Commit | Line | Data |
---|---|---|
6e0534f2 GH |
1 | /* |
2 | * kernel/sched_cpupri.c | |
3 | * | |
4 | * CPU priority management | |
5 | * | |
6 | * Copyright (C) 2007-2008 Novell | |
7 | * | |
8 | * Author: Gregory Haskins <ghaskins@novell.com> | |
9 | * | |
10 | * This code tracks the priority of each CPU so that global migration | |
11 | * decisions are easy to calculate. Each CPU can be in a state as follows: | |
12 | * | |
13 | * (INVALID), IDLE, NORMAL, RT1, ... RT99 | |
14 | * | |
15 | * going from the lowest priority to the highest. CPUs in the INVALID state | |
16 | * are not eligible for routing. The system maintains this state with | |
17 | * a 2 dimensional bitmap (the first for priority class, the second for cpus | |
18 | * in that class). Therefore a typical application without affinity | |
19 | * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit | |
20 | * searches). For tasks with affinity restrictions, the algorithm has a | |
21 | * worst case complexity of O(min(102, nr_domcpus)), though the scenario that | |
22 | * yields the worst case search is fairly contrived. | |
23 | * | |
24 | * This program is free software; you can redistribute it and/or | |
25 | * modify it under the terms of the GNU General Public License | |
26 | * as published by the Free Software Foundation; version 2 | |
27 | * of the License. | |
28 | */ | |
29 | ||
5a0e3ad6 | 30 | #include <linux/gfp.h> |
6e0534f2 GH |
31 | #include "sched_cpupri.h" |
32 | ||
33 | /* Convert between a 140 based task->prio, and our 102 based cpupri */ | |
34 | static int convert_prio(int prio) | |
35 | { | |
36 | int cpupri; | |
37 | ||
38 | if (prio == CPUPRI_INVALID) | |
39 | cpupri = CPUPRI_INVALID; | |
40 | else if (prio == MAX_PRIO) | |
41 | cpupri = CPUPRI_IDLE; | |
42 | else if (prio >= MAX_RT_PRIO) | |
43 | cpupri = CPUPRI_NORMAL; | |
44 | else | |
45 | cpupri = MAX_RT_PRIO - prio + 1; | |
46 | ||
47 | return cpupri; | |
48 | } | |
49 | ||
50 | #define for_each_cpupri_active(array, idx) \ | |
984b3f57 | 51 | for_each_set_bit(idx, array, CPUPRI_NR_PRIORITIES) |
6e0534f2 GH |
52 | |
53 | /** | |
54 | * cpupri_find - find the best (lowest-pri) CPU in the system | |
55 | * @cp: The cpupri context | |
56 | * @p: The task | |
13b8bd0a | 57 | * @lowest_mask: A mask to fill in with selected CPUs (or NULL) |
6e0534f2 GH |
58 | * |
59 | * Note: This function returns the recommended CPUs as calculated during the | |
2a61aa40 | 60 | * current invocation. By the time the call returns, the CPUs may have in |
6e0534f2 GH |
61 | * fact changed priorities any number of times. While not ideal, it is not |
62 | * an issue of correctness since the normal rebalancer logic will correct | |
63 | * any discrepancies created by racing against the uncertainty of the current | |
64 | * priority configuration. | |
65 | * | |
66 | * Returns: (int)bool - CPUs were found | |
67 | */ | |
68 | int cpupri_find(struct cpupri *cp, struct task_struct *p, | |
68e74568 | 69 | struct cpumask *lowest_mask) |
6e0534f2 GH |
70 | { |
71 | int idx = 0; | |
72 | int task_pri = convert_prio(p->prio); | |
73 | ||
74 | for_each_cpupri_active(cp->pri_active, idx) { | |
75 | struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; | |
6e0534f2 GH |
76 | |
77 | if (idx >= task_pri) | |
78 | break; | |
79 | ||
68e74568 | 80 | if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids) |
6e0534f2 GH |
81 | continue; |
82 | ||
07903af1 | 83 | if (lowest_mask) { |
13b8bd0a | 84 | cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask); |
07903af1 GH |
85 | |
86 | /* | |
87 | * We have to ensure that we have at least one bit | |
88 | * still set in the array, since the map could have | |
89 | * been concurrently emptied between the first and | |
90 | * second reads of vec->mask. If we hit this | |
