clockevents: Introduce CLOCK_EVT_STATE_ONESHOT_STOPPED state
[deliverable/linux.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
eea08f32 50#include <linux/timer.h>
b0f8c44f 51#include <linux/freezer.h>
c0a31329
TG
52
53#include <asm/uaccess.h>
54
c6a2a177
XG
55#include <trace/events/timer.h>
56
c1797baf 57#include "tick-internal.h"
8b094cd0 58
c0a31329
TG
59/*
60 * The timer bases:
7978672c 61 *
e06383db
JS
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 66 */
54cdfdb4 67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 68{
84cc8fd2 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 70 .clock_base =
c0a31329 71 {
3c8aa39d 72 {
ab8177bc
TG
73 .index = HRTIMER_BASE_MONOTONIC,
74 .clockid = CLOCK_MONOTONIC,
3c8aa39d 75 .get_time = &ktime_get,
3c8aa39d 76 },
68fa61c0
TG
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
68fa61c0 81 },
70a08cca 82 {
ab8177bc
TG
83 .index = HRTIMER_BASE_BOOTTIME,
84 .clockid = CLOCK_BOOTTIME,
70a08cca 85 .get_time = &ktime_get_boottime,
70a08cca 86 },
90adda98
JS
87 {
88 .index = HRTIMER_BASE_TAI,
89 .clockid = CLOCK_TAI,
90 .get_time = &ktime_get_clocktai,
90adda98 91 },
3c8aa39d 92 }
c0a31329
TG
93};
94
942c3c5c 95static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
96 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
97 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
98 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 99 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 100};
e06383db
JS
101
102static inline int hrtimer_clockid_to_base(clockid_t clock_id)
103{
104 return hrtimer_clock_to_base_table[clock_id];
105}
106
c0a31329
TG
107/*
108 * Functions and macros which are different for UP/SMP systems are kept in a
109 * single place
110 */
111#ifdef CONFIG_SMP
112
c0a31329
TG
113/*
114 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
115 * means that all timers which are tied to this base via timer->base are
116 * locked, and the base itself is locked too.
117 *
118 * So __run_timers/migrate_timers can safely modify all timers which could
119 * be found on the lists/queues.
120 *
121 * When the timer's base is locked, and the timer removed from list, it is
122 * possible to set timer->base = NULL and drop the lock: the timer remains
123 * locked.
124 */
3c8aa39d
TG
125static
126struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
127 unsigned long *flags)
c0a31329 128{
3c8aa39d 129 struct hrtimer_clock_base *base;
c0a31329
TG
130
131 for (;;) {
132 base = timer->base;
133 if (likely(base != NULL)) {
ecb49d1a 134 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
135 if (likely(base == timer->base))
136 return base;
137 /* The timer has migrated to another CPU: */
ecb49d1a 138 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
139 }
140 cpu_relax();
141 }
142}
143
6ff7041d
TG
144/*
145 * With HIGHRES=y we do not migrate the timer when it is expiring
146 * before the next event on the target cpu because we cannot reprogram
147 * the target cpu hardware and we would cause it to fire late.
148 *
149 * Called with cpu_base->lock of target cpu held.
150 */
151static int
152hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
153{
154#ifdef CONFIG_HIGH_RES_TIMERS
155 ktime_t expires;
156
157 if (!new_base->cpu_base->hres_active)
158 return 0;
159
160 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
161 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
162#else
163 return 0;
164#endif
165}
166
c0a31329
TG
167/*
168 * Switch the timer base to the current CPU when possible.
169 */
3c8aa39d 170static inline struct hrtimer_clock_base *
597d0275
AB
171switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
172 int pinned)
c0a31329 173{
3c8aa39d
TG
174 struct hrtimer_clock_base *new_base;
175 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d 176 int this_cpu = smp_processor_id();
6201b4d6 177 int cpu = get_nohz_timer_target(pinned);
ab8177bc 178 int basenum = base->index;
c0a31329 179
eea08f32
AB
180again:
181 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 182 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
183
184 if (base != new_base) {
185 /*
6ff7041d 186 * We are trying to move timer to new_base.
c0a31329
TG
187 * However we can't change timer's base while it is running,
188 * so we keep it on the same CPU. No hassle vs. reprogramming
189 * the event source in the high resolution case. The softirq
190 * code will take care of this when the timer function has
191 * completed. There is no conflict as we hold the lock until
192 * the timer is enqueued.
