sched: rework of "prioritize non-migratable tasks over migratable ones"
[deliverable/linux.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
637f5085 18 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085
GH
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
104{
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
6f505b16 110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7
PZ
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
d0b27fa7
PZ
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
55e12e5e 164#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
201{
202}
203
9f0c1e56 204static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
205{
206}
207
23b0fdfc
PZ
208static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209{
210 return rt_rq->rt_throttled;
211}
d0b27fa7
PZ
212
213static inline cpumask_t sched_rt_period_mask(void)
214{
215 return cpu_online_map;
216}
217
218static inline
219struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220{
221 return &cpu_rq(cpu)->rt;
222}
223
ac086bc2
PZ
224static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225{
226 return &def_rt_bandwidth;
227}
228
55e12e5e 229#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 230
ac086bc2 231#ifdef CONFIG_SMP
b79f3833 232static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
233{
234 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
235 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
236 int i, weight, more = 0;
237 u64 rt_period;
238
239 weight = cpus_weight(rd->span);
240
241 spin_lock(&rt_b->rt_runtime_lock);
242 rt_period = ktime_to_ns(rt_b->rt_period);
243 for_each_cpu_mask(i, rd->span) {
244 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
245 s64 diff;
246
247 if (iter == rt_rq)
248 continue;
249
250 spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
251 if (iter->rt_runtime == RUNTIME_INF)
252 goto next;
253
ac086bc2
PZ
254 diff = iter->rt_runtime - iter->rt_time;
255 if (diff > 0) {
256 do_div(diff, weight);
257 if (rt_rq->rt_runtime + diff > rt_period)
258 diff = rt_period - rt_rq->rt_runtime;
259 iter->rt_runtime -= diff;
260 rt_rq->rt_runtime += diff;
261 more = 1;
262 if (rt_rq->rt_runtime == rt_period) {
263 spin_unlock(&iter->rt_runtime_lock);
264 break;
265 }
266 }
7def2be1 267next:
ac086bc2
PZ
268 spin_unlock(&iter->rt_runtime_lock);
269 }
270 spin_unlock(&rt_b->rt_runtime_lock);
271
272 return more;
273}
7def2be1
PZ
274
275static void __disable_runtime(struct rq *rq)
276{
277 struct root_domain *rd = rq->rd;
278 struct rt_rq *rt_rq;
279
280 if (unlikely(!scheduler_running))
281 return;
282
283 for_each_leaf_rt_rq(rt_rq, rq) {
284 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
285 s64 want;
286 int i;
287
288 spin_lock(&rt_b->rt_runtime_lock);
289 spin_lock(&rt_rq->rt_runtime_lock);
290 if (rt_rq->rt_runtime == RUNTIME_INF ||
291 rt_rq->rt_runtime == rt_b->rt_runtime)
292 goto balanced;
293 spin_unlock(&rt_rq->rt_runtime_lock);
294
295 want = rt_b->rt_runtime - rt_rq->rt_runtime;
296
297 for_each_cpu_mask(i, rd->span) {
298 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
299 s64 diff;
300
301 if (iter == rt_rq)
302 continue;
303
304 spin_lock(&iter->rt_runtime_lock);
305 if (want > 0) {
306 diff = min_t(s64, iter->rt_runtime, want);
307 iter->rt_runtime -= diff;
308 want -= diff;
309 } else {
310 iter->rt_runtime -= want;
311 want -= want;
312 }
313 spin_unlock(&iter->rt_runtime_lock);
314
315 if (!want)
316 break;
317 }
318
319 spin_lock(&rt_rq->rt_runtime_lock);
320 BUG_ON(want);
321balanced:
322 rt_rq->rt_runtime = RUNTIME_INF;
323 spin_unlock(&rt_rq->rt_runtime_lock);
324 spin_unlock(&rt_b->rt_runtime_lock);
325 }
326}
327
328static void disable_runtime(struct rq *rq)
329{
330 unsigned long flags;
331
332 spin_lock_irqsave(&rq->lock, flags);
333 __disable_runtime(rq);
334 spin_unlock_irqrestore(&rq->lock, flags);
335}
336
337static void __enable_runtime(struct rq *rq)
338{
7def2be1
PZ
339 struct rt_rq *rt_rq;
340
341 if (unlikely(!scheduler_running))
342 return;
343
344 for_each_leaf_rt_rq(rt_rq, rq) {
345 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
346
347 spin_lock(&rt_b->rt_runtime_lock);
348 spin_lock(&rt_rq->rt_runtime_lock);
349 rt_rq->rt_runtime = rt_b->rt_runtime;
350 rt_rq->rt_time = 0;
351 spin_unlock(&rt_rq->rt_runtime_lock);
352 spin_unlock(&rt_b->rt_runtime_lock);
353 }
354}
355
356static void enable_runtime(struct rq *rq)
357{
358 unsigned long flags;
359
360 spin_lock_irqsave(&rq->lock, flags);
361 __enable_runtime(rq);
362 spin_unlock_irqrestore(&rq->lock, flags);
363}
364
eff6549b
PZ
365static int balance_runtime(struct rt_rq *rt_rq)
366{
367 int more = 0;
368
369 if (rt_rq->rt_time > rt_rq->rt_runtime) {
