance.
2677 */
fe2eea3f 2678 local_irq_save(flags);
e17224bf 2679 double_rq_lock(this_rq, busiest);
43010659 2680 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2681 imbalance, sd, idle, &all_pinned);
e17224bf 2682 double_rq_unlock(this_rq, busiest);
fe2eea3f 2683 local_irq_restore(flags);
81026794 2684
46cb4b7c
SS
2685 /*
2686 * some other cpu did the load balance for us.
2687 */
43010659 2688 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2689 resched_cpu(this_cpu);
2690
81026794 2691 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2692 if (unlikely(all_pinned)) {
2693 cpu_clear(cpu_of(busiest), cpus);
2694 if (!cpus_empty(cpus))
2695 goto redo;
81026794 2696 goto out_balanced;
0a2966b4 2697 }
1da177e4 2698 }
81026794 2699
43010659 2700 if (!ld_moved) {
1da177e4
LT
2701 schedstat_inc(sd, lb_failed[idle]);
2702 sd->nr_balance_failed++;
2703
2704 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2705
fe2eea3f 2706 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2707
2708 /* don't kick the migration_thread, if the curr
2709 * task on busiest cpu can't be moved to this_cpu
2710 */
2711 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2712 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2713 all_pinned = 1;
2714 goto out_one_pinned;
2715 }
2716
1da177e4
LT
2717 if (!busiest->active_balance) {
2718 busiest->active_balance = 1;
2719 busiest->push_cpu = this_cpu;
81026794 2720 active_balance = 1;
1da177e4 2721 }
fe2eea3f 2722 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2723 if (active_balance)
1da177e4
LT
2724 wake_up_process(busiest->migration_thread);
2725
2726 /*
2727 * We've kicked active balancing, reset the failure
2728 * counter.
2729 */
39507451 2730 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2731 }
81026794 2732 } else
1da177e4
LT
2733 sd->nr_balance_failed = 0;
2734
81026794 2735 if (likely(!active_balance)) {
1da177e4
LT
2736 /* We were unbalanced, so reset the balancing interval */
2737 sd->balance_interval = sd->min_interval;
81026794
NP
2738 } else {
2739 /*
2740 * If we've begun active balancing, start to back off. This
2741 * case may not be covered by the all_pinned logic if there
2742 * is only 1 task on the busy runqueue (because we don't call
2743 * move_tasks).
2744 */
2745 if (sd->balance_interval < sd->max_interval)
2746 sd->balance_interval *= 2;
1da177e4
LT
2747 }
2748
43010659 2749 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2750 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2751 return -1;
43010659 2752 return ld_moved;
1da177e4
LT
2753
2754out_balanced:
1da177e4
LT
2755 schedstat_inc(sd, lb_balanced[idle]);
2756
16cfb1c0 2757 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2758
2759out_one_pinned:
1da177e4 2760 /* tune up the balancing interval */
77391d71
NP
2761 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2762 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2763 sd->balance_interval *= 2;
2764
48f24c4d 2765 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2766 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2767 return -1;
1da177e4
LT
2768 return 0;
2769}
2770
2771/*
2772 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2773 * tasks if there is an imbalance.
2774 *
d15bcfdb 2775 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2776 * this_rq is locked.
2777 */
48f24c4d 2778static int
70b97a7f 2779load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2780{
2781 struct sched_group *group;
70b97a7f 2782 struct rq *busiest = NULL;
1da177e4 2783 unsigned long imbalance;
43010659 2784 int ld_moved = 0;
5969fe06 2785 int sd_idle = 0;
969bb4e4 2786 int all_pinned = 0;
0a2966b4 2787 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2788
89c4710e
SS
2789 /*
2790 * When power savings policy is enabled for the parent domain, idle
2791 * sibling can pick up load irrespective of busy siblings. In this case,
2792 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2793 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2794 */
2795 if (sd->flags & SD_SHARE_CPUPOWER &&
2796 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2797 sd_idle = 1;
1da177e4 2798
d15bcfdb 2799 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2800redo:
d15bcfdb 2801 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2802 &sd_idle, &cpus, NULL);
1da177e4 2803 if (!group) {
d15bcfdb 2804 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2805 goto out_balanced;
1da177e4
LT
2806 }
2807
d15bcfdb 2808 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2809 &cpus);
db935dbd 2810 if (!busiest) {
d15bcfdb 2811 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2812 goto out_balanced;
1da177e4
LT
2813 }
2814
db935dbd
NP
2815 BUG_ON(busiest == this_rq);
2816
d15bcfdb 2817 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2818
43010659 2819 ld_moved = 0;
d6d5cfaf
NP
2820 if (busiest->nr_running > 1) {
2821 /* Attempt to move tasks */
2822 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2823 /* this_rq->clock is already updated */
2824 update_rq_clock(busiest);
43010659 2825 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2826 imbalance, sd, CPU_NEWLY_IDLE,
2827 &all_pinned);
d6d5cfaf 2828 spin_unlock(&busiest->lock);
0a2966b4 2829
969bb4e4 2830 if (unlikely(all_pinned)) {
0a2966b4
CL
2831 cpu_clear(cpu_of(busiest), cpus);
2832 if (!cpus_empty(cpus))
2833 goto redo;
2834 }
d6d5cfaf
NP
2835 }
2836
43010659 2837 if (!ld_moved) {
d15bcfdb 2838 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2839 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2840 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2841 return -1;
2842 } else
16cfb1c0 2843 sd->nr_balance_failed = 0;
1da177e4 2844
43010659 2845 return ld_moved;
16cfb1c0
NP
2846
2847out_balanced:
d15bcfdb 2848 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2849 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2850 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2851 return -1;
16cfb1c0 2852 sd->nr_balance_failed = 0;
48f24c4d 2853
16cfb1c0 2854 return 0;
1da177e4
LT
2855}
2856
2857/*
2858 * idle_balance is called by schedule() if this_cpu is about to become
2859 * idle. Attempts to pull tasks from other CPUs.
2860 */
70b97a7f 2861static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2862{
2863 struct sched_domain *sd;
dd41f596
IM
2864 int pulled_task = -1;
2865 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2866
2867 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2868 unsigned long interval;
2869
2870 if (!(sd->flags & SD_LOAD_BALANCE))
2871 continue;
2872
2873 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2874 /* If we've pulled tasks over stop searching: */
1bd77f2d 2875 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2876 this_rq, sd);
2877
2878 interval = msecs_to_jiffies(sd->balance_interval);
2879 if (time_after(next_balance, sd->last_balance + interval))
2880 next_balance = sd->last_balance + interval;
2881 if (pulled_task)
2882 break;
1da177e4 2883 }
dd41f596 2884 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2885 /*
2886 * We are going idle. next_balance may be set based on
2887 * a busy processor. So reset next_balance.
2888 */
2889 this_rq->next_balance = next_balance;
dd41f596 2890 }
1da177e4
LT
2891}
2892
2893/*
2894 * active_load_balance is run by migration threads. It pushes running tasks
2895 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2896 * running on each physical CPU where possible, and avoids physical /
2897 * logical imbalances.
2898 *
2899 * Called with busiest_rq locked.
2900 */
70b97a7f 2901static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2902{
39507451 2903 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2904 struct sched_domain *sd;
2905 struct rq *target_rq;
39507451 2906
48f24c4d 2907 /* Is there any task to move? */
39507451 2908 if (busiest_rq->nr_running <= 1)
39507451
NP
2909 return;
2910
2911 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2912
2913 /*
39507451
NP
2914 * This condition is "impossible", if it occurs
2915 * we need to fix it. Originally reported by
2916 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2917 */
39507451 2918 BUG_ON(busiest_rq == target_rq);
1da177e4 2919
39507451
NP
2920 /* move a task from busiest_rq to target_rq */
2921 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2922 update_rq_clock(busiest_rq);
2923 update_rq_clock(target_rq);
39507451
NP
2924
2925 /* Search for an sd spanning us and the target CPU. */
c96d145e 2926 for_each_domain(target_cpu, sd) {
39507451 2927 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2928 cpu_isset(busiest_cpu, sd->span))
39507451 2929 break;
c96d145e 2930 }
39507451 2931
48f24c4d
IM
2932 if (likely(sd)) {
2933 schedstat_inc(sd, alb_cnt);
39507451 2934
43010659
PW
2935 if (move_one_task(target_rq, target_cpu, busiest_rq,
2936 sd, CPU_IDLE))
48f24c4d
IM
2937 schedstat_inc(sd, alb_pushed);
2938 else
2939 schedstat_inc(sd, alb_failed);
2940 }
39507451 2941 spin_unlock(&target_rq->lock);
1da177e4
LT
2942}
2943
46cb4b7c
SS
2944#ifdef CONFIG_NO_HZ
2945static struct {
2946 atomic_t load_balancer;
2947 cpumask_t cpu_mask;
2948} nohz ____cacheline_aligned = {
2949 .load_balancer = ATOMIC_INIT(-1),
2950 .cpu_mask = CPU_MASK_NONE,
2951};
2952
7835b98b 2953/*
46cb4b7c
SS
2954 * This routine will try to nominate the ilb (idle load balancing)
2955 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2956 * load balancing on behalf of all those cpus. If all the cpus in the system
2957 * go into this tickless mode, then there will be no ilb owner (as there is
2958 * no need for one) and all the cpus will sleep till the next wakeup event
2959 * arrives...
2960 *
2961 * For the ilb owner, tick is not stopped. And this tick will be used
2962 * for idle load balancing. ilb owner will still be part of
2963 * nohz.cpu_mask..
7835b98b 2964 *
46cb4b7c
SS
2965 * While stopping the tick, this cpu will become the ilb owner if there
2966 * is no other owner. And will be the owner till that cpu becomes busy
2967 * or if all cpus in the system stop their ticks at which point
2968 * there is no need for ilb owner.
2969 *
2970 * When the ilb owner becomes busy, it nominates another owner, during the
2971 * next busy scheduler_tick()
2972 */
2973int select_nohz_load_balancer(int stop_tick)
2974{
2975 int cpu = smp_processor_id();
2976
2977 if (stop_tick) {
2978 cpu_set(cpu, nohz.cpu_mask);
2979 cpu_rq(cpu)->in_nohz_recently = 1;
2980
2981 /*
2982 * If we are going offline and still the leader, give up!
2983 */
2984 if (cpu_is_offline(cpu) &&
2985 atomic_read(&nohz.load_balancer) == cpu) {
2986 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2987 BUG();
2988 return 0;
2989 }
2990
2991 /* time for ilb owner also to sleep */
2992 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2993 if (atomic_read(&nohz.load_balancer) == cpu)
2994 atomic_set(&nohz.load_balancer, -1);
2995 return 0;
2996 }
2997
2998 if (atomic_read(&nohz.load_balancer) == -1) {
2999 /* make me the ilb owner */
3000 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3001 return 1;
3002 } else if (atomic_read(&nohz.load_balancer) == cpu)
3003 return 1;
3004 } else {
3005 if (!cpu_isset(cpu, nohz.cpu_mask))
3006 return 0;
3007
3008 cpu_clear(cpu, nohz.cpu_mask);
3009
3010 if (atomic_read(&nohz.load_balancer) == cpu)
3011 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3012 BUG();
3013 }
3014 return 0;
3015}
3016#endif
3017
3018static DEFINE_SPINLOCK(balancing);
3019
3020/*
7835b98b
CL
3021 * It checks each scheduling domain to see if it is due to be balanced,
3022 * and initiates a balancing operation if so.
3023 *
3024 * Balancing parameters are set up in arch_init_sched_domains.
3025 */
d15bcfdb 3026static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3027{
46cb4b7c
SS
3028 int balance = 1;
3029 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3030 unsigned long interval;
3031 struct sched_domain *sd;
46cb4b7c 3032 /* Earliest time when we have to do rebalance again */
c9819f45 3033 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3034 int update_next_balance = 0;
1da177e4 3035
46cb4b7c 3036 for_each_domain(cpu, sd) {
1da177e4
LT
3037 if (!(sd->flags & SD_LOAD_BALANCE))
3038 continue;
3039
3040 interval = sd->balance_interval;
d15bcfdb 3041 if (idle != CPU_IDLE)
1da177e4
LT
3042 interval *= sd->busy_factor;
3043
3044 /* scale ms to jiffies */
3045 interval = msecs_to_jiffies(interval);
3046 if (unlikely(!interval))
3047 interval = 1;
dd41f596
IM
3048 if (interval > HZ*NR_CPUS/10)
3049 interval = HZ*NR_CPUS/10;
3050
1da177e4 3051
08c183f3
CL
3052 if (sd->flags & SD_SERIALIZE) {
3053 if (!spin_trylock(&balancing))
3054 goto out;
3055 }
3056
c9819f45 3057 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3058 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3059 /*
3060 * We've pulled tasks over so either we're no
5969fe06
NP
3061 * longer idle, or one of our SMT siblings is
3062 * not idle.
3063 */
d15bcfdb 3064 idle = CPU_NOT_IDLE;
1da177e4 3065 }
1bd77f2d 3066 sd->last_balance = jiffies;
1da177e4 3067 }
08c183f3
CL
3068 if (sd->flags & SD_SERIALIZE)
3069 spin_unlock(&balancing);
3070out:
f549da84 3071 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3072 next_balance = sd->last_balance + interval;
f549da84
SS
3073 update_next_balance = 1;
3074 }
783609c6
SS
3075
3076 /*
3077 * Stop the load balance at this level. There is another
3078 * CPU in our sched group which is doing load balancing more
3079 * actively.
3080 */
3081 if (!balance)
3082 break;
1da177e4 3083 }
f549da84
SS
3084
3085 /*
3086 * next_balance will be updated only when there is a need.
3087 * When the cpu is attached to null domain for ex, it will not be
3088 * updated.
3089 */
3090 if (likely(update_next_balance))
3091 rq->next_balance = next_balance;
46cb4b7c
SS
3092}
3093
3094/*
3095 * run_rebalance_domains is triggered when needed from the scheduler tick.
3096 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3097 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3098 */
3099static void run_rebalance_domains(struct softirq_action *h)
3100{
dd41f596
IM
3101 int this_cpu = smp_processor_id();
3102 struct rq *this_rq = cpu_rq(this_cpu);
3103 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3104 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3105
dd41f596 3106 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3107
3108#ifdef CONFIG_NO_HZ
3109 /*
3110 * If this cpu is the owner for idle load balancing, then do the
3111 * balancing on behalf of the other idle cpus whose ticks are
3112 * stopped.
3113 */
dd41f596
IM
3114 if (this_rq->idle_at_tick &&
3115 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3116 cpumask_t cpus = nohz.cpu_mask;
3117 struct rq *rq;
3118 int balance_cpu;
3119
dd41f596 3120 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3121 for_each_cpu_mask(balance_cpu, cpus) {
3122 /*
3123 * If this cpu gets work to do, stop the load balancing
3124 * work being done for other cpus. Next load
3125 * balancing owner will pick it up.
3126 */
3127 if (need_resched())
3128 break;
3129
de0cf899 3130 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3131
3132 rq = cpu_rq(balance_cpu);
dd41f596
IM
3133 if (time_after(this_rq->next_balance, rq->next_balance))
3134 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3135 }
3136 }
3137#endif
3138}
3139
3140/*
3141 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3142 *
3143 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3144 * idle load balancing owner or decide to stop the periodic load balancing,
3145 * if the whole system is idle.
3146 */
dd41f596 3147static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3148{
46cb4b7c
SS
3149#ifdef CONFIG_NO_HZ
3150 /*
3151 * If we were in the nohz mode recently and busy at the current
3152 * scheduler tick, then check if we need to nominate new idle
3153 * load balancer.
3154 */
3155 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3156 rq->in_nohz_recently = 0;
3157
3158 if (atomic_read(&nohz.load_balancer) == cpu) {
3159 cpu_clear(cpu, nohz.cpu_mask);
3160 atomic_set(&nohz.load_balancer, -1);
3161 }
3162
3163 if (atomic_read(&nohz.load_balancer) == -1) {
3164 /*
3165 * simple selection for now: Nominate the
3166 * first cpu in the nohz list to be the next
3167 * ilb owner.
3168 *
3169 * TBD: Traverse the sched domains and nominate
3170 * the nearest cpu in the nohz.cpu_mask.
3171 */
3172 int ilb = first_cpu(nohz.cpu_mask);
3173
3174 if (ilb != NR_CPUS)
3175 resched_cpu(ilb);
3176 }
3177 }
3178
3179 /*
3180 * If this cpu is idle and doing idle load balancing for all the
3181 * cpus with ticks stopped, is it time for that to stop?
3182 */
3183 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3184 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3185 resched_cpu(cpu);
3186 return;
3187 }
3188
3189 /*
3190 * If this cpu is idle and the idle load balancing is done by
3191 * someone else, then no need raise the SCHED_SOFTIRQ
3192 */
3193 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3194 cpu_isset(cpu, nohz.cpu_mask))
3195 return;
3196#endif
3197 if (time_after_eq(jiffies, rq->next_balance))
3198 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3199}
dd41f596
IM
3200
3201#else /* CONFIG_SMP */
3202
1da177e4
LT
3203/*
3204 * on UP we do not need to balance between CPUs:
3205 */
70b97a7f 3206static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3207{
3208}
dd41f596
IM
3209
3210/* Avoid "used but not defined" warning on UP */
3211static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3212 unsigned long max_nr_move, unsigned long max_load_move,
3213 struct sched_domain *sd, enum cpu_idle_type idle,
3214 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3215 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3216{
3217 *load_moved = 0;
3218
3219 return 0;
3220}
3221
1da177e4
LT
3222#endif
3223
1da177e4
LT
3224DEFINE_PER_CPU(struct kernel_stat, kstat);
3225
3226EXPORT_PER_CPU_SYMBOL(kstat);
3227
3228/*
41b86e9c
IM
3229 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3230 * that have not yet been banked in case the task is currently running.
