net: l2tp: Make l2tp_ip6 namespace aware
[deliverable/linux.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
eea08f32 50#include <linux/timer.h>
b0f8c44f 51#include <linux/freezer.h>
c0a31329
TG
52
53#include <asm/uaccess.h>
54
c6a2a177
XG
55#include <trace/events/timer.h>
56
c1797baf 57#include "tick-internal.h"
8b094cd0 58
c0a31329
TG
59/*
60 * The timer bases:
7978672c 61 *
571af55a 62 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 66 */
54cdfdb4 67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 68{
84cc8fd2 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
887d9dc9 70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
3c8aa39d 71 .clock_base =
c0a31329 72 {
3c8aa39d 73 {
ab8177bc
TG
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
3c8aa39d 76 .get_time = &ktime_get,
3c8aa39d 77 },
68fa61c0
TG
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
68fa61c0 82 },
70a08cca 83 {
ab8177bc
TG
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
70a08cca 86 .get_time = &ktime_get_boottime,
70a08cca 87 },
90adda98
JS
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
90adda98 92 },
3c8aa39d 93 }
c0a31329
TG
94};
95
942c3c5c 96static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 100 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 101};
e06383db
JS
102
103static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104{
105 return hrtimer_clock_to_base_table[clock_id];
106}
107
c0a31329
TG
108/*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112#ifdef CONFIG_SMP
113
887d9dc9
PZ
114/*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119static struct hrtimer_cpu_base migration_cpu_base = {
120 .seq = SEQCNT_ZERO(migration_cpu_base),
121 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
122};
123
124#define migration_base migration_cpu_base.clock_base[0]
125
c0a31329
TG
126/*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
135 * possible to set timer->base = &migration_base and drop the lock: the timer
136 * remains locked.
c0a31329 137 */
3c8aa39d
TG
138static
139struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
c0a31329 141{
3c8aa39d 142 struct hrtimer_clock_base *base;
c0a31329
TG
143
144 for (;;) {
145 base = timer->base;
887d9dc9 146 if (likely(base != &migration_base)) {
ecb49d1a 147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
ecb49d1a 151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
152 }
153 cpu_relax();
154 }
155}
156
6ff7041d
TG
157/*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164static int
165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166{
167#ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175#else
176 return 0;
177#endif
178}
179
bc7a34b8
TG
180#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181static inline
182struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
184{
185 if (pinned || !base->migration_enabled)
662b3e19 186 return base;
bc7a34b8
TG
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188}
189#else
190static inline
191struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 int pinned)
193{
662b3e19 194 return base;
bc7a34b8
TG
195}
196#endif
197
c0a31329 198/*
b48362d8
FW
199 * We switch the timer base to a power-optimized selected CPU target,
200 * if:
201 * - NO_HZ_COMMON is enabled
202 * - timer migration is enabled
203 * - the timer callback is not running
204 * - the timer is not the first expiring timer on the new target
205 *
206 * If one of the above requirements is not fulfilled we move the timer
207 * to the current CPU or leave it on the previously assigned CPU if
208 * the timer callback is currently running.
c0a31329 209 */
3c8aa39d 210static inline struct hrtimer_clock_base *
597d0275
AB
211switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 int pinned)
c0a31329 213{
b48362d8 214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 215 struct hrtimer_clock_base *new_base;
ab8177bc 216 int basenum = base->index;
c0a31329 217
b48362d8
FW
218 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 220again:
e06383db 221 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
222
223 if (base != new_base) {
224 /*
6ff7041d 225 * We are trying to move timer to new_base.
c0a31329
TG
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
232 */
54cdfdb4 233 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
234 return base;
235
887d9dc9
PZ
236 /* See the comment in lock_hrtimer_base() */
237 timer->base = &migration_base;
ecb49d1a
TG
238 raw_spin_unlock(&base->cpu_base->lock);
239 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 240
b48362d8 241 if (new_cpu_base != this_cpu_base &&
bc7a34b8 242 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
243 raw_spin_unlock(&new_base->cpu_base->lock);
244 raw_spin_lock(&base->cpu_base->lock);
b48362d8 245 new_cpu_base = this_cpu_base;
6ff7041d
TG
246 timer->base = base;
247 goto again;
eea08f32 248 }
c0a31329 249 timer->base = new_base;
012a45e3 250 } else {
b48362d8 251 if (new_cpu_base != this_cpu_base &&
bc7a34b8 252 hrtimer_check_target(timer, new_base)) {
b48362d8 253 new_cpu_base = this_cpu_base;
012a45e3
LM
254 goto again;
255 }
c0a31329
TG
256 }
257 return new_base;
258}
259
260#else /* CONFIG_SMP */
261
3c8aa39d 262static inline struct hrtimer_clock_base *
c0a31329
TG
263lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264{
3c8aa39d 265 struct hrtimer_clock_base *base = timer->base;
c0a31329 266
ecb49d1a 267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
268
269 return base;
270}
271
eea08f32 272# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
273
274#endif /* !CONFIG_SMP */
275
276/*
277 * Functions for the union type storage format of ktime_t which are
278 * too large for inlining:
279 */
280#if BITS_PER_LONG < 64
c0a31329
TG
281/*
282 * Divide a ktime value by a nanosecond value
283 */
f7bcb70e 284s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 285{
c0a31329 286 int sft = 0;
f7bcb70e
JS
287 s64 dclc;
288 u64 tmp;
c0a31329 289
900cfa46 290 dclc = ktime_to_ns(kt);
f7bcb70e
JS
291 tmp = dclc < 0 ? -dclc : dclc;
292
c0a31329
TG
293 /* Make sure the divisor is less than 2^32: */
294 while (div >> 32) {
295 sft++;
296 div >>= 1;
297 }
f7bcb70e
JS
298 tmp >>= sft;
299 do_div(tmp, (unsigned long) div);
300 return dclc < 0 ? -tmp : tmp;
c0a31329 301}
8b618628 302EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
303#endif /* BITS_PER_LONG >= 64 */
304
5a7780e7
TG
305/*
306 * Add two ktime values and do a safety check for overflow:
307 */
308ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309{
310 ktime_t res = ktime_add(lhs, rhs);
311
312 /*
313 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 * return to user space in a timespec:
315 */
316 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
317 res = ktime_set(KTIME_SEC_MAX, 0);
318
319 return res;
320}
321
8daa21e6
AB
322EXPORT_SYMBOL_GPL(ktime_add_safe);
323
237fc6e7
TG
324#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325
326static struct debug_obj_descr hrtimer_debug_descr;
327
99777288
SG
328static void *hrtimer_debug_hint(void *addr)
329{
330 return ((struct hrtimer *) addr)->function;
331}
332
237fc6e7
TG
333/*
334 * fixup_init is called when:
335 * - an active object is initialized