370 spin_unlock(&rt_rq->rt_runtime_lock);
371 more = do_balance_runtime(rt_rq);
372 spin_lock(&rt_rq->rt_runtime_lock);
373 }
374
375 return more;
376}
55e12e5e 377#else /* !CONFIG_SMP */
eff6549b
PZ
378static inline int balance_runtime(struct rt_rq *rt_rq)
379{
380 return 0;
381}
55e12e5e 382#endif /* CONFIG_SMP */
ac086bc2 383
eff6549b
PZ
384static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
385{
386 int i, idle = 1;
387 cpumask_t span;
388
389 if (rt_b->rt_runtime == RUNTIME_INF)
390 return 1;
391
392 span = sched_rt_period_mask();
393 for_each_cpu_mask(i, span) {
394 int enqueue = 0;
395 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
396 struct rq *rq = rq_of_rt_rq(rt_rq);
397
398 spin_lock(&rq->lock);
399 if (rt_rq->rt_time) {
400 u64 runtime;
401
402 spin_lock(&rt_rq->rt_runtime_lock);
403 if (rt_rq->rt_throttled)
404 balance_runtime(rt_rq);
405 runtime = rt_rq->rt_runtime;
406 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
407 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
408 rt_rq->rt_throttled = 0;
409 enqueue = 1;
410 }
411 if (rt_rq->rt_time || rt_rq->rt_nr_running)
412 idle = 0;
413 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
414 } else if (rt_rq->rt_nr_running)
415 idle = 0;
eff6549b
PZ
416
417 if (enqueue)
418 sched_rt_rq_enqueue(rt_rq);
419 spin_unlock(&rq->lock);
420 }
421
422 return idle;
423}
424
6f505b16
PZ
425static inline int rt_se_prio(struct sched_rt_entity *rt_se)
426{
052f1dc7 427#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
428 struct rt_rq *rt_rq = group_rt_rq(rt_se);
429
430 if (rt_rq)
431 return rt_rq->highest_prio;
432#endif
433
434 return rt_task_of(rt_se)->prio;
435}
436
9f0c1e56 437static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 438{
9f0c1e56 439 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 440
9f0c1e56 441 if (runtime == RUNTIME_INF)
fa85ae24
PZ
442 return 0;
443
444 if (rt_rq->rt_throttled)
23b0fdfc 445 return rt_rq_throttled(rt_rq);
fa85ae24 446
ac086bc2
PZ
447 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
448 return 0;
449
b79f3833
PZ
450 balance_runtime(rt_rq);
451 runtime = sched_rt_runtime(rt_rq);
452 if (runtime == RUNTIME_INF)
453 return 0;
ac086bc2 454
9f0c1e56 455 if (rt_rq->rt_time > runtime) {
6f505b16 456 rt_rq->rt_throttled = 1;
23b0fdfc 457 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 458 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
459 return 1;
460 }
fa85ae24
PZ
461 }
462
463 return 0;
464}
465
bb44e5d1
IM
466/*
467 * Update the current task's runtime statistics. Skip current tasks that
468 * are not in our scheduling class.
469 */
a9957449 470static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
471{
472 struct task_struct *curr = rq->curr;
6f505b16
PZ
473 struct sched_rt_entity *rt_se = &curr->rt;
474 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
475 u64 delta_exec;
476
477 if (!task_has_rt_policy(curr))
478 return;
479
d281918d 480 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
481 if (unlikely((s64)delta_exec < 0))
482 delta_exec = 0;
6cfb0d5d
IM
483
484 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
485
486 curr->se.sum_exec_runtime += delta_exec;
d281918d 487 curr->se.exec_start = rq->clock;
d842de87 488 cpuacct_charge(curr, delta_exec);
fa85ae24 489
354d60c2
DG
490 for_each_sched_rt_entity(rt_se) {
491 rt_rq = rt_rq_of_se(rt_se);
492
493 spin_lock(&rt_rq->rt_runtime_lock);
494 rt_rq->rt_time += delta_exec;
495 if (sched_rt_runtime_exceeded(rt_rq))
496 resched_task(curr);
497 spin_unlock(&rt_rq->rt_runtime_lock);
498 }
bb44e5d1
IM
499}
500
6f505b16
PZ
501static inline
502void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 503{
6f505b16
PZ
504 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
505 rt_rq->rt_nr_running++;
052f1dc7 506#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2
GH
507 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
508 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 509
1100ac91
IM
510 rt_rq->highest_prio = rt_se_prio(rt_se);
511#ifdef CONFIG_SMP
1f11eb6a
GH
512 if (rq->online)
513 cpupri_set(&rq->rd->cpupri, rq->cpu,
514 rt_se_prio(rt_se));
1100ac91 515#endif
6e0534f2 516 }
6f505b16 517#endif
764a9d6f 518#ifdef CONFIG_SMP
6f505b16
PZ
519 if (rt_se->nr_cpus_allowed > 1) {
520 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 521
73fe6aae 522 rq->rt.rt_nr_migratory++;
6f505b16 523 }
73fe6aae 524
6f505b16
PZ
525 update_rt_migration(rq_of_rt_rq(rt_rq));
526#endif
052f1dc7 527#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
528 if (rt_se_boosted(rt_se))
529 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
530
531 if (rt_rq->tg)