1da177e4 3231 */
41b86e9c 3232unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3233{
1da177e4 3234 unsigned long flags;
41b86e9c
IM
3235 u64 ns, delta_exec;
3236 struct rq *rq;
48f24c4d 3237
41b86e9c
IM
3238 rq = task_rq_lock(p, &flags);
3239 ns = p->se.sum_exec_runtime;
3240 if (rq->curr == p) {
a8e504d2
IM
3241 update_rq_clock(rq);
3242 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3243 if ((s64)delta_exec > 0)
3244 ns += delta_exec;
3245 }
3246 task_rq_unlock(rq, &flags);
48f24c4d 3247
1da177e4
LT
3248 return ns;
3249}
3250
1da177e4
LT
3251/*
3252 * Account user cpu time to a process.
3253 * @p: the process that the cpu time gets accounted to
3254 * @hardirq_offset: the offset to subtract from hardirq_count()
3255 * @cputime: the cpu time spent in user space since the last update
3256 */
3257void account_user_time(struct task_struct *p, cputime_t cputime)
3258{
3259 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3260 cputime64_t tmp;
3261
3262 p->utime = cputime_add(p->utime, cputime);
3263
3264 /* Add user time to cpustat. */
3265 tmp = cputime_to_cputime64(cputime);
3266 if (TASK_NICE(p) > 0)
3267 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3268 else
3269 cpustat->user = cputime64_add(cpustat->user, tmp);
3270}
3271
3272/*
3273 * Account system cpu time to a process.
3274 * @p: the process that the cpu time gets accounted to
3275 * @hardirq_offset: the offset to subtract from hardirq_count()
3276 * @cputime: the cpu time spent in kernel space since the last update
3277 */
3278void account_system_time(struct task_struct *p, int hardirq_offset,
3279 cputime_t cputime)
3280{
3281 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3282 struct rq *rq = this_rq();
1da177e4
LT
3283 cputime64_t tmp;
3284
3285 p->stime = cputime_add(p->stime, cputime);
3286
3287 /* Add system time to cpustat. */
3288 tmp = cputime_to_cputime64(cputime);
3289 if (hardirq_count() - hardirq_offset)
3290 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3291 else if (softirq_count())
3292 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3293 else if (p != rq->idle)
3294 cpustat->system = cputime64_add(cpustat->system, tmp);
3295 else if (atomic_read(&rq->nr_iowait) > 0)
3296 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3297 else
3298 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3299 /* Account for system time used */
3300 acct_update_integrals(p);
1da177e4
LT
3301}
3302
3303/*
3304 * Account for involuntary wait time.
3305 * @p: the process from which the cpu time has been stolen
3306 * @steal: the cpu time spent in involuntary wait
3307 */
3308void account_steal_time(struct task_struct *p, cputime_t steal)
3309{
3310 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3311 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3312 struct rq *rq = this_rq();
1da177e4
LT
3313
3314 if (p == rq->idle) {
3315 p->stime = cputime_add(p->stime, steal);
3316 if (atomic_read(&rq->nr_iowait) > 0)
3317 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3318 else
3319 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3320 } else
3321 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3322}
3323
7835b98b
CL
3324/*
3325 * This function gets called by the timer code, with HZ frequency.
3326 * We call it with interrupts disabled.
3327 *
3328 * It also gets called by the fork code, when changing the parent's
3329 * timeslices.
3330 */
3331void scheduler_tick(void)
3332{
7835b98b
CL
3333 int cpu = smp_processor_id();
3334 struct rq *rq = cpu_rq(cpu);
dd41f596 3335 struct task_struct *curr = rq->curr;
529c7726 3336 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3337
3338 spin_lock(&rq->lock);
546fe3c9 3339 __update_rq_clock(rq);
529c7726
IM
3340 /*
3341 * Let rq->clock advance by at least TICK_NSEC:
3342 */
3343 if (unlikely(rq->clock < next_tick))
3344 rq->clock = next_tick;
3345 rq->tick_timestamp = rq->clock;
f1a438d8 3346 update_cpu_load(rq);
dd41f596
IM
3347 if (curr != rq->idle) /* FIXME: needed? */
3348 curr->sched_class->task_tick(rq, curr);
dd41f596 3349 spin_unlock(&rq->lock);
7835b98b 3350
e418e1c2 3351#ifdef CONFIG_SMP
dd41f596
IM
3352 rq->idle_at_tick = idle_cpu(cpu);
3353 trigger_load_balance(rq, cpu);
e418e1c2 3354#endif
1da177e4
LT
3355}
3356
1da177e4
LT
3357#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3358
3359void fastcall add_preempt_count(int val)
3360{
3361 /*
3362 * Underflow?
3363 */
9a11b49a
IM
3364 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3365 return;
1da177e4
LT
3366 preempt_count() += val;
3367 /*
3368 * Spinlock count overflowing soon?
3369 */
33859f7f
MOS
3370 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3371 PREEMPT_MASK - 10);
1da177e4
LT
3372}
3373EXPORT_SYMBOL(add_preempt_count);
3374
3375void fastcall sub_preempt_count(int val)
3376{
3377 /*
3378 * Underflow?
3379 */
9a11b49a
IM
3380 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3381 return;
1da177e4
LT
3382 /*
3383 * Is the spinlock portion underflowing?
3384 */
9a11b49a
IM
3385 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3386 !(preempt_count() & PREEMPT_MASK)))
3387 return;
3388
1da177e4
LT
3389 preempt_count() -= val;
3390}
3391EXPORT_SYMBOL(sub_preempt_count);
3392
3393#endif
3394
3395/*
dd41f596 3396 * Print scheduling while atomic bug:
1da177e4 3397 */
dd41f596 3398static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3399{
dd41f596
IM
3400 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3401 prev->comm, preempt_count(), prev->pid);
3402 debug_show_held_locks(prev);
3403 if (irqs_disabled())
3404 print_irqtrace_events(prev);
3405 dump_stack();
3406}
1da177e4 3407
dd41f596
IM
3408/*
3409 * Various schedule()-time debugging checks and statistics:
3410 */
3411static inline void schedule_debug(struct task_struct *prev)
3412{
1da177e4
LT
3413 /*
3414 * Test if we are atomic. Since do_exit() needs to call into
3415 * schedule() atomically, we ignore that path for now.
3416 * Otherwise, whine if we are scheduling when we should not be.
3417 */
dd41f596
IM
3418 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3419 __schedule_bug(prev);
3420
1da177e4
LT
3421 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3422
dd41f596 3423 schedstat_inc(this_rq(), sched_cnt);
b8efb561
IM
3424#ifdef CONFIG_SCHEDSTATS
3425 if (unlikely(prev->lock_depth >= 0)) {
3426 schedstat_inc(this_rq(), bkl_cnt);
3427 schedstat_inc(prev, sched_info.bkl_cnt);
3428 }
3429#endif
dd41f596
IM
3430}
3431
3432/*
3433 * Pick up the highest-prio task:
3434 */
3435static inline struct task_struct *
ff95f3df 3436pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3437{
3438 struct sched_class *class;
3439 struct task_struct *p;
1da177e4
LT
3440
3441 /*
dd41f596
IM
3442 * Optimization: we know that if all tasks are in
3443 * the fair class we can call that function directly:
1da177e4 3444 */
dd41f596 3445 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3446 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3447 if (likely(p))
3448 return p;
1da177e4
LT
3449 }
3450
dd41f596
IM
3451 class = sched_class_highest;
3452 for ( ; ; ) {
fb8d4724 3453 p = class->pick_next_task(rq);
dd41f596
IM
3454 if (p)
3455 return p;
3456 /*
3457 * Will never be NULL as the idle class always
3458 * returns a non-NULL p:
3459 */
3460 class = class->next;
3461 }
3462}
1da177e4 3463
dd41f596
IM
3464/*
3465 * schedule() is the main scheduler function.
3466 */
3467asmlinkage void __sched schedule(void)
3468{
3469 struct task_struct *prev, *next;
3470 long *switch_count;
3471 struct rq *rq;
dd41f596
IM
3472 int cpu;
3473
3474need_resched:
3475 preempt_disable();
3476 cpu = smp_processor_id();
3477 rq = cpu_rq(cpu);
3478 rcu_qsctr_inc(cpu);
3479 prev = rq->curr;
3480 switch_count = &prev->nivcsw;
3481
3482 release_kernel_lock(prev);
3483need_resched_nonpreemptible:
3484
3485 schedule_debug(prev);
1da177e4
LT
3486
3487 spin_lock_irq(&rq->lock);
dd41f596 3488 clear_tsk_need_resched(prev);
c1b3da3e 3489 __update_rq_clock(rq);
1da177e4 3490
1da177e4 3491 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3492 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3493 unlikely(signal_pending(prev)))) {
1da177e4 3494 prev->state = TASK_RUNNING;
dd41f596 3495 } else {
2e1cb74a 3496 deactivate_task(rq, prev, 1);
1da177e4 3497 }
dd41f596 3498 switch_count = &prev->nvcsw;
1da177e4
LT
3499 }
3500
dd41f596 3501 if (unlikely(!rq->nr_running))
1da177e4 3502 idle_balance(cpu, rq);
1da177e4 3503
31ee529c 3504 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3505 next = pick_next_task(rq, prev);
1da177e4
LT
3506
3507 sched_info_switch(prev, next);
dd41f596 3508
1da177e4 3509 if (likely(prev != next)) {
1da177e4
LT
3510 rq->nr_switches++;
3511 rq->curr = next;
3512 ++*switch_count;
3513
dd41f596 3514 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3515 } else
3516 spin_unlock_irq(&rq->lock);
3517
dd41f596
IM
3518 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3519 cpu = smp_processor_id();
3520 rq = cpu_rq(cpu);
1da177e4 3521 goto need_resched_nonpreemptible;
dd41f596 3522 }
1da177e4
LT
3523 preempt_enable_no_resched();
3524 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3525 goto need_resched;
3526}
1da177e4
LT
3527EXPORT_SYMBOL(schedule);
3528
3529#ifdef CONFIG_PREEMPT
3530/*
2ed6e34f 3531 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3532 * off of preempt_enable. Kernel preemptions off return from interrupt
3533 * occur there and call schedule directly.
3534 */
3535asmlinkage void __sched preempt_schedule(void)
3536{
3537 struct thread_info *ti = current_thread_info();
3538#ifdef CONFIG_PREEMPT_BKL
3539 struct task_struct *task = current;
3540 int saved_lock_depth;
3541#endif
3542 /*
3543 * If there is a non-zero preempt_count or interrupts are disabled,
3544 * we do not want to preempt the current task. Just return..
3545 */
beed33a8 3546 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3547 return;
3548
3549need_resched:
3550 add_preempt_count(PREEMPT_ACTIVE);
3551 /*
3552 * We keep the big kernel semaphore locked, but we
3553 * clear ->lock_depth so that schedule() doesnt
3554 * auto-release the semaphore:
3555 */
3556#ifdef CONFIG_PREEMPT_BKL
3557 saved_lock_depth = task->lock_depth;
3558 task->lock_depth = -1;
3559#endif
3560 schedule();
3561#ifdef CONFIG_PREEMPT_BKL
3562 task->lock_depth = saved_lock_depth;
3563#endif
3564 sub_preempt_count(PREEMPT_ACTIVE);
3565
3566 /* we could miss a preemption opportunity between schedule and now */
3567 barrier();
3568 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3569 goto need_resched;
3570}
1da177e4
LT
3571EXPORT_SYMBOL(preempt_schedule);
3572
3573/*
2ed6e34f 3574 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3575 * off of irq context.
3576 * Note, that this is called and return with irqs disabled. This will
3577 * protect us against recursive calling from irq.
3578 */
3579asmlinkage void __sched preempt_schedule_irq(void)
3580{
3581 struct thread_info *ti = current_thread_info();
3582#ifdef CONFIG_PREEMPT_BKL
3583 struct task_struct *task = current;
3584 int saved_lock_depth;
3585#endif
2ed6e34f 3586 /* Catch callers which need to be fixed */
1da177e4
LT
3587 BUG_ON(ti->preempt_count || !irqs_disabled());
3588
3589need_resched:
3590 add_preempt_count(PREEMPT_ACTIVE);
3591 /*
3592 * We keep the big kernel semaphore locked, but we
3593 * clear ->lock_depth so that schedule() doesnt
3594 * auto-release the semaphore:
3595 */
3596#ifdef CONFIG_PREEMPT_BKL
3597 saved_lock_depth = task->lock_depth;
3598 task->lock_depth = -1;
3599#endif
3600 local_irq_enable();
3601 schedule();
3602 local_irq_disable();
3603#ifdef CONFIG_PREEMPT_BKL
3604 task->lock_depth = saved_lock_depth;
3605#endif
3606 sub_preempt_count(PREEMPT_ACTIVE);
3607
3608 /* we could miss a preemption opportunity between schedule and now */
3609 barrier();
3610 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3611 goto need_resched;
3612}
3613
3614#endif /* CONFIG_PREEMPT */
3615
95cdf3b7
IM
3616int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3617 void *key)
1da177e4 3618{
48f24c4d 3619 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3620}
1da177e4
LT
3621EXPORT_SYMBOL(default_wake_function);
3622
3623/*
3624 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3625 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3626 * number) then we wake all the non-exclusive tasks and one exclusive task.
3627 *
3628 * There are circumstances in which we can try to wake a task which has already
3629 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3630 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3631 */
3632static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3633 int nr_exclusive, int sync, void *key)
3634{
2e45874c 3635 wait_queue_t *curr, *next;
1da177e4 3636
2e45874c 3637 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3638 unsigned flags = curr->flags;
3639
1da177e4 3640 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3641 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3642 break;
3643 }
3644}
3645
3646/**
3647 * __wake_up - wake up threads blocked on a waitqueue.
3648 * @q: the waitqueue
3649 * @mode: which threads
3650 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3651 * @key: is directly passed to the wakeup function
1da177e4
LT
3652 */
3653void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3654 int nr_exclusive, void *key)
1da177e4
LT
3655{
3656 unsigned long flags;
3657
3658 spin_lock_irqsave(&q->lock, flags);
3659 __wake_up_common(q, mode, nr_exclusive, 0, key);
3660 spin_unlock_irqrestore(&q->lock, flags);
3661}
1da177e4
LT
3662EXPORT_SYMBOL(__wake_up);
3663
3664/*
3665 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3666 */
3667void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3668{
3669 __wake_up_common(q, mode, 1, 0, NULL);
3670}
3671
3672/**
67be2dd1 3673 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3674 * @q: the waitqueue
3675 * @mode: which threads
3676 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3677 *
3678 * The sync wakeup differs that the waker knows that it will schedule
3679 * away soon, so while the target thread will be woken up, it will not
3680 * be migrated to another CPU - ie. the two threads are 'synchronized'
3681 * with each other. This can prevent needless bouncing between CPUs.
3682 *
3683 * On UP it can prevent extra preemption.