193 */
54cdfdb4 194 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
195 return base;
196
197 /* See the comment in lock_timer_base() */
198 timer->base = NULL;
ecb49d1a
TG
199 raw_spin_unlock(&base->cpu_base->lock);
200 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 201
6ff7041d
TG
202 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
203 cpu = this_cpu;
ecb49d1a
TG
204 raw_spin_unlock(&new_base->cpu_base->lock);
205 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
206 timer->base = base;
207 goto again;
eea08f32 208 }
c0a31329 209 timer->base = new_base;
012a45e3
LM
210 } else {
211 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
212 cpu = this_cpu;
213 goto again;
214 }
c0a31329
TG
215 }
216 return new_base;
217}
218
219#else /* CONFIG_SMP */
220
3c8aa39d 221static inline struct hrtimer_clock_base *
c0a31329
TG
222lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
223{
3c8aa39d 224 struct hrtimer_clock_base *base = timer->base;
c0a31329 225
ecb49d1a 226 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
227
228 return base;
229}
230
eea08f32 231# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
232
233#endif /* !CONFIG_SMP */
234
235/*
236 * Functions for the union type storage format of ktime_t which are
237 * too large for inlining:
238 */
239#if BITS_PER_LONG < 64
c0a31329
TG
240/*
241 * Divide a ktime value by a nanosecond value
242 */
8b618628 243u64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 244{
900cfa46 245 u64 dclc;
c0a31329
TG
246 int sft = 0;
247
900cfa46 248 dclc = ktime_to_ns(kt);
c0a31329
TG
249 /* Make sure the divisor is less than 2^32: */
250 while (div >> 32) {
251 sft++;
252 div >>= 1;
253 }
254 dclc >>= sft;
255 do_div(dclc, (unsigned long) div);
256
4d672e7a 257 return dclc;
c0a31329 258}
8b618628 259EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
260#endif /* BITS_PER_LONG >= 64 */
261
5a7780e7
TG
262/*
263 * Add two ktime values and do a safety check for overflow:
264 */
265ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
266{
267 ktime_t res = ktime_add(lhs, rhs);
268
269 /*
270 * We use KTIME_SEC_MAX here, the maximum timeout which we can
271 * return to user space in a timespec:
272 */
273 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
274 res = ktime_set(KTIME_SEC_MAX, 0);
275
276 return res;
277}
278
8daa21e6
AB
279EXPORT_SYMBOL_GPL(ktime_add_safe);
280
237fc6e7
TG
281#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
282
283static struct debug_obj_descr hrtimer_debug_descr;
284
99777288
SG
285static void *hrtimer_debug_hint(void *addr)
286{
287 return ((struct hrtimer *) addr)->function;
288}
289
237fc6e7
TG
290/*
291 * fixup_init is called when:
292 * - an active object is initialized
293 */
294static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
295{
296 struct hrtimer *timer = addr;
297
298 switch (state) {
299 case ODEBUG_STATE_ACTIVE:
300 hrtimer_cancel(timer);
301 debug_object_init(timer, &hrtimer_debug_descr);
302 return 1;
303 default:
304 return 0;
305 }
306}
307
308/*
309 * fixup_activate is called when:
310 * - an active object is activated
311 * - an unknown object is activated (might be a statically initialized object)
312 */
313static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
314{
315 switch (state) {
316
317 case ODEBUG_STATE_NOTAVAILABLE:
318 WARN_ON_ONCE(1);
319 return 0;
320
321 case ODEBUG_STATE_ACTIVE:
322 WARN_ON(1);
323
324 default:
325 return 0;
326 }
327}
328
329/*
330 * fixup_free is called when:
331 * - an active object is freed
332 */
333static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
334{
335 struct hrtimer *timer = addr;
336
337 switch (state) {
338 case ODEBUG_STATE_ACTIVE:
339 hrtimer_cancel(timer);
340 debug_object_free(timer, &hrtimer_debug_descr);
341 return 1;
342 default:
343 return 0;
344 }
345}
346
347static struct debug_obj_descr hrtimer_debug_descr = {
348 .name = "hrtimer",
99777288 349 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
350 .fixup_init = hrtimer_fixup_init,
351 .fixup_activate = hrtimer_fixup_activate,
352 .fixup_free = hrtimer_fixup_free,
353};
354
355static inline void debug_hrtimer_init(struct hrtimer *timer)
356{
357 debug_object_init(timer, &hrtimer_debug_descr);
358}
359
360static inline void debug_hrtimer_activate(struct hrtimer *timer)
361{
362 debug_object_activate(timer, &hrtimer_debug_descr);
363}
364
365static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
366{
367 debug_object_deactivate(timer, &hrtimer_debug_descr);
368}
369
370static inline void debug_hrtimer_free(struct hrtimer *timer)
371{
372 debug_object_free(timer, &hrtimer_debug_descr);
373}
374
375static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
376 enum hrtimer_mode mode);
377
378void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
379 enum hrtimer_mode mode)
380{
381 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
382 __hrtimer_init(timer, clock_id, mode);
383}
2bc481cf 384EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
385
386void destroy_hrtimer_on_stack(struct hrtimer *timer)
387{
388 debug_object_free(timer, &hrtimer_debug_descr);
389}
390
391#else
392static inline void debug_hrtimer_init(struct hrtimer *timer) { }
393static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
394static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
395#endif
396
c6a2a177
XG
397static inline void
398debug_init(struct hrtimer *timer, clockid_t clockid,
399 enum hrtimer_mode mode)
400{
401 debug_hrtimer_init(timer);
402 trace_hrtimer_init(timer, clockid, mode);
403}
404
405static inline void debug_activate(struct hrtimer *timer)
406{
407 debug_hrtimer_activate(timer);
408 trace_hrtimer_start(timer);
409}
410
411static inline void debug_deactivate(struct hrtimer *timer)
412{
413 debug_hrtimer_deactivate(timer);
414 trace_hrtimer_cancel(timer);
415}
416
9bc74919 417#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
895bdfa7
TG
418static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
419 struct hrtimer *timer)
420{
421#ifdef CONFIG_HIGH_RES_TIMERS
422 cpu_base->next_timer = timer;
423#endif
424}
425
4ebbda52 426static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919
TG
427{
428 struct hrtimer_clock_base *base = cpu_base->clock_base;
429 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
34aee88a 430 unsigned int active = cpu_base->active_bases;
9bc74919 431
895bdfa7 432 hrtimer_update_next_timer(cpu_base, NULL);
34aee88a 433 for (; active; base++, active >>= 1) {
9bc74919
TG
434 struct timerqueue_node *next;
435 struct hrtimer *timer;
436
34aee88a 437 if (!(active & 0x01))
9bc74919
TG
438 continue;
439
34aee88a 440 next = timerqueue_getnext(&base->active);
9bc74919
TG
441 timer = container_of(next, struct hrtimer, node);
442 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
895bdfa7 443 if (expires.tv64 < expires_next.tv64) {
9bc74919 444 expires_next = expires;
895bdfa7
TG
445 hrtimer_update_next_timer(cpu_base, timer);
446 }
9bc74919
TG
447 }
448 /*
449 * clock_was_set() might have changed base->offset of any of
450 * the clock bases so the result might be negative. Fix it up
451 * to prevent a false positive in clockevents_program_event().
452 */
453 if (expires_next.tv64 < 0)
454 expires_next.tv64 = 0;
455 return expires_next;
456}
457#endif
458
21d6d52a
TG
459static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
460{
461 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
462 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
463 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
464
868a3e91
TG
465 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
466 offs_real, offs_boot, offs_tai);
21d6d52a
TG
467}
468
54cdfdb4
TG
469/* High resolution timer related functions */
470#ifdef CONFIG_HIGH_RES_TIMERS
471
472/*
473 * High resolution timer enabled ?
