sched: Request for idle balance during nohz idle load balance
[deliverable/linux.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
8f48894f
PZ
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
398a153b
GH
10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11{
8f48894f
PZ
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
398a153b
GH
15 return container_of(rt_se, struct task_struct, rt);
16}
17
398a153b
GH
18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19{
20 return rt_rq->rq;
21}
22
23static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24{
25 return rt_se->rt_rq;
26}
27
28#else /* CONFIG_RT_GROUP_SCHED */
29
a1ba4d8b
PZ
30#define rt_entity_is_task(rt_se) (1)
31
8f48894f
PZ
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
398a153b
GH
37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38{
39 return container_of(rt_rq, struct rq, rt);
40}
41
42static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43{
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48}
49
50#endif /* CONFIG_RT_GROUP_SCHED */
51
4fd29176 52#ifdef CONFIG_SMP
84de4274 53
637f5085 54static inline int rt_overloaded(struct rq *rq)
4fd29176 55{
637f5085 56 return atomic_read(&rq->rd->rto_count);
4fd29176 57}
84de4274 58
4fd29176
SR
59static inline void rt_set_overload(struct rq *rq)
60{
1f11eb6a
GH
61 if (!rq->online)
62 return;
63
c6c4927b 64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
637f5085 73 atomic_inc(&rq->rd->rto_count);
4fd29176 74}
84de4274 75
4fd29176
SR
76static inline void rt_clear_overload(struct rq *rq)
77{
1f11eb6a
GH
78 if (!rq->online)
79 return;
80
4fd29176 81 /* the order here really doesn't matter */
637f5085 82 atomic_dec(&rq->rd->rto_count);
c6c4927b 83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 84}
73fe6aae 85
398a153b 86static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 87{
a1ba4d8b 88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
cdc8eb98 92 }
398a153b
GH
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
637f5085 96 }
73fe6aae 97}
4fd29176 98
398a153b
GH
99static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100{
a1ba4d8b
PZ
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
398a153b
GH
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111}
112
113static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114{
a1ba4d8b
PZ
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
398a153b
GH
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125}
126
5181f4a4
SR
127static inline int has_pushable_tasks(struct rq *rq)
128{
129 return !plist_head_empty(&rq->rt.pushable_tasks);
130}
131
917b627d
GH
132static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
133{
134 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
135 plist_node_init(&p->pushable_tasks, p->prio);
136 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
137
138 /* Update the highest prio pushable task */
139 if (p->prio < rq->rt.highest_prio.next)
140 rq->rt.highest_prio.next = p->prio;
917b627d
GH
141}
142
143static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
144{
145 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 146
5181f4a4
SR
147 /* Update the new highest prio pushable task */
148 if (has_pushable_tasks(rq)) {
149 p = plist_first_entry(&rq->rt.pushable_tasks,
150 struct task_struct, pushable_tasks);
151 rq->rt.highest_prio.next = p->prio;
152 } else
153 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
154}
155
917b627d
GH
156#else
157
ceacc2c1 158static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 159{
6f505b16
PZ
160}
161
ceacc2c1
PZ
162static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
163{
164}
165
b07430ac 166static inline
ceacc2c1
PZ
167void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
168{
169}
170
398a153b 171static inline
ceacc2c1
PZ
172void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
173{
174}
917b627d 175
4fd29176
SR
176#endif /* CONFIG_SMP */
177
6f505b16
PZ
178static inline int on_rt_rq(struct sched_rt_entity *rt_se)
179{
180 return !list_empty(&rt_se->run_list);
181}
182
052f1dc7 183#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 184
9f0c1e56 185static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
186{
187 if (!rt_rq->tg)
9f0c1e56 188 return RUNTIME_INF;
6f505b16 189
ac086bc2
PZ
190 return rt_rq->rt_runtime;
191}
192
193static inline u64 sched_rt_period(struct rt_rq *rt_rq)
194{
195 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
196}
197
ec514c48
CX
198typedef struct task_group *rt_rq_iter_t;
199
1c09ab0d
YZ
200static inline struct task_group *next_task_group(struct task_group *tg)
201{
202 do {
203 tg = list_entry_rcu(tg->list.next,
204 typeof(struct task_group), list);
205 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
206
207 if (&tg->list == &task_groups)
208 tg = NULL;
209
210 return tg;
211}
212
213#define for_each_rt_rq(rt_rq, iter, rq) \
214 for (iter = container_of(&task_groups, typeof(*iter), list); \
215 (iter = next_task_group(iter)) && \
216 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 217
3d4b47b4
PZ
218static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
219{
220 list_add_rcu(&rt_rq->leaf_rt_rq_list,
221 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
222}
223
224static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
225{
226 list_del_rcu(&rt_rq->leaf_rt_rq_list);
227}
228
6f505b16 229#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 230 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 231
6f505b16
PZ
232#define for_each_sched_rt_entity(rt_se) \
233 for (; rt_se; rt_se = rt_se->parent)
234
235static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
236{
237 return rt_se->my_q;
238}
239
37dad3fc 240static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
241static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
242
9f0c1e56 243static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 244{
f6121f4f 245 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
246 struct sched_rt_entity *rt_se;
247
0c3b9168
BS
248 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
249
250 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 251
f6121f4f
DF
252 if (rt_rq->rt_nr_running) {
253 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 254 enqueue_rt_entity(rt_se, false);
e864c499 255 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 256 resched_task(curr);
6f505b16
PZ
257 }
258}
259
9f0c1e56 260static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 261{
74b7eb58 262 struct sched_rt_entity *rt_se;
0c3b9168 263 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 264
0c3b9168 265 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
266
267 if (rt_se && on_rt_rq(rt_se))
268 dequeue_rt_entity(rt_se);
269}
270
23b0fdfc
PZ
271static inline int rt_rq_throttled(struct rt_rq *rt_rq)
272{
273 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
274}
275
276static int rt_se_boosted(struct sched_rt_entity *rt_se)
277{
278 struct rt_rq *rt_rq = group_rt_rq(rt_se);
279 struct task_struct *p;
280
281 if (rt_rq)
282 return !!rt_rq->rt_nr_boosted;
283
284 p = rt_task_of(rt_se);
285 return p->prio != p->normal_prio;
286}
287
d0b27fa7 288#ifdef CONFIG_SMP
c6c4927b 289static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
290{
291 return cpu_rq(smp_processor_id())->rd->span;
292}
6f505b16 293#else
c6c4927b 294static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 295{
c6c4927b 296 return cpu_online_mask;
d0b27fa7
PZ
297}
298#endif
6f505b16 299
d0b27fa7
PZ
300static inline
301struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 302{
d0b27fa7
PZ
303 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
304}
9f0c1e56 305
ac086bc2
PZ
306static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
307{
308 return &rt_rq->tg->rt_bandwidth;
309}
310
55e12e5e 311#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
312
313static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
314{
ac086bc2
PZ
315 return rt_rq->rt_runtime;
316}
317
318static inline u64 sched_rt_period(struct rt_rq *rt_rq)
319{
320 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
321}
322
ec514c48
CX
323typedef struct rt_rq *rt_rq_iter_t;
324
325#define for_each_rt_rq(rt_rq, iter, rq) \
326 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
327
3d4b47b4
PZ
328static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
329{
330}
331
332static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
333{
334}
335
6f505b16
PZ
336#define for_each_leaf_rt_rq(rt_rq, rq) \
337 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
338
6f505b16
PZ
339#define for_each_sched_rt_entity(rt_se) \
340 for (; rt_se; rt_se = NULL)
341
342static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
343{
344 return NULL;
345}
346
9f0c1e56 347static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 348{
f3ade837
JB
349 if (rt_rq->rt_nr_running)
350 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
351}
352
9f0c1e56 353static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
354{
355}
356
23b0fdfc
PZ
357static inline int rt_rq_throttled(struct rt_rq *rt_rq)
358{
359 return rt_rq->rt_throttled;
360}
d0b27fa7 361
c6c4927b 362static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 363{
c6c4927b 364 return cpu_online_mask;
d0b27fa7
PZ
365}
366
367static inline
368struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
369{
370 return &cpu_rq(cpu)->rt;
371}
372
ac086bc2
PZ
373static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
374{
375 return &def_rt_bandwidth;
376}
377
55e12e5e 378#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 379
ac086bc2 380#ifdef CONFIG_SMP
78333cdd
PZ
381/*
382 * We ran out of runtime, see if we can borrow some from our neighbours.