3684 */
95cdf3b7
IM
3685void fastcall
3686__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3687{
3688 unsigned long flags;
3689 int sync = 1;
3690
3691 if (unlikely(!q))
3692 return;
3693
3694 if (unlikely(!nr_exclusive))
3695 sync = 0;
3696
3697 spin_lock_irqsave(&q->lock, flags);
3698 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3699 spin_unlock_irqrestore(&q->lock, flags);
3700}
3701EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3702
3703void fastcall complete(struct completion *x)
3704{
3705 unsigned long flags;
3706
3707 spin_lock_irqsave(&x->wait.lock, flags);
3708 x->done++;
3709 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3710 1, 0, NULL);
3711 spin_unlock_irqrestore(&x->wait.lock, flags);
3712}
3713EXPORT_SYMBOL(complete);
3714
3715void fastcall complete_all(struct completion *x)
3716{
3717 unsigned long flags;
3718
3719 spin_lock_irqsave(&x->wait.lock, flags);
3720 x->done += UINT_MAX/2;
3721 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3722 0, 0, NULL);
3723 spin_unlock_irqrestore(&x->wait.lock, flags);
3724}
3725EXPORT_SYMBOL(complete_all);
3726
3727void fastcall __sched wait_for_completion(struct completion *x)
3728{
3729 might_sleep();
48f24c4d 3730
1da177e4
LT
3731 spin_lock_irq(&x->wait.lock);
3732 if (!x->done) {
3733 DECLARE_WAITQUEUE(wait, current);
3734
3735 wait.flags |= WQ_FLAG_EXCLUSIVE;
3736 __add_wait_queue_tail(&x->wait, &wait);
3737 do {
3738 __set_current_state(TASK_UNINTERRUPTIBLE);
3739 spin_unlock_irq(&x->wait.lock);
3740 schedule();
3741 spin_lock_irq(&x->wait.lock);
3742 } while (!x->done);
3743 __remove_wait_queue(&x->wait, &wait);
3744 }
3745 x->done--;
3746 spin_unlock_irq(&x->wait.lock);
3747}
3748EXPORT_SYMBOL(wait_for_completion);
3749
3750unsigned long fastcall __sched
3751wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3752{
3753 might_sleep();
3754
3755 spin_lock_irq(&x->wait.lock);
3756 if (!x->done) {
3757 DECLARE_WAITQUEUE(wait, current);
3758
3759 wait.flags |= WQ_FLAG_EXCLUSIVE;
3760 __add_wait_queue_tail(&x->wait, &wait);
3761 do {
3762 __set_current_state(TASK_UNINTERRUPTIBLE);
3763 spin_unlock_irq(&x->wait.lock);
3764 timeout = schedule_timeout(timeout);
3765 spin_lock_irq(&x->wait.lock);
3766 if (!timeout) {
3767 __remove_wait_queue(&x->wait, &wait);
3768 goto out;
3769 }
3770 } while (!x->done);
3771 __remove_wait_queue(&x->wait, &wait);
3772 }
3773 x->done--;
3774out:
3775 spin_unlock_irq(&x->wait.lock);
3776 return timeout;
3777}
3778EXPORT_SYMBOL(wait_for_completion_timeout);
3779
3780int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3781{
3782 int ret = 0;
3783
3784 might_sleep();
3785
3786 spin_lock_irq(&x->wait.lock);
3787 if (!x->done) {
3788 DECLARE_WAITQUEUE(wait, current);
3789
3790 wait.flags |= WQ_FLAG_EXCLUSIVE;
3791 __add_wait_queue_tail(&x->wait, &wait);
3792 do {
3793 if (signal_pending(current)) {
3794 ret = -ERESTARTSYS;
3795 __remove_wait_queue(&x->wait, &wait);
3796 goto out;
3797 }
3798 __set_current_state(TASK_INTERRUPTIBLE);
3799 spin_unlock_irq(&x->wait.lock);
3800 schedule();
3801 spin_lock_irq(&x->wait.lock);
3802 } while (!x->done);
3803 __remove_wait_queue(&x->wait, &wait);
3804 }
3805 x->done--;
3806out:
3807 spin_unlock_irq(&x->wait.lock);
3808
3809 return ret;
3810}
3811EXPORT_SYMBOL(wait_for_completion_interruptible);
3812
3813unsigned long fastcall __sched
3814wait_for_completion_interruptible_timeout(struct completion *x,
3815 unsigned long timeout)
3816{
3817 might_sleep();
3818
3819 spin_lock_irq(&x->wait.lock);
3820 if (!x->done) {
3821 DECLARE_WAITQUEUE(wait, current);
3822
3823 wait.flags |= WQ_FLAG_EXCLUSIVE;
3824 __add_wait_queue_tail(&x->wait, &wait);
3825 do {
3826 if (signal_pending(current)) {
3827 timeout = -ERESTARTSYS;
3828 __remove_wait_queue(&x->wait, &wait);
3829 goto out;
3830 }
3831 __set_current_state(TASK_INTERRUPTIBLE);
3832 spin_unlock_irq(&x->wait.lock);
3833 timeout = schedule_timeout(timeout);
3834 spin_lock_irq(&x->wait.lock);
3835 if (!timeout) {
3836 __remove_wait_queue(&x->wait, &wait);
3837 goto out;
3838 }
3839 } while (!x->done);
3840 __remove_wait_queue(&x->wait, &wait);
3841 }
3842 x->done--;
3843out:
3844 spin_unlock_irq(&x->wait.lock);
3845 return timeout;
3846}
3847EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3848
0fec171c
IM
3849static inline void
3850sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3851{
3852 spin_lock_irqsave(&q->lock, *flags);
3853 __add_wait_queue(q, wait);
1da177e4 3854 spin_unlock(&q->lock);
0fec171c 3855}
1da177e4 3856
0fec171c
IM
3857static inline void
3858sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3859{
3860 spin_lock_irq(&q->lock);
3861 __remove_wait_queue(q, wait);
3862 spin_unlock_irqrestore(&q->lock, *flags);
3863}
1da177e4 3864
0fec171c 3865void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3866{
0fec171c
IM
3867 unsigned long flags;
3868 wait_queue_t wait;
3869
3870 init_waitqueue_entry(&wait, current);
1da177e4
LT
3871
3872 current->state = TASK_INTERRUPTIBLE;
3873
0fec171c 3874 sleep_on_head(q, &wait, &flags);
1da177e4 3875 schedule();
0fec171c 3876 sleep_on_tail(q, &wait, &flags);
1da177e4 3877}
1da177e4
LT
3878EXPORT_SYMBOL(interruptible_sleep_on);
3879
0fec171c 3880long __sched
95cdf3b7 3881interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3882{
0fec171c
IM
3883 unsigned long flags;
3884 wait_queue_t wait;
3885
3886 init_waitqueue_entry(&wait, current);
1da177e4
LT
3887
3888 current->state = TASK_INTERRUPTIBLE;
3889
0fec171c 3890 sleep_on_head(q, &wait, &flags);
1da177e4 3891 timeout = schedule_timeout(timeout);
0fec171c 3892 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3893
3894 return timeout;
3895}
1da177e4
LT
3896EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3897
0fec171c 3898void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3899{
0fec171c
IM
3900 unsigned long flags;
3901 wait_queue_t wait;
3902
3903 init_waitqueue_entry(&wait, current);
1da177e4
LT
3904
3905 current->state = TASK_UNINTERRUPTIBLE;
3906
0fec171c 3907 sleep_on_head(q, &wait, &flags);
1da177e4 3908 schedule();
0fec171c 3909 sleep_on_tail(q, &wait, &flags);
1da177e4 3910}
1da177e4
LT
3911EXPORT_SYMBOL(sleep_on);
3912
0fec171c 3913long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3914{
0fec171c
IM
3915 unsigned long flags;
3916 wait_queue_t wait;
3917
3918 init_waitqueue_entry(&wait, current);
1da177e4
LT
3919
3920 current->state = TASK_UNINTERRUPTIBLE;
3921
0fec171c 3922 sleep_on_head(q, &wait, &flags);
1da177e4 3923 timeout = schedule_timeout(timeout);
0fec171c 3924 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3925
3926 return timeout;
3927}
1da177e4
LT
3928EXPORT_SYMBOL(sleep_on_timeout);
3929
b29739f9
IM
3930#ifdef CONFIG_RT_MUTEXES
3931
3932/*
3933 * rt_mutex_setprio - set the current priority of a task
3934 * @p: task
3935 * @prio: prio value (kernel-internal form)
3936 *
3937 * This function changes the 'effective' priority of a task. It does
3938 * not touch ->normal_prio like __setscheduler().
3939 *
3940 * Used by the rt_mutex code to implement priority inheritance logic.
3941 */
36c8b586 3942void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3943{
3944 unsigned long flags;
83b699ed 3945 int oldprio, on_rq, running;
70b97a7f 3946 struct rq *rq;
b29739f9
IM
3947
3948 BUG_ON(prio < 0 || prio > MAX_PRIO);
3949
3950 rq = task_rq_lock(p, &flags);
a8e504d2 3951 update_rq_clock(rq);
b29739f9 3952
d5f9f942 3953 oldprio = p->prio;
dd41f596 3954 on_rq = p->se.on_rq;
83b699ed
SV
3955 running = task_running(rq, p);
3956 if (on_rq) {
69be72c1 3957 dequeue_task(rq, p, 0);
83b699ed
SV
3958 if (running)
3959 p->sched_class->put_prev_task(rq, p);
3960 }
dd41f596
IM
3961
3962 if (rt_prio(prio))
3963 p->sched_class = &rt_sched_class;
3964 else
3965 p->sched_class = &fair_sched_class;
3966
b29739f9
IM
3967 p->prio = prio;
3968
dd41f596 3969 if (on_rq) {
83b699ed
SV
3970 if (running)
3971 p->sched_class->set_curr_task(rq);
8159f87e 3972 enqueue_task(rq, p, 0);
b29739f9
IM
3973 /*
3974 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3975 * our priority decreased, or if we are not currently running on
3976 * this runqueue and our priority is higher than the current's
b29739f9 3977 */
83b699ed 3978 if (running) {
d5f9f942
AM
3979 if (p->prio > oldprio)
3980 resched_task(rq->curr);
dd41f596
IM
3981 } else {
3982 check_preempt_curr(rq, p);
3983 }
b29739f9
IM
3984 }
3985 task_rq_unlock(rq, &flags);
3986}
3987
3988#endif
3989
36c8b586 3990void set_user_nice(struct task_struct *p, long nice)
1da177e4 3991{
dd41f596 3992 int old_prio, delta, on_rq;
1da177e4 3993 unsigned long flags;
70b97a7f 3994 struct rq *rq;
1da177e4
LT
3995
3996 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3997 return;
3998 /*
3999 * We have to be careful, if called from sys_setpriority(),
4000 * the task might be in the middle of scheduling on another CPU.
4001 */
4002 rq = task_rq_lock(p, &flags);
a8e504d2 4003 update_rq_clock(rq);
1da177e4
LT
4004 /*
4005 * The RT priorities are set via sched_setscheduler(), but we still
4006 * allow the 'normal' nice value to be set - but as expected
4007 * it wont have any effect on scheduling until the task is
dd41f596 4008 * SCHED_FIFO/SCHED_RR:
1da177e4 4009 */
e05606d3 4010 if (task_has_rt_policy(p)) {
1da177e4
LT
4011 p->static_prio = NICE_TO_PRIO(nice);
4012 goto out_unlock;
4013 }
dd41f596
IM
4014 on_rq = p->se.on_rq;
4015 if (on_rq) {
69be72c1 4016 dequeue_task(rq, p, 0);
79b5dddf 4017 dec_load(rq, p);
2dd73a4f 4018 }
1da177e4 4019
1da177e4 4020 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4021 set_load_weight(p);
b29739f9
IM
4022 old_prio = p->prio;
4023 p->prio = effective_prio(p);
4024 delta = p->prio - old_prio;
1da177e4 4025
dd41f596 4026 if (on_rq) {
8159f87e 4027 enqueue_task(rq, p, 0);
29b4b623 4028 inc_load(rq, p);
1da177e4 4029 /*
d5f9f942
AM
4030 * If the task increased its priority or is running and
4031 * lowered its priority, then reschedule its CPU:
1da177e4 4032 */
d5f9f942 4033 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4034 resched_task(rq->curr);
4035 }
4036out_unlock:
4037 task_rq_unlock(rq, &flags);
4038}
1da177e4
LT
4039EXPORT_SYMBOL(set_user_nice);
4040
e43379f1
MM
4041/*
4042 * can_nice - check if a task can reduce its nice value
4043 * @p: task
4044 * @nice: nice value
4045 */
36c8b586 4046int can_nice(const struct task_struct *p, const int nice)
e43379f1 4047{
024f4747
MM
4048 /* convert nice value [19,-20] to rlimit style value [1,40] */
4049 int nice_rlim = 20 - nice;
48f24c4d 4050
e43379f1
MM
4051 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4052 capable(CAP_SYS_NICE));
4053}
4054
1da177e4
LT
4055#ifdef __ARCH_WANT_SYS_NICE
4056
4057/*
4058 * sys_nice - change the priority of the current process.
4059 * @increment: priority increment
4060 *
4061 * sys_setpriority is a more generic, but much slower function that
4062 * does similar things.
4063 */
4064asmlinkage long sys_nice(int increment)
4065{
48f24c4d 4066 long nice, retval;
1da177e4
LT
4067
4068 /*
4069 * Setpriority might change our priority at the same moment.
4070 * We don't have to worry. Conceptually one call occurs first
4071 * and we have a single winner.
4072 */
e43379f1
MM
4073 if (increment < -40)
4074 increment = -40;
1da177e4
LT
4075 if (increment > 40)
4076 increment = 40;
4077
4078 nice = PRIO_TO_NICE(current->static_prio) + increment;
4079 if (nice < -20)
4080 nice = -20;
4081 if (nice > 19)
4082 nice = 19;
4083
e43379f1
MM
4084 if (increment < 0 && !can_nice(current, nice))
4085 return -EPERM;
4086
1da177e4
LT
4087 retval = security_task_setnice(current, nice);
4088 if (retval)
4089 return retval;
4090
4091 set_user_nice(current, nice);
4092 return 0;
4093}
4094
4095#endif
4096
4097/**
4098 * task_prio - return the priority value of a given task.
4099 * @p: the task in question.
4100 *
4101 * This is the priority value as seen by users in /proc.
4102 * RT tasks are offset by -200. Normal tasks are centered
4103 * around 0, value goes from -16 to +15.
4104 */
36c8b586 4105int task_prio(const struct task_struct *p)
1da177e4
LT
4106{
4107 return p->prio - MAX_RT_PRIO;
4108}
4109
4110/**
4111 * task_nice - return the nice value of a given task.
4112 * @p: the task in question.
4113 */
36c8b586 4114int task_nice(const struct task_struct *p)
1da177e4
LT
4115{
4116 return TASK_NICE(p);
4117}
1da177e4 4118EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4119
4120/**
4121 * idle_cpu - is a given cpu idle currently?
4122 * @cpu: the processor in question.
4123 */
4124int idle_cpu(int cpu)
4125{
4126 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4127}
4128
1da177e4
LT
4129/**
4130 * idle_task - return the idle task for a given cpu.
4131 * @cpu: the processor in question.
4132 */
36c8b586 4133struct task_struct *idle_task(int cpu)
1da177e4
LT
4134{
4135 return cpu_rq(cpu)->idle;
4136}
4137
4138/**
4139 * find_process_by_pid - find a process with a matching PID value.
4140 * @pid: the pid in question.
4141 */
36c8b586 4142static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4143{
4144 return pid ? find_task_by_pid(pid) : current;
4145}
4146
4147/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4148static void
4149__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4150{
dd41f596 4151 BUG_ON(p->se.on_rq);
48f24c4d 4152
1da177e4 4153 p->policy = policy;
dd41f596
IM
4154 switch (p->policy) {
4155 case SCHED_NORMAL:
4156 case SCHED_BATCH:
4157 case SCHED_IDLE:
4158 p->sched_class = &fair_sched_class;
4159 break;
4160 case SCHED_FIFO:
4161 case SCHED_RR:
4162 p->sched_class = &rt_sched_class;
4163 break;
4164 }
4165
1da177e4 4166 p->rt_priority = prio;
b29739f9
IM
4167 p->normal_prio = normal_prio(p);
4168 /* we are holding p->pi_lock already */
4169 p->prio = rt_mutex_getprio(p);
2dd73a4f 4170 set_load_weight(p);
1da177e4
LT
4171}
4172
4173/**
72fd4a35 4174 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4175 * @p: the task in question.
4176 * @policy: new policy.
4177 * @param: structure containing the new RT priority.
5fe1d75f 4178 *
72fd4a35 4179 * NOTE that the task may be already dead.
1da177e4 4180 */
95cdf3b7
IM
4181int sched_setscheduler(struct task_struct *p, int policy,
4182 struct sched_param *param)
1da177e4 4183{
83b699ed 4184 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4185 unsigned long flags;
70b97a7f 4186 struct rq *rq;
1da177e4 4187
66e5393a
SR
4188 /* may grab non-irq protected spin_locks */
4189 BUG_ON(in_interrupt());
1da177e4
LT
4190recheck:
4191 /* double check policy once rq lock held */
4192 if (policy < 0)
4193 policy = oldpolicy = p->policy;
4194 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4195 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4196 policy != SCHED_IDLE)
b0a9499c 4197 return -EINVAL;
1da177e4
LT
4198 /*
4199 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4200 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4201 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4202 */
4203 if (param->sched_priority < 0 ||
95cdf3b7 4204 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4205 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4206 return -EINVAL;
e05606d3 4207 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4208 return -EINVAL;
4209
37e4ab3f
OC
4210 /*
4211 * Allow unprivileged RT tasks to decrease priority:
4212 */
4213 if (!capable(CAP_SYS_NICE)) {
e05606d3 4214 if (rt_policy(policy)) {
8dc3e909 4215 unsigned long rlim_rtprio;
8dc3e909
ON
4216
4217 if (!lock_task_sighand(p, &flags))
4218 return -ESRCH;
4219 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4220 unlock_task_sighand(p, &flags);
4221
4222 /* can't set/change the rt policy */
4223 if (policy != p->policy && !rlim_rtprio)
4224 return -EPERM;
4225
4226 /* can't increase priority */
4227 if (param->sched_priority > p->rt_priority &&
4228 param->sched_priority > rlim_rtprio)
4229 return -EPERM;
4230 }
dd41f596
IM
4231 /*
4232 * Like positive nice levels, dont allow tasks to
4233 * move out of SCHED_IDLE either:
4234 */
4235 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4236 return -EPERM;
5fe1d75f 4237
37e4ab3f
OC
4238 /* can't change other user's priorities */
4239 if ((current->euid != p->euid) &&
4240 (current->euid != p->uid))
4241 return -EPERM;
4242 }
1da177e4
LT
4243
4244 retval = security_task_setscheduler(p, policy, param);
4245 if (retval)
4246 return retval;
b29739f9
IM
4247 /*
4248 * make sure no PI-waiters arrive (or leave) while we are
4249 * changing the priority of the task:
4250 */
4251 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4252 /*
4253 * To be able to change p->policy safely, the apropriate
4254 * runqueue lock must be held.