474 */
475static int hrtimer_hres_enabled __read_mostly = 1;
398ca17f
TG
476unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
477EXPORT_SYMBOL_GPL(hrtimer_resolution);
54cdfdb4
TG
478
479/*
480 * Enable / Disable high resolution mode
481 */
482static int __init setup_hrtimer_hres(char *str)
483{
484 if (!strcmp(str, "off"))
485 hrtimer_hres_enabled = 0;
486 else if (!strcmp(str, "on"))
487 hrtimer_hres_enabled = 1;
488 else
489 return 0;
490 return 1;
491}
492
493__setup("highres=", setup_hrtimer_hres);
494
495/*
496 * hrtimer_high_res_enabled - query, if the highres mode is enabled
497 */
498static inline int hrtimer_is_hres_enabled(void)
499{
500 return hrtimer_hres_enabled;
501}
502
503/*
504 * Is the high resolution mode active ?
505 */
e19ffe8b
TG
506static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
507{
508 return cpu_base->hres_active;
509}
510
54cdfdb4
TG
511static inline int hrtimer_hres_active(void)
512{
e19ffe8b 513 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
54cdfdb4
TG
514}
515
516/*
517 * Reprogram the event source with checking both queues for the
518 * next event
519 * Called with interrupts disabled and base->lock held
520 */
7403f41f
AC
521static void
522hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 523{
21d6d52a
TG
524 ktime_t expires_next;
525
526 if (!cpu_base->hres_active)
527 return;
528
529 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 530
7403f41f
AC
531 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
532 return;
533
534 cpu_base->expires_next.tv64 = expires_next.tv64;
535
6c6c0d5a
SH
536 /*
537 * If a hang was detected in the last timer interrupt then we
538 * leave the hang delay active in the hardware. We want the
539 * system to make progress. That also prevents the following
540 * scenario:
541 * T1 expires 50ms from now
542 * T2 expires 5s from now
543 *
544 * T1 is removed, so this code is called and would reprogram
545 * the hardware to 5s from now. Any hrtimer_start after that
546 * will not reprogram the hardware due to hang_detected being
547 * set. So we'd effectivly block all timers until the T2 event
548 * fires.
549 */
550 if (cpu_base->hang_detected)
551 return;
552
54cdfdb4
TG
553 if (cpu_base->expires_next.tv64 != KTIME_MAX)
554 tick_program_event(cpu_base->expires_next, 1);
555}
556
557/*
54cdfdb4
TG
558 * When a timer is enqueued and expires earlier than the already enqueued
559 * timers, we have to check, whether it expires earlier than the timer for
560 * which the clock event device was armed.
561 *
562 * Called with interrupts disabled and base->cpu_base.lock held
563 */
c6eb3f70
TG
564static void hrtimer_reprogram(struct hrtimer *timer,
565 struct hrtimer_clock_base *base)
54cdfdb4 566{
dc5df73b 567 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
cc584b21 568 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4 569
cc584b21 570 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 571
54cdfdb4 572 /*
c6eb3f70
TG
573 * If the timer is not on the current cpu, we cannot reprogram
574 * the other cpus clock event device.
54cdfdb4 575 */
c6eb3f70
TG
576 if (base->cpu_base != cpu_base)
577 return;
578
579 /*
580 * If the hrtimer interrupt is running, then it will
581 * reevaluate the clock bases and reprogram the clock event
582 * device. The callbacks are always executed in hard interrupt
583 * context so we don't need an extra check for a running
584 * callback.
585 */
586 if (cpu_base->in_hrtirq)
587 return;
54cdfdb4 588
63070a79
TG
589 /*
590 * CLOCK_REALTIME timer might be requested with an absolute
c6eb3f70 591 * expiry time which is less than base->offset. Set it to 0.
63070a79
TG
592 */
593 if (expires.tv64 < 0)
c6eb3f70 594 expires.tv64 = 0;
63070a79 595
41d2e494 596 if (expires.tv64 >= cpu_base->expires_next.tv64)
c6eb3f70 597 return;
9bc74919 598
c6eb3f70 599 /* Update the pointer to the next expiring timer */
895bdfa7
TG
600 cpu_base->next_timer = timer;
601
41d2e494
TG
602 /*
603 * If a hang was detected in the last timer interrupt then we
604 * do not schedule a timer which is earlier than the expiry
605 * which we enforced in the hang detection. We want the system
606 * to make progress.
607 */
608 if (cpu_base->hang_detected)
c6eb3f70 609 return;
54cdfdb4
TG
610
611 /*
c6eb3f70
TG
612 * Program the timer hardware. We enforce the expiry for
613 * events which are already in the past.
54cdfdb4 614 */
c6eb3f70
TG
615 cpu_base->expires_next = expires;
616 tick_program_event(expires, 1);
54cdfdb4
TG
617}
618
54cdfdb4
TG
619/*
620 * Initialize the high resolution related parts of cpu_base
621 */
622static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
623{
624 base->expires_next.tv64 = KTIME_MAX;
625 base->hres_active = 0;
54cdfdb4
TG
626}
627
9ec26907
TG
628/*
629 * Retrigger next event is called after clock was set
630 *
631 * Called with interrupts disabled via on_each_cpu()
632 */
633static void retrigger_next_event(void *arg)
634{
dc5df73b 635 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 636
e19ffe8b 637 if (!base->hres_active)
9ec26907
TG
638 return;
639
9ec26907 640 raw_spin_lock(&base->lock);
5baefd6d 641 hrtimer_update_base(base);
9ec26907
TG
642 hrtimer_force_reprogram(base, 0);
643 raw_spin_unlock(&base->lock);
644}
b12a03ce 645
54cdfdb4
TG
646/*
647 * Switch to high resolution mode
648 */
f8953856 649static int hrtimer_switch_to_hres(void)
54cdfdb4 650{
c6eb3f70 651 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
652
653 if (tick_init_highres()) {
820de5c3 654 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 655 "mode on CPU %d\n", base->cpu);
f8953856 656 return 0;
54cdfdb4
TG
657 }
658 base->hres_active = 1;
398ca17f 659 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
660
661 tick_setup_sched_timer();
54cdfdb4
TG
662 /* "Retrigger" the interrupt to get things going */
663 retrigger_next_event(NULL);
f8953856 664 return 1;
54cdfdb4
TG
665}
666
5ec2481b
TG
667static void clock_was_set_work(struct work_struct *work)
668{
669 clock_was_set();
670}
671
672static DECLARE_WORK(hrtimer_work, clock_was_set_work);
673
f55a6faa 674/*
5ec2481b
TG
675 * Called from timekeeping and resume code to reprogramm the hrtimer
676 * interrupt device on all cpus.