383 */
b79f3833 384static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
385{
386 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
387 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
388 int i, weight, more = 0;
389 u64 rt_period;
390
c6c4927b 391 weight = cpumask_weight(rd->span);
ac086bc2 392
0986b11b 393 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 394 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 395 for_each_cpu(i, rd->span) {
ac086bc2
PZ
396 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
397 s64 diff;
398
399 if (iter == rt_rq)
400 continue;
401
0986b11b 402 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
403 /*
404 * Either all rqs have inf runtime and there's nothing to steal
405 * or __disable_runtime() below sets a specific rq to inf to
406 * indicate its been disabled and disalow stealing.
407 */
7def2be1
PZ
408 if (iter->rt_runtime == RUNTIME_INF)
409 goto next;
410
78333cdd
PZ
411 /*
412 * From runqueues with spare time, take 1/n part of their
413 * spare time, but no more than our period.
414 */
ac086bc2
PZ
415 diff = iter->rt_runtime - iter->rt_time;
416 if (diff > 0) {
58838cf3 417 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
418 if (rt_rq->rt_runtime + diff > rt_period)
419 diff = rt_period - rt_rq->rt_runtime;
420 iter->rt_runtime -= diff;
421 rt_rq->rt_runtime += diff;
422 more = 1;
423 if (rt_rq->rt_runtime == rt_period) {
0986b11b 424 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
425 break;
426 }
427 }
7def2be1 428next:
0986b11b 429 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 430 }
0986b11b 431 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
432
433 return more;
434}
7def2be1 435
78333cdd
PZ
436/*
437 * Ensure this RQ takes back all the runtime it lend to its neighbours.
438 */
7def2be1
PZ
439static void __disable_runtime(struct rq *rq)
440{
441 struct root_domain *rd = rq->rd;
ec514c48 442 rt_rq_iter_t iter;
7def2be1
PZ
443 struct rt_rq *rt_rq;
444
445 if (unlikely(!scheduler_running))
446 return;
447
ec514c48 448 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
449 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
450 s64 want;
451 int i;
452
0986b11b
TG
453 raw_spin_lock(&rt_b->rt_runtime_lock);
454 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
455 /*
456 * Either we're all inf and nobody needs to borrow, or we're
457 * already disabled and thus have nothing to do, or we have
458 * exactly the right amount of runtime to take out.
459 */
7def2be1
PZ
460 if (rt_rq->rt_runtime == RUNTIME_INF ||
461 rt_rq->rt_runtime == rt_b->rt_runtime)
462 goto balanced;
0986b11b 463 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 464
78333cdd
PZ
465 /*
466 * Calculate the difference between what we started out with
467 * and what we current have, that's the amount of runtime
468 * we lend and now have to reclaim.
469 */
7def2be1
PZ
470 want = rt_b->rt_runtime - rt_rq->rt_runtime;
471
78333cdd
PZ
472 /*
473 * Greedy reclaim, take back as much as we can.
474 */
c6c4927b 475 for_each_cpu(i, rd->span) {
7def2be1
PZ
476 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
477 s64 diff;
478
78333cdd
PZ
479 /*
480 * Can't reclaim from ourselves or disabled runqueues.
481 */
f1679d08 482 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
483 continue;
484
0986b11b 485 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
486 if (want > 0) {
487 diff = min_t(s64, iter->rt_runtime, want);
488 iter->rt_runtime -= diff;
489 want -= diff;
490 } else {
491 iter->rt_runtime -= want;
492 want -= want;
493 }
0986b11b 494 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
495
496 if (!want)
497 break;
498 }
499
0986b11b 500 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
501 /*
502 * We cannot be left wanting - that would mean some runtime
503 * leaked out of the system.
504 */
7def2be1
PZ
505 BUG_ON(want);
506balanced:
78333cdd
PZ
507 /*
508 * Disable all the borrow logic by pretending we have inf
509 * runtime - in which case borrowing doesn't make sense.
510 */
7def2be1 511 rt_rq->rt_runtime = RUNTIME_INF;
0986b11b
TG
512 raw_spin_unlock(&rt_rq->rt_runtime_lock);
513 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
514 }
515}
516
517static void disable_runtime(struct rq *rq)
518{
519 unsigned long flags;
520
05fa785c 521 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 522 __disable_runtime(rq);
05fa785c 523 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
524}
525
526static void __enable_runtime(struct rq *rq)
527{
ec514c48 528 rt_rq_iter_t iter;
7def2be1
PZ
529 struct rt_rq *rt_rq;
530
531 if (unlikely(!scheduler_running))
532 return;
533
78333cdd
PZ
534 /*
535 * Reset each runqueue's bandwidth settings
536 */
ec514c48 537 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
538 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
539
0986b11b
TG
540 raw_spin_lock(&rt_b->rt_runtime_lock);
541 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
542 rt_rq->rt_runtime = rt_b->rt_runtime;
543 rt_rq->rt_time = 0;
baf25731 544 rt_rq->rt_throttled = 0;
0986b11b
TG
545 raw_spin_unlock(&rt_rq->rt_runtime_lock);
546 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
547 }
548}
549
550static void enable_runtime(struct rq *rq)
551{
552 unsigned long flags;
553
05fa785c 554 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 555 __enable_runtime(rq);
05fa785c 556 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
557}
558
eff6549b
PZ
559static int balance_runtime(struct rt_rq *rt_rq)
560{
561 int more = 0;
562
563 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 564 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 565 more = do_balance_runtime(rt_rq);
0986b11b 566 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
567 }
568
569 return more;
570}
55e12e5e 571#else /* !CONFIG_SMP */
eff6549b
PZ
572static inline int balance_runtime(struct rt_rq *rt_rq)
573{
574 return 0;
575}
55e12e5e 576#endif /* CONFIG_SMP */
ac086bc2 577
eff6549b
PZ
578static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
579{
580 int i, idle = 1;
c6c4927b 581 const struct cpumask *span;
eff6549b 582
0b148fa0 583 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
584 return 1;
585
586 span = sched_rt_period_mask();
c6c4927b 587 for_each_cpu(i, span) {
eff6549b
PZ
588 int enqueue = 0;
589 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
590 struct rq *rq = rq_of_rt_rq(rt_rq);
591
05fa785c 592 raw_spin_lock(&rq->lock);
eff6549b
PZ
593 if (rt_rq->rt_time) {
594 u64 runtime;
595
0986b11b 596 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
597 if (rt_rq->rt_throttled)
598 balance_runtime(rt_rq);
599 runtime = rt_rq->rt_runtime;
600 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
601 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
602 rt_rq->rt_throttled = 0;
603 enqueue = 1;
61eadef6
MG
604
605 /*
606 * Force a clock update if the CPU was idle,
607 * lest wakeup -> unthrottle time accumulate.