4255 */
b29739f9 4256 rq = __task_rq_lock(p);
1da177e4
LT
4257 /* recheck policy now with rq lock held */
4258 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4259 policy = oldpolicy = -1;
b29739f9
IM
4260 __task_rq_unlock(rq);
4261 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4262 goto recheck;
4263 }
2daa3577 4264 update_rq_clock(rq);
dd41f596 4265 on_rq = p->se.on_rq;
83b699ed
SV
4266 running = task_running(rq, p);
4267 if (on_rq) {
2e1cb74a 4268 deactivate_task(rq, p, 0);
83b699ed
SV
4269 if (running)
4270 p->sched_class->put_prev_task(rq, p);
4271 }
f6b53205 4272
1da177e4 4273 oldprio = p->prio;
dd41f596 4274 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4275
dd41f596 4276 if (on_rq) {
83b699ed
SV
4277 if (running)
4278 p->sched_class->set_curr_task(rq);
dd41f596 4279 activate_task(rq, p, 0);
1da177e4
LT
4280 /*
4281 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4282 * our priority decreased, or if we are not currently running on
4283 * this runqueue and our priority is higher than the current's
1da177e4 4284 */
83b699ed 4285 if (running) {
d5f9f942
AM
4286 if (p->prio > oldprio)
4287 resched_task(rq->curr);
dd41f596
IM
4288 } else {
4289 check_preempt_curr(rq, p);
4290 }
1da177e4 4291 }
b29739f9
IM
4292 __task_rq_unlock(rq);
4293 spin_unlock_irqrestore(&p->pi_lock, flags);
4294
95e02ca9
TG
4295 rt_mutex_adjust_pi(p);
4296
1da177e4
LT
4297 return 0;
4298}
4299EXPORT_SYMBOL_GPL(sched_setscheduler);
4300
95cdf3b7
IM
4301static int
4302do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4303{
1da177e4
LT
4304 struct sched_param lparam;
4305 struct task_struct *p;
36c8b586 4306 int retval;
1da177e4
LT
4307
4308 if (!param || pid < 0)
4309 return -EINVAL;
4310 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4311 return -EFAULT;
5fe1d75f
ON
4312
4313 rcu_read_lock();
4314 retval = -ESRCH;
1da177e4 4315 p = find_process_by_pid(pid);
5fe1d75f
ON
4316 if (p != NULL)
4317 retval = sched_setscheduler(p, policy, &lparam);
4318 rcu_read_unlock();
36c8b586 4319
1da177e4
LT
4320 return retval;
4321}
4322
4323/**
4324 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4325 * @pid: the pid in question.
4326 * @policy: new policy.
4327 * @param: structure containing the new RT priority.
4328 */
4329asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4330 struct sched_param __user *param)
4331{
c21761f1
JB
4332 /* negative values for policy are not valid */
4333 if (policy < 0)
4334 return -EINVAL;
4335
1da177e4
LT
4336 return do_sched_setscheduler(pid, policy, param);
4337}
4338
4339/**
4340 * sys_sched_setparam - set/change the RT priority of a thread
4341 * @pid: the pid in question.
4342 * @param: structure containing the new RT priority.
4343 */
4344asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4345{
4346 return do_sched_setscheduler(pid, -1, param);
4347}
4348
4349/**
4350 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4351 * @pid: the pid in question.
4352 */
4353asmlinkage long sys_sched_getscheduler(pid_t pid)
4354{
36c8b586 4355 struct task_struct *p;
1da177e4 4356 int retval = -EINVAL;
1da177e4
LT
4357
4358 if (pid < 0)
4359 goto out_nounlock;
4360
4361 retval = -ESRCH;
4362 read_lock(&tasklist_lock);
4363 p = find_process_by_pid(pid);
4364 if (p) {
4365 retval = security_task_getscheduler(p);
4366 if (!retval)
4367 retval = p->policy;
4368 }
4369 read_unlock(&tasklist_lock);
4370
4371out_nounlock:
4372 return retval;
4373}
4374
4375/**
4376 * sys_sched_getscheduler - get the RT priority of a thread
4377 * @pid: the pid in question.
4378 * @param: structure containing the RT priority.
4379 */
4380asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4381{
4382 struct sched_param lp;
36c8b586 4383 struct task_struct *p;
1da177e4 4384 int retval = -EINVAL;
1da177e4
LT
4385
4386 if (!param || pid < 0)
4387 goto out_nounlock;
4388
4389 read_lock(&tasklist_lock);
4390 p = find_process_by_pid(pid);
4391 retval = -ESRCH;
4392 if (!p)
4393 goto out_unlock;
4394
4395 retval = security_task_getscheduler(p);
4396 if (retval)
4397 goto out_unlock;
4398
4399 lp.sched_priority = p->rt_priority;
4400 read_unlock(&tasklist_lock);
4401
4402 /*
4403 * This one might sleep, we cannot do it with a spinlock held ...
4404 */
4405 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4406
4407out_nounlock:
4408 return retval;
4409
4410out_unlock:
4411 read_unlock(&tasklist_lock);
4412 return retval;
4413}
4414
4415long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4416{
1da177e4 4417 cpumask_t cpus_allowed;
36c8b586
IM
4418 struct task_struct *p;
4419 int retval;
1da177e4 4420
5be9361c 4421 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4422 read_lock(&tasklist_lock);
4423
4424 p = find_process_by_pid(pid);
4425 if (!p) {
4426 read_unlock(&tasklist_lock);
5be9361c 4427 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4428 return -ESRCH;
4429 }
4430
4431 /*
4432 * It is not safe to call set_cpus_allowed with the
4433 * tasklist_lock held. We will bump the task_struct's
4434 * usage count and then drop tasklist_lock.
4435 */
4436 get_task_struct(p);
4437 read_unlock(&tasklist_lock);
4438
4439 retval = -EPERM;
4440 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4441 !capable(CAP_SYS_NICE))
4442 goto out_unlock;
4443
e7834f8f
DQ
4444 retval = security_task_setscheduler(p, 0, NULL);
4445 if (retval)
4446 goto out_unlock;
4447
1da177e4
LT
4448 cpus_allowed = cpuset_cpus_allowed(p);
4449 cpus_and(new_mask, new_mask, cpus_allowed);
4450 retval = set_cpus_allowed(p, new_mask);
4451
4452out_unlock:
4453 put_task_struct(p);
5be9361c 4454 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4455 return retval;
4456}
4457
4458static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4459 cpumask_t *new_mask)
4460{
4461 if (len < sizeof(cpumask_t)) {
4462 memset(new_mask, 0, sizeof(cpumask_t));
4463 } else if (len > sizeof(cpumask_t)) {
4464 len = sizeof(cpumask_t);
4465 }
4466 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4467}
4468
4469/**
4470 * sys_sched_setaffinity - set the cpu affinity of a process
4471 * @pid: pid of the process
4472 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4473 * @user_mask_ptr: user-space pointer to the new cpu mask
4474 */
4475asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4476 unsigned long __user *user_mask_ptr)
4477{
4478 cpumask_t new_mask;
4479 int retval;
4480
4481 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4482 if (retval)
4483 return retval;
4484
4485 return sched_setaffinity(pid, new_mask);
4486}
4487
4488/*
4489 * Represents all cpu's present in the system
4490 * In systems capable of hotplug, this map could dynamically grow
4491 * as new cpu's are detected in the system via any platform specific
4492 * method, such as ACPI for e.g.
4493 */
4494
4cef0c61 4495cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4496EXPORT_SYMBOL(cpu_present_map);
4497
4498#ifndef CONFIG_SMP
4cef0c61 4499cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4500EXPORT_SYMBOL(cpu_online_map);
4501
4cef0c61 4502cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4503EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4504#endif
4505
4506long sched_getaffinity(pid_t pid, cpumask_t *mask)
4507{
36c8b586 4508 struct task_struct *p;
1da177e4 4509 int retval;
1da177e4 4510
5be9361c 4511 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4512 read_lock(&tasklist_lock);
4513
4514 retval = -ESRCH;
4515 p = find_process_by_pid(pid);
4516 if (!p)
4517 goto out_unlock;
4518
e7834f8f
DQ
4519 retval = security_task_getscheduler(p);
4520 if (retval)
4521 goto out_unlock;
4522
2f7016d9 4523 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4524
4525out_unlock:
4526 read_unlock(&tasklist_lock);
5be9361c 4527 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4528
9531b62f 4529 return retval;
1da177e4
LT
4530}
4531
4532/**
4533 * sys_sched_getaffinity - get the cpu affinity of a process
4534 * @pid: pid of the process
4535 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4536 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4537 */
4538asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4539 unsigned long __user *user_mask_ptr)
4540{
4541 int ret;
4542 cpumask_t mask;
4543
4544 if (len < sizeof(cpumask_t))
4545 return -EINVAL;
4546
4547 ret = sched_getaffinity(pid, &mask);
4548 if (ret < 0)
4549 return ret;
4550
4551 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4552 return -EFAULT;
4553
4554 return sizeof(cpumask_t);
4555}
4556
4557/**
4558 * sys_sched_yield - yield the current processor to other threads.
4559 *
dd41f596
IM
4560 * This function yields the current CPU to other tasks. If there are no
4561 * other threads running on this CPU then this function will return.
1da177e4
LT
4562 */
4563asmlinkage long sys_sched_yield(void)
4564{
70b97a7f 4565 struct rq *rq = this_rq_lock();
1da177e4
LT
4566
4567 schedstat_inc(rq, yld_cnt);
4530d7ab 4568 current->sched_class->yield_task(rq);
1da177e4
LT
4569
4570 /*
4571 * Since we are going to call schedule() anyway, there's
4572 * no need to preempt or enable interrupts:
4573 */
4574 __release(rq->lock);
8a25d5de 4575 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4576 _raw_spin_unlock(&rq->lock);
4577 preempt_enable_no_resched();
4578
4579 schedule();
4580
4581 return 0;
4582}
4583
e7b38404 4584static void __cond_resched(void)
1da177e4 4585{
8e0a43d8
IM
4586#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4587 __might_sleep(__FILE__, __LINE__);
4588#endif
5bbcfd90
IM
4589 /*
4590 * The BKS might be reacquired before we have dropped
4591 * PREEMPT_ACTIVE, which could trigger a second
4592 * cond_resched() call.
4593 */
1da177e4
LT
4594 do {
4595 add_preempt_count(PREEMPT_ACTIVE);
4596 schedule();
4597 sub_preempt_count(PREEMPT_ACTIVE);
4598 } while (need_resched());
4599}
4600
4601int __sched cond_resched(void)
4602{
9414232f
IM
4603 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4604 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4605 __cond_resched();
4606 return 1;
4607 }
4608 return 0;
4609}
1da177e4
LT
4610EXPORT_SYMBOL(cond_resched);
4611
4612/*
4613 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4614 * call schedule, and on return reacquire the lock.
4615 *
4616 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4617 * operations here to prevent schedule() from being called twice (once via
4618 * spin_unlock(), once by hand).
4619 */
95cdf3b7 4620int cond_resched_lock(spinlock_t *lock)
1da177e4 4621{
6df3cecb
JK
4622 int ret = 0;
4623
1da177e4
LT
4624 if (need_lockbreak(lock)) {
4625 spin_unlock(lock);
4626 cpu_relax();
6df3cecb 4627 ret = 1;
1da177e4
LT
4628 spin_lock(lock);
4629 }
9414232f 4630 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4631 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4632 _raw_spin_unlock(lock);
4633 preempt_enable_no_resched();
4634 __cond_resched();
6df3cecb 4635 ret = 1;
1da177e4 4636 spin_lock(lock);
1da177e4 4637 }
6df3cecb 4638 return ret;
1da177e4 4639}
1da177e4
LT
4640EXPORT_SYMBOL(cond_resched_lock);
4641
4642int __sched cond_resched_softirq(void)
4643{
4644 BUG_ON(!in_softirq());
4645
9414232f 4646 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4647 local_bh_enable();
1da177e4
LT
4648 __cond_resched();
4649 local_bh_disable();
4650 return 1;
4651 }
4652 return 0;
4653}
1da177e4
LT
4654EXPORT_SYMBOL(cond_resched_softirq);
4655
1da177e4
LT
4656/**
4657 * yield - yield the current processor to other threads.
4658 *
72fd4a35 4659 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4660 * thread runnable and calls sys_sched_yield().
4661 */
4662void __sched yield(void)
4663{
4664 set_current_state(TASK_RUNNING);
4665 sys_sched_yield();
4666}
1da177e4
LT
4667EXPORT_SYMBOL(yield);
4668
4669/*
4670 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4671 * that process accounting knows that this is a task in IO wait state.
4672 *
4673 * But don't do that if it is a deliberate, throttling IO wait (this task
4674 * has set its backing_dev_info: the queue against which it should throttle)
4675 */
4676void __sched io_schedule(void)
4677{
70b97a7f 4678 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4679
0ff92245 4680 delayacct_blkio_start();
1da177e4
LT
4681 atomic_inc(&rq->nr_iowait);
4682 schedule();
4683 atomic_dec(&rq->nr_iowait);
0ff92245 4684 delayacct_blkio_end();
1da177e4 4685}
1da177e4
LT
4686EXPORT_SYMBOL(io_schedule);
4687
4688long __sched io_schedule_timeout(long timeout)
4689{
70b97a7f 4690 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4691 long ret;
4692
0ff92245 4693 delayacct_blkio_start();
1da177e4
LT
4694 atomic_inc(&rq->nr_iowait);
4695 ret = schedule_timeout(timeout);
4696 atomic_dec(&rq->nr_iowait);
0ff92245 4697 delayacct_blkio_end();
1da177e4
LT
4698 return ret;
4699}
4700
4701/**
4702 * sys_sched_get_priority_max - return maximum RT priority.
4703 * @policy: scheduling class.
4704 *
4705 * this syscall returns the maximum rt_priority that can be used
4706 * by a given scheduling class.
4707 */
4708asmlinkage long sys_sched_get_priority_max(int policy)
4709{
4710 int ret = -EINVAL;
4711
4712 switch (policy) {
4713 case SCHED_FIFO:
4714 case SCHED_RR:
4715 ret = MAX_USER_RT_PRIO-1;
4716 break;
4717 case SCHED_NORMAL:
b0a9499c 4718 case SCHED_BATCH:
dd41f596 4719 case SCHED_IDLE:
1da177e4
LT
4720 ret = 0;
4721 break;
4722 }
4723 return ret;
4724}
4725
4726/**
4727 * sys_sched_get_priority_min - return minimum RT priority.
4728 * @policy: scheduling class.
4729 *
4730 * this syscall returns the minimum rt_priority that can be used
4731 * by a given scheduling class.
4732 */
4733asmlinkage long sys_sched_get_priority_min(int policy)
4734{
4735 int ret = -EINVAL;
4736
4737 switch (policy) {
4738 case SCHED_FIFO:
4739 case SCHED_RR:
4740 ret = 1;
4741 break;
4742 case SCHED_NORMAL:
b0a9499c 4743 case SCHED_BATCH:
dd41f596 4744 case SCHED_IDLE:
1da177e4
LT
4745 ret = 0;
4746 }
4747 return ret;
4748}
4749
4750/**
4751 * sys_sched_rr_get_interval - return the default timeslice of a process.
4752 * @pid: pid of the process.
4753 * @interval: userspace pointer to the timeslice value.
4754 *
4755 * this syscall writes the default timeslice value of a given process
4756 * into the user-space timespec buffer. A value of '0' means infinity.
4757 */
4758asmlinkage
4759long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4760{
36c8b586 4761 struct task_struct *p;
1da177e4
LT
4762 int retval = -EINVAL;
4763 struct timespec t;
1da177e4
LT
4764
4765 if (pid < 0)
4766 goto out_nounlock;
4767
4768 retval = -ESRCH;
4769 read_lock(&tasklist_lock);
4770 p = find_process_by_pid(pid);
4771 if (!p)
4772 goto out_unlock;
4773
4774 retval = security_task_getscheduler(p);
4775 if (retval)
4776 goto out_unlock;
4777
b78709cf 4778 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4779 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4780 read_unlock(&tasklist_lock);
4781 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4782out_nounlock:
4783 return retval;
4784out_unlock:
4785 read_unlock(&tasklist_lock);
4786 return retval;
4787}
4788
2ed6e34f 4789static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4790
4791static void show_task(struct task_struct *p)
1da177e4 4792{
1da177e4 4793 unsigned long free = 0;
36c8b586 4794 unsigned state;
1da177e4 4795
1da177e4 4796 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4797 printk("%-13.13s %c", p->comm,
4798 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4799#if BITS_PER_LONG == 32
1da177e4 4800 if (state == TASK_RUNNING)
4bd77321 4801 printk(" running ");
1da177e4 4802 else
4bd77321 4803 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4804#else
4805 if (state == TASK_RUNNING)
4bd77321 4806 printk(" running task ");
1da177e4
LT
4807 else
4808 printk(" %016lx ", thread_saved_pc(p));
4809#endif
4810#ifdef CONFIG_DEBUG_STACK_USAGE
4811 {
10ebffde 4812 unsigned long *n = end_of_stack(p);
1da177e4
LT
4813 while (!*n)
4814 n++;
10ebffde 4815 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4816 }
4817#endif
4bd77321 4818 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4819
4820 if (state != TASK_RUNNING)
4821 show_stack(p, NULL);
4822}
4823
e59e2ae2 4824void show_state_filter(unsigned long state_filter)
1da177e4 4825{
36c8b586 4826 struct task_struct *g, *p;
1da177e4 4827
4bd77321
IM
4828#if BITS_PER_LONG == 32
4829 printk(KERN_INFO
4830 " task PC stack pid father\n");
1da177e4 4831#else
4bd77321
IM
4832 printk(KERN_INFO
4833 " task PC stack pid father\n");
1da177e4
LT
4834#endif
4835 read_lock(&tasklist_lock);
4836 do_each_thread(g, p) {
4837 /*
4838 * reset the NMI-timeout, listing all files on a slow
4839 * console might take alot of time:
4840 */
4841 touch_nmi_watchdog();
39bc89fd 4842 if (!state_filter || (p->state & state_filter))
e59e2ae2 4843 show_task(p);
1da177e4
LT
4844 } while_each_thread(g, p);
4845
04c9167f
JF
4846 touch_all_softlockup_watchdogs();
4847
dd41f596
IM
4848#ifdef CONFIG_SCHED_DEBUG
4849 sysrq_sched_debug_show();
4850#endif
1da177e4 4851 read_unlock(&tasklist_lock);
e59e2ae2
IM
4852 /*
4853 * Only show locks if all tasks are dumped:
4854 */
4855 if (state_filter == -1)
4856 debug_show_all_locks();
1da177e4
LT
4857}
4858
1df21055
IM
4859void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4860{
dd41f596 4861 idle->sched_class = &idle_sched_class;
1df21055
IM
4862}
4863
f340c0d1
IM
4864/**
4865 * init_idle - set up an idle thread for a given CPU
4866 * @idle: task in question
4867 * @cpu: cpu the idle task belongs to
4868 *
4869 * NOTE: this function does not set the idle thread's NEED_RESCHED
4870 * flag, to make booting more robust.