f55a6faa
JS
677 */
678void clock_was_set_delayed(void)
679{
5ec2481b 680 schedule_work(&hrtimer_work);
f55a6faa
JS
681}
682
54cdfdb4
TG
683#else
684
e19ffe8b 685static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
54cdfdb4
TG
686static inline int hrtimer_hres_active(void) { return 0; }
687static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 688static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
689static inline void
690hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
9e1e01dd
VK
691static inline int hrtimer_reprogram(struct hrtimer *timer,
692 struct hrtimer_clock_base *base)
54cdfdb4
TG
693{
694 return 0;
695}
54cdfdb4 696static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 697static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
698
699#endif /* CONFIG_HIGH_RES_TIMERS */
700
b12a03ce
TG
701/*
702 * Clock realtime was set
703 *
704 * Change the offset of the realtime clock vs. the monotonic
705 * clock.
706 *
707 * We might have to reprogram the high resolution timer interrupt. On
708 * SMP we call the architecture specific code to retrigger _all_ high
709 * resolution timer interrupts. On UP we just disable interrupts and
710 * call the high resolution interrupt code.
711 */
712void clock_was_set(void)
713{
90ff1f30 714#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
715 /* Retrigger the CPU local events everywhere */
716 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
717#endif
718 timerfd_clock_was_set();
b12a03ce
TG
719}
720
721/*
722 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
723 * interrupt on all online CPUs. However, all other CPUs will be
724 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 725 * must be deferred.
b12a03ce
TG
726 */
727void hrtimers_resume(void)
728{
729 WARN_ONCE(!irqs_disabled(),
730 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
731
5ec2481b 732 /* Retrigger on the local CPU */
b12a03ce 733 retrigger_next_event(NULL);
5ec2481b
TG
734 /* And schedule a retrigger for all others */
735 clock_was_set_delayed();
b12a03ce
TG
736}
737
5f201907 738static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 739{
5f201907 740#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
741 if (timer->start_site)
742 return;
5f201907 743 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
744 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
745 timer->start_pid = current->pid;
5f201907
HC
746#endif
747}
748
749static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
750{
751#ifdef CONFIG_TIMER_STATS
752 timer->start_site = NULL;
753#endif
82f67cd9 754}
5f201907
HC
755
756static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
757{
758#ifdef CONFIG_TIMER_STATS
759 if (likely(!timer_stats_active))
760 return;
761 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
762 timer->function, timer->start_comm, 0);
82f67cd9 763#endif
5f201907 764}
82f67cd9 765
c0a31329 766/*
6506f2aa 767 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
768 */
769static inline
770void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
771{
ecb49d1a 772 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
773}
774
775/**
776 * hrtimer_forward - forward the timer expiry
c0a31329 777 * @timer: hrtimer to forward
44f21475 778 * @now: forward past this time
c0a31329
TG
779 * @interval: the interval to forward
780 *
781 * Forward the timer expiry so it will expire in the future.
8dca6f33 782 * Returns the number of overruns.
91e5a217
TG
783 *
784 * Can be safely called from the callback function of @timer. If
785 * called from other contexts @timer must neither be enqueued nor
786 * running the callback and the caller needs to take care of
787 * serialization.
788 *
789 * Note: This only updates the timer expiry value and does not requeue
790 * the timer.
c0a31329 791 */
4d672e7a 792u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 793{
4d672e7a 794 u64 orun = 1;
44f21475 795 ktime_t delta;
c0a31329 796
cc584b21 797 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
798
799 if (delta.tv64 < 0)
800 return 0;
801
5de2755c
PZ
802 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
803 return 0;
804
398ca17f
TG
805 if (interval.tv64 < hrtimer_resolution)
806 interval.tv64 = hrtimer_resolution;
c9db4fa1 807
c0a31329 808 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 809 s64 incr = ktime_to_ns(interval);
c0a31329
TG
810
811 orun = ktime_divns(delta, incr);
cc584b21
AV
812 hrtimer_add_expires_ns(timer, incr * orun);
813 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
814 return orun;
815 /*
816 * This (and the ktime_add() below) is the
817 * correction for exact:
818 */
819 orun++;
820 }
cc584b21 821 hrtimer_add_expires(timer, interval);
c0a31329
TG
822
823 return orun;
824}
6bdb6b62 825EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
826
827/*
828 * enqueue_hrtimer - internal function to (re)start a timer
829 *
830 * The timer is inserted in expiry order. Insertion into the
831 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
832 *
833 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 834 */
a6037b61
PZ
835static int enqueue_hrtimer(struct hrtimer *timer,
836 struct hrtimer_clock_base *base)
c0a31329 837{
c6a2a177 838 debug_activate(timer);
237fc6e7 839
ab8177bc 840 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 841
303e967f
TG
842 /*
843 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
844 * state of a possibly running callback.
845 */
846 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 847
b97f44c9 848 return timerqueue_add(&base->active, &timer->node);
288867ec 849}
c0a31329
TG
850
851/*
852 * __remove_hrtimer - internal function to remove a timer
853 *
854 * Caller must hold the base lock.