336 */
e3252464 337static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
338{
339 struct hrtimer *timer = addr;
340
341 switch (state) {
342 case ODEBUG_STATE_ACTIVE:
343 hrtimer_cancel(timer);
344 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 345 return true;
237fc6e7 346 default:
e3252464 347 return false;
237fc6e7
TG
348 }
349}
350
351/*
352 * fixup_activate is called when:
353 * - an active object is activated
b9fdac7f 354 * - an unknown non-static object is activated
237fc6e7 355 */
e3252464 356static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
357{
358 switch (state) {
237fc6e7
TG
359 case ODEBUG_STATE_ACTIVE:
360 WARN_ON(1);
361
362 default:
e3252464 363 return false;
237fc6e7
TG
364 }
365}
366
367/*
368 * fixup_free is called when:
369 * - an active object is freed
370 */
e3252464 371static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
372{
373 struct hrtimer *timer = addr;
374
375 switch (state) {
376 case ODEBUG_STATE_ACTIVE:
377 hrtimer_cancel(timer);
378 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 379 return true;
237fc6e7 380 default:
e3252464 381 return false;
237fc6e7
TG
382 }
383}
384
385static struct debug_obj_descr hrtimer_debug_descr = {
386 .name = "hrtimer",
99777288 387 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
388 .fixup_init = hrtimer_fixup_init,
389 .fixup_activate = hrtimer_fixup_activate,
390 .fixup_free = hrtimer_fixup_free,
391};
392
393static inline void debug_hrtimer_init(struct hrtimer *timer)
394{
395 debug_object_init(timer, &hrtimer_debug_descr);
396}
397
398static inline void debug_hrtimer_activate(struct hrtimer *timer)
399{
400 debug_object_activate(timer, &hrtimer_debug_descr);
401}
402
403static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
404{
405 debug_object_deactivate(timer, &hrtimer_debug_descr);
406}
407
408static inline void debug_hrtimer_free(struct hrtimer *timer)
409{
410 debug_object_free(timer, &hrtimer_debug_descr);
411}
412
413static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
414 enum hrtimer_mode mode);
415
416void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
417 enum hrtimer_mode mode)
418{
419 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
420 __hrtimer_init(timer, clock_id, mode);
421}
2bc481cf 422EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
423
424void destroy_hrtimer_on_stack(struct hrtimer *timer)
425{
426 debug_object_free(timer, &hrtimer_debug_descr);
427}
428
429#else
430static inline void debug_hrtimer_init(struct hrtimer *timer) { }
431static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
432static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
433#endif
434
c6a2a177
XG
435static inline void
436debug_init(struct hrtimer *timer, clockid_t clockid,
437 enum hrtimer_mode mode)
438{
439 debug_hrtimer_init(timer);
440 trace_hrtimer_init(timer, clockid, mode);
441}
442
443static inline void debug_activate(struct hrtimer *timer)
444{
445 debug_hrtimer_activate(timer);
446 trace_hrtimer_start(timer);
447}
448
449static inline void debug_deactivate(struct hrtimer *timer)
450{
451 debug_hrtimer_deactivate(timer);
452 trace_hrtimer_cancel(timer);
453}
454
9bc74919 455#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
895bdfa7
TG
456static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
457 struct hrtimer *timer)
458{
459#ifdef CONFIG_HIGH_RES_TIMERS
460 cpu_base->next_timer = timer;
461#endif
462}
463
4ebbda52 464static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919
TG
465{
466 struct hrtimer_clock_base *base = cpu_base->clock_base;
467 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
34aee88a 468 unsigned int active = cpu_base->active_bases;
9bc74919 469
895bdfa7 470 hrtimer_update_next_timer(cpu_base, NULL);
34aee88a 471 for (; active; base++, active >>= 1) {
9bc74919
TG
472 struct timerqueue_node *next;
473 struct hrtimer *timer;
474
34aee88a 475 if (!(active & 0x01))
9bc74919
TG
476 continue;
477
34aee88a 478 next = timerqueue_getnext(&base->active);
9bc74919
TG
479 timer = container_of(next, struct hrtimer, node);
480 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
895bdfa7 481 if (expires.tv64 < expires_next.tv64) {
9bc74919 482 expires_next = expires;
895bdfa7
TG
483 hrtimer_update_next_timer(cpu_base, timer);
484 }
9bc74919
TG
485 }
486 /*
487 * clock_was_set() might have changed base->offset of any of
488 * the clock bases so the result might be negative. Fix it up
489 * to prevent a false positive in clockevents_program_event().
490 */
491 if (expires_next.tv64 < 0)
492 expires_next.tv64 = 0;
493 return expires_next;
494}
495#endif
496
21d6d52a
TG
497static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
498{
499 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
500 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
501 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
502
868a3e91
TG
503 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
504 offs_real, offs_boot, offs_tai);
21d6d52a
TG
505}
506
54cdfdb4
TG
507/* High resolution timer related functions */
508#ifdef CONFIG_HIGH_RES_TIMERS
509
510/*
511 * High resolution timer enabled ?
512 */
4cc7ecb7 513static bool hrtimer_hres_enabled __read_mostly = true;
398ca17f
TG
514unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
515EXPORT_SYMBOL_GPL(hrtimer_resolution);
54cdfdb4
TG
516
517/*
518 * Enable / Disable high resolution mode
519 */
520static int __init setup_hrtimer_hres(char *str)
521{
4cc7ecb7 522 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
54cdfdb4
TG
523}
524
525__setup("highres=", setup_hrtimer_hres);
526
527/*
528 * hrtimer_high_res_enabled - query, if the highres mode is enabled
529 */
530static inline int hrtimer_is_hres_enabled(void)
531{
532 return hrtimer_hres_enabled;
533}
534
535/*
536 * Is the high resolution mode active ?
537 */
e19ffe8b
TG
538static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
539{
540 return cpu_base->hres_active;
541}
542
54cdfdb4
TG
543static inline int hrtimer_hres_active(void)
544{
e19ffe8b 545 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
54cdfdb4
TG
546}
547
548/*
549 * Reprogram the event source with checking both queues for the
550 * next event
551 * Called with interrupts disabled and base->lock held
552 */
7403f41f
AC
553static void
554hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 555{
21d6d52a
TG
556 ktime_t expires_next;
557
558 if (!cpu_base->hres_active)
559 return;
560
561 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 562
7403f41f
AC
563 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
564 return;
565
566 cpu_base->expires_next.tv64 = expires_next.tv64;
567
6c6c0d5a
SH
568 /*
569 * If a hang was detected in the last timer interrupt then we
570 * leave the hang delay active in the hardware. We want the
571 * system to make progress. That also prevents the following
572 * scenario:
573 * T1 expires 50ms from now
574 * T2 expires 5s from now
575 *
576 * T1 is removed, so this code is called and would reprogram
577 * the hardware to 5s from now. Any hrtimer_start after that
578 * will not reprogram the hardware due to hang_detected being
579 * set. So we'd effectivly block all timers until the T2 event
580 * fires.