4871 */
5c1e1767 4872void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4873{
70b97a7f 4874 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4875 unsigned long flags;
4876
dd41f596
IM
4877 __sched_fork(idle);
4878 idle->se.exec_start = sched_clock();
4879
b29739f9 4880 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4881 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4882 __set_task_cpu(idle, cpu);
1da177e4
LT
4883
4884 spin_lock_irqsave(&rq->lock, flags);
4885 rq->curr = rq->idle = idle;
4866cde0
NP
4886#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4887 idle->oncpu = 1;
4888#endif
1da177e4
LT
4889 spin_unlock_irqrestore(&rq->lock, flags);
4890
4891 /* Set the preempt count _outside_ the spinlocks! */
4892#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4893 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4894#else
a1261f54 4895 task_thread_info(idle)->preempt_count = 0;
1da177e4 4896#endif
dd41f596
IM
4897 /*
4898 * The idle tasks have their own, simple scheduling class:
4899 */
4900 idle->sched_class = &idle_sched_class;
1da177e4
LT
4901}
4902
4903/*
4904 * In a system that switches off the HZ timer nohz_cpu_mask
4905 * indicates which cpus entered this state. This is used
4906 * in the rcu update to wait only for active cpus. For system
4907 * which do not switch off the HZ timer nohz_cpu_mask should
4908 * always be CPU_MASK_NONE.
4909 */
4910cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4911
4912#ifdef CONFIG_SMP
4913/*
4914 * This is how migration works:
4915 *
70b97a7f 4916 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4917 * runqueue and wake up that CPU's migration thread.
4918 * 2) we down() the locked semaphore => thread blocks.
4919 * 3) migration thread wakes up (implicitly it forces the migrated
4920 * thread off the CPU)
4921 * 4) it gets the migration request and checks whether the migrated
4922 * task is still in the wrong runqueue.
4923 * 5) if it's in the wrong runqueue then the migration thread removes
4924 * it and puts it into the right queue.
4925 * 6) migration thread up()s the semaphore.
4926 * 7) we wake up and the migration is done.
4927 */
4928
4929/*
4930 * Change a given task's CPU affinity. Migrate the thread to a
4931 * proper CPU and schedule it away if the CPU it's executing on
4932 * is removed from the allowed bitmask.
4933 *
4934 * NOTE: the caller must have a valid reference to the task, the
4935 * task must not exit() & deallocate itself prematurely. The
4936 * call is not atomic; no spinlocks may be held.
4937 */
36c8b586 4938int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4939{
70b97a7f 4940 struct migration_req req;
1da177e4 4941 unsigned long flags;
70b97a7f 4942 struct rq *rq;
48f24c4d 4943 int ret = 0;
1da177e4
LT
4944
4945 rq = task_rq_lock(p, &flags);
4946 if (!cpus_intersects(new_mask, cpu_online_map)) {
4947 ret = -EINVAL;
4948 goto out;
4949 }
4950
4951 p->cpus_allowed = new_mask;
4952 /* Can the task run on the task's current CPU? If so, we're done */
4953 if (cpu_isset(task_cpu(p), new_mask))
4954 goto out;
4955
4956 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4957 /* Need help from migration thread: drop lock and wait. */
4958 task_rq_unlock(rq, &flags);
4959 wake_up_process(rq->migration_thread);
4960 wait_for_completion(&req.done);
4961 tlb_migrate_finish(p->mm);
4962 return 0;
4963 }
4964out:
4965 task_rq_unlock(rq, &flags);
48f24c4d 4966
1da177e4
LT
4967 return ret;
4968}
1da177e4
LT
4969EXPORT_SYMBOL_GPL(set_cpus_allowed);
4970
4971/*
4972 * Move (not current) task off this cpu, onto dest cpu. We're doing
4973 * this because either it can't run here any more (set_cpus_allowed()
4974 * away from this CPU, or CPU going down), or because we're
4975 * attempting to rebalance this task on exec (sched_exec).
4976 *
4977 * So we race with normal scheduler movements, but that's OK, as long
4978 * as the task is no longer on this CPU.
efc30814
KK
4979 *
4980 * Returns non-zero if task was successfully migrated.
1da177e4 4981 */
efc30814 4982static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4983{
70b97a7f 4984 struct rq *rq_dest, *rq_src;
dd41f596 4985 int ret = 0, on_rq;
1da177e4
LT
4986
4987 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4988 return ret;
1da177e4
LT
4989
4990 rq_src = cpu_rq(src_cpu);
4991 rq_dest = cpu_rq(dest_cpu);
4992
4993 double_rq_lock(rq_src, rq_dest);
4994 /* Already moved. */
4995 if (task_cpu(p) != src_cpu)
4996 goto out;
4997 /* Affinity changed (again). */
4998 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4999 goto out;
5000
dd41f596 5001 on_rq = p->se.on_rq;
6e82a3be 5002 if (on_rq)
2e1cb74a 5003 deactivate_task(rq_src, p, 0);
6e82a3be 5004
1da177e4 5005 set_task_cpu(p, dest_cpu);
dd41f596
IM
5006 if (on_rq) {
5007 activate_task(rq_dest, p, 0);
5008 check_preempt_curr(rq_dest, p);
1da177e4 5009 }
efc30814 5010 ret = 1;
1da177e4
LT
5011out:
5012 double_rq_unlock(rq_src, rq_dest);
efc30814 5013 return ret;
1da177e4
LT
5014}
5015
5016/*
5017 * migration_thread - this is a highprio system thread that performs
5018 * thread migration by bumping thread off CPU then 'pushing' onto
5019 * another runqueue.
5020 */
95cdf3b7 5021static int migration_thread(void *data)
1da177e4 5022{
1da177e4 5023 int cpu = (long)data;
70b97a7f 5024 struct rq *rq;
1da177e4
LT
5025
5026 rq = cpu_rq(cpu);
5027 BUG_ON(rq->migration_thread != current);
5028
5029 set_current_state(TASK_INTERRUPTIBLE);
5030 while (!kthread_should_stop()) {
70b97a7f 5031 struct migration_req *req;
1da177e4 5032 struct list_head *head;
1da177e4 5033
1da177e4
LT
5034 spin_lock_irq(&rq->lock);
5035
5036 if (cpu_is_offline(cpu)) {
5037 spin_unlock_irq(&rq->lock);
5038 goto wait_to_die;
5039 }
5040
5041 if (rq->active_balance) {
5042 active_load_balance(rq, cpu);
5043 rq->active_balance = 0;
5044 }
5045
5046 head = &rq->migration_queue;
5047
5048 if (list_empty(head)) {
5049 spin_unlock_irq(&rq->lock);
5050 schedule();
5051 set_current_state(TASK_INTERRUPTIBLE);
5052 continue;
5053 }
70b97a7f 5054 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5055 list_del_init(head->next);
5056
674311d5
NP
5057 spin_unlock(&rq->lock);
5058 __migrate_task(req->task, cpu, req->dest_cpu);
5059 local_irq_enable();
1da177e4
LT
5060
5061 complete(&req->done);
5062 }
5063 __set_current_state(TASK_RUNNING);
5064 return 0;
5065
5066wait_to_die:
5067 /* Wait for kthread_stop */
5068 set_current_state(TASK_INTERRUPTIBLE);
5069 while (!kthread_should_stop()) {
5070 schedule();
5071 set_current_state(TASK_INTERRUPTIBLE);
5072 }
5073 __set_current_state(TASK_RUNNING);
5074 return 0;
5075}
5076
5077#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5078/*
5079 * Figure out where task on dead CPU should go, use force if neccessary.
5080 * NOTE: interrupts should be disabled by the caller
5081 */
48f24c4d 5082static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5083{
efc30814 5084 unsigned long flags;
1da177e4 5085 cpumask_t mask;
70b97a7f
IM
5086 struct rq *rq;
5087 int dest_cpu;
1da177e4 5088
efc30814 5089restart:
1da177e4
LT
5090 /* On same node? */
5091 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5092 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5093 dest_cpu = any_online_cpu(mask);
5094
5095 /* On any allowed CPU? */
5096 if (dest_cpu == NR_CPUS)
48f24c4d 5097 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5098
5099 /* No more Mr. Nice Guy. */
5100 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5101 rq = task_rq_lock(p, &flags);
5102 cpus_setall(p->cpus_allowed);
5103 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5104 task_rq_unlock(rq, &flags);
1da177e4
LT
5105
5106 /*
5107 * Don't tell them about moving exiting tasks or
5108 * kernel threads (both mm NULL), since they never
5109 * leave kernel.
5110 */
48f24c4d 5111 if (p->mm && printk_ratelimit())
1da177e4
LT
5112 printk(KERN_INFO "process %d (%s) no "
5113 "longer affine to cpu%d\n",
48f24c4d 5114 p->pid, p->comm, dead_cpu);
1da177e4 5115 }
48f24c4d 5116 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5117 goto restart;
1da177e4
LT
5118}
5119
5120/*
5121 * While a dead CPU has no uninterruptible tasks queued at this point,
5122 * it might still have a nonzero ->nr_uninterruptible counter, because
5123 * for performance reasons the counter is not stricly tracking tasks to
5124 * their home CPUs. So we just add the counter to another CPU's counter,
5125 * to keep the global sum constant after CPU-down:
5126 */
70b97a7f 5127static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5128{
70b97a7f 5129 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5130 unsigned long flags;
5131
5132 local_irq_save(flags);
5133 double_rq_lock(rq_src, rq_dest);
5134 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5135 rq_src->nr_uninterruptible = 0;
5136 double_rq_unlock(rq_src, rq_dest);
5137 local_irq_restore(flags);
5138}
5139
5140/* Run through task list and migrate tasks from the dead cpu. */
5141static void migrate_live_tasks(int src_cpu)
5142{
48f24c4d 5143 struct task_struct *p, *t;
1da177e4
LT
5144
5145 write_lock_irq(&tasklist_lock);
5146
48f24c4d
IM
5147 do_each_thread(t, p) {
5148 if (p == current)
1da177e4
LT
5149 continue;
5150
48f24c4d
IM
5151 if (task_cpu(p) == src_cpu)
5152 move_task_off_dead_cpu(src_cpu, p);
5153 } while_each_thread(t, p);
1da177e4
LT
5154
5155 write_unlock_irq(&tasklist_lock);
5156}
5157
dd41f596
IM
5158/*
5159 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5160 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5161 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5162 */
5163void sched_idle_next(void)
5164{
48f24c4d 5165 int this_cpu = smp_processor_id();
70b97a7f 5166 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5167 struct task_struct *p = rq->idle;
5168 unsigned long flags;
5169
5170 /* cpu has to be offline */
48f24c4d 5171 BUG_ON(cpu_online(this_cpu));
1da177e4 5172
48f24c4d
IM
5173 /*
5174 * Strictly not necessary since rest of the CPUs are stopped by now
5175 * and interrupts disabled on the current cpu.
1da177e4
LT
5176 */
5177 spin_lock_irqsave(&rq->lock, flags);
5178
dd41f596 5179 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5180
5181 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5182 activate_idle_task(p, rq);
1da177e4
LT
5183
5184 spin_unlock_irqrestore(&rq->lock, flags);
5185}
5186
48f24c4d
IM
5187/*
5188 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5189 * offline.
5190 */
5191void idle_task_exit(void)
5192{
5193 struct mm_struct *mm = current->active_mm;
5194
5195 BUG_ON(cpu_online(smp_processor_id()));
5196
5197 if (mm != &init_mm)
5198 switch_mm(mm, &init_mm, current);
5199 mmdrop(mm);
5200}
5201
054b9108 5202/* called under rq->lock with disabled interrupts */
36c8b586 5203static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5204{
70b97a7f 5205 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5206
5207 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5208 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5209
5210 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5211 BUG_ON(p->state == TASK_DEAD);
1da177e4 5212
48f24c4d 5213 get_task_struct(p);
1da177e4
LT
5214
5215 /*
5216 * Drop lock around migration; if someone else moves it,
5217 * that's OK. No task can be added to this CPU, so iteration is
5218 * fine.
054b9108 5219 * NOTE: interrupts should be left disabled --dev@
1da177e4 5220 */
054b9108 5221 spin_unlock(&rq->lock);
48f24c4d 5222 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5223 spin_lock(&rq->lock);
1da177e4 5224
48f24c4d 5225 put_task_struct(p);
1da177e4
LT
5226}
5227
5228/* release_task() removes task from tasklist, so we won't find dead tasks. */
5229static void migrate_dead_tasks(unsigned int dead_cpu)
5230{
70b97a7f 5231 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5232 struct task_struct *next;
48f24c4d 5233
dd41f596
IM
5234 for ( ; ; ) {
5235 if (!rq->nr_running)
5236 break;
a8e504d2 5237 update_rq_clock(rq);
ff95f3df 5238 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5239 if (!next)
5240 break;
5241 migrate_dead(dead_cpu, next);
e692ab53 5242
1da177e4
LT
5243 }
5244}
5245#endif /* CONFIG_HOTPLUG_CPU */
5246
e692ab53
NP
5247#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5248
5249static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5250 {
5251 .procname = "sched_domain",
c57baf1e 5252 .mode = 0555,
e0361851 5253 },
e692ab53
NP
5254 {0,},
5255};
5256
5257static struct ctl_table sd_ctl_root[] = {
e0361851 5258 {
c57baf1e 5259 .ctl_name = CTL_KERN,
e0361851 5260 .procname = "kernel",
c57baf1e 5261 .mode = 0555,
e0361851
AD
5262 .child = sd_ctl_dir,
5263 },
e692ab53
NP
5264 {0,},
5265};
5266
5267static struct ctl_table *sd_alloc_ctl_entry(int n)
5268{
5269 struct ctl_table *entry =
5270 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5271
5272 BUG_ON(!entry);
5273 memset(entry, 0, n * sizeof(struct ctl_table));
5274
5275 return entry;
5276}
5277
5278static void
e0361851 5279set_table_entry(struct ctl_table *entry,
e692ab53
NP
5280 const char *procname, void *data, int maxlen,
5281 mode_t mode, proc_handler *proc_handler)
5282{
e692ab53
NP
5283 entry->procname = procname;
5284 entry->data = data;
5285 entry->maxlen = maxlen;
5286 entry->mode = mode;
5287 entry->proc_handler = proc_handler;
5288}
5289
5290static struct ctl_table *
5291sd_alloc_ctl_domain_table(struct sched_domain *sd)
5292{
5293 struct ctl_table *table = sd_alloc_ctl_entry(14);
5294
e0361851 5295 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5296 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5297 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5298 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5299 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5300 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5301 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5302 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5303 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5304 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5305 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5306 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5307 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5308 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5309 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5310 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5311 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5312 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5313 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5314 &sd->cache_nice_tries,
5315 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5316 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5317 sizeof(int), 0644, proc_dointvec_minmax);
5318
5319 return table;
5320}
5321
5322static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5323{
5324 struct ctl_table *entry, *table;
5325 struct sched_domain *sd;
5326 int domain_num = 0, i;
5327 char buf[32];
5328
5329 for_each_domain(cpu, sd)
5330 domain_num++;
5331 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5332
5333 i = 0;
5334 for_each_domain(cpu, sd) {
5335 snprintf(buf, 32, "domain%d", i);
e692ab53 5336 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5337 entry->mode = 0555;
e692ab53
NP
5338 entry->child = sd_alloc_ctl_domain_table(sd);
5339 entry++;
5340 i++;
5341 }
5342 return table;
5343}
5344
5345static struct ctl_table_header *sd_sysctl_header;
5346static void init_sched_domain_sysctl(void)
5347{
5348 int i, cpu_num = num_online_cpus();
5349 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5350 char buf[32];
5351
5352 sd_ctl_dir[0].child = entry;
5353
5354 for (i = 0; i < cpu_num; i++, entry++) {
5355 snprintf(buf, 32, "cpu%d", i);
e692ab53 5356 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5357 entry->mode = 0555;
e692ab53
NP
5358 entry->child = sd_alloc_ctl_cpu_table(i);
5359 }
5360 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5361}
5362#else
5363static void init_sched_domain_sysctl(void)
5364{
5365}
5366#endif
5367
1da177e4
LT
5368/*
5369 * migration_call - callback that gets triggered when a CPU is added.