54cdfdb4
TG
855 *
856 * High resolution timer mode reprograms the clock event device when the
857 * timer is the one which expires next. The caller can disable this by setting
858 * reprogram to zero. This is useful, when the context does a reprogramming
859 * anyway (e.g. timer interrupt)
c0a31329 860 */
3c8aa39d 861static void __remove_hrtimer(struct hrtimer *timer,
303e967f 862 struct hrtimer_clock_base *base,
54cdfdb4 863 unsigned long newstate, int reprogram)
c0a31329 864{
e19ffe8b 865 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
895bdfa7 866 unsigned int state = timer->state;
e19ffe8b 867
895bdfa7
TG
868 timer->state = newstate;
869 if (!(state & HRTIMER_STATE_ENQUEUED))
870 return;
7403f41f 871
b97f44c9 872 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 873 cpu_base->active_bases &= ~(1 << base->index);
d9f0acde 874
7403f41f 875#ifdef CONFIG_HIGH_RES_TIMERS
895bdfa7
TG
876 /*
877 * Note: If reprogram is false we do not update
878 * cpu_base->next_timer. This happens when we remove the first
879 * timer on a remote cpu. No harm as we never dereference
880 * cpu_base->next_timer. So the worst thing what can happen is
881 * an superflous call to hrtimer_force_reprogram() on the
882 * remote cpu later on if the same timer gets enqueued again.
883 */
884 if (reprogram && timer == cpu_base->next_timer)
885 hrtimer_force_reprogram(cpu_base, 1);
7403f41f 886#endif
c0a31329
TG
887}
888
889/*
890 * remove hrtimer, called with base lock held
891 */
892static inline int
3c8aa39d 893remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 894{
303e967f 895 if (hrtimer_is_queued(timer)) {
f13d4f97 896 unsigned long state;
54cdfdb4
TG
897 int reprogram;
898
899 /*
900 * Remove the timer and force reprogramming when high
901 * resolution mode is active and the timer is on the current
902 * CPU. If we remove a timer on another CPU, reprogramming is
903 * skipped. The interrupt event on this CPU is fired and
904 * reprogramming happens in the interrupt handler. This is a
905 * rare case and less expensive than a smp call.
906 */
c6a2a177 907 debug_deactivate(timer);
82f67cd9 908 timer_stats_hrtimer_clear_start_info(timer);
dc5df73b 909 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
f13d4f97
SQ
910 /*
911 * We must preserve the CALLBACK state flag here,
912 * otherwise we could move the timer base in
913 * switch_hrtimer_base.
914 */
915 state = timer->state & HRTIMER_STATE_CALLBACK;
916 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
917 return 1;
918 }
919 return 0;
920}
921
58f1f803
TG
922/**
923 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
924 * @timer: the timer to be added
925 * @tim: expiry time
926 * @delta_ns: "slack" range for the timer
927 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
928 * relative (HRTIMER_MODE_REL)
58f1f803 929 */
61699e13
TG
930void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
931 unsigned long delta_ns, const enum hrtimer_mode mode)
c0a31329 932{
3c8aa39d 933 struct hrtimer_clock_base *base, *new_base;
c0a31329 934 unsigned long flags;
61699e13 935 int leftmost;
c0a31329
TG
936
937 base = lock_hrtimer_base(timer, &flags);
938
939 /* Remove an active timer from the queue: */
61699e13 940 remove_hrtimer(timer, base);
c0a31329 941
597d0275 942 if (mode & HRTIMER_MODE_REL) {
84ea7fe3 943 tim = ktime_add_safe(tim, base->get_time());
06027bdd
IM
944 /*
945 * CONFIG_TIME_LOW_RES is a temporary way for architectures
946 * to signal that they simply return xtime in
947 * do_gettimeoffset(). In this case we want to round up by
948 * resolution when starting a relative timer, to avoid short
949 * timeouts. This will go away with the GTOD framework.
950 */
951#ifdef CONFIG_TIME_LOW_RES
398ca17f 952 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
06027bdd
IM
953#endif
954 }
237fc6e7 955
da8f2e17 956 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 957
84ea7fe3
VK
958 /* Switch the timer base, if necessary: */
959 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
960
82f67cd9
IM
961 timer_stats_hrtimer_set_start_info(timer);
962
a6037b61 963 leftmost = enqueue_hrtimer(timer, new_base);
61699e13
TG
964 if (!leftmost)
965 goto unlock;
49a2a075
VK
966
967 if (!hrtimer_is_hres_active(timer)) {
968 /*
969 * Kick to reschedule the next tick to handle the new timer
970 * on dynticks target.
971 */
972 wake_up_nohz_cpu(new_base->cpu_base->cpu);
c6eb3f70
TG
973 } else {
974 hrtimer_reprogram(timer, new_base);
b22affe0 975 }
61699e13 976unlock:
c0a31329 977 unlock_hrtimer_base(timer, &flags);
c0a31329 978}
da8f2e17
AV
979EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
980
c0a31329
TG
981/**
982 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
983 * @timer: hrtimer to stop
984 *
985 * Returns:
986 * 0 when the timer was not active
987 * 1 when the timer was active
988 * -1 when the timer is currently excuting the callback function and
fa9799e3 989 * cannot be stopped
c0a31329
TG
990 */
991int hrtimer_try_to_cancel(struct hrtimer *timer)
992{
3c8aa39d 993 struct hrtimer_clock_base *base;
c0a31329
TG
994 unsigned long flags;
995 int ret = -1;
996
19d9f422
TG
997 /*
998 * Check lockless first. If the timer is not active (neither
999 * enqueued nor running the callback, nothing to do here. The
1000 * base lock does not serialize against a concurrent enqueue,
1001 * so we can avoid taking it.