608 */
609 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
610 rq->skip_clock_update = -1;
eff6549b
PZ
611 }
612 if (rt_rq->rt_time || rt_rq->rt_nr_running)
613 idle = 0;
0986b11b 614 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 615 } else if (rt_rq->rt_nr_running) {
6c3df255 616 idle = 0;
0c3b9168
BS
617 if (!rt_rq_throttled(rt_rq))
618 enqueue = 1;
619 }
eff6549b
PZ
620
621 if (enqueue)
622 sched_rt_rq_enqueue(rt_rq);
05fa785c 623 raw_spin_unlock(&rq->lock);
eff6549b
PZ
624 }
625
626 return idle;
627}
ac086bc2 628
6f505b16
PZ
629static inline int rt_se_prio(struct sched_rt_entity *rt_se)
630{
052f1dc7 631#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
632 struct rt_rq *rt_rq = group_rt_rq(rt_se);
633
634 if (rt_rq)
e864c499 635 return rt_rq->highest_prio.curr;
6f505b16
PZ
636#endif
637
638 return rt_task_of(rt_se)->prio;
639}
640
9f0c1e56 641static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 642{
9f0c1e56 643 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 644
fa85ae24 645 if (rt_rq->rt_throttled)
23b0fdfc 646 return rt_rq_throttled(rt_rq);
fa85ae24 647
ac086bc2
PZ
648 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
649 return 0;
650
b79f3833
PZ
651 balance_runtime(rt_rq);
652 runtime = sched_rt_runtime(rt_rq);
653 if (runtime == RUNTIME_INF)
654 return 0;
ac086bc2 655
9f0c1e56 656 if (rt_rq->rt_time > runtime) {
6f505b16 657 rt_rq->rt_throttled = 1;
23b0fdfc 658 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 659 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
660 return 1;
661 }
fa85ae24
PZ
662 }
663
664 return 0;
665}
666
bb44e5d1
IM
667/*
668 * Update the current task's runtime statistics. Skip current tasks that
669 * are not in our scheduling class.
670 */
a9957449 671static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
672{
673 struct task_struct *curr = rq->curr;
6f505b16
PZ
674 struct sched_rt_entity *rt_se = &curr->rt;
675 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
676 u64 delta_exec;
677
06c3bc65 678 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
679 return;
680
305e6835 681 delta_exec = rq->clock_task - curr->se.exec_start;
bb44e5d1
IM
682 if (unlikely((s64)delta_exec < 0))
683 delta_exec = 0;
6cfb0d5d 684
41acab88 685 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
686
687 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
688 account_group_exec_runtime(curr, delta_exec);
689
305e6835 690 curr->se.exec_start = rq->clock_task;
d842de87 691 cpuacct_charge(curr, delta_exec);
fa85ae24 692
e9e9250b
PZ
693 sched_rt_avg_update(rq, delta_exec);
694
0b148fa0
PZ
695 if (!rt_bandwidth_enabled())
696 return;
697
354d60c2
DG
698 for_each_sched_rt_entity(rt_se) {
699 rt_rq = rt_rq_of_se(rt_se);
700
cc2991cf 701 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 702 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
703 rt_rq->rt_time += delta_exec;
704 if (sched_rt_runtime_exceeded(rt_rq))
705 resched_task(curr);
0986b11b 706 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 707 }
354d60c2 708 }
bb44e5d1
IM
709}
710
398a153b 711#if defined CONFIG_SMP
e864c499 712
398a153b
GH
713static void
714inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 715{
4d984277 716 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 717
5181f4a4
SR
718 if (rq->online && prio < prev_prio)
719 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 720}
73fe6aae 721
398a153b
GH
722static void
723dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
724{
725 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 726
398a153b
GH
727 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
728 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
729}
730
398a153b
GH
731#else /* CONFIG_SMP */
732
6f505b16 733static inline
398a153b
GH
734void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
735static inline
736void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
737
738#endif /* CONFIG_SMP */
6e0534f2 739
052f1dc7 740#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
741static void
742inc_rt_prio(struct rt_rq *rt_rq, int prio)
743{
744 int prev_prio = rt_rq->highest_prio.curr;
745
746 if (prio < prev_prio)
747 rt_rq->highest_prio.curr = prio;
748
749 inc_rt_prio_smp(rt_rq, prio, prev_prio);
750}
751
752static void
753dec_rt_prio(struct rt_rq *rt_rq, int prio)
754{
755 int prev_prio = rt_rq->highest_prio.curr;
756
6f505b16 757 if (rt_rq->rt_nr_running) {
764a9d6f 758
398a153b 759 WARN_ON(prio < prev_prio);
764a9d6f 760
e864c499 761 /*
398a153b
GH
762 * This may have been our highest task, and therefore
763 * we may have some recomputation to do
e864c499 764 */
398a153b 765 if (prio == prev_prio) {
e864c499
GH
766 struct rt_prio_array *array = &rt_rq->active;
767
768 rt_rq->highest_prio.curr =
764a9d6f 769 sched_find_first_bit(array->bitmap);
e864c499
GH
770 }
771
764a9d6f 772 } else
e864c499 773 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 774
398a153b
GH
775 dec_rt_prio_smp(rt_rq, prio, prev_prio);
776}
1f11eb6a 777
398a153b
GH
778#else
779
780static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
781static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
782
783#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 784
052f1dc7 785#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
786
787static void
788inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
789{
790 if (rt_se_boosted(rt_se))
791 rt_rq->rt_nr_boosted++;
792
793 if (rt_rq->tg)
794 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
795}
796
797static void
798dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
799{
23b0fdfc
PZ
800 if (rt_se_boosted(rt_se))
801 rt_rq->rt_nr_boosted--;
802
803 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
804}
805
806#else /* CONFIG_RT_GROUP_SCHED */
807
808static void
809inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
810{
811 start_rt_bandwidth(&def_rt_bandwidth);
812}
813
814static inline
815void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
816
817#endif /* CONFIG_RT_GROUP_SCHED */
818
819static inline
820void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
821{
822 int prio = rt_se_prio(rt_se);
823
824 WARN_ON(!rt_prio(prio));
825 rt_rq->rt_nr_running++;
826
827 inc_rt_prio(rt_rq, prio);
828 inc_rt_migration(rt_se, rt_rq);
829 inc_rt_group(rt_se, rt_rq);
830}
831
832static inline
833void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
834{
835 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
836 WARN_ON(!rt_rq->rt_nr_running);
837 rt_rq->rt_nr_running--;
838
839 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
840 dec_rt_migration(rt_se, rt_rq);
841 dec_rt_group(rt_se, rt_rq);
63489e45
SR
842}
843
37dad3fc 844static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 845{
6f505b16
PZ
846 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
847 struct rt_prio_array *array = &rt_rq->active;
848 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 849 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 850
ad2a3f13
PZ
851 /*
852 * Don't enqueue the group if its throttled, or when empty.