581 */
582 if (cpu_base->hang_detected)
583 return;
584
d2540875 585 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
586}
587
588/*
54cdfdb4
TG
589 * When a timer is enqueued and expires earlier than the already enqueued
590 * timers, we have to check, whether it expires earlier than the timer for
591 * which the clock event device was armed.
592 *
593 * Called with interrupts disabled and base->cpu_base.lock held
594 */
c6eb3f70
TG
595static void hrtimer_reprogram(struct hrtimer *timer,
596 struct hrtimer_clock_base *base)
54cdfdb4 597{
dc5df73b 598 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
cc584b21 599 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4 600
cc584b21 601 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 602
54cdfdb4 603 /*
c6eb3f70
TG
604 * If the timer is not on the current cpu, we cannot reprogram
605 * the other cpus clock event device.
54cdfdb4 606 */
c6eb3f70
TG
607 if (base->cpu_base != cpu_base)
608 return;
609
610 /*
611 * If the hrtimer interrupt is running, then it will
612 * reevaluate the clock bases and reprogram the clock event
613 * device. The callbacks are always executed in hard interrupt
614 * context so we don't need an extra check for a running
615 * callback.
616 */
617 if (cpu_base->in_hrtirq)
618 return;
54cdfdb4 619
63070a79
TG
620 /*
621 * CLOCK_REALTIME timer might be requested with an absolute
c6eb3f70 622 * expiry time which is less than base->offset. Set it to 0.
63070a79
TG
623 */
624 if (expires.tv64 < 0)
c6eb3f70 625 expires.tv64 = 0;
63070a79 626
41d2e494 627 if (expires.tv64 >= cpu_base->expires_next.tv64)
c6eb3f70 628 return;
41d2e494 629
c6eb3f70 630 /* Update the pointer to the next expiring timer */
895bdfa7 631 cpu_base->next_timer = timer;
9bc74919 632
41d2e494
TG
633 /*
634 * If a hang was detected in the last timer interrupt then we
635 * do not schedule a timer which is earlier than the expiry
636 * which we enforced in the hang detection. We want the system
637 * to make progress.
638 */
639 if (cpu_base->hang_detected)
c6eb3f70 640 return;
54cdfdb4
TG
641
642 /*
c6eb3f70
TG
643 * Program the timer hardware. We enforce the expiry for
644 * events which are already in the past.
54cdfdb4 645 */
c6eb3f70
TG
646 cpu_base->expires_next = expires;
647 tick_program_event(expires, 1);
54cdfdb4
TG
648}
649
54cdfdb4
TG
650/*
651 * Initialize the high resolution related parts of cpu_base
652 */
653static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
654{
655 base->expires_next.tv64 = KTIME_MAX;
656 base->hres_active = 0;
54cdfdb4
TG
657}
658
9ec26907
TG
659/*
660 * Retrigger next event is called after clock was set
661 *
662 * Called with interrupts disabled via on_each_cpu()
663 */
664static void retrigger_next_event(void *arg)
665{
dc5df73b 666 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 667
e19ffe8b 668 if (!base->hres_active)
9ec26907
TG
669 return;
670
9ec26907 671 raw_spin_lock(&base->lock);
5baefd6d 672 hrtimer_update_base(base);
9ec26907
TG
673 hrtimer_force_reprogram(base, 0);
674 raw_spin_unlock(&base->lock);
675}
b12a03ce 676
54cdfdb4
TG
677/*
678 * Switch to high resolution mode
679 */
75e3b37d 680static void hrtimer_switch_to_hres(void)
54cdfdb4 681{
c6eb3f70 682 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
683
684 if (tick_init_highres()) {
820de5c3 685 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 686 "mode on CPU %d\n", base->cpu);
85e1cd6e 687 return;
54cdfdb4
TG
688 }
689 base->hres_active = 1;
398ca17f 690 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
691
692 tick_setup_sched_timer();
54cdfdb4
TG
693 /* "Retrigger" the interrupt to get things going */
694 retrigger_next_event(NULL);
54cdfdb4
TG
695}
696
5ec2481b
TG
697static void clock_was_set_work(struct work_struct *work)
698{
699 clock_was_set();
700}
701
702static DECLARE_WORK(hrtimer_work, clock_was_set_work);
703
f55a6faa 704/*
5ec2481b
TG
705 * Called from timekeeping and resume code to reprogramm the hrtimer
706 * interrupt device on all cpus.
f55a6faa
JS
707 */
708void clock_was_set_delayed(void)
709{
5ec2481b 710 schedule_work(&hrtimer_work);
f55a6faa
JS
711}
712
54cdfdb4
TG
713#else
714
e19ffe8b 715static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
54cdfdb4
TG
716static inline int hrtimer_hres_active(void) { return 0; }
717static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 718static inline void hrtimer_switch_to_hres(void) { }
7403f41f
AC
719static inline void
720hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
9e1e01dd
VK
721static inline int hrtimer_reprogram(struct hrtimer *timer,
722 struct hrtimer_clock_base *base)
54cdfdb4
TG
723{
724 return 0;
725}
54cdfdb4 726static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 727static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
728
729#endif /* CONFIG_HIGH_RES_TIMERS */
730
b12a03ce
TG
731/*
732 * Clock realtime was set
733 *
734 * Change the offset of the realtime clock vs. the monotonic
735 * clock.
736 *
737 * We might have to reprogram the high resolution timer interrupt. On
738 * SMP we call the architecture specific code to retrigger _all_ high
739 * resolution timer interrupts. On UP we just disable interrupts and
740 * call the high resolution interrupt code.
741 */
742void clock_was_set(void)
743{
90ff1f30 744#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
745 /* Retrigger the CPU local events everywhere */
746 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
747#endif
748 timerfd_clock_was_set();
b12a03ce
TG
749}
750
751/*
752 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
753 * interrupt on all online CPUs. However, all other CPUs will be
754 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 755 * must be deferred.
b12a03ce
TG
756 */
757void hrtimers_resume(void)
758{
759 WARN_ONCE(!irqs_disabled(),
760 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
761
5ec2481b 762 /* Retrigger on the local CPU */
b12a03ce 763 retrigger_next_event(NULL);
5ec2481b
TG
764 /* And schedule a retrigger for all others */
765 clock_was_set_delayed();
b12a03ce
TG
766}
767
5f201907 768static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 769{
5f201907 770#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
771 if (timer->start_site)
772 return;
5f201907 773 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
774 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
775 timer->start_pid = current->pid;
5f201907
HC
776#endif
777}
778
779static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
780{
781#ifdef CONFIG_TIMER_STATS
782 timer->start_site = NULL;
783#endif
82f67cd9 784}
5f201907
HC
785
786static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
787{
788#ifdef CONFIG_TIMER_STATS
789 if (likely(!timer_stats_active))
790 return;
791 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
792 timer->function, timer->start_comm, 0);
82f67cd9 793#endif
5f201907 794}
82f67cd9 795
c0a31329 796/*
6506f2aa 797 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
798 */
799static inline
800void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
801{
ecb49d1a 802 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
803}
804
805/**
806 * hrtimer_forward - forward the timer expiry
c0a31329 807 * @timer: hrtimer to forward
44f21475 808 * @now: forward past this time
c0a31329
TG
809 * @interval: the interval to forward
810 *
811 * Forward the timer expiry so it will expire in the future.
