maple: fix Error in kernel-doc notation
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
57310a98
PZ
334#ifdef CONFIG_SMP
335static int root_task_group_empty(void)
336{
337 return list_empty(&root_task_group.children);
338}
339#endif
340
052f1dc7 341#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
342#ifdef CONFIG_USER_SCHED
343# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 344#else /* !CONFIG_USER_SCHED */
052f1dc7 345# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 346#endif /* CONFIG_USER_SCHED */
052f1dc7 347
cb4ad1ff 348/*
2e084786
LJ
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
cb4ad1ff
MX
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
355 */
18d95a28 356#define MIN_SHARES 2
2e084786 357#define MAX_SHARES (1UL << 18)
18d95a28 358
052f1dc7
PZ
359static int init_task_group_load = INIT_TASK_GROUP_LOAD;
360#endif
361
29f59db3 362/* Default task group.
3a252015 363 * Every task in system belong to this group at bootup.
29f59db3 364 */
434d53b0 365struct task_group init_task_group;
29f59db3
SV
366
367/* return group to which a task belongs */
4cf86d77 368static inline struct task_group *task_group(struct task_struct *p)
29f59db3 369{
4cf86d77 370 struct task_group *tg;
9b5b7751 371
052f1dc7 372#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
373 rcu_read_lock();
374 tg = __task_cred(p)->user->tg;
375 rcu_read_unlock();
052f1dc7 376#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
24e377a8 379#else
41a2d6cf 380 tg = &init_task_group;
24e377a8 381#endif
9b5b7751 382 return tg;
29f59db3
SV
383}
384
385/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 387{
052f1dc7 388#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
052f1dc7 391#endif
6f505b16 392
052f1dc7 393#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 396#endif
29f59db3
SV
397}
398
399#else
400
57310a98
PZ
401#ifdef CONFIG_SMP
402static int root_task_group_empty(void)
403{
404 return 1;
405}
406#endif
407
6f505b16 408static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
409static inline struct task_group *task_group(struct task_struct *p)
410{
411 return NULL;
412}
29f59db3 413
052f1dc7 414#endif /* CONFIG_GROUP_SCHED */
29f59db3 415
6aa645ea
IM
416/* CFS-related fields in a runqueue */
417struct cfs_rq {
418 struct load_weight load;
419 unsigned long nr_running;
420
6aa645ea 421 u64 exec_clock;
e9acbff6 422 u64 min_vruntime;
6aa645ea
IM
423
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
4a55bd5e
PZ
426
427 struct list_head tasks;
428 struct list_head *balance_iterator;
429
430 /*
431 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
432 * It is set to NULL otherwise (i.e when none are currently running).
433 */
4793241b 434 struct sched_entity *curr, *next, *last;
ddc97297 435
5ac5c4d6 436 unsigned int nr_spread_over;
ddc97297 437
62160e3f 438#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
440
41a2d6cf
IM
441 /*
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
445 *
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
448 */
41a2d6cf
IM
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
451
452#ifdef CONFIG_SMP
c09595f6 453 /*
c8cba857 454 * the part of load.weight contributed by tasks
c09595f6 455 */
c8cba857 456 unsigned long task_weight;
c09595f6 457
c8cba857
PZ
458 /*
459 * h_load = weight * f(tg)
460 *
461 * Where f(tg) is the recursive weight fraction assigned to
462 * this group.
463 */
464 unsigned long h_load;
c09595f6 465
c8cba857
PZ
466 /*
467 * this cpu's part of tg->shares
468 */
469 unsigned long shares;
f1d239f7
PZ
470
471 /*
472 * load.weight at the time we set shares
473 */
474 unsigned long rq_weight;
c09595f6 475#endif
6aa645ea
IM
476#endif
477};
1da177e4 478
6aa645ea
IM
479/* Real-Time classes' related field in a runqueue: */
480struct rt_rq {
481 struct rt_prio_array active;
63489e45 482 unsigned long rt_nr_running;
052f1dc7 483#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
484 struct {
485 int curr; /* highest queued rt task prio */
398a153b 486#ifdef CONFIG_SMP
e864c499 487 int next; /* next highest */
398a153b 488#endif
e864c499 489 } highest_prio;
6f505b16 490#endif
fa85ae24 491#ifdef CONFIG_SMP
73fe6aae 492 unsigned long rt_nr_migratory;
a22d7fc1 493 int overloaded;
917b627d 494 struct plist_head pushable_tasks;
fa85ae24 495#endif
6f505b16 496 int rt_throttled;
fa85ae24 497 u64 rt_time;
ac086bc2 498 u64 rt_runtime;
ea736ed5 499 /* Nests inside the rq lock: */
ac086bc2 500 spinlock_t rt_runtime_lock;
6f505b16 501
052f1dc7 502#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
503 unsigned long rt_nr_boosted;
504
6f505b16
PZ
505 struct rq *rq;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
509#endif
6aa645ea
IM
510};
511
57d885fe
GH
512#ifdef CONFIG_SMP
513
514/*
515 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
518 * exclusive cpuset is created, we also create and attach a new root-domain
519 * object.
520 *
57d885fe
GH
521 */
522struct root_domain {
523 atomic_t refcount;
c6c4927b
RR
524 cpumask_var_t span;
525 cpumask_var_t online;
637f5085 526
0eab9146 527 /*
637f5085
GH
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
530 */
c6c4927b 531 cpumask_var_t rto_mask;
0eab9146 532 atomic_t rto_count;
6e0534f2
GH
533#ifdef CONFIG_SMP
534 struct cpupri cpupri;
535#endif
7a09b1a2
VS
536#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
537 /*
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
541 */
542 unsigned int sched_mc_preferred_wakeup_cpu;
543#endif
57d885fe
GH
544};
545
dc938520
GH
546/*
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
549 */
57d885fe
GH
550static struct root_domain def_root_domain;
551
552#endif
553
1da177e4
LT
554/*
555 * This is the main, per-CPU runqueue data structure.
556 *
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
560 */
70b97a7f 561struct rq {
d8016491
IM
562 /* runqueue lock: */
563 spinlock_t lock;
1da177e4
LT
564
565 /*
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
568 */
569 unsigned long nr_running;
6aa645ea
IM
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 572#ifdef CONFIG_NO_HZ
15934a37 573 unsigned long last_tick_seen;
46cb4b7c
SS
574 unsigned char in_nohz_recently;
575#endif
d8016491
IM
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
6aa645ea
IM
578 unsigned long nr_load_updates;
579 u64 nr_switches;
580
581 struct cfs_rq cfs;
6f505b16 582 struct rt_rq rt;
6f505b16 583
6aa645ea 584#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
587#endif
588#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 589 struct list_head leaf_rt_rq_list;
1da177e4 590#endif
1da177e4
LT
591
592 /*
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
597 */
598 unsigned long nr_uninterruptible;
599
36c8b586 600 struct task_struct *curr, *idle;
c9819f45 601 unsigned long next_balance;
1da177e4 602 struct mm_struct *prev_mm;
6aa645ea 603
3e51f33f 604 u64 clock;
6aa645ea 605
1da177e4
LT
606 atomic_t nr_iowait;
607
608#ifdef CONFIG_SMP
0eab9146 609 struct root_domain *rd;
1da177e4
LT
610 struct sched_domain *sd;
611
a0a522ce 612 unsigned char idle_at_tick;
1da177e4
LT
613 /* For active balancing */
614 int active_balance;
615 int push_cpu;
d8016491
IM
616 /* cpu of this runqueue: */
617 int cpu;
1f11eb6a 618 int online;
1da177e4 619
a8a51d5e 620 unsigned long avg_load_per_task;
1da177e4 621
36c8b586 622 struct task_struct *migration_thread;
1da177e4
LT
623 struct list_head migration_queue;
624#endif
625
8f4d37ec 626#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
627#ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630#endif
8f4d37ec
PZ
631 struct hrtimer hrtick_timer;
632#endif
633
1da177e4
LT
634#ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
9c2c4802
KC
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
639
640 /* sys_sched_yield() stats */
480b9434 641 unsigned int yld_count;
1da177e4
LT
642
643 /* schedule() stats */
480b9434
KC
644 unsigned int sched_switch;
645 unsigned int sched_count;
646 unsigned int sched_goidle;
1da177e4
LT
647
648 /* try_to_wake_up() stats */
480b9434
KC
649 unsigned int ttwu_count;
650 unsigned int ttwu_local;
b8efb561
IM
651
652 /* BKL stats */
480b9434 653 unsigned int bkl_count;
1da177e4
LT
654#endif
655};
656
f34e3b61 657static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 658
15afe09b 659static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 660{
15afe09b 661 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
662}
663
0a2966b4
CL
664static inline int cpu_of(struct rq *rq)
665{
666#ifdef CONFIG_SMP
667 return rq->cpu;
668#else
669 return 0;
670#endif
671}
672
674311d5
NP
673/*
674 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 675 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
676 *
677 * The domain tree of any CPU may only be accessed from within
678 * preempt-disabled sections.
679 */
48f24c4d
IM
680#define for_each_domain(cpu, __sd) \
681 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
682
683#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684#define this_rq() (&__get_cpu_var(runqueues))
685#define task_rq(p) cpu_rq(task_cpu(p))
686#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
687
3e51f33f
PZ
688static inline void update_rq_clock(struct rq *rq)
689{
690 rq->clock = sched_clock_cpu(cpu_of(rq));
691}
692
bf5c91ba
IM
693/*
694 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
695 */
696#ifdef CONFIG_SCHED_DEBUG
697# define const_debug __read_mostly
698#else
699# define const_debug static const
700#endif
701
017730c1
IM
702/**
703 * runqueue_is_locked
704 *
705 * Returns true if the current cpu runqueue is locked.
706 * This interface allows printk to be called with the runqueue lock
707 * held and know whether or not it is OK to wake up the klogd.
708 */
709int runqueue_is_locked(void)
710{
711 int cpu = get_cpu();
712 struct rq *rq = cpu_rq(cpu);
713 int ret;
714
715 ret = spin_is_locked(&rq->lock);
716 put_cpu();
717 return ret;
718}
719
bf5c91ba
IM
720/*
721 * Debugging: various feature bits
722 */
f00b45c1
PZ
723
724#define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
726
bf5c91ba 727enum {
f00b45c1 728#include "sched_features.h"
bf5c91ba
IM
729};
730
f00b45c1
PZ
731#undef SCHED_FEAT
732
733#define SCHED_FEAT(name, enabled) \
734 (1UL << __SCHED_FEAT_##name) * enabled |
735
bf5c91ba 736const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
737#include "sched_features.h"
738 0;
739
740#undef SCHED_FEAT
741
742#ifdef CONFIG_SCHED_DEBUG
743#define SCHED_FEAT(name, enabled) \
744 #name ,
745
983ed7a6 746static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
747#include "sched_features.h"
748 NULL
749};
750
751#undef SCHED_FEAT
752
34f3a814 753static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 754{
f00b45c1
PZ
755 int i;
756
757 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
758 if (!(sysctl_sched_features & (1UL << i)))
759 seq_puts(m, "NO_");
760 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 761 }
34f3a814 762 seq_puts(m, "\n");
f00b45c1 763
34f3a814 764 return 0;
f00b45c1
PZ
765}
766
767static ssize_t
768sched_feat_write(struct file *filp, const char __user *ubuf,
769 size_t cnt, loff_t *ppos)
770{
771 char buf[64];
772 char *cmp = buf;
773 int neg = 0;
774 int i;
775
776 if (cnt > 63)
777 cnt = 63;
778
779 if (copy_from_user(&buf, ubuf, cnt))
780 return -EFAULT;
781
782 buf[cnt] = 0;
783
c24b7c52 784 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
785 neg = 1;
786 cmp += 3;
787 }
788
789 for (i = 0; sched_feat_names[i]; i++) {
790 int len = strlen(sched_feat_names[i]);
791
792 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
793 if (neg)
794 sysctl_sched_features &= ~(1UL << i);
795 else
796 sysctl_sched_features |= (1UL << i);
797 break;
798 }
799 }
800
801 if (!sched_feat_names[i])
802 return -EINVAL;
803
804 filp->f_pos += cnt;
805
806 return cnt;
807}
808
34f3a814
LZ
809static int sched_feat_open(struct inode *inode, struct file *filp)
810{
811 return single_open(filp, sched_feat_show, NULL);
812}
813
f00b45c1 814static struct file_operations sched_feat_fops = {
34f3a814
LZ
815 .open = sched_feat_open,
816 .write = sched_feat_write,
817 .read = seq_read,
818 .llseek = seq_lseek,
819 .release = single_release,
f00b45c1
PZ
820};
821
822static __init int sched_init_debug(void)
823{
f00b45c1
PZ
824 debugfs_create_file("sched_features", 0644, NULL, NULL,
825 &sched_feat_fops);
826
827 return 0;
828}
829late_initcall(sched_init_debug);
830
831#endif
832
833#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 834
b82d9fdd
PZ
835/*
836 * Number of tasks to iterate in a single balance run.
837 * Limited because this is done with IRQs disabled.
838 */
839const_debug unsigned int sysctl_sched_nr_migrate = 32;
840
2398f2c6
PZ
841/*
842 * ratelimit for updating the group shares.
55cd5340 843 * default: 0.25ms
2398f2c6 844 */
55cd5340 845unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 846
ffda12a1
PZ
847/*
848 * Inject some fuzzyness into changing the per-cpu group shares
849 * this avoids remote rq-locks at the expense of fairness.
850 * default: 4
851 */
852unsigned int sysctl_sched_shares_thresh = 4;
853
fa85ae24 854/*
9f0c1e56 855 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
856 * default: 1s
857 */
9f0c1e56 858unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 859
6892b75e
IM
860static __read_mostly int scheduler_running;
861
9f0c1e56
PZ
862/*
863 * part of the period that we allow rt tasks to run in us.
864 * default: 0.95s
865 */
866int sysctl_sched_rt_runtime = 950000;
fa85ae24 867
d0b27fa7
PZ
868static inline u64 global_rt_period(void)
869{
870 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
871}
872
873static inline u64 global_rt_runtime(void)
874{
e26873bb 875 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
876 return RUNTIME_INF;
877
878 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
879}
fa85ae24 880
1da177e4 881#ifndef prepare_arch_switch
4866cde0
NP
882# define prepare_arch_switch(next) do { } while (0)
883#endif
884#ifndef finish_arch_switch
885# define finish_arch_switch(prev) do { } while (0)
886#endif
887
051a1d1a
DA
888static inline int task_current(struct rq *rq, struct task_struct *p)
889{
890 return rq->curr == p;
891}
892
4866cde0 893#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 894static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 895{
051a1d1a 896 return task_current(rq, p);
4866cde0
NP
897}
898
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901}
902
70b97a7f 903static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 904{
da04c035
IM
905#ifdef CONFIG_DEBUG_SPINLOCK
906 /* this is a valid case when another task releases the spinlock */
907 rq->lock.owner = current;
908#endif
8a25d5de
IM
909 /*
910 * If we are tracking spinlock dependencies then we have to
911 * fix up the runqueue lock - which gets 'carried over' from
912 * prev into current:
913 */
914 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
915
4866cde0
NP
916 spin_unlock_irq(&rq->lock);
917}
918
919#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 920static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
921{
922#ifdef CONFIG_SMP
923 return p->oncpu;
924#else
051a1d1a 925 return task_current(rq, p);
4866cde0
NP
926#endif
927}
928
70b97a7f 929static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * We can optimise this out completely for !SMP, because the
934 * SMP rebalancing from interrupt is the only thing that cares
935 * here.
936 */
937 next->oncpu = 1;
938#endif
939#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 spin_unlock_irq(&rq->lock);
941#else
942 spin_unlock(&rq->lock);
943#endif
944}
945
70b97a7f 946static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
947{
948#ifdef CONFIG_SMP
949 /*
950 * After ->oncpu is cleared, the task can be moved to a different CPU.
951 * We must ensure this doesn't happen until the switch is completely
952 * finished.
953 */
954 smp_wmb();
955 prev->oncpu = 0;
956#endif
957#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
958 local_irq_enable();
1da177e4 959#endif
4866cde0
NP
960}
961#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 962
b29739f9
IM
963/*
964 * __task_rq_lock - lock the runqueue a given task resides on.
965 * Must be called interrupts disabled.
966 */
70b97a7f 967static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
968 __acquires(rq->lock)
969{
3a5c359a
AK
970 for (;;) {
971 struct rq *rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
b29739f9 975 spin_unlock(&rq->lock);
b29739f9 976 }
b29739f9
IM
977}
978
1da177e4
LT
979/*
980 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 981 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
982 * explicitly disabling preemption.
983 */
70b97a7f 984static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
985 __acquires(rq->lock)
986{
70b97a7f 987 struct rq *rq;
1da177e4 988
3a5c359a
AK
989 for (;;) {
990 local_irq_save(*flags);
991 rq = task_rq(p);
992 spin_lock(&rq->lock);
993 if (likely(rq == task_rq(p)))
994 return rq;
1da177e4 995 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 996 }
1da177e4
LT
997}
998
ad474cac
ON
999void task_rq_unlock_wait(struct task_struct *p)
1000{
1001 struct rq *rq = task_rq(p);
1002
1003 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1004 spin_unlock_wait(&rq->lock);
1005}
1006
a9957449 1007static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1008 __releases(rq->lock)
1009{
1010 spin_unlock(&rq->lock);
1011}
1012
70b97a7f 1013static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1014 __releases(rq->lock)
1015{
1016 spin_unlock_irqrestore(&rq->lock, *flags);
1017}
1018
1da177e4 1019/*
cc2a73b5 1020 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1021 */
a9957449 1022static struct rq *this_rq_lock(void)
1da177e4
LT
1023 __acquires(rq->lock)
1024{
70b97a7f 1025 struct rq *rq;
1da177e4
LT
1026
1027 local_irq_disable();
1028 rq = this_rq();
1029 spin_lock(&rq->lock);
1030
1031 return rq;
1032}
1033
8f4d37ec
PZ
1034#ifdef CONFIG_SCHED_HRTICK
1035/*
1036 * Use HR-timers to deliver accurate preemption points.
1037 *
1038 * Its all a bit involved since we cannot program an hrt while holding the
1039 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1040 * reschedule event.
1041 *
1042 * When we get rescheduled we reprogram the hrtick_timer outside of the
1043 * rq->lock.
1044 */
8f4d37ec
PZ
1045
1046/*
1047 * Use hrtick when:
1048 * - enabled by features
1049 * - hrtimer is actually high res
1050 */
1051static inline int hrtick_enabled(struct rq *rq)
1052{
1053 if (!sched_feat(HRTICK))
1054 return 0;
ba42059f 1055 if (!cpu_active(cpu_of(rq)))
b328ca18 1056 return 0;
8f4d37ec
PZ
1057 return hrtimer_is_hres_active(&rq->hrtick_timer);
1058}
1059
8f4d37ec
PZ
1060static void hrtick_clear(struct rq *rq)
1061{
1062 if (hrtimer_active(&rq->hrtick_timer))
1063 hrtimer_cancel(&rq->hrtick_timer);
1064}
1065
8f4d37ec
PZ
1066/*
1067 * High-resolution timer tick.
1068 * Runs from hardirq context with interrupts disabled.
1069 */
1070static enum hrtimer_restart hrtick(struct hrtimer *timer)
1071{
1072 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1073
1074 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1075
1076 spin_lock(&rq->lock);
3e51f33f 1077 update_rq_clock(rq);
8f4d37ec
PZ
1078 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1079 spin_unlock(&rq->lock);
1080
1081 return HRTIMER_NORESTART;
1082}
1083
95e904c7 1084#ifdef CONFIG_SMP
31656519
PZ
1085/*
1086 * called from hardirq (IPI) context
1087 */
1088static void __hrtick_start(void *arg)
b328ca18 1089{
31656519 1090 struct rq *rq = arg;
b328ca18 1091
31656519
PZ
1092 spin_lock(&rq->lock);
1093 hrtimer_restart(&rq->hrtick_timer);
1094 rq->hrtick_csd_pending = 0;
1095 spin_unlock(&rq->lock);
b328ca18
PZ
1096}
1097
31656519
PZ
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1104{
31656519
PZ
1105 struct hrtimer *timer = &rq->hrtick_timer;
1106 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1107
cc584b21 1108 hrtimer_set_expires(timer, time);
31656519
PZ
1109
1110 if (rq == this_rq()) {
1111 hrtimer_restart(timer);
1112 } else if (!rq->hrtick_csd_pending) {
1113 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1114 rq->hrtick_csd_pending = 1;
1115 }
b328ca18
PZ
1116}
1117
1118static int
1119hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1120{
1121 int cpu = (int)(long)hcpu;
1122
1123 switch (action) {
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 case CPU_DOWN_PREPARE:
1127 case CPU_DOWN_PREPARE_FROZEN:
1128 case CPU_DEAD:
1129 case CPU_DEAD_FROZEN:
31656519 1130 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1131 return NOTIFY_OK;
1132 }
1133
1134 return NOTIFY_DONE;
1135}
1136
fa748203 1137static __init void init_hrtick(void)
b328ca18
PZ
1138{
1139 hotcpu_notifier(hotplug_hrtick, 0);
1140}
31656519
PZ
1141#else
1142/*
1143 * Called to set the hrtick timer state.
1144 *
1145 * called with rq->lock held and irqs disabled
1146 */
1147static void hrtick_start(struct rq *rq, u64 delay)
1148{
1149 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1150}
b328ca18 1151
006c75f1 1152static inline void init_hrtick(void)
8f4d37ec 1153{
8f4d37ec 1154}
31656519 1155#endif /* CONFIG_SMP */
8f4d37ec 1156
31656519 1157static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1158{
31656519
PZ
1159#ifdef CONFIG_SMP
1160 rq->hrtick_csd_pending = 0;
8f4d37ec 1161
31656519
PZ
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1165#endif
8f4d37ec 1166
31656519
PZ
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
8f4d37ec 1169}
006c75f1 1170#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1171static inline void hrtick_clear(struct rq *rq)
1172{
1173}
1174
8f4d37ec
PZ
1175static inline void init_rq_hrtick(struct rq *rq)
1176{
1177}
1178
b328ca18
PZ
1179static inline void init_hrtick(void)
1180{
1181}
006c75f1 1182#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1183
c24d20db
IM
1184/*
1185 * resched_task - mark a task 'to be rescheduled now'.
1186 *
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1190 */
1191#ifdef CONFIG_SMP
1192
1193#ifndef tsk_is_polling
1194#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195#endif
1196
31656519 1197static void resched_task(struct task_struct *p)
c24d20db
IM
1198{
1199 int cpu;
1200
1201 assert_spin_locked(&task_rq(p)->lock);
1202
5ed0cec0 1203 if (test_tsk_need_resched(p))
c24d20db
IM
1204 return;
1205
5ed0cec0 1206 set_tsk_need_resched(p);
c24d20db
IM
1207
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1216}
1217
1218static void resched_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1222
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1227}
06d8308c
TG
1228
1229#ifdef CONFIG_NO_HZ
1230/*
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1239 */
1240void wake_up_idle_cpu(int cpu)
1241{
1242 struct rq *rq = cpu_rq(cpu);
1243
1244 if (cpu == smp_processor_id())
1245 return;
1246
1247 /*
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1253 */
1254 if (rq->curr != rq->idle)
1255 return;
1256
1257 /*
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1261 */
5ed0cec0 1262 set_tsk_need_resched(rq->idle);
06d8308c
TG
1263
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1268}
6d6bc0ad 1269#endif /* CONFIG_NO_HZ */
06d8308c 1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
6d6bc0ad 1277#endif /* CONFIG_SMP */
c24d20db 1278
45bf76df
IM
1279#if BITS_PER_LONG == 32
1280# define WMULT_CONST (~0UL)
1281#else
1282# define WMULT_CONST (1UL << 32)
1283#endif
1284
1285#define WMULT_SHIFT 32
1286
194081eb
IM
1287/*
1288 * Shift right and round:
1289 */
cf2ab469 1290#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1291
a7be37ac
PZ
1292/*
1293 * delta *= weight / lw
1294 */
cb1c4fc9 1295static unsigned long
45bf76df
IM
1296calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1298{
1299 u64 tmp;
1300
7a232e03
LJ
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1307 }
45bf76df
IM
1308
1309 tmp = (u64)delta_exec * weight;
1310 /*
1311 * Check whether we'd overflow the 64-bit multiplication:
1312 */
194081eb 1313 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1315 WMULT_SHIFT/2);
1316 else
cf2ab469 1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1318
ecf691da 1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1320}
1321
1091985b 1322static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1323{
1324 lw->weight += inc;
e89996ae 1325 lw->inv_weight = 0;
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1329{
1330 lw->weight -= dec;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
2dd73a4f
PW
1334/*
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1341 */
1342
cce7ade8
PZ
1343#define WEIGHT_IDLEPRIO 3
1344#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1345
1346/*
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1351 *
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
dd41f596
IM
1357 */
1358static const int prio_to_weight[40] = {
254753dc
IM
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1367};
1368
5714d2de
IM
1369/*
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 *
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1375 */
dd41f596 1376static const u32 prio_to_wmult[40] = {
254753dc
IM
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1385};
2dd73a4f 1386
dd41f596
IM
1387static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1388
1389/*
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1393 */
1394struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1398};
1399
e1d1484f
PW
1400#ifdef CONFIG_SMP
1401static unsigned long
1402balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1406
1407static int
1408iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
e1d1484f 1411#endif
dd41f596 1412
d842de87
SV
1413#ifdef CONFIG_CGROUP_CPUACCT
1414static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415#else
1416static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417#endif
1418
18d95a28
PZ
1419static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_add(&rq->load, load);
1422}
1423
1424static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1425{
1426 update_load_sub(&rq->load, load);
1427}
1428
7940ca36 1429#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1430typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1431
1432/*
1433 * Iterate the full tree, calling @down when first entering a node and @up when
1434 * leaving it for the final time.
1435 */
eb755805 1436static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1437{
1438 struct task_group *parent, *child;
eb755805 1439 int ret;
c09595f6
PZ
1440
1441 rcu_read_lock();
1442 parent = &root_task_group;
1443down:
eb755805
PZ
1444 ret = (*down)(parent, data);
1445 if (ret)
1446 goto out_unlock;
c09595f6
PZ
1447 list_for_each_entry_rcu(child, &parent->children, siblings) {
1448 parent = child;
1449 goto down;
1450
1451up:
1452 continue;
1453 }
eb755805
PZ
1454 ret = (*up)(parent, data);
1455 if (ret)
1456 goto out_unlock;
c09595f6
PZ
1457
1458 child = parent;
1459 parent = parent->parent;
1460 if (parent)
1461 goto up;
eb755805 1462out_unlock:
c09595f6 1463 rcu_read_unlock();
eb755805
PZ
1464
1465 return ret;
c09595f6
PZ
1466}
1467
eb755805
PZ
1468static int tg_nop(struct task_group *tg, void *data)
1469{
1470 return 0;
c09595f6 1471}
eb755805
PZ
1472#endif
1473
1474#ifdef CONFIG_SMP
1475static unsigned long source_load(int cpu, int type);
1476static unsigned long target_load(int cpu, int type);
1477static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1478
1479static unsigned long cpu_avg_load_per_task(int cpu)
1480{
1481 struct rq *rq = cpu_rq(cpu);
af6d596f 1482 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1483
4cd42620
SR
1484 if (nr_running)
1485 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1486 else
1487 rq->avg_load_per_task = 0;
eb755805
PZ
1488
1489 return rq->avg_load_per_task;
1490}
1491
1492#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1493
c09595f6
PZ
1494static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1495
1496/*
1497 * Calculate and set the cpu's group shares.
1498 */
1499static void
ffda12a1
PZ
1500update_group_shares_cpu(struct task_group *tg, int cpu,
1501 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1502{
c09595f6
PZ
1503 unsigned long shares;
1504 unsigned long rq_weight;
1505
c8cba857 1506 if (!tg->se[cpu])
c09595f6
PZ
1507 return;
1508
ec4e0e2f 1509 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1510
c09595f6
PZ
1511 /*
1512 * \Sum shares * rq_weight
1513 * shares = -----------------------
1514 * \Sum rq_weight
1515 *
1516 */
ec4e0e2f 1517 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1518 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1519
ffda12a1
PZ
1520 if (abs(shares - tg->se[cpu]->load.weight) >
1521 sysctl_sched_shares_thresh) {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long flags;
c09595f6 1524
ffda12a1 1525 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1526 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1527
ffda12a1
PZ
1528 __set_se_shares(tg->se[cpu], shares);
1529 spin_unlock_irqrestore(&rq->lock, flags);
1530 }
18d95a28 1531}
c09595f6
PZ
1532
1533/*
c8cba857
PZ
1534 * Re-compute the task group their per cpu shares over the given domain.
1535 * This needs to be done in a bottom-up fashion because the rq weight of a
1536 * parent group depends on the shares of its child groups.
c09595f6 1537 */
eb755805 1538static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1539{
ec4e0e2f 1540 unsigned long weight, rq_weight = 0;
c8cba857 1541 unsigned long shares = 0;
eb755805 1542 struct sched_domain *sd = data;
c8cba857 1543 int i;
c09595f6 1544
758b2cdc 1545 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1546 /*
1547 * If there are currently no tasks on the cpu pretend there
1548 * is one of average load so that when a new task gets to
1549 * run here it will not get delayed by group starvation.
1550 */
1551 weight = tg->cfs_rq[i]->load.weight;
1552 if (!weight)
1553 weight = NICE_0_LOAD;
1554
1555 tg->cfs_rq[i]->rq_weight = weight;
1556 rq_weight += weight;
c8cba857 1557 shares += tg->cfs_rq[i]->shares;
c09595f6 1558 }
c09595f6 1559
c8cba857
PZ
1560 if ((!shares && rq_weight) || shares > tg->shares)
1561 shares = tg->shares;
1562
1563 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1564 shares = tg->shares;
c09595f6 1565
758b2cdc 1566 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1567 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1568
1569 return 0;
c09595f6
PZ
1570}
1571
1572/*
c8cba857
PZ
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
c09595f6 1576 */
eb755805 1577static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1578{
c8cba857 1579 unsigned long load;
eb755805 1580 long cpu = (long)data;
c09595f6 1581
c8cba857
PZ
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->cfs_rq[cpu]->shares;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1588 }
c09595f6 1589
c8cba857 1590 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1591
eb755805 1592 return 0;
c09595f6
PZ
1593}
1594
c8cba857 1595static void update_shares(struct sched_domain *sd)
4d8d595d 1596{
2398f2c6
PZ
1597 u64 now = cpu_clock(raw_smp_processor_id());
1598 s64 elapsed = now - sd->last_update;
1599
1600 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1601 sd->last_update = now;
eb755805 1602 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1603 }
4d8d595d
PZ
1604}
1605
3e5459b4
PZ
1606static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1607{
1608 spin_unlock(&rq->lock);
1609 update_shares(sd);
1610 spin_lock(&rq->lock);
1611}
1612
eb755805 1613static void update_h_load(long cpu)
c09595f6 1614{
eb755805 1615 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1616}
1617
c09595f6
PZ
1618#else
1619
c8cba857 1620static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1621{
1622}
1623
3e5459b4
PZ
1624static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1625{
1626}
1627
18d95a28
PZ
1628#endif
1629
8f45e2b5
GH
1630#ifdef CONFIG_PREEMPT
1631
70574a99 1632/*
8f45e2b5
GH
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
70574a99 1639 */
8f45e2b5
GH
1640static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1644{
1645 spin_unlock(&this_rq->lock);
1646 double_rq_lock(this_rq, busiest);
1647
1648 return 1;
1649}
1650
1651#else
1652/*
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1658 */
1659static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1660 __releases(this_rq->lock)
1661 __acquires(busiest->lock)
1662 __acquires(this_rq->lock)
1663{
1664 int ret = 0;
1665
70574a99
AD
1666 if (unlikely(!spin_trylock(&busiest->lock))) {
1667 if (busiest < this_rq) {
1668 spin_unlock(&this_rq->lock);
1669 spin_lock(&busiest->lock);
1670 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1671 ret = 1;
1672 } else
1673 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1674 }
1675 return ret;
1676}
1677
8f45e2b5
GH
1678#endif /* CONFIG_PREEMPT */
1679
1680/*
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1682 */
1683static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1684{
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
1687 spin_unlock(&this_rq->lock);
1688 BUG_ON(1);
1689 }
1690
1691 return _double_lock_balance(this_rq, busiest);
1692}
1693
70574a99
AD
1694static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1695 __releases(busiest->lock)
1696{
1697 spin_unlock(&busiest->lock);
1698 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1699}
18d95a28
PZ
1700#endif
1701
30432094 1702#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1703static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1704{
30432094 1705#ifdef CONFIG_SMP
34e83e85
IM
1706 cfs_rq->shares = shares;
1707#endif
1708}
30432094 1709#endif
e7693a36 1710
dd41f596 1711#include "sched_stats.h"
dd41f596 1712#include "sched_idletask.c"
5522d5d5
IM
1713#include "sched_fair.c"
1714#include "sched_rt.c"
dd41f596
IM
1715#ifdef CONFIG_SCHED_DEBUG
1716# include "sched_debug.c"
1717#endif
1718
1719#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1720#define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
dd41f596 1722
c09595f6 1723static void inc_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running++;
9c217245
IM
1726}
1727
c09595f6 1728static void dec_nr_running(struct rq *rq)
9c217245
IM
1729{
1730 rq->nr_running--;
9c217245
IM
1731}
1732
45bf76df
IM
1733static void set_load_weight(struct task_struct *p)
1734{
1735 if (task_has_rt_policy(p)) {
dd41f596
IM
1736 p->se.load.weight = prio_to_weight[0] * 2;
1737 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1738 return;
1739 }
45bf76df 1740
dd41f596
IM
1741 /*
1742 * SCHED_IDLE tasks get minimal weight:
1743 */
1744 if (p->policy == SCHED_IDLE) {
1745 p->se.load.weight = WEIGHT_IDLEPRIO;
1746 p->se.load.inv_weight = WMULT_IDLEPRIO;
1747 return;
1748 }
71f8bd46 1749
dd41f596
IM
1750 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1751 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1752}
1753
2087a1ad
GH
1754static void update_avg(u64 *avg, u64 sample)
1755{
1756 s64 diff = sample - *avg;
1757 *avg += diff >> 3;
1758}
1759
8159f87e 1760static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1761{
831451ac
PZ
1762 if (wakeup)
1763 p->se.start_runtime = p->se.sum_exec_runtime;
1764
dd41f596 1765 sched_info_queued(p);
fd390f6a 1766 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1767 p->se.on_rq = 1;
71f8bd46
IM
1768}
1769
69be72c1 1770static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1771{
831451ac
PZ
1772 if (sleep) {
1773 if (p->se.last_wakeup) {
1774 update_avg(&p->se.avg_overlap,
1775 p->se.sum_exec_runtime - p->se.last_wakeup);
1776 p->se.last_wakeup = 0;
1777 } else {
1778 update_avg(&p->se.avg_wakeup,
1779 sysctl_sched_wakeup_granularity);
1780 }
2087a1ad
GH
1781 }
1782
46ac22ba 1783 sched_info_dequeued(p);
f02231e5 1784 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1785 p->se.on_rq = 0;
71f8bd46
IM
1786}
1787
14531189 1788/*
dd41f596 1789 * __normal_prio - return the priority that is based on the static prio
14531189 1790 */
14531189
IM
1791static inline int __normal_prio(struct task_struct *p)
1792{
dd41f596 1793 return p->static_prio;
14531189
IM
1794}
1795
b29739f9
IM
1796/*
1797 * Calculate the expected normal priority: i.e. priority
1798 * without taking RT-inheritance into account. Might be
1799 * boosted by interactivity modifiers. Changes upon fork,
1800 * setprio syscalls, and whenever the interactivity
1801 * estimator recalculates.
1802 */
36c8b586 1803static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1804{
1805 int prio;
1806
e05606d3 1807 if (task_has_rt_policy(p))
b29739f9
IM
1808 prio = MAX_RT_PRIO-1 - p->rt_priority;
1809 else
1810 prio = __normal_prio(p);
1811 return prio;
1812}
1813
1814/*
1815 * Calculate the current priority, i.e. the priority
1816 * taken into account by the scheduler. This value might
1817 * be boosted by RT tasks, or might be boosted by
1818 * interactivity modifiers. Will be RT if the task got
1819 * RT-boosted. If not then it returns p->normal_prio.
1820 */
36c8b586 1821static int effective_prio(struct task_struct *p)
b29739f9
IM
1822{
1823 p->normal_prio = normal_prio(p);
1824 /*
1825 * If we are RT tasks or we were boosted to RT priority,
1826 * keep the priority unchanged. Otherwise, update priority
1827 * to the normal priority:
1828 */
1829 if (!rt_prio(p->prio))
1830 return p->normal_prio;
1831 return p->prio;
1832}
1833
1da177e4 1834/*
dd41f596 1835 * activate_task - move a task to the runqueue.