532 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
533#else
534 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 535#endif
63489e45
SR
536}
537
6f505b16
PZ
538static inline
539void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 540{
6e0534f2
GH
541#ifdef CONFIG_SMP
542 int highest_prio = rt_rq->highest_prio;
543#endif
544
6f505b16
PZ
545 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
546 WARN_ON(!rt_rq->rt_nr_running);
547 rt_rq->rt_nr_running--;
052f1dc7 548#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 549 if (rt_rq->rt_nr_running) {
764a9d6f
SR
550 struct rt_prio_array *array;
551
6f505b16
PZ
552 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
553 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 554 /* recalculate */
6f505b16
PZ
555 array = &rt_rq->active;
556 rt_rq->highest_prio =
764a9d6f
SR
557 sched_find_first_bit(array->bitmap);
558 } /* otherwise leave rq->highest prio alone */
559 } else
6f505b16
PZ
560 rt_rq->highest_prio = MAX_RT_PRIO;
561#endif
562#ifdef CONFIG_SMP
563 if (rt_se->nr_cpus_allowed > 1) {
564 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 565 rq->rt.rt_nr_migratory--;
6f505b16 566 }
73fe6aae 567
6e0534f2
GH
568 if (rt_rq->highest_prio != highest_prio) {
569 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
570
571 if (rq->online)
572 cpupri_set(&rq->rd->cpupri, rq->cpu,
573 rt_rq->highest_prio);
6e0534f2
GH
574 }
575
6f505b16 576 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 577#endif /* CONFIG_SMP */
052f1dc7 578#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
579 if (rt_se_boosted(rt_se))
580 rt_rq->rt_nr_boosted--;
581
582 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
583#endif
63489e45
SR
584}
585
ad2a3f13 586static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 587{
6f505b16
PZ
588 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
589 struct rt_prio_array *array = &rt_rq->active;
590 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 591 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 592
ad2a3f13
PZ
593 /*
594 * Don't enqueue the group if its throttled, or when empty.
595 * The latter is a consequence of the former when a child group
596 * get throttled and the current group doesn't have any other
597 * active members.
598 */
599 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 600 return;
63489e45 601
7ebefa8c 602 list_add_tail(&rt_se->run_list, queue);
6f505b16 603 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 604
6f505b16
PZ
605 inc_rt_tasks(rt_se, rt_rq);
606}
607
ad2a3f13 608static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
609{
610 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
611 struct rt_prio_array *array = &rt_rq->active;
612
613 list_del_init(&rt_se->run_list);
20b6331b 614 if (list_empty(array->queue + rt_se_prio(rt_se)))
6f505b16
PZ
615 __clear_bit(rt_se_prio(rt_se), array->bitmap);
616
617 dec_rt_tasks(rt_se, rt_rq);
618}
619
620/*
621 * Because the prio of an upper entry depends on the lower
622 * entries, we must remove entries top - down.
6f505b16 623 */
ad2a3f13 624static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 625{
ad2a3f13 626 struct sched_rt_entity *back = NULL;
6f505b16 627
58d6c2d7
PZ
628 for_each_sched_rt_entity(rt_se) {
629 rt_se->back = back;
630 back = rt_se;
631 }
632
633 for (rt_se = back; rt_se; rt_se = rt_se->back) {
634 if (on_rt_rq(rt_se))
ad2a3f13
PZ
635 __dequeue_rt_entity(rt_se);
636 }
637}
638
639static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
640{
641 dequeue_rt_stack(rt_se);
642 for_each_sched_rt_entity(rt_se)
643 __enqueue_rt_entity(rt_se);
644}
645
646static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
647{
648 dequeue_rt_stack(rt_se);
649
650 for_each_sched_rt_entity(rt_se) {
651 struct rt_rq *rt_rq = group_rt_rq(rt_se);
652
653 if (rt_rq && rt_rq->rt_nr_running)
654 __enqueue_rt_entity(rt_se);
58d6c2d7 655 }
bb44e5d1
IM
656}
657
658/*
659 * Adding/removing a task to/from a priority array:
660 */
6f505b16
PZ
661static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
662{
663 struct sched_rt_entity *rt_se = &p->rt;
664
665 if (wakeup)
666 rt_se->timeout = 0;
667
ad2a3f13 668 enqueue_rt_entity(rt_se);
c09595f6
PZ
669
670 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
671}
672
f02231e5 673static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 674{
6f505b16 675 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 676
f1e14ef6 677 update_curr_rt(rq);
ad2a3f13 678 dequeue_rt_entity(rt_se);
c09595f6
PZ
679
680 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
681}
682
683/*
684 * Put task to the end of the run list without the overhead of dequeue
685 * followed by enqueue.