1002 */
1003 if (!hrtimer_active(timer))
1004 return 0;
1005
c0a31329
TG
1006 base = lock_hrtimer_base(timer, &flags);
1007
303e967f 1008 if (!hrtimer_callback_running(timer))
c0a31329
TG
1009 ret = remove_hrtimer(timer, base);
1010
1011 unlock_hrtimer_base(timer, &flags);
1012
1013 return ret;
1014
1015}
8d16b764 1016EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1017
1018/**
1019 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1020 * @timer: the timer to be cancelled
1021 *
1022 * Returns:
1023 * 0 when the timer was not active
1024 * 1 when the timer was active
1025 */
1026int hrtimer_cancel(struct hrtimer *timer)
1027{
1028 for (;;) {
1029 int ret = hrtimer_try_to_cancel(timer);
1030
1031 if (ret >= 0)
1032 return ret;
5ef37b19 1033 cpu_relax();
c0a31329
TG
1034 }
1035}
8d16b764 1036EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1037
1038/**
1039 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1040 * @timer: the timer to read
1041 */
1042ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1043{
c0a31329
TG
1044 unsigned long flags;
1045 ktime_t rem;
1046
b3bd3de6 1047 lock_hrtimer_base(timer, &flags);
cc584b21 1048 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1049 unlock_hrtimer_base(timer, &flags);
1050
1051 return rem;
1052}
8d16b764 1053EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1054
3451d024 1055#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1056/**
1057 * hrtimer_get_next_event - get the time until next expiry event
1058 *
c1ad348b 1059 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1060 */
c1ad348b 1061u64 hrtimer_get_next_event(void)
69239749 1062{
dc5df73b 1063 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1064 u64 expires = KTIME_MAX;
69239749 1065 unsigned long flags;
69239749 1066
ecb49d1a 1067 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1068
e19ffe8b 1069 if (!__hrtimer_hres_active(cpu_base))
c1ad348b 1070 expires = __hrtimer_get_next_event(cpu_base).tv64;
3c8aa39d 1071
ecb49d1a 1072 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1073
c1ad348b 1074 return expires;
69239749
TL
1075}
1076#endif
1077
237fc6e7
TG
1078static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1079 enum hrtimer_mode mode)
c0a31329 1080{
3c8aa39d 1081 struct hrtimer_cpu_base *cpu_base;
e06383db 1082 int base;
c0a31329 1083
7978672c
GA
1084 memset(timer, 0, sizeof(struct hrtimer));
1085
22127e93 1086 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1087
c9cb2e3d 1088 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1089 clock_id = CLOCK_MONOTONIC;
1090
e06383db
JS
1091 base = hrtimer_clockid_to_base(clock_id);
1092 timer->base = &cpu_base->clock_base[base];
998adc3d 1093 timerqueue_init(&timer->node);
82f67cd9
IM
1094
1095#ifdef CONFIG_TIMER_STATS
1096 timer->start_site = NULL;
1097 timer->start_pid = -1;
1098 memset(timer->start_comm, 0, TASK_COMM_LEN);
1099#endif
c0a31329 1100}
237fc6e7
TG
1101
1102/**
1103 * hrtimer_init - initialize a timer to the given clock
1104 * @timer: the timer to be initialized
1105 * @clock_id: the clock to be used
1106 * @mode: timer mode abs/rel
1107 */
1108void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1109 enum hrtimer_mode mode)
1110{
c6a2a177 1111 debug_init(timer, clock_id, mode);
237fc6e7
TG
1112 __hrtimer_init(timer, clock_id, mode);
1113}
8d16b764 1114EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1115
21d6d52a
TG
1116static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1117 struct hrtimer_clock_base *base,
1118 struct hrtimer *timer, ktime_t *now)
d3d74453 1119{
d3d74453
PZ
1120 enum hrtimer_restart (*fn)(struct hrtimer *);
1121 int restart;
1122
ca109491
PZ
1123 WARN_ON(!irqs_disabled());
1124
c6a2a177 1125 debug_deactivate(timer);
d3d74453
PZ
1126 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1127 timer_stats_account_hrtimer(timer);
d3d74453 1128 fn = timer->function;
ca109491
PZ
1129
1130 /*
1131 * Because we run timers from hardirq context, there is no chance
1132 * they get migrated to another cpu, therefore its safe to unlock
1133 * the timer base.
1134 */
ecb49d1a 1135 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1136 trace_hrtimer_expire_entry(timer, now);
ca109491 1137 restart = fn(timer);
c6a2a177 1138 trace_hrtimer_expire_exit(timer);
ecb49d1a 1139 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1140
1141 /*
e3f1d883
TG
1142 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1143 * we do not reprogramm the event hardware. Happens either in
1144 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1145 *
1146 * Note: Because we dropped the cpu_base->lock above,
1147 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1148 * for us already.
d3d74453 1149 */
5de2755c
PZ
1150 if (restart != HRTIMER_NORESTART &&
1151 !(timer->state & HRTIMER_STATE_ENQUEUED))
a6037b61 1152 enqueue_hrtimer(timer, base);
f13d4f97
SQ
1153
1154 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1155
d3d74453
PZ
1156 timer->state &= ~HRTIMER_STATE_CALLBACK;
1157}
1158
21d6d52a 1159static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1160{
34aee88a
TG
1161 struct hrtimer_clock_base *base = cpu_base->clock_base;
1162 unsigned int active = cpu_base->active_bases;
6ff7041d 1163
34aee88a 1164 for (; active; base++, active >>= 1) {
998adc3d 1165 struct timerqueue_node *node;
ab8177bc
TG
1166 ktime_t basenow;
1167
34aee88a 1168 if (!(active & 0x01))
ab8177bc 1169 continue;
54cdfdb4 1170
54cdfdb4
TG
1171 basenow = ktime_add(now, base->offset);
1172
998adc3d 1173 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1174 struct hrtimer *timer;
1175
998adc3d 1176 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1177
654c8e0b
AV
1178 /*
1179 * The immediate goal for using the softexpires is
1180 * minimizing wakeups, not running timers at the
1181 * earliest interrupt after their soft expiration.
1182 * This allows us to avoid using a Priority Search
1183 * Tree, which can answer a stabbing querry for
1184 * overlapping intervals and instead use the simple
1185 * BST we already have.
1186 * We don't add extra wakeups by delaying timers that
1187 * are right-of a not yet expired timer, because that
1188 * timer will have to trigger a wakeup anyway.