1da177e4 1836 */
dd41f596 1837static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1838{
d9514f6c 1839 if (task_contributes_to_load(p))
dd41f596 1840 rq->nr_uninterruptible--;
1da177e4 1841
8159f87e 1842 enqueue_task(rq, p, wakeup);
c09595f6 1843 inc_nr_running(rq);
1da177e4
LT
1844}
1845
1da177e4
LT
1846/*
1847 * deactivate_task - remove a task from the runqueue.
1848 */
2e1cb74a 1849static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1850{
d9514f6c 1851 if (task_contributes_to_load(p))
dd41f596
IM
1852 rq->nr_uninterruptible++;
1853
69be72c1 1854 dequeue_task(rq, p, sleep);
c09595f6 1855 dec_nr_running(rq);
1da177e4
LT
1856}
1857
1da177e4
LT
1858/**
1859 * task_curr - is this task currently executing on a CPU?
1860 * @p: the task in question.
1861 */
36c8b586 1862inline int task_curr(const struct task_struct *p)
1da177e4
LT
1863{
1864 return cpu_curr(task_cpu(p)) == p;
1865}
1866
dd41f596
IM
1867static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1868{
6f505b16 1869 set_task_rq(p, cpu);
dd41f596 1870#ifdef CONFIG_SMP
ce96b5ac
DA
1871 /*
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1875 */
1876 smp_wmb();
dd41f596 1877 task_thread_info(p)->cpu = cpu;
dd41f596 1878#endif
2dd73a4f
PW
1879}
1880
cb469845
SR
1881static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1882 const struct sched_class *prev_class,
1883 int oldprio, int running)
1884{
1885 if (prev_class != p->sched_class) {
1886 if (prev_class->switched_from)
1887 prev_class->switched_from(rq, p, running);
1888 p->sched_class->switched_to(rq, p, running);
1889 } else
1890 p->sched_class->prio_changed(rq, p, oldprio, running);
1891}
1892
1da177e4 1893#ifdef CONFIG_SMP
c65cc870 1894
e958b360
TG
1895/* Used instead of source_load when we know the type == 0 */
1896static unsigned long weighted_cpuload(const int cpu)
1897{
1898 return cpu_rq(cpu)->load.weight;
1899}
1900
cc367732
IM
1901/*
1902 * Is this task likely cache-hot:
1903 */
e7693a36 1904static int
cc367732
IM
1905task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1906{
1907 s64 delta;
1908
f540a608
IM
1909 /*
1910 * Buddy candidates are cache hot:
1911 */
4793241b
PZ
1912 if (sched_feat(CACHE_HOT_BUDDY) &&
1913 (&p->se == cfs_rq_of(&p->se)->next ||
1914 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1915 return 1;
1916
cc367732
IM
1917 if (p->sched_class != &fair_sched_class)
1918 return 0;
1919
6bc1665b
IM
1920 if (sysctl_sched_migration_cost == -1)
1921 return 1;
1922 if (sysctl_sched_migration_cost == 0)
1923 return 0;
1924
cc367732
IM
1925 delta = now - p->se.exec_start;
1926
1927 return delta < (s64)sysctl_sched_migration_cost;
1928}
1929
1930
dd41f596 1931void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1932{
dd41f596
IM
1933 int old_cpu = task_cpu(p);
1934 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1935 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1936 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1937 u64 clock_offset;
dd41f596
IM
1938
1939 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1940
cbc34ed1
PZ
1941 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1942
6cfb0d5d
IM
1943#ifdef CONFIG_SCHEDSTATS
1944 if (p->se.wait_start)
1945 p->se.wait_start -= clock_offset;
dd41f596
IM
1946 if (p->se.sleep_start)
1947 p->se.sleep_start -= clock_offset;
1948 if (p->se.block_start)
1949 p->se.block_start -= clock_offset;
cc367732
IM
1950 if (old_cpu != new_cpu) {
1951 schedstat_inc(p, se.nr_migrations);
1952 if (task_hot(p, old_rq->clock, NULL))
1953 schedstat_inc(p, se.nr_forced2_migrations);
1954 }
6cfb0d5d 1955#endif
2830cf8c
SV
1956 p->se.vruntime -= old_cfsrq->min_vruntime -
1957 new_cfsrq->min_vruntime;
dd41f596
IM
1958
1959 __set_task_cpu(p, new_cpu);
c65cc870
IM
1960}
1961
70b97a7f 1962struct migration_req {
1da177e4 1963 struct list_head list;
1da177e4 1964
36c8b586 1965 struct task_struct *task;
1da177e4
LT
1966 int dest_cpu;
1967
1da177e4 1968 struct completion done;
70b97a7f 1969};
1da177e4
LT
1970
1971/*
1972 * The task's runqueue lock must be held.
1973 * Returns true if you have to wait for migration thread.
1974 */
36c8b586 1975static int
70b97a7f 1976migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1977{
70b97a7f 1978 struct rq *rq = task_rq(p);
1da177e4
LT
1979
1980 /*
1981 * If the task is not on a runqueue (and not running), then
1982 * it is sufficient to simply update the task's cpu field.
1983 */
dd41f596 1984 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1985 set_task_cpu(p, dest_cpu);
1986 return 0;
1987 }
1988
1989 init_completion(&req->done);
1da177e4
LT
1990 req->task = p;
1991 req->dest_cpu = dest_cpu;
1992 list_add(&req->list, &rq->migration_queue);
48f24c4d 1993
1da177e4
LT
1994 return 1;
1995}
1996
1997/*
1998 * wait_task_inactive - wait for a thread to unschedule.
1999 *
85ba2d86
RM
2000 * If @match_state is nonzero, it's the @p->state value just checked and
2001 * not expected to change. If it changes, i.e. @p might have woken up,
2002 * then return zero. When we succeed in waiting for @p to be off its CPU,
2003 * we return a positive number (its total switch count). If a second call
2004 * a short while later returns the same number, the caller can be sure that
2005 * @p has remained unscheduled the whole time.
2006 *
1da177e4
LT
2007 * The caller must ensure that the task *will* unschedule sometime soon,
2008 * else this function might spin for a *long* time. This function can't
2009 * be called with interrupts off, or it may introduce deadlock with
2010 * smp_call_function() if an IPI is sent by the same process we are
2011 * waiting to become inactive.
2012 */
85ba2d86 2013unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2014{
2015 unsigned long flags;
dd41f596 2016 int running, on_rq;
85ba2d86 2017 unsigned long ncsw;
70b97a7f 2018 struct rq *rq;
1da177e4 2019
3a5c359a
AK
2020 for (;;) {
2021 /*
2022 * We do the initial early heuristics without holding
2023 * any task-queue locks at all. We'll only try to get
2024 * the runqueue lock when things look like they will
2025 * work out!
2026 */
2027 rq = task_rq(p);
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * If the task is actively running on another CPU
2031 * still, just relax and busy-wait without holding
2032 * any locks.
2033 *
2034 * NOTE! Since we don't hold any locks, it's not
2035 * even sure that "rq" stays as the right runqueue!
2036 * But we don't care, since "task_running()" will
2037 * return false if the runqueue has changed and p
2038 * is actually now running somewhere else!
2039 */
85ba2d86
RM
2040 while (task_running(rq, p)) {
2041 if (match_state && unlikely(p->state != match_state))
2042 return 0;
3a5c359a 2043 cpu_relax();
85ba2d86 2044 }
fa490cfd 2045
3a5c359a
AK
2046 /*
2047 * Ok, time to look more closely! We need the rq
2048 * lock now, to be *sure*. If we're wrong, we'll
2049 * just go back and repeat.
2050 */
2051 rq = task_rq_lock(p, &flags);
0a16b607 2052 trace_sched_wait_task(rq, p);
3a5c359a
AK
2053 running = task_running(rq, p);
2054 on_rq = p->se.on_rq;
85ba2d86 2055 ncsw = 0;
f31e11d8 2056 if (!match_state || p->state == match_state)
93dcf55f 2057 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2058 task_rq_unlock(rq, &flags);
fa490cfd 2059
85ba2d86
RM
2060 /*
2061 * If it changed from the expected state, bail out now.
2062 */
2063 if (unlikely(!ncsw))
2064 break;
2065
3a5c359a
AK
2066 /*
2067 * Was it really running after all now that we
2068 * checked with the proper locks actually held?
2069 *
2070 * Oops. Go back and try again..
2071 */
2072 if (unlikely(running)) {
2073 cpu_relax();
2074 continue;
2075 }
fa490cfd 2076
3a5c359a
AK
2077 /*
2078 * It's not enough that it's not actively running,
2079 * it must be off the runqueue _entirely_, and not
2080 * preempted!
2081 *
80dd99b3 2082 * So if it was still runnable (but just not actively
3a5c359a
AK
2083 * running right now), it's preempted, and we should
2084 * yield - it could be a while.
2085 */
2086 if (unlikely(on_rq)) {
2087 schedule_timeout_uninterruptible(1);
2088 continue;
2089 }
fa490cfd 2090
3a5c359a
AK
2091 /*
2092 * Ahh, all good. It wasn't running, and it wasn't
2093 * runnable, which means that it will never become
2094 * running in the future either. We're all done!
2095 */
2096 break;
2097 }
85ba2d86
RM
2098
2099 return ncsw;
1da177e4
LT
2100}
2101
2102/***
2103 * kick_process - kick a running thread to enter/exit the kernel
2104 * @p: the to-be-kicked thread
2105 *
2106 * Cause a process which is running on another CPU to enter
2107 * kernel-mode, without any delay. (to get signals handled.)
2108 *
2109 * NOTE: this function doesnt have to take the runqueue lock,
2110 * because all it wants to ensure is that the remote task enters
2111 * the kernel. If the IPI races and the task has been migrated
2112 * to another CPU then no harm is done and the purpose has been
2113 * achieved as well.
2114 */
36c8b586 2115void kick_process(struct task_struct *p)
1da177e4
LT
2116{
2117 int cpu;
2118
2119 preempt_disable();
2120 cpu = task_cpu(p);
2121 if ((cpu != smp_processor_id()) && task_curr(p))
2122 smp_send_reschedule(cpu);
2123 preempt_enable();
2124}
2125
2126/*
2dd73a4f
PW
2127 * Return a low guess at the load of a migration-source cpu weighted
2128 * according to the scheduling class and "nice" value.
1da177e4
LT
2129 *
2130 * We want to under-estimate the load of migration sources, to
2131 * balance conservatively.
2132 */
a9957449 2133static unsigned long source_load(int cpu, int type)
1da177e4 2134{
70b97a7f 2135 struct rq *rq = cpu_rq(cpu);
dd41f596 2136 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2137
93b75217 2138 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2139 return total;
b910472d 2140
dd41f596 2141 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2142}
2143
2144/*
2dd73a4f
PW
2145 * Return a high guess at the load of a migration-target cpu weighted
2146 * according to the scheduling class and "nice" value.
1da177e4 2147 */
a9957449 2148static unsigned long target_load(int cpu, int type)
1da177e4 2149{
70b97a7f 2150 struct rq *rq = cpu_rq(cpu);
dd41f596 2151 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2152
93b75217 2153 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2154 return total;
3b0bd9bc 2155
dd41f596 2156 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2157}
2158
147cbb4b
NP
2159/*
2160 * find_idlest_group finds and returns the least busy CPU group within the
2161 * domain.
2162 */
2163static struct sched_group *
2164find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2165{
2166 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2167 unsigned long min_load = ULONG_MAX, this_load = 0;
2168 int load_idx = sd->forkexec_idx;
2169 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2170
2171 do {
2172 unsigned long load, avg_load;
2173 int local_group;
2174 int i;
2175
da5a5522 2176 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2177 if (!cpumask_intersects(sched_group_cpus(group),
2178 &p->cpus_allowed))
3a5c359a 2179 continue;
da5a5522 2180
758b2cdc
RR
2181 local_group = cpumask_test_cpu(this_cpu,
2182 sched_group_cpus(group));
147cbb4b
NP
2183
2184 /* Tally up the load of all CPUs in the group */
2185 avg_load = 0;
2186
758b2cdc 2187 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2188 /* Bias balancing toward cpus of our domain */
2189 if (local_group)
2190 load = source_load(i, load_idx);
2191 else
2192 load = target_load(i, load_idx);
2193
2194 avg_load += load;
2195 }
2196
2197 /* Adjust by relative CPU power of the group */
5517d86b
ED
2198 avg_load = sg_div_cpu_power(group,
2199 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2200
2201 if (local_group) {
2202 this_load = avg_load;
2203 this = group;
2204 } else if (avg_load < min_load) {
2205 min_load = avg_load;
2206 idlest = group;
2207 }
3a5c359a 2208 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2209
2210 if (!idlest || 100*this_load < imbalance*min_load)
2211 return NULL;
2212 return idlest;
2213}
2214
2215/*
0feaece9 2216 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2217 */
95cdf3b7 2218static int
758b2cdc 2219find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2220{
2221 unsigned long load, min_load = ULONG_MAX;
2222 int idlest = -1;
2223 int i;
2224
da5a5522 2225 /* Traverse only the allowed CPUs */
758b2cdc 2226 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2227 load = weighted_cpuload(i);
147cbb4b
NP
2228
2229 if (load < min_load || (load == min_load && i == this_cpu)) {
2230 min_load = load;
2231 idlest = i;
2232 }
2233 }
2234
2235 return idlest;
2236}
2237
476d139c
NP
2238/*
2239 * sched_balance_self: balance the current task (running on cpu) in domains
2240 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2241 * SD_BALANCE_EXEC.
2242 *
2243 * Balance, ie. select the least loaded group.
2244 *
2245 * Returns the target CPU number, or the same CPU if no balancing is needed.
2246 *
2247 * preempt must be disabled.
2248 */
2249static int sched_balance_self(int cpu, int flag)
2250{
2251 struct task_struct *t = current;
2252 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2253
c96d145e 2254 for_each_domain(cpu, tmp) {
9761eea8
IM
2255 /*
2256 * If power savings logic is enabled for a domain, stop there.
2257 */
5c45bf27
SS
2258 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2259 break;
476d139c
NP
2260 if (tmp->flags & flag)
2261 sd = tmp;
c96d145e 2262 }
476d139c 2263
039a1c41
PZ
2264 if (sd)
2265 update_shares(sd);
2266
476d139c 2267 while (sd) {
476d139c 2268 struct sched_group *group;
1a848870
SS
2269 int new_cpu, weight;
2270
2271 if (!(sd->flags & flag)) {
2272 sd = sd->child;
2273 continue;
2274 }
476d139c 2275
476d139c 2276 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2277 if (!group) {
2278 sd = sd->child;
2279 continue;
2280 }
476d139c 2281
758b2cdc 2282 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2283 if (new_cpu == -1 || new_cpu == cpu) {
2284 /* Now try balancing at a lower domain level of cpu */
2285 sd = sd->child;
2286 continue;
2287 }
476d139c 2288
1a848870 2289 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2290 cpu = new_cpu;
758b2cdc 2291 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2292 sd = NULL;
476d139c 2293 for_each_domain(cpu, tmp) {
758b2cdc 2294 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2295 break;
2296 if (tmp->flags & flag)
2297 sd = tmp;
2298 }
2299 /* while loop will break here if sd == NULL */
2300 }
2301
2302 return cpu;
2303}
2304
2305#endif /* CONFIG_SMP */
1da177e4 2306
1da177e4
LT
2307/***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2312 *
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2318 *
2319 * returns failure only if the task is already active.
2320 */
36c8b586 2321static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2322{
cc367732 2323 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2324 unsigned long flags;
2325 long old_state;
70b97a7f 2326 struct rq *rq;
1da177e4 2327
b85d0667
IM
2328 if (!sched_feat(SYNC_WAKEUPS))
2329 sync = 0;
2330
2398f2c6 2331#ifdef CONFIG_SMP
57310a98 2332 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2333 struct sched_domain *sd;
2334
2335 this_cpu = raw_smp_processor_id();
2336 cpu = task_cpu(p);
2337
2338 for_each_domain(this_cpu, sd) {
758b2cdc 2339 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2340 update_shares(sd);
2341 break;
2342 }
2343 }
2344 }
2345#endif
2346
04e2f174 2347 smp_wmb();
1da177e4 2348 rq = task_rq_lock(p, &flags);
03e89e45 2349 update_rq_clock(rq);
1da177e4
LT
2350 old_state = p->state;
2351 if (!(old_state & state))
2352 goto out;
2353
dd41f596 2354 if (p->se.on_rq)
1da177e4
LT
2355 goto out_running;
2356
2357 cpu = task_cpu(p);
cc367732 2358 orig_cpu = cpu;
1da177e4
LT
2359 this_cpu = smp_processor_id();
2360
2361#ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2364
5d2f5a61
DA
2365 cpu = p->sched_class->select_task_rq(p, sync);
2366 if (cpu != orig_cpu) {
2367 set_task_cpu(p, cpu);
1da177e4
LT
2368 task_rq_unlock(rq, &flags);
2369 /* might preempt at this point */
2370 rq = task_rq_lock(p, &flags);
2371 old_state = p->state;
2372 if (!(old_state & state))
2373 goto out;
dd41f596 2374 if (p->se.on_rq)
1da177e4
LT
2375 goto out_running;
2376
2377 this_cpu = smp_processor_id();
2378 cpu = task_cpu(p);
2379 }
2380
e7693a36
GH
2381#ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq, ttwu_count);
2383 if (cpu == this_cpu)
2384 schedstat_inc(rq, ttwu_local);
2385 else {
2386 struct sched_domain *sd;
2387 for_each_domain(this_cpu, sd) {
758b2cdc 2388 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2389 schedstat_inc(sd, ttwu_wake_remote);
2390 break;
2391 }
2392 }
2393 }
6d6bc0ad 2394#endif /* CONFIG_SCHEDSTATS */
e7693a36 2395
1da177e4
LT
2396out_activate:
2397#endif /* CONFIG_SMP */
cc367732
IM
2398 schedstat_inc(p, se.nr_wakeups);
2399 if (sync)
2400 schedstat_inc(p, se.nr_wakeups_sync);
2401 if (orig_cpu != cpu)
2402 schedstat_inc(p, se.nr_wakeups_migrate);
2403 if (cpu == this_cpu)
2404 schedstat_inc(p, se.nr_wakeups_local);
2405 else
2406 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2407 activate_task(rq, p, 1);
1da177e4
LT
2408 success = 1;
2409
831451ac
PZ
2410 /*
2411 * Only attribute actual wakeups done by this task.
2412 */
2413 if (!in_interrupt()) {
2414 struct sched_entity *se = &current->se;
2415 u64 sample = se->sum_exec_runtime;
2416
2417 if (se->last_wakeup)
2418 sample -= se->last_wakeup;
2419 else
2420 sample -= se->start_runtime;
2421 update_avg(&se->avg_wakeup, sample);
2422
2423 se->last_wakeup = se->sum_exec_runtime;
2424 }
2425
1da177e4 2426out_running:
468a15bb 2427 trace_sched_wakeup(rq, p, success);
15afe09b 2428 check_preempt_curr(rq, p, sync);
4ae7d5ce 2429
1da177e4 2430 p->state = TASK_RUNNING;
9a897c5a
SR
2431#ifdef CONFIG_SMP
2432 if (p->sched_class->task_wake_up)
2433 p->sched_class->task_wake_up(rq, p);
2434#endif
1da177e4
LT
2435out:
2436 task_rq_unlock(rq, &flags);
2437
2438 return success;
2439}
2440
7ad5b3a5 2441int wake_up_process(struct task_struct *p)
1da177e4 2442{
d9514f6c 2443 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2444}
1da177e4
LT
2445EXPORT_SYMBOL(wake_up_process);
2446
7ad5b3a5 2447int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2448{
2449 return try_to_wake_up(p, state, 0);
2450}
2451
1da177e4
LT
2452/*
2453 * Perform scheduler related setup for a newly forked process p.
2454 * p is forked by current.
dd41f596
IM
2455 *
2456 * __sched_fork() is basic setup used by init_idle() too:
2457 */
2458static void __sched_fork(struct task_struct *p)
2459{
dd41f596
IM
2460 p->se.exec_start = 0;
2461 p->se.sum_exec_runtime = 0;
f6cf891c 2462 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2463 p->se.last_wakeup = 0;
2464 p->se.avg_overlap = 0;
831451ac
PZ
2465 p->se.start_runtime = 0;
2466 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2467
2468#ifdef CONFIG_SCHEDSTATS
2469 p->se.wait_start = 0;
dd41f596
IM
2470 p->se.sum_sleep_runtime = 0;
2471 p->se.sleep_start = 0;
dd41f596
IM
2472 p->se.block_start = 0;
2473 p->se.sleep_max = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
eba1ed4b 2476 p->se.slice_max = 0;
dd41f596 2477 p->se.wait_max = 0;
6cfb0d5d 2478#endif
476d139c 2479
fa717060 2480 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2481 p->se.on_rq = 0;
4a55bd5e 2482 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2483
e107be36
AK
2484#ifdef CONFIG_PREEMPT_NOTIFIERS
2485 INIT_HLIST_HEAD(&p->preempt_notifiers);
2486#endif
2487
1da177e4
LT
2488 /*
2489 * We mark the process as running here, but have not actually
2490 * inserted it onto the runqueue yet. This guarantees that
2491 * nobody will actually run it, and a signal or other external
2492 * event cannot wake it up and insert it on the runqueue either.
2493 */
2494 p->state = TASK_RUNNING;
dd41f596
IM
2495}
2496
2497/*
2498 * fork()/clone()-time setup:
2499 */
2500void sched_fork(struct task_struct *p, int clone_flags)
2501{
2502 int cpu = get_cpu();
2503
2504 __sched_fork(p);
2505
2506#ifdef CONFIG_SMP
2507 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2508#endif
02e4bac2 2509 set_task_cpu(p, cpu);
b29739f9
IM
2510
2511 /*
2512 * Make sure we do not leak PI boosting priority to the child:
2513 */
2514 p->prio = current->normal_prio;
2ddbf952
HS
2515 if (!rt_prio(p->prio))
2516 p->sched_class = &fair_sched_class;
b29739f9 2517
52f17b6c 2518#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2519 if (likely(sched_info_on()))
52f17b6c 2520 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2521#endif
d6077cb8 2522#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2523 p->oncpu = 0;
2524#endif
1da177e4 2525#ifdef CONFIG_PREEMPT
4866cde0 2526 /* Want to start with kernel preemption disabled. */
a1261f54 2527 task_thread_info(p)->preempt_count = 1;
1da177e4 2528#endif
917b627d
GH
2529 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2530
476d139c 2531 put_cpu();
1da177e4
LT
2532}
2533
2534/*
2535 * wake_up_new_task - wake up a newly created task for the first time.
2536 *
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2540 */
7ad5b3a5 2541void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2542{
2543 unsigned long flags;
dd41f596 2544 struct rq *rq;
1da177e4
LT
2545
2546 rq = task_rq_lock(p, &flags);
147cbb4b 2547 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2548 update_rq_clock(rq);
1da177e4
LT
2549
2550 p->prio = effective_prio(p);
2551
b9dca1e0 2552 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2553 activate_task(rq, p, 0);
1da177e4 2554 } else {
1da177e4 2555 /*
dd41f596
IM
2556 * Let the scheduling class do new task startup
2557 * management (if any):
1da177e4 2558 */
ee0827d8 2559 p->sched_class->task_new(rq, p);
c09595f6 2560 inc_nr_running(rq);
1da177e4 2561 }
c71dd42d 2562 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2563 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2564#ifdef CONFIG_SMP
2565 if (p->sched_class->task_wake_up)
2566 p->sched_class->task_wake_up(rq, p);
2567#endif
dd41f596 2568 task_rq_unlock(rq, &flags);
1da177e4
LT
2569}
2570
e107be36
AK
2571#ifdef CONFIG_PREEMPT_NOTIFIERS
2572
2573/**
80dd99b3 2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2575 * @notifier: notifier struct to register
e107be36
AK
2576 */
2577void preempt_notifier_register(struct preempt_notifier *notifier)
2578{
2579 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2580}
2581EXPORT_SYMBOL_GPL(preempt_notifier_register);
2582
2583/**
2584 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2585 * @notifier: notifier struct to unregister
e107be36
AK
2586 *
2587 * This is safe to call from within a preemption notifier.
2588 */
2589void preempt_notifier_unregister(struct preempt_notifier *notifier)
2590{
2591 hlist_del(&notifier->link);
2592}
2593EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2594
2595static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2596{
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2599
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2602}
2603
2604static void
2605fire_sched_out_preempt_notifiers(struct task_struct *curr,
2606 struct task_struct *next)
2607{
2608 struct preempt_notifier *notifier;
2609 struct hlist_node *node;
2610
2611 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2612 notifier->ops->sched_out(notifier, next);
2613}
2614
6d6bc0ad 2615#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2616
2617static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618{
2619}
2620
2621static void
2622fire_sched_out_preempt_notifiers(struct task_struct *curr,
2623 struct task_struct *next)
2624{
2625}
2626
6d6bc0ad 2627#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2628
4866cde0
NP
2629/**
2630 * prepare_task_switch - prepare to switch tasks
2631 * @rq: the runqueue preparing to switch
421cee29 2632 * @prev: the current task that is being switched out
4866cde0
NP
2633 * @next: the task we are going to switch to.
2634 *
2635 * This is called with the rq lock held and interrupts off. It must
2636 * be paired with a subsequent finish_task_switch after the context
2637 * switch.
2638 *
2639 * prepare_task_switch sets up locking and calls architecture specific
2640 * hooks.
2641 */
e107be36
AK
2642static inline void
2643prepare_task_switch(struct rq *rq, struct task_struct *prev,
2644 struct task_struct *next)
4866cde0 2645{
e107be36 2646 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2647 prepare_lock_switch(rq, next);
2648 prepare_arch_switch(next);
2649}
2650
1da177e4
LT
2651/**
2652 * finish_task_switch - clean up after a task-switch
344babaa 2653 * @rq: runqueue associated with task-switch
1da177e4
LT
2654 * @prev: the thread we just switched away from.
2655 *
4866cde0
NP
2656 * finish_task_switch must be called after the context switch, paired
2657 * with a prepare_task_switch call before the context switch.
2658 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2659 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2660 *
2661 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2662 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2663 * with the lock held can cause deadlocks; see schedule() for
2664 * details.)
2665 */
a9957449 2666static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2667 __releases(rq->lock)
2668{
1da177e4 2669 struct mm_struct *mm = rq->prev_mm;
55a101f8 2670 long prev_state;
967fc046
GH
2671#ifdef CONFIG_SMP
2672 int post_schedule = 0;
2673
2674 if (current->sched_class->needs_post_schedule)
2675 post_schedule = current->sched_class->needs_post_schedule(rq);
2676#endif
1da177e4
LT
2677
2678 rq->prev_mm = NULL;
2679
2680 /*
2681 * A task struct has one reference for the use as "current".
c394cc9f 2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
c394cc9f 2685 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2686 * still held, otherwise prev could be scheduled on another cpu, die
2687 * there before we look at prev->state, and then the reference would
2688 * be dropped twice.
2689 * Manfred Spraul <manfred@colorfullife.com>
2690 */
55a101f8 2691 prev_state = prev->state;
4866cde0
NP
2692 finish_arch_switch(prev);
2693 finish_lock_switch(rq, prev);
9a897c5a 2694#ifdef CONFIG_SMP
967fc046 2695 if (post_schedule)
9a897c5a
SR
2696 current->sched_class->post_schedule(rq);
2697#endif
e8fa1362 2698
e107be36 2699 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2700 if (mm)
2701 mmdrop(mm);
c394cc9f 2702 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2703 /*
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
9761eea8 2706 */
c6fd91f0 2707 kprobe_flush_task(prev);
1da177e4 2708 put_task_struct(prev);
c6fd91f0 2709 }
1da177e4
LT
2710}
2711
2712/**
2713 * schedule_tail - first thing a freshly forked thread must call.
2714 * @prev: the thread we just switched away from.
2715 */
36c8b586 2716asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2717 __releases(rq->lock)
2718{
70b97a7f
IM
2719 struct rq *rq = this_rq();
2720
4866cde0
NP
2721 finish_task_switch(rq, prev);
2722#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2723 /* In this case, finish_task_switch does not reenable preemption */
2724 preempt_enable();
2725#endif
1da177e4 2726 if (current->set_child_tid)
b488893a 2727 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2728}
2729
2730/*
2731 * context_switch - switch to the new MM and the new
2732 * thread's register state.
2733 */
dd41f596 2734static inline void
70b97a7f 2735context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2736 struct task_struct *next)
1da177e4 2737{
dd41f596 2738 struct mm_struct *mm, *oldmm;
1da177e4 2739
e107be36 2740 prepare_task_switch(rq, prev, next);
0a16b607 2741 trace_sched_switch(rq, prev, next);
dd41f596
IM
2742 mm = next->mm;
2743 oldmm = prev->active_mm;
9226d125
ZA
2744 /*
2745 * For paravirt, this is coupled with an exit in switch_to to
2746 * combine the page table reload and the switch backend into
2747 * one hypercall.
2748 */
2749 arch_enter_lazy_cpu_mode();
2750
dd41f596 2751 if (unlikely(!mm)) {
1da177e4
LT
2752 next->active_mm = oldmm;
2753 atomic_inc(&oldmm->mm_count);
2754 enter_lazy_tlb(oldmm, next);
2755 } else
2756 switch_mm(oldmm, mm, next);
2757
dd41f596 2758 if (unlikely(!prev->mm)) {
1da177e4 2759 prev->active_mm = NULL;
1da177e4
LT
2760 rq->prev_mm = oldmm;
2761 }
3a5f5e48
IM
2762 /*
2763 * Since the runqueue lock will be released by the next
2764 * task (which is an invalid locking op but in the case
2765 * of the scheduler it's an obvious special-case), so we
2766 * do an early lockdep release here:
2767 */
2768#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2769 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2770#endif
1da177e4
LT
2771
2772 /* Here we just switch the register state and the stack. */
2773 switch_to(prev, next, prev);
2774
dd41f596
IM
2775 barrier();
2776 /*
2777 * this_rq must be evaluated again because prev may have moved
2778 * CPUs since it called schedule(), thus the 'rq' on its stack
2779 * frame will be invalid.
2780 */
2781 finish_task_switch(this_rq(), prev);
1da177e4
LT
2782}
2783
2784/*
2785 * nr_running, nr_uninterruptible and nr_context_switches:
2786 *
2787 * externally visible scheduler statistics: current number of runnable
2788 * threads, current number of uninterruptible-sleeping threads, total
2789 * number of context switches performed since bootup.
2790 */
2791unsigned long nr_running(void)
2792{
2793 unsigned long i, sum = 0;
2794
2795 for_each_online_cpu(i)
2796 sum += cpu_rq(i)->nr_running;
2797
2798 return sum;
2799}
2800
2801unsigned long nr_uninterruptible(void)
2802{
2803 unsigned long i, sum = 0;
2804
0a945022 2805 for_each_possible_cpu(i)
1da177e4
LT
2806 sum += cpu_rq(i)->nr_uninterruptible;
2807
2808 /*
2809 * Since we read the counters lockless, it might be slightly
2810 * inaccurate. Do not allow it to go below zero though:
2811 */
2812 if (unlikely((long)sum < 0))
2813 sum = 0;
2814
2815 return sum;
2816}
2817
2818unsigned long long nr_context_switches(void)
2819{
cc94abfc
SR
2820 int i;
2821 unsigned long long sum = 0;
1da177e4 2822
0a945022 2823 for_each_possible_cpu(i)
1da177e4
LT
2824 sum += cpu_rq(i)->nr_switches;
2825
2826 return sum;
2827}
2828
2829unsigned long nr_iowait(void)
2830{
2831 unsigned long i, sum = 0;
2832
0a945022 2833 for_each_possible_cpu(i)
1da177e4
LT
2834 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2835
2836 return sum;
2837}
2838
db1b1fef
JS
2839unsigned long nr_active(void)
2840{
2841 unsigned long i, running = 0, uninterruptible = 0;
2842
2843 for_each_online_cpu(i) {
2844 running += cpu_rq(i)->nr_running;
2845 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2846 }
2847
2848 if (unlikely((long)uninterruptible < 0))
2849 uninterruptible = 0;
2850
2851 return running + uninterruptible;
2852}
2853
48f24c4d 2854/*
dd41f596
IM
2855 * Update rq->cpu_load[] statistics. This function is usually called every
2856 * scheduler tick (TICK_NSEC).
48f24c4d 2857 */
dd41f596 2858static void update_cpu_load(struct rq *this_rq)
48f24c4d 2859{
495eca49 2860 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2861 int i, scale;
2862
2863 this_rq->nr_load_updates++;
dd41f596
IM
2864
2865 /* Update our load: */
2866 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2867 unsigned long old_load, new_load;
2868
2869 /* scale is effectively 1 << i now, and >> i divides by scale */
2870
2871 old_load = this_rq->cpu_load[i];
2872 new_load = this_load;
a25707f3
IM
2873 /*
2874 * Round up the averaging division if load is increasing. This
2875 * prevents us from getting stuck on 9 if the load is 10, for
2876 * example.
2877 */
2878 if (new_load > old_load)
2879 new_load += scale-1;
dd41f596
IM
2880 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2881 }
48f24c4d
IM
2882}
2883
dd41f596
IM
2884#ifdef CONFIG_SMP
2885
1da177e4
LT
2886/*
2887 * double_rq_lock - safely lock two runqueues
2888 *
2889 * Note this does not disable interrupts like task_rq_lock,
2890 * you need to do so manually before calling.
2891 */
70b97a7f 2892static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2893 __acquires(rq1->lock)
2894 __acquires(rq2->lock)
2895{
054b9108 2896 BUG_ON(!irqs_disabled());
1da177e4
LT
2897 if (rq1 == rq2) {
2898 spin_lock(&rq1->lock);
2899 __acquire(rq2->lock); /* Fake it out ;) */
2900 } else {
c96d145e 2901 if (rq1 < rq2) {
1da177e4 2902 spin_lock(&rq1->lock);
5e710e37 2903 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2904 } else {
2905 spin_lock(&rq2->lock);
5e710e37 2906 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2907 }
2908 }
6e82a3be
IM
2909 update_rq_clock(rq1);
2910 update_rq_clock(rq2);
1da177e4
LT
2911}
2912
2913/*
2914 * double_rq_unlock - safely unlock two runqueues
2915 *
2916 * Note this does not restore interrupts like task_rq_unlock,
2917 * you need to do so manually after calling.
2918 */
70b97a7f 2919static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2920 __releases(rq1->lock)
2921 __releases(rq2->lock)
2922{
2923 spin_unlock(&rq1->lock);
2924 if (rq1 != rq2)
2925 spin_unlock(&rq2->lock);
2926 else
2927 __release(rq2->lock);
2928}
2929
1da177e4
LT
2930/*
2931 * If dest_cpu is allowed for this process, migrate the task to it.
2932 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2933 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2934 * the cpu_allowed mask is restored.
2935 */
36c8b586 2936static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2937{
70b97a7f 2938 struct migration_req req;
1da177e4 2939 unsigned long flags;
70b97a7f 2940 struct rq *rq;
1da177e4
LT
2941
2942 rq = task_rq_lock(p, &flags);
96f874e2 2943 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2944 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2945 goto out;
2946
2947 /* force the process onto the specified CPU */
2948 if (migrate_task(p, dest_cpu, &req)) {
2949 /* Need to wait for migration thread (might exit: take ref). */
2950 struct task_struct *mt = rq->migration_thread;
36c8b586 2951
1da177e4
LT
2952 get_task_struct(mt);
2953 task_rq_unlock(rq, &flags);
2954 wake_up_process(mt);
2955 put_task_struct(mt);
2956 wait_for_completion(&req.done);
36c8b586 2957
1da177e4
LT
2958 return;
2959 }
2960out:
2961 task_rq_unlock(rq, &flags);
2962}
2963
2964/*
476d139c
NP
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2967 */
2968void sched_exec(void)
2969{
1da177e4 2970 int new_cpu, this_cpu = get_cpu();
476d139c 2971 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2972 put_cpu();
476d139c
NP
2973 if (new_cpu != this_cpu)
2974 sched_migrate_task(current, new_cpu);
1da177e4
LT
2975}
2976
2977/*
2978 * pull_task - move a task from a remote runqueue to the local runqueue.
2979 * Both runqueues must be locked.