853 * The latter is a consequence of the former when a child group
854 * get throttled and the current group doesn't have any other
855 * active members.
856 */
857 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 858 return;
63489e45 859
3d4b47b4
PZ
860 if (!rt_rq->rt_nr_running)
861 list_add_leaf_rt_rq(rt_rq);
862
37dad3fc
TG
863 if (head)
864 list_add(&rt_se->run_list, queue);
865 else
866 list_add_tail(&rt_se->run_list, queue);
6f505b16 867 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 868
6f505b16
PZ
869 inc_rt_tasks(rt_se, rt_rq);
870}
871
ad2a3f13 872static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
873{
874 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
875 struct rt_prio_array *array = &rt_rq->active;
876
877 list_del_init(&rt_se->run_list);
878 if (list_empty(array->queue + rt_se_prio(rt_se)))
879 __clear_bit(rt_se_prio(rt_se), array->bitmap);
880
881 dec_rt_tasks(rt_se, rt_rq);
3d4b47b4
PZ
882 if (!rt_rq->rt_nr_running)
883 list_del_leaf_rt_rq(rt_rq);
6f505b16
PZ
884}
885
886/*
887 * Because the prio of an upper entry depends on the lower
888 * entries, we must remove entries top - down.
6f505b16 889 */
ad2a3f13 890static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 891{
ad2a3f13 892 struct sched_rt_entity *back = NULL;
6f505b16 893
58d6c2d7
PZ
894 for_each_sched_rt_entity(rt_se) {
895 rt_se->back = back;
896 back = rt_se;
897 }
898
899 for (rt_se = back; rt_se; rt_se = rt_se->back) {
900 if (on_rt_rq(rt_se))
ad2a3f13
PZ
901 __dequeue_rt_entity(rt_se);
902 }
903}
904
37dad3fc 905static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
906{
907 dequeue_rt_stack(rt_se);
908 for_each_sched_rt_entity(rt_se)
37dad3fc 909 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
910}
911
912static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
913{
914 dequeue_rt_stack(rt_se);
915
916 for_each_sched_rt_entity(rt_se) {
917 struct rt_rq *rt_rq = group_rt_rq(rt_se);
918
919 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 920 __enqueue_rt_entity(rt_se, false);
58d6c2d7 921 }
bb44e5d1
IM
922}
923
924/*
925 * Adding/removing a task to/from a priority array:
926 */
ea87bb78 927static void
371fd7e7 928enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
929{
930 struct sched_rt_entity *rt_se = &p->rt;
931
371fd7e7 932 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
933 rt_se->timeout = 0;
934
371fd7e7 935 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 936
917b627d
GH
937 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
938 enqueue_pushable_task(rq, p);
953bfcd1
PT
939
940 inc_nr_running(rq);
6f505b16
PZ
941}
942
371fd7e7 943static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 944{
6f505b16 945 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 946
f1e14ef6 947 update_curr_rt(rq);
ad2a3f13 948 dequeue_rt_entity(rt_se);
c09595f6 949
917b627d 950 dequeue_pushable_task(rq, p);
953bfcd1
PT
951
952 dec_nr_running(rq);
bb44e5d1
IM
953}
954
955/*
956 * Put task to the end of the run list without the overhead of dequeue
957 * followed by enqueue.
958 */
7ebefa8c
DA
959static void
960requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 961{
1cdad715 962 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
963 struct rt_prio_array *array = &rt_rq->active;
964 struct list_head *queue = array->queue + rt_se_prio(rt_se);
965
966 if (head)
967 list_move(&rt_se->run_list, queue);
968 else
969 list_move_tail(&rt_se->run_list, queue);
1cdad715 970 }
6f505b16
PZ
971}
972
7ebefa8c 973static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 974{
6f505b16
PZ
975 struct sched_rt_entity *rt_se = &p->rt;
976 struct rt_rq *rt_rq;
bb44e5d1 977
6f505b16
PZ
978 for_each_sched_rt_entity(rt_se) {
979 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 980 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 981 }
bb44e5d1
IM
982}
983
6f505b16 984static void yield_task_rt(struct rq *rq)
bb44e5d1 985{
7ebefa8c 986 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
987}
988
e7693a36 989#ifdef CONFIG_SMP
318e0893
GH
990static int find_lowest_rq(struct task_struct *task);
991
0017d735 992static int
7608dec2 993select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
e7693a36 994{
7608dec2
PZ
995 struct task_struct *curr;
996 struct rq *rq;
997 int cpu;
998
7608dec2 999 cpu = task_cpu(p);
c37495fd
SR
1000
1001 /* For anything but wake ups, just return the task_cpu */
1002 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1003 goto out;
1004
7608dec2
PZ
1005 rq = cpu_rq(cpu);
1006
1007 rcu_read_lock();
1008 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1009
318e0893 1010 /*
7608dec2 1011 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1012 * try to see if we can wake this RT task up on another
1013 * runqueue. Otherwise simply start this RT task
1014 * on its current runqueue.
1015 *
43fa5460
SR
1016 * We want to avoid overloading runqueues. If the woken
1017 * task is a higher priority, then it will stay on this CPU
1018 * and the lower prio task should be moved to another CPU.
1019 * Even though this will probably make the lower prio task
1020 * lose its cache, we do not want to bounce a higher task
1021 * around just because it gave up its CPU, perhaps for a
1022 * lock?
1023 *
1024 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1025 *
1026 * Otherwise, just let it ride on the affined RQ and the
1027 * post-schedule router will push the preempted task away
1028 *
1029 * This test is optimistic, if we get it wrong the load-balancer
1030 * will have to sort it out.