8dca6f33 812 * Returns the number of overruns.
91e5a217
TG
813 *
814 * Can be safely called from the callback function of @timer. If
815 * called from other contexts @timer must neither be enqueued nor
816 * running the callback and the caller needs to take care of
817 * serialization.
818 *
819 * Note: This only updates the timer expiry value and does not requeue
820 * the timer.
c0a31329 821 */
4d672e7a 822u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 823{
4d672e7a 824 u64 orun = 1;
44f21475 825 ktime_t delta;
c0a31329 826
cc584b21 827 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
828
829 if (delta.tv64 < 0)
830 return 0;
831
5de2755c
PZ
832 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
833 return 0;
834
398ca17f
TG
835 if (interval.tv64 < hrtimer_resolution)
836 interval.tv64 = hrtimer_resolution;
c9db4fa1 837
c0a31329 838 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 839 s64 incr = ktime_to_ns(interval);
c0a31329
TG
840
841 orun = ktime_divns(delta, incr);
cc584b21
AV
842 hrtimer_add_expires_ns(timer, incr * orun);
843 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
844 return orun;
845 /*
846 * This (and the ktime_add() below) is the
847 * correction for exact:
848 */
849 orun++;
850 }
cc584b21 851 hrtimer_add_expires(timer, interval);
c0a31329
TG
852
853 return orun;
854}
6bdb6b62 855EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
856
857/*
858 * enqueue_hrtimer - internal function to (re)start a timer
859 *
860 * The timer is inserted in expiry order. Insertion into the
861 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
862 *
863 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 864 */
a6037b61
PZ
865static int enqueue_hrtimer(struct hrtimer *timer,
866 struct hrtimer_clock_base *base)
c0a31329 867{
c6a2a177 868 debug_activate(timer);
237fc6e7 869
ab8177bc 870 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 871
887d9dc9 872 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 873
b97f44c9 874 return timerqueue_add(&base->active, &timer->node);
288867ec 875}
c0a31329
TG
876
877/*
878 * __remove_hrtimer - internal function to remove a timer
879 *
880 * Caller must hold the base lock.
54cdfdb4
TG
881 *
882 * High resolution timer mode reprograms the clock event device when the
883 * timer is the one which expires next. The caller can disable this by setting
884 * reprogram to zero. This is useful, when the context does a reprogramming
885 * anyway (e.g. timer interrupt)
c0a31329 886 */
3c8aa39d 887static void __remove_hrtimer(struct hrtimer *timer,
303e967f 888 struct hrtimer_clock_base *base,
203cbf77 889 u8 newstate, int reprogram)
c0a31329 890{
e19ffe8b 891 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 892 u8 state = timer->state;
e19ffe8b 893
895bdfa7
TG
894 timer->state = newstate;
895 if (!(state & HRTIMER_STATE_ENQUEUED))
896 return;
7403f41f 897
b97f44c9 898 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 899 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 900
7403f41f 901#ifdef CONFIG_HIGH_RES_TIMERS
895bdfa7
TG
902 /*
903 * Note: If reprogram is false we do not update
904 * cpu_base->next_timer. This happens when we remove the first
905 * timer on a remote cpu. No harm as we never dereference
906 * cpu_base->next_timer. So the worst thing what can happen is
907 * an superflous call to hrtimer_force_reprogram() on the
908 * remote cpu later on if the same timer gets enqueued again.
909 */
910 if (reprogram && timer == cpu_base->next_timer)
911 hrtimer_force_reprogram(cpu_base, 1);
7403f41f 912#endif
c0a31329
TG
913}
914
915/*
916 * remove hrtimer, called with base lock held
917 */
918static inline int
8edfb036 919remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 920{
303e967f 921 if (hrtimer_is_queued(timer)) {
203cbf77 922 u8 state = timer->state;
54cdfdb4
TG
923 int reprogram;
924
925 /*
926 * Remove the timer and force reprogramming when high
927 * resolution mode is active and the timer is on the current
928 * CPU. If we remove a timer on another CPU, reprogramming is
929 * skipped. The interrupt event on this CPU is fired and
930 * reprogramming happens in the interrupt handler. This is a
931 * rare case and less expensive than a smp call.
932 */
c6a2a177 933 debug_deactivate(timer);
82f67cd9 934 timer_stats_hrtimer_clear_start_info(timer);
dc5df73b 935 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 936
887d9dc9
PZ
937 if (!restart)
938 state = HRTIMER_STATE_INACTIVE;
939
f13d4f97 940 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
941 return 1;
942 }
943 return 0;
944}
945
203cbf77
TG
946static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
947 const enum hrtimer_mode mode)
948{
949#ifdef CONFIG_TIME_LOW_RES
950 /*
951 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
952 * granular time values. For relative timers we add hrtimer_resolution
953 * (i.e. one jiffie) to prevent short timeouts.
954 */
955 timer->is_rel = mode & HRTIMER_MODE_REL;
956 if (timer->is_rel)
957 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
958#endif
959 return tim;
960}
961
58f1f803
TG
962/**
963 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
964 * @timer: the timer to be added
965 * @tim: expiry time
966 * @delta_ns: "slack" range for the timer
967 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
968 * relative (HRTIMER_MODE_REL)
58f1f803 969 */
61699e13 970void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
da8b44d5 971 u64 delta_ns, const enum hrtimer_mode mode)
c0a31329 972{
3c8aa39d 973 struct hrtimer_clock_base *base, *new_base;
c0a31329 974 unsigned long flags;
61699e13 975 int leftmost;
c0a31329
TG
976
977 base = lock_hrtimer_base(timer, &flags);
978
979 /* Remove an active timer from the queue: */
8edfb036 980 remove_hrtimer(timer, base, true);
c0a31329 981
203cbf77 982 if (mode & HRTIMER_MODE_REL)
84ea7fe3 983 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
984
985 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 986
da8f2e17 987 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 988
84ea7fe3
VK
989 /* Switch the timer base, if necessary: */
990 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
991
82f67cd9
IM
992 timer_stats_hrtimer_set_start_info(timer);
993
a6037b61 994 leftmost = enqueue_hrtimer(timer, new_base);
61699e13
TG
995 if (!leftmost)
996 goto unlock;
49a2a075
VK
997
998 if (!hrtimer_is_hres_active(timer)) {
999 /*
1000 * Kick to reschedule the next tick to handle the new timer
1001 * on dynticks target.