1189 */
9bc74919 1190 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1191 break;
54cdfdb4 1192
21d6d52a 1193 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1194 }
54cdfdb4 1195 }
21d6d52a
TG
1196}
1197
1198#ifdef CONFIG_HIGH_RES_TIMERS
1199
1200/*
1201 * High resolution timer interrupt
1202 * Called with interrupts disabled
1203 */
1204void hrtimer_interrupt(struct clock_event_device *dev)
1205{
1206 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1207 ktime_t expires_next, now, entry_time, delta;
1208 int retries = 0;
1209
1210 BUG_ON(!cpu_base->hres_active);
1211 cpu_base->nr_events++;
1212 dev->next_event.tv64 = KTIME_MAX;
1213
1214 raw_spin_lock(&cpu_base->lock);
1215 entry_time = now = hrtimer_update_base(cpu_base);
1216retry:
1217 cpu_base->in_hrtirq = 1;
1218 /*
1219 * We set expires_next to KTIME_MAX here with cpu_base->lock
1220 * held to prevent that a timer is enqueued in our queue via
1221 * the migration code. This does not affect enqueueing of
1222 * timers which run their callback and need to be requeued on
1223 * this CPU.
1224 */
1225 cpu_base->expires_next.tv64 = KTIME_MAX;
1226
1227 __hrtimer_run_queues(cpu_base, now);
1228
9bc74919
TG
1229 /* Reevaluate the clock bases for the next expiry */
1230 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1231 /*
1232 * Store the new expiry value so the migration code can verify
1233 * against it.
1234 */
54cdfdb4 1235 cpu_base->expires_next = expires_next;
9bc74919 1236 cpu_base->in_hrtirq = 0;
ecb49d1a 1237 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1238
1239 /* Reprogramming necessary ? */
41d2e494
TG
1240 if (expires_next.tv64 == KTIME_MAX ||
1241 !tick_program_event(expires_next, 0)) {
1242 cpu_base->hang_detected = 0;
1243 return;
54cdfdb4 1244 }
41d2e494
TG
1245
1246 /*
1247 * The next timer was already expired due to:
1248 * - tracing
1249 * - long lasting callbacks
1250 * - being scheduled away when running in a VM
1251 *
1252 * We need to prevent that we loop forever in the hrtimer
1253 * interrupt routine. We give it 3 attempts to avoid
1254 * overreacting on some spurious event.
5baefd6d
JS
1255 *
1256 * Acquire base lock for updating the offsets and retrieving
1257 * the current time.
41d2e494 1258 */
196951e9 1259 raw_spin_lock(&cpu_base->lock);
5baefd6d 1260 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1261 cpu_base->nr_retries++;
1262 if (++retries < 3)
1263 goto retry;
1264 /*
1265 * Give the system a chance to do something else than looping
1266 * here. We stored the entry time, so we know exactly how long
1267 * we spent here. We schedule the next event this amount of
1268 * time away.
1269 */
1270 cpu_base->nr_hangs++;
1271 cpu_base->hang_detected = 1;
196951e9 1272 raw_spin_unlock(&cpu_base->lock);
41d2e494 1273 delta = ktime_sub(now, entry_time);
a6ffebce
TG
1274 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1275 cpu_base->max_hang_time = (unsigned int) delta.tv64;
41d2e494
TG
1276 /*
1277 * Limit it to a sensible value as we enforce a longer
1278 * delay. Give the CPU at least 100ms to catch up.
1279 */
1280 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1281 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1282 else
1283 expires_next = ktime_add(now, delta);
1284 tick_program_event(expires_next, 1);
1285 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1286 ktime_to_ns(delta));
54cdfdb4
TG
1287}
1288
8bdec955
TG
1289/*
1290 * local version of hrtimer_peek_ahead_timers() called with interrupts
1291 * disabled.
1292 */
c6eb3f70 1293static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1294{
1295 struct tick_device *td;
1296
1297 if (!hrtimer_hres_active())
1298 return;
1299
22127e93 1300 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1301 if (td && td->evtdev)
1302 hrtimer_interrupt(td->evtdev);
1303}
1304
82c5b7b5
IM
1305#else /* CONFIG_HIGH_RES_TIMERS */
1306
1307static inline void __hrtimer_peek_ahead_timers(void) { }
1308
1309#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1310
d3d74453 1311/*
c6eb3f70 1312 * Called from run_local_timers in hardirq context every jiffy
c0a31329 1313 */
833883d9 1314void hrtimer_run_queues(void)
c0a31329 1315{
dc5df73b 1316 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1317 ktime_t now;
c0a31329 1318
e19ffe8b 1319 if (__hrtimer_hres_active(cpu_base))
3055adda
DS
1320 return;
1321
c6eb3f70
TG
1322 /*
1323 * This _is_ ugly: We have to check periodically, whether we
1324 * can switch to highres and / or nohz mode. The clocksource
1325 * switch happens with xtime_lock held. Notification from
1326 * there only sets the check bit in the tick_oneshot code,
1327 * otherwise we might deadlock vs. xtime_lock.