318e0893 1031 */
7608dec2
PZ
1032 if (curr && unlikely(rt_task(curr)) &&
1033 (curr->rt.nr_cpus_allowed < 2 ||
3be209a8 1034 curr->prio <= p->prio) &&
6f505b16 1035 (p->rt.nr_cpus_allowed > 1)) {
7608dec2 1036 int target = find_lowest_rq(p);
318e0893 1037
7608dec2
PZ
1038 if (target != -1)
1039 cpu = target;
318e0893 1040 }
7608dec2 1041 rcu_read_unlock();
318e0893 1042
c37495fd 1043out:
7608dec2 1044 return cpu;
e7693a36 1045}
7ebefa8c
DA
1046
1047static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1048{
7ebefa8c
DA
1049 if (rq->curr->rt.nr_cpus_allowed == 1)
1050 return;
1051
24600ce8 1052 if (p->rt.nr_cpus_allowed != 1
13b8bd0a
RR
1053 && cpupri_find(&rq->rd->cpupri, p, NULL))
1054 return;
24600ce8 1055
13b8bd0a
RR
1056 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1057 return;
7ebefa8c
DA
1058
1059 /*
1060 * There appears to be other cpus that can accept
1061 * current and none to run 'p', so lets reschedule
1062 * to try and push current away:
1063 */
1064 requeue_task_rt(rq, p, 1);
1065 resched_task(rq->curr);
1066}
1067
e7693a36
GH
1068#endif /* CONFIG_SMP */
1069
bb44e5d1
IM
1070/*
1071 * Preempt the current task with a newly woken task if needed:
1072 */
7d478721 1073static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1074{
45c01e82 1075 if (p->prio < rq->curr->prio) {
bb44e5d1 1076 resched_task(rq->curr);
45c01e82
GH
1077 return;
1078 }
1079
1080#ifdef CONFIG_SMP
1081 /*
1082 * If:
1083 *
1084 * - the newly woken task is of equal priority to the current task
1085 * - the newly woken task is non-migratable while current is migratable
1086 * - current will be preempted on the next reschedule
1087 *
1088 * we should check to see if current can readily move to a different
1089 * cpu. If so, we will reschedule to allow the push logic to try
1090 * to move current somewhere else, making room for our non-migratable
1091 * task.
1092 */
8dd0de8b 1093 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1094 check_preempt_equal_prio(rq, p);
45c01e82 1095#endif
bb44e5d1
IM
1096}
1097
6f505b16
PZ
1098static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1099 struct rt_rq *rt_rq)
bb44e5d1 1100{
6f505b16
PZ
1101 struct rt_prio_array *array = &rt_rq->active;
1102 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1103 struct list_head *queue;
1104 int idx;
1105
1106 idx = sched_find_first_bit(array->bitmap);
6f505b16 1107 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1108
1109 queue = array->queue + idx;
6f505b16 1110 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1111
6f505b16
PZ
1112 return next;
1113}
bb44e5d1 1114
917b627d 1115static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1116{
1117 struct sched_rt_entity *rt_se;
1118 struct task_struct *p;
1119 struct rt_rq *rt_rq;
bb44e5d1 1120
6f505b16
PZ
1121 rt_rq = &rq->rt;
1122
8e54a2c0 1123 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1124 return NULL;
1125
23b0fdfc 1126 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1127 return NULL;
1128
1129 do {
1130 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1131 BUG_ON(!rt_se);
6f505b16
PZ
1132 rt_rq = group_rt_rq(rt_se);
1133 } while (rt_rq);
1134
1135 p = rt_task_of(rt_se);
305e6835 1136 p->se.exec_start = rq->clock_task;
917b627d
GH
1137
1138 return p;
1139}
1140
1141static struct task_struct *pick_next_task_rt(struct rq *rq)
1142{
1143 struct task_struct *p = _pick_next_task_rt(rq);
1144
1145 /* The running task is never eligible for pushing */
1146 if (p)
1147 dequeue_pushable_task(rq, p);
1148
bcf08df3 1149#ifdef CONFIG_SMP
3f029d3c
GH
1150 /*
1151 * We detect this state here so that we can avoid taking the RQ
1152 * lock again later if there is no need to push
1153 */
1154 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1155#endif
3f029d3c 1156
6f505b16 1157 return p;
bb44e5d1
IM
1158}
1159
31ee529c 1160static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1161{
f1e14ef6 1162 update_curr_rt(rq);
917b627d
GH
1163
1164 /*
1165 * The previous task needs to be made eligible for pushing
1166 * if it is still active
1167 */
fd2f4419 1168 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
917b627d 1169 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1170}
1171
681f3e68 1172#ifdef CONFIG_SMP
6f505b16 1173
e8fa1362
SR
1174/* Only try algorithms three times */
1175#define RT_MAX_TRIES 3
1176
e8fa1362
SR
1177static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1178
f65eda4f
SR
1179static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1180{
1181 if (!task_running(rq, p) &&
96f874e2 1182 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
6f505b16 1183 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
1184 return 1;
1185 return 0;
1186}
1187
e8fa1362 1188/* Return the second highest RT task, NULL otherwise */
79064fbf 1189static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1190{
6f505b16
PZ
1191 struct task_struct *next = NULL;
1192 struct sched_rt_entity *rt_se;
1193 struct rt_prio_array *array;
1194 struct rt_rq *rt_rq;
e8fa1362
SR
1195 int idx;
1196
6f505b16
PZ
1197 for_each_leaf_rt_rq(rt_rq, rq) {
1198 array = &rt_rq->active;
1199 idx = sched_find_first_bit(array->bitmap);
49246274 1200next_idx:
6f505b16
PZ
1201 if (idx >= MAX_RT_PRIO)
1202 continue;
1203 if (next && next->prio < idx)
1204 continue;
1205 list_for_each_entry(rt_se, array->queue + idx, run_list) {
3d07467b
PZ
1206 struct task_struct *p;
1207
1208 if (!rt_entity_is_task(rt_se))
1209 continue;
1210
1211 p = rt_task_of(rt_se);
6f505b16
PZ
1212 if (pick_rt_task(rq, p, cpu)) {
1213 next = p;
1214 break;
1215 }
1216 }
1217 if (!next) {
1218 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1219 goto next_idx;
1220 }
f65eda4f
SR
1221 }
1222
e8fa1362
SR
1223 return next;
1224}
1225
0e3900e6 1226static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1227
6e1254d2
GH
1228static int find_lowest_rq(struct task_struct *task)
1229{
1230 struct sched_domain *sd;
96f874e2 1231 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1232 int this_cpu = smp_processor_id();
1233 int cpu = task_cpu(task);
06f90dbd 1234
0da938c4
SR
1235 /* Make sure the mask is initialized first */
1236 if (unlikely(!lowest_mask))
1237 return -1;
1238
6e0534f2
GH
1239 if (task->rt.nr_cpus_allowed == 1)
1240 return -1; /* No other targets possible */
6e1254d2 1241
6e0534f2
GH
1242 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1243 return -1; /* No targets found */
6e1254d2
GH
1244
1245 /*
1246 * At this point we have built a mask of cpus representing the
1247 * lowest priority tasks in the system. Now we want to elect
1248 * the best one based on our affinity and topology.