686 */
7ebefa8c
DA
687static void
688requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 689{
1cdad715 690 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
691 struct rt_prio_array *array = &rt_rq->active;
692 struct list_head *queue = array->queue + rt_se_prio(rt_se);
693
694 if (head)
695 list_move(&rt_se->run_list, queue);
696 else
697 list_move_tail(&rt_se->run_list, queue);
1cdad715 698 }
6f505b16
PZ
699}
700
7ebefa8c 701static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 702{
6f505b16
PZ
703 struct sched_rt_entity *rt_se = &p->rt;
704 struct rt_rq *rt_rq;
bb44e5d1 705
6f505b16
PZ
706 for_each_sched_rt_entity(rt_se) {
707 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 708 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 709 }
bb44e5d1
IM
710}
711
6f505b16 712static void yield_task_rt(struct rq *rq)
bb44e5d1 713{
7ebefa8c 714 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
715}
716
e7693a36 717#ifdef CONFIG_SMP
318e0893
GH
718static int find_lowest_rq(struct task_struct *task);
719
e7693a36
GH
720static int select_task_rq_rt(struct task_struct *p, int sync)
721{
318e0893
GH
722 struct rq *rq = task_rq(p);
723
724 /*
e1f47d89
SR
725 * If the current task is an RT task, then
726 * try to see if we can wake this RT task up on another
727 * runqueue. Otherwise simply start this RT task
728 * on its current runqueue.
729 *
730 * We want to avoid overloading runqueues. Even if
731 * the RT task is of higher priority than the current RT task.
732 * RT tasks behave differently than other tasks. If
733 * one gets preempted, we try to push it off to another queue.
734 * So trying to keep a preempting RT task on the same
735 * cache hot CPU will force the running RT task to
736 * a cold CPU. So we waste all the cache for the lower
737 * RT task in hopes of saving some of a RT task
738 * that is just being woken and probably will have
739 * cold cache anyway.
318e0893 740 */
17b3279b 741 if (unlikely(rt_task(rq->curr)) &&
6f505b16 742 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
743 int cpu = find_lowest_rq(p);
744
745 return (cpu == -1) ? task_cpu(p) : cpu;
746 }
747
748 /*
749 * Otherwise, just let it ride on the affined RQ and the
750 * post-schedule router will push the preempted task away
751 */
e7693a36
GH
752 return task_cpu(p);
753}
7ebefa8c
DA
754
755static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
756{
757 cpumask_t mask;
758
759 if (rq->curr->rt.nr_cpus_allowed == 1)
760 return;
761
762 if (p->rt.nr_cpus_allowed != 1
763 && cpupri_find(&rq->rd->cpupri, p, &mask))
764 return;
765
766 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
767 return;
768
769 /*
770 * There appears to be other cpus that can accept
771 * current and none to run 'p', so lets reschedule
772 * to try and push current away:
773 */
774 requeue_task_rt(rq, p, 1);
775 resched_task(rq->curr);
776}
777
e7693a36
GH
778#endif /* CONFIG_SMP */
779
bb44e5d1
IM
780/*
781 * Preempt the current task with a newly woken task if needed:
782 */
783static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
784{
45c01e82 785 if (p->prio < rq->curr->prio) {
bb44e5d1 786 resched_task(rq->curr);
45c01e82
GH
787 return;
788 }
789
790#ifdef CONFIG_SMP
791 /*
792 * If:
793 *
794 * - the newly woken task is of equal priority to the current task
795 * - the newly woken task is non-migratable while current is migratable
796 * - current will be preempted on the next reschedule
797 *
798 * we should check to see if current can readily move to a different
799 * cpu. If so, we will reschedule to allow the push logic to try
800 * to move current somewhere else, making room for our non-migratable
801 * task.
802 */
7ebefa8c
DA
803 if (p->prio == rq->curr->prio && !need_resched())
804 check_preempt_equal_prio(rq, p);
45c01e82 805#endif
bb44e5d1
IM
806}
807
6f505b16
PZ
808static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
809 struct rt_rq *rt_rq)
bb44e5d1 810{
6f505b16
PZ
811 struct rt_prio_array *array = &rt_rq->active;
812 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
813 struct list_head *queue;
814 int idx;
815
816 idx = sched_find_first_bit(array->bitmap);
6f505b16 817 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1 818
20b6331b
DA
819 queue = array->queue + idx;
820 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 821
6f505b16
PZ
822 return next;
823}
bb44e5d1 824
6f505b16
PZ
825static struct task_struct *pick_next_task_rt(struct rq *rq)
826{
827 struct sched_rt_entity *rt_se;
828 struct task_struct *p;
829 struct rt_rq *rt_rq;
bb44e5d1 830
6f505b16
PZ
831 rt_rq = &rq->rt;
832
833 if (unlikely(!rt_rq->rt_nr_running))
834 return NULL;
835
23b0fdfc 836 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
837 return NULL;
838
839 do {
840 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 841 BUG_ON(!rt_se);
6f505b16
PZ
842 rt_rq = group_rt_rq(rt_se);
843 } while (rt_rq);
844
845 p = rt_task_of(rt_se);
846 p->se.exec_start = rq->clock;
847 return p;
bb44e5d1
IM
848}
849
31ee529c 850static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 851{