2980 */
dd41f596
IM
2981static void pull_task(struct rq *src_rq, struct task_struct *p,
2982 struct rq *this_rq, int this_cpu)
1da177e4 2983{
2e1cb74a 2984 deactivate_task(src_rq, p, 0);
1da177e4 2985 set_task_cpu(p, this_cpu);
dd41f596 2986 activate_task(this_rq, p, 0);
1da177e4
LT
2987 /*
2988 * Note that idle threads have a prio of MAX_PRIO, for this test
2989 * to be always true for them.
2990 */
15afe09b 2991 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2992}
2993
2994/*
2995 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2996 */
858119e1 2997static
70b97a7f 2998int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2999 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3000 int *all_pinned)
1da177e4 3001{
708dc512 3002 int tsk_cache_hot = 0;
1da177e4
LT
3003 /*
3004 * We do not migrate tasks that are:
3005 * 1) running (obviously), or
3006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3007 * 3) are cache-hot on their current CPU.
3008 */
96f874e2 3009 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3010 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3011 return 0;
cc367732 3012 }
81026794
NP
3013 *all_pinned = 0;
3014
cc367732
IM
3015 if (task_running(rq, p)) {
3016 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3017 return 0;
cc367732 3018 }
1da177e4 3019
da84d961
IM
3020 /*
3021 * Aggressive migration if:
3022 * 1) task is cache cold, or
3023 * 2) too many balance attempts have failed.
3024 */
3025
708dc512
LH
3026 tsk_cache_hot = task_hot(p, rq->clock, sd);
3027 if (!tsk_cache_hot ||
3028 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3029#ifdef CONFIG_SCHEDSTATS
708dc512 3030 if (tsk_cache_hot) {
da84d961 3031 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3032 schedstat_inc(p, se.nr_forced_migrations);
3033 }
da84d961
IM
3034#endif
3035 return 1;
3036 }
3037
708dc512 3038 if (tsk_cache_hot) {
cc367732 3039 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3040 return 0;
cc367732 3041 }
1da177e4
LT
3042 return 1;
3043}
3044
e1d1484f
PW
3045static unsigned long
3046balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047 unsigned long max_load_move, struct sched_domain *sd,
3048 enum cpu_idle_type idle, int *all_pinned,
3049 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3050{
051c6764 3051 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3052 struct task_struct *p;
3053 long rem_load_move = max_load_move;
1da177e4 3054
e1d1484f 3055 if (max_load_move == 0)
1da177e4
LT
3056 goto out;
3057
81026794
NP
3058 pinned = 1;
3059
1da177e4 3060 /*
dd41f596 3061 * Start the load-balancing iterator:
1da177e4 3062 */
dd41f596
IM
3063 p = iterator->start(iterator->arg);
3064next:
b82d9fdd 3065 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3066 goto out;
051c6764
PZ
3067
3068 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3069 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3070 p = iterator->next(iterator->arg);
3071 goto next;
1da177e4
LT
3072 }
3073
dd41f596 3074 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3075 pulled++;
dd41f596 3076 rem_load_move -= p->se.load.weight;
1da177e4 3077
7e96fa58
GH
3078#ifdef CONFIG_PREEMPT
3079 /*
3080 * NEWIDLE balancing is a source of latency, so preemptible kernels
3081 * will stop after the first task is pulled to minimize the critical
3082 * section.
3083 */
3084 if (idle == CPU_NEWLY_IDLE)
3085 goto out;
3086#endif
3087
2dd73a4f 3088 /*
b82d9fdd 3089 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3090 */
e1d1484f 3091 if (rem_load_move > 0) {
a4ac01c3
PW
3092 if (p->prio < *this_best_prio)
3093 *this_best_prio = p->prio;
dd41f596
IM
3094 p = iterator->next(iterator->arg);
3095 goto next;
1da177e4
LT
3096 }
3097out:
3098 /*
e1d1484f 3099 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3102 */
3103 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3104
3105 if (all_pinned)
3106 *all_pinned = pinned;
e1d1484f
PW
3107
3108 return max_load_move - rem_load_move;
1da177e4
LT
3109}
3110
dd41f596 3111/*
43010659
PW
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3115 *
3116 * Called with both runqueues locked.
3117 */
3118static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3119 unsigned long max_load_move,
dd41f596
IM
3120 struct sched_domain *sd, enum cpu_idle_type idle,
3121 int *all_pinned)
3122{
5522d5d5 3123 const struct sched_class *class = sched_class_highest;
43010659 3124 unsigned long total_load_moved = 0;
a4ac01c3 3125 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3126
3127 do {
43010659
PW
3128 total_load_moved +=
3129 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3130 max_load_move - total_load_moved,
a4ac01c3 3131 sd, idle, all_pinned, &this_best_prio);
dd41f596 3132 class = class->next;
c4acb2c0 3133
7e96fa58
GH
3134#ifdef CONFIG_PREEMPT
3135 /*
3136 * NEWIDLE balancing is a source of latency, so preemptible
3137 * kernels will stop after the first task is pulled to minimize
3138 * the critical section.
3139 */
c4acb2c0
GH
3140 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3141 break;
7e96fa58 3142#endif
43010659 3143 } while (class && max_load_move > total_load_moved);
dd41f596 3144
43010659
PW
3145 return total_load_moved > 0;
3146}
3147
e1d1484f
PW
3148static int
3149iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 struct rq_iterator *iterator)
3152{
3153 struct task_struct *p = iterator->start(iterator->arg);
3154 int pinned = 0;
3155
3156 while (p) {
3157 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3158 pull_task(busiest, p, this_rq, this_cpu);
3159 /*
3160 * Right now, this is only the second place pull_task()
3161 * is called, so we can safely collect pull_task()
3162 * stats here rather than inside pull_task().
3163 */
3164 schedstat_inc(sd, lb_gained[idle]);
3165
3166 return 1;
3167 }
3168 p = iterator->next(iterator->arg);
3169 }
3170
3171 return 0;
3172}
3173
43010659
PW
3174/*
3175 * move_one_task tries to move exactly one task from busiest to this_rq, as
3176 * part of active balancing operations within "domain".
3177 * Returns 1 if successful and 0 otherwise.
3178 *
3179 * Called with both runqueues locked.
3180 */
3181static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 struct sched_domain *sd, enum cpu_idle_type idle)
3183{
5522d5d5 3184 const struct sched_class *class;
43010659
PW
3185
3186 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3187 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3188 return 1;
3189
3190 return 0;
dd41f596 3191}
67bb6c03 3192/********** Helpers for find_busiest_group ************************/
222d656d
GS
3193/**
3194 * sd_lb_stats - Structure to store the statistics of a sched_domain
3195 * during load balancing.
3196 */
3197struct sd_lb_stats {
3198 struct sched_group *busiest; /* Busiest group in this sd */
3199 struct sched_group *this; /* Local group in this sd */
3200 unsigned long total_load; /* Total load of all groups in sd */
3201 unsigned long total_pwr; /* Total power of all groups in sd */
3202 unsigned long avg_load; /* Average load across all groups in sd */
3203
3204 /** Statistics of this group */
3205 unsigned long this_load;
3206 unsigned long this_load_per_task;
3207 unsigned long this_nr_running;
3208
3209 /* Statistics of the busiest group */
3210 unsigned long max_load;
3211 unsigned long busiest_load_per_task;
3212 unsigned long busiest_nr_running;
3213
3214 int group_imb; /* Is there imbalance in this sd */
3215#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3216 int power_savings_balance; /* Is powersave balance needed for this sd */
3217 struct sched_group *group_min; /* Least loaded group in sd */
3218 struct sched_group *group_leader; /* Group which relieves group_min */
3219 unsigned long min_load_per_task; /* load_per_task in group_min */
3220 unsigned long leader_nr_running; /* Nr running of group_leader */
3221 unsigned long min_nr_running; /* Nr running of group_min */
3222#endif
3223};
67bb6c03 3224
381be78f
GS
3225/**
3226 * sg_lb_stats - stats of a sched_group required for load_balancing
3227 */
3228struct sg_lb_stats {
3229 unsigned long avg_load; /*Avg load across the CPUs of the group */
3230 unsigned long group_load; /* Total load over the CPUs of the group */
3231 unsigned long sum_nr_running; /* Nr tasks running in the group */
3232 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3233 unsigned long group_capacity;
3234 int group_imb; /* Is there an imbalance in the group ? */
3235};
3236
67bb6c03
GS
3237/**
3238 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3239 * @group: The group whose first cpu is to be returned.
3240 */
3241static inline unsigned int group_first_cpu(struct sched_group *group)
3242{
3243 return cpumask_first(sched_group_cpus(group));
3244}
3245
3246/**
3247 * get_sd_load_idx - Obtain the load index for a given sched domain.
3248 * @sd: The sched_domain whose load_idx is to be obtained.
3249 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3250 */
3251static inline int get_sd_load_idx(struct sched_domain *sd,
3252 enum cpu_idle_type idle)
3253{
3254 int load_idx;
3255
3256 switch (idle) {
3257 case CPU_NOT_IDLE:
3258 load_idx = sd->busy_idx;
3259 break;
3260
3261 case CPU_NEWLY_IDLE:
3262 load_idx = sd->newidle_idx;
3263 break;
3264 default:
3265 load_idx = sd->idle_idx;
3266 break;
3267 }
3268
3269 return load_idx;
3270}
1f8c553d
GS
3271
3272
c071df18
GS
3273#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3274/**
3275 * init_sd_power_savings_stats - Initialize power savings statistics for
3276 * the given sched_domain, during load balancing.
3277 *
3278 * @sd: Sched domain whose power-savings statistics are to be initialized.
3279 * @sds: Variable containing the statistics for sd.
3280 * @idle: Idle status of the CPU at which we're performing load-balancing.
3281 */
3282static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3283 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3284{
3285 /*
3286 * Busy processors will not participate in power savings
3287 * balance.
3288 */
3289 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3290 sds->power_savings_balance = 0;
3291 else {
3292 sds->power_savings_balance = 1;
3293 sds->min_nr_running = ULONG_MAX;
3294 sds->leader_nr_running = 0;
3295 }
3296}
3297
3298/**
3299 * update_sd_power_savings_stats - Update the power saving stats for a
3300 * sched_domain while performing load balancing.
3301 *
3302 * @group: sched_group belonging to the sched_domain under consideration.
3303 * @sds: Variable containing the statistics of the sched_domain
3304 * @local_group: Does group contain the CPU for which we're performing
3305 * load balancing ?
3306 * @sgs: Variable containing the statistics of the group.
3307 */
3308static inline void update_sd_power_savings_stats(struct sched_group *group,
3309 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3310{
3311
3312 if (!sds->power_savings_balance)
3313 return;
3314
3315 /*
3316 * If the local group is idle or completely loaded
3317 * no need to do power savings balance at this domain
3318 */
3319 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3320 !sds->this_nr_running))
3321 sds->power_savings_balance = 0;
3322
3323 /*
3324 * If a group is already running at full capacity or idle,
3325 * don't include that group in power savings calculations
3326 */
3327 if (!sds->power_savings_balance ||
3328 sgs->sum_nr_running >= sgs->group_capacity ||
3329 !sgs->sum_nr_running)
3330 return;
3331
3332 /*
3333 * Calculate the group which has the least non-idle load.
3334 * This is the group from where we need to pick up the load
3335 * for saving power
3336 */
3337 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3338 (sgs->sum_nr_running == sds->min_nr_running &&
3339 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3340 sds->group_min = group;
3341 sds->min_nr_running = sgs->sum_nr_running;
3342 sds->min_load_per_task = sgs->sum_weighted_load /
3343 sgs->sum_nr_running;
3344 }
3345
3346 /*
3347 * Calculate the group which is almost near its
3348 * capacity but still has some space to pick up some load
3349 * from other group and save more power
3350 */
3351 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3352 return;
3353
3354 if (sgs->sum_nr_running > sds->leader_nr_running ||
3355 (sgs->sum_nr_running == sds->leader_nr_running &&
3356 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3357 sds->group_leader = group;
3358 sds->leader_nr_running = sgs->sum_nr_running;
3359 }
3360}
3361
3362/**
3363 * check_power_save_busiest_group - Check if we have potential to perform
3364 * some power-savings balance. If yes, set the busiest group to be
3365 * the least loaded group in the sched_domain, so that it's CPUs can
3366 * be put to idle.
3367 *
3368 * @sds: Variable containing the statistics of the sched_domain
3369 * under consideration.
3370 * @this_cpu: Cpu at which we're currently performing load-balancing.
3371 * @imbalance: Variable to store the imbalance.
3372 *
3373 * Returns 1 if there is potential to perform power-savings balance.
3374 * Else returns 0.
3375 */
3376static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3377 int this_cpu, unsigned long *imbalance)
3378{
3379 if (!sds->power_savings_balance)
3380 return 0;
3381
3382 if (sds->this != sds->group_leader ||
3383 sds->group_leader == sds->group_min)
3384 return 0;
3385
3386 *imbalance = sds->min_load_per_task;
3387 sds->busiest = sds->group_min;
3388
3389 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3390 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3391 group_first_cpu(sds->group_leader);
3392 }
3393
3394 return 1;
3395
3396}
3397#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3398static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3399 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3400{
3401 return;
3402}
3403
3404static inline void update_sd_power_savings_stats(struct sched_group *group,
3405 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3406{
3407 return;
3408}
3409
3410static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3411 int this_cpu, unsigned long *imbalance)
3412{
3413 return 0;
3414}
3415#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3416
3417
1f8c553d
GS
3418/**
3419 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3420 * @group: sched_group whose statistics are to be updated.
3421 * @this_cpu: Cpu for which load balance is currently performed.
3422 * @idle: Idle status of this_cpu
3423 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3424 * @sd_idle: Idle status of the sched_domain containing group.
3425 * @local_group: Does group contain this_cpu.
3426 * @cpus: Set of cpus considered for load balancing.
3427 * @balance: Should we balance.
3428 * @sgs: variable to hold the statistics for this group.
3429 */
3430static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3431 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3432 int local_group, const struct cpumask *cpus,
3433 int *balance, struct sg_lb_stats *sgs)
3434{
3435 unsigned long load, max_cpu_load, min_cpu_load;
3436 int i;
3437 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3438 unsigned long sum_avg_load_per_task;
3439 unsigned long avg_load_per_task;
3440
3441 if (local_group)
3442 balance_cpu = group_first_cpu(group);
3443
3444 /* Tally up the load of all CPUs in the group */
3445 sum_avg_load_per_task = avg_load_per_task = 0;
3446 max_cpu_load = 0;
3447 min_cpu_load = ~0UL;
3448
3449 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3450 struct rq *rq = cpu_rq(i);
3451
3452 if (*sd_idle && rq->nr_running)
3453 *sd_idle = 0;
3454
3455 /* Bias balancing toward cpus of our domain */
3456 if (local_group) {
3457 if (idle_cpu(i) && !first_idle_cpu) {
3458 first_idle_cpu = 1;
3459 balance_cpu = i;
3460 }
3461
3462 load = target_load(i, load_idx);
3463 } else {
3464 load = source_load(i, load_idx);
3465 if (load > max_cpu_load)
3466 max_cpu_load = load;
3467 if (min_cpu_load > load)
3468 min_cpu_load = load;
3469 }
3470
3471 sgs->group_load += load;
3472 sgs->sum_nr_running += rq->nr_running;
3473 sgs->sum_weighted_load += weighted_cpuload(i);
3474
3475 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3476 }
3477
3478 /*
3479 * First idle cpu or the first cpu(busiest) in this sched group
3480 * is eligible for doing load balancing at this and above
3481 * domains. In the newly idle case, we will allow all the cpu's
3482 * to do the newly idle load balance.
3483 */
3484 if (idle != CPU_NEWLY_IDLE && local_group &&
3485 balance_cpu != this_cpu && balance) {
3486 *balance = 0;
3487 return;
3488 }
3489
3490 /* Adjust by relative CPU power of the group */
3491 sgs->avg_load = sg_div_cpu_power(group,
3492 sgs->group_load * SCHED_LOAD_SCALE);
3493
3494
3495 /*
3496 * Consider the group unbalanced when the imbalance is larger
3497 * than the average weight of two tasks.
3498 *
3499 * APZ: with cgroup the avg task weight can vary wildly and
3500 * might not be a suitable number - should we keep a
3501 * normalized nr_running number somewhere that negates
3502 * the hierarchy?
3503 */
3504 avg_load_per_task = sg_div_cpu_power(group,
3505 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3506
3507 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3508 sgs->group_imb = 1;
3509
3510 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3511
3512}
dd41f596 3513
37abe198
GS
3514/**
3515 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3516 * @sd: sched_domain whose statistics are to be updated.
3517 * @this_cpu: Cpu for which load balance is currently performed.
3518 * @idle: Idle status of this_cpu
3519 * @sd_idle: Idle status of the sched_domain containing group.
3520 * @cpus: Set of cpus considered for load balancing.
3521 * @balance: Should we balance.
3522 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3523 */
37abe198
GS
3524static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3525 enum cpu_idle_type idle, int *sd_idle,
3526 const struct cpumask *cpus, int *balance,
3527 struct sd_lb_stats *sds)
1da177e4 3528{
222d656d 3529 struct sched_group *group = sd->groups;
37abe198 3530 struct sg_lb_stats sgs;
222d656d
GS
3531 int load_idx;
3532
c071df18 3533 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3534 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3535
3536 do {
1da177e4 3537 int local_group;
1da177e4 3538
758b2cdc
RR
3539 local_group = cpumask_test_cpu(this_cpu,
3540 sched_group_cpus(group));
381be78f 3541 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3542 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3543 local_group, cpus, balance, &sgs);
1da177e4 3544
37abe198
GS
3545 if (local_group && balance && !(*balance))
3546 return;
783609c6 3547
37abe198
GS
3548 sds->total_load += sgs.group_load;
3549 sds->total_pwr += group->__cpu_power;
1da177e4 3550
1da177e4 3551 if (local_group) {
37abe198
GS
3552 sds->this_load = sgs.avg_load;
3553 sds->this = group;
3554 sds->this_nr_running = sgs.sum_nr_running;
3555 sds->this_load_per_task = sgs.sum_weighted_load;
3556 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3557 (sgs.sum_nr_running > sgs.group_capacity ||
3558 sgs.group_imb)) {
37abe198
GS
3559 sds->max_load = sgs.avg_load;
3560 sds->busiest = group;
3561 sds->busiest_nr_running = sgs.sum_nr_running;
3562 sds->busiest_load_per_task = sgs.sum_weighted_load;
3563 sds->group_imb = sgs.group_imb;
1da177e4 3564 }
5c45bf27 3565
c071df18 3566 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3567 group = group->next;
3568 } while (group != sd->groups);
3569
37abe198 3570}
2e6f44ae
GS
3571
3572/**
3573 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3574 * amongst the groups of a sched_domain, during
3575 * load balancing.
2e6f44ae
GS
3576 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3577 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3578 * @imbalance: Variable to store the imbalance.
3579 */
3580static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3581 int this_cpu, unsigned long *imbalance)
3582{
3583 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3584 unsigned int imbn = 2;
3585
3586 if (sds->this_nr_running) {
3587 sds->this_load_per_task /= sds->this_nr_running;
3588 if (sds->busiest_load_per_task >
3589 sds->this_load_per_task)
3590 imbn = 1;
3591 } else
3592 sds->this_load_per_task =
3593 cpu_avg_load_per_task(this_cpu);
3594
3595 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3596 sds->busiest_load_per_task * imbn) {
3597 *imbalance = sds->busiest_load_per_task;
3598 return;
3599 }
3600
3601 /*
3602 * OK, we don't have enough imbalance to justify moving tasks,
3603 * however we may be able to increase total CPU power used by
3604 * moving them.
3605 */
3606
3607 pwr_now += sds->busiest->__cpu_power *
3608 min(sds->busiest_load_per_task, sds->max_load);
3609 pwr_now += sds->this->__cpu_power *
3610 min(sds->this_load_per_task, sds->this_load);
3611 pwr_now /= SCHED_LOAD_SCALE;
3612
3613 /* Amount of load we'd subtract */
3614 tmp = sg_div_cpu_power(sds->busiest,
3615 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3616 if (sds->max_load > tmp)
3617 pwr_move += sds->busiest->__cpu_power *
3618 min(sds->busiest_load_per_task, sds->max_load - tmp);
3619
3620 /* Amount of load we'd add */
3621 if (sds->max_load * sds->busiest->__cpu_power <
3622 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3623 tmp = sg_div_cpu_power(sds->this,
3624 sds->max_load * sds->busiest->__cpu_power);
3625 else
3626 tmp = sg_div_cpu_power(sds->this,
3627 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3628 pwr_move += sds->this->__cpu_power *
3629 min(sds->this_load_per_task, sds->this_load + tmp);
3630 pwr_move /= SCHED_LOAD_SCALE;
3631
3632 /* Move if we gain throughput */
3633 if (pwr_move > pwr_now)
3634 *imbalance = sds->busiest_load_per_task;
3635}
dbc523a3
GS
3636
3637/**
3638 * calculate_imbalance - Calculate the amount of imbalance present within the
3639 * groups of a given sched_domain during load balance.
3640 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3641 * @this_cpu: Cpu for which currently load balance is being performed.
3642 * @imbalance: The variable to store the imbalance.
3643 */
3644static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3645 unsigned long *imbalance)
3646{
3647 unsigned long max_pull;
3648 /*
3649 * In the presence of smp nice balancing, certain scenarios can have
3650 * max load less than avg load(as we skip the groups at or below
3651 * its cpu_power, while calculating max_load..)
3652 */
3653 if (sds->max_load < sds->avg_load) {
3654 *imbalance = 0;
3655 return fix_small_imbalance(sds, this_cpu, imbalance);
3656 }
3657
3658 /* Don't want to pull so many tasks that a group would go idle */
3659 max_pull = min(sds->max_load - sds->avg_load,
3660 sds->max_load - sds->busiest_load_per_task);
3661
3662 /* How much load to actually move to equalise the imbalance */
3663 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3664 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3665 / SCHED_LOAD_SCALE;
3666
3667 /*
3668 * if *imbalance is less than the average load per runnable task
3669 * there is no gaurantee that any tasks will be moved so we'll have
3670 * a think about bumping its value to force at least one task to be
3671 * moved
3672 */
3673 if (*imbalance < sds->busiest_load_per_task)
3674 return fix_small_imbalance(sds, this_cpu, imbalance);
3675
3676}
37abe198
GS
3677/******* find_busiest_group() helpers end here *********************/
3678
b7bb4c9b
GS
3679/**
3680 * find_busiest_group - Returns the busiest group within the sched_domain
3681 * if there is an imbalance. If there isn't an imbalance, and
3682 * the user has opted for power-savings, it returns a group whose
3683 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3684 * such a group exists.
3685 *
3686 * Also calculates the amount of weighted load which should be moved
3687 * to restore balance.
3688 *
3689 * @sd: The sched_domain whose busiest group is to be returned.
3690 * @this_cpu: The cpu for which load balancing is currently being performed.
3691 * @imbalance: Variable which stores amount of weighted load which should
3692 * be moved to restore balance/put a group to idle.
3693 * @idle: The idle status of this_cpu.
3694 * @sd_idle: The idleness of sd
3695 * @cpus: The set of CPUs under consideration for load-balancing.
3696 * @balance: Pointer to a variable indicating if this_cpu
3697 * is the appropriate cpu to perform load balancing at this_level.
3698 *
3699 * Returns: - the busiest group if imbalance exists.
3700 * - If no imbalance and user has opted for power-savings balance,
3701 * return the least loaded group whose CPUs can be
3702 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3703 */
3704static struct sched_group *
3705find_busiest_group(struct sched_domain *sd, int this_cpu,
3706 unsigned long *imbalance, enum cpu_idle_type idle,
3707 int *sd_idle, const struct cpumask *cpus, int *balance)
3708{
3709 struct sd_lb_stats sds;
37abe198
GS
3710
3711 memset(&sds, 0, sizeof(sds));
3712
3713 /*
3714 * Compute the various statistics relavent for load balancing at
3715 * this level.
3716 */
3717 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3718 balance, &sds);
3719
b7bb4c9b
GS
3720 /* Cases where imbalance does not exist from POV of this_cpu */
3721 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3722 * at this level.
3723 * 2) There is no busy sibling group to pull from.
3724 * 3) This group is the busiest group.
3725 * 4) This group is more busy than the avg busieness at this
3726 * sched_domain.
3727 * 5) The imbalance is within the specified limit.
3728 * 6) Any rebalance would lead to ping-pong
3729 */
37abe198
GS
3730 if (balance && !(*balance))
3731 goto ret;
3732
b7bb4c9b
GS
3733 if (!sds.busiest || sds.busiest_nr_running == 0)
3734 goto out_balanced;
3735
3736 if (sds.this_load >= sds.max_load)
1da177e4
LT
3737 goto out_balanced;
3738
222d656d 3739 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3740
b7bb4c9b
GS
3741 if (sds.this_load >= sds.avg_load)
3742 goto out_balanced;
3743
3744 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3745 goto out_balanced;
3746
222d656d
GS
3747 sds.busiest_load_per_task /= sds.busiest_nr_running;
3748 if (sds.group_imb)
3749 sds.busiest_load_per_task =
3750 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3751
1da177e4
LT
3752 /*
3753 * We're trying to get all the cpus to the average_load, so we don't
3754 * want to push ourselves above the average load, nor do we wish to
3755 * reduce the max loaded cpu below the average load, as either of these
3756 * actions would just result in more rebalancing later, and ping-pong
3757 * tasks around. Thus we look for the minimum possible imbalance.
3758 * Negative imbalances (*we* are more loaded than anyone else) will
3759 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3760 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3761 * appear as very large values with unsigned longs.
3762 */
222d656d 3763 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3764 goto out_balanced;
3765
dbc523a3
GS
3766 /* Looks like there is an imbalance. Compute it */
3767 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3768 return sds.busiest;
1da177e4
LT
3769
3770out_balanced:
c071df18
GS
3771 /*
3772 * There is no obvious imbalance. But check if we can do some balancing
3773 * to save power.
3774 */
3775 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3776 return sds.busiest;
783609c6 3777ret:
1da177e4
LT
3778 *imbalance = 0;
3779 return NULL;
3780}
3781
3782/*
3783 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3784 */
70b97a7f 3785static struct rq *
d15bcfdb 3786find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3787 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3788{
70b97a7f 3789 struct rq *busiest = NULL, *rq;
2dd73a4f 3790 unsigned long max_load = 0;
1da177e4
LT
3791 int i;
3792
758b2cdc 3793 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3794 unsigned long wl;
0a2966b4 3795
96f874e2 3796 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3797 continue;
3798
48f24c4d 3799 rq = cpu_rq(i);
dd41f596 3800 wl = weighted_cpuload(i);
2dd73a4f 3801
dd41f596 3802 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3803 continue;
1da177e4 3804
dd41f596
IM
3805 if (wl > max_load) {
3806 max_load = wl;
48f24c4d 3807 busiest = rq;
1da177e4
LT
3808 }
3809 }
3810
3811 return busiest;
3812}
3813
77391d71
NP
3814/*
3815 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3816 * so long as it is large enough.
3817 */
3818#define MAX_PINNED_INTERVAL 512
3819
1da177e4
LT
3820/*
3821 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3822 * tasks if there is an imbalance.
1da177e4 3823 */
70b97a7f 3824static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3825 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3826 int *balance, struct cpumask *cpus)
1da177e4 3827{
43010659 3828 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3829 struct sched_group *group;
1da177e4 3830 unsigned long imbalance;
70b97a7f 3831 struct rq *busiest;
fe2eea3f 3832 unsigned long flags;
5969fe06 3833
96f874e2 3834 cpumask_setall(cpus);
7c16ec58 3835
89c4710e
SS
3836 /*
3837 * When power savings policy is enabled for the parent domain, idle
3838 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3839 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3840 * portraying it as CPU_NOT_IDLE.
89c4710e 3841 */
d15bcfdb 3842 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3843 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3844 sd_idle = 1;
1da177e4 3845
2d72376b 3846 schedstat_inc(sd, lb_count[idle]);
1da177e4 3847
0a2966b4 3848redo:
c8cba857 3849 update_shares(sd);
0a2966b4 3850 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3851 cpus, balance);
783609c6 3852
06066714 3853 if (*balance == 0)
783609c6 3854 goto out_balanced;
783609c6 3855
1da177e4
LT
3856 if (!group) {
3857 schedstat_inc(sd, lb_nobusyg[idle]);
3858 goto out_balanced;
3859 }
3860
7c16ec58 3861 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3862 if (!busiest) {
3863 schedstat_inc(sd, lb_nobusyq[idle]);
3864 goto out_balanced;
3865 }
3866
db935dbd 3867 BUG_ON(busiest == this_rq);
1da177e4
LT
3868
3869 schedstat_add(sd, lb_imbalance[idle], imbalance);
3870
43010659 3871 ld_moved = 0;
1da177e4
LT
3872 if (busiest->nr_running > 1) {
3873 /*
3874 * Attempt to move tasks. If find_busiest_group has found
3875 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3876 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3877 * correctly treated as an imbalance.
3878 */
fe2eea3f 3879 local_irq_save(flags);
e17224bf 3880 double_rq_lock(this_rq, busiest);
43010659 3881 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3882 imbalance, sd, idle, &all_pinned);
e17224bf 3883 double_rq_unlock(this_rq, busiest);
fe2eea3f 3884 local_irq_restore(flags);
81026794 3885
46cb4b7c
SS
3886 /*
3887 * some other cpu did the load balance for us.
3888 */
43010659 3889 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3890 resched_cpu(this_cpu);
3891
81026794 3892 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3893 if (unlikely(all_pinned)) {
96f874e2
RR
3894 cpumask_clear_cpu(cpu_of(busiest), cpus);
3895 if (!cpumask_empty(cpus))
0a2966b4 3896 goto redo;
81026794 3897 goto out_balanced;
0a2966b4 3898 }
1da177e4 3899 }
81026794 3900
43010659 3901 if (!ld_moved) {
1da177e4
LT
3902 schedstat_inc(sd, lb_failed[idle]);
3903 sd->nr_balance_failed++;
3904
3905 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3906
fe2eea3f 3907 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3908
3909 /* don't kick the migration_thread, if the curr
3910 * task on busiest cpu can't be moved to this_cpu
3911 */
96f874e2
RR
3912 if (!cpumask_test_cpu(this_cpu,
3913 &busiest->curr->cpus_allowed)) {
fe2eea3f 3914 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3915 all_pinned = 1;
3916 goto out_one_pinned;
3917 }
3918
1da177e4
LT
3919 if (!busiest->active_balance) {
3920 busiest->active_balance = 1;
3921 busiest->push_cpu = this_cpu;
81026794 3922 active_balance = 1;
1da177e4 3923 }
fe2eea3f 3924 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3925 if (active_balance)
1da177e4
LT
3926 wake_up_process(busiest->migration_thread);
3927
3928 /*
3929 * We've kicked active balancing, reset the failure
3930 * counter.
3931 */
39507451 3932 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3933 }
81026794 3934 } else
1da177e4
LT
3935 sd->nr_balance_failed = 0;
3936
81026794 3937 if (likely(!active_balance)) {
1da177e4
LT
3938 /* We were unbalanced, so reset the balancing interval */
3939 sd->balance_interval = sd->min_interval;
81026794
NP
3940 } else {
3941 /*
3942 * If we've begun active balancing, start to back off. This
3943 * case may not be covered by the all_pinned logic if there
3944 * is only 1 task on the busy runqueue (because we don't call
3945 * move_tasks).
3946 */
3947 if (sd->balance_interval < sd->max_interval)
3948 sd->balance_interval *= 2;
1da177e4
LT
3949 }
3950
43010659 3951 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3952 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3953 ld_moved = -1;
3954
3955 goto out;
1da177e4
LT
3956
3957out_balanced:
1da177e4
LT
3958 schedstat_inc(sd, lb_balanced[idle]);
3959
16cfb1c0 3960 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3961
3962out_one_pinned:
1da177e4 3963 /* tune up the balancing interval */
77391d71
NP
3964 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3965 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3966 sd->balance_interval *= 2;
3967
48f24c4d 3968 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3969 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3970 ld_moved = -1;
3971 else
3972 ld_moved = 0;
3973out:
c8cba857
PZ
3974 if (ld_moved)
3975 update_shares(sd);
c09595f6 3976 return ld_moved;
1da177e4
LT
3977}
3978
3979/*
3980 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3981 * tasks if there is an imbalance.
3982 *
d15bcfdb 3983 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3984 * this_rq is locked.
3985 */
48f24c4d 3986static int
7c16ec58 3987load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3988 struct cpumask *cpus)
1da177e4
LT
3989{
3990 struct sched_group *group;
70b97a7f 3991 struct rq *busiest = NULL;
1da177e4 3992 unsigned long imbalance;
43010659 3993 int ld_moved = 0;
5969fe06 3994 int sd_idle = 0;
969bb4e4 3995 int all_pinned = 0;
7c16ec58 3996
96f874e2 3997 cpumask_setall(cpus);
5969fe06 3998
89c4710e
SS
3999 /*
4000 * When power savings policy is enabled for the parent domain, idle
4001 * sibling can pick up load irrespective of busy siblings. In this case,
4002 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4003 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4004 */
4005 if (sd->flags & SD_SHARE_CPUPOWER &&
4006 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4007 sd_idle = 1;
1da177e4 4008
2d72376b 4009 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4010redo:
3e5459b4 4011 update_shares_locked(this_rq, sd);
d15bcfdb 4012 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4013 &sd_idle, cpus, NULL);
1da177e4 4014 if (!group) {
d15bcfdb 4015 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4016 goto out_balanced;
1da177e4
LT
4017 }
4018
7c16ec58 4019 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4020 if (!busiest) {
d15bcfdb 4021 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4022 goto out_balanced;
1da177e4
LT
4023 }
4024
db935dbd
NP
4025 BUG_ON(busiest == this_rq);
4026
d15bcfdb 4027 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4028
43010659 4029 ld_moved = 0;
d6d5cfaf
NP
4030 if (busiest->nr_running > 1) {
4031 /* Attempt to move tasks */
4032 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4033 /* this_rq->clock is already updated */
4034 update_rq_clock(busiest);
43010659 4035 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4036 imbalance, sd, CPU_NEWLY_IDLE,
4037 &all_pinned);
1b12bbc7 4038 double_unlock_balance(this_rq, busiest);
0a2966b4 4039
969bb4e4 4040 if (unlikely(all_pinned)) {
96f874e2
RR
4041 cpumask_clear_cpu(cpu_of(busiest), cpus);
4042 if (!cpumask_empty(cpus))
0a2966b4
CL
4043 goto redo;
4044 }
d6d5cfaf
NP
4045 }
4046
43010659 4047 if (!ld_moved) {
36dffab6 4048 int active_balance = 0;
ad273b32 4049
d15bcfdb 4050 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4051 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4052 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4053 return -1;
ad273b32
VS
4054
4055 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4056 return -1;
4057
4058 if (sd->nr_balance_failed++ < 2)
4059 return -1;
4060
4061 /*
4062 * The only task running in a non-idle cpu can be moved to this
4063 * cpu in an attempt to completely freeup the other CPU
4064 * package. The same method used to move task in load_balance()
4065 * have been extended for load_balance_newidle() to speedup
4066 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4067 *
4068 * The package power saving logic comes from
4069 * find_busiest_group(). If there are no imbalance, then
4070 * f_b_g() will return NULL. However when sched_mc={1,2} then
4071 * f_b_g() will select a group from which a running task may be
4072 * pulled to this cpu in order to make the other package idle.
4073 * If there is no opportunity to make a package idle and if
4074 * there are no imbalance, then f_b_g() will return NULL and no
4075 * action will be taken in load_balance_newidle().
4076 *
4077 * Under normal task pull operation due to imbalance, there
4078 * will be more than one task in the source run queue and
4079 * move_tasks() will succeed. ld_moved will be true and this
4080 * active balance code will not be triggered.
4081 */
4082
4083 /* Lock busiest in correct order while this_rq is held */
4084 double_lock_balance(this_rq, busiest);
4085
4086 /*
4087 * don't kick the migration_thread, if the curr
4088 * task on busiest cpu can't be moved to this_cpu
4089 */
6ca09dfc 4090 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4091 double_unlock_balance(this_rq, busiest);
4092 all_pinned = 1;
4093 return ld_moved;
4094 }
4095
4096 if (!busiest->active_balance) {
4097 busiest->active_balance = 1;
4098 busiest->push_cpu = this_cpu;
4099 active_balance = 1;
4100 }
4101
4102 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4103 /*
4104 * Should not call ttwu while holding a rq->lock
4105 */
4106 spin_unlock(&this_rq->lock);
ad273b32
VS
4107 if (active_balance)
4108 wake_up_process(busiest->migration_thread);
da8d5089 4109 spin_lock(&this_rq->lock);
ad273b32 4110
5969fe06 4111 } else
16cfb1c0 4112 sd->nr_balance_failed = 0;
1da177e4 4113
3e5459b4 4114 update_shares_locked(this_rq, sd);
43010659 4115 return ld_moved;
16cfb1c0
NP
4116
4117out_balanced:
d15bcfdb 4118 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4119 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4120 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4121 return -1;
16cfb1c0 4122 sd->nr_balance_failed = 0;
48f24c4d 4123
16cfb1c0 4124 return 0;
1da177e4
LT
4125}
4126
4127/*
4128 * idle_balance is called by schedule() if this_cpu is about to become
4129 * idle. Attempts to pull tasks from other CPUs.