5370 * Here we can start up the necessary migration thread for the new CPU.
5371 */
48f24c4d
IM
5372static int __cpuinit
5373migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5374{
1da177e4 5375 struct task_struct *p;
48f24c4d 5376 int cpu = (long)hcpu;
1da177e4 5377 unsigned long flags;
70b97a7f 5378 struct rq *rq;
1da177e4
LT
5379
5380 switch (action) {
5be9361c
GS
5381 case CPU_LOCK_ACQUIRE:
5382 mutex_lock(&sched_hotcpu_mutex);
5383 break;
5384
1da177e4 5385 case CPU_UP_PREPARE:
8bb78442 5386 case CPU_UP_PREPARE_FROZEN:
dd41f596 5387 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5388 if (IS_ERR(p))
5389 return NOTIFY_BAD;
1da177e4
LT
5390 kthread_bind(p, cpu);
5391 /* Must be high prio: stop_machine expects to yield to it. */
5392 rq = task_rq_lock(p, &flags);
dd41f596 5393 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5394 task_rq_unlock(rq, &flags);
5395 cpu_rq(cpu)->migration_thread = p;
5396 break;
48f24c4d 5397
1da177e4 5398 case CPU_ONLINE:
8bb78442 5399 case CPU_ONLINE_FROZEN:
1da177e4
LT
5400 /* Strictly unneccessary, as first user will wake it. */
5401 wake_up_process(cpu_rq(cpu)->migration_thread);
5402 break;
48f24c4d 5403
1da177e4
LT
5404#ifdef CONFIG_HOTPLUG_CPU
5405 case CPU_UP_CANCELED:
8bb78442 5406 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5407 if (!cpu_rq(cpu)->migration_thread)
5408 break;
1da177e4 5409 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5410 kthread_bind(cpu_rq(cpu)->migration_thread,
5411 any_online_cpu(cpu_online_map));
1da177e4
LT
5412 kthread_stop(cpu_rq(cpu)->migration_thread);
5413 cpu_rq(cpu)->migration_thread = NULL;
5414 break;
48f24c4d 5415
1da177e4 5416 case CPU_DEAD:
8bb78442 5417 case CPU_DEAD_FROZEN:
1da177e4
LT
5418 migrate_live_tasks(cpu);
5419 rq = cpu_rq(cpu);
5420 kthread_stop(rq->migration_thread);
5421 rq->migration_thread = NULL;
5422 /* Idle task back to normal (off runqueue, low prio) */
5423 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5424 update_rq_clock(rq);
2e1cb74a 5425 deactivate_task(rq, rq->idle, 0);
1da177e4 5426 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5427 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5428 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5429 migrate_dead_tasks(cpu);
5430 task_rq_unlock(rq, &flags);
5431 migrate_nr_uninterruptible(rq);
5432 BUG_ON(rq->nr_running != 0);
5433
5434 /* No need to migrate the tasks: it was best-effort if
5be9361c 5435 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5436 * the requestors. */
5437 spin_lock_irq(&rq->lock);
5438 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5439 struct migration_req *req;
5440
1da177e4 5441 req = list_entry(rq->migration_queue.next,
70b97a7f 5442 struct migration_req, list);
1da177e4
LT
5443 list_del_init(&req->list);
5444 complete(&req->done);
5445 }
5446 spin_unlock_irq(&rq->lock);
5447 break;
5448#endif
5be9361c
GS
5449 case CPU_LOCK_RELEASE:
5450 mutex_unlock(&sched_hotcpu_mutex);
5451 break;
1da177e4
LT
5452 }
5453 return NOTIFY_OK;
5454}
5455
5456/* Register at highest priority so that task migration (migrate_all_tasks)
5457 * happens before everything else.
5458 */
26c2143b 5459static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5460 .notifier_call = migration_call,
5461 .priority = 10
5462};
5463
5464int __init migration_init(void)
5465{
5466 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5467 int err;
48f24c4d
IM
5468
5469 /* Start one for the boot CPU: */
07dccf33
AM
5470 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5471 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5472 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5473 register_cpu_notifier(&migration_notifier);
48f24c4d 5474
1da177e4
LT
5475 return 0;
5476}
5477#endif
5478
5479#ifdef CONFIG_SMP
476f3534
CL
5480
5481/* Number of possible processor ids */
5482int nr_cpu_ids __read_mostly = NR_CPUS;
5483EXPORT_SYMBOL(nr_cpu_ids);
5484
1a20ff27 5485#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5486#ifdef SCHED_DOMAIN_DEBUG
5487static void sched_domain_debug(struct sched_domain *sd, int cpu)
5488{
5489 int level = 0;
5490
41c7ce9a
NP
5491 if (!sd) {
5492 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5493 return;
5494 }
5495
1da177e4
LT
5496 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5497
5498 do {
5499 int i;
5500 char str[NR_CPUS];
5501 struct sched_group *group = sd->groups;
5502 cpumask_t groupmask;
5503
5504 cpumask_scnprintf(str, NR_CPUS, sd->span);
5505 cpus_clear(groupmask);
5506
5507 printk(KERN_DEBUG);
5508 for (i = 0; i < level + 1; i++)
5509 printk(" ");
5510 printk("domain %d: ", level);
5511
5512 if (!(sd->flags & SD_LOAD_BALANCE)) {
5513 printk("does not load-balance\n");
5514 if (sd->parent)
33859f7f
MOS
5515 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5516 " has parent");
1da177e4
LT
5517 break;
5518 }
5519
5520 printk("span %s\n", str);
5521
5522 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5523 printk(KERN_ERR "ERROR: domain->span does not contain "
5524 "CPU%d\n", cpu);
1da177e4 5525 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5526 printk(KERN_ERR "ERROR: domain->groups does not contain"
5527 " CPU%d\n", cpu);
1da177e4
LT
5528
5529 printk(KERN_DEBUG);
5530 for (i = 0; i < level + 2; i++)
5531 printk(" ");
5532 printk("groups:");
5533 do {
5534 if (!group) {
5535 printk("\n");
5536 printk(KERN_ERR "ERROR: group is NULL\n");
5537 break;
5538 }
5539
5517d86b 5540 if (!group->__cpu_power) {
1da177e4 5541 printk("\n");
33859f7f
MOS
5542 printk(KERN_ERR "ERROR: domain->cpu_power not "
5543 "set\n");
1da177e4
LT
5544 }
5545
5546 if (!cpus_weight(group->cpumask)) {
5547 printk("\n");
5548 printk(KERN_ERR "ERROR: empty group\n");
5549 }
5550
5551 if (cpus_intersects(groupmask, group->cpumask)) {
5552 printk("\n");
5553 printk(KERN_ERR "ERROR: repeated CPUs\n");
5554 }
5555
5556 cpus_or(groupmask, groupmask, group->cpumask);
5557
5558 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5559 printk(" %s", str);
5560
5561 group = group->next;
5562 } while (group != sd->groups);
5563 printk("\n");
5564
5565 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5566 printk(KERN_ERR "ERROR: groups don't span "
5567 "domain->span\n");
1da177e4
LT
5568
5569 level++;
5570 sd = sd->parent;
33859f7f
MOS
5571 if (!sd)
5572 continue;
1da177e4 5573
33859f7f
MOS
5574 if (!cpus_subset(groupmask, sd->span))
5575 printk(KERN_ERR "ERROR: parent span is not a superset "
5576 "of domain->span\n");
1da177e4
LT
5577
5578 } while (sd);
5579}
5580#else
48f24c4d 5581# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5582#endif
5583
1a20ff27 5584static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5585{
5586 if (cpus_weight(sd->span) == 1)
5587 return 1;
5588
5589 /* Following flags need at least 2 groups */
5590 if (sd->flags & (SD_LOAD_BALANCE |
5591 SD_BALANCE_NEWIDLE |
5592 SD_BALANCE_FORK |
89c4710e
SS
5593 SD_BALANCE_EXEC |
5594 SD_SHARE_CPUPOWER |
5595 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5596 if (sd->groups != sd->groups->next)
5597 return 0;
5598 }
5599
5600 /* Following flags don't use groups */
5601 if (sd->flags & (SD_WAKE_IDLE |
5602 SD_WAKE_AFFINE |
5603 SD_WAKE_BALANCE))
5604 return 0;
5605
5606 return 1;
5607}
5608
48f24c4d
IM
5609static int
5610sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5611{
5612 unsigned long cflags = sd->flags, pflags = parent->flags;
5613
5614 if (sd_degenerate(parent))
5615 return 1;
5616
5617 if (!cpus_equal(sd->span, parent->span))
5618 return 0;
5619
5620 /* Does parent contain flags not in child? */
5621 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5622 if (cflags & SD_WAKE_AFFINE)
5623 pflags &= ~SD_WAKE_BALANCE;
5624 /* Flags needing groups don't count if only 1 group in parent */
5625 if (parent->groups == parent->groups->next) {
5626 pflags &= ~(SD_LOAD_BALANCE |
5627 SD_BALANCE_NEWIDLE |
5628 SD_BALANCE_FORK |
89c4710e
SS
5629 SD_BALANCE_EXEC |
5630 SD_SHARE_CPUPOWER |
5631 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5632 }
5633 if (~cflags & pflags)
5634 return 0;
5635
5636 return 1;
5637}
5638
1da177e4
LT
5639/*
5640 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5641 * hold the hotplug lock.
5642 */
9c1cfda2 5643static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5644{
70b97a7f 5645 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5646 struct sched_domain *tmp;
5647
5648 /* Remove the sched domains which do not contribute to scheduling. */
5649 for (tmp = sd; tmp; tmp = tmp->parent) {
5650 struct sched_domain *parent = tmp->parent;
5651 if (!parent)
5652 break;
1a848870 5653 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5654 tmp->parent = parent->parent;
1a848870
SS
5655 if (parent->parent)
5656 parent->parent->child = tmp;
5657 }
245af2c7
SS
5658 }
5659
1a848870 5660 if (sd && sd_degenerate(sd)) {
245af2c7 5661 sd = sd->parent;
1a848870
SS
5662 if (sd)
5663 sd->child = NULL;
5664 }
1da177e4
LT
5665
5666 sched_domain_debug(sd, cpu);
5667
674311d5 5668 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5669}
5670
5671/* cpus with isolated domains */
67af63a6 5672static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5673
5674/* Setup the mask of cpus configured for isolated domains */
5675static int __init isolated_cpu_setup(char *str)
5676{
5677 int ints[NR_CPUS], i;
5678
5679 str = get_options(str, ARRAY_SIZE(ints), ints);
5680 cpus_clear(cpu_isolated_map);
5681 for (i = 1; i <= ints[0]; i++)
5682 if (ints[i] < NR_CPUS)
5683 cpu_set(ints[i], cpu_isolated_map);
5684 return 1;
5685}
5686
5687__setup ("isolcpus=", isolated_cpu_setup);
5688
5689/*
6711cab4
SS
5690 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5691 * to a function which identifies what group(along with sched group) a CPU
5692 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5693 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5694 *
5695 * init_sched_build_groups will build a circular linked list of the groups
5696 * covered by the given span, and will set each group's ->cpumask correctly,
5697 * and ->cpu_power to 0.
5698 */
a616058b 5699static void
6711cab4
SS
5700init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5701 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5702 struct sched_group **sg))
1da177e4
LT
5703{
5704 struct sched_group *first = NULL, *last = NULL;
5705 cpumask_t covered = CPU_MASK_NONE;
5706 int i;
5707
5708 for_each_cpu_mask(i, span) {
6711cab4
SS
5709 struct sched_group *sg;
5710 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5711 int j;
5712
5713 if (cpu_isset(i, covered))
5714 continue;
5715
5716 sg->cpumask = CPU_MASK_NONE;
5517d86b 5717 sg->__cpu_power = 0;
1da177e4
LT
5718
5719 for_each_cpu_mask(j, span) {
6711cab4 5720 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5721 continue;
5722
5723 cpu_set(j, covered);
5724 cpu_set(j, sg->cpumask);
5725 }
5726 if (!first)
5727 first = sg;
5728 if (last)
5729 last->next = sg;
5730 last = sg;
5731 }
5732 last->next = first;
5733}
5734
9c1cfda2 5735#define SD_NODES_PER_DOMAIN 16
1da177e4 5736
9c1cfda2 5737#ifdef CONFIG_NUMA
198e2f18 5738
9c1cfda2
JH
5739/**
5740 * find_next_best_node - find the next node to include in a sched_domain
5741 * @node: node whose sched_domain we're building
5742 * @used_nodes: nodes already in the sched_domain
5743 *
5744 * Find the next node to include in a given scheduling domain. Simply
5745 * finds the closest node not already in the @used_nodes map.
5746 *
5747 * Should use nodemask_t.
5748 */
5749static int find_next_best_node(int node, unsigned long *used_nodes)
5750{
5751 int i, n, val, min_val, best_node = 0;
5752
5753 min_val = INT_MAX;
5754
5755 for (i = 0; i < MAX_NUMNODES; i++) {
5756 /* Start at @node */
5757 n = (node + i) % MAX_NUMNODES;
5758
5759 if (!nr_cpus_node(n))
5760 continue;
5761
5762 /* Skip already used nodes */
5763 if (test_bit(n, used_nodes))
5764 continue;
5765
5766 /* Simple min distance search */
5767 val = node_distance(node, n);
5768
5769 if (val < min_val) {
5770 min_val = val;
5771 best_node = n;
5772 }
5773 }
5774
5775 set_bit(best_node, used_nodes);
5776 return best_node;
5777}
5778
5779/**
5780 * sched_domain_node_span - get a cpumask for a node's sched_domain
5781 * @node: node whose cpumask we're constructing
5782 * @size: number of nodes to include in this span
5783 *
5784 * Given a node, construct a good cpumask for its sched_domain to span. It
5785 * should be one that prevents unnecessary balancing, but also spreads tasks
5786 * out optimally.
5787 */
5788static cpumask_t sched_domain_node_span(int node)
5789{
9c1cfda2 5790 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5791 cpumask_t span, nodemask;
5792 int i;
9c1cfda2
JH
5793
5794 cpus_clear(span);
5795 bitmap_zero(used_nodes, MAX_NUMNODES);
5796
5797 nodemask = node_to_cpumask(node);
5798 cpus_or(span, span, nodemask);
5799 set_bit(node, used_nodes);
5800
5801 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5802 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5803
9c1cfda2
JH
5804 nodemask = node_to_cpumask(next_node);
5805 cpus_or(span, span, nodemask);
5806 }
5807
5808 return span;
5809}
5810#endif
5811
5c45bf27 5812int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5813
9c1cfda2 5814/*
48f24c4d 5815 * SMT sched-domains:
9c1cfda2 5816 */
1da177e4
LT
5817#ifdef CONFIG_SCHED_SMT
5818static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5819static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5820
6711cab4
SS
5821static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5822 struct sched_group **sg)
1da177e4 5823{
6711cab4
SS
5824 if (sg)
5825 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5826 return cpu;
5827}
5828#endif
5829
48f24c4d
IM
5830/*
5831 * multi-core sched-domains:
5832 */
1e9f28fa
SS
5833#ifdef CONFIG_SCHED_MC
5834static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5835static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5836#endif
5837
5838#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5839static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5840 struct sched_group **sg)
1e9f28fa 5841{
6711cab4 5842 int group;
a616058b
SS
5843 cpumask_t mask = cpu_sibling_map[cpu];
5844 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5845 group = first_cpu(mask);
5846 if (sg)
5847 *sg = &per_cpu(sched_group_core, group);
5848 return group;
1e9f28fa
SS
5849}
5850#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5851static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5852 struct sched_group **sg)
1e9f28fa 5853{
6711cab4
SS
5854 if (sg)
5855 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5856 return cpu;
5857}
5858#endif
5859
1da177e4 5860static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5861static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5862
6711cab4
SS
5863static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5864 struct sched_group **sg)
1da177e4 5865{
6711cab4 5866 int group;
48f24c4d 5867#ifdef CONFIG_SCHED_MC
1e9f28fa 5868 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5869 cpus_and(mask, mask, *cpu_map);
6711cab4 5870 group = first_cpu(mask);
1e9f28fa 5871#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5872 cpumask_t mask = cpu_sibling_map[cpu];
5873 cpus_and(mask, mask, *cpu_map);
6711cab4 5874 group = first_cpu(mask);
1da177e4 5875#else
6711cab4 5876 group = cpu;
1da177e4 5877#endif
6711cab4
SS
5878 if (sg)
5879 *sg = &per_cpu(sched_group_phys, group);
5880 return group;
1da177e4
LT
5881}
5882
5883#ifdef CONFIG_NUMA
1da177e4 5884/*
9c1cfda2
JH
5885 * The init_sched_build_groups can't handle what we want to do with node
5886 * groups, so roll our own. Now each node has its own list of groups which
5887 * gets dynamically allocated.