f1e14ef6 852 update_curr_rt(rq);
bb44e5d1
IM
853 p->se.exec_start = 0;
854}
855
681f3e68 856#ifdef CONFIG_SMP
6f505b16 857
e8fa1362
SR
858/* Only try algorithms three times */
859#define RT_MAX_TRIES 3
860
861static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
862static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
863
f65eda4f
SR
864static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
865{
866 if (!task_running(rq, p) &&
73fe6aae 867 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 868 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
869 return 1;
870 return 0;
871}
872
e8fa1362 873/* Return the second highest RT task, NULL otherwise */
79064fbf 874static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 875{
6f505b16
PZ
876 struct task_struct *next = NULL;
877 struct sched_rt_entity *rt_se;
878 struct rt_prio_array *array;
879 struct rt_rq *rt_rq;
e8fa1362
SR
880 int idx;
881
6f505b16
PZ
882 for_each_leaf_rt_rq(rt_rq, rq) {
883 array = &rt_rq->active;
884 idx = sched_find_first_bit(array->bitmap);
885 next_idx:
886 if (idx >= MAX_RT_PRIO)
887 continue;
888 if (next && next->prio < idx)
889 continue;
20b6331b 890 list_for_each_entry(rt_se, array->queue + idx, run_list) {
6f505b16
PZ
891 struct task_struct *p = rt_task_of(rt_se);
892 if (pick_rt_task(rq, p, cpu)) {
893 next = p;
894 break;
895 }
896 }
897 if (!next) {
898 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
899 goto next_idx;
900 }
f65eda4f
SR
901 }
902
e8fa1362
SR
903 return next;
904}
905
906static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
907
6e1254d2
GH
908static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
909{
910 int first;
911
912 /* "this_cpu" is cheaper to preempt than a remote processor */
913 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
914 return this_cpu;
915
916 first = first_cpu(*mask);
917 if (first != NR_CPUS)
918 return first;
919
920 return -1;
921}
922
923static int find_lowest_rq(struct task_struct *task)
924{
925 struct sched_domain *sd;
926 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
927 int this_cpu = smp_processor_id();
928 int cpu = task_cpu(task);
06f90dbd 929
6e0534f2
GH
930 if (task->rt.nr_cpus_allowed == 1)
931 return -1; /* No other targets possible */
6e1254d2 932
6e0534f2
GH
933 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
934 return -1; /* No targets found */
6e1254d2
GH
935
936 /*
937 * At this point we have built a mask of cpus representing the
938 * lowest priority tasks in the system. Now we want to elect
939 * the best one based on our affinity and topology.
940 *
941 * We prioritize the last cpu that the task executed on since
942 * it is most likely cache-hot in that location.
943 */
944 if (cpu_isset(cpu, *lowest_mask))
945 return cpu;
946
947 /*
948 * Otherwise, we consult the sched_domains span maps to figure
949 * out which cpu is logically closest to our hot cache data.
950 */
951 if (this_cpu == cpu)
952 this_cpu = -1; /* Skip this_cpu opt if the same */
953
954 for_each_domain(cpu, sd) {
955 if (sd->flags & SD_WAKE_AFFINE) {
956 cpumask_t domain_mask;
957 int best_cpu;
958
959 cpus_and(domain_mask, sd->span, *lowest_mask);
960
961 best_cpu = pick_optimal_cpu(this_cpu,
962 &domain_mask);
963 if (best_cpu != -1)
964 return best_cpu;
965 }
966 }
967
968 /*
969 * And finally, if there were no matches within the domains
970 * just give the caller *something* to work with from the compatible
971 * locations.
972 */
973 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
974}
975
976/* Will lock the rq it finds */
4df64c0b 977static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
978{
979 struct rq *lowest_rq = NULL;
07b4032c 980 int tries;
4df64c0b 981 int cpu;
e8fa1362 982
07b4032c
GH
983 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
984 cpu = find_lowest_rq(task);
985
2de0b463 986 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
987 break;
988
07b4032c
GH
989 lowest_rq = cpu_rq(cpu);
990
e8fa1362 991 /* if the prio of this runqueue changed, try again */
07b4032c 992 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
993 /*
994 * We had to unlock the run queue. In
995 * the mean time, task could have
996 * migrated already or had its affinity changed.
997 * Also make sure that it wasn't scheduled on its rq.
998 */
07b4032c 999 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
1000 !cpu_isset(lowest_rq->cpu,
1001 task->cpus_allowed) ||
07b4032c 1002 task_running(rq, task) ||
e8fa1362 1003 !task->se.on_rq)) {
4df64c0b 1004
e8fa1362
SR
1005 spin_unlock(&lowest_rq->lock);
1006 lowest_rq = NULL;
1007 break;
1008 }
1009 }
1010
1011 /* If this rq is still suitable use it. */
1012 if (lowest_rq->rt.highest_prio > task->prio)
1013 break;
1014
1015 /* try again */
1016 spin_unlock(&lowest_rq->lock);
1017 lowest_rq = NULL;
1018 }
1019
1020 return lowest_rq;
1021}
1022
1023/*
1024 * If the current CPU has more than one RT task, see if the non
1025 * running task can migrate over to a CPU that is running a task
1026 * of lesser priority.