4130 */
70b97a7f 4131static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4132{
4133 struct sched_domain *sd;
efbe027e 4134 int pulled_task = 0;
dd41f596 4135 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
4136 cpumask_var_t tmpmask;
4137
4138 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
4139 return;
1da177e4
LT
4140
4141 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4142 unsigned long interval;
4143
4144 if (!(sd->flags & SD_LOAD_BALANCE))
4145 continue;
4146
4147 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4148 /* If we've pulled tasks over stop searching: */
7c16ec58 4149 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 4150 sd, tmpmask);
92c4ca5c
CL
4151
4152 interval = msecs_to_jiffies(sd->balance_interval);
4153 if (time_after(next_balance, sd->last_balance + interval))
4154 next_balance = sd->last_balance + interval;
4155 if (pulled_task)
4156 break;
1da177e4 4157 }
dd41f596 4158 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4159 /*
4160 * We are going idle. next_balance may be set based on
4161 * a busy processor. So reset next_balance.
4162 */
4163 this_rq->next_balance = next_balance;
dd41f596 4164 }
4d2732c6 4165 free_cpumask_var(tmpmask);
1da177e4
LT
4166}
4167
4168/*
4169 * active_load_balance is run by migration threads. It pushes running tasks
4170 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4171 * running on each physical CPU where possible, and avoids physical /
4172 * logical imbalances.
4173 *
4174 * Called with busiest_rq locked.
4175 */
70b97a7f 4176static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4177{
39507451 4178 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4179 struct sched_domain *sd;
4180 struct rq *target_rq;
39507451 4181
48f24c4d 4182 /* Is there any task to move? */
39507451 4183 if (busiest_rq->nr_running <= 1)
39507451
NP
4184 return;
4185
4186 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4187
4188 /*
39507451 4189 * This condition is "impossible", if it occurs
41a2d6cf 4190 * we need to fix it. Originally reported by
39507451 4191 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4192 */
39507451 4193 BUG_ON(busiest_rq == target_rq);
1da177e4 4194
39507451
NP
4195 /* move a task from busiest_rq to target_rq */
4196 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4197 update_rq_clock(busiest_rq);
4198 update_rq_clock(target_rq);
39507451
NP
4199
4200 /* Search for an sd spanning us and the target CPU. */
c96d145e 4201 for_each_domain(target_cpu, sd) {
39507451 4202 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4203 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4204 break;
c96d145e 4205 }
39507451 4206
48f24c4d 4207 if (likely(sd)) {
2d72376b 4208 schedstat_inc(sd, alb_count);
39507451 4209
43010659
PW
4210 if (move_one_task(target_rq, target_cpu, busiest_rq,
4211 sd, CPU_IDLE))
48f24c4d
IM
4212 schedstat_inc(sd, alb_pushed);
4213 else
4214 schedstat_inc(sd, alb_failed);
4215 }
1b12bbc7 4216 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4217}
4218
46cb4b7c
SS
4219#ifdef CONFIG_NO_HZ
4220static struct {
4221 atomic_t load_balancer;
7d1e6a9b 4222 cpumask_var_t cpu_mask;
46cb4b7c
SS
4223} nohz ____cacheline_aligned = {
4224 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4225};
4226
7835b98b 4227/*
46cb4b7c
SS
4228 * This routine will try to nominate the ilb (idle load balancing)
4229 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4230 * load balancing on behalf of all those cpus. If all the cpus in the system
4231 * go into this tickless mode, then there will be no ilb owner (as there is
4232 * no need for one) and all the cpus will sleep till the next wakeup event
4233 * arrives...
4234 *
4235 * For the ilb owner, tick is not stopped. And this tick will be used
4236 * for idle load balancing. ilb owner will still be part of
4237 * nohz.cpu_mask..
7835b98b 4238 *
46cb4b7c
SS
4239 * While stopping the tick, this cpu will become the ilb owner if there
4240 * is no other owner. And will be the owner till that cpu becomes busy
4241 * or if all cpus in the system stop their ticks at which point
4242 * there is no need for ilb owner.
4243 *
4244 * When the ilb owner becomes busy, it nominates another owner, during the
4245 * next busy scheduler_tick()
4246 */
4247int select_nohz_load_balancer(int stop_tick)
4248{
4249 int cpu = smp_processor_id();
4250
4251 if (stop_tick) {
46cb4b7c
SS
4252 cpu_rq(cpu)->in_nohz_recently = 1;
4253
483b4ee6
SS
4254 if (!cpu_active(cpu)) {
4255 if (atomic_read(&nohz.load_balancer) != cpu)
4256 return 0;
4257
4258 /*
4259 * If we are going offline and still the leader,
4260 * give up!
4261 */
46cb4b7c
SS
4262 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4263 BUG();
483b4ee6 4264
46cb4b7c
SS
4265 return 0;
4266 }
4267
483b4ee6
SS
4268 cpumask_set_cpu(cpu, nohz.cpu_mask);
4269
46cb4b7c 4270 /* time for ilb owner also to sleep */
7d1e6a9b 4271 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4272 if (atomic_read(&nohz.load_balancer) == cpu)
4273 atomic_set(&nohz.load_balancer, -1);
4274 return 0;
4275 }
4276
4277 if (atomic_read(&nohz.load_balancer) == -1) {
4278 /* make me the ilb owner */
4279 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4280 return 1;
4281 } else if (atomic_read(&nohz.load_balancer) == cpu)
4282 return 1;
4283 } else {
7d1e6a9b 4284 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4285 return 0;
4286
7d1e6a9b 4287 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4288
4289 if (atomic_read(&nohz.load_balancer) == cpu)
4290 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4291 BUG();
4292 }
4293 return 0;
4294}
4295#endif
4296
4297static DEFINE_SPINLOCK(balancing);
4298
4299/*
7835b98b
CL
4300 * It checks each scheduling domain to see if it is due to be balanced,
4301 * and initiates a balancing operation if so.
4302 *
4303 * Balancing parameters are set up in arch_init_sched_domains.
4304 */
a9957449 4305static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4306{
46cb4b7c
SS
4307 int balance = 1;
4308 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4309 unsigned long interval;
4310 struct sched_domain *sd;
46cb4b7c 4311 /* Earliest time when we have to do rebalance again */
c9819f45 4312 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4313 int update_next_balance = 0;
d07355f5 4314 int need_serialize;
a0e90245
RR
4315 cpumask_var_t tmp;
4316
4317 /* Fails alloc? Rebalancing probably not a priority right now. */
4318 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4319 return;
1da177e4 4320
46cb4b7c 4321 for_each_domain(cpu, sd) {
1da177e4
LT
4322 if (!(sd->flags & SD_LOAD_BALANCE))
4323 continue;
4324
4325 interval = sd->balance_interval;
d15bcfdb 4326 if (idle != CPU_IDLE)
1da177e4
LT
4327 interval *= sd->busy_factor;
4328
4329 /* scale ms to jiffies */
4330 interval = msecs_to_jiffies(interval);
4331 if (unlikely(!interval))
4332 interval = 1;
dd41f596
IM
4333 if (interval > HZ*NR_CPUS/10)
4334 interval = HZ*NR_CPUS/10;
4335
d07355f5 4336 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4337
d07355f5 4338 if (need_serialize) {
08c183f3
CL
4339 if (!spin_trylock(&balancing))
4340 goto out;
4341 }
4342
c9819f45 4343 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4344 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4345 /*
4346 * We've pulled tasks over so either we're no
5969fe06
NP
4347 * longer idle, or one of our SMT siblings is
4348 * not idle.
4349 */
d15bcfdb 4350 idle = CPU_NOT_IDLE;
1da177e4 4351 }
1bd77f2d 4352 sd->last_balance = jiffies;
1da177e4 4353 }
d07355f5 4354 if (need_serialize)
08c183f3
CL
4355 spin_unlock(&balancing);
4356out:
f549da84 4357 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4358 next_balance = sd->last_balance + interval;
f549da84
SS
4359 update_next_balance = 1;
4360 }
783609c6
SS
4361
4362 /*
4363 * Stop the load balance at this level. There is another
4364 * CPU in our sched group which is doing load balancing more
4365 * actively.
4366 */
4367 if (!balance)
4368 break;
1da177e4 4369 }
f549da84
SS
4370
4371 /*
4372 * next_balance will be updated only when there is a need.
4373 * When the cpu is attached to null domain for ex, it will not be
4374 * updated.
4375 */
4376 if (likely(update_next_balance))
4377 rq->next_balance = next_balance;
a0e90245
RR
4378
4379 free_cpumask_var(tmp);
46cb4b7c
SS
4380}
4381
4382/*
4383 * run_rebalance_domains is triggered when needed from the scheduler tick.
4384 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4385 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4386 */
4387static void run_rebalance_domains(struct softirq_action *h)
4388{
dd41f596
IM
4389 int this_cpu = smp_processor_id();
4390 struct rq *this_rq = cpu_rq(this_cpu);
4391 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4392 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4393
dd41f596 4394 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4395
4396#ifdef CONFIG_NO_HZ
4397 /*
4398 * If this cpu is the owner for idle load balancing, then do the
4399 * balancing on behalf of the other idle cpus whose ticks are
4400 * stopped.
4401 */
dd41f596
IM
4402 if (this_rq->idle_at_tick &&
4403 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4404 struct rq *rq;
4405 int balance_cpu;
4406
7d1e6a9b
RR
4407 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4408 if (balance_cpu == this_cpu)
4409 continue;
4410
46cb4b7c
SS
4411 /*
4412 * If this cpu gets work to do, stop the load balancing
4413 * work being done for other cpus. Next load
4414 * balancing owner will pick it up.
4415 */
4416 if (need_resched())
4417 break;
4418
de0cf899 4419 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4420
4421 rq = cpu_rq(balance_cpu);
dd41f596
IM
4422 if (time_after(this_rq->next_balance, rq->next_balance))
4423 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4424 }
4425 }
4426#endif
4427}
4428
8a0be9ef
FW
4429static inline int on_null_domain(int cpu)
4430{
4431 return !rcu_dereference(cpu_rq(cpu)->sd);
4432}
4433
46cb4b7c
SS
4434/*
4435 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4436 *
4437 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4438 * idle load balancing owner or decide to stop the periodic load balancing,
4439 * if the whole system is idle.
4440 */
dd41f596 4441static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4442{
46cb4b7c
SS
4443#ifdef CONFIG_NO_HZ
4444 /*
4445 * If we were in the nohz mode recently and busy at the current
4446 * scheduler tick, then check if we need to nominate new idle
4447 * load balancer.
4448 */
4449 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4450 rq->in_nohz_recently = 0;
4451
4452 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4453 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4454 atomic_set(&nohz.load_balancer, -1);
4455 }
4456
4457 if (atomic_read(&nohz.load_balancer) == -1) {
4458 /*
4459 * simple selection for now: Nominate the
4460 * first cpu in the nohz list to be the next
4461 * ilb owner.
4462 *
4463 * TBD: Traverse the sched domains and nominate
4464 * the nearest cpu in the nohz.cpu_mask.
4465 */
7d1e6a9b 4466 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4467
434d53b0 4468 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4469 resched_cpu(ilb);
4470 }
4471 }
4472
4473 /*
4474 * If this cpu is idle and doing idle load balancing for all the
4475 * cpus with ticks stopped, is it time for that to stop?
4476 */
4477 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4478 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4479 resched_cpu(cpu);
4480 return;
4481 }
4482
4483 /*
4484 * If this cpu is idle and the idle load balancing is done by
4485 * someone else, then no need raise the SCHED_SOFTIRQ
4486 */
4487 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4488 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4489 return;
4490#endif
8a0be9ef
FW
4491 /* Don't need to rebalance while attached to NULL domain */
4492 if (time_after_eq(jiffies, rq->next_balance) &&
4493 likely(!on_null_domain(cpu)))
46cb4b7c 4494 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4495}
dd41f596
IM
4496
4497#else /* CONFIG_SMP */
4498
1da177e4
LT
4499/*
4500 * on UP we do not need to balance between CPUs:
4501 */
70b97a7f 4502static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4503{
4504}
dd41f596 4505
1da177e4
LT
4506#endif
4507
1da177e4
LT
4508DEFINE_PER_CPU(struct kernel_stat, kstat);
4509
4510EXPORT_PER_CPU_SYMBOL(kstat);
4511
4512/*
f06febc9
FM
4513 * Return any ns on the sched_clock that have not yet been banked in
4514 * @p in case that task is currently running.
1da177e4 4515 */
bb34d92f 4516unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4517{
1da177e4 4518 unsigned long flags;
41b86e9c 4519 struct rq *rq;
bb34d92f 4520 u64 ns = 0;
48f24c4d 4521
41b86e9c 4522 rq = task_rq_lock(p, &flags);
1508487e 4523
051a1d1a 4524 if (task_current(rq, p)) {
f06febc9
FM
4525 u64 delta_exec;
4526
a8e504d2
IM
4527 update_rq_clock(rq);
4528 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4529 if ((s64)delta_exec > 0)
bb34d92f 4530 ns = delta_exec;
41b86e9c 4531 }
48f24c4d 4532
41b86e9c 4533 task_rq_unlock(rq, &flags);
48f24c4d 4534
1da177e4
LT
4535 return ns;
4536}
4537
1da177e4
LT
4538/*
4539 * Account user cpu time to a process.
4540 * @p: the process that the cpu time gets accounted to
1da177e4 4541 * @cputime: the cpu time spent in user space since the last update
457533a7 4542 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4543 */
457533a7
MS
4544void account_user_time(struct task_struct *p, cputime_t cputime,
4545 cputime_t cputime_scaled)
1da177e4
LT
4546{
4547 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4548 cputime64_t tmp;
4549
457533a7 4550 /* Add user time to process. */
1da177e4 4551 p->utime = cputime_add(p->utime, cputime);
457533a7 4552 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4553 account_group_user_time(p, cputime);
1da177e4
LT
4554
4555 /* Add user time to cpustat. */
4556 tmp = cputime_to_cputime64(cputime);
4557 if (TASK_NICE(p) > 0)
4558 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4559 else
4560 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4561 /* Account for user time used */
4562 acct_update_integrals(p);
1da177e4
LT
4563}
4564
94886b84
LV
4565/*
4566 * Account guest cpu time to a process.
4567 * @p: the process that the cpu time gets accounted to
4568 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4569 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4570 */
457533a7
MS
4571static void account_guest_time(struct task_struct *p, cputime_t cputime,
4572 cputime_t cputime_scaled)
94886b84
LV
4573{
4574 cputime64_t tmp;
4575 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4576
4577 tmp = cputime_to_cputime64(cputime);
4578
457533a7 4579 /* Add guest time to process. */
94886b84 4580 p->utime = cputime_add(p->utime, cputime);
457533a7 4581 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4582 account_group_user_time(p, cputime);
94886b84
LV
4583 p->gtime = cputime_add(p->gtime, cputime);
4584
457533a7 4585 /* Add guest time to cpustat. */
94886b84
LV
4586 cpustat->user = cputime64_add(cpustat->user, tmp);
4587 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4588}
4589
1da177e4
LT
4590/*
4591 * Account system cpu time to a process.
4592 * @p: the process that the cpu time gets accounted to
4593 * @hardirq_offset: the offset to subtract from hardirq_count()
4594 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4595 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4596 */
4597void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4598 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4599{
4600 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4601 cputime64_t tmp;
4602
983ed7a6 4603 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4604 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4605 return;
4606 }
94886b84 4607
457533a7 4608 /* Add system time to process. */
1da177e4 4609 p->stime = cputime_add(p->stime, cputime);
457533a7 4610 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4611 account_group_system_time(p, cputime);
1da177e4
LT
4612
4613 /* Add system time to cpustat. */
4614 tmp = cputime_to_cputime64(cputime);
4615 if (hardirq_count() - hardirq_offset)
4616 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4617 else if (softirq_count())
4618 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4619 else
79741dd3
MS
4620 cpustat->system = cputime64_add(cpustat->system, tmp);
4621
1da177e4
LT
4622 /* Account for system time used */
4623 acct_update_integrals(p);
1da177e4
LT
4624}
4625
c66f08be 4626/*
1da177e4 4627 * Account for involuntary wait time.
1da177e4 4628 * @steal: the cpu time spent in involuntary wait
c66f08be 4629 */
79741dd3 4630void account_steal_time(cputime_t cputime)
c66f08be 4631{
79741dd3
MS
4632 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4633 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4634
4635 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4636}
4637
1da177e4 4638/*
79741dd3
MS
4639 * Account for idle time.
4640 * @cputime: the cpu time spent in idle wait
1da177e4 4641 */
79741dd3 4642void account_idle_time(cputime_t cputime)
1da177e4
LT
4643{
4644 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4645 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4646 struct rq *rq = this_rq();
1da177e4 4647
79741dd3
MS
4648 if (atomic_read(&rq->nr_iowait) > 0)
4649 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4650 else
4651 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4652}
4653
79741dd3
MS
4654#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4655
4656/*
4657 * Account a single tick of cpu time.
4658 * @p: the process that the cpu time gets accounted to
4659 * @user_tick: indicates if the tick is a user or a system tick
4660 */
4661void account_process_tick(struct task_struct *p, int user_tick)
4662{
4663 cputime_t one_jiffy = jiffies_to_cputime(1);
4664 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4665 struct rq *rq = this_rq();
4666
4667 if (user_tick)
4668 account_user_time(p, one_jiffy, one_jiffy_scaled);
4669 else if (p != rq->idle)
4670 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4671 one_jiffy_scaled);
4672 else
4673 account_idle_time(one_jiffy);
4674}
4675
4676/*
4677 * Account multiple ticks of steal time.
4678 * @p: the process from which the cpu time has been stolen
4679 * @ticks: number of stolen ticks
4680 */
4681void account_steal_ticks(unsigned long ticks)
4682{
4683 account_steal_time(jiffies_to_cputime(ticks));
4684}
4685
4686/*
4687 * Account multiple ticks of idle time.
4688 * @ticks: number of stolen ticks
4689 */
4690void account_idle_ticks(unsigned long ticks)
4691{
4692 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4693}
4694
79741dd3
MS
4695#endif
4696
49048622
BS
4697/*
4698 * Use precise platform statistics if available:
4699 */
4700#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4701cputime_t task_utime(struct task_struct *p)
4702{
4703 return p->utime;
4704}
4705
4706cputime_t task_stime(struct task_struct *p)
4707{
4708 return p->stime;
4709}
4710#else
4711cputime_t task_utime(struct task_struct *p)
4712{
4713 clock_t utime = cputime_to_clock_t(p->utime),
4714 total = utime + cputime_to_clock_t(p->stime);
4715 u64 temp;
4716
4717 /*
4718 * Use CFS's precise accounting:
4719 */
4720 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4721
4722 if (total) {
4723 temp *= utime;
4724 do_div(temp, total);
4725 }
4726 utime = (clock_t)temp;
4727
4728 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4729 return p->prev_utime;
4730}
4731
4732cputime_t task_stime(struct task_struct *p)
4733{
4734 clock_t stime;
4735
4736 /*
4737 * Use CFS's precise accounting. (we subtract utime from
4738 * the total, to make sure the total observed by userspace
4739 * grows monotonically - apps rely on that):
4740 */
4741 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4742 cputime_to_clock_t(task_utime(p));
4743
4744 if (stime >= 0)
4745 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4746
4747 return p->prev_stime;
4748}
4749#endif
4750
4751inline cputime_t task_gtime(struct task_struct *p)
4752{
4753 return p->gtime;
4754}
4755
7835b98b
CL
4756/*
4757 * This function gets called by the timer code, with HZ frequency.
4758 * We call it with interrupts disabled.
4759 *
4760 * It also gets called by the fork code, when changing the parent's
4761 * timeslices.
4762 */
4763void scheduler_tick(void)
4764{
7835b98b
CL
4765 int cpu = smp_processor_id();
4766 struct rq *rq = cpu_rq(cpu);
dd41f596 4767 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4768
4769 sched_clock_tick();
dd41f596
IM
4770
4771 spin_lock(&rq->lock);
3e51f33f 4772 update_rq_clock(rq);
f1a438d8 4773 update_cpu_load(rq);
fa85ae24 4774 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4775 spin_unlock(&rq->lock);
7835b98b 4776
e418e1c2 4777#ifdef CONFIG_SMP
dd41f596
IM
4778 rq->idle_at_tick = idle_cpu(cpu);
4779 trigger_load_balance(rq, cpu);
e418e1c2 4780#endif
1da177e4
LT
4781}
4782
6cd8a4bb
SR
4783#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4784 defined(CONFIG_PREEMPT_TRACER))
4785
4786static inline unsigned long get_parent_ip(unsigned long addr)
4787{
4788 if (in_lock_functions(addr)) {
4789 addr = CALLER_ADDR2;
4790 if (in_lock_functions(addr))
4791 addr = CALLER_ADDR3;
4792 }
4793 return addr;
4794}
1da177e4 4795
43627582 4796void __kprobes add_preempt_count(int val)
1da177e4 4797{
6cd8a4bb 4798#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4799 /*
4800 * Underflow?
4801 */
9a11b49a
IM
4802 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4803 return;
6cd8a4bb 4804#endif
1da177e4 4805 preempt_count() += val;
6cd8a4bb 4806#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4807 /*
4808 * Spinlock count overflowing soon?
4809 */
33859f7f
MOS
4810 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4811 PREEMPT_MASK - 10);
6cd8a4bb
SR
4812#endif
4813 if (preempt_count() == val)
4814 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4815}
4816EXPORT_SYMBOL(add_preempt_count);
4817
43627582 4818void __kprobes sub_preempt_count(int val)
1da177e4 4819{
6cd8a4bb 4820#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4821 /*
4822 * Underflow?
4823 */
01e3eb82 4824 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4825 return;
1da177e4
LT
4826 /*
4827 * Is the spinlock portion underflowing?
4828 */
9a11b49a
IM
4829 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4830 !(preempt_count() & PREEMPT_MASK)))
4831 return;
6cd8a4bb 4832#endif
9a11b49a 4833
6cd8a4bb
SR
4834 if (preempt_count() == val)
4835 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4836 preempt_count() -= val;
4837}
4838EXPORT_SYMBOL(sub_preempt_count);
4839
4840#endif
4841
4842/*
dd41f596 4843 * Print scheduling while atomic bug:
1da177e4 4844 */
dd41f596 4845static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4846{
838225b4
SS
4847 struct pt_regs *regs = get_irq_regs();
4848
4849 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4850 prev->comm, prev->pid, preempt_count());
4851
dd41f596 4852 debug_show_held_locks(prev);
e21f5b15 4853 print_modules();
dd41f596
IM
4854 if (irqs_disabled())
4855 print_irqtrace_events(prev);
838225b4
SS
4856
4857 if (regs)
4858 show_regs(regs);
4859 else
4860 dump_stack();
dd41f596 4861}
1da177e4 4862
dd41f596
IM
4863/*
4864 * Various schedule()-time debugging checks and statistics:
4865 */
4866static inline void schedule_debug(struct task_struct *prev)
4867{
1da177e4 4868 /*
41a2d6cf 4869 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4870 * schedule() atomically, we ignore that path for now.
4871 * Otherwise, whine if we are scheduling when we should not be.
4872 */
3f33a7ce 4873 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4874 __schedule_bug(prev);
4875
1da177e4
LT
4876 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4877
2d72376b 4878 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4879#ifdef CONFIG_SCHEDSTATS
4880 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4881 schedstat_inc(this_rq(), bkl_count);
4882 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4883 }
4884#endif
dd41f596
IM
4885}
4886
df1c99d4
MG
4887static void put_prev_task(struct rq *rq, struct task_struct *prev)
4888{
4889 if (prev->state == TASK_RUNNING) {
4890 u64 runtime = prev->se.sum_exec_runtime;
4891
4892 runtime -= prev->se.prev_sum_exec_runtime;
4893 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4894
4895 /*
4896 * In order to avoid avg_overlap growing stale when we are
4897 * indeed overlapping and hence not getting put to sleep, grow
4898 * the avg_overlap on preemption.
4899 *
4900 * We use the average preemption runtime because that
4901 * correlates to the amount of cache footprint a task can
4902 * build up.
4903 */
4904 update_avg(&prev->se.avg_overlap, runtime);
4905 }
4906 prev->sched_class->put_prev_task(rq, prev);
4907}
4908
dd41f596
IM
4909/*
4910 * Pick up the highest-prio task:
4911 */
4912static inline struct task_struct *
b67802ea 4913pick_next_task(struct rq *rq)
dd41f596 4914{
5522d5d5 4915 const struct sched_class *class;
dd41f596 4916 struct task_struct *p;
1da177e4
LT
4917
4918 /*
dd41f596
IM
4919 * Optimization: we know that if all tasks are in
4920 * the fair class we can call that function directly:
1da177e4 4921 */
dd41f596 4922 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4923 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4924 if (likely(p))
4925 return p;
1da177e4
LT
4926 }
4927
dd41f596
IM
4928 class = sched_class_highest;
4929 for ( ; ; ) {
fb8d4724 4930 p = class->pick_next_task(rq);
dd41f596
IM
4931 if (p)
4932 return p;
4933 /*
4934 * Will never be NULL as the idle class always
4935 * returns a non-NULL p:
4936 */
4937 class = class->next;
4938 }
4939}
1da177e4 4940
dd41f596
IM
4941/*
4942 * schedule() is the main scheduler function.
4943 */
4944asmlinkage void __sched schedule(void)
4945{
4946 struct task_struct *prev, *next;
67ca7bde 4947 unsigned long *switch_count;
dd41f596 4948 struct rq *rq;
31656519 4949 int cpu;
dd41f596
IM
4950
4951need_resched:
4952 preempt_disable();
4953 cpu = smp_processor_id();
4954 rq = cpu_rq(cpu);
4955 rcu_qsctr_inc(cpu);
4956 prev = rq->curr;
4957 switch_count = &prev->nivcsw;
4958
4959 release_kernel_lock(prev);
4960need_resched_nonpreemptible:
4961
4962 schedule_debug(prev);
1da177e4 4963
31656519 4964 if (sched_feat(HRTICK))
f333fdc9 4965 hrtick_clear(rq);
8f4d37ec 4966
8cd162ce 4967 spin_lock_irq(&rq->lock);
3e51f33f 4968 update_rq_clock(rq);
1e819950 4969 clear_tsk_need_resched(prev);
1da177e4 4970
1da177e4 4971 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4972 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4973 prev->state = TASK_RUNNING;
16882c1e 4974 else
2e1cb74a 4975 deactivate_task(rq, prev, 1);
dd41f596 4976 switch_count = &prev->nvcsw;
1da177e4
LT
4977 }
4978
9a897c5a
SR
4979#ifdef CONFIG_SMP
4980 if (prev->sched_class->pre_schedule)
4981 prev->sched_class->pre_schedule(rq, prev);
4982#endif
f65eda4f 4983
dd41f596 4984 if (unlikely(!rq->nr_running))
1da177e4 4985 idle_balance(cpu, rq);
1da177e4 4986
df1c99d4 4987 put_prev_task(rq, prev);
b67802ea 4988 next = pick_next_task(rq);
1da177e4 4989
1da177e4 4990 if (likely(prev != next)) {
673a90a1
DS
4991 sched_info_switch(prev, next);
4992
1da177e4
LT
4993 rq->nr_switches++;
4994 rq->curr = next;
4995 ++*switch_count;
4996
dd41f596 4997 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4998 /*
4999 * the context switch might have flipped the stack from under
5000 * us, hence refresh the local variables.
5001 */
5002 cpu = smp_processor_id();
5003 rq = cpu_rq(cpu);
1da177e4
LT
5004 } else
5005 spin_unlock_irq(&rq->lock);
5006
8f4d37ec 5007 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5008 goto need_resched_nonpreemptible;
8f4d37ec 5009
1da177e4
LT
5010 preempt_enable_no_resched();
5011 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5012 goto need_resched;
5013}
1da177e4
LT
5014EXPORT_SYMBOL(schedule);
5015
5016#ifdef CONFIG_PREEMPT
5017/*
2ed6e34f 5018 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5019 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5020 * occur there and call schedule directly.
5021 */
5022asmlinkage void __sched preempt_schedule(void)
5023{
5024 struct thread_info *ti = current_thread_info();
6478d880 5025
1da177e4
LT
5026 /*
5027 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5028 * we do not want to preempt the current task. Just return..
1da177e4 5029 */
beed33a8 5030 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5031 return;
5032
3a5c359a
AK
5033 do {
5034 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5035 schedule();
3a5c359a 5036 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5037
3a5c359a
AK
5038 /*
5039 * Check again in case we missed a preemption opportunity
5040 * between schedule and now.
5041 */
5042 barrier();
5ed0cec0 5043 } while (need_resched());
1da177e4 5044}
1da177e4
LT
5045EXPORT_SYMBOL(preempt_schedule);
5046
5047/*
2ed6e34f 5048 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5049 * off of irq context.
5050 * Note, that this is called and return with irqs disabled. This will
5051 * protect us against recursive calling from irq.
5052 */
5053asmlinkage void __sched preempt_schedule_irq(void)
5054{
5055 struct thread_info *ti = current_thread_info();
6478d880 5056
2ed6e34f 5057 /* Catch callers which need to be fixed */
1da177e4
LT
5058 BUG_ON(ti->preempt_count || !irqs_disabled());
5059
3a5c359a
AK
5060 do {
5061 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5062 local_irq_enable();
5063 schedule();
5064 local_irq_disable();
3a5c359a 5065 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5066
3a5c359a
AK
5067 /*
5068 * Check again in case we missed a preemption opportunity
5069 * between schedule and now.
5070 */
5071 barrier();
5ed0cec0 5072 } while (need_resched());
1da177e4
LT
5073}
5074
5075#endif /* CONFIG_PREEMPT */
5076
95cdf3b7
IM
5077int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5078 void *key)
1da177e4 5079{
48f24c4d 5080 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5081}
1da177e4
LT
5082EXPORT_SYMBOL(default_wake_function);
5083
5084/*
41a2d6cf
IM
5085 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5086 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5087 * number) then we wake all the non-exclusive tasks and one exclusive task.
5088 *
5089 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5090 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5091 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5092 */
777c6c5f
JW
5093void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5094 int nr_exclusive, int sync, void *key)
1da177e4 5095{
2e45874c 5096 wait_queue_t *curr, *next;
1da177e4 5097
2e45874c 5098 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5099 unsigned flags = curr->flags;
5100
1da177e4 5101 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5102 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5103 break;
5104 }
5105}
5106
5107/**
5108 * __wake_up - wake up threads blocked on a waitqueue.
5109 * @q: the waitqueue
5110 * @mode: which threads
5111 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5112 * @key: is directly passed to the wakeup function
1da177e4 5113 */
7ad5b3a5 5114void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5115 int nr_exclusive, void *key)
1da177e4
LT
5116{
5117 unsigned long flags;
5118
5119 spin_lock_irqsave(&q->lock, flags);
5120 __wake_up_common(q, mode, nr_exclusive, 0, key);
5121 spin_unlock_irqrestore(&q->lock, flags);
5122}
1da177e4
LT
5123EXPORT_SYMBOL(__wake_up);
5124
5125/*
5126 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5127 */
7ad5b3a5 5128void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5129{
5130 __wake_up_common(q, mode, 1, 0, NULL);
5131}
5132
5133/**
67be2dd1 5134 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
5135 * @q: the waitqueue
5136 * @mode: which threads
5137 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5138 *
5139 * The sync wakeup differs that the waker knows that it will schedule
5140 * away soon, so while the target thread will be woken up, it will not
5141 * be migrated to another CPU - ie. the two threads are 'synchronized'
5142 * with each other. This can prevent needless bouncing between CPUs.
5143 *
5144 * On UP it can prevent extra preemption.
5145 */
7ad5b3a5 5146void
95cdf3b7 5147__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
5148{
5149 unsigned long flags;
5150 int sync = 1;
5151
5152 if (unlikely(!q))
5153 return;
5154
5155 if (unlikely(!nr_exclusive))
5156 sync = 0;
5157
5158 spin_lock_irqsave(&q->lock, flags);
5159 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
5160 spin_unlock_irqrestore(&q->lock, flags);
5161}
5162EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5163
65eb3dc6
KD
5164/**
5165 * complete: - signals a single thread waiting on this completion
5166 * @x: holds the state of this particular completion
5167 *
5168 * This will wake up a single thread waiting on this completion. Threads will be
5169 * awakened in the same order in which they were queued.
5170 *
5171 * See also complete_all(), wait_for_completion() and related routines.
5172 */
b15136e9 5173void complete(struct completion *x)
1da177e4
LT
5174{
5175 unsigned long flags;
5176
5177 spin_lock_irqsave(&x->wait.lock, flags);
5178 x->done++;
d9514f6c 5179 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5180 spin_unlock_irqrestore(&x->wait.lock, flags);
5181}
5182EXPORT_SYMBOL(complete);
5183
65eb3dc6
KD
5184/**
5185 * complete_all: - signals all threads waiting on this completion
5186 * @x: holds the state of this particular completion
5187 *
5188 * This will wake up all threads waiting on this particular completion event.
5189 */
b15136e9 5190void complete_all(struct completion *x)
1da177e4
LT
5191{
5192 unsigned long flags;
5193
5194 spin_lock_irqsave(&x->wait.lock, flags);
5195 x->done += UINT_MAX/2;
d9514f6c 5196 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5197 spin_unlock_irqrestore(&x->wait.lock, flags);
5198}
5199EXPORT_SYMBOL(complete_all);
5200
8cbbe86d
AK
5201static inline long __sched
5202do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5203{
1da177e4
LT
5204 if (!x->done) {
5205 DECLARE_WAITQUEUE(wait, current);
5206
5207 wait.flags |= WQ_FLAG_EXCLUSIVE;
5208 __add_wait_queue_tail(&x->wait, &wait);
5209 do {
94d3d824 5210 if (signal_pending_state(state, current)) {
ea71a546
ON
5211 timeout = -ERESTARTSYS;
5212 break;
8cbbe86d
AK
5213 }
5214 __set_current_state(state);
1da177e4
LT
5215 spin_unlock_irq(&x->wait.lock);
5216 timeout = schedule_timeout(timeout);
5217 spin_lock_irq(&x->wait.lock);
ea71a546 5218 } while (!x->done && timeout);
1da177e4 5219 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5220 if (!x->done)
5221 return timeout;
1da177e4
LT
5222 }
5223 x->done--;
ea71a546 5224 return timeout ?: 1;
1da177e4 5225}
1da177e4 5226
8cbbe86d
AK
5227static long __sched
5228wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5229{
1da177e4
LT
5230 might_sleep();
5231
5232 spin_lock_irq(&x->wait.lock);
8cbbe86d 5233 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5234 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5235 return timeout;
5236}
1da177e4 5237
65eb3dc6
KD
5238/**
5239 * wait_for_completion: - waits for completion of a task
5240 * @x: holds the state of this particular completion
5241 *
5242 * This waits to be signaled for completion of a specific task. It is NOT
5243 * interruptible and there is no timeout.
5244 *
5245 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5246 * and interrupt capability. Also see complete().
5247 */
b15136e9 5248void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5249{
5250 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5251}
8cbbe86d 5252EXPORT_SYMBOL(wait_for_completion);
1da177e4 5253
65eb3dc6
KD
5254/**
5255 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5256 * @x: holds the state of this particular completion
5257 * @timeout: timeout value in jiffies
5258 *
5259 * This waits for either a completion of a specific task to be signaled or for a
5260 * specified timeout to expire. The timeout is in jiffies. It is not
5261 * interruptible.
5262 */
b15136e9 5263unsigned long __sched
8cbbe86d 5264wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5265{
8cbbe86d 5266 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5267}
8cbbe86d 5268EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5269
65eb3dc6
KD
5270/**
5271 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5272 * @x: holds the state of this particular completion
5273 *
5274 * This waits for completion of a specific task to be signaled. It is
5275 * interruptible.