1002 */
683be13a
TG
1003 if (new_base->cpu_base->nohz_active)
1004 wake_up_nohz_cpu(new_base->cpu_base->cpu);
c6eb3f70
TG
1005 } else {
1006 hrtimer_reprogram(timer, new_base);
b22affe0 1007 }
61699e13 1008unlock:
c0a31329 1009 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1010}
da8f2e17
AV
1011EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1012
c0a31329
TG
1013/**
1014 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1015 * @timer: hrtimer to stop
1016 *
1017 * Returns:
1018 * 0 when the timer was not active
1019 * 1 when the timer was active
1020 * -1 when the timer is currently excuting the callback function and
fa9799e3 1021 * cannot be stopped
c0a31329
TG
1022 */
1023int hrtimer_try_to_cancel(struct hrtimer *timer)
1024{
3c8aa39d 1025 struct hrtimer_clock_base *base;
c0a31329
TG
1026 unsigned long flags;
1027 int ret = -1;
1028
19d9f422
TG
1029 /*
1030 * Check lockless first. If the timer is not active (neither
1031 * enqueued nor running the callback, nothing to do here. The
1032 * base lock does not serialize against a concurrent enqueue,
1033 * so we can avoid taking it.
1034 */
1035 if (!hrtimer_active(timer))
1036 return 0;
1037
c0a31329
TG
1038 base = lock_hrtimer_base(timer, &flags);
1039
303e967f 1040 if (!hrtimer_callback_running(timer))
8edfb036 1041 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1042
1043 unlock_hrtimer_base(timer, &flags);
1044
1045 return ret;
1046
1047}
8d16b764 1048EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1049
1050/**
1051 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1052 * @timer: the timer to be cancelled
1053 *
1054 * Returns:
1055 * 0 when the timer was not active
1056 * 1 when the timer was active
1057 */
1058int hrtimer_cancel(struct hrtimer *timer)
1059{
1060 for (;;) {
1061 int ret = hrtimer_try_to_cancel(timer);
1062
1063 if (ret >= 0)
1064 return ret;
5ef37b19 1065 cpu_relax();
c0a31329
TG
1066 }
1067}
8d16b764 1068EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1069
1070/**
1071 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1072 * @timer: the timer to read
203cbf77 1073 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1074 */
203cbf77 1075ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1076{
c0a31329
TG
1077 unsigned long flags;
1078 ktime_t rem;
1079
b3bd3de6 1080 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1081 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1082 rem = hrtimer_expires_remaining_adjusted(timer);
1083 else
1084 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1085 unlock_hrtimer_base(timer, &flags);
1086
1087 return rem;
1088}
203cbf77 1089EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1090
3451d024 1091#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1092/**
1093 * hrtimer_get_next_event - get the time until next expiry event
1094 *
c1ad348b 1095 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1096 */
c1ad348b 1097u64 hrtimer_get_next_event(void)
69239749 1098{
dc5df73b 1099 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1100 u64 expires = KTIME_MAX;
69239749 1101 unsigned long flags;
69239749 1102
ecb49d1a 1103 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1104
e19ffe8b 1105 if (!__hrtimer_hres_active(cpu_base))
c1ad348b 1106 expires = __hrtimer_get_next_event(cpu_base).tv64;
3c8aa39d 1107
ecb49d1a 1108 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1109
c1ad348b 1110 return expires;
69239749
TL
1111}
1112#endif
1113
237fc6e7
TG
1114static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1115 enum hrtimer_mode mode)
c0a31329 1116{
3c8aa39d 1117 struct hrtimer_cpu_base *cpu_base;
e06383db 1118 int base;
c0a31329 1119
7978672c
GA
1120 memset(timer, 0, sizeof(struct hrtimer));
1121
22127e93 1122 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1123
c9cb2e3d 1124 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1125 clock_id = CLOCK_MONOTONIC;
1126
e06383db
JS
1127 base = hrtimer_clockid_to_base(clock_id);
1128 timer->base = &cpu_base->clock_base[base];
998adc3d 1129 timerqueue_init(&timer->node);
82f67cd9
IM
1130
1131#ifdef CONFIG_TIMER_STATS
1132 timer->start_site = NULL;
1133 timer->start_pid = -1;
1134 memset(timer->start_comm, 0, TASK_COMM_LEN);
1135#endif
c0a31329 1136}
237fc6e7
TG
1137
1138/**
1139 * hrtimer_init - initialize a timer to the given clock
1140 * @timer: the timer to be initialized
1141 * @clock_id: the clock to be used
1142 * @mode: timer mode abs/rel
1143 */
1144void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1145 enum hrtimer_mode mode)
1146{
c6a2a177 1147 debug_init(timer, clock_id, mode);
237fc6e7
TG
1148 __hrtimer_init(timer, clock_id, mode);
1149}
8d16b764 1150EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1151
887d9dc9
PZ
1152/*
1153 * A timer is active, when it is enqueued into the rbtree or the
1154 * callback function is running or it's in the state of being migrated
1155 * to another cpu.
c0a31329 1156 *
887d9dc9 1157 * It is important for this function to not return a false negative.
c0a31329 1158 */
887d9dc9 1159bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1160{
3c8aa39d 1161 struct hrtimer_cpu_base *cpu_base;
887d9dc9 1162 unsigned int seq;
c0a31329 1163
887d9dc9
PZ
1164 do {
1165 cpu_base = READ_ONCE(timer->base->cpu_base);
1166 seq = raw_read_seqcount_begin(&cpu_base->seq);
c0a31329 1167
887d9dc9
PZ
1168 if (timer->state != HRTIMER_STATE_INACTIVE ||
1169 cpu_base->running == timer)
1170 return true;
1171
1172 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1173 cpu_base != READ_ONCE(timer->base->cpu_base));
1174
1175 return false;
c0a31329 1176}
887d9dc9 1177EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1178
887d9dc9
PZ
1179/*
1180 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1181 * distinct sections:
1182 *
1183 * - queued: the timer is queued
1184 * - callback: the timer is being ran
1185 * - post: the timer is inactive or (re)queued
1186 *
1187 * On the read side we ensure we observe timer->state and cpu_base->running
1188 * from the same section, if anything changed while we looked at it, we retry.
1189 * This includes timer->base changing because sequence numbers alone are
1190 * insufficient for that.
1191 *
1192 * The sequence numbers are required because otherwise we could still observe
1193 * a false negative if the read side got smeared over multiple consequtive
1194 * __run_hrtimer() invocations.
1195 */
1196
21d6d52a
TG
1197static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1198 struct hrtimer_clock_base *base,
1199 struct hrtimer *timer, ktime_t *now)
d3d74453 1200{
d3d74453
PZ
1201 enum hrtimer_restart (*fn)(struct hrtimer *);
1202 int restart;
1203
887d9dc9 1204 lockdep_assert_held(&cpu_base->lock);
ca109491 1205
c6a2a177 1206 debug_deactivate(timer);
887d9dc9
PZ
1207 cpu_base->running = timer;
1208
1209 /*
1210 * Separate the ->running assignment from the ->state assignment.