1da177e4 5888 */
9c1cfda2 5889static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5890static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5891
9c1cfda2 5892static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5893static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5894
6711cab4
SS
5895static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5896 struct sched_group **sg)
9c1cfda2 5897{
6711cab4
SS
5898 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5899 int group;
5900
5901 cpus_and(nodemask, nodemask, *cpu_map);
5902 group = first_cpu(nodemask);
5903
5904 if (sg)
5905 *sg = &per_cpu(sched_group_allnodes, group);
5906 return group;
1da177e4 5907}
6711cab4 5908
08069033
SS
5909static void init_numa_sched_groups_power(struct sched_group *group_head)
5910{
5911 struct sched_group *sg = group_head;
5912 int j;
5913
5914 if (!sg)
5915 return;
5916next_sg:
5917 for_each_cpu_mask(j, sg->cpumask) {
5918 struct sched_domain *sd;
5919
5920 sd = &per_cpu(phys_domains, j);
5921 if (j != first_cpu(sd->groups->cpumask)) {
5922 /*
5923 * Only add "power" once for each
5924 * physical package.
5925 */
5926 continue;
5927 }
5928
5517d86b 5929 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5930 }
5931 sg = sg->next;
5932 if (sg != group_head)
5933 goto next_sg;
5934}
1da177e4
LT
5935#endif
5936
a616058b 5937#ifdef CONFIG_NUMA
51888ca2
SV
5938/* Free memory allocated for various sched_group structures */
5939static void free_sched_groups(const cpumask_t *cpu_map)
5940{
a616058b 5941 int cpu, i;
51888ca2
SV
5942
5943 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5944 struct sched_group **sched_group_nodes
5945 = sched_group_nodes_bycpu[cpu];
5946
51888ca2
SV
5947 if (!sched_group_nodes)
5948 continue;
5949
5950 for (i = 0; i < MAX_NUMNODES; i++) {
5951 cpumask_t nodemask = node_to_cpumask(i);
5952 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5953
5954 cpus_and(nodemask, nodemask, *cpu_map);
5955 if (cpus_empty(nodemask))
5956 continue;
5957
5958 if (sg == NULL)
5959 continue;
5960 sg = sg->next;
5961next_sg:
5962 oldsg = sg;
5963 sg = sg->next;
5964 kfree(oldsg);
5965 if (oldsg != sched_group_nodes[i])
5966 goto next_sg;
5967 }
5968 kfree(sched_group_nodes);
5969 sched_group_nodes_bycpu[cpu] = NULL;
5970 }
51888ca2 5971}
a616058b
SS
5972#else
5973static void free_sched_groups(const cpumask_t *cpu_map)
5974{
5975}
5976#endif
51888ca2 5977
89c4710e
SS
5978/*
5979 * Initialize sched groups cpu_power.
5980 *
5981 * cpu_power indicates the capacity of sched group, which is used while
5982 * distributing the load between different sched groups in a sched domain.
5983 * Typically cpu_power for all the groups in a sched domain will be same unless
5984 * there are asymmetries in the topology. If there are asymmetries, group
5985 * having more cpu_power will pickup more load compared to the group having
5986 * less cpu_power.
5987 *
5988 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5989 * the maximum number of tasks a group can handle in the presence of other idle
5990 * or lightly loaded groups in the same sched domain.
5991 */
5992static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5993{
5994 struct sched_domain *child;
5995 struct sched_group *group;
5996
5997 WARN_ON(!sd || !sd->groups);
5998
5999 if (cpu != first_cpu(sd->groups->cpumask))
6000 return;
6001
6002 child = sd->child;
6003
5517d86b
ED
6004 sd->groups->__cpu_power = 0;
6005
89c4710e
SS
6006 /*
6007 * For perf policy, if the groups in child domain share resources
6008 * (for example cores sharing some portions of the cache hierarchy
6009 * or SMT), then set this domain groups cpu_power such that each group
6010 * can handle only one task, when there are other idle groups in the
6011 * same sched domain.
6012 */
6013 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6014 (child->flags &
6015 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6016 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6017 return;
6018 }
6019
89c4710e
SS
6020 /*
6021 * add cpu_power of each child group to this groups cpu_power
6022 */
6023 group = child->groups;
6024 do {
5517d86b 6025 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6026 group = group->next;
6027 } while (group != child->groups);
6028}
6029
1da177e4 6030/*
1a20ff27
DG
6031 * Build sched domains for a given set of cpus and attach the sched domains
6032 * to the individual cpus
1da177e4 6033 */
51888ca2 6034static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6035{
6036 int i;
d1b55138
JH
6037#ifdef CONFIG_NUMA
6038 struct sched_group **sched_group_nodes = NULL;
6711cab4 6039 int sd_allnodes = 0;
d1b55138
JH
6040
6041 /*
6042 * Allocate the per-node list of sched groups
6043 */
dd41f596 6044 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6045 GFP_KERNEL);
d1b55138
JH
6046 if (!sched_group_nodes) {
6047 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6048 return -ENOMEM;
d1b55138
JH
6049 }
6050 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6051#endif
1da177e4
LT
6052
6053 /*
1a20ff27 6054 * Set up domains for cpus specified by the cpu_map.
1da177e4 6055 */
1a20ff27 6056 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6057 struct sched_domain *sd = NULL, *p;
6058 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6059
1a20ff27 6060 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6061
6062#ifdef CONFIG_NUMA
dd41f596
IM
6063 if (cpus_weight(*cpu_map) >
6064 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6065 sd = &per_cpu(allnodes_domains, i);
6066 *sd = SD_ALLNODES_INIT;
6067 sd->span = *cpu_map;
6711cab4 6068 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6069 p = sd;
6711cab4 6070 sd_allnodes = 1;
9c1cfda2
JH
6071 } else
6072 p = NULL;
6073
1da177e4 6074 sd = &per_cpu(node_domains, i);
1da177e4 6075 *sd = SD_NODE_INIT;
9c1cfda2
JH
6076 sd->span = sched_domain_node_span(cpu_to_node(i));
6077 sd->parent = p;
1a848870
SS
6078 if (p)
6079 p->child = sd;
9c1cfda2 6080 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6081#endif
6082
6083 p = sd;
6084 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6085 *sd = SD_CPU_INIT;
6086 sd->span = nodemask;
6087 sd->parent = p;
1a848870
SS
6088 if (p)
6089 p->child = sd;
6711cab4 6090 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6091
1e9f28fa
SS
6092#ifdef CONFIG_SCHED_MC
6093 p = sd;
6094 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6095 *sd = SD_MC_INIT;
6096 sd->span = cpu_coregroup_map(i);
6097 cpus_and(sd->span, sd->span, *cpu_map);
6098 sd->parent = p;
1a848870 6099 p->child = sd;
6711cab4 6100 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6101#endif
6102
1da177e4
LT
6103#ifdef CONFIG_SCHED_SMT
6104 p = sd;
6105 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6106 *sd = SD_SIBLING_INIT;
6107 sd->span = cpu_sibling_map[i];
1a20ff27 6108 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6109 sd->parent = p;
1a848870 6110 p->child = sd;
6711cab4 6111 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6112#endif
6113 }
6114
6115#ifdef CONFIG_SCHED_SMT
6116 /* Set up CPU (sibling) groups */
9c1cfda2 6117 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6118 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6119 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6120 if (i != first_cpu(this_sibling_map))
6121 continue;
6122
dd41f596
IM
6123 init_sched_build_groups(this_sibling_map, cpu_map,
6124 &cpu_to_cpu_group);
1da177e4
LT
6125 }
6126#endif
6127
1e9f28fa
SS
6128#ifdef CONFIG_SCHED_MC
6129 /* Set up multi-core groups */
6130 for_each_cpu_mask(i, *cpu_map) {
6131 cpumask_t this_core_map = cpu_coregroup_map(i);
6132 cpus_and(this_core_map, this_core_map, *cpu_map);
6133 if (i != first_cpu(this_core_map))
6134 continue;
dd41f596
IM
6135 init_sched_build_groups(this_core_map, cpu_map,
6136 &cpu_to_core_group);
1e9f28fa
SS
6137 }
6138#endif
6139
1da177e4
LT
6140 /* Set up physical groups */
6141 for (i = 0; i < MAX_NUMNODES; i++) {
6142 cpumask_t nodemask = node_to_cpumask(i);
6143
1a20ff27 6144 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6145 if (cpus_empty(nodemask))
6146 continue;
6147
6711cab4 6148 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6149 }
6150
6151#ifdef CONFIG_NUMA
6152 /* Set up node groups */
6711cab4 6153 if (sd_allnodes)
dd41f596
IM
6154 init_sched_build_groups(*cpu_map, cpu_map,
6155 &cpu_to_allnodes_group);
9c1cfda2
JH
6156
6157 for (i = 0; i < MAX_NUMNODES; i++) {
6158 /* Set up node groups */
6159 struct sched_group *sg, *prev;
6160 cpumask_t nodemask = node_to_cpumask(i);
6161 cpumask_t domainspan;
6162 cpumask_t covered = CPU_MASK_NONE;
6163 int j;
6164
6165 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6166 if (cpus_empty(nodemask)) {
6167 sched_group_nodes[i] = NULL;
9c1cfda2 6168 continue;
d1b55138 6169 }
9c1cfda2
JH
6170
6171 domainspan = sched_domain_node_span(i);
6172 cpus_and(domainspan, domainspan, *cpu_map);
6173
15f0b676 6174 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6175 if (!sg) {
6176 printk(KERN_WARNING "Can not alloc domain group for "
6177 "node %d\n", i);
6178 goto error;
6179 }
9c1cfda2
JH
6180 sched_group_nodes[i] = sg;
6181 for_each_cpu_mask(j, nodemask) {
6182 struct sched_domain *sd;
9761eea8 6183
9c1cfda2
JH
6184 sd = &per_cpu(node_domains, j);
6185 sd->groups = sg;
9c1cfda2 6186 }
5517d86b 6187 sg->__cpu_power = 0;
9c1cfda2 6188 sg->cpumask = nodemask;
51888ca2 6189 sg->next = sg;
9c1cfda2
JH
6190 cpus_or(covered, covered, nodemask);
6191 prev = sg;
6192
6193 for (j = 0; j < MAX_NUMNODES; j++) {
6194 cpumask_t tmp, notcovered;
6195 int n = (i + j) % MAX_NUMNODES;
6196
6197 cpus_complement(notcovered, covered);
6198 cpus_and(tmp, notcovered, *cpu_map);
6199 cpus_and(tmp, tmp, domainspan);
6200 if (cpus_empty(tmp))
6201 break;
6202
6203 nodemask = node_to_cpumask(n);
6204 cpus_and(tmp, tmp, nodemask);
6205 if (cpus_empty(tmp))
6206 continue;
6207
15f0b676
SV
6208 sg = kmalloc_node(sizeof(struct sched_group),
6209 GFP_KERNEL, i);
9c1cfda2
JH
6210 if (!sg) {
6211 printk(KERN_WARNING
6212 "Can not alloc domain group for node %d\n", j);
51888ca2 6213 goto error;
9c1cfda2 6214 }
5517d86b 6215 sg->__cpu_power = 0;
9c1cfda2 6216 sg->cpumask = tmp;
51888ca2 6217 sg->next = prev->next;
9c1cfda2
JH
6218 cpus_or(covered, covered, tmp);
6219 prev->next = sg;
6220 prev = sg;
6221 }
9c1cfda2 6222 }
1da177e4
LT
6223#endif
6224
6225 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6226#ifdef CONFIG_SCHED_SMT
1a20ff27 6227 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6228 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6229
89c4710e 6230 init_sched_groups_power(i, sd);
5c45bf27 6231 }
1da177e4 6232#endif
1e9f28fa 6233#ifdef CONFIG_SCHED_MC
5c45bf27 6234 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6235 struct sched_domain *sd = &per_cpu(core_domains, i);
6236
89c4710e 6237 init_sched_groups_power(i, sd);
5c45bf27
SS
6238 }
6239#endif
1e9f28fa 6240
5c45bf27 6241 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6242 struct sched_domain *sd = &per_cpu(phys_domains, i);
6243
89c4710e 6244 init_sched_groups_power(i, sd);
1da177e4
LT
6245 }
6246
9c1cfda2 6247#ifdef CONFIG_NUMA
08069033
SS
6248 for (i = 0; i < MAX_NUMNODES; i++)
6249 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6250
6711cab4
SS
6251 if (sd_allnodes) {
6252 struct sched_group *sg;
f712c0c7 6253
6711cab4 6254 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6255 init_numa_sched_groups_power(sg);
6256 }
9c1cfda2
JH
6257#endif
6258
1da177e4 6259 /* Attach the domains */
1a20ff27 6260 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6261 struct sched_domain *sd;
6262#ifdef CONFIG_SCHED_SMT
6263 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6264#elif defined(CONFIG_SCHED_MC)
6265 sd = &per_cpu(core_domains, i);
1da177e4
LT
6266#else
6267 sd = &per_cpu(phys_domains, i);
6268#endif
6269 cpu_attach_domain(sd, i);
6270 }
51888ca2
SV
6271
6272 return 0;
6273
a616058b 6274#ifdef CONFIG_NUMA
51888ca2
SV
6275error:
6276 free_sched_groups(cpu_map);
6277 return -ENOMEM;
a616058b 6278#endif
1da177e4 6279}
1a20ff27
DG
6280/*
6281 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6282 */
51888ca2 6283static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6284{
6285 cpumask_t cpu_default_map;
51888ca2 6286 int err;
1da177e4 6287
1a20ff27
DG
6288 /*
6289 * Setup mask for cpus without special case scheduling requirements.
6290 * For now this just excludes isolated cpus, but could be used to
6291 * exclude other special cases in the future.
6292 */
6293 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6294
51888ca2
SV
6295 err = build_sched_domains(&cpu_default_map);
6296
6297 return err;
1a20ff27
DG
6298}
6299
6300static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6301{
51888ca2 6302 free_sched_groups(cpu_map);
9c1cfda2 6303}
1da177e4 6304
1a20ff27
DG
6305/*
6306 * Detach sched domains from a group of cpus specified in cpu_map
6307 * These cpus will now be attached to the NULL domain
6308 */
858119e1 6309static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6310{
6311 int i;
6312
6313 for_each_cpu_mask(i, *cpu_map)
6314 cpu_attach_domain(NULL, i);
6315 synchronize_sched();
6316 arch_destroy_sched_domains(cpu_map);
6317}
6318
6319/*
6320 * Partition sched domains as specified by the cpumasks below.
6321 * This attaches all cpus from the cpumasks to the NULL domain,
6322 * waits for a RCU quiescent period, recalculates sched
6323 * domain information and then attaches them back to the
6324 * correct sched domains
6325 * Call with hotplug lock held
6326 */
51888ca2 6327int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6328{
6329 cpumask_t change_map;
51888ca2 6330 int err = 0;
1a20ff27
DG
6331
6332 cpus_and(*partition1, *partition1, cpu_online_map);
6333 cpus_and(*partition2, *partition2, cpu_online_map);
6334 cpus_or(change_map, *partition1, *partition2);
6335
6336 /* Detach sched domains from all of the affected cpus */
6337 detach_destroy_domains(&change_map);
6338 if (!cpus_empty(*partition1))
51888ca2
SV
6339 err = build_sched_domains(partition1);
6340 if (!err && !cpus_empty(*partition2))
6341 err = build_sched_domains(partition2);
6342
6343 return err;
1a20ff27
DG
6344}
6345
5c45bf27 6346#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6347static int arch_reinit_sched_domains(void)
5c45bf27
SS
6348{
6349 int err;
6350
5be9361c 6351 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6352 detach_destroy_domains(&cpu_online_map);
6353 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6354 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6355
6356 return err;
6357}
6358
6359static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6360{
6361 int ret;
6362
6363 if (buf[0] != '0' && buf[0] != '1')
6364 return -EINVAL;
6365
6366 if (smt)
6367 sched_smt_power_savings = (buf[0] == '1');
6368 else
6369 sched_mc_power_savings = (buf[0] == '1');
6370
6371 ret = arch_reinit_sched_domains();
6372
6373 return ret ? ret : count;
6374}
6375
5c45bf27
SS
6376#ifdef CONFIG_SCHED_MC
6377static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6378{
6379 return sprintf(page, "%u\n", sched_mc_power_savings);
6380}
48f24c4d
IM
6381static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6382 const char *buf, size_t count)
5c45bf27
SS
6383{
6384 return sched_power_savings_store(buf, count, 0);
6385}
6707de00
AB
6386static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6387 sched_mc_power_savings_store);
5c45bf27
SS
6388#endif
6389
6390#ifdef CONFIG_SCHED_SMT
6391static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6392{
6393 return sprintf(page, "%u\n", sched_smt_power_savings);
6394}
48f24c4d
IM
6395static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6396 const char *buf, size_t count)
5c45bf27
SS
6397{
6398 return sched_power_savings_store(buf, count, 1);
6399}
6707de00
AB
6400static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6401 sched_smt_power_savings_store);
6402#endif
6403
6404int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6405{
6406 int err = 0;
6407
6408#ifdef CONFIG_SCHED_SMT
6409 if (smt_capable())
6410 err = sysfs_create_file(&cls->kset.kobj,
6411 &attr_sched_smt_power_savings.attr);
6412#endif
6413#ifdef CONFIG_SCHED_MC
6414 if (!err && mc_capable())
6415 err = sysfs_create_file(&cls->kset.kobj,
6416 &attr_sched_mc_power_savings.attr);
6417#endif
6418 return err;
6419}
5c45bf27
SS
6420#endif
6421
1da177e4
LT
6422/*
6423 * Force a reinitialization of the sched domains hierarchy. The domains
6424 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6425 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6426 * which will prevent rebalancing while the sched domains are recalculated.