5276 */
8cbbe86d 5277int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5278{
51e97990
AK
5279 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5280 if (t == -ERESTARTSYS)
5281 return t;
5282 return 0;
0fec171c 5283}
8cbbe86d 5284EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5285
65eb3dc6
KD
5286/**
5287 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5288 * @x: holds the state of this particular completion
5289 * @timeout: timeout value in jiffies
5290 *
5291 * This waits for either a completion of a specific task to be signaled or for a
5292 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5293 */
b15136e9 5294unsigned long __sched
8cbbe86d
AK
5295wait_for_completion_interruptible_timeout(struct completion *x,
5296 unsigned long timeout)
0fec171c 5297{
8cbbe86d 5298 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5299}
8cbbe86d 5300EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5301
65eb3dc6
KD
5302/**
5303 * wait_for_completion_killable: - waits for completion of a task (killable)
5304 * @x: holds the state of this particular completion
5305 *
5306 * This waits to be signaled for completion of a specific task. It can be
5307 * interrupted by a kill signal.
5308 */
009e577e
MW
5309int __sched wait_for_completion_killable(struct completion *x)
5310{
5311 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5312 if (t == -ERESTARTSYS)
5313 return t;
5314 return 0;
5315}
5316EXPORT_SYMBOL(wait_for_completion_killable);
5317
be4de352
DC
5318/**
5319 * try_wait_for_completion - try to decrement a completion without blocking
5320 * @x: completion structure
5321 *
5322 * Returns: 0 if a decrement cannot be done without blocking
5323 * 1 if a decrement succeeded.
5324 *
5325 * If a completion is being used as a counting completion,
5326 * attempt to decrement the counter without blocking. This
5327 * enables us to avoid waiting if the resource the completion
5328 * is protecting is not available.
5329 */
5330bool try_wait_for_completion(struct completion *x)
5331{
5332 int ret = 1;
5333
5334 spin_lock_irq(&x->wait.lock);
5335 if (!x->done)
5336 ret = 0;
5337 else
5338 x->done--;
5339 spin_unlock_irq(&x->wait.lock);
5340 return ret;
5341}
5342EXPORT_SYMBOL(try_wait_for_completion);
5343
5344/**
5345 * completion_done - Test to see if a completion has any waiters
5346 * @x: completion structure
5347 *
5348 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5349 * 1 if there are no waiters.
5350 *
5351 */
5352bool completion_done(struct completion *x)
5353{
5354 int ret = 1;
5355
5356 spin_lock_irq(&x->wait.lock);
5357 if (!x->done)
5358 ret = 0;
5359 spin_unlock_irq(&x->wait.lock);
5360 return ret;
5361}
5362EXPORT_SYMBOL(completion_done);
5363
8cbbe86d
AK
5364static long __sched
5365sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5366{
0fec171c
IM
5367 unsigned long flags;
5368 wait_queue_t wait;
5369
5370 init_waitqueue_entry(&wait, current);
1da177e4 5371
8cbbe86d 5372 __set_current_state(state);
1da177e4 5373
8cbbe86d
AK
5374 spin_lock_irqsave(&q->lock, flags);
5375 __add_wait_queue(q, &wait);
5376 spin_unlock(&q->lock);
5377 timeout = schedule_timeout(timeout);
5378 spin_lock_irq(&q->lock);
5379 __remove_wait_queue(q, &wait);
5380 spin_unlock_irqrestore(&q->lock, flags);
5381
5382 return timeout;
5383}
5384
5385void __sched interruptible_sleep_on(wait_queue_head_t *q)
5386{
5387 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5388}
1da177e4
LT
5389EXPORT_SYMBOL(interruptible_sleep_on);
5390
0fec171c 5391long __sched
95cdf3b7 5392interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5393{
8cbbe86d 5394 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5395}
1da177e4
LT
5396EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5397
0fec171c 5398void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5399{
8cbbe86d 5400 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5401}
1da177e4
LT
5402EXPORT_SYMBOL(sleep_on);
5403
0fec171c 5404long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5405{
8cbbe86d 5406 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5407}
1da177e4
LT
5408EXPORT_SYMBOL(sleep_on_timeout);
5409
b29739f9
IM
5410#ifdef CONFIG_RT_MUTEXES
5411
5412/*
5413 * rt_mutex_setprio - set the current priority of a task
5414 * @p: task
5415 * @prio: prio value (kernel-internal form)
5416 *
5417 * This function changes the 'effective' priority of a task. It does
5418 * not touch ->normal_prio like __setscheduler().
5419 *
5420 * Used by the rt_mutex code to implement priority inheritance logic.
5421 */
36c8b586 5422void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5423{
5424 unsigned long flags;
83b699ed 5425 int oldprio, on_rq, running;
70b97a7f 5426 struct rq *rq;
cb469845 5427 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5428
5429 BUG_ON(prio < 0 || prio > MAX_PRIO);
5430
5431 rq = task_rq_lock(p, &flags);
a8e504d2 5432 update_rq_clock(rq);
b29739f9 5433
d5f9f942 5434 oldprio = p->prio;
dd41f596 5435 on_rq = p->se.on_rq;
051a1d1a 5436 running = task_current(rq, p);
0e1f3483 5437 if (on_rq)
69be72c1 5438 dequeue_task(rq, p, 0);
0e1f3483
HS
5439 if (running)
5440 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5441
5442 if (rt_prio(prio))
5443 p->sched_class = &rt_sched_class;
5444 else
5445 p->sched_class = &fair_sched_class;
5446
b29739f9
IM
5447 p->prio = prio;
5448
0e1f3483
HS
5449 if (running)
5450 p->sched_class->set_curr_task(rq);
dd41f596 5451 if (on_rq) {
8159f87e 5452 enqueue_task(rq, p, 0);
cb469845
SR
5453
5454 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5455 }
5456 task_rq_unlock(rq, &flags);
5457}
5458
5459#endif
5460
36c8b586 5461void set_user_nice(struct task_struct *p, long nice)
1da177e4 5462{
dd41f596 5463 int old_prio, delta, on_rq;
1da177e4 5464 unsigned long flags;
70b97a7f 5465 struct rq *rq;
1da177e4
LT
5466
5467 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5468 return;
5469 /*
5470 * We have to be careful, if called from sys_setpriority(),
5471 * the task might be in the middle of scheduling on another CPU.
5472 */
5473 rq = task_rq_lock(p, &flags);
a8e504d2 5474 update_rq_clock(rq);
1da177e4
LT
5475 /*
5476 * The RT priorities are set via sched_setscheduler(), but we still
5477 * allow the 'normal' nice value to be set - but as expected
5478 * it wont have any effect on scheduling until the task is
dd41f596 5479 * SCHED_FIFO/SCHED_RR:
1da177e4 5480 */
e05606d3 5481 if (task_has_rt_policy(p)) {
1da177e4
LT
5482 p->static_prio = NICE_TO_PRIO(nice);
5483 goto out_unlock;
5484 }
dd41f596 5485 on_rq = p->se.on_rq;
c09595f6 5486 if (on_rq)
69be72c1 5487 dequeue_task(rq, p, 0);
1da177e4 5488
1da177e4 5489 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5490 set_load_weight(p);
b29739f9
IM
5491 old_prio = p->prio;
5492 p->prio = effective_prio(p);
5493 delta = p->prio - old_prio;
1da177e4 5494
dd41f596 5495 if (on_rq) {
8159f87e 5496 enqueue_task(rq, p, 0);
1da177e4 5497 /*
d5f9f942
AM
5498 * If the task increased its priority or is running and
5499 * lowered its priority, then reschedule its CPU:
1da177e4 5500 */
d5f9f942 5501 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5502 resched_task(rq->curr);
5503 }
5504out_unlock:
5505 task_rq_unlock(rq, &flags);
5506}
1da177e4
LT
5507EXPORT_SYMBOL(set_user_nice);
5508
e43379f1
MM
5509/*
5510 * can_nice - check if a task can reduce its nice value
5511 * @p: task
5512 * @nice: nice value
5513 */
36c8b586 5514int can_nice(const struct task_struct *p, const int nice)
e43379f1 5515{
024f4747
MM
5516 /* convert nice value [19,-20] to rlimit style value [1,40] */
5517 int nice_rlim = 20 - nice;
48f24c4d 5518
e43379f1
MM
5519 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5520 capable(CAP_SYS_NICE));
5521}
5522
1da177e4
LT
5523#ifdef __ARCH_WANT_SYS_NICE
5524
5525/*
5526 * sys_nice - change the priority of the current process.
5527 * @increment: priority increment
5528 *
5529 * sys_setpriority is a more generic, but much slower function that
5530 * does similar things.
5531 */
5add95d4 5532SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5533{
48f24c4d 5534 long nice, retval;
1da177e4
LT
5535
5536 /*
5537 * Setpriority might change our priority at the same moment.
5538 * We don't have to worry. Conceptually one call occurs first
5539 * and we have a single winner.
5540 */
e43379f1
MM
5541 if (increment < -40)
5542 increment = -40;
1da177e4
LT
5543 if (increment > 40)
5544 increment = 40;
5545
2b8f836f 5546 nice = TASK_NICE(current) + increment;
1da177e4
LT
5547 if (nice < -20)
5548 nice = -20;
5549 if (nice > 19)
5550 nice = 19;
5551
e43379f1
MM
5552 if (increment < 0 && !can_nice(current, nice))
5553 return -EPERM;
5554
1da177e4
LT
5555 retval = security_task_setnice(current, nice);
5556 if (retval)
5557 return retval;
5558
5559 set_user_nice(current, nice);
5560 return 0;
5561}
5562
5563#endif
5564
5565/**
5566 * task_prio - return the priority value of a given task.
5567 * @p: the task in question.
5568 *
5569 * This is the priority value as seen by users in /proc.
5570 * RT tasks are offset by -200. Normal tasks are centered
5571 * around 0, value goes from -16 to +15.
5572 */
36c8b586 5573int task_prio(const struct task_struct *p)
1da177e4
LT
5574{
5575 return p->prio - MAX_RT_PRIO;
5576}
5577
5578/**
5579 * task_nice - return the nice value of a given task.
5580 * @p: the task in question.
5581 */
36c8b586 5582int task_nice(const struct task_struct *p)
1da177e4
LT
5583{
5584 return TASK_NICE(p);
5585}
150d8bed 5586EXPORT_SYMBOL(task_nice);
1da177e4
LT
5587
5588/**
5589 * idle_cpu - is a given cpu idle currently?
5590 * @cpu: the processor in question.
5591 */
5592int idle_cpu(int cpu)
5593{
5594 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5595}
5596
1da177e4
LT
5597/**
5598 * idle_task - return the idle task for a given cpu.
5599 * @cpu: the processor in question.
5600 */
36c8b586 5601struct task_struct *idle_task(int cpu)
1da177e4
LT
5602{
5603 return cpu_rq(cpu)->idle;
5604}
5605
5606/**
5607 * find_process_by_pid - find a process with a matching PID value.
5608 * @pid: the pid in question.
5609 */
a9957449 5610static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5611{
228ebcbe 5612 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5613}
5614
5615/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5616static void
5617__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5618{
dd41f596 5619 BUG_ON(p->se.on_rq);
48f24c4d 5620
1da177e4 5621 p->policy = policy;
dd41f596
IM
5622 switch (p->policy) {
5623 case SCHED_NORMAL:
5624 case SCHED_BATCH:
5625 case SCHED_IDLE:
5626 p->sched_class = &fair_sched_class;
5627 break;
5628 case SCHED_FIFO:
5629 case SCHED_RR:
5630 p->sched_class = &rt_sched_class;
5631 break;
5632 }
5633
1da177e4 5634 p->rt_priority = prio;
b29739f9
IM
5635 p->normal_prio = normal_prio(p);
5636 /* we are holding p->pi_lock already */
5637 p->prio = rt_mutex_getprio(p);
2dd73a4f 5638 set_load_weight(p);
1da177e4
LT
5639}
5640
c69e8d9c
DH
5641/*
5642 * check the target process has a UID that matches the current process's
5643 */
5644static bool check_same_owner(struct task_struct *p)
5645{
5646 const struct cred *cred = current_cred(), *pcred;
5647 bool match;
5648
5649 rcu_read_lock();
5650 pcred = __task_cred(p);
5651 match = (cred->euid == pcred->euid ||
5652 cred->euid == pcred->uid);
5653 rcu_read_unlock();
5654 return match;
5655}
5656
961ccddd
RR
5657static int __sched_setscheduler(struct task_struct *p, int policy,
5658 struct sched_param *param, bool user)
1da177e4 5659{
83b699ed 5660 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5661 unsigned long flags;
cb469845 5662 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5663 struct rq *rq;
1da177e4 5664
66e5393a
SR
5665 /* may grab non-irq protected spin_locks */
5666 BUG_ON(in_interrupt());
1da177e4
LT
5667recheck:
5668 /* double check policy once rq lock held */
5669 if (policy < 0)
5670 policy = oldpolicy = p->policy;
5671 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5672 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5673 policy != SCHED_IDLE)
b0a9499c 5674 return -EINVAL;
1da177e4
LT
5675 /*
5676 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5677 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5678 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5679 */
5680 if (param->sched_priority < 0 ||
95cdf3b7 5681 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5682 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5683 return -EINVAL;
e05606d3 5684 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5685 return -EINVAL;
5686
37e4ab3f
OC
5687 /*
5688 * Allow unprivileged RT tasks to decrease priority:
5689 */
961ccddd 5690 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5691 if (rt_policy(policy)) {
8dc3e909 5692 unsigned long rlim_rtprio;
8dc3e909
ON
5693
5694 if (!lock_task_sighand(p, &flags))
5695 return -ESRCH;
5696 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5697 unlock_task_sighand(p, &flags);
5698
5699 /* can't set/change the rt policy */
5700 if (policy != p->policy && !rlim_rtprio)
5701 return -EPERM;
5702
5703 /* can't increase priority */
5704 if (param->sched_priority > p->rt_priority &&
5705 param->sched_priority > rlim_rtprio)
5706 return -EPERM;
5707 }
dd41f596
IM
5708 /*
5709 * Like positive nice levels, dont allow tasks to
5710 * move out of SCHED_IDLE either:
5711 */
5712 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5713 return -EPERM;
5fe1d75f 5714
37e4ab3f 5715 /* can't change other user's priorities */
c69e8d9c 5716 if (!check_same_owner(p))
37e4ab3f
OC
5717 return -EPERM;
5718 }
1da177e4 5719
725aad24 5720 if (user) {
b68aa230 5721#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5722 /*
5723 * Do not allow realtime tasks into groups that have no runtime
5724 * assigned.
5725 */
9a7e0b18
PZ
5726 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5727 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5728 return -EPERM;
b68aa230
PZ
5729#endif
5730
725aad24
JF
5731 retval = security_task_setscheduler(p, policy, param);
5732 if (retval)
5733 return retval;
5734 }
5735
b29739f9
IM
5736 /*
5737 * make sure no PI-waiters arrive (or leave) while we are
5738 * changing the priority of the task:
5739 */
5740 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5741 /*
5742 * To be able to change p->policy safely, the apropriate
5743 * runqueue lock must be held.
5744 */
b29739f9 5745 rq = __task_rq_lock(p);
1da177e4
LT
5746 /* recheck policy now with rq lock held */
5747 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5748 policy = oldpolicy = -1;
b29739f9
IM
5749 __task_rq_unlock(rq);
5750 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5751 goto recheck;
5752 }
2daa3577 5753 update_rq_clock(rq);
dd41f596 5754 on_rq = p->se.on_rq;
051a1d1a 5755 running = task_current(rq, p);
0e1f3483 5756 if (on_rq)
2e1cb74a 5757 deactivate_task(rq, p, 0);
0e1f3483
HS
5758 if (running)
5759 p->sched_class->put_prev_task(rq, p);
f6b53205 5760
1da177e4 5761 oldprio = p->prio;
dd41f596 5762 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5763
0e1f3483
HS
5764 if (running)
5765 p->sched_class->set_curr_task(rq);
dd41f596
IM
5766 if (on_rq) {
5767 activate_task(rq, p, 0);
cb469845
SR
5768
5769 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5770 }
b29739f9
IM
5771 __task_rq_unlock(rq);
5772 spin_unlock_irqrestore(&p->pi_lock, flags);
5773
95e02ca9
TG
5774 rt_mutex_adjust_pi(p);
5775
1da177e4
LT
5776 return 0;
5777}
961ccddd
RR
5778
5779/**
5780 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5781 * @p: the task in question.
5782 * @policy: new policy.
5783 * @param: structure containing the new RT priority.
5784 *
5785 * NOTE that the task may be already dead.
5786 */
5787int sched_setscheduler(struct task_struct *p, int policy,
5788 struct sched_param *param)
5789{
5790 return __sched_setscheduler(p, policy, param, true);
5791}
1da177e4
LT
5792EXPORT_SYMBOL_GPL(sched_setscheduler);
5793
961ccddd
RR
5794/**
5795 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5796 * @p: the task in question.
5797 * @policy: new policy.
5798 * @param: structure containing the new RT priority.
5799 *
5800 * Just like sched_setscheduler, only don't bother checking if the
5801 * current context has permission. For example, this is needed in
5802 * stop_machine(): we create temporary high priority worker threads,
5803 * but our caller might not have that capability.
5804 */
5805int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5806 struct sched_param *param)
5807{
5808 return __sched_setscheduler(p, policy, param, false);
5809}
5810
95cdf3b7
IM
5811static int
5812do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5813{
1da177e4
LT
5814 struct sched_param lparam;
5815 struct task_struct *p;
36c8b586 5816 int retval;
1da177e4
LT
5817
5818 if (!param || pid < 0)
5819 return -EINVAL;
5820 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5821 return -EFAULT;
5fe1d75f
ON
5822
5823 rcu_read_lock();
5824 retval = -ESRCH;
1da177e4 5825 p = find_process_by_pid(pid);
5fe1d75f
ON
5826 if (p != NULL)
5827 retval = sched_setscheduler(p, policy, &lparam);
5828 rcu_read_unlock();
36c8b586 5829
1da177e4
LT
5830 return retval;
5831}
5832
5833/**
5834 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5835 * @pid: the pid in question.
5836 * @policy: new policy.
5837 * @param: structure containing the new RT priority.
5838 */
5add95d4
HC
5839SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5840 struct sched_param __user *, param)
1da177e4 5841{
c21761f1
JB
5842 /* negative values for policy are not valid */
5843 if (policy < 0)
5844 return -EINVAL;
5845
1da177e4
LT
5846 return do_sched_setscheduler(pid, policy, param);
5847}
5848
5849/**
5850 * sys_sched_setparam - set/change the RT priority of a thread
5851 * @pid: the pid in question.
5852 * @param: structure containing the new RT priority.
5853 */
5add95d4 5854SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5855{
5856 return do_sched_setscheduler(pid, -1, param);
5857}
5858
5859/**
5860 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5861 * @pid: the pid in question.
5862 */
5add95d4 5863SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5864{
36c8b586 5865 struct task_struct *p;
3a5c359a 5866 int retval;
1da177e4
LT
5867
5868 if (pid < 0)
3a5c359a 5869 return -EINVAL;
1da177e4
LT
5870
5871 retval = -ESRCH;
5872 read_lock(&tasklist_lock);
5873 p = find_process_by_pid(pid);
5874 if (p) {
5875 retval = security_task_getscheduler(p);
5876 if (!retval)
5877 retval = p->policy;
5878 }
5879 read_unlock(&tasklist_lock);
1da177e4
LT
5880 return retval;
5881}
5882
5883/**
5884 * sys_sched_getscheduler - get the RT priority of a thread
5885 * @pid: the pid in question.
5886 * @param: structure containing the RT priority.
5887 */
5add95d4 5888SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5889{
5890 struct sched_param lp;
36c8b586 5891 struct task_struct *p;
3a5c359a 5892 int retval;
1da177e4
LT
5893
5894 if (!param || pid < 0)
3a5c359a 5895 return -EINVAL;
1da177e4
LT
5896
5897 read_lock(&tasklist_lock);
5898 p = find_process_by_pid(pid);
5899 retval = -ESRCH;
5900 if (!p)
5901 goto out_unlock;
5902
5903 retval = security_task_getscheduler(p);
5904 if (retval)
5905 goto out_unlock;
5906
5907 lp.sched_priority = p->rt_priority;
5908 read_unlock(&tasklist_lock);
5909
5910 /*
5911 * This one might sleep, we cannot do it with a spinlock held ...
5912 */
5913 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5914
1da177e4
LT
5915 return retval;
5916
5917out_unlock:
5918 read_unlock(&tasklist_lock);
5919 return retval;
5920}
5921
96f874e2 5922long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5923{
5a16f3d3 5924 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5925 struct task_struct *p;
5926 int retval;
1da177e4 5927
95402b38 5928 get_online_cpus();
1da177e4
LT
5929 read_lock(&tasklist_lock);
5930
5931 p = find_process_by_pid(pid);
5932 if (!p) {
5933 read_unlock(&tasklist_lock);
95402b38 5934 put_online_cpus();
1da177e4
LT
5935 return -ESRCH;
5936 }
5937
5938 /*
5939 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5940 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5941 * usage count and then drop tasklist_lock.
5942 */
5943 get_task_struct(p);
5944 read_unlock(&tasklist_lock);
5945
5a16f3d3
RR
5946 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5947 retval = -ENOMEM;
5948 goto out_put_task;
5949 }
5950 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5951 retval = -ENOMEM;
5952 goto out_free_cpus_allowed;
5953 }
1da177e4 5954 retval = -EPERM;
c69e8d9c 5955 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5956 goto out_unlock;
5957
e7834f8f
DQ
5958 retval = security_task_setscheduler(p, 0, NULL);
5959 if (retval)
5960 goto out_unlock;
5961
5a16f3d3
RR
5962 cpuset_cpus_allowed(p, cpus_allowed);
5963 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5964 again:
5a16f3d3 5965 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5966
8707d8b8 5967 if (!retval) {
5a16f3d3
RR
5968 cpuset_cpus_allowed(p, cpus_allowed);
5969 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5970 /*
5971 * We must have raced with a concurrent cpuset
5972 * update. Just reset the cpus_allowed to the
5973 * cpuset's cpus_allowed
5974 */
5a16f3d3 5975 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5976 goto again;
5977 }
5978 }
1da177e4 5979out_unlock:
5a16f3d3
RR
5980 free_cpumask_var(new_mask);
5981out_free_cpus_allowed:
5982 free_cpumask_var(cpus_allowed);
5983out_put_task:
1da177e4 5984 put_task_struct(p);
95402b38 5985 put_online_cpus();
1da177e4
LT
5986 return retval;
5987}
5988
5989static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5990 struct cpumask *new_mask)
1da177e4 5991{
96f874e2
RR
5992 if (len < cpumask_size())
5993 cpumask_clear(new_mask);
5994 else if (len > cpumask_size())
5995 len = cpumask_size();
5996
1da177e4
LT
5997 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5998}
5999
6000/**
6001 * sys_sched_setaffinity - set the cpu affinity of a process
6002 * @pid: pid of the process
6003 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6004 * @user_mask_ptr: user-space pointer to the new cpu mask
6005 */
5add95d4
HC
6006SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6007 unsigned long __user *, user_mask_ptr)
1da177e4 6008{
5a16f3d3 6009 cpumask_var_t new_mask;
1da177e4
LT
6010 int retval;
6011
5a16f3d3
RR
6012 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6013 return -ENOMEM;
1da177e4 6014
5a16f3d3
RR
6015 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6016 if (retval == 0)
6017 retval = sched_setaffinity(pid, new_mask);
6018 free_cpumask_var(new_mask);
6019 return retval;
1da177e4
LT
6020}
6021
96f874e2 6022long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6023{
36c8b586 6024 struct task_struct *p;
1da177e4 6025 int retval;
1da177e4 6026
95402b38 6027 get_online_cpus();
1da177e4
LT
6028 read_lock(&tasklist_lock);
6029
6030 retval = -ESRCH;
6031 p = find_process_by_pid(pid);
6032 if (!p)
6033 goto out_unlock;
6034
e7834f8f
DQ
6035 retval = security_task_getscheduler(p);
6036 if (retval)
6037 goto out_unlock;
6038
96f874e2 6039 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6040
6041out_unlock:
6042 read_unlock(&tasklist_lock);
95402b38 6043 put_online_cpus();
1da177e4 6044
9531b62f 6045 return retval;
1da177e4
LT
6046}
6047
6048/**
6049 * sys_sched_getaffinity - get the cpu affinity of a process
6050 * @pid: pid of the process
6051 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6052 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6053 */
5add95d4
HC
6054SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6055 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6056{
6057 int ret;
f17c8607 6058 cpumask_var_t mask;
1da177e4 6059
f17c8607 6060 if (len < cpumask_size())
1da177e4
LT
6061 return -EINVAL;
6062
f17c8607
RR
6063 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6064 return -ENOMEM;
1da177e4 6065
f17c8607
RR
6066 ret = sched_getaffinity(pid, mask);
6067 if (ret == 0) {
6068 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6069 ret = -EFAULT;
6070 else
6071 ret = cpumask_size();
6072 }
6073 free_cpumask_var(mask);
1da177e4 6074
f17c8607 6075 return ret;
1da177e4
LT
6076}
6077
6078/**
6079 * sys_sched_yield - yield the current processor to other threads.
6080 *
dd41f596
IM
6081 * This function yields the current CPU to other tasks. If there are no
6082 * other threads running on this CPU then this function will return.
1da177e4 6083 */
5add95d4 6084SYSCALL_DEFINE0(sched_yield)
1da177e4 6085{
70b97a7f 6086 struct rq *rq = this_rq_lock();
1da177e4 6087
2d72376b 6088 schedstat_inc(rq, yld_count);
4530d7ab 6089 current->sched_class->yield_task(rq);
1da177e4
LT
6090
6091 /*
6092 * Since we are going to call schedule() anyway, there's
6093 * no need to preempt or enable interrupts:
6094 */
6095 __release(rq->lock);
8a25d5de 6096 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6097 _raw_spin_unlock(&rq->lock);
6098 preempt_enable_no_resched();
6099
6100 schedule();
6101
6102 return 0;
6103}
6104
e7b38404 6105static void __cond_resched(void)
1da177e4 6106{
8e0a43d8
IM
6107#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6108 __might_sleep(__FILE__, __LINE__);
6109#endif
5bbcfd90
IM
6110 /*
6111 * The BKS might be reacquired before we have dropped
6112 * PREEMPT_ACTIVE, which could trigger a second
6113 * cond_resched() call.
6114 */
1da177e4
LT
6115 do {
6116 add_preempt_count(PREEMPT_ACTIVE);
6117 schedule();
6118 sub_preempt_count(PREEMPT_ACTIVE);
6119 } while (need_resched());
6120}
6121
02b67cc3 6122int __sched _cond_resched(void)
1da177e4 6123{
9414232f
IM
6124 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6125 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6126 __cond_resched();
6127 return 1;
6128 }
6129 return 0;
6130}
02b67cc3 6131EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6132
6133/*
6134 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6135 * call schedule, and on return reacquire the lock.
6136 *
41a2d6cf 6137 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6138 * operations here to prevent schedule() from being called twice (once via
6139 * spin_unlock(), once by hand).
6140 */
95cdf3b7 6141int cond_resched_lock(spinlock_t *lock)
1da177e4 6142{
95c354fe 6143 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6144 int ret = 0;
6145
95c354fe 6146 if (spin_needbreak(lock) || resched) {
1da177e4 6147 spin_unlock(lock);
95c354fe
NP
6148 if (resched && need_resched())
6149 __cond_resched();
6150 else
6151 cpu_relax();
6df3cecb 6152 ret = 1;
1da177e4 6153 spin_lock(lock);
1da177e4 6154 }
6df3cecb 6155 return ret;
1da177e4 6156}
1da177e4
LT
6157EXPORT_SYMBOL(cond_resched_lock);
6158
6159int __sched cond_resched_softirq(void)
6160{
6161 BUG_ON(!in_softirq());
6162
9414232f 6163 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6164 local_bh_enable();
1da177e4
LT
6165 __cond_resched();
6166 local_bh_disable();
6167 return 1;
6168 }
6169 return 0;
6170}
1da177e4
LT
6171EXPORT_SYMBOL(cond_resched_softirq);
6172
1da177e4
LT
6173/**
6174 * yield - yield the current processor to other threads.
6175 *
72fd4a35 6176 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6177 * thread runnable and calls sys_sched_yield().
6178 */
6179void __sched yield(void)
6180{
6181 set_current_state(TASK_RUNNING);
6182 sys_sched_yield();
6183}
1da177e4
LT
6184EXPORT_SYMBOL(yield);
6185
6186/*
41a2d6cf 6187 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6188 * that process accounting knows that this is a task in IO wait state.
6189 *
6190 * But don't do that if it is a deliberate, throttling IO wait (this task
6191 * has set its backing_dev_info: the queue against which it should throttle)
6192 */
6193void __sched io_schedule(void)
6194{
70b97a7f 6195 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6196
0ff92245 6197 delayacct_blkio_start();
1da177e4
LT
6198 atomic_inc(&rq->nr_iowait);
6199 schedule();
6200 atomic_dec(&rq->nr_iowait);
0ff92245 6201 delayacct_blkio_end();
1da177e4 6202}
1da177e4
LT
6203EXPORT_SYMBOL(io_schedule);
6204
6205long __sched io_schedule_timeout(long timeout)
6206{
70b97a7f 6207 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6208 long ret;
6209
0ff92245 6210 delayacct_blkio_start();
1da177e4
LT
6211 atomic_inc(&rq->nr_iowait);
6212 ret = schedule_timeout(timeout);
6213 atomic_dec(&rq->nr_iowait);
0ff92245 6214 delayacct_blkio_end();
1da177e4
LT
6215 return ret;
6216}
6217
6218/**
6219 * sys_sched_get_priority_max - return maximum RT priority.
6220 * @policy: scheduling class.
6221 *
6222 * this syscall returns the maximum rt_priority that can be used
6223 * by a given scheduling class.
6224 */
5add95d4 6225SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6226{
6227 int ret = -EINVAL;
6228
6229 switch (policy) {
6230 case SCHED_FIFO:
6231 case SCHED_RR:
6232 ret = MAX_USER_RT_PRIO-1;
6233 break;
6234 case SCHED_NORMAL:
b0a9499c 6235 case SCHED_BATCH:
dd41f596 6236 case SCHED_IDLE:
1da177e4
LT
6237 ret = 0;
6238 break;
6239 }
6240 return ret;
6241}
6242
6243/**
6244 * sys_sched_get_priority_min - return minimum RT priority.
6245 * @policy: scheduling class.
6246 *
6247 * this syscall returns the minimum rt_priority that can be used
6248 * by a given scheduling class.
6249 */
5add95d4 6250SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6251{
6252 int ret = -EINVAL;
6253
6254 switch (policy) {
6255 case SCHED_FIFO:
6256 case SCHED_RR:
6257 ret = 1;
6258 break;
6259 case SCHED_NORMAL:
b0a9499c 6260 case SCHED_BATCH:
dd41f596 6261 case SCHED_IDLE:
1da177e4
LT
6262 ret = 0;
6263 }
6264 return ret;
6265}
6266
6267/**
6268 * sys_sched_rr_get_interval - return the default timeslice of a process.
6269 * @pid: pid of the process.
6270 * @interval: userspace pointer to the timeslice value.
6271 *
6272 * this syscall writes the default timeslice value of a given process
6273 * into the user-space timespec buffer. A value of '0' means infinity.
6274 */
17da2bd9 6275SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6276 struct timespec __user *, interval)
1da177e4 6277{
36c8b586 6278 struct task_struct *p;
a4ec24b4 6279 unsigned int time_slice;
3a5c359a 6280 int retval;
1da177e4 6281 struct timespec t;
1da177e4
LT
6282
6283 if (pid < 0)
3a5c359a 6284 return -EINVAL;
1da177e4
LT
6285
6286 retval = -ESRCH;
6287 read_lock(&tasklist_lock);
6288 p = find_process_by_pid(pid);
6289 if (!p)
6290 goto out_unlock;
6291
6292 retval = security_task_getscheduler(p);
6293 if (retval)
6294 goto out_unlock;
6295
77034937
IM
6296 /*
6297 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6298 * tasks that are on an otherwise idle runqueue:
6299 */
6300 time_slice = 0;
6301 if (p->policy == SCHED_RR) {
a4ec24b4 6302 time_slice = DEF_TIMESLICE;
1868f958 6303 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6304 struct sched_entity *se = &p->se;
6305 unsigned long flags;
6306 struct rq *rq;
6307
6308 rq = task_rq_lock(p, &flags);
77034937
IM
6309 if (rq->cfs.load.weight)
6310 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6311 task_rq_unlock(rq, &flags);
6312 }
1da177e4 6313 read_unlock(&tasklist_lock);
a4ec24b4 6314 jiffies_to_timespec(time_slice, &t);
1da177e4 6315 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6316 return retval;
3a5c359a 6317
1da177e4
LT
6318out_unlock:
6319 read_unlock(&tasklist_lock);
6320 return retval;
6321}
6322
7c731e0a 6323static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6324
82a1fcb9 6325void sched_show_task(struct task_struct *p)
1da177e4 6326{
1da177e4 6327 unsigned long free = 0;
36c8b586 6328 unsigned state;
1da177e4 6329
1da177e4 6330 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6331 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6332 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6333#if BITS_PER_LONG == 32
1da177e4 6334 if (state == TASK_RUNNING)
cc4ea795 6335 printk(KERN_CONT " running ");
1da177e4 6336 else
cc4ea795 6337 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6338#else
6339 if (state == TASK_RUNNING)
cc4ea795 6340 printk(KERN_CONT " running task ");
1da177e4 6341 else
cc4ea795 6342 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6343#endif
6344#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6345 free = stack_not_used(p);
1da177e4 6346#endif
ba25f9dc 6347 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6348 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6349
5fb5e6de 6350 show_stack(p, NULL);
1da177e4
LT
6351}
6352
e59e2ae2 6353void show_state_filter(unsigned long state_filter)
1da177e4 6354{
36c8b586 6355 struct task_struct *g, *p;
1da177e4 6356
4bd77321
IM
6357#if BITS_PER_LONG == 32
6358 printk(KERN_INFO
6359 " task PC stack pid father\n");
1da177e4 6360#else
4bd77321
IM
6361 printk(KERN_INFO
6362 " task PC stack pid father\n");
1da177e4
LT
6363#endif
6364 read_lock(&tasklist_lock);
6365 do_each_thread(g, p) {
6366 /*
6367 * reset the NMI-timeout, listing all files on a slow
6368 * console might take alot of time:
6369 */
6370 touch_nmi_watchdog();
39bc89fd 6371 if (!state_filter || (p->state & state_filter))
82a1fcb9 6372 sched_show_task(p);
1da177e4
LT
6373 } while_each_thread(g, p);
6374
04c9167f
JF
6375 touch_all_softlockup_watchdogs();
6376
dd41f596
IM
6377#ifdef CONFIG_SCHED_DEBUG
6378 sysrq_sched_debug_show();
6379#endif
1da177e4 6380 read_unlock(&tasklist_lock);
e59e2ae2
IM
6381 /*
6382 * Only show locks if all tasks are dumped:
6383 */
6384 if (state_filter == -1)
6385 debug_show_all_locks();
1da177e4
LT
6386}
6387
1df21055
IM
6388void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6389{
dd41f596 6390 idle->sched_class = &idle_sched_class;
1df21055
IM
6391}
6392
f340c0d1
IM
6393/**
6394 * init_idle - set up an idle thread for a given CPU
6395 * @idle: task in question
6396 * @cpu: cpu the idle task belongs to
6397 *
6398 * NOTE: this function does not set the idle thread's NEED_RESCHED
6399 * flag, to make booting more robust.
6400 */
5c1e1767 6401void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6402{
70b97a7f 6403 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6404 unsigned long flags;
6405
5cbd54ef
IM
6406 spin_lock_irqsave(&rq->lock, flags);
6407
dd41f596
IM
6408 __sched_fork(idle);
6409 idle->se.exec_start = sched_clock();
6410
b29739f9 6411 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6412 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6413 __set_task_cpu(idle, cpu);
1da177e4 6414
1da177e4 6415 rq->curr = rq->idle = idle;
4866cde0
NP
6416#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6417 idle->oncpu = 1;
6418#endif
1da177e4
LT
6419 spin_unlock_irqrestore(&rq->lock, flags);
6420
6421 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6422#if defined(CONFIG_PREEMPT)
6423 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6424#else
a1261f54 6425 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6426#endif
dd41f596
IM
6427 /*
6428 * The idle tasks have their own, simple scheduling class:
6429 */
6430 idle->sched_class = &idle_sched_class;
fb52607a 6431 ftrace_graph_init_task(idle);
1da177e4
LT
6432}
6433
6434/*
6435 * In a system that switches off the HZ timer nohz_cpu_mask
6436 * indicates which cpus entered this state. This is used
6437 * in the rcu update to wait only for active cpus. For system
6438 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6439 * always be CPU_BITS_NONE.