1249 *
1250 * We prioritize the last cpu that the task executed on since
1251 * it is most likely cache-hot in that location.
1252 */
96f874e2 1253 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1254 return cpu;
1255
1256 /*
1257 * Otherwise, we consult the sched_domains span maps to figure
1258 * out which cpu is logically closest to our hot cache data.
1259 */
e2c88063
RR
1260 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1261 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1262
cd4ae6ad 1263 rcu_read_lock();
e2c88063
RR
1264 for_each_domain(cpu, sd) {
1265 if (sd->flags & SD_WAKE_AFFINE) {
1266 int best_cpu;
6e1254d2 1267
e2c88063
RR
1268 /*
1269 * "this_cpu" is cheaper to preempt than a
1270 * remote processor.
1271 */
1272 if (this_cpu != -1 &&
cd4ae6ad
XF
1273 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1274 rcu_read_unlock();
e2c88063 1275 return this_cpu;
cd4ae6ad 1276 }
e2c88063
RR
1277
1278 best_cpu = cpumask_first_and(lowest_mask,
1279 sched_domain_span(sd));
cd4ae6ad
XF
1280 if (best_cpu < nr_cpu_ids) {
1281 rcu_read_unlock();
e2c88063 1282 return best_cpu;
cd4ae6ad 1283 }
6e1254d2
GH
1284 }
1285 }
cd4ae6ad 1286 rcu_read_unlock();
6e1254d2
GH
1287
1288 /*
1289 * And finally, if there were no matches within the domains
1290 * just give the caller *something* to work with from the compatible
1291 * locations.
1292 */
e2c88063
RR
1293 if (this_cpu != -1)
1294 return this_cpu;
1295
1296 cpu = cpumask_any(lowest_mask);
1297 if (cpu < nr_cpu_ids)
1298 return cpu;
1299 return -1;
07b4032c
GH
1300}
1301
1302/* Will lock the rq it finds */
4df64c0b 1303static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1304{
1305 struct rq *lowest_rq = NULL;
07b4032c 1306 int tries;
4df64c0b 1307 int cpu;
e8fa1362 1308
07b4032c
GH
1309 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1310 cpu = find_lowest_rq(task);
1311
2de0b463 1312 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1313 break;
1314
07b4032c
GH
1315 lowest_rq = cpu_rq(cpu);
1316
e8fa1362 1317 /* if the prio of this runqueue changed, try again */
07b4032c 1318 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1319 /*
1320 * We had to unlock the run queue. In
1321 * the mean time, task could have
1322 * migrated already or had its affinity changed.
1323 * Also make sure that it wasn't scheduled on its rq.
1324 */
07b4032c 1325 if (unlikely(task_rq(task) != rq ||
96f874e2
RR
1326 !cpumask_test_cpu(lowest_rq->cpu,
1327 &task->cpus_allowed) ||
07b4032c 1328 task_running(rq, task) ||
fd2f4419 1329 !task->on_rq)) {
4df64c0b 1330
05fa785c 1331 raw_spin_unlock(&lowest_rq->lock);
e8fa1362
SR
1332 lowest_rq = NULL;
1333 break;
1334 }
1335 }
1336
1337 /* If this rq is still suitable use it. */
e864c499 1338 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1339 break;
1340
1341 /* try again */
1b12bbc7 1342 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1343 lowest_rq = NULL;
1344 }
1345
1346 return lowest_rq;
1347}
1348
917b627d
GH
1349static struct task_struct *pick_next_pushable_task(struct rq *rq)
1350{
1351 struct task_struct *p;
1352
1353 if (!has_pushable_tasks(rq))
1354 return NULL;
1355
1356 p = plist_first_entry(&rq->rt.pushable_tasks,
1357 struct task_struct, pushable_tasks);
1358
1359 BUG_ON(rq->cpu != task_cpu(p));
1360 BUG_ON(task_current(rq, p));
1361 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1362
fd2f4419 1363 BUG_ON(!p->on_rq);
917b627d
GH
1364 BUG_ON(!rt_task(p));
1365
1366 return p;
1367}
1368
e8fa1362
SR
1369/*
1370 * If the current CPU has more than one RT task, see if the non
1371 * running task can migrate over to a CPU that is running a task
1372 * of lesser priority.
1373 */
697f0a48 1374static int push_rt_task(struct rq *rq)
e8fa1362
SR
1375{
1376 struct task_struct *next_task;
1377 struct rq *lowest_rq;
311e800e 1378 int ret = 0;
e8fa1362 1379
a22d7fc1
GH
1380 if (!rq->rt.overloaded)
1381 return 0;
1382
917b627d 1383 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1384 if (!next_task)
1385 return 0;
1386
49246274 1387retry:
697f0a48 1388 if (unlikely(next_task == rq->curr)) {
f65eda4f 1389 WARN_ON(1);
e8fa1362 1390 return 0;
f65eda4f 1391 }
e8fa1362
SR
1392
1393 /*
1394 * It's possible that the next_task slipped in of
1395 * higher priority than current. If that's the case
1396 * just reschedule current.
1397 */
697f0a48
GH
1398 if (unlikely(next_task->prio < rq->curr->prio)) {
1399 resched_task(rq->curr);
e8fa1362
SR
1400 return 0;
1401 }
1402
697f0a48 1403 /* We might release rq lock */
e8fa1362
SR
1404 get_task_struct(next_task);
1405
1406 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1407 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1408 if (!lowest_rq) {
1409 struct task_struct *task;
1410 /*
311e800e 1411 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1412 * so it is possible that next_task has migrated.
1413 *
1414 * We need to make sure that the task is still on the same
1415 * run-queue and is also still the next task eligible for
1416 * pushing.
e8fa1362 1417 */
917b627d 1418 task = pick_next_pushable_task(rq);
1563513d
GH
1419 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1420 /*
311e800e
HD
1421 * The task hasn't migrated, and is still the next
1422 * eligible task, but we failed to find a run-queue
1423 * to push it to. Do not retry in this case, since
1424 * other cpus will pull from us when ready.
1563513d 1425 */
1563513d 1426 goto out;
e8fa1362 1427 }
917b627d 1428
1563513d
GH
1429 if (!task)
1430 /* No more tasks, just exit */
1431 goto out;
1432
917b627d 1433 /*
1563513d 1434 * Something has shifted, try again.