1027 */
697f0a48 1028static int push_rt_task(struct rq *rq)
e8fa1362
SR
1029{
1030 struct task_struct *next_task;
1031 struct rq *lowest_rq;
1032 int ret = 0;
1033 int paranoid = RT_MAX_TRIES;
1034
a22d7fc1
GH
1035 if (!rq->rt.overloaded)
1036 return 0;
1037
697f0a48 1038 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1039 if (!next_task)
1040 return 0;
1041
1042 retry:
697f0a48 1043 if (unlikely(next_task == rq->curr)) {
f65eda4f 1044 WARN_ON(1);
e8fa1362 1045 return 0;
f65eda4f 1046 }
e8fa1362
SR
1047
1048 /*
1049 * It's possible that the next_task slipped in of
1050 * higher priority than current. If that's the case
1051 * just reschedule current.
1052 */
697f0a48
GH
1053 if (unlikely(next_task->prio < rq->curr->prio)) {
1054 resched_task(rq->curr);
e8fa1362
SR
1055 return 0;
1056 }
1057
697f0a48 1058 /* We might release rq lock */
e8fa1362
SR
1059 get_task_struct(next_task);
1060
1061 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1062 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1063 if (!lowest_rq) {
1064 struct task_struct *task;
1065 /*
697f0a48 1066 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1067 * so it is possible that next_task has changed.
1068 * If it has, then try again.
1069 */
697f0a48 1070 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1071 if (unlikely(task != next_task) && task && paranoid--) {
1072 put_task_struct(next_task);
1073 next_task = task;
1074 goto retry;
1075 }
1076 goto out;
1077 }
1078
697f0a48 1079 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1080 set_task_cpu(next_task, lowest_rq->cpu);
1081 activate_task(lowest_rq, next_task, 0);
1082
1083 resched_task(lowest_rq->curr);
1084
1085 spin_unlock(&lowest_rq->lock);
1086
1087 ret = 1;
1088out:
1089 put_task_struct(next_task);
1090
1091 return ret;
1092}
1093
1094/*
1095 * TODO: Currently we just use the second highest prio task on
1096 * the queue, and stop when it can't migrate (or there's
1097 * no more RT tasks). There may be a case where a lower
1098 * priority RT task has a different affinity than the
1099 * higher RT task. In this case the lower RT task could
1100 * possibly be able to migrate where as the higher priority
1101 * RT task could not. We currently ignore this issue.
1102 * Enhancements are welcome!
1103 */
1104static void push_rt_tasks(struct rq *rq)
1105{
1106 /* push_rt_task will return true if it moved an RT */
1107 while (push_rt_task(rq))
1108 ;
1109}
1110
f65eda4f
SR
1111static int pull_rt_task(struct rq *this_rq)
1112{
80bf3171
IM
1113 int this_cpu = this_rq->cpu, ret = 0, cpu;
1114 struct task_struct *p, *next;
f65eda4f 1115 struct rq *src_rq;
f65eda4f 1116
637f5085 1117 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1118 return 0;
1119
1120 next = pick_next_task_rt(this_rq);
1121
637f5085 1122 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1123 if (this_cpu == cpu)
1124 continue;
1125
1126 src_rq = cpu_rq(cpu);
f65eda4f
SR
1127 /*
1128 * We can potentially drop this_rq's lock in
1129 * double_lock_balance, and another CPU could
1130 * steal our next task - hence we must cause
1131 * the caller to recalculate the next task
1132 * in that case:
1133 */
1134 if (double_lock_balance(this_rq, src_rq)) {
1135 struct task_struct *old_next = next;
80bf3171 1136
f65eda4f
SR
1137 next = pick_next_task_rt(this_rq);
1138 if (next != old_next)
1139 ret = 1;
1140 }
1141
1142 /*
1143 * Are there still pullable RT tasks?
1144 */
614ee1f6
MG
1145 if (src_rq->rt.rt_nr_running <= 1)
1146 goto skip;
f65eda4f 1147
f65eda4f
SR
1148 p = pick_next_highest_task_rt(src_rq, this_cpu);
1149
1150 /*
1151 * Do we have an RT task that preempts
1152 * the to-be-scheduled task?
1153 */
1154 if (p && (!next || (p->prio < next->prio))) {
1155 WARN_ON(p == src_rq->curr);
1156 WARN_ON(!p->se.on_rq);
1157
1158 /*
1159 * There's a chance that p is higher in priority
1160 * than what's currently running on its cpu.
1161 * This is just that p is wakeing up and hasn't
1162 * had a chance to schedule. We only pull
1163 * p if it is lower in priority than the
1164 * current task on the run queue or
1165 * this_rq next task is lower in prio than
1166 * the current task on that rq.
1167 */
1168 if (p->prio < src_rq->curr->prio ||
1169 (next && next->prio < src_rq->curr->prio))
614ee1f6 1170 goto skip;
f65eda4f
SR
1171
1172 ret = 1;
1173
1174 deactivate_task(src_rq, p, 0);
1175 set_task_cpu(p, this_cpu);
1176 activate_task(this_rq, p, 0);
1177 /*
1178 * We continue with the search, just in
1179 * case there's an even higher prio task
1180 * in another runqueue. (low likelyhood
1181 * but possible)
80bf3171 1182 *
f65eda4f
SR
1183 * Update next so that we won't pick a task
1184 * on another cpu with a priority lower (or equal)
1185 * than the one we just picked.