1da177e4 6440 */
6a7b3dc3 6441cpumask_var_t nohz_cpu_mask;
1da177e4 6442
19978ca6
IM
6443/*
6444 * Increase the granularity value when there are more CPUs,
6445 * because with more CPUs the 'effective latency' as visible
6446 * to users decreases. But the relationship is not linear,
6447 * so pick a second-best guess by going with the log2 of the
6448 * number of CPUs.
6449 *
6450 * This idea comes from the SD scheduler of Con Kolivas:
6451 */
6452static inline void sched_init_granularity(void)
6453{
6454 unsigned int factor = 1 + ilog2(num_online_cpus());
6455 const unsigned long limit = 200000000;
6456
6457 sysctl_sched_min_granularity *= factor;
6458 if (sysctl_sched_min_granularity > limit)
6459 sysctl_sched_min_granularity = limit;
6460
6461 sysctl_sched_latency *= factor;
6462 if (sysctl_sched_latency > limit)
6463 sysctl_sched_latency = limit;
6464
6465 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6466
6467 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6468}
6469
1da177e4
LT
6470#ifdef CONFIG_SMP
6471/*
6472 * This is how migration works:
6473 *
70b97a7f 6474 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6475 * runqueue and wake up that CPU's migration thread.
6476 * 2) we down() the locked semaphore => thread blocks.
6477 * 3) migration thread wakes up (implicitly it forces the migrated
6478 * thread off the CPU)
6479 * 4) it gets the migration request and checks whether the migrated
6480 * task is still in the wrong runqueue.
6481 * 5) if it's in the wrong runqueue then the migration thread removes
6482 * it and puts it into the right queue.
6483 * 6) migration thread up()s the semaphore.
6484 * 7) we wake up and the migration is done.
6485 */
6486
6487/*
6488 * Change a given task's CPU affinity. Migrate the thread to a
6489 * proper CPU and schedule it away if the CPU it's executing on
6490 * is removed from the allowed bitmask.
6491 *
6492 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6493 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6494 * call is not atomic; no spinlocks may be held.
6495 */
96f874e2 6496int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6497{
70b97a7f 6498 struct migration_req req;
1da177e4 6499 unsigned long flags;
70b97a7f 6500 struct rq *rq;
48f24c4d 6501 int ret = 0;
1da177e4
LT
6502
6503 rq = task_rq_lock(p, &flags);
96f874e2 6504 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6505 ret = -EINVAL;
6506 goto out;
6507 }
6508
9985b0ba 6509 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6510 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6511 ret = -EINVAL;
6512 goto out;
6513 }
6514
73fe6aae 6515 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6516 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6517 else {
96f874e2
RR
6518 cpumask_copy(&p->cpus_allowed, new_mask);
6519 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6520 }
6521
1da177e4 6522 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6523 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6524 goto out;
6525
1e5ce4f4 6526 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6527 /* Need help from migration thread: drop lock and wait. */
6528 task_rq_unlock(rq, &flags);
6529 wake_up_process(rq->migration_thread);
6530 wait_for_completion(&req.done);
6531 tlb_migrate_finish(p->mm);
6532 return 0;
6533 }
6534out:
6535 task_rq_unlock(rq, &flags);
48f24c4d 6536
1da177e4
LT
6537 return ret;
6538}
cd8ba7cd 6539EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6540
6541/*
41a2d6cf 6542 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6543 * this because either it can't run here any more (set_cpus_allowed()
6544 * away from this CPU, or CPU going down), or because we're
6545 * attempting to rebalance this task on exec (sched_exec).
6546 *
6547 * So we race with normal scheduler movements, but that's OK, as long
6548 * as the task is no longer on this CPU.
efc30814
KK
6549 *
6550 * Returns non-zero if task was successfully migrated.
1da177e4 6551 */
efc30814 6552static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6553{
70b97a7f 6554 struct rq *rq_dest, *rq_src;
dd41f596 6555 int ret = 0, on_rq;
1da177e4 6556
e761b772 6557 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6558 return ret;
1da177e4
LT
6559
6560 rq_src = cpu_rq(src_cpu);
6561 rq_dest = cpu_rq(dest_cpu);
6562
6563 double_rq_lock(rq_src, rq_dest);
6564 /* Already moved. */
6565 if (task_cpu(p) != src_cpu)
b1e38734 6566 goto done;
1da177e4 6567 /* Affinity changed (again). */
96f874e2 6568 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6569 goto fail;
1da177e4 6570
dd41f596 6571 on_rq = p->se.on_rq;
6e82a3be 6572 if (on_rq)
2e1cb74a 6573 deactivate_task(rq_src, p, 0);
6e82a3be 6574
1da177e4 6575 set_task_cpu(p, dest_cpu);
dd41f596
IM
6576 if (on_rq) {
6577 activate_task(rq_dest, p, 0);
15afe09b 6578 check_preempt_curr(rq_dest, p, 0);
1da177e4 6579 }
b1e38734 6580done:
efc30814 6581 ret = 1;
b1e38734 6582fail:
1da177e4 6583 double_rq_unlock(rq_src, rq_dest);
efc30814 6584 return ret;
1da177e4
LT
6585}
6586
6587/*
6588 * migration_thread - this is a highprio system thread that performs
6589 * thread migration by bumping thread off CPU then 'pushing' onto
6590 * another runqueue.
6591 */
95cdf3b7 6592static int migration_thread(void *data)
1da177e4 6593{
1da177e4 6594 int cpu = (long)data;
70b97a7f 6595 struct rq *rq;
1da177e4
LT
6596
6597 rq = cpu_rq(cpu);
6598 BUG_ON(rq->migration_thread != current);
6599
6600 set_current_state(TASK_INTERRUPTIBLE);
6601 while (!kthread_should_stop()) {
70b97a7f 6602 struct migration_req *req;
1da177e4 6603 struct list_head *head;
1da177e4 6604
1da177e4
LT
6605 spin_lock_irq(&rq->lock);
6606
6607 if (cpu_is_offline(cpu)) {
6608 spin_unlock_irq(&rq->lock);
6609 goto wait_to_die;
6610 }
6611
6612 if (rq->active_balance) {
6613 active_load_balance(rq, cpu);
6614 rq->active_balance = 0;
6615 }
6616
6617 head = &rq->migration_queue;
6618
6619 if (list_empty(head)) {
6620 spin_unlock_irq(&rq->lock);
6621 schedule();
6622 set_current_state(TASK_INTERRUPTIBLE);
6623 continue;
6624 }
70b97a7f 6625 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6626 list_del_init(head->next);
6627
674311d5
NP
6628 spin_unlock(&rq->lock);
6629 __migrate_task(req->task, cpu, req->dest_cpu);
6630 local_irq_enable();
1da177e4
LT
6631
6632 complete(&req->done);
6633 }
6634 __set_current_state(TASK_RUNNING);
6635 return 0;
6636
6637wait_to_die:
6638 /* Wait for kthread_stop */
6639 set_current_state(TASK_INTERRUPTIBLE);
6640 while (!kthread_should_stop()) {
6641 schedule();
6642 set_current_state(TASK_INTERRUPTIBLE);
6643 }
6644 __set_current_state(TASK_RUNNING);
6645 return 0;
6646}
6647
6648#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6649
6650static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6651{
6652 int ret;
6653
6654 local_irq_disable();
6655 ret = __migrate_task(p, src_cpu, dest_cpu);
6656 local_irq_enable();
6657 return ret;
6658}
6659
054b9108 6660/*
3a4fa0a2 6661 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6662 */
48f24c4d 6663static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6664{
70b97a7f 6665 int dest_cpu;
6ca09dfc 6666 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6667
6668again:
6669 /* Look for allowed, online CPU in same node. */
6670 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6671 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6672 goto move;
6673
6674 /* Any allowed, online CPU? */
6675 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6676 if (dest_cpu < nr_cpu_ids)
6677 goto move;
6678
6679 /* No more Mr. Nice Guy. */
6680 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6681 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6682 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6683
e76bd8d9
RR
6684 /*
6685 * Don't tell them about moving exiting tasks or
6686 * kernel threads (both mm NULL), since they never
6687 * leave kernel.
6688 */
6689 if (p->mm && printk_ratelimit()) {
6690 printk(KERN_INFO "process %d (%s) no "
6691 "longer affine to cpu%d\n",
6692 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6693 }
e76bd8d9
RR
6694 }
6695
6696move:
6697 /* It can have affinity changed while we were choosing. */
6698 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6699 goto again;
1da177e4
LT
6700}
6701
6702/*
6703 * While a dead CPU has no uninterruptible tasks queued at this point,
6704 * it might still have a nonzero ->nr_uninterruptible counter, because
6705 * for performance reasons the counter is not stricly tracking tasks to
6706 * their home CPUs. So we just add the counter to another CPU's counter,
6707 * to keep the global sum constant after CPU-down:
6708 */
70b97a7f 6709static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6710{
1e5ce4f4 6711 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6712 unsigned long flags;
6713
6714 local_irq_save(flags);
6715 double_rq_lock(rq_src, rq_dest);
6716 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6717 rq_src->nr_uninterruptible = 0;
6718 double_rq_unlock(rq_src, rq_dest);
6719 local_irq_restore(flags);
6720}
6721
6722/* Run through task list and migrate tasks from the dead cpu. */
6723static void migrate_live_tasks(int src_cpu)
6724{
48f24c4d 6725 struct task_struct *p, *t;
1da177e4 6726
f7b4cddc 6727 read_lock(&tasklist_lock);
1da177e4 6728
48f24c4d
IM
6729 do_each_thread(t, p) {
6730 if (p == current)
1da177e4
LT
6731 continue;
6732
48f24c4d
IM
6733 if (task_cpu(p) == src_cpu)
6734 move_task_off_dead_cpu(src_cpu, p);
6735 } while_each_thread(t, p);
1da177e4 6736
f7b4cddc 6737 read_unlock(&tasklist_lock);
1da177e4
LT
6738}
6739
dd41f596
IM
6740/*
6741 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6742 * It does so by boosting its priority to highest possible.
6743 * Used by CPU offline code.
1da177e4
LT
6744 */
6745void sched_idle_next(void)
6746{
48f24c4d 6747 int this_cpu = smp_processor_id();
70b97a7f 6748 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6749 struct task_struct *p = rq->idle;
6750 unsigned long flags;
6751
6752 /* cpu has to be offline */
48f24c4d 6753 BUG_ON(cpu_online(this_cpu));
1da177e4 6754
48f24c4d
IM
6755 /*
6756 * Strictly not necessary since rest of the CPUs are stopped by now
6757 * and interrupts disabled on the current cpu.
1da177e4
LT
6758 */
6759 spin_lock_irqsave(&rq->lock, flags);
6760
dd41f596 6761 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6762
94bc9a7b
DA
6763 update_rq_clock(rq);
6764 activate_task(rq, p, 0);
1da177e4
LT
6765
6766 spin_unlock_irqrestore(&rq->lock, flags);
6767}
6768
48f24c4d
IM
6769/*
6770 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6771 * offline.
6772 */
6773void idle_task_exit(void)
6774{
6775 struct mm_struct *mm = current->active_mm;
6776
6777 BUG_ON(cpu_online(smp_processor_id()));
6778
6779 if (mm != &init_mm)
6780 switch_mm(mm, &init_mm, current);
6781 mmdrop(mm);
6782}
6783
054b9108 6784/* called under rq->lock with disabled interrupts */
36c8b586 6785static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6786{
70b97a7f 6787 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6788
6789 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6790 BUG_ON(!p->exit_state);
1da177e4
LT
6791
6792 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6793 BUG_ON(p->state == TASK_DEAD);
1da177e4 6794
48f24c4d 6795 get_task_struct(p);
1da177e4
LT
6796
6797 /*
6798 * Drop lock around migration; if someone else moves it,
41a2d6cf 6799 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6800 * fine.
6801 */
f7b4cddc 6802 spin_unlock_irq(&rq->lock);
48f24c4d 6803 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6804 spin_lock_irq(&rq->lock);
1da177e4 6805
48f24c4d 6806 put_task_struct(p);
1da177e4
LT
6807}
6808
6809/* release_task() removes task from tasklist, so we won't find dead tasks. */
6810static void migrate_dead_tasks(unsigned int dead_cpu)
6811{
70b97a7f 6812 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6813 struct task_struct *next;
48f24c4d 6814
dd41f596
IM
6815 for ( ; ; ) {
6816 if (!rq->nr_running)
6817 break;
a8e504d2 6818 update_rq_clock(rq);
b67802ea 6819 next = pick_next_task(rq);
dd41f596
IM
6820 if (!next)
6821 break;
79c53799 6822 next->sched_class->put_prev_task(rq, next);
dd41f596 6823 migrate_dead(dead_cpu, next);
e692ab53 6824
1da177e4
LT
6825 }
6826}
6827#endif /* CONFIG_HOTPLUG_CPU */
6828
e692ab53
NP
6829#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6830
6831static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6832 {
6833 .procname = "sched_domain",
c57baf1e 6834 .mode = 0555,
e0361851 6835 },
38605cae 6836 {0, },
e692ab53
NP
6837};
6838
6839static struct ctl_table sd_ctl_root[] = {
e0361851 6840 {
c57baf1e 6841 .ctl_name = CTL_KERN,
e0361851 6842 .procname = "kernel",
c57baf1e 6843 .mode = 0555,
e0361851
AD
6844 .child = sd_ctl_dir,
6845 },
38605cae 6846 {0, },
e692ab53
NP
6847};
6848
6849static struct ctl_table *sd_alloc_ctl_entry(int n)
6850{
6851 struct ctl_table *entry =
5cf9f062 6852 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6853
e692ab53
NP
6854 return entry;
6855}
6856
6382bc90
MM
6857static void sd_free_ctl_entry(struct ctl_table **tablep)
6858{
cd790076 6859 struct ctl_table *entry;
6382bc90 6860
cd790076
MM
6861 /*
6862 * In the intermediate directories, both the child directory and
6863 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6864 * will always be set. In the lowest directory the names are
cd790076
MM
6865 * static strings and all have proc handlers.
6866 */
6867 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6868 if (entry->child)
6869 sd_free_ctl_entry(&entry->child);
cd790076
MM
6870 if (entry->proc_handler == NULL)
6871 kfree(entry->procname);
6872 }
6382bc90
MM
6873
6874 kfree(*tablep);
6875 *tablep = NULL;
6876}
6877
e692ab53 6878static void
e0361851 6879set_table_entry(struct ctl_table *entry,
e692ab53
NP
6880 const char *procname, void *data, int maxlen,
6881 mode_t mode, proc_handler *proc_handler)
6882{
e692ab53
NP
6883 entry->procname = procname;
6884 entry->data = data;
6885 entry->maxlen = maxlen;
6886 entry->mode = mode;
6887 entry->proc_handler = proc_handler;
6888}
6889
6890static struct ctl_table *
6891sd_alloc_ctl_domain_table(struct sched_domain *sd)
6892{
a5d8c348 6893 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6894
ad1cdc1d
MM
6895 if (table == NULL)
6896 return NULL;
6897
e0361851 6898 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6899 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6900 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6901 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6902 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6903 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6904 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6905 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6906 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6907 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6908 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6909 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6910 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6911 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6912 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6913 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6914 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6915 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6916 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6917 &sd->cache_nice_tries,
6918 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6919 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6920 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6921 set_table_entry(&table[11], "name", sd->name,
6922 CORENAME_MAX_SIZE, 0444, proc_dostring);
6923 /* &table[12] is terminator */
e692ab53
NP
6924
6925 return table;
6926}
6927
9a4e7159 6928static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6929{
6930 struct ctl_table *entry, *table;
6931 struct sched_domain *sd;
6932 int domain_num = 0, i;
6933 char buf[32];
6934
6935 for_each_domain(cpu, sd)
6936 domain_num++;
6937 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6938 if (table == NULL)
6939 return NULL;
e692ab53
NP
6940
6941 i = 0;
6942 for_each_domain(cpu, sd) {
6943 snprintf(buf, 32, "domain%d", i);
e692ab53 6944 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6945 entry->mode = 0555;
e692ab53
NP
6946 entry->child = sd_alloc_ctl_domain_table(sd);
6947 entry++;
6948 i++;
6949 }
6950 return table;
6951}
6952
6953static struct ctl_table_header *sd_sysctl_header;
6382bc90 6954static void register_sched_domain_sysctl(void)
e692ab53
NP
6955{
6956 int i, cpu_num = num_online_cpus();
6957 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6958 char buf[32];
6959
7378547f
MM
6960 WARN_ON(sd_ctl_dir[0].child);
6961 sd_ctl_dir[0].child = entry;
6962
ad1cdc1d
MM
6963 if (entry == NULL)
6964 return;
6965
97b6ea7b 6966 for_each_online_cpu(i) {
e692ab53 6967 snprintf(buf, 32, "cpu%d", i);
e692ab53 6968 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6969 entry->mode = 0555;
e692ab53 6970 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6971 entry++;
e692ab53 6972 }
7378547f
MM
6973
6974 WARN_ON(sd_sysctl_header);
e692ab53
NP
6975 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6976}
6382bc90 6977
7378547f 6978/* may be called multiple times per register */
6382bc90
MM
6979static void unregister_sched_domain_sysctl(void)
6980{
7378547f
MM
6981 if (sd_sysctl_header)
6982 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6983 sd_sysctl_header = NULL;
7378547f
MM
6984 if (sd_ctl_dir[0].child)
6985 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6986}
e692ab53 6987#else
6382bc90
MM
6988static void register_sched_domain_sysctl(void)
6989{
6990}
6991static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6992{
6993}
6994#endif
6995
1f11eb6a
GH
6996static void set_rq_online(struct rq *rq)
6997{
6998 if (!rq->online) {
6999 const struct sched_class *class;
7000
c6c4927b 7001 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7002 rq->online = 1;
7003
7004 for_each_class(class) {
7005 if (class->rq_online)
7006 class->rq_online(rq);
7007 }
7008 }
7009}
7010
7011static void set_rq_offline(struct rq *rq)
7012{
7013 if (rq->online) {
7014 const struct sched_class *class;
7015
7016 for_each_class(class) {
7017 if (class->rq_offline)
7018 class->rq_offline(rq);
7019 }
7020
c6c4927b 7021 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7022 rq->online = 0;
7023 }
7024}
7025
1da177e4
LT
7026/*
7027 * migration_call - callback that gets triggered when a CPU is added.
7028 * Here we can start up the necessary migration thread for the new CPU.
7029 */
48f24c4d
IM
7030static int __cpuinit
7031migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7032{
1da177e4 7033 struct task_struct *p;
48f24c4d 7034 int cpu = (long)hcpu;
1da177e4 7035 unsigned long flags;
70b97a7f 7036 struct rq *rq;
1da177e4
LT
7037
7038 switch (action) {
5be9361c 7039
1da177e4 7040 case CPU_UP_PREPARE:
8bb78442 7041 case CPU_UP_PREPARE_FROZEN:
dd41f596 7042 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7043 if (IS_ERR(p))
7044 return NOTIFY_BAD;
1da177e4
LT
7045 kthread_bind(p, cpu);
7046 /* Must be high prio: stop_machine expects to yield to it. */
7047 rq = task_rq_lock(p, &flags);
dd41f596 7048 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7049 task_rq_unlock(rq, &flags);
7050 cpu_rq(cpu)->migration_thread = p;
7051 break;
48f24c4d 7052
1da177e4 7053 case CPU_ONLINE:
8bb78442 7054 case CPU_ONLINE_FROZEN:
3a4fa0a2 7055 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7056 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7057
7058 /* Update our root-domain */
7059 rq = cpu_rq(cpu);
7060 spin_lock_irqsave(&rq->lock, flags);
7061 if (rq->rd) {
c6c4927b 7062 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7063
7064 set_rq_online(rq);
1f94ef59
GH
7065 }
7066 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7067 break;
48f24c4d 7068
1da177e4
LT
7069#ifdef CONFIG_HOTPLUG_CPU
7070 case CPU_UP_CANCELED:
8bb78442 7071 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7072 if (!cpu_rq(cpu)->migration_thread)
7073 break;
41a2d6cf 7074 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7075 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7076 cpumask_any(cpu_online_mask));
1da177e4
LT
7077 kthread_stop(cpu_rq(cpu)->migration_thread);
7078 cpu_rq(cpu)->migration_thread = NULL;
7079 break;
48f24c4d 7080
1da177e4 7081 case CPU_DEAD:
8bb78442 7082 case CPU_DEAD_FROZEN:
470fd646 7083 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7084 migrate_live_tasks(cpu);
7085 rq = cpu_rq(cpu);
7086 kthread_stop(rq->migration_thread);
7087 rq->migration_thread = NULL;
7088 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7089 spin_lock_irq(&rq->lock);
a8e504d2 7090 update_rq_clock(rq);
2e1cb74a 7091 deactivate_task(rq, rq->idle, 0);
1da177e4 7092 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7093 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7094 rq->idle->sched_class = &idle_sched_class;
1da177e4 7095 migrate_dead_tasks(cpu);
d2da272a 7096 spin_unlock_irq(&rq->lock);
470fd646 7097 cpuset_unlock();
1da177e4
LT
7098 migrate_nr_uninterruptible(rq);
7099 BUG_ON(rq->nr_running != 0);
7100
41a2d6cf
IM
7101 /*
7102 * No need to migrate the tasks: it was best-effort if
7103 * they didn't take sched_hotcpu_mutex. Just wake up
7104 * the requestors.
7105 */
1da177e4
LT
7106 spin_lock_irq(&rq->lock);
7107 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7108 struct migration_req *req;
7109
1da177e4 7110 req = list_entry(rq->migration_queue.next,
70b97a7f 7111 struct migration_req, list);
1da177e4 7112 list_del_init(&req->list);
9a2bd244 7113 spin_unlock_irq(&rq->lock);
1da177e4 7114 complete(&req->done);
9a2bd244 7115 spin_lock_irq(&rq->lock);
1da177e4
LT
7116 }
7117 spin_unlock_irq(&rq->lock);
7118 break;
57d885fe 7119
08f503b0
GH
7120 case CPU_DYING:
7121 case CPU_DYING_FROZEN:
57d885fe
GH
7122 /* Update our root-domain */
7123 rq = cpu_rq(cpu);
7124 spin_lock_irqsave(&rq->lock, flags);
7125 if (rq->rd) {
c6c4927b 7126 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7127 set_rq_offline(rq);
57d885fe
GH
7128 }
7129 spin_unlock_irqrestore(&rq->lock, flags);
7130 break;
1da177e4
LT
7131#endif
7132 }
7133 return NOTIFY_OK;
7134}
7135
7136/* Register at highest priority so that task migration (migrate_all_tasks)
7137 * happens before everything else.
7138 */
26c2143b 7139static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7140 .notifier_call = migration_call,
7141 .priority = 10
7142};
7143
7babe8db 7144static int __init migration_init(void)
1da177e4
LT
7145{
7146 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7147 int err;
48f24c4d
IM
7148
7149 /* Start one for the boot CPU: */
07dccf33
AM
7150 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7151 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7152 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7153 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7154
7155 return err;
1da177e4 7156}
7babe8db 7157early_initcall(migration_init);
1da177e4
LT
7158#endif
7159
7160#ifdef CONFIG_SMP
476f3534 7161
3e9830dc 7162#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7163
7c16ec58 7164static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7165 struct cpumask *groupmask)
1da177e4 7166{
4dcf6aff 7167 struct sched_group *group = sd->groups;
434d53b0 7168 char str[256];
1da177e4 7169
968ea6d8 7170 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7171 cpumask_clear(groupmask);
4dcf6aff
IM
7172
7173 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7174
7175 if (!(sd->flags & SD_LOAD_BALANCE)) {
7176 printk("does not load-balance\n");
7177 if (sd->parent)
7178 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7179 " has parent");
7180 return -1;
41c7ce9a
NP
7181 }
7182
eefd796a 7183 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7184
758b2cdc 7185 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7186 printk(KERN_ERR "ERROR: domain->span does not contain "
7187 "CPU%d\n", cpu);
7188 }
758b2cdc 7189 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7190 printk(KERN_ERR "ERROR: domain->groups does not contain"
7191 " CPU%d\n", cpu);
7192 }
1da177e4 7193
4dcf6aff 7194 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7195 do {
4dcf6aff
IM
7196 if (!group) {
7197 printk("\n");
7198 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7199 break;
7200 }
7201
4dcf6aff
IM
7202 if (!group->__cpu_power) {
7203 printk(KERN_CONT "\n");
7204 printk(KERN_ERR "ERROR: domain->cpu_power not "
7205 "set\n");
7206 break;
7207 }
1da177e4 7208
758b2cdc 7209 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7210 printk(KERN_CONT "\n");
7211 printk(KERN_ERR "ERROR: empty group\n");
7212 break;
7213 }
1da177e4 7214
758b2cdc 7215 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7216 printk(KERN_CONT "\n");
7217 printk(KERN_ERR "ERROR: repeated CPUs\n");
7218 break;
7219 }
1da177e4 7220
758b2cdc 7221 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7222
968ea6d8 7223 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 7224 printk(KERN_CONT " %s", str);
1da177e4 7225
4dcf6aff
IM
7226 group = group->next;
7227 } while (group != sd->groups);
7228 printk(KERN_CONT "\n");
1da177e4 7229
758b2cdc 7230 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7231 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7232
758b2cdc
RR
7233 if (sd->parent &&
7234 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7235 printk(KERN_ERR "ERROR: parent span is not a superset "
7236 "of domain->span\n");
7237 return 0;
7238}
1da177e4 7239
4dcf6aff
IM
7240static void sched_domain_debug(struct sched_domain *sd, int cpu)
7241{
d5dd3db1 7242 cpumask_var_t groupmask;
4dcf6aff 7243 int level = 0;
1da177e4 7244
4dcf6aff
IM
7245 if (!sd) {
7246 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7247 return;
7248 }
1da177e4 7249
4dcf6aff
IM
7250 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7251
d5dd3db1 7252 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7253 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7254 return;
7255 }
7256
4dcf6aff 7257 for (;;) {
7c16ec58 7258 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7259 break;
1da177e4
LT
7260 level++;
7261 sd = sd->parent;
33859f7f 7262 if (!sd)
4dcf6aff
IM
7263 break;
7264 }
d5dd3db1 7265 free_cpumask_var(groupmask);
1da177e4 7266}
6d6bc0ad 7267#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7268# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7269#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7270
1a20ff27 7271static int sd_degenerate(struct sched_domain *sd)
245af2c7 7272{
758b2cdc 7273 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7274 return 1;
7275
7276 /* Following flags need at least 2 groups */
7277 if (sd->flags & (SD_LOAD_BALANCE |
7278 SD_BALANCE_NEWIDLE |
7279 SD_BALANCE_FORK |
89c4710e
SS
7280 SD_BALANCE_EXEC |
7281 SD_SHARE_CPUPOWER |
7282 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7283 if (sd->groups != sd->groups->next)
7284 return 0;
7285 }
7286
7287 /* Following flags don't use groups */
7288 if (sd->flags & (SD_WAKE_IDLE |
7289 SD_WAKE_AFFINE |
7290 SD_WAKE_BALANCE))
7291 return 0;
7292
7293 return 1;
7294}
7295
48f24c4d
IM
7296static int
7297sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7298{
7299 unsigned long cflags = sd->flags, pflags = parent->flags;
7300
7301 if (sd_degenerate(parent))
7302 return 1;
7303
758b2cdc 7304 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7305 return 0;
7306
7307 /* Does parent contain flags not in child? */
7308 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7309 if (cflags & SD_WAKE_AFFINE)
7310 pflags &= ~SD_WAKE_BALANCE;
7311 /* Flags needing groups don't count if only 1 group in parent */
7312 if (parent->groups == parent->groups->next) {
7313 pflags &= ~(SD_LOAD_BALANCE |
7314 SD_BALANCE_NEWIDLE |
7315 SD_BALANCE_FORK |
89c4710e
SS
7316 SD_BALANCE_EXEC |
7317 SD_SHARE_CPUPOWER |
7318 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7319 if (nr_node_ids == 1)
7320 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7321 }
7322 if (~cflags & pflags)
7323 return 0;
7324
7325 return 1;
7326}
7327
c6c4927b
RR
7328static void free_rootdomain(struct root_domain *rd)
7329{
68e74568
RR
7330 cpupri_cleanup(&rd->cpupri);
7331
c6c4927b
RR
7332 free_cpumask_var(rd->rto_mask);
7333 free_cpumask_var(rd->online);
7334 free_cpumask_var(rd->span);
7335 kfree(rd);
7336}
7337
57d885fe
GH
7338static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7339{
a0490fa3 7340 struct root_domain *old_rd = NULL;
57d885fe 7341 unsigned long flags;
57d885fe
GH
7342
7343 spin_lock_irqsave(&rq->lock, flags);
7344
7345 if (rq->rd) {
a0490fa3 7346 old_rd = rq->rd;
57d885fe 7347
c6c4927b 7348 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7349 set_rq_offline(rq);
57d885fe 7350
c6c4927b 7351 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7352
a0490fa3
IM
7353 /*
7354 * If we dont want to free the old_rt yet then
7355 * set old_rd to NULL to skip the freeing later
7356 * in this function:
7357 */
7358 if (!atomic_dec_and_test(&old_rd->refcount))
7359 old_rd = NULL;
57d885fe
GH
7360 }
7361
7362 atomic_inc(&rd->refcount);
7363 rq->rd = rd;
7364
c6c4927b
RR
7365 cpumask_set_cpu(rq->cpu, rd->span);
7366 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7367 set_rq_online(rq);
57d885fe
GH
7368
7369 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7370
7371 if (old_rd)
7372 free_rootdomain(old_rd);
57d885fe
GH
7373}
7374
db2f59c8 7375static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7376{
7377 memset(rd, 0, sizeof(*rd));
7378
c6c4927b
RR
7379 if (bootmem) {
7380 alloc_bootmem_cpumask_var(&def_root_domain.span);
7381 alloc_bootmem_cpumask_var(&def_root_domain.online);
7382 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7383 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7384 return 0;
7385 }
7386
7387 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7388 goto out;
c6c4927b
RR
7389 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7390 goto free_span;
7391 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7392 goto free_online;
6e0534f2 7393
68e74568
RR
7394 if (cpupri_init(&rd->cpupri, false) != 0)
7395 goto free_rto_mask;
c6c4927b 7396 return 0;
6e0534f2 7397
68e74568
RR
7398free_rto_mask:
7399 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7400free_online:
7401 free_cpumask_var(rd->online);
7402free_span:
7403 free_cpumask_var(rd->span);
0c910d28 7404out:
c6c4927b 7405 return -ENOMEM;
57d885fe
GH
7406}
7407
7408static void init_defrootdomain(void)
7409{
c6c4927b
RR
7410 init_rootdomain(&def_root_domain, true);
7411
57d885fe
GH
7412 atomic_set(&def_root_domain.refcount, 1);
7413}
7414
dc938520 7415static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7416{
7417 struct root_domain *rd;
7418
7419 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7420 if (!rd)
7421 return NULL;
7422
c6c4927b
RR
7423 if (init_rootdomain(rd, false) != 0) {
7424 kfree(rd);
7425 return NULL;
7426 }
57d885fe
GH
7427
7428 return rd;
7429}
7430
1da177e4 7431/*
0eab9146 7432 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7433 * hold the hotplug lock.
7434 */
0eab9146
IM
7435static void
7436cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7437{
70b97a7f 7438 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7439 struct sched_domain *tmp;
7440
7441 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7442 for (tmp = sd; tmp; ) {
245af2c7
SS
7443 struct sched_domain *parent = tmp->parent;
7444 if (!parent)
7445 break;
f29c9b1c 7446
1a848870 7447 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7448 tmp->parent = parent->parent;
1a848870
SS
7449 if (parent->parent)
7450 parent->parent->child = tmp;
f29c9b1c
LZ
7451 } else
7452 tmp = tmp->parent;
245af2c7
SS
7453 }
7454
1a848870 7455 if (sd && sd_degenerate(sd)) {
245af2c7 7456 sd = sd->parent;
1a848870
SS
7457 if (sd)
7458 sd->child = NULL;
7459 }
1da177e4
LT
7460
7461 sched_domain_debug(sd, cpu);
7462
57d885fe 7463 rq_attach_root(rq, rd);
674311d5 7464 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7465}
7466
7467/* cpus with isolated domains */
dcc30a35 7468static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7469
7470/* Setup the mask of cpus configured for isolated domains */
7471static int __init isolated_cpu_setup(char *str)
7472{
968ea6d8 7473 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7474 return 1;
7475}
7476
8927f494 7477__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7478
7479/*
6711cab4
SS
7480 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7481 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7482 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7483 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7484 *
7485 * init_sched_build_groups will build a circular linked list of the groups
7486 * covered by the given span, and will set each group's ->cpumask correctly,
7487 * and ->cpu_power to 0.
7488 */
a616058b 7489static void
96f874e2
RR
7490init_sched_build_groups(const struct cpumask *span,
7491 const struct cpumask *cpu_map,
7492 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7493 struct sched_group **sg,
96f874e2
RR
7494 struct cpumask *tmpmask),
7495 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7496{
7497 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7498 int i;
7499
96f874e2 7500 cpumask_clear(covered);
7c16ec58 7501
abcd083a 7502 for_each_cpu(i, span) {
6711cab4 7503 struct sched_group *sg;
7c16ec58 7504 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7505 int j;
7506
758b2cdc 7507 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7508 continue;
7509
758b2cdc 7510 cpumask_clear(sched_group_cpus(sg));
5517d86b 7511 sg->__cpu_power = 0;
1da177e4 7512
abcd083a 7513 for_each_cpu(j, span) {
7c16ec58 7514 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7515 continue;
7516
96f874e2 7517 cpumask_set_cpu(j, covered);
758b2cdc 7518 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7519 }
7520 if (!first)
7521 first = sg;
7522 if (last)
7523 last->next = sg;
7524 last = sg;
7525 }
7526 last->next = first;
7527}
7528
9c1cfda2 7529#define SD_NODES_PER_DOMAIN 16
1da177e4 7530
9c1cfda2 7531#ifdef CONFIG_NUMA
198e2f18 7532
9c1cfda2
JH
7533/**
7534 * find_next_best_node - find the next node to include in a sched_domain
7535 * @node: node whose sched_domain we're building
7536 * @used_nodes: nodes already in the sched_domain
7537 *
41a2d6cf 7538 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7539 * finds the closest node not already in the @used_nodes map.
7540 *
7541 * Should use nodemask_t.
7542 */
c5f59f08 7543static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7544{
7545 int i, n, val, min_val, best_node = 0;
7546
7547 min_val = INT_MAX;
7548
076ac2af 7549 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7550 /* Start at @node */
076ac2af 7551 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7552
7553 if (!nr_cpus_node(n))
7554 continue;
7555
7556 /* Skip already used nodes */
c5f59f08 7557 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7558 continue;
7559
7560 /* Simple min distance search */
7561 val = node_distance(node, n);
7562
7563 if (val < min_val) {
7564 min_val = val;
7565 best_node = n;
7566 }
7567 }
7568
c5f59f08 7569 node_set(best_node, *used_nodes);
9c1cfda2
JH
7570 return best_node;
7571}
7572
7573/**
7574 * sched_domain_node_span - get a cpumask for a node's sched_domain
7575 * @node: node whose cpumask we're constructing
73486722 7576 * @span: resulting cpumask
9c1cfda2 7577 *
41a2d6cf 7578 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7579 * should be one that prevents unnecessary balancing, but also spreads tasks
7580 * out optimally.
7581 */
96f874e2 7582static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7583{
c5f59f08 7584 nodemask_t used_nodes;
48f24c4d 7585 int i;
9c1cfda2 7586
6ca09dfc 7587 cpumask_clear(span);
c5f59f08 7588 nodes_clear(used_nodes);
9c1cfda2 7589
6ca09dfc 7590 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7591 node_set(node, used_nodes);
9c1cfda2
JH
7592
7593 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7594 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7595
6ca09dfc 7596 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7597 }
9c1cfda2 7598}
6d6bc0ad 7599#endif /* CONFIG_NUMA */
9c1cfda2 7600
5c45bf27 7601int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7602
6c99e9ad
RR
7603/*
7604 * The cpus mask in sched_group and sched_domain hangs off the end.
7605 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7606 * for nr_cpu_ids < CONFIG_NR_CPUS.