917b627d 1435 */
1563513d
GH
1436 put_task_struct(next_task);
1437 next_task = task;
1438 goto retry;
e8fa1362
SR
1439 }
1440
697f0a48 1441 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1442 set_task_cpu(next_task, lowest_rq->cpu);
1443 activate_task(lowest_rq, next_task, 0);
311e800e 1444 ret = 1;
e8fa1362
SR
1445
1446 resched_task(lowest_rq->curr);
1447
1b12bbc7 1448 double_unlock_balance(rq, lowest_rq);
e8fa1362 1449
e8fa1362
SR
1450out:
1451 put_task_struct(next_task);
1452
311e800e 1453 return ret;
e8fa1362
SR
1454}
1455
e8fa1362
SR
1456static void push_rt_tasks(struct rq *rq)
1457{
1458 /* push_rt_task will return true if it moved an RT */
1459 while (push_rt_task(rq))
1460 ;
1461}
1462
f65eda4f
SR
1463static int pull_rt_task(struct rq *this_rq)
1464{
80bf3171 1465 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1466 struct task_struct *p;
f65eda4f 1467 struct rq *src_rq;
f65eda4f 1468
637f5085 1469 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1470 return 0;
1471
c6c4927b 1472 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1473 if (this_cpu == cpu)
1474 continue;
1475
1476 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1477
1478 /*
1479 * Don't bother taking the src_rq->lock if the next highest
1480 * task is known to be lower-priority than our current task.
1481 * This may look racy, but if this value is about to go
1482 * logically higher, the src_rq will push this task away.
1483 * And if its going logically lower, we do not care
1484 */
1485 if (src_rq->rt.highest_prio.next >=
1486 this_rq->rt.highest_prio.curr)
1487 continue;
1488
f65eda4f
SR
1489 /*
1490 * We can potentially drop this_rq's lock in
1491 * double_lock_balance, and another CPU could
a8728944 1492 * alter this_rq
f65eda4f 1493 */
a8728944 1494 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1495
1496 /*
1497 * Are there still pullable RT tasks?
1498 */
614ee1f6
MG
1499 if (src_rq->rt.rt_nr_running <= 1)
1500 goto skip;
f65eda4f 1501
f65eda4f
SR
1502 p = pick_next_highest_task_rt(src_rq, this_cpu);
1503
1504 /*
1505 * Do we have an RT task that preempts
1506 * the to-be-scheduled task?
1507 */
a8728944 1508 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1509 WARN_ON(p == src_rq->curr);
fd2f4419 1510 WARN_ON(!p->on_rq);
f65eda4f
SR
1511
1512 /*
1513 * There's a chance that p is higher in priority
1514 * than what's currently running on its cpu.
1515 * This is just that p is wakeing up and hasn't
1516 * had a chance to schedule. We only pull
1517 * p if it is lower in priority than the
a8728944 1518 * current task on the run queue
f65eda4f 1519 */
a8728944 1520 if (p->prio < src_rq->curr->prio)
614ee1f6 1521 goto skip;
f65eda4f
SR
1522
1523 ret = 1;
1524
1525 deactivate_task(src_rq, p, 0);
1526 set_task_cpu(p, this_cpu);
1527 activate_task(this_rq, p, 0);
1528 /*
1529 * We continue with the search, just in
1530 * case there's an even higher prio task
25985edc 1531 * in another runqueue. (low likelihood
f65eda4f 1532 * but possible)
f65eda4f 1533 */
f65eda4f 1534 }
49246274 1535skip:
1b12bbc7 1536 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1537 }
1538
1539 return ret;
1540}
1541
9a897c5a 1542static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1543{
1544 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1545 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1546 pull_rt_task(rq);
1547}
1548
9a897c5a 1549static void post_schedule_rt(struct rq *rq)
e8fa1362 1550{
967fc046 1551 push_rt_tasks(rq);
e8fa1362
SR
1552}
1553
8ae121ac
GH
1554/*
1555 * If we are not running and we are not going to reschedule soon, we should
1556 * try to push tasks away now
1557 */
efbbd05a 1558static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1559{
9a897c5a 1560 if (!task_running(rq, p) &&
8ae121ac 1561 !test_tsk_need_resched(rq->curr) &&
917b627d 1562 has_pushable_tasks(rq) &&
b3bc211c 1563 p->rt.nr_cpus_allowed > 1 &&
43fa5460 1564 rt_task(rq->curr) &&
b3bc211c 1565 (rq->curr->rt.nr_cpus_allowed < 2 ||
3be209a8 1566 rq->curr->prio <= p->prio))
4642dafd
SR
1567 push_rt_tasks(rq);
1568}
1569
cd8ba7cd 1570static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1571 const struct cpumask *new_mask)
73fe6aae 1572{
96f874e2 1573 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1574
1575 BUG_ON(!rt_task(p));
1576
1577 /*
1578 * Update the migration status of the RQ if we have an RT task
1579 * which is running AND changing its weight value.
1580 */
fd2f4419 1581 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1582 struct rq *rq = task_rq(p);
1583
917b627d
GH
1584 if (!task_current(rq, p)) {
1585 /*
1586 * Make sure we dequeue this task from the pushable list
1587 * before going further. It will either remain off of
1588 * the list because we are no longer pushable, or it
1589 * will be requeued.
1590 */
1591 if (p->rt.nr_cpus_allowed > 1)
1592 dequeue_pushable_task(rq, p);
1593
1594 /*
1595 * Requeue if our weight is changing and still > 1
1596 */
1597 if (weight > 1)
1598 enqueue_pushable_task(rq, p);
1599
1600 }
1601
6f505b16 1602 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1603 rq->rt.rt_nr_migratory++;
6f505b16 1604 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1605 BUG_ON(!rq->rt.rt_nr_migratory);
1606 rq->rt.rt_nr_migratory--;
1607 }
1608
398a153b 1609 update_rt_migration(&rq->rt);
73fe6aae
GH
1610 }
1611
96f874e2 1612 cpumask_copy(&p->cpus_allowed, new_mask);
6f505b16 1613 p->rt.nr_cpus_allowed = weight;
73fe6aae 1614}
deeeccd4 1615
bdd7c81b 1616/* Assumes rq->lock is held */
1f11eb6a 1617static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1618{
1619 if (rq->rt.overloaded)
1620 rt_set_overload(rq);
6e0534f2 1621
7def2be1
PZ
1622 __enable_runtime(rq);
1623
e864c499 1624 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1625}
1626
1627/* Assumes rq->lock is held */
1f11eb6a 1628static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1629{
1630 if (rq->rt.overloaded)
1631 rt_clear_overload(rq);
6e0534f2 1632
7def2be1
PZ
1633 __disable_runtime(rq);
1634
6e0534f2 1635 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1636}
cb469845
SR
1637
1638/*
1639 * When switch from the rt queue, we bring ourselves to a position
1640 * that we might want to pull RT tasks from other runqueues.
1641 */
da7a735e 1642static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1643{
1644 /*
1645 * If there are other RT tasks then we will reschedule
1646 * and the scheduling of the other RT tasks will handle
1647 * the balancing. But if we are the last RT task
1648 * we may need to handle the pulling of RT tasks
1649 * now.