1211 *
1212 * As with a regular write barrier, this ensures the read side in
1213 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1214 * timer->state == INACTIVE.
1215 */
1216 raw_write_seqcount_barrier(&cpu_base->seq);
1217
1218 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1219 timer_stats_account_hrtimer(timer);
d3d74453 1220 fn = timer->function;
ca109491 1221
203cbf77
TG
1222 /*
1223 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1224 * timer is restarted with a period then it becomes an absolute
1225 * timer. If its not restarted it does not matter.
1226 */
1227 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1228 timer->is_rel = false;
1229
ca109491
PZ
1230 /*
1231 * Because we run timers from hardirq context, there is no chance
1232 * they get migrated to another cpu, therefore its safe to unlock
1233 * the timer base.
1234 */
ecb49d1a 1235 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1236 trace_hrtimer_expire_entry(timer, now);
ca109491 1237 restart = fn(timer);
c6a2a177 1238 trace_hrtimer_expire_exit(timer);
ecb49d1a 1239 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1240
1241 /*
887d9dc9 1242 * Note: We clear the running state after enqueue_hrtimer and
e3f1d883
TG
1243 * we do not reprogramm the event hardware. Happens either in
1244 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1245 *
1246 * Note: Because we dropped the cpu_base->lock above,
1247 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1248 * for us already.
d3d74453 1249 */
5de2755c
PZ
1250 if (restart != HRTIMER_NORESTART &&
1251 !(timer->state & HRTIMER_STATE_ENQUEUED))
a6037b61 1252 enqueue_hrtimer(timer, base);
f13d4f97 1253
887d9dc9
PZ
1254 /*
1255 * Separate the ->running assignment from the ->state assignment.
1256 *
1257 * As with a regular write barrier, this ensures the read side in
1258 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1259 * timer->state == INACTIVE.
1260 */
1261 raw_write_seqcount_barrier(&cpu_base->seq);
f13d4f97 1262
887d9dc9
PZ
1263 WARN_ON_ONCE(cpu_base->running != timer);
1264 cpu_base->running = NULL;
d3d74453
PZ
1265}
1266
21d6d52a 1267static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1268{
34aee88a
TG
1269 struct hrtimer_clock_base *base = cpu_base->clock_base;
1270 unsigned int active = cpu_base->active_bases;
6ff7041d 1271
34aee88a 1272 for (; active; base++, active >>= 1) {
998adc3d 1273 struct timerqueue_node *node;
ab8177bc
TG
1274 ktime_t basenow;
1275
34aee88a 1276 if (!(active & 0x01))
ab8177bc 1277 continue;
54cdfdb4 1278
54cdfdb4
TG
1279 basenow = ktime_add(now, base->offset);
1280
998adc3d 1281 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1282 struct hrtimer *timer;
1283
998adc3d 1284 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1285
654c8e0b
AV
1286 /*
1287 * The immediate goal for using the softexpires is
1288 * minimizing wakeups, not running timers at the
1289 * earliest interrupt after their soft expiration.
1290 * This allows us to avoid using a Priority Search
1291 * Tree, which can answer a stabbing querry for
1292 * overlapping intervals and instead use the simple
1293 * BST we already have.
1294 * We don't add extra wakeups by delaying timers that
1295 * are right-of a not yet expired timer, because that
1296 * timer will have to trigger a wakeup anyway.
1297 */
9bc74919 1298 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1299 break;
54cdfdb4 1300
21d6d52a 1301 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1302 }
54cdfdb4 1303 }
21d6d52a
TG
1304}
1305
1306#ifdef CONFIG_HIGH_RES_TIMERS
1307
1308/*
1309 * High resolution timer interrupt
1310 * Called with interrupts disabled
1311 */
1312void hrtimer_interrupt(struct clock_event_device *dev)
1313{
1314 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1315 ktime_t expires_next, now, entry_time, delta;
1316 int retries = 0;
1317
1318 BUG_ON(!cpu_base->hres_active);
1319 cpu_base->nr_events++;
1320 dev->next_event.tv64 = KTIME_MAX;
1321
1322 raw_spin_lock(&cpu_base->lock);
1323 entry_time = now = hrtimer_update_base(cpu_base);
1324retry:
1325 cpu_base->in_hrtirq = 1;
1326 /*
1327 * We set expires_next to KTIME_MAX here with cpu_base->lock
1328 * held to prevent that a timer is enqueued in our queue via
1329 * the migration code. This does not affect enqueueing of
1330 * timers which run their callback and need to be requeued on
1331 * this CPU.
1332 */
1333 cpu_base->expires_next.tv64 = KTIME_MAX;
1334
1335 __hrtimer_run_queues(cpu_base, now);
1336
9bc74919
TG
1337 /* Reevaluate the clock bases for the next expiry */
1338 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1339 /*
1340 * Store the new expiry value so the migration code can verify
1341 * against it.
1342 */
54cdfdb4 1343 cpu_base->expires_next = expires_next;
9bc74919 1344 cpu_base->in_hrtirq = 0;
ecb49d1a 1345 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1346
1347 /* Reprogramming necessary ? */
d2540875 1348 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1349 cpu_base->hang_detected = 0;
1350 return;
54cdfdb4 1351 }
41d2e494
TG
1352
1353 /*
1354 * The next timer was already expired due to:
1355 * - tracing
1356 * - long lasting callbacks
1357 * - being scheduled away when running in a VM
1358 *
1359 * We need to prevent that we loop forever in the hrtimer
1360 * interrupt routine. We give it 3 attempts to avoid
1361 * overreacting on some spurious event.
5baefd6d
JS
1362 *
1363 * Acquire base lock for updating the offsets and retrieving
1364 * the current time.
41d2e494 1365 */
196951e9 1366 raw_spin_lock(&cpu_base->lock);
5baefd6d 1367 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1368 cpu_base->nr_retries++;
1369 if (++retries < 3)
1370 goto retry;
1371 /*
1372 * Give the system a chance to do something else than looping
1373 * here. We stored the entry time, so we know exactly how long
1374 * we spent here. We schedule the next event this amount of
1375 * time away.
1376 */
1377 cpu_base->nr_hangs++;
1378 cpu_base->hang_detected = 1;
196951e9 1379 raw_spin_unlock(&cpu_base->lock);
41d2e494 1380 delta = ktime_sub(now, entry_time);
a6ffebce
TG
1381 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1382 cpu_base->max_hang_time = (unsigned int) delta.tv64;
41d2e494
TG
1383 /*
1384 * Limit it to a sensible value as we enforce a longer
1385 * delay. Give the CPU at least 100ms to catch up.
1386 */
1387 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1388 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1389 else
1390 expires_next = ktime_add(now, delta);
1391 tick_program_event(expires_next, 1);
1392 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1393 ktime_to_ns(delta));
54cdfdb4
TG
1394}
1395
8bdec955
TG
1396/*
1397 * local version of hrtimer_peek_ahead_timers() called with interrupts
1398 * disabled.