7607 */
7608struct static_sched_group {
7609 struct sched_group sg;
7610 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7611};
7612
7613struct static_sched_domain {
7614 struct sched_domain sd;
7615 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7616};
7617
9c1cfda2 7618/*
48f24c4d 7619 * SMT sched-domains:
9c1cfda2 7620 */
1da177e4 7621#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7622static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7623static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7624
41a2d6cf 7625static int
96f874e2
RR
7626cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7627 struct sched_group **sg, struct cpumask *unused)
1da177e4 7628{
6711cab4 7629 if (sg)
6c99e9ad 7630 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7631 return cpu;
7632}
6d6bc0ad 7633#endif /* CONFIG_SCHED_SMT */
1da177e4 7634
48f24c4d
IM
7635/*
7636 * multi-core sched-domains:
7637 */
1e9f28fa 7638#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7639static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7640static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7641#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7642
7643#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7644static int
96f874e2
RR
7645cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7646 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7647{
6711cab4 7648 int group;
7c16ec58 7649
96f874e2
RR
7650 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7651 group = cpumask_first(mask);
6711cab4 7652 if (sg)
6c99e9ad 7653 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7654 return group;
1e9f28fa
SS
7655}
7656#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7657static int
96f874e2
RR
7658cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7659 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7660{
6711cab4 7661 if (sg)
6c99e9ad 7662 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7663 return cpu;
7664}
7665#endif
7666
6c99e9ad
RR
7667static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7668static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7669
41a2d6cf 7670static int
96f874e2
RR
7671cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7672 struct sched_group **sg, struct cpumask *mask)
1da177e4 7673{
6711cab4 7674 int group;
48f24c4d 7675#ifdef CONFIG_SCHED_MC
6ca09dfc 7676 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7677 group = cpumask_first(mask);
1e9f28fa 7678#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7679 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7680 group = cpumask_first(mask);
1da177e4 7681#else
6711cab4 7682 group = cpu;
1da177e4 7683#endif
6711cab4 7684 if (sg)
6c99e9ad 7685 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7686 return group;
1da177e4
LT
7687}
7688
7689#ifdef CONFIG_NUMA
1da177e4 7690/*
9c1cfda2
JH
7691 * The init_sched_build_groups can't handle what we want to do with node
7692 * groups, so roll our own. Now each node has its own list of groups which
7693 * gets dynamically allocated.
1da177e4 7694 */
62ea9ceb 7695static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7696static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7697
62ea9ceb 7698static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7699static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7700
96f874e2
RR
7701static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7702 struct sched_group **sg,
7703 struct cpumask *nodemask)
9c1cfda2 7704{
6711cab4
SS
7705 int group;
7706
6ca09dfc 7707 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7708 group = cpumask_first(nodemask);
6711cab4
SS
7709
7710 if (sg)
6c99e9ad 7711 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7712 return group;
1da177e4 7713}
6711cab4 7714
08069033
SS
7715static void init_numa_sched_groups_power(struct sched_group *group_head)
7716{
7717 struct sched_group *sg = group_head;
7718 int j;
7719
7720 if (!sg)
7721 return;
3a5c359a 7722 do {
758b2cdc 7723 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7724 struct sched_domain *sd;
08069033 7725
6c99e9ad 7726 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7727 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7728 /*
7729 * Only add "power" once for each
7730 * physical package.
7731 */
7732 continue;
7733 }
08069033 7734
3a5c359a
AK
7735 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7736 }
7737 sg = sg->next;
7738 } while (sg != group_head);
08069033 7739}
6d6bc0ad 7740#endif /* CONFIG_NUMA */
1da177e4 7741
a616058b 7742#ifdef CONFIG_NUMA
51888ca2 7743/* Free memory allocated for various sched_group structures */
96f874e2
RR
7744static void free_sched_groups(const struct cpumask *cpu_map,
7745 struct cpumask *nodemask)
51888ca2 7746{
a616058b 7747 int cpu, i;
51888ca2 7748
abcd083a 7749 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7750 struct sched_group **sched_group_nodes
7751 = sched_group_nodes_bycpu[cpu];
7752
51888ca2
SV
7753 if (!sched_group_nodes)
7754 continue;
7755
076ac2af 7756 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7757 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7758
6ca09dfc 7759 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7760 if (cpumask_empty(nodemask))
51888ca2
SV
7761 continue;
7762
7763 if (sg == NULL)
7764 continue;
7765 sg = sg->next;
7766next_sg:
7767 oldsg = sg;
7768 sg = sg->next;
7769 kfree(oldsg);
7770 if (oldsg != sched_group_nodes[i])
7771 goto next_sg;
7772 }
7773 kfree(sched_group_nodes);
7774 sched_group_nodes_bycpu[cpu] = NULL;
7775 }
51888ca2 7776}
6d6bc0ad 7777#else /* !CONFIG_NUMA */
96f874e2
RR
7778static void free_sched_groups(const struct cpumask *cpu_map,
7779 struct cpumask *nodemask)
a616058b
SS
7780{
7781}
6d6bc0ad 7782#endif /* CONFIG_NUMA */
51888ca2 7783
89c4710e
SS
7784/*
7785 * Initialize sched groups cpu_power.
7786 *
7787 * cpu_power indicates the capacity of sched group, which is used while
7788 * distributing the load between different sched groups in a sched domain.
7789 * Typically cpu_power for all the groups in a sched domain will be same unless
7790 * there are asymmetries in the topology. If there are asymmetries, group
7791 * having more cpu_power will pickup more load compared to the group having
7792 * less cpu_power.
7793 *
7794 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7795 * the maximum number of tasks a group can handle in the presence of other idle
7796 * or lightly loaded groups in the same sched domain.
7797 */
7798static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7799{
7800 struct sched_domain *child;
7801 struct sched_group *group;
7802
7803 WARN_ON(!sd || !sd->groups);
7804
758b2cdc 7805 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7806 return;
7807
7808 child = sd->child;
7809
5517d86b
ED
7810 sd->groups->__cpu_power = 0;
7811
89c4710e
SS
7812 /*
7813 * For perf policy, if the groups in child domain share resources
7814 * (for example cores sharing some portions of the cache hierarchy
7815 * or SMT), then set this domain groups cpu_power such that each group
7816 * can handle only one task, when there are other idle groups in the
7817 * same sched domain.
7818 */
7819 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7820 (child->flags &
7821 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7822 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7823 return;
7824 }
7825
89c4710e
SS
7826 /*
7827 * add cpu_power of each child group to this groups cpu_power
7828 */
7829 group = child->groups;
7830 do {
5517d86b 7831 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7832 group = group->next;
7833 } while (group != child->groups);
7834}
7835
7c16ec58
MT
7836/*
7837 * Initializers for schedule domains
7838 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7839 */
7840
a5d8c348
IM
7841#ifdef CONFIG_SCHED_DEBUG
7842# define SD_INIT_NAME(sd, type) sd->name = #type
7843#else
7844# define SD_INIT_NAME(sd, type) do { } while (0)
7845#endif
7846
7c16ec58 7847#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7848
7c16ec58
MT
7849#define SD_INIT_FUNC(type) \
7850static noinline void sd_init_##type(struct sched_domain *sd) \
7851{ \
7852 memset(sd, 0, sizeof(*sd)); \
7853 *sd = SD_##type##_INIT; \
1d3504fc 7854 sd->level = SD_LV_##type; \
a5d8c348 7855 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7856}
7857
7858SD_INIT_FUNC(CPU)
7859#ifdef CONFIG_NUMA
7860 SD_INIT_FUNC(ALLNODES)
7861 SD_INIT_FUNC(NODE)
7862#endif
7863#ifdef CONFIG_SCHED_SMT
7864 SD_INIT_FUNC(SIBLING)
7865#endif
7866#ifdef CONFIG_SCHED_MC
7867 SD_INIT_FUNC(MC)
7868#endif
7869
1d3504fc
HS
7870static int default_relax_domain_level = -1;
7871
7872static int __init setup_relax_domain_level(char *str)
7873{
30e0e178
LZ
7874 unsigned long val;
7875
7876 val = simple_strtoul(str, NULL, 0);
7877 if (val < SD_LV_MAX)
7878 default_relax_domain_level = val;
7879
1d3504fc
HS
7880 return 1;
7881}
7882__setup("relax_domain_level=", setup_relax_domain_level);
7883
7884static void set_domain_attribute(struct sched_domain *sd,
7885 struct sched_domain_attr *attr)
7886{
7887 int request;
7888
7889 if (!attr || attr->relax_domain_level < 0) {
7890 if (default_relax_domain_level < 0)
7891 return;
7892 else
7893 request = default_relax_domain_level;
7894 } else
7895 request = attr->relax_domain_level;
7896 if (request < sd->level) {
7897 /* turn off idle balance on this domain */
7898 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7899 } else {
7900 /* turn on idle balance on this domain */
7901 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7902 }
7903}
7904
1da177e4 7905/*
1a20ff27
DG
7906 * Build sched domains for a given set of cpus and attach the sched domains
7907 * to the individual cpus
1da177e4 7908 */
96f874e2 7909static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7910 struct sched_domain_attr *attr)
1da177e4 7911{
3404c8d9 7912 int i, err = -ENOMEM;
57d885fe 7913 struct root_domain *rd;
3404c8d9
RR
7914 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7915 tmpmask;
d1b55138 7916#ifdef CONFIG_NUMA
3404c8d9 7917 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7918 struct sched_group **sched_group_nodes = NULL;
6711cab4 7919 int sd_allnodes = 0;
d1b55138 7920
3404c8d9
RR
7921 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7922 goto out;
7923 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7924 goto free_domainspan;
7925 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7926 goto free_covered;
7927#endif
7928
7929 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7930 goto free_notcovered;
7931 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7932 goto free_nodemask;
7933 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7934 goto free_this_sibling_map;
7935 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7936 goto free_this_core_map;
7937 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7938 goto free_send_covered;
7939
7940#ifdef CONFIG_NUMA
d1b55138
JH
7941 /*
7942 * Allocate the per-node list of sched groups
7943 */
076ac2af 7944 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7945 GFP_KERNEL);
d1b55138
JH
7946 if (!sched_group_nodes) {
7947 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7948 goto free_tmpmask;
d1b55138 7949 }
d1b55138 7950#endif
1da177e4 7951
dc938520 7952 rd = alloc_rootdomain();
57d885fe
GH
7953 if (!rd) {
7954 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7955 goto free_sched_groups;
57d885fe
GH
7956 }
7957
7c16ec58 7958#ifdef CONFIG_NUMA
96f874e2 7959 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7960#endif
7961
1da177e4 7962 /*
1a20ff27 7963 * Set up domains for cpus specified by the cpu_map.
1da177e4 7964 */
abcd083a 7965 for_each_cpu(i, cpu_map) {
1da177e4 7966 struct sched_domain *sd = NULL, *p;
1da177e4 7967
6ca09dfc 7968 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7969
7970#ifdef CONFIG_NUMA
96f874e2
RR
7971 if (cpumask_weight(cpu_map) >
7972 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7973 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7974 SD_INIT(sd, ALLNODES);
1d3504fc 7975 set_domain_attribute(sd, attr);
758b2cdc 7976 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7977 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7978 p = sd;
6711cab4 7979 sd_allnodes = 1;
9c1cfda2
JH
7980 } else
7981 p = NULL;
7982
62ea9ceb 7983 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7984 SD_INIT(sd, NODE);
1d3504fc 7985 set_domain_attribute(sd, attr);
758b2cdc 7986 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7987 sd->parent = p;
1a848870
SS
7988 if (p)
7989 p->child = sd;
758b2cdc
RR
7990 cpumask_and(sched_domain_span(sd),
7991 sched_domain_span(sd), cpu_map);
1da177e4
LT
7992#endif
7993
7994 p = sd;
6c99e9ad 7995 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7996 SD_INIT(sd, CPU);
1d3504fc 7997 set_domain_attribute(sd, attr);
758b2cdc 7998 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7999 sd->parent = p;
1a848870
SS
8000 if (p)
8001 p->child = sd;
7c16ec58 8002 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8003
1e9f28fa
SS
8004#ifdef CONFIG_SCHED_MC
8005 p = sd;
6c99e9ad 8006 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8007 SD_INIT(sd, MC);
1d3504fc 8008 set_domain_attribute(sd, attr);
6ca09dfc
MT
8009 cpumask_and(sched_domain_span(sd), cpu_map,
8010 cpu_coregroup_mask(i));
1e9f28fa 8011 sd->parent = p;
1a848870 8012 p->child = sd;
7c16ec58 8013 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8014#endif
8015
1da177e4
LT
8016#ifdef CONFIG_SCHED_SMT
8017 p = sd;
6c99e9ad 8018 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8019 SD_INIT(sd, SIBLING);
1d3504fc 8020 set_domain_attribute(sd, attr);
758b2cdc
RR
8021 cpumask_and(sched_domain_span(sd),
8022 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 8023 sd->parent = p;
1a848870 8024 p->child = sd;
7c16ec58 8025 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8026#endif
8027 }
8028
8029#ifdef CONFIG_SCHED_SMT
8030 /* Set up CPU (sibling) groups */
abcd083a 8031 for_each_cpu(i, cpu_map) {
96f874e2
RR
8032 cpumask_and(this_sibling_map,
8033 &per_cpu(cpu_sibling_map, i), cpu_map);
8034 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8035 continue;
8036
dd41f596 8037 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8038 &cpu_to_cpu_group,
8039 send_covered, tmpmask);
1da177e4
LT
8040 }
8041#endif
8042
1e9f28fa
SS
8043#ifdef CONFIG_SCHED_MC
8044 /* Set up multi-core groups */
abcd083a 8045 for_each_cpu(i, cpu_map) {
6ca09dfc 8046 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8047 if (i != cpumask_first(this_core_map))
1e9f28fa 8048 continue;
7c16ec58 8049
dd41f596 8050 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8051 &cpu_to_core_group,
8052 send_covered, tmpmask);
1e9f28fa
SS
8053 }
8054#endif
8055
1da177e4 8056 /* Set up physical groups */
076ac2af 8057 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8058 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8059 if (cpumask_empty(nodemask))
1da177e4
LT
8060 continue;
8061
7c16ec58
MT
8062 init_sched_build_groups(nodemask, cpu_map,
8063 &cpu_to_phys_group,
8064 send_covered, tmpmask);
1da177e4
LT
8065 }
8066
8067#ifdef CONFIG_NUMA
8068 /* Set up node groups */
7c16ec58 8069 if (sd_allnodes) {
7c16ec58
MT
8070 init_sched_build_groups(cpu_map, cpu_map,
8071 &cpu_to_allnodes_group,
8072 send_covered, tmpmask);
8073 }
9c1cfda2 8074
076ac2af 8075 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8076 /* Set up node groups */
8077 struct sched_group *sg, *prev;
9c1cfda2
JH
8078 int j;
8079
96f874e2 8080 cpumask_clear(covered);
6ca09dfc 8081 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8082 if (cpumask_empty(nodemask)) {
d1b55138 8083 sched_group_nodes[i] = NULL;
9c1cfda2 8084 continue;
d1b55138 8085 }
9c1cfda2 8086
4bdbaad3 8087 sched_domain_node_span(i, domainspan);
96f874e2 8088 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8089
6c99e9ad
RR
8090 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8091 GFP_KERNEL, i);
51888ca2
SV
8092 if (!sg) {
8093 printk(KERN_WARNING "Can not alloc domain group for "
8094 "node %d\n", i);
8095 goto error;
8096 }
9c1cfda2 8097 sched_group_nodes[i] = sg;
abcd083a 8098 for_each_cpu(j, nodemask) {
9c1cfda2 8099 struct sched_domain *sd;
9761eea8 8100
62ea9ceb 8101 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8102 sd->groups = sg;
9c1cfda2 8103 }
5517d86b 8104 sg->__cpu_power = 0;
758b2cdc 8105 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8106 sg->next = sg;
96f874e2 8107 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8108 prev = sg;
8109
076ac2af 8110 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8111 int n = (i + j) % nr_node_ids;
9c1cfda2 8112
96f874e2
RR
8113 cpumask_complement(notcovered, covered);
8114 cpumask_and(tmpmask, notcovered, cpu_map);
8115 cpumask_and(tmpmask, tmpmask, domainspan);
8116 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8117 break;
8118
6ca09dfc 8119 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8120 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8121 continue;
8122
6c99e9ad
RR
8123 sg = kmalloc_node(sizeof(struct sched_group) +
8124 cpumask_size(),
15f0b676 8125 GFP_KERNEL, i);
9c1cfda2
JH
8126 if (!sg) {
8127 printk(KERN_WARNING
8128 "Can not alloc domain group for node %d\n", j);
51888ca2 8129 goto error;
9c1cfda2 8130 }
5517d86b 8131 sg->__cpu_power = 0;
758b2cdc 8132 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8133 sg->next = prev->next;
96f874e2 8134 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8135 prev->next = sg;
8136 prev = sg;
8137 }
9c1cfda2 8138 }
1da177e4
LT
8139#endif
8140
8141 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8142#ifdef CONFIG_SCHED_SMT
abcd083a 8143 for_each_cpu(i, cpu_map) {
6c99e9ad 8144 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8145
89c4710e 8146 init_sched_groups_power(i, sd);
5c45bf27 8147 }
1da177e4 8148#endif
1e9f28fa 8149#ifdef CONFIG_SCHED_MC
abcd083a 8150 for_each_cpu(i, cpu_map) {
6c99e9ad 8151 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8152
89c4710e 8153 init_sched_groups_power(i, sd);
5c45bf27
SS
8154 }
8155#endif
1e9f28fa 8156
abcd083a 8157 for_each_cpu(i, cpu_map) {
6c99e9ad 8158 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8159
89c4710e 8160 init_sched_groups_power(i, sd);
1da177e4
LT
8161 }
8162
9c1cfda2 8163#ifdef CONFIG_NUMA
076ac2af 8164 for (i = 0; i < nr_node_ids; i++)
08069033 8165 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8166
6711cab4
SS
8167 if (sd_allnodes) {
8168 struct sched_group *sg;
f712c0c7 8169
96f874e2 8170 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8171 tmpmask);
f712c0c7
SS
8172 init_numa_sched_groups_power(sg);
8173 }
9c1cfda2
JH
8174#endif
8175
1da177e4 8176 /* Attach the domains */
abcd083a 8177 for_each_cpu(i, cpu_map) {
1da177e4
LT
8178 struct sched_domain *sd;
8179#ifdef CONFIG_SCHED_SMT
6c99e9ad 8180 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8181#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8182 sd = &per_cpu(core_domains, i).sd;
1da177e4 8183#else
6c99e9ad 8184 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8185#endif
57d885fe 8186 cpu_attach_domain(sd, rd, i);
1da177e4 8187 }
51888ca2 8188
3404c8d9
RR
8189 err = 0;
8190
8191free_tmpmask:
8192 free_cpumask_var(tmpmask);
8193free_send_covered:
8194 free_cpumask_var(send_covered);
8195free_this_core_map:
8196 free_cpumask_var(this_core_map);
8197free_this_sibling_map:
8198 free_cpumask_var(this_sibling_map);
8199free_nodemask:
8200 free_cpumask_var(nodemask);
8201free_notcovered:
8202#ifdef CONFIG_NUMA
8203 free_cpumask_var(notcovered);
8204free_covered:
8205 free_cpumask_var(covered);
8206free_domainspan:
8207 free_cpumask_var(domainspan);
8208out:
8209#endif
8210 return err;
8211
8212free_sched_groups:
8213#ifdef CONFIG_NUMA
8214 kfree(sched_group_nodes);
8215#endif
8216 goto free_tmpmask;
51888ca2 8217
a616058b 8218#ifdef CONFIG_NUMA
51888ca2 8219error:
7c16ec58 8220 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8221 free_rootdomain(rd);
3404c8d9 8222 goto free_tmpmask;
a616058b 8223#endif
1da177e4 8224}
029190c5 8225
96f874e2 8226static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8227{
8228 return __build_sched_domains(cpu_map, NULL);
8229}
8230
96f874e2 8231static struct cpumask *doms_cur; /* current sched domains */
029190c5 8232static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8233static struct sched_domain_attr *dattr_cur;
8234 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8235
8236/*
8237 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8238 * cpumask) fails, then fallback to a single sched domain,
8239 * as determined by the single cpumask fallback_doms.
029190c5 8240 */
4212823f 8241static cpumask_var_t fallback_doms;
029190c5 8242
ee79d1bd
HC
8243/*
8244 * arch_update_cpu_topology lets virtualized architectures update the
8245 * cpu core maps. It is supposed to return 1 if the topology changed
8246 * or 0 if it stayed the same.
8247 */
8248int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8249{
ee79d1bd 8250 return 0;
22e52b07
HC
8251}
8252
1a20ff27 8253/*
41a2d6cf 8254 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8255 * For now this just excludes isolated cpus, but could be used to
8256 * exclude other special cases in the future.
1a20ff27 8257 */
96f874e2 8258static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8259{
7378547f
MM
8260 int err;
8261
22e52b07 8262 arch_update_cpu_topology();
029190c5 8263 ndoms_cur = 1;
96f874e2 8264 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8265 if (!doms_cur)
4212823f 8266 doms_cur = fallback_doms;
dcc30a35 8267 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8268 dattr_cur = NULL;
7378547f 8269 err = build_sched_domains(doms_cur);
6382bc90 8270 register_sched_domain_sysctl();
7378547f
MM
8271
8272 return err;
1a20ff27
DG
8273}
8274
96f874e2
RR
8275static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8276 struct cpumask *tmpmask)
1da177e4 8277{
7c16ec58 8278 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8279}
1da177e4 8280
1a20ff27
DG
8281/*
8282 * Detach sched domains from a group of cpus specified in cpu_map
8283 * These cpus will now be attached to the NULL domain
8284 */
96f874e2 8285static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8286{
96f874e2
RR
8287 /* Save because hotplug lock held. */
8288 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8289 int i;
8290
abcd083a 8291 for_each_cpu(i, cpu_map)
57d885fe 8292 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8293 synchronize_sched();
96f874e2 8294 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8295}
8296
1d3504fc
HS
8297/* handle null as "default" */
8298static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8299 struct sched_domain_attr *new, int idx_new)
8300{
8301 struct sched_domain_attr tmp;
8302
8303 /* fast path */
8304 if (!new && !cur)
8305 return 1;
8306
8307 tmp = SD_ATTR_INIT;
8308 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8309 new ? (new + idx_new) : &tmp,
8310 sizeof(struct sched_domain_attr));
8311}
8312
029190c5
PJ
8313/*
8314 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8315 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8316 * doms_new[] to the current sched domain partitioning, doms_cur[].
8317 * It destroys each deleted domain and builds each new domain.
8318 *
96f874e2 8319 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8320 * The masks don't intersect (don't overlap.) We should setup one
8321 * sched domain for each mask. CPUs not in any of the cpumasks will
8322 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8323 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8324 * it as it is.
8325 *
41a2d6cf
IM
8326 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8327 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8328 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8329 * ndoms_new == 1, and partition_sched_domains() will fallback to
8330 * the single partition 'fallback_doms', it also forces the domains
8331 * to be rebuilt.
029190c5 8332 *
96f874e2 8333 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8334 * ndoms_new == 0 is a special case for destroying existing domains,
8335 * and it will not create the default domain.
dfb512ec 8336 *
029190c5
PJ
8337 * Call with hotplug lock held
8338 */
96f874e2
RR
8339/* FIXME: Change to struct cpumask *doms_new[] */
8340void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8341 struct sched_domain_attr *dattr_new)
029190c5 8342{
dfb512ec 8343 int i, j, n;
d65bd5ec 8344 int new_topology;
029190c5 8345
712555ee 8346 mutex_lock(&sched_domains_mutex);
a1835615 8347
7378547f
MM
8348 /* always unregister in case we don't destroy any domains */
8349 unregister_sched_domain_sysctl();
8350
d65bd5ec
HC
8351 /* Let architecture update cpu core mappings. */
8352 new_topology = arch_update_cpu_topology();
8353
dfb512ec 8354 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8355
8356 /* Destroy deleted domains */
8357 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8358 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8359 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8360 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8361 goto match1;
8362 }
8363 /* no match - a current sched domain not in new doms_new[] */
8364 detach_destroy_domains(doms_cur + i);
8365match1:
8366 ;
8367 }
8368
e761b772
MK
8369 if (doms_new == NULL) {
8370 ndoms_cur = 0;
4212823f 8371 doms_new = fallback_doms;
dcc30a35 8372 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8373 WARN_ON_ONCE(dattr_new);
e761b772
MK
8374 }
8375
029190c5
PJ
8376 /* Build new domains */
8377 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8378 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8379 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8380 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8381 goto match2;
8382 }
8383 /* no match - add a new doms_new */
1d3504fc
HS
8384 __build_sched_domains(doms_new + i,
8385 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8386match2:
8387 ;
8388 }
8389
8390 /* Remember the new sched domains */
4212823f 8391 if (doms_cur != fallback_doms)
029190c5 8392 kfree(doms_cur);
1d3504fc 8393 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8394 doms_cur = doms_new;
1d3504fc 8395 dattr_cur = dattr_new;
029190c5 8396 ndoms_cur = ndoms_new;
7378547f
MM
8397
8398 register_sched_domain_sysctl();
a1835615 8399
712555ee 8400 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8401}
8402
5c45bf27 8403#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8404static void arch_reinit_sched_domains(void)
5c45bf27 8405{
95402b38 8406 get_online_cpus();
dfb512ec
MK
8407
8408 /* Destroy domains first to force the rebuild */
8409 partition_sched_domains(0, NULL, NULL);
8410
e761b772 8411 rebuild_sched_domains();
95402b38 8412 put_online_cpus();
5c45bf27
SS
8413}
8414
8415static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8416{
afb8a9b7 8417 unsigned int level = 0;
5c45bf27 8418
afb8a9b7
GS
8419 if (sscanf(buf, "%u", &level) != 1)
8420 return -EINVAL;
8421
8422 /*
8423 * level is always be positive so don't check for
8424 * level < POWERSAVINGS_BALANCE_NONE which is 0
8425 * What happens on 0 or 1 byte write,
8426 * need to check for count as well?
8427 */
8428
8429 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8430 return -EINVAL;
8431
8432 if (smt)
afb8a9b7 8433 sched_smt_power_savings = level;
5c45bf27 8434 else
afb8a9b7 8435 sched_mc_power_savings = level;
5c45bf27 8436
c70f22d2 8437 arch_reinit_sched_domains();
5c45bf27 8438
c70f22d2 8439 return count;
5c45bf27
SS
8440}
8441
5c45bf27 8442#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8443static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8444 char *page)
5c45bf27
SS
8445{
8446 return sprintf(page, "%u\n", sched_mc_power_savings);
8447}
f718cd4a 8448static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8449 const char *buf, size_t count)
5c45bf27
SS
8450{
8451 return sched_power_savings_store(buf, count, 0);
8452}
f718cd4a
AK
8453static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8454 sched_mc_power_savings_show,
8455 sched_mc_power_savings_store);
5c45bf27
SS
8456#endif
8457
8458#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8459static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8460 char *page)
5c45bf27
SS
8461{
8462 return sprintf(page, "%u\n", sched_smt_power_savings);
8463}
f718cd4a 8464static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8465 const char *buf, size_t count)
5c45bf27
SS
8466{
8467 return sched_power_savings_store(buf, count, 1);
8468}
f718cd4a
AK
8469static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8470 sched_smt_power_savings_show,
6707de00
AB
8471 sched_smt_power_savings_store);
8472#endif
8473
39aac648 8474int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8475{
8476 int err = 0;
8477
8478#ifdef CONFIG_SCHED_SMT
8479 if (smt_capable())
8480 err = sysfs_create_file(&cls->kset.kobj,
8481 &attr_sched_smt_power_savings.attr);
8482#endif
8483#ifdef CONFIG_SCHED_MC
8484 if (!err && mc_capable())
8485 err = sysfs_create_file(&cls->kset.kobj,
8486 &attr_sched_mc_power_savings.attr);
8487#endif
8488 return err;
8489}
6d6bc0ad 8490#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8491
e761b772 8492#ifndef CONFIG_CPUSETS
1da177e4 8493/*
e761b772
MK
8494 * Add online and remove offline CPUs from the scheduler domains.
8495 * When cpusets are enabled they take over this function.
1da177e4
LT
8496 */
8497static int update_sched_domains(struct notifier_block *nfb,
8498 unsigned long action, void *hcpu)
e761b772
MK
8499{
8500 switch (action) {
8501 case CPU_ONLINE:
8502 case CPU_ONLINE_FROZEN:
8503 case CPU_DEAD:
8504 case CPU_DEAD_FROZEN:
dfb512ec 8505 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8506 return NOTIFY_OK;
8507
8508 default:
8509 return NOTIFY_DONE;
8510 }
8511}
8512#endif
8513
8514static int update_runtime(struct notifier_block *nfb,
8515 unsigned long action, void *hcpu)
1da177e4 8516{
7def2be1
PZ
8517 int cpu = (int)(long)hcpu;
8518
1da177e4 8519 switch (action) {
1da177e4 8520 case CPU_DOWN_PREPARE:
8bb78442 8521 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8522 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8523 return NOTIFY_OK;
8524
1da177e4 8525 case CPU_DOWN_FAILED:
8bb78442 8526 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8527 case CPU_ONLINE:
8bb78442 8528 case CPU_ONLINE_FROZEN:
7def2be1 8529 enable_runtime(cpu_rq(cpu));
e761b772
MK
8530 return NOTIFY_OK;
8531
1da177e4
LT
8532 default:
8533 return NOTIFY_DONE;
8534 }
1da177e4 8535}
1da177e4
LT
8536
8537void __init sched_init_smp(void)
8538{
dcc30a35
RR
8539 cpumask_var_t non_isolated_cpus;
8540
8541 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8542
434d53b0
MT
8543#if defined(CONFIG_NUMA)
8544 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8545 GFP_KERNEL);
8546 BUG_ON(sched_group_nodes_bycpu == NULL);
8547#endif
95402b38 8548 get_online_cpus();
712555ee 8549 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8550 arch_init_sched_domains(cpu_online_mask);
8551 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8552 if (cpumask_empty(non_isolated_cpus))
8553 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8554 mutex_unlock(&sched_domains_mutex);
95402b38 8555 put_online_cpus();
e761b772
MK
8556
8557#ifndef CONFIG_CPUSETS
1da177e4
LT
8558 /* XXX: Theoretical race here - CPU may be hotplugged now */
8559 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8560#endif
8561
8562 /* RT runtime code needs to handle some hotplug events */
8563 hotcpu_notifier(update_runtime, 0);
8564
b328ca18 8565 init_hrtick();
5c1e1767
NP
8566
8567 /* Move init over to a non-isolated CPU */
dcc30a35 8568 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8569 BUG();
19978ca6 8570 sched_init_granularity();
dcc30a35 8571 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8572
8573 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8574 init_sched_rt_class();
1da177e4
LT
8575}
8576#else
8577void __init sched_init_smp(void)
8578{
19978ca6 8579 sched_init_granularity();
1da177e4
LT
8580}
8581#endif /* CONFIG_SMP */
8582
8583int in_sched_functions(unsigned long addr)
8584{
1da177e4
LT
8585 return in_lock_functions(addr) ||
8586 (addr >= (unsigned long)__sched_text_start
8587 && addr < (unsigned long)__sched_text_end);
8588}
8589
a9957449 8590static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8591{
8592 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8593 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8594#ifdef CONFIG_FAIR_GROUP_SCHED
8595 cfs_rq->rq = rq;
8596#endif
67e9fb2a 8597 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8598}
8599
fa85ae24
PZ
8600static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8601{
8602 struct rt_prio_array *array;
8603 int i;
8604
8605 array = &rt_rq->active;
8606 for (i = 0; i < MAX_RT_PRIO; i++) {
8607 INIT_LIST_HEAD(array->queue + i);
8608 __clear_bit(i, array->bitmap);
8609 }
8610 /* delimiter for bitsearch: */
8611 __set_bit(MAX_RT_PRIO, array->bitmap);
8612
052f1dc7 8613#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8614 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8615#ifdef CONFIG_SMP
e864c499 8616 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8617#endif
48d5e258 8618#endif
fa85ae24
PZ
8619#ifdef CONFIG_SMP
8620 rt_rq->rt_nr_migratory = 0;
fa85ae24 8621 rt_rq->overloaded = 0;
917b627d 8622 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8623#endif
8624
8625 rt_rq->rt_time = 0;
8626 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8627 rt_rq->rt_runtime = 0;
8628 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8629
052f1dc7 8630#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8631 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8632 rt_rq->rq = rq;
8633#endif
fa85ae24
PZ
8634}
8635
6f505b16 8636#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8637static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8638 struct sched_entity *se, int cpu, int add,
8639 struct sched_entity *parent)
6f505b16 8640{
ec7dc8ac 8641 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8642 tg->cfs_rq[cpu] = cfs_rq;
8643 init_cfs_rq(cfs_rq, rq);
8644 cfs_rq->tg = tg;
8645 if (add)
8646 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8647
8648 tg->se[cpu] = se;
354d60c2
DG
8649 /* se could be NULL for init_task_group */
8650 if (!se)
8651 return;
8652
ec7dc8ac
DG
8653 if (!parent)
8654 se->cfs_rq = &rq->cfs;
8655 else
8656 se->cfs_rq = parent->my_q;
8657
6f505b16
PZ
8658 se->my_q = cfs_rq;
8659 se->load.weight = tg->shares;
e05510d0 8660 se->load.inv_weight = 0;
ec7dc8ac 8661 se->parent = parent;
6f505b16 8662}
052f1dc7 8663#endif
6f505b16 8664
052f1dc7 8665#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8666static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8667 struct sched_rt_entity *rt_se, int cpu, int add,
8668 struct sched_rt_entity *parent)
6f505b16 8669{
ec7dc8ac
DG
8670 struct rq *rq = cpu_rq(cpu);
8671
6f505b16
PZ
8672 tg->rt_rq[cpu] = rt_rq;
8673 init_rt_rq(rt_rq, rq);
8674 rt_rq->tg = tg;
8675 rt_rq->rt_se = rt_se;
ac086bc2 8676 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8677 if (add)
8678 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8679
8680 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8681 if (!rt_se)
8682 return;
8683
ec7dc8ac
DG
8684 if (!parent)
8685 rt_se->rt_rq = &rq->rt;
8686 else
8687 rt_se->rt_rq = parent->my_q;
8688
6f505b16 8689 rt_se->my_q = rt_rq;
ec7dc8ac 8690 rt_se->parent = parent;
6f505b16
PZ
8691 INIT_LIST_HEAD(&rt_se->run_list);
8692}
8693#endif
8694
1da177e4
LT
8695void __init sched_init(void)
8696{
dd41f596 8697 int i, j;
434d53b0
MT
8698 unsigned long alloc_size = 0, ptr;
8699
8700#ifdef CONFIG_FAIR_GROUP_SCHED
8701 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8702#endif
8703#ifdef CONFIG_RT_GROUP_SCHED
8704 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8705#endif
8706#ifdef CONFIG_USER_SCHED
8707 alloc_size *= 2;
434d53b0
MT
8708#endif
8709 /*
8710 * As sched_init() is called before page_alloc is setup,
8711 * we use alloc_bootmem().
8712 */
8713 if (alloc_size) {
5a9d3225 8714 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8715
8716#ifdef CONFIG_FAIR_GROUP_SCHED
8717 init_task_group.se = (struct sched_entity **)ptr;
8718 ptr += nr_cpu_ids * sizeof(void **);
8719
8720 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8721 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8722
8723#ifdef CONFIG_USER_SCHED
8724 root_task_group.se = (struct sched_entity **)ptr;
8725 ptr += nr_cpu_ids * sizeof(void **);
8726
8727 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8728 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8729#endif /* CONFIG_USER_SCHED */
8730#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8731#ifdef CONFIG_RT_GROUP_SCHED
8732 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8733 ptr += nr_cpu_ids * sizeof(void **);
8734
8735 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8736 ptr += nr_cpu_ids * sizeof(void **);
8737
8738#ifdef CONFIG_USER_SCHED
8739 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8740 ptr += nr_cpu_ids * sizeof(void **);
8741
8742 root_task_group.rt_rq = (struct rt_rq **)ptr;
8743 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8744#endif /* CONFIG_USER_SCHED */
8745#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8746 }
dd41f596 8747
57d885fe
GH
8748#ifdef CONFIG_SMP
8749 init_defrootdomain();
8750#endif
8751
d0b27fa7
PZ
8752 init_rt_bandwidth(&def_rt_bandwidth,
8753 global_rt_period(), global_rt_runtime());
8754
8755#ifdef CONFIG_RT_GROUP_SCHED
8756 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8757 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8758#ifdef CONFIG_USER_SCHED
8759 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8760 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8761#endif /* CONFIG_USER_SCHED */
8762#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8763
052f1dc7 8764#ifdef CONFIG_GROUP_SCHED
6f505b16 8765 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8766 INIT_LIST_HEAD(&init_task_group.children);
8767
8768#ifdef CONFIG_USER_SCHED
8769 INIT_LIST_HEAD(&root_task_group.children);
8770 init_task_group.parent = &root_task_group;
8771 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8772#endif /* CONFIG_USER_SCHED */
8773#endif /* CONFIG_GROUP_SCHED */
6f505b16 8774
0a945022 8775 for_each_possible_cpu(i) {
70b97a7f 8776 struct rq *rq;
1da177e4
LT
8777
8778 rq = cpu_rq(i);
8779 spin_lock_init(&rq->lock);
7897986b 8780 rq->nr_running = 0;
dd41f596 8781 init_cfs_rq(&rq->cfs, rq);
6f505b16 8782 init_rt_rq(&rq->rt, rq);
dd41f596 8783#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8784 init_task_group.shares = init_task_group_load;
6f505b16 8785 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8786#ifdef CONFIG_CGROUP_SCHED
8787 /*
8788 * How much cpu bandwidth does init_task_group get?