91 | * condition, simply act as though we never hit this | |
92 | * priority level and continue on. | |
93 | */ | |
94 | if (cpumask_any(lowest_mask) >= nr_cpu_ids) | |
95 | continue; | |
96 | } | |
97 | ||
6e0534f2 GH |
98 | return 1; |
99 | } | |
100 | ||
101 | return 0; | |
102 | } | |
103 | ||
104 | /** | |
105 | * cpupri_set - update the cpu priority setting | |
106 | * @cp: The cpupri context | |
107 | * @cpu: The target cpu | |
108 | * @pri: The priority (INVALID-RT99) to assign to this CPU | |
109 | * | |
110 | * Note: Assumes cpu_rq(cpu)->lock is locked | |
111 | * | |
112 | * Returns: (void) | |
113 | */ | |
114 | void cpupri_set(struct cpupri *cp, int cpu, int newpri) | |
115 | { | |
116 | int *currpri = &cp->cpu_to_pri[cpu]; | |
117 | int oldpri = *currpri; | |
118 | unsigned long flags; | |
119 | ||
120 | newpri = convert_prio(newpri); | |
121 | ||
122 | BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); | |
123 | ||
124 | if (newpri == oldpri) | |
125 | return; | |
126 | ||
127 | /* | |
128 | * If the cpu was currently mapped to a different value, we | |
c3a2ae3d SR |
129 | * need to map it to the new value then remove the old value. |
130 | * Note, we must add the new value first, otherwise we risk the | |
131 | * cpu being cleared from pri_active, and this cpu could be | |
132 | * missed for a push or pull. | |
6e0534f2 | 133 | */ |
6e0534f2 GH |
134 | if (likely(newpri != CPUPRI_INVALID)) { |
135 | struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; | |
136 | ||
fe841226 | 137 | raw_spin_lock_irqsave(&vec->lock, flags); |
6e0534f2 | 138 | |
68e74568 | 139 | cpumask_set_cpu(cpu, vec->mask); |
6e0534f2 GH |
140 | vec->count++; |
141 | if (vec->count == 1) | |
142 | set_bit(newpri, cp->pri_active); | |
143 | ||
fe841226 | 144 | raw_spin_unlock_irqrestore(&vec->lock, flags); |
6e0534f2 | 145 | } |
c3a2ae3d SR |
146 | if (likely(oldpri != CPUPRI_INVALID)) { |
147 | struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; | |
148 | ||
fe841226 | 149 | raw_spin_lock_irqsave(&vec->lock, flags); |
c3a2ae3d SR |
150 | |
151 | vec->count--; | |
152 | if (!vec->count) | |
153 | clear_bit(oldpri, cp->pri_active); | |
154 | cpumask_clear_cpu(cpu, vec->mask); | |
155 | ||
fe841226 | 156 | raw_spin_unlock_irqrestore(&vec->lock, flags); |
c3a2ae3d | 157 | } |
6e0534f2 GH |
158 | |
159 | *currpri = newpri; | |
160 | } | |
161 | ||
162 | /** | |
163 | * cpupri_init - initialize the cpupri structure | |
164 | * @cp: The cpupri context | |
68e74568 | 165 | * @bootmem: true if allocations need to use bootmem |
6e0534f2 | 166 | * |
68e74568 | 167 | * Returns: -ENOMEM if memory fails. |
6e0534f2 | 168 | */ |
68c38fc3 | 169 | int cpupri_init(struct cpupri *cp) |
6e0534f2 GH |
170 | { |
171 | int i; | |
172 | ||
173 | memset(cp, 0, sizeof(*cp)); | |
174 | ||
175 | for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { | |
176 | struct cpupri_vec *vec = &cp->pri_to_cpu[i]; | |
177 | ||
fe841226 | 178 | raw_spin_lock_init(&vec->lock); |
6e0534f2 | 179 | vec->count = 0; |
68c38fc3 | 180 | if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL)) |
68e74568 | 181 | goto cleanup; |
6e0534f2 GH |
182 | } |
183 | ||
184 | for_each_possible_cpu(i) | |
185 | cp->cpu_to_pri[i] = CPUPRI_INVALID; | |
68e74568 RR |
186 | return 0; |
187 | ||
188 | cleanup: | |
189 | for (i--; i >= 0; i--) | |
190 | free_cpumask_var(cp->pri_to_cpu[i].mask); | |
191 | return -ENOMEM; | |
6e0534f2 GH |
192 | } |
193 | ||
68e74568 RR |
194 | /** |
195 | * cpupri_cleanup - clean up the cpupri structure | |
196 | * @cp: The cpupri context | |
197 | */ | |
198 | void cpupri_cleanup(struct cpupri *cp) | |
199 | { | |
200 | int i; | |
6e0534f2 | 201 | |
68e74568 RR |
202 | for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) |
203 | free_cpumask_var(cp->pri_to_cpu[i].mask); | |
204 | } |