6427 */
6428static int update_sched_domains(struct notifier_block *nfb,
6429 unsigned long action, void *hcpu)
6430{
1da177e4
LT
6431 switch (action) {
6432 case CPU_UP_PREPARE:
8bb78442 6433 case CPU_UP_PREPARE_FROZEN:
1da177e4 6434 case CPU_DOWN_PREPARE:
8bb78442 6435 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6436 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6437 return NOTIFY_OK;
6438
6439 case CPU_UP_CANCELED:
8bb78442 6440 case CPU_UP_CANCELED_FROZEN:
1da177e4 6441 case CPU_DOWN_FAILED:
8bb78442 6442 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6443 case CPU_ONLINE:
8bb78442 6444 case CPU_ONLINE_FROZEN:
1da177e4 6445 case CPU_DEAD:
8bb78442 6446 case CPU_DEAD_FROZEN:
1da177e4
LT
6447 /*
6448 * Fall through and re-initialise the domains.
6449 */
6450 break;
6451 default:
6452 return NOTIFY_DONE;
6453 }
6454
6455 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6456 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6457
6458 return NOTIFY_OK;
6459}
1da177e4
LT
6460
6461void __init sched_init_smp(void)
6462{
5c1e1767
NP
6463 cpumask_t non_isolated_cpus;
6464
5be9361c 6465 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6466 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6467 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6468 if (cpus_empty(non_isolated_cpus))
6469 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6470 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6471 /* XXX: Theoretical race here - CPU may be hotplugged now */
6472 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6473
e692ab53
NP
6474 init_sched_domain_sysctl();
6475
5c1e1767
NP
6476 /* Move init over to a non-isolated CPU */
6477 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6478 BUG();
1da177e4
LT
6479}
6480#else
6481void __init sched_init_smp(void)
6482{
6483}
6484#endif /* CONFIG_SMP */
6485
6486int in_sched_functions(unsigned long addr)
6487{
6488 /* Linker adds these: start and end of __sched functions */
6489 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6490
1da177e4
LT
6491 return in_lock_functions(addr) ||
6492 (addr >= (unsigned long)__sched_text_start
6493 && addr < (unsigned long)__sched_text_end);
6494}
6495
dd41f596
IM
6496static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6497{
6498 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6499#ifdef CONFIG_FAIR_GROUP_SCHED
6500 cfs_rq->rq = rq;
6501#endif
67e9fb2a 6502 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6503}
6504
1da177e4
LT
6505void __init sched_init(void)
6506{
476f3534 6507 int highest_cpu = 0;
dd41f596
IM
6508 int i, j;
6509
6510 /*
6511 * Link up the scheduling class hierarchy:
6512 */
6513 rt_sched_class.next = &fair_sched_class;
6514 fair_sched_class.next = &idle_sched_class;
6515 idle_sched_class.next = NULL;
1da177e4 6516
0a945022 6517 for_each_possible_cpu(i) {
dd41f596 6518 struct rt_prio_array *array;
70b97a7f 6519 struct rq *rq;
1da177e4
LT
6520
6521 rq = cpu_rq(i);
6522 spin_lock_init(&rq->lock);
fcb99371 6523 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6524 rq->nr_running = 0;
dd41f596
IM
6525 rq->clock = 1;
6526 init_cfs_rq(&rq->cfs, rq);
6527#ifdef CONFIG_FAIR_GROUP_SCHED
6528 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
29f59db3
SV
6529 {
6530 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6531 struct sched_entity *se =
6532 &per_cpu(init_sched_entity, i);
6533
6534 init_cfs_rq_p[i] = cfs_rq;
6535 init_cfs_rq(cfs_rq, rq);
6536 cfs_rq->tg = &init_task_grp;
6537 list_add(&cfs_rq->leaf_cfs_rq_list,
6538 &rq->leaf_cfs_rq_list);
6539
6540 init_sched_entity_p[i] = se;
6541 se->cfs_rq = &rq->cfs;
6542 se->my_q = cfs_rq;
9b5b7751
SV
6543 se->load.weight = init_task_grp_load;
6544 se->load.inv_weight =
6545 div64_64(1ULL<<32, init_task_grp_load);
29f59db3
SV
6546 se->parent = NULL;
6547 }
9b5b7751 6548 init_task_grp.shares = init_task_grp_load;
dd41f596 6549#endif
1da177e4 6550
dd41f596
IM
6551 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6552 rq->cpu_load[j] = 0;
1da177e4 6553#ifdef CONFIG_SMP
41c7ce9a 6554 rq->sd = NULL;
1da177e4 6555 rq->active_balance = 0;
dd41f596 6556 rq->next_balance = jiffies;
1da177e4 6557 rq->push_cpu = 0;
0a2966b4 6558 rq->cpu = i;
1da177e4
LT
6559 rq->migration_thread = NULL;
6560 INIT_LIST_HEAD(&rq->migration_queue);
6561#endif
6562 atomic_set(&rq->nr_iowait, 0);
6563
dd41f596
IM
6564 array = &rq->rt.active;
6565 for (j = 0; j < MAX_RT_PRIO; j++) {
6566 INIT_LIST_HEAD(array->queue + j);
6567 __clear_bit(j, array->bitmap);
1da177e4 6568 }
476f3534 6569 highest_cpu = i;
dd41f596
IM
6570 /* delimiter for bitsearch: */
6571 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6572 }
6573
2dd73a4f 6574 set_load_weight(&init_task);
b50f60ce 6575
e107be36
AK
6576#ifdef CONFIG_PREEMPT_NOTIFIERS
6577 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6578#endif
6579
c9819f45 6580#ifdef CONFIG_SMP
476f3534 6581 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6582 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6583#endif
6584
b50f60ce
HC
6585#ifdef CONFIG_RT_MUTEXES
6586 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6587#endif
6588
1da177e4
LT
6589 /*
6590 * The boot idle thread does lazy MMU switching as well:
6591 */
6592 atomic_inc(&init_mm.mm_count);
6593 enter_lazy_tlb(&init_mm, current);
6594
6595 /*
6596 * Make us the idle thread. Technically, schedule() should not be
6597 * called from this thread, however somewhere below it might be,
6598 * but because we are the idle thread, we just pick up running again
6599 * when this runqueue becomes "idle".
6600 */
6601 init_idle(current, smp_processor_id());
dd41f596
IM
6602 /*
6603 * During early bootup we pretend to be a normal task:
6604 */
6605 current->sched_class = &fair_sched_class;
1da177e4
LT
6606}
6607
6608#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6609void __might_sleep(char *file, int line)
6610{
48f24c4d 6611#ifdef in_atomic
1da177e4
LT
6612 static unsigned long prev_jiffy; /* ratelimiting */
6613
6614 if ((in_atomic() || irqs_disabled()) &&
6615 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6616 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6617 return;
6618 prev_jiffy = jiffies;
91368d73 6619 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6620 " context at %s:%d\n", file, line);
6621 printk("in_atomic():%d, irqs_disabled():%d\n",
6622 in_atomic(), irqs_disabled());
a4c410f0 6623 debug_show_held_locks(current);
3117df04
IM
6624 if (irqs_disabled())
6625 print_irqtrace_events(current);
1da177e4
LT
6626 dump_stack();
6627 }
6628#endif
6629}
6630EXPORT_SYMBOL(__might_sleep);
6631#endif
6632
6633#ifdef CONFIG_MAGIC_SYSRQ
6634void normalize_rt_tasks(void)
6635{
a0f98a1c 6636 struct task_struct *g, *p;
1da177e4 6637 unsigned long flags;
70b97a7f 6638 struct rq *rq;
dd41f596 6639 int on_rq;
1da177e4
LT
6640
6641 read_lock_irq(&tasklist_lock);
a0f98a1c 6642 do_each_thread(g, p) {
6cfb0d5d 6643 p->se.exec_start = 0;
6cfb0d5d 6644#ifdef CONFIG_SCHEDSTATS
dd41f596 6645 p->se.wait_start = 0;
dd41f596 6646 p->se.sleep_start = 0;
dd41f596 6647 p->se.block_start = 0;
6cfb0d5d 6648#endif
dd41f596
IM
6649 task_rq(p)->clock = 0;
6650
6651 if (!rt_task(p)) {
6652 /*
6653 * Renice negative nice level userspace
6654 * tasks back to 0:
6655 */
6656 if (TASK_NICE(p) < 0 && p->mm)
6657 set_user_nice(p, 0);
1da177e4 6658 continue;
dd41f596 6659 }
1da177e4 6660
b29739f9
IM
6661 spin_lock_irqsave(&p->pi_lock, flags);
6662 rq = __task_rq_lock(p);
dd41f596
IM
6663#ifdef CONFIG_SMP
6664 /*
6665 * Do not touch the migration thread:
6666 */
6667 if (p == rq->migration_thread)
6668 goto out_unlock;
6669#endif
1da177e4 6670
2daa3577 6671 update_rq_clock(rq);
dd41f596 6672 on_rq = p->se.on_rq;
2daa3577
IM
6673 if (on_rq)
6674 deactivate_task(rq, p, 0);
dd41f596
IM
6675 __setscheduler(rq, p, SCHED_NORMAL, 0);
6676 if (on_rq) {
2daa3577 6677 activate_task(rq, p, 0);
1da177e4
LT
6678 resched_task(rq->curr);
6679 }
dd41f596
IM
6680#ifdef CONFIG_SMP
6681 out_unlock:
6682#endif
b29739f9
IM
6683 __task_rq_unlock(rq);
6684 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6685 } while_each_thread(g, p);
6686
1da177e4
LT
6687 read_unlock_irq(&tasklist_lock);
6688}
6689
6690#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6691
6692#ifdef CONFIG_IA64
6693/*
6694 * These functions are only useful for the IA64 MCA handling.
6695 *
6696 * They can only be called when the whole system has been
6697 * stopped - every CPU needs to be quiescent, and no scheduling
6698 * activity can take place. Using them for anything else would
6699 * be a serious bug, and as a result, they aren't even visible
6700 * under any other configuration.
6701 */
6702
6703/**
6704 * curr_task - return the current task for a given cpu.
6705 * @cpu: the processor in question.
6706 *
6707 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6708 */
36c8b586 6709struct task_struct *curr_task(int cpu)
1df5c10a
LT
6710{
6711 return cpu_curr(cpu);
6712}
6713
6714/**
6715 * set_curr_task - set the current task for a given cpu.
6716 * @cpu: the processor in question.
6717 * @p: the task pointer to set.
6718 *
6719 * Description: This function must only be used when non-maskable interrupts
6720 * are serviced on a separate stack. It allows the architecture to switch the
6721 * notion of the current task on a cpu in a non-blocking manner. This function
6722 * must be called with all CPU's synchronized, and interrupts disabled, the
6723 * and caller must save the original value of the current task (see
6724 * curr_task() above) and restore that value before reenabling interrupts and
6725 * re-starting the system.
6726 *
6727 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6728 */
36c8b586 6729void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6730{
6731 cpu_curr(cpu) = p;
6732}
6733
6734#endif
29f59db3
SV
6735
6736#ifdef CONFIG_FAIR_GROUP_SCHED
6737
29f59db3 6738/* allocate runqueue etc for a new task group */
9b5b7751 6739struct task_grp *sched_create_group(void)
29f59db3
SV
6740{
6741 struct task_grp *tg;
6742 struct cfs_rq *cfs_rq;
6743 struct sched_entity *se;
9b5b7751 6744 struct rq *rq;
29f59db3
SV
6745 int i;
6746
29f59db3
SV
6747 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6748 if (!tg)
6749 return ERR_PTR(-ENOMEM);
6750
9b5b7751 6751 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6752 if (!tg->cfs_rq)
6753 goto err;
9b5b7751 6754 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6755 if (!tg->se)
6756 goto err;
6757
6758 for_each_possible_cpu(i) {
9b5b7751 6759 rq = cpu_rq(i);
29f59db3
SV
6760
6761 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6762 cpu_to_node(i));
6763 if (!cfs_rq)
6764 goto err;
6765
6766 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6767 cpu_to_node(i));
6768 if (!se)
6769 goto err;
6770
6771 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6772 memset(se, 0, sizeof(struct sched_entity));
6773
6774 tg->cfs_rq[i] = cfs_rq;
6775 init_cfs_rq(cfs_rq, rq);
6776 cfs_rq->tg = tg;
29f59db3
SV
6777
6778 tg->se[i] = se;
6779 se->cfs_rq = &rq->cfs;
6780 se->my_q = cfs_rq;
6781 se->load.weight = NICE_0_LOAD;
6782 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6783 se->parent = NULL;
6784 }
6785
9b5b7751
SV
6786 for_each_possible_cpu(i) {
6787 rq = cpu_rq(i);
6788 cfs_rq = tg->cfs_rq[i];
6789 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6790 }
29f59db3 6791
9b5b7751 6792 tg->shares = NICE_0_LOAD;
29f59db3 6793
9b5b7751 6794 return tg;
29f59db3
SV
6795
6796err:
6797 for_each_possible_cpu(i) {
6798 if (tg->cfs_rq && tg->cfs_rq[i])
6799 kfree(tg->cfs_rq[i]);
6800 if (tg->se && tg->se[i])
6801 kfree(tg->se[i]);
6802 }
6803 if (tg->cfs_rq)
6804 kfree(tg->cfs_rq);
6805 if (tg->se)
6806 kfree(tg->se);
6807 if (tg)
6808 kfree(tg);
6809
6810 return ERR_PTR(-ENOMEM);
6811}
6812
9b5b7751
SV
6813/* rcu callback to free various structures associated with a task group */
6814static void free_sched_group(struct rcu_head *rhp)
29f59db3 6815{
9b5b7751
SV
6816 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6817 struct task_grp *tg = cfs_rq->tg;
29f59db3
SV
6818 struct sched_entity *se;
6819 int i;
6820
29f59db3
SV
6821 /* now it should be safe to free those cfs_rqs */
6822 for_each_possible_cpu(i) {
6823 cfs_rq = tg->cfs_rq[i];
6824 kfree(cfs_rq);
6825
6826 se = tg->se[i];
6827 kfree(se);
6828 }
6829
6830 kfree(tg->cfs_rq);
6831 kfree(tg->se);
6832 kfree(tg);
6833}
6834
9b5b7751
SV
6835/* Destroy runqueue etc associated with a task group */
6836void sched_destroy_group(struct task_grp *tg)
29f59db3 6837{
9b5b7751
SV
6838 struct cfs_rq *cfs_rq;
6839 int i;
29f59db3 6840
9b5b7751
SV
6841 for_each_possible_cpu(i) {
6842 cfs_rq = tg->cfs_rq[i];
6843 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6844 }
6845
6846 cfs_rq = tg->cfs_rq[0];
6847
6848 /* wait for possible concurrent references to cfs_rqs complete */
6849 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
6850}
6851
9b5b7751
SV
6852/* change task's runqueue when it moves between groups.
6853 * The caller of this function should have put the task in its new group
6854 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6855 * reflect its new group.
6856 */
6857void sched_move_task(struct task_struct *tsk)
29f59db3
SV
6858{
6859 int on_rq, running;
6860 unsigned long flags;
6861 struct rq *rq;
6862
6863 rq = task_rq_lock(tsk, &flags);
6864
6865 if (tsk->sched_class != &fair_sched_class)
6866 goto done;
6867
6868 update_rq_clock(rq);
6869
6870 running = task_running(rq, tsk);
6871 on_rq = tsk->se.on_rq;
6872
83b699ed 6873 if (on_rq) {
29f59db3 6874 dequeue_task(rq, tsk, 0);
83b699ed
SV
6875 if (unlikely(running))
6876 tsk->sched_class->put_prev_task(rq, tsk);
6877 }
29f59db3
SV
6878
6879 set_task_cfs_rq(tsk);
6880
83b699ed
SV
6881 if (on_rq) {
6882 if (unlikely(running))
6883 tsk->sched_class->set_curr_task(rq);
7074badb 6884 enqueue_task(rq, tsk, 0);
83b699ed 6885 }
29f59db3
SV
6886
6887done:
6888 task_rq_unlock(rq, &flags);
6889}
6890
6891static void set_se_shares(struct sched_entity *se, unsigned long shares)
6892{
6893 struct cfs_rq *cfs_rq = se->cfs_rq;
6894 struct rq *rq = cfs_rq->rq;
6895 int on_rq;
6896
6897 spin_lock_irq(&rq->lock);
6898
6899 on_rq = se->on_rq;
6900 if (on_rq)
6901 dequeue_entity(cfs_rq, se, 0);
6902
6903 se->load.weight = shares;
6904 se->load.inv_weight = div64_64((1ULL<<32), shares);
6905
6906 if (on_rq)
6907 enqueue_entity(cfs_rq, se, 0);
6908
6909 spin_unlock_irq(&rq->lock);
6910}
6911
9b5b7751 6912int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
29f59db3
SV
6913{
6914 int i;
29f59db3 6915
9b5b7751
SV
6916 if (tg->shares == shares)
6917 return 0;
29f59db3 6918
9b5b7751 6919 /* return -EINVAL if the new value is not sane */
29f59db3 6920
9b5b7751 6921 tg->shares = shares;
29f59db3 6922 for_each_possible_cpu(i)
9b5b7751 6923 set_se_shares(tg->se[i], shares);
29f59db3 6924
9b5b7751 6925 return 0;
29f59db3
SV
6926}
6927
9b5b7751 6928#endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 1.251862 seconds and 5 git commands to generate.