8789 *
8790 * In case of task-groups formed thr' the cgroup filesystem, it
8791 * gets 100% of the cpu resources in the system. This overall
8792 * system cpu resource is divided among the tasks of
8793 * init_task_group and its child task-groups in a fair manner,
8794 * based on each entity's (task or task-group's) weight
8795 * (se->load.weight).
8796 *
8797 * In other words, if init_task_group has 10 tasks of weight
8798 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8799 * then A0's share of the cpu resource is:
8800 *
8801 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8802 *
8803 * We achieve this by letting init_task_group's tasks sit
8804 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8805 */
ec7dc8ac 8806 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8807#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8808 root_task_group.shares = NICE_0_LOAD;
8809 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8810 /*
8811 * In case of task-groups formed thr' the user id of tasks,
8812 * init_task_group represents tasks belonging to root user.
8813 * Hence it forms a sibling of all subsequent groups formed.
8814 * In this case, init_task_group gets only a fraction of overall
8815 * system cpu resource, based on the weight assigned to root
8816 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8817 * by letting tasks of init_task_group sit in a separate cfs_rq
8818 * (init_cfs_rq) and having one entity represent this group of
8819 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8820 */
ec7dc8ac 8821 init_tg_cfs_entry(&init_task_group,
6f505b16 8822 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8823 &per_cpu(init_sched_entity, i), i, 1,
8824 root_task_group.se[i]);
6f505b16 8825
052f1dc7 8826#endif
354d60c2
DG
8827#endif /* CONFIG_FAIR_GROUP_SCHED */
8828
8829 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8830#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8831 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8832#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8833 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8834#elif defined CONFIG_USER_SCHED
eff766a6 8835 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8836 init_tg_rt_entry(&init_task_group,
6f505b16 8837 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8838 &per_cpu(init_sched_rt_entity, i), i, 1,
8839 root_task_group.rt_se[i]);
354d60c2 8840#endif
dd41f596 8841#endif
1da177e4 8842
dd41f596
IM
8843 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8844 rq->cpu_load[j] = 0;
1da177e4 8845#ifdef CONFIG_SMP
41c7ce9a 8846 rq->sd = NULL;
57d885fe 8847 rq->rd = NULL;
1da177e4 8848 rq->active_balance = 0;
dd41f596 8849 rq->next_balance = jiffies;
1da177e4 8850 rq->push_cpu = 0;
0a2966b4 8851 rq->cpu = i;
1f11eb6a 8852 rq->online = 0;
1da177e4
LT
8853 rq->migration_thread = NULL;
8854 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8855 rq_attach_root(rq, &def_root_domain);
1da177e4 8856#endif
8f4d37ec 8857 init_rq_hrtick(rq);
1da177e4 8858 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8859 }
8860
2dd73a4f 8861 set_load_weight(&init_task);
b50f60ce 8862
e107be36
AK
8863#ifdef CONFIG_PREEMPT_NOTIFIERS
8864 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8865#endif
8866
c9819f45 8867#ifdef CONFIG_SMP
962cf36c 8868 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8869#endif
8870
b50f60ce
HC
8871#ifdef CONFIG_RT_MUTEXES
8872 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8873#endif
8874
1da177e4
LT
8875 /*
8876 * The boot idle thread does lazy MMU switching as well:
8877 */
8878 atomic_inc(&init_mm.mm_count);
8879 enter_lazy_tlb(&init_mm, current);
8880
8881 /*
8882 * Make us the idle thread. Technically, schedule() should not be
8883 * called from this thread, however somewhere below it might be,
8884 * but because we are the idle thread, we just pick up running again
8885 * when this runqueue becomes "idle".
8886 */
8887 init_idle(current, smp_processor_id());
dd41f596
IM
8888 /*
8889 * During early bootup we pretend to be a normal task:
8890 */
8891 current->sched_class = &fair_sched_class;
6892b75e 8892
6a7b3dc3
RR
8893 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8894 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8895#ifdef CONFIG_SMP
7d1e6a9b
RR
8896#ifdef CONFIG_NO_HZ
8897 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8898#endif
dcc30a35 8899 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8900#endif /* SMP */
6a7b3dc3 8901
6892b75e 8902 scheduler_running = 1;
1da177e4
LT
8903}
8904
8905#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8906void __might_sleep(char *file, int line)
8907{
48f24c4d 8908#ifdef in_atomic
1da177e4
LT
8909 static unsigned long prev_jiffy; /* ratelimiting */
8910
aef745fc
IM
8911 if ((!in_atomic() && !irqs_disabled()) ||
8912 system_state != SYSTEM_RUNNING || oops_in_progress)
8913 return;
8914 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8915 return;
8916 prev_jiffy = jiffies;
8917
8918 printk(KERN_ERR
8919 "BUG: sleeping function called from invalid context at %s:%d\n",
8920 file, line);
8921 printk(KERN_ERR
8922 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8923 in_atomic(), irqs_disabled(),
8924 current->pid, current->comm);
8925
8926 debug_show_held_locks(current);
8927 if (irqs_disabled())
8928 print_irqtrace_events(current);
8929 dump_stack();
1da177e4
LT
8930#endif
8931}
8932EXPORT_SYMBOL(__might_sleep);
8933#endif
8934
8935#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8936static void normalize_task(struct rq *rq, struct task_struct *p)
8937{
8938 int on_rq;
3e51f33f 8939
3a5e4dc1
AK
8940 update_rq_clock(rq);
8941 on_rq = p->se.on_rq;
8942 if (on_rq)
8943 deactivate_task(rq, p, 0);
8944 __setscheduler(rq, p, SCHED_NORMAL, 0);
8945 if (on_rq) {
8946 activate_task(rq, p, 0);
8947 resched_task(rq->curr);
8948 }
8949}
8950
1da177e4
LT
8951void normalize_rt_tasks(void)
8952{
a0f98a1c 8953 struct task_struct *g, *p;
1da177e4 8954 unsigned long flags;
70b97a7f 8955 struct rq *rq;
1da177e4 8956
4cf5d77a 8957 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8958 do_each_thread(g, p) {
178be793
IM
8959 /*
8960 * Only normalize user tasks:
8961 */
8962 if (!p->mm)
8963 continue;
8964
6cfb0d5d 8965 p->se.exec_start = 0;
6cfb0d5d 8966#ifdef CONFIG_SCHEDSTATS
dd41f596 8967 p->se.wait_start = 0;
dd41f596 8968 p->se.sleep_start = 0;
dd41f596 8969 p->se.block_start = 0;
6cfb0d5d 8970#endif
dd41f596
IM
8971
8972 if (!rt_task(p)) {
8973 /*
8974 * Renice negative nice level userspace
8975 * tasks back to 0:
8976 */
8977 if (TASK_NICE(p) < 0 && p->mm)
8978 set_user_nice(p, 0);
1da177e4 8979 continue;
dd41f596 8980 }
1da177e4 8981
4cf5d77a 8982 spin_lock(&p->pi_lock);
b29739f9 8983 rq = __task_rq_lock(p);
1da177e4 8984
178be793 8985 normalize_task(rq, p);
3a5e4dc1 8986
b29739f9 8987 __task_rq_unlock(rq);
4cf5d77a 8988 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8989 } while_each_thread(g, p);
8990
4cf5d77a 8991 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8992}
8993
8994#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8995
8996#ifdef CONFIG_IA64
8997/*
8998 * These functions are only useful for the IA64 MCA handling.
8999 *
9000 * They can only be called when the whole system has been
9001 * stopped - every CPU needs to be quiescent, and no scheduling
9002 * activity can take place. Using them for anything else would
9003 * be a serious bug, and as a result, they aren't even visible
9004 * under any other configuration.
9005 */
9006
9007/**
9008 * curr_task - return the current task for a given cpu.
9009 * @cpu: the processor in question.
9010 *
9011 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9012 */
36c8b586 9013struct task_struct *curr_task(int cpu)
1df5c10a
LT
9014{
9015 return cpu_curr(cpu);
9016}
9017
9018/**
9019 * set_curr_task - set the current task for a given cpu.
9020 * @cpu: the processor in question.
9021 * @p: the task pointer to set.
9022 *
9023 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9024 * are serviced on a separate stack. It allows the architecture to switch the
9025 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9026 * must be called with all CPU's synchronized, and interrupts disabled, the
9027 * and caller must save the original value of the current task (see
9028 * curr_task() above) and restore that value before reenabling interrupts and
9029 * re-starting the system.
9030 *
9031 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9032 */
36c8b586 9033void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9034{
9035 cpu_curr(cpu) = p;
9036}
9037
9038#endif
29f59db3 9039
bccbe08a
PZ
9040#ifdef CONFIG_FAIR_GROUP_SCHED
9041static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9042{
9043 int i;
9044
9045 for_each_possible_cpu(i) {
9046 if (tg->cfs_rq)
9047 kfree(tg->cfs_rq[i]);
9048 if (tg->se)
9049 kfree(tg->se[i]);
6f505b16
PZ
9050 }
9051
9052 kfree(tg->cfs_rq);
9053 kfree(tg->se);
6f505b16
PZ
9054}
9055
ec7dc8ac
DG
9056static
9057int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9058{
29f59db3 9059 struct cfs_rq *cfs_rq;
eab17229 9060 struct sched_entity *se;
9b5b7751 9061 struct rq *rq;
29f59db3
SV
9062 int i;
9063
434d53b0 9064 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9065 if (!tg->cfs_rq)
9066 goto err;
434d53b0 9067 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9068 if (!tg->se)
9069 goto err;
052f1dc7
PZ
9070
9071 tg->shares = NICE_0_LOAD;
29f59db3
SV
9072
9073 for_each_possible_cpu(i) {
9b5b7751 9074 rq = cpu_rq(i);
29f59db3 9075
eab17229
LZ
9076 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9077 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9078 if (!cfs_rq)
9079 goto err;
9080
eab17229
LZ
9081 se = kzalloc_node(sizeof(struct sched_entity),
9082 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9083 if (!se)
9084 goto err;
9085
eab17229 9086 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9087 }
9088
9089 return 1;
9090
9091 err:
9092 return 0;
9093}
9094
9095static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9096{
9097 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9098 &cpu_rq(cpu)->leaf_cfs_rq_list);
9099}
9100
9101static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9102{
9103 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9104}
6d6bc0ad 9105#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9106static inline void free_fair_sched_group(struct task_group *tg)
9107{
9108}
9109
ec7dc8ac
DG
9110static inline
9111int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9112{
9113 return 1;
9114}
9115
9116static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9117{
9118}
9119
9120static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9121{
9122}
6d6bc0ad 9123#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9124
9125#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9126static void free_rt_sched_group(struct task_group *tg)
9127{
9128 int i;
9129
d0b27fa7
PZ
9130 destroy_rt_bandwidth(&tg->rt_bandwidth);
9131
bccbe08a
PZ
9132 for_each_possible_cpu(i) {
9133 if (tg->rt_rq)
9134 kfree(tg->rt_rq[i]);
9135 if (tg->rt_se)
9136 kfree(tg->rt_se[i]);
9137 }
9138
9139 kfree(tg->rt_rq);
9140 kfree(tg->rt_se);
9141}
9142
ec7dc8ac
DG
9143static
9144int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9145{
9146 struct rt_rq *rt_rq;
eab17229 9147 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9148 struct rq *rq;
9149 int i;
9150
434d53b0 9151 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9152 if (!tg->rt_rq)
9153 goto err;
434d53b0 9154 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9155 if (!tg->rt_se)
9156 goto err;
9157
d0b27fa7
PZ
9158 init_rt_bandwidth(&tg->rt_bandwidth,
9159 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9160
9161 for_each_possible_cpu(i) {
9162 rq = cpu_rq(i);
9163
eab17229
LZ
9164 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9165 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9166 if (!rt_rq)
9167 goto err;
29f59db3 9168
eab17229
LZ
9169 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9170 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9171 if (!rt_se)
9172 goto err;
29f59db3 9173
eab17229 9174 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9175 }
9176
bccbe08a
PZ
9177 return 1;
9178
9179 err:
9180 return 0;
9181}
9182
9183static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9184{
9185 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9186 &cpu_rq(cpu)->leaf_rt_rq_list);
9187}
9188
9189static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9190{
9191 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9192}
6d6bc0ad 9193#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9194static inline void free_rt_sched_group(struct task_group *tg)
9195{
9196}
9197
ec7dc8ac
DG
9198static inline
9199int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9200{
9201 return 1;
9202}
9203
9204static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9205{
9206}
9207
9208static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9209{
9210}
6d6bc0ad 9211#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9212
d0b27fa7 9213#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9214static void free_sched_group(struct task_group *tg)
9215{
9216 free_fair_sched_group(tg);
9217 free_rt_sched_group(tg);
9218 kfree(tg);
9219}
9220
9221/* allocate runqueue etc for a new task group */
ec7dc8ac 9222struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9223{
9224 struct task_group *tg;
9225 unsigned long flags;
9226 int i;
9227
9228 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9229 if (!tg)
9230 return ERR_PTR(-ENOMEM);
9231
ec7dc8ac 9232 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9233 goto err;
9234
ec7dc8ac 9235 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9236 goto err;
9237
8ed36996 9238 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9239 for_each_possible_cpu(i) {
bccbe08a
PZ
9240 register_fair_sched_group(tg, i);
9241 register_rt_sched_group(tg, i);
9b5b7751 9242 }
6f505b16 9243 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9244
9245 WARN_ON(!parent); /* root should already exist */
9246
9247 tg->parent = parent;
f473aa5e 9248 INIT_LIST_HEAD(&tg->children);
09f2724a 9249 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9250 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9251
9b5b7751 9252 return tg;
29f59db3
SV
9253
9254err:
6f505b16 9255 free_sched_group(tg);
29f59db3
SV
9256 return ERR_PTR(-ENOMEM);
9257}
9258
9b5b7751 9259/* rcu callback to free various structures associated with a task group */
6f505b16 9260static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9261{
29f59db3 9262 /* now it should be safe to free those cfs_rqs */
6f505b16 9263 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9264}
9265
9b5b7751 9266/* Destroy runqueue etc associated with a task group */
4cf86d77 9267void sched_destroy_group(struct task_group *tg)
29f59db3 9268{
8ed36996 9269 unsigned long flags;
9b5b7751 9270 int i;
29f59db3 9271
8ed36996 9272 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9273 for_each_possible_cpu(i) {
bccbe08a
PZ
9274 unregister_fair_sched_group(tg, i);
9275 unregister_rt_sched_group(tg, i);
9b5b7751 9276 }
6f505b16 9277 list_del_rcu(&tg->list);
f473aa5e 9278 list_del_rcu(&tg->siblings);
8ed36996 9279 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9280
9b5b7751 9281 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9282 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9283}
9284
9b5b7751 9285/* change task's runqueue when it moves between groups.
3a252015
IM
9286 * The caller of this function should have put the task in its new group
9287 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9288 * reflect its new group.
9b5b7751
SV
9289 */
9290void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9291{
9292 int on_rq, running;
9293 unsigned long flags;
9294 struct rq *rq;
9295
9296 rq = task_rq_lock(tsk, &flags);
9297
29f59db3
SV
9298 update_rq_clock(rq);
9299
051a1d1a 9300 running = task_current(rq, tsk);
29f59db3
SV
9301 on_rq = tsk->se.on_rq;
9302
0e1f3483 9303 if (on_rq)
29f59db3 9304 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9305 if (unlikely(running))
9306 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9307
6f505b16 9308 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9309
810b3817
PZ
9310#ifdef CONFIG_FAIR_GROUP_SCHED
9311 if (tsk->sched_class->moved_group)
9312 tsk->sched_class->moved_group(tsk);
9313#endif
9314
0e1f3483
HS
9315 if (unlikely(running))
9316 tsk->sched_class->set_curr_task(rq);
9317 if (on_rq)
7074badb 9318 enqueue_task(rq, tsk, 0);
29f59db3 9319
29f59db3
SV
9320 task_rq_unlock(rq, &flags);
9321}
6d6bc0ad 9322#endif /* CONFIG_GROUP_SCHED */
29f59db3 9323
052f1dc7 9324#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9325static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9326{
9327 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9328 int on_rq;
9329
29f59db3 9330 on_rq = se->on_rq;
62fb1851 9331 if (on_rq)
29f59db3
SV
9332 dequeue_entity(cfs_rq, se, 0);
9333
9334 se->load.weight = shares;
e05510d0 9335 se->load.inv_weight = 0;
29f59db3 9336
62fb1851 9337 if (on_rq)
29f59db3 9338 enqueue_entity(cfs_rq, se, 0);
c09595f6 9339}
62fb1851 9340
c09595f6
PZ
9341static void set_se_shares(struct sched_entity *se, unsigned long shares)
9342{
9343 struct cfs_rq *cfs_rq = se->cfs_rq;
9344 struct rq *rq = cfs_rq->rq;
9345 unsigned long flags;
9346
9347 spin_lock_irqsave(&rq->lock, flags);
9348 __set_se_shares(se, shares);
9349 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9350}
9351
8ed36996
PZ
9352static DEFINE_MUTEX(shares_mutex);
9353
4cf86d77 9354int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9355{
9356 int i;
8ed36996 9357 unsigned long flags;
c61935fd 9358
ec7dc8ac
DG
9359 /*
9360 * We can't change the weight of the root cgroup.
9361 */
9362 if (!tg->se[0])
9363 return -EINVAL;
9364
18d95a28
PZ
9365 if (shares < MIN_SHARES)
9366 shares = MIN_SHARES;
cb4ad1ff
MX
9367 else if (shares > MAX_SHARES)
9368 shares = MAX_SHARES;
62fb1851 9369
8ed36996 9370 mutex_lock(&shares_mutex);
9b5b7751 9371 if (tg->shares == shares)
5cb350ba 9372 goto done;
29f59db3 9373
8ed36996 9374 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9375 for_each_possible_cpu(i)
9376 unregister_fair_sched_group(tg, i);
f473aa5e 9377 list_del_rcu(&tg->siblings);
8ed36996 9378 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9379
9380 /* wait for any ongoing reference to this group to finish */
9381 synchronize_sched();
9382
9383 /*
9384 * Now we are free to modify the group's share on each cpu
9385 * w/o tripping rebalance_share or load_balance_fair.
9386 */
9b5b7751 9387 tg->shares = shares;
c09595f6
PZ
9388 for_each_possible_cpu(i) {
9389 /*
9390 * force a rebalance
9391 */
9392 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9393 set_se_shares(tg->se[i], shares);
c09595f6 9394 }
29f59db3 9395
6b2d7700
SV
9396 /*
9397 * Enable load balance activity on this group, by inserting it back on
9398 * each cpu's rq->leaf_cfs_rq_list.
9399 */
8ed36996 9400 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9401 for_each_possible_cpu(i)
9402 register_fair_sched_group(tg, i);
f473aa5e 9403 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9404 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9405done:
8ed36996 9406 mutex_unlock(&shares_mutex);
9b5b7751 9407 return 0;
29f59db3
SV
9408}
9409
5cb350ba
DG
9410unsigned long sched_group_shares(struct task_group *tg)
9411{
9412 return tg->shares;
9413}
052f1dc7 9414#endif
5cb350ba 9415
052f1dc7 9416#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9417/*
9f0c1e56 9418 * Ensure that the real time constraints are schedulable.
6f505b16 9419 */
9f0c1e56
PZ
9420static DEFINE_MUTEX(rt_constraints_mutex);
9421
9422static unsigned long to_ratio(u64 period, u64 runtime)
9423{
9424 if (runtime == RUNTIME_INF)
9a7e0b18 9425 return 1ULL << 20;
9f0c1e56 9426
9a7e0b18 9427 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9428}
9429
9a7e0b18
PZ
9430/* Must be called with tasklist_lock held */
9431static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9432{
9a7e0b18 9433 struct task_struct *g, *p;
b40b2e8e 9434
9a7e0b18
PZ
9435 do_each_thread(g, p) {
9436 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9437 return 1;
9438 } while_each_thread(g, p);
b40b2e8e 9439
9a7e0b18
PZ
9440 return 0;
9441}
b40b2e8e 9442
9a7e0b18
PZ
9443struct rt_schedulable_data {
9444 struct task_group *tg;
9445 u64 rt_period;
9446 u64 rt_runtime;
9447};
b40b2e8e 9448
9a7e0b18
PZ
9449static int tg_schedulable(struct task_group *tg, void *data)
9450{
9451 struct rt_schedulable_data *d = data;
9452 struct task_group *child;
9453 unsigned long total, sum = 0;
9454 u64 period, runtime;
b40b2e8e 9455
9a7e0b18
PZ
9456 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9457 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9458
9a7e0b18
PZ
9459 if (tg == d->tg) {
9460 period = d->rt_period;
9461 runtime = d->rt_runtime;
b40b2e8e 9462 }
b40b2e8e 9463
98a4826b
PZ
9464#ifdef CONFIG_USER_SCHED
9465 if (tg == &root_task_group) {
9466 period = global_rt_period();
9467 runtime = global_rt_runtime();
9468 }
9469#endif
9470
4653f803
PZ
9471 /*
9472 * Cannot have more runtime than the period.
9473 */
9474 if (runtime > period && runtime != RUNTIME_INF)
9475 return -EINVAL;
6f505b16 9476
4653f803
PZ
9477 /*
9478 * Ensure we don't starve existing RT tasks.
9479 */
9a7e0b18
PZ
9480 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9481 return -EBUSY;
6f505b16 9482
9a7e0b18 9483 total = to_ratio(period, runtime);
6f505b16 9484
4653f803
PZ
9485 /*
9486 * Nobody can have more than the global setting allows.
9487 */
9488 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9489 return -EINVAL;
6f505b16 9490
4653f803
PZ
9491 /*
9492 * The sum of our children's runtime should not exceed our own.
9493 */
9a7e0b18
PZ
9494 list_for_each_entry_rcu(child, &tg->children, siblings) {
9495 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9496 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9497
9a7e0b18
PZ
9498 if (child == d->tg) {
9499 period = d->rt_period;
9500 runtime = d->rt_runtime;
9501 }
6f505b16 9502
9a7e0b18 9503 sum += to_ratio(period, runtime);
9f0c1e56 9504 }
6f505b16 9505
9a7e0b18
PZ
9506 if (sum > total)
9507 return -EINVAL;
9508
9509 return 0;
6f505b16
PZ
9510}
9511
9a7e0b18 9512static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9513{
9a7e0b18
PZ
9514 struct rt_schedulable_data data = {
9515 .tg = tg,
9516 .rt_period = period,
9517 .rt_runtime = runtime,
9518 };
9519
9520 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9521}
9522
d0b27fa7
PZ
9523static int tg_set_bandwidth(struct task_group *tg,
9524 u64 rt_period, u64 rt_runtime)
6f505b16 9525{
ac086bc2 9526 int i, err = 0;
9f0c1e56 9527
9f0c1e56 9528 mutex_lock(&rt_constraints_mutex);
521f1a24 9529 read_lock(&tasklist_lock);
9a7e0b18
PZ
9530 err = __rt_schedulable(tg, rt_period, rt_runtime);
9531 if (err)
9f0c1e56 9532 goto unlock;
ac086bc2
PZ
9533
9534 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9535 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9536 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9537
9538 for_each_possible_cpu(i) {
9539 struct rt_rq *rt_rq = tg->rt_rq[i];
9540
9541 spin_lock(&rt_rq->rt_runtime_lock);
9542 rt_rq->rt_runtime = rt_runtime;
9543 spin_unlock(&rt_rq->rt_runtime_lock);
9544 }
9545 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9546 unlock:
521f1a24 9547 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9548 mutex_unlock(&rt_constraints_mutex);
9549
9550 return err;
6f505b16
PZ
9551}
9552
d0b27fa7
PZ
9553int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9554{
9555 u64 rt_runtime, rt_period;
9556
9557 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9558 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9559 if (rt_runtime_us < 0)
9560 rt_runtime = RUNTIME_INF;
9561
9562 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9563}
9564
9f0c1e56
PZ
9565long sched_group_rt_runtime(struct task_group *tg)
9566{
9567 u64 rt_runtime_us;
9568
d0b27fa7 9569 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9570 return -1;
9571
d0b27fa7 9572 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9573 do_div(rt_runtime_us, NSEC_PER_USEC);
9574 return rt_runtime_us;
9575}
d0b27fa7
PZ
9576
9577int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9578{
9579 u64 rt_runtime, rt_period;
9580
9581 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9582 rt_runtime = tg->rt_bandwidth.rt_runtime;
9583
619b0488
R
9584 if (rt_period == 0)
9585 return -EINVAL;
9586
d0b27fa7
PZ
9587 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9588}
9589
9590long sched_group_rt_period(struct task_group *tg)
9591{
9592 u64 rt_period_us;
9593
9594 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9595 do_div(rt_period_us, NSEC_PER_USEC);
9596 return rt_period_us;
9597}
9598
9599static int sched_rt_global_constraints(void)
9600{
4653f803 9601 u64 runtime, period;
d0b27fa7
PZ
9602 int ret = 0;
9603
ec5d4989
HS
9604 if (sysctl_sched_rt_period <= 0)
9605 return -EINVAL;
9606
4653f803
PZ
9607 runtime = global_rt_runtime();
9608 period = global_rt_period();
9609
9610 /*
9611 * Sanity check on the sysctl variables.
9612 */
9613 if (runtime > period && runtime != RUNTIME_INF)
9614 return -EINVAL;
10b612f4 9615
d0b27fa7 9616 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9617 read_lock(&tasklist_lock);
4653f803 9618 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9619 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9620 mutex_unlock(&rt_constraints_mutex);
9621
9622 return ret;
9623}
54e99124
DG
9624
9625int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9626{
9627 /* Don't accept realtime tasks when there is no way for them to run */
9628 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9629 return 0;
9630
9631 return 1;
9632}
9633
6d6bc0ad 9634#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9635static int sched_rt_global_constraints(void)
9636{
ac086bc2
PZ
9637 unsigned long flags;
9638 int i;
9639
ec5d4989
HS
9640 if (sysctl_sched_rt_period <= 0)
9641 return -EINVAL;
9642
ac086bc2
PZ
9643 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9644 for_each_possible_cpu(i) {
9645 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9646
9647 spin_lock(&rt_rq->rt_runtime_lock);
9648 rt_rq->rt_runtime = global_rt_runtime();
9649 spin_unlock(&rt_rq->rt_runtime_lock);
9650 }
9651 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9652
d0b27fa7
PZ
9653 return 0;
9654}
6d6bc0ad 9655#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9656
9657int sched_rt_handler(struct ctl_table *table, int write,
9658 struct file *filp, void __user *buffer, size_t *lenp,
9659 loff_t *ppos)
9660{
9661 int ret;
9662 int old_period, old_runtime;
9663 static DEFINE_MUTEX(mutex);
9664
9665 mutex_lock(&mutex);
9666 old_period = sysctl_sched_rt_period;
9667 old_runtime = sysctl_sched_rt_runtime;
9668
9669 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9670
9671 if (!ret && write) {
9672 ret = sched_rt_global_constraints();
9673 if (ret) {
9674 sysctl_sched_rt_period = old_period;
9675 sysctl_sched_rt_runtime = old_runtime;
9676 } else {
9677 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9678 def_rt_bandwidth.rt_period =
9679 ns_to_ktime(global_rt_period());
9680 }
9681 }
9682 mutex_unlock(&mutex);
9683
9684 return ret;
9685}
68318b8e 9686
052f1dc7 9687#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9688
9689/* return corresponding task_group object of a cgroup */
2b01dfe3 9690static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9691{
2b01dfe3
PM
9692 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9693 struct task_group, css);
68318b8e
SV
9694}
9695
9696static struct cgroup_subsys_state *
2b01dfe3 9697cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9698{
ec7dc8ac 9699 struct task_group *tg, *parent;
68318b8e 9700
2b01dfe3 9701 if (!cgrp->parent) {
68318b8e 9702 /* This is early initialization for the top cgroup */
68318b8e
SV
9703 return &init_task_group.css;
9704 }
9705
ec7dc8ac
DG
9706 parent = cgroup_tg(cgrp->parent);
9707 tg = sched_create_group(parent);
68318b8e
SV
9708 if (IS_ERR(tg))
9709 return ERR_PTR(-ENOMEM);
9710
68318b8e
SV
9711 return &tg->css;
9712}
9713
41a2d6cf
IM
9714static void
9715cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9716{
2b01dfe3 9717 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9718
9719 sched_destroy_group(tg);
9720}
9721
41a2d6cf
IM
9722static int
9723cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9724 struct task_struct *tsk)
68318b8e 9725{
b68aa230 9726#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9727 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9728 return -EINVAL;
9729#else
68318b8e
SV
9730 /* We don't support RT-tasks being in separate groups */
9731 if (tsk->sched_class != &fair_sched_class)
9732 return -EINVAL;
b68aa230 9733#endif
68318b8e
SV
9734
9735 return 0;
9736}
9737
9738static void
2b01dfe3 9739cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9740 struct cgroup *old_cont, struct task_struct *tsk)
9741{
9742 sched_move_task(tsk);
9743}
9744
052f1dc7 9745#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9746static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9747 u64 shareval)
68318b8e 9748{
2b01dfe3 9749 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9750}
9751
f4c753b7 9752static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9753{
2b01dfe3 9754 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9755
9756 return (u64) tg->shares;
9757}
6d6bc0ad 9758#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9759
052f1dc7 9760#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9761static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9762 s64 val)
6f505b16 9763{
06ecb27c 9764 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9765}
9766
06ecb27c 9767static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9768{
06ecb27c 9769 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9770}
d0b27fa7
PZ
9771
9772static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9773 u64 rt_period_us)
9774{
9775 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9776}
9777
9778static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9779{
9780 return sched_group_rt_period(cgroup_tg(cgrp));
9781}
6d6bc0ad 9782#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9783
fe5c7cc2 9784static struct cftype cpu_files[] = {
052f1dc7 9785#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9786 {
9787 .name = "shares",
f4c753b7
PM
9788 .read_u64 = cpu_shares_read_u64,
9789 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9790 },
052f1dc7
PZ
9791#endif
9792#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9793 {
9f0c1e56 9794 .name = "rt_runtime_us",
06ecb27c
PM
9795 .read_s64 = cpu_rt_runtime_read,
9796 .write_s64 = cpu_rt_runtime_write,
6f505b16 9797 },
d0b27fa7
PZ
9798 {
9799 .name = "rt_period_us",
f4c753b7
PM
9800 .read_u64 = cpu_rt_period_read_uint,
9801 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9802 },
052f1dc7 9803#endif
68318b8e
SV
9804};
9805
9806static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9807{
fe5c7cc2 9808 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9809}
9810
9811struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9812 .name = "cpu",
9813 .create = cpu_cgroup_create,
9814 .destroy = cpu_cgroup_destroy,
9815 .can_attach = cpu_cgroup_can_attach,
9816 .attach = cpu_cgroup_attach,
9817 .populate = cpu_cgroup_populate,
9818 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9819 .early_init = 1,
9820};
9821
052f1dc7 9822#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9823
9824#ifdef CONFIG_CGROUP_CPUACCT
9825
9826/*
9827 * CPU accounting code for task groups.
9828 *
9829 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9830 * (balbir@in.ibm.com).
9831 */
9832
934352f2 9833/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9834struct cpuacct {
9835 struct cgroup_subsys_state css;
9836 /* cpuusage holds pointer to a u64-type object on every cpu */
9837 u64 *cpuusage;
934352f2 9838 struct cpuacct *parent;
d842de87
SV
9839};
9840
9841struct cgroup_subsys cpuacct_subsys;
9842
9843/* return cpu accounting group corresponding to this container */
32cd756a 9844static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9845{
32cd756a 9846 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9847 struct cpuacct, css);
9848}
9849
9850/* return cpu accounting group to which this task belongs */
9851static inline struct cpuacct *task_ca(struct task_struct *tsk)
9852{
9853 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9854 struct cpuacct, css);
9855}
9856
9857/* create a new cpu accounting group */
9858static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9859 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9860{
9861 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9862
9863 if (!ca)
9864 return ERR_PTR(-ENOMEM);
9865
9866 ca->cpuusage = alloc_percpu(u64);
9867 if (!ca->cpuusage) {
9868 kfree(ca);
9869 return ERR_PTR(-ENOMEM);
9870 }
9871
934352f2
BR
9872 if (cgrp->parent)
9873 ca->parent = cgroup_ca(cgrp->parent);
9874
d842de87
SV
9875 return &ca->css;
9876}
9877
9878/* destroy an existing cpu accounting group */
41a2d6cf 9879static void
32cd756a 9880cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9881{
32cd756a 9882 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9883
9884 free_percpu(ca->cpuusage);
9885 kfree(ca);
9886}
9887
720f5498
KC
9888static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9889{
b36128c8 9890 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9891 u64 data;
9892
9893#ifndef CONFIG_64BIT
9894 /*
9895 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9896 */
9897 spin_lock_irq(&cpu_rq(cpu)->lock);
9898 data = *cpuusage;
9899 spin_unlock_irq(&cpu_rq(cpu)->lock);
9900#else
9901 data = *cpuusage;
9902#endif
9903
9904 return data;
9905}
9906
9907static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9908{
b36128c8 9909 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9910
9911#ifndef CONFIG_64BIT
9912 /*
9913 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9914 */
9915 spin_lock_irq(&cpu_rq(cpu)->lock);
9916 *cpuusage = val;
9917 spin_unlock_irq(&cpu_rq(cpu)->lock);
9918#else
9919 *cpuusage = val;
9920#endif
9921}
9922
d842de87 9923/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9924static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9925{
32cd756a 9926 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9927 u64 totalcpuusage = 0;
9928 int i;
9929
720f5498
KC
9930 for_each_present_cpu(i)
9931 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9932
9933 return totalcpuusage;
9934}
9935
0297b803
DG
9936static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9937 u64 reset)
9938{
9939 struct cpuacct *ca = cgroup_ca(cgrp);
9940 int err = 0;
9941 int i;
9942
9943 if (reset) {
9944 err = -EINVAL;
9945 goto out;
9946 }
9947
720f5498
KC
9948 for_each_present_cpu(i)
9949 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9950
0297b803
DG
9951out:
9952 return err;
9953}
9954
e9515c3c
KC
9955static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9956 struct seq_file *m)
9957{
9958 struct cpuacct *ca = cgroup_ca(cgroup);
9959 u64 percpu;
9960 int i;
9961
9962 for_each_present_cpu(i) {
9963 percpu = cpuacct_cpuusage_read(ca, i);
9964 seq_printf(m, "%llu ", (unsigned long long) percpu);
9965 }
9966 seq_printf(m, "\n");
9967 return 0;
9968}
9969
d842de87
SV
9970static struct cftype files[] = {
9971 {
9972 .name = "usage",
f4c753b7
PM
9973 .read_u64 = cpuusage_read,
9974 .write_u64 = cpuusage_write,
d842de87 9975 },
e9515c3c
KC
9976 {
9977 .name = "usage_percpu",
9978 .read_seq_string = cpuacct_percpu_seq_read,
9979 },
9980
d842de87
SV
9981};
9982
32cd756a 9983static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9984{
32cd756a 9985 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9986}
9987
9988/*
9989 * charge this task's execution time to its accounting group.
9990 *
9991 * called with rq->lock held.
9992 */
9993static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9994{
9995 struct cpuacct *ca;
934352f2 9996 int cpu;
d842de87 9997
c40c6f85 9998 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9999 return;
10000
934352f2 10001 cpu = task_cpu(tsk);
d842de87 10002 ca = task_ca(tsk);
d842de87 10003
934352f2 10004 for (; ca; ca = ca->parent) {
b36128c8 10005 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10006 *cpuusage += cputime;
10007 }
10008}
10009
10010struct cgroup_subsys cpuacct_subsys = {
10011 .name = "cpuacct",
10012 .create = cpuacct_create,
10013 .destroy = cpuacct_destroy,
10014 .populate = cpuacct_populate,
10015 .subsys_id = cpuacct_subsys_id,
10016};
10017#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.669357 seconds and 5 git commands to generate.