1650 */
fd2f4419 1651 if (p->on_rq && !rq->rt.rt_nr_running)
cb469845
SR
1652 pull_rt_task(rq);
1653}
3d8cbdf8
RR
1654
1655static inline void init_sched_rt_class(void)
1656{
1657 unsigned int i;
1658
1659 for_each_possible_cpu(i)
eaa95840 1660 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1661 GFP_KERNEL, cpu_to_node(i));
3d8cbdf8 1662}
cb469845
SR
1663#endif /* CONFIG_SMP */
1664
1665/*
1666 * When switching a task to RT, we may overload the runqueue
1667 * with RT tasks. In this case we try to push them off to
1668 * other runqueues.
1669 */
da7a735e 1670static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1671{
1672 int check_resched = 1;
1673
1674 /*
1675 * If we are already running, then there's nothing
1676 * that needs to be done. But if we are not running
1677 * we may need to preempt the current running task.
1678 * If that current running task is also an RT task
1679 * then see if we can move to another run queue.
1680 */
fd2f4419 1681 if (p->on_rq && rq->curr != p) {
cb469845
SR
1682#ifdef CONFIG_SMP
1683 if (rq->rt.overloaded && push_rt_task(rq) &&
1684 /* Don't resched if we changed runqueues */
1685 rq != task_rq(p))
1686 check_resched = 0;
1687#endif /* CONFIG_SMP */
1688 if (check_resched && p->prio < rq->curr->prio)
1689 resched_task(rq->curr);
1690 }
1691}
1692
1693/*
1694 * Priority of the task has changed. This may cause
1695 * us to initiate a push or pull.
1696 */
da7a735e
PZ
1697static void
1698prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1699{
fd2f4419 1700 if (!p->on_rq)
da7a735e
PZ
1701 return;
1702
1703 if (rq->curr == p) {
cb469845
SR
1704#ifdef CONFIG_SMP
1705 /*
1706 * If our priority decreases while running, we
1707 * may need to pull tasks to this runqueue.
1708 */
1709 if (oldprio < p->prio)
1710 pull_rt_task(rq);
1711 /*
1712 * If there's a higher priority task waiting to run
6fa46fa5
SR
1713 * then reschedule. Note, the above pull_rt_task
1714 * can release the rq lock and p could migrate.
1715 * Only reschedule if p is still on the same runqueue.
cb469845 1716 */
e864c499 1717 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1718 resched_task(p);
1719#else
1720 /* For UP simply resched on drop of prio */
1721 if (oldprio < p->prio)
1722 resched_task(p);
e8fa1362 1723#endif /* CONFIG_SMP */
cb469845
SR
1724 } else {
1725 /*
1726 * This task is not running, but if it is
1727 * greater than the current running task
1728 * then reschedule.
1729 */
1730 if (p->prio < rq->curr->prio)
1731 resched_task(rq->curr);
1732 }
1733}
1734
78f2c7db
PZ
1735static void watchdog(struct rq *rq, struct task_struct *p)
1736{
1737 unsigned long soft, hard;
1738
78d7d407
JS
1739 /* max may change after cur was read, this will be fixed next tick */
1740 soft = task_rlimit(p, RLIMIT_RTTIME);
1741 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1742
1743 if (soft != RLIM_INFINITY) {
1744 unsigned long next;
1745
1746 p->rt.timeout++;
1747 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1748 if (p->rt.timeout > next)
f06febc9 1749 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1750 }
1751}
bb44e5d1 1752
8f4d37ec 1753static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1754{
67e2be02
PZ
1755 update_curr_rt(rq);
1756
78f2c7db
PZ
1757 watchdog(rq, p);
1758
bb44e5d1
IM
1759 /*
1760 * RR tasks need a special form of timeslice management.
1761 * FIFO tasks have no timeslices.
1762 */
1763 if (p->policy != SCHED_RR)
1764 return;
1765
fa717060 1766 if (--p->rt.time_slice)
bb44e5d1
IM
1767 return;
1768
fa717060 1769 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1770
98fbc798
DA
1771 /*
1772 * Requeue to the end of queue if we are not the only element
1773 * on the queue:
1774 */
fa717060 1775 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1776 requeue_task_rt(rq, p, 0);
98fbc798
DA
1777 set_tsk_need_resched(p);
1778 }
bb44e5d1
IM
1779}
1780
83b699ed
SV
1781static void set_curr_task_rt(struct rq *rq)
1782{
1783 struct task_struct *p = rq->curr;
1784
305e6835 1785 p->se.exec_start = rq->clock_task;
917b627d
GH
1786
1787 /* The running task is never eligible for pushing */
1788 dequeue_pushable_task(rq, p);
83b699ed
SV
1789}
1790
6d686f45 1791static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1792{
1793 /*
1794 * Time slice is 0 for SCHED_FIFO tasks
1795 */
1796 if (task->policy == SCHED_RR)
1797 return DEF_TIMESLICE;
1798 else
1799 return 0;
1800}
1801
2abdad0a 1802static const struct sched_class rt_sched_class = {
5522d5d5 1803 .next = &fair_sched_class,
bb44e5d1
IM
1804 .enqueue_task = enqueue_task_rt,
1805 .dequeue_task = dequeue_task_rt,
1806 .yield_task = yield_task_rt,
1807
1808 .check_preempt_curr = check_preempt_curr_rt,
1809
1810 .pick_next_task = pick_next_task_rt,
1811 .put_prev_task = put_prev_task_rt,
1812
681f3e68 1813#ifdef CONFIG_SMP
4ce72a2c
LZ
1814 .select_task_rq = select_task_rq_rt,
1815
73fe6aae 1816 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1817 .rq_online = rq_online_rt,
1818 .rq_offline = rq_offline_rt,
9a897c5a
SR
1819 .pre_schedule = pre_schedule_rt,
1820 .post_schedule = post_schedule_rt,
efbbd05a 1821 .task_woken = task_woken_rt,
cb469845 1822 .switched_from = switched_from_rt,
681f3e68 1823#endif
bb44e5d1 1824
83b699ed 1825 .set_curr_task = set_curr_task_rt,
bb44e5d1 1826 .task_tick = task_tick_rt,
cb469845 1827
0d721cea
PW
1828 .get_rr_interval = get_rr_interval_rt,
1829
cb469845
SR
1830 .prio_changed = prio_changed_rt,
1831 .switched_to = switched_to_rt,
bb44e5d1 1832};
ada18de2
PZ
1833
1834#ifdef CONFIG_SCHED_DEBUG
1835extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1836
1837static void print_rt_stats(struct seq_file *m, int cpu)
1838{
ec514c48 1839 rt_rq_iter_t iter;
ada18de2
PZ
1840 struct rt_rq *rt_rq;
1841
1842 rcu_read_lock();
ec514c48 1843 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
1844 print_rt_rq(m, cpu, rt_rq);
1845 rcu_read_unlock();
1846}
55e12e5e 1847#endif /* CONFIG_SCHED_DEBUG */
This page took 0.418769 seconds and 5 git commands to generate.