1399 */
c6eb3f70 1400static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1401{
1402 struct tick_device *td;
1403
1404 if (!hrtimer_hres_active())
1405 return;
1406
22127e93 1407 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1408 if (td && td->evtdev)
1409 hrtimer_interrupt(td->evtdev);
1410}
1411
82c5b7b5
IM
1412#else /* CONFIG_HIGH_RES_TIMERS */
1413
1414static inline void __hrtimer_peek_ahead_timers(void) { }
1415
1416#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1417
d3d74453 1418/*
c6eb3f70 1419 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1420 */
833883d9 1421void hrtimer_run_queues(void)
d3d74453 1422{
dc5df73b 1423 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1424 ktime_t now;
c0a31329 1425
e19ffe8b 1426 if (__hrtimer_hres_active(cpu_base))
d3d74453 1427 return;
54cdfdb4 1428
d3d74453 1429 /*
c6eb3f70
TG
1430 * This _is_ ugly: We have to check periodically, whether we
1431 * can switch to highres and / or nohz mode. The clocksource
1432 * switch happens with xtime_lock held. Notification from
1433 * there only sets the check bit in the tick_oneshot code,
1434 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1435 */
c6eb3f70 1436 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1437 hrtimer_switch_to_hres();
3055adda 1438 return;
833883d9 1439 }
c6eb3f70 1440
21d6d52a
TG
1441 raw_spin_lock(&cpu_base->lock);
1442 now = hrtimer_update_base(cpu_base);
1443 __hrtimer_run_queues(cpu_base, now);
1444 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1445}
1446
10c94ec1
TG
1447/*
1448 * Sleep related functions:
1449 */
c9cb2e3d 1450static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1451{
1452 struct hrtimer_sleeper *t =
1453 container_of(timer, struct hrtimer_sleeper, timer);
1454 struct task_struct *task = t->task;
1455
1456 t->task = NULL;
1457 if (task)
1458 wake_up_process(task);
1459
1460 return HRTIMER_NORESTART;
1461}
1462
36c8b586 1463void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1464{
1465 sl->timer.function = hrtimer_wakeup;
1466 sl->task = task;
1467}
2bc481cf 1468EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1469
669d7868 1470static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1471{
669d7868 1472 hrtimer_init_sleeper(t, current);
10c94ec1 1473
432569bb
RZ
1474 do {
1475 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1476 hrtimer_start_expires(&t->timer, mode);
432569bb 1477
54cdfdb4 1478 if (likely(t->task))
b0f8c44f 1479 freezable_schedule();
432569bb 1480
669d7868 1481 hrtimer_cancel(&t->timer);
c9cb2e3d 1482 mode = HRTIMER_MODE_ABS;
669d7868
TG
1483
1484 } while (t->task && !signal_pending(current));
432569bb 1485
3588a085
PZ
1486 __set_current_state(TASK_RUNNING);
1487
669d7868 1488 return t->task == NULL;
10c94ec1
TG
1489}
1490
080344b9
ON
1491static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1492{
1493 struct timespec rmt;
1494 ktime_t rem;
1495
cc584b21 1496 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1497 if (rem.tv64 <= 0)
1498 return 0;
1499 rmt = ktime_to_timespec(rem);
1500
1501 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1502 return -EFAULT;
1503
1504 return 1;
1505}
1506
1711ef38 1507long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1508{
669d7868 1509 struct hrtimer_sleeper t;
080344b9 1510 struct timespec __user *rmtp;
237fc6e7 1511 int ret = 0;
10c94ec1 1512
ab8177bc 1513 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1514 HRTIMER_MODE_ABS);
cc584b21 1515 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1516
c9cb2e3d 1517 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1518 goto out;
10c94ec1 1519
029a07e0 1520 rmtp = restart->nanosleep.rmtp;
432569bb 1521 if (rmtp) {
237fc6e7 1522 ret = update_rmtp(&t.timer, rmtp);
080344b9 1523 if (ret <= 0)
237fc6e7 1524 goto out;
432569bb 1525 }
10c94ec1 1526
10c94ec1 1527 /* The other values in restart are already filled in */
237fc6e7
TG
1528 ret = -ERESTART_RESTARTBLOCK;
1529out:
1530 destroy_hrtimer_on_stack(&t.timer);
1531 return ret;
10c94ec1
TG
1532}
1533
080344b9 1534long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1535 const enum hrtimer_mode mode, const clockid_t clockid)
1536{
1537 struct restart_block *restart;
669d7868 1538 struct hrtimer_sleeper t;
237fc6e7 1539 int ret = 0;
da8b44d5 1540 u64 slack;
3bd01206
AV
1541
1542 slack = current->timer_slack_ns;
aab03e05 1543 if (dl_task(current) || rt_task(current))
3bd01206 1544 slack = 0;
10c94ec1 1545
237fc6e7 1546 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1547 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1548 if (do_nanosleep(&t, mode))
237fc6e7 1549 goto out;
10c94ec1 1550
7978672c 1551 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1552 if (mode == HRTIMER_MODE_ABS) {
1553 ret = -ERESTARTNOHAND;
1554 goto out;
1555 }
10c94ec1 1556
432569bb 1557 if (rmtp) {
237fc6e7 1558 ret = update_rmtp(&t.timer, rmtp);
080344b9 1559 if (ret <= 0)
237fc6e7 1560 goto out;
432569bb 1561 }
10c94ec1 1562
f56141e3 1563 restart = &current->restart_block;
1711ef38 1564 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1565 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1566 restart->nanosleep.rmtp = rmtp;
cc584b21 1567 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1568
237fc6e7
TG
1569 ret = -ERESTART_RESTARTBLOCK;
1570out:
1571 destroy_hrtimer_on_stack(&t.timer);
1572 return ret;
10c94ec1
TG
1573}
1574
58fd3aa2
HC
1575SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1576 struct timespec __user *, rmtp)
6ba1b912 1577{
080344b9 1578 struct timespec tu;
6ba1b912
TG
1579
1580 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1581 return -EFAULT;
1582
1583 if (!timespec_valid(&tu))
1584 return -EINVAL;
1585
080344b9 1586 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1587}
1588
c0a31329
TG
1589/*
1590 * Functions related to boot-time initialization:
1591 */
0db0628d 1592static void init_hrtimers_cpu(int cpu)
c0a31329 1593{
3c8aa39d 1594 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1595 int i;
1596
998adc3d 1597 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1598 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1599 timerqueue_init_head(&cpu_base->clock_base[i].active);
1600 }
3c8aa39d 1601
cddd0248 1602 cpu_base->cpu = cpu;
54cdfdb4 1603 hrtimer_init_hres(cpu_base);
c0a31329
TG
1604}
1605
1606#ifdef CONFIG_HOTPLUG_CPU
1607
ca109491 1608static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1609 struct hrtimer_clock_base *new_base)
c0a31329
TG
1610{
1611 struct hrtimer *timer;
998adc3d 1612 struct timerqueue_node *node;
c0a31329 1613
998adc3d
JS
1614 while ((node = timerqueue_getnext(&old_base->active))) {
1615 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1616 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1617 debug_deactivate(timer);
b00c1a99
TG
1618
1619 /*
c04dca02 1620 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1621 * timer could be seen as !active and just vanish away
1622 * under us on another CPU
1623 */
c04dca02 1624 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1625 timer->base = new_base;
54cdfdb4 1626 /*
e3f1d883
TG
1627 * Enqueue the timers on the new cpu. This does not
1628 * reprogram the event device in case the timer
1629 * expires before the earliest on this CPU, but we run
1630 * hrtimer_interrupt after we migrated everything to
1631 * sort out already expired timers and reprogram the
1632 * event device.