1186 */
1187 next = p;
1188
1189 }
614ee1f6 1190 skip:
f65eda4f
SR
1191 spin_unlock(&src_rq->lock);
1192 }
1193
1194 return ret;
1195}
1196
9a897c5a 1197static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1198{
1199 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1200 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1201 pull_rt_task(rq);
1202}
1203
9a897c5a 1204static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1205{
1206 /*
1207 * If we have more than one rt_task queued, then
1208 * see if we can push the other rt_tasks off to other CPUS.
1209 * Note we may release the rq lock, and since
1210 * the lock was owned by prev, we need to release it
1211 * first via finish_lock_switch and then reaquire it here.
1212 */
a22d7fc1 1213 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1214 spin_lock_irq(&rq->lock);
1215 push_rt_tasks(rq);
1216 spin_unlock_irq(&rq->lock);
1217 }
1218}
1219
8ae121ac
GH
1220/*
1221 * If we are not running and we are not going to reschedule soon, we should
1222 * try to push tasks away now
1223 */
9a897c5a 1224static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1225{
9a897c5a 1226 if (!task_running(rq, p) &&
8ae121ac 1227 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1228 rq->rt.overloaded)
4642dafd
SR
1229 push_rt_tasks(rq);
1230}
1231
43010659 1232static unsigned long
bb44e5d1 1233load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1234 unsigned long max_load_move,
1235 struct sched_domain *sd, enum cpu_idle_type idle,
1236 int *all_pinned, int *this_best_prio)
bb44e5d1 1237{
c7a1e46a
SR
1238 /* don't touch RT tasks */
1239 return 0;
e1d1484f
PW
1240}
1241
1242static int
1243move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1244 struct sched_domain *sd, enum cpu_idle_type idle)
1245{
c7a1e46a
SR
1246 /* don't touch RT tasks */
1247 return 0;
bb44e5d1 1248}
deeeccd4 1249
cd8ba7cd
MT
1250static void set_cpus_allowed_rt(struct task_struct *p,
1251 const cpumask_t *new_mask)
73fe6aae
GH
1252{
1253 int weight = cpus_weight(*new_mask);
1254
1255 BUG_ON(!rt_task(p));
1256
1257 /*
1258 * Update the migration status of the RQ if we have an RT task
1259 * which is running AND changing its weight value.
1260 */
6f505b16 1261 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1262 struct rq *rq = task_rq(p);
1263
6f505b16 1264 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1265 rq->rt.rt_nr_migratory++;
6f505b16 1266 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1267 BUG_ON(!rq->rt.rt_nr_migratory);
1268 rq->rt.rt_nr_migratory--;
1269 }
1270
1271 update_rt_migration(rq);
1272 }
1273
1274 p->cpus_allowed = *new_mask;
6f505b16 1275 p->rt.nr_cpus_allowed = weight;
73fe6aae 1276}
deeeccd4 1277
bdd7c81b 1278/* Assumes rq->lock is held */
1f11eb6a 1279static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1280{
1281 if (rq->rt.overloaded)
1282 rt_set_overload(rq);
6e0534f2 1283
7def2be1
PZ
1284 __enable_runtime(rq);
1285
6e0534f2 1286 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1287}
1288
1289/* Assumes rq->lock is held */
1f11eb6a 1290static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1291{
1292 if (rq->rt.overloaded)
1293 rt_clear_overload(rq);
6e0534f2 1294
7def2be1
PZ
1295 __disable_runtime(rq);
1296
6e0534f2 1297 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1298}
cb469845
SR
1299
1300/*
1301 * When switch from the rt queue, we bring ourselves to a position
1302 * that we might want to pull RT tasks from other runqueues.
1303 */
1304static void switched_from_rt(struct rq *rq, struct task_struct *p,
1305 int running)
1306{
1307 /*
1308 * If there are other RT tasks then we will reschedule
1309 * and the scheduling of the other RT tasks will handle
1310 * the balancing. But if we are the last RT task
1311 * we may need to handle the pulling of RT tasks
1312 * now.
1313 */
1314 if (!rq->rt.rt_nr_running)
1315 pull_rt_task(rq);
1316}
1317#endif /* CONFIG_SMP */
1318
1319/*
1320 * When switching a task to RT, we may overload the runqueue
1321 * with RT tasks. In this case we try to push them off to
1322 * other runqueues.
1323 */
1324static void switched_to_rt(struct rq *rq, struct task_struct *p,
1325 int running)
1326{
1327 int check_resched = 1;
1328
1329 /*
1330 * If we are already running, then there's nothing
1331 * that needs to be done. But if we are not running
1332 * we may need to preempt the current running task.
1333 * If that current running task is also an RT task
1334 * then see if we can move to another run queue.
1335 */
1336 if (!running) {
1337#ifdef CONFIG_SMP
1338 if (rq->rt.overloaded && push_rt_task(rq) &&
1339 /* Don't resched if we changed runqueues */
1340 rq != task_rq(p))
1341 check_resched = 0;
1342#endif /* CONFIG_SMP */
1343 if (check_resched && p->prio < rq->curr->prio)
1344 resched_task(rq->curr);
1345 }
1346}
1347
1348/*
1349 * Priority of the task has changed. This may cause
1350 * us to initiate a push or pull.