54cdfdb4 1633 */
a6037b61 1634 enqueue_hrtimer(timer, new_base);
c0a31329
TG
1635 }
1636}
1637
d5fd43c4 1638static void migrate_hrtimers(int scpu)
c0a31329 1639{
3c8aa39d 1640 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1641 int i;
c0a31329 1642
37810659 1643 BUG_ON(cpu_online(scpu));
37810659 1644 tick_cancel_sched_timer(scpu);
731a55ba
TG
1645
1646 local_irq_disable();
1647 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1648 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1649 /*
1650 * The caller is globally serialized and nobody else
1651 * takes two locks at once, deadlock is not possible.
1652 */
ecb49d1a
TG
1653 raw_spin_lock(&new_base->lock);
1654 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1655
3c8aa39d 1656 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1657 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1658 &new_base->clock_base[i]);
c0a31329
TG
1659 }
1660
ecb49d1a
TG
1661 raw_spin_unlock(&old_base->lock);
1662 raw_spin_unlock(&new_base->lock);
37810659 1663
731a55ba
TG
1664 /* Check, if we got expired work to do */
1665 __hrtimer_peek_ahead_timers();
1666 local_irq_enable();
c0a31329 1667}
37810659 1668
c0a31329
TG
1669#endif /* CONFIG_HOTPLUG_CPU */
1670
0db0628d 1671static int hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1672 unsigned long action, void *hcpu)
1673{
b2e3c0ad 1674 int scpu = (long)hcpu;
c0a31329
TG
1675
1676 switch (action) {
1677
1678 case CPU_UP_PREPARE:
8bb78442 1679 case CPU_UP_PREPARE_FROZEN:
37810659 1680 init_hrtimers_cpu(scpu);
c0a31329
TG
1681 break;
1682
1683#ifdef CONFIG_HOTPLUG_CPU
1684 case CPU_DEAD:
8bb78442 1685 case CPU_DEAD_FROZEN:
d5fd43c4 1686 migrate_hrtimers(scpu);
c0a31329
TG
1687 break;
1688#endif
1689
1690 default:
1691 break;
1692 }
1693
1694 return NOTIFY_OK;
1695}
1696
0db0628d 1697static struct notifier_block hrtimers_nb = {
c0a31329
TG
1698 .notifier_call = hrtimer_cpu_notify,
1699};
1700
1701void __init hrtimers_init(void)
1702{
1703 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1704 (void *)(long)smp_processor_id());
1705 register_cpu_notifier(&hrtimers_nb);
1706}
1707
7bb67439 1708/**
351b3f7a 1709 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1710 * @expires: timeout value (ktime_t)
654c8e0b 1711 * @delta: slack in expires timeout (ktime_t)
7bb67439 1712 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1713 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1714 */
351b3f7a 1715int __sched
da8b44d5 1716schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
351b3f7a 1717 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1718{
1719 struct hrtimer_sleeper t;
1720
1721 /*
1722 * Optimize when a zero timeout value is given. It does not
1723 * matter whether this is an absolute or a relative time.
1724 */
1725 if (expires && !expires->tv64) {
1726 __set_current_state(TASK_RUNNING);
1727 return 0;
1728 }
1729
1730 /*
43b21013 1731 * A NULL parameter means "infinite"
7bb67439
AV
1732 */
1733 if (!expires) {
1734 schedule();
7bb67439
AV
1735 return -EINTR;
1736 }
1737
351b3f7a 1738 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1739 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1740
1741 hrtimer_init_sleeper(&t, current);
1742
cc584b21 1743 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1744
1745 if (likely(t.task))
1746 schedule();
1747
1748 hrtimer_cancel(&t.timer);
1749 destroy_hrtimer_on_stack(&t.timer);
1750
1751 __set_current_state(TASK_RUNNING);
1752
1753 return !t.task ? 0 : -EINTR;
1754}
351b3f7a
CE
1755
1756/**
1757 * schedule_hrtimeout_range - sleep until timeout
1758 * @expires: timeout value (ktime_t)
1759 * @delta: slack in expires timeout (ktime_t)
1760 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1761 *
1762 * Make the current task sleep until the given expiry time has
1763 * elapsed. The routine will return immediately unless
1764 * the current task state has been set (see set_current_state()).
1765 *
1766 * The @delta argument gives the kernel the freedom to schedule the
1767 * actual wakeup to a time that is both power and performance friendly.
1768 * The kernel give the normal best effort behavior for "@expires+@delta",
1769 * but may decide to fire the timer earlier, but no earlier than @expires.
1770 *
1771 * You can set the task state as follows -
1772 *
1773 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1774 * pass before the routine returns.
1775 *
1776 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1777 * delivered to the current task.
1778 *
1779 * The current task state is guaranteed to be TASK_RUNNING when this
1780 * routine returns.
1781 *
1782 * Returns 0 when the timer has expired otherwise -EINTR
1783 */
da8b44d5 1784int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1785 const enum hrtimer_mode mode)
1786{
1787 return schedule_hrtimeout_range_clock(expires, delta, mode,
1788 CLOCK_MONOTONIC);
1789}
654c8e0b
AV
1790EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1791
1792/**
1793 * schedule_hrtimeout - sleep until timeout
1794 * @expires: timeout value (ktime_t)
1795 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1796 *
1797 * Make the current task sleep until the given expiry time has
1798 * elapsed. The routine will return immediately unless
1799 * the current task state has been set (see set_current_state()).
1800 *
1801 * You can set the task state as follows -
1802 *
1803 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1804 * pass before the routine returns.
1805 *
1806 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1807 * delivered to the current task.
1808 *
1809 * The current task state is guaranteed to be TASK_RUNNING when this
1810 * routine returns.
1811 *
1812 * Returns 0 when the timer has expired otherwise -EINTR
1813 */
1814int __sched schedule_hrtimeout(ktime_t *expires,
1815 const enum hrtimer_mode mode)
1816{
1817 return schedule_hrtimeout_range(expires, 0, mode);
1818}
7bb67439 1819EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.811316 seconds and 5 git commands to generate.