1351 */
1352static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1353 int oldprio, int running)
1354{
1355 if (running) {
1356#ifdef CONFIG_SMP
1357 /*
1358 * If our priority decreases while running, we
1359 * may need to pull tasks to this runqueue.
1360 */
1361 if (oldprio < p->prio)
1362 pull_rt_task(rq);
1363 /*
1364 * If there's a higher priority task waiting to run
6fa46fa5
SR
1365 * then reschedule. Note, the above pull_rt_task
1366 * can release the rq lock and p could migrate.
1367 * Only reschedule if p is still on the same runqueue.
cb469845 1368 */
6fa46fa5 1369 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1370 resched_task(p);
1371#else
1372 /* For UP simply resched on drop of prio */
1373 if (oldprio < p->prio)
1374 resched_task(p);
e8fa1362 1375#endif /* CONFIG_SMP */
cb469845
SR
1376 } else {
1377 /*
1378 * This task is not running, but if it is
1379 * greater than the current running task
1380 * then reschedule.
1381 */
1382 if (p->prio < rq->curr->prio)
1383 resched_task(rq->curr);
1384 }
1385}
1386
78f2c7db
PZ
1387static void watchdog(struct rq *rq, struct task_struct *p)
1388{
1389 unsigned long soft, hard;
1390
1391 if (!p->signal)
1392 return;
1393
1394 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1395 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1396
1397 if (soft != RLIM_INFINITY) {
1398 unsigned long next;
1399
1400 p->rt.timeout++;
1401 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1402 if (p->rt.timeout > next)
78f2c7db
PZ
1403 p->it_sched_expires = p->se.sum_exec_runtime;
1404 }
1405}
bb44e5d1 1406
8f4d37ec 1407static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1408{
67e2be02
PZ
1409 update_curr_rt(rq);
1410
78f2c7db
PZ
1411 watchdog(rq, p);
1412
bb44e5d1
IM
1413 /*
1414 * RR tasks need a special form of timeslice management.
1415 * FIFO tasks have no timeslices.
1416 */
1417 if (p->policy != SCHED_RR)
1418 return;
1419
fa717060 1420 if (--p->rt.time_slice)
bb44e5d1
IM
1421 return;
1422
fa717060 1423 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1424
98fbc798
DA
1425 /*
1426 * Requeue to the end of queue if we are not the only element
1427 * on the queue:
1428 */
fa717060 1429 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1430 requeue_task_rt(rq, p, 0);
98fbc798
DA
1431 set_tsk_need_resched(p);
1432 }
bb44e5d1
IM
1433}
1434
83b699ed
SV
1435static void set_curr_task_rt(struct rq *rq)
1436{
1437 struct task_struct *p = rq->curr;
1438
1439 p->se.exec_start = rq->clock;
1440}
1441
2abdad0a 1442static const struct sched_class rt_sched_class = {
5522d5d5 1443 .next = &fair_sched_class,
bb44e5d1
IM
1444 .enqueue_task = enqueue_task_rt,
1445 .dequeue_task = dequeue_task_rt,
1446 .yield_task = yield_task_rt,
e7693a36
GH
1447#ifdef CONFIG_SMP
1448 .select_task_rq = select_task_rq_rt,
1449#endif /* CONFIG_SMP */
bb44e5d1
IM
1450
1451 .check_preempt_curr = check_preempt_curr_rt,
1452
1453 .pick_next_task = pick_next_task_rt,
1454 .put_prev_task = put_prev_task_rt,
1455
681f3e68 1456#ifdef CONFIG_SMP
bb44e5d1 1457 .load_balance = load_balance_rt,
e1d1484f 1458 .move_one_task = move_one_task_rt,
73fe6aae 1459 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1460 .rq_online = rq_online_rt,
1461 .rq_offline = rq_offline_rt,
9a897c5a
SR
1462 .pre_schedule = pre_schedule_rt,
1463 .post_schedule = post_schedule_rt,
1464 .task_wake_up = task_wake_up_rt,
cb469845 1465 .switched_from = switched_from_rt,
681f3e68 1466#endif
bb44e5d1 1467
83b699ed 1468 .set_curr_task = set_curr_task_rt,
bb44e5d1 1469 .task_tick = task_tick_rt,
cb469845
SR
1470
1471 .prio_changed = prio_changed_rt,
1472 .switched_to = switched_to_rt,
bb44e5d1 1473};
ada18de2
PZ
1474
1475#ifdef CONFIG_SCHED_DEBUG
1476extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1477
1478static void print_rt_stats(struct seq_file *m, int cpu)
1479{
1480 struct rt_rq *rt_rq;
1481
1482 rcu_read_lock();
1483 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1484 print_rt_rq(m, cpu, rt_rq);
1485 rcu_read_unlock();
1486}
55e12e5e 1487#endif /* CONFIG_SCHED_DEBUG */
This page took 0.264842 seconds and 5 git commands to generate.