1328 */
1329 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1330 hrtimer_switch_to_hres();
1331 return;
1332 }
1333
21d6d52a
TG
1334 raw_spin_lock(&cpu_base->lock);
1335 now = hrtimer_update_base(cpu_base);
1336 __hrtimer_run_queues(cpu_base, now);
1337 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1338}
1339
10c94ec1
TG
1340/*
1341 * Sleep related functions:
1342 */
c9cb2e3d 1343static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1344{
1345 struct hrtimer_sleeper *t =
1346 container_of(timer, struct hrtimer_sleeper, timer);
1347 struct task_struct *task = t->task;
1348
1349 t->task = NULL;
1350 if (task)
1351 wake_up_process(task);
1352
1353 return HRTIMER_NORESTART;
1354}
1355
36c8b586 1356void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1357{
1358 sl->timer.function = hrtimer_wakeup;
1359 sl->task = task;
1360}
2bc481cf 1361EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1362
669d7868 1363static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1364{
669d7868 1365 hrtimer_init_sleeper(t, current);
10c94ec1 1366
432569bb
RZ
1367 do {
1368 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1369 hrtimer_start_expires(&t->timer, mode);
432569bb 1370
54cdfdb4 1371 if (likely(t->task))
b0f8c44f 1372 freezable_schedule();
432569bb 1373
669d7868 1374 hrtimer_cancel(&t->timer);
c9cb2e3d 1375 mode = HRTIMER_MODE_ABS;
669d7868
TG
1376
1377 } while (t->task && !signal_pending(current));
432569bb 1378
3588a085
PZ
1379 __set_current_state(TASK_RUNNING);
1380
669d7868 1381 return t->task == NULL;
10c94ec1
TG
1382}
1383
080344b9
ON
1384static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1385{
1386 struct timespec rmt;
1387 ktime_t rem;
1388
cc584b21 1389 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1390 if (rem.tv64 <= 0)
1391 return 0;
1392 rmt = ktime_to_timespec(rem);
1393
1394 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1395 return -EFAULT;
1396
1397 return 1;
1398}
1399
1711ef38 1400long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1401{
669d7868 1402 struct hrtimer_sleeper t;
080344b9 1403 struct timespec __user *rmtp;
237fc6e7 1404 int ret = 0;
10c94ec1 1405
ab8177bc 1406 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1407 HRTIMER_MODE_ABS);
cc584b21 1408 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1409
c9cb2e3d 1410 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1411 goto out;
10c94ec1 1412
029a07e0 1413 rmtp = restart->nanosleep.rmtp;
432569bb 1414 if (rmtp) {
237fc6e7 1415 ret = update_rmtp(&t.timer, rmtp);
080344b9 1416 if (ret <= 0)
237fc6e7 1417 goto out;
432569bb 1418 }
10c94ec1 1419
10c94ec1 1420 /* The other values in restart are already filled in */
237fc6e7
TG
1421 ret = -ERESTART_RESTARTBLOCK;
1422out:
1423 destroy_hrtimer_on_stack(&t.timer);
1424 return ret;
10c94ec1
TG
1425}
1426
080344b9 1427long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1428 const enum hrtimer_mode mode, const clockid_t clockid)
1429{
1430 struct restart_block *restart;
669d7868 1431 struct hrtimer_sleeper t;
237fc6e7 1432 int ret = 0;
3bd01206
AV
1433 unsigned long slack;
1434
1435 slack = current->timer_slack_ns;
aab03e05 1436 if (dl_task(current) || rt_task(current))
3bd01206 1437 slack = 0;
10c94ec1 1438
237fc6e7 1439 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1440 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1441 if (do_nanosleep(&t, mode))
237fc6e7 1442 goto out;
10c94ec1 1443
7978672c 1444 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1445 if (mode == HRTIMER_MODE_ABS) {
1446 ret = -ERESTARTNOHAND;
1447 goto out;
1448 }
10c94ec1 1449
432569bb 1450 if (rmtp) {
237fc6e7 1451 ret = update_rmtp(&t.timer, rmtp);
080344b9 1452 if (ret <= 0)
237fc6e7 1453 goto out;
432569bb 1454 }
10c94ec1 1455
f56141e3 1456 restart = &current->restart_block;
1711ef38 1457 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1458 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1459 restart->nanosleep.rmtp = rmtp;
cc584b21 1460 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1461
237fc6e7
TG
1462 ret = -ERESTART_RESTARTBLOCK;
1463out:
1464 destroy_hrtimer_on_stack(&t.timer);
1465 return ret;
10c94ec1
TG
1466}
1467
58fd3aa2
HC
1468SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1469 struct timespec __user *, rmtp)
6ba1b912 1470{
080344b9 1471 struct timespec tu;
6ba1b912
TG
1472
1473 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1474 return -EFAULT;
1475
1476 if (!timespec_valid(&tu))
1477 return -EINVAL;
1478
080344b9 1479 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1480}
1481
c0a31329
TG
1482/*
1483 * Functions related to boot-time initialization:
1484 */
0db0628d 1485static void init_hrtimers_cpu(int cpu)
c0a31329 1486{
3c8aa39d 1487 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1488 int i;
1489
998adc3d 1490 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1491 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1492 timerqueue_init_head(&cpu_base->clock_base[i].active);
1493 }
3c8aa39d 1494
cddd0248 1495 cpu_base->cpu = cpu;
54cdfdb4 1496 hrtimer_init_hres(cpu_base);
c0a31329
TG
1497}
1498
1499#ifdef CONFIG_HOTPLUG_CPU
1500
ca109491 1501static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1502 struct hrtimer_clock_base *new_base)
c0a31329
TG
1503{
1504 struct hrtimer *timer;
998adc3d 1505 struct timerqueue_node *node;
c0a31329 1506
998adc3d
JS
1507 while ((node = timerqueue_getnext(&old_base->active))) {
1508 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1509 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1510 debug_deactivate(timer);
b00c1a99
TG
1511
1512 /*
1513 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1514 * timer could be seen as !active and just vanish away
1515 * under us on another CPU
1516 */
1517 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1518 timer->base = new_base;
54cdfdb4 1519 /*
e3f1d883
TG
1520 * Enqueue the timers on the new cpu. This does not
1521 * reprogram the event device in case the timer
1522 * expires before the earliest on this CPU, but we run
1523 * hrtimer_interrupt after we migrated everything to
1524 * sort out already expired timers and reprogram the
1525 * event device.
54cdfdb4 1526 */
a6037b61 1527 enqueue_hrtimer(timer, new_base);
41e1022e 1528
b00c1a99
TG
1529 /* Clear the migration state bit */
1530 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1531 }
1532}
1533
d5fd43c4 1534static void migrate_hrtimers(int scpu)
c0a31329 1535{
3c8aa39d 1536 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1537 int i;
c0a31329 1538
37810659 1539 BUG_ON(cpu_online(scpu));
37810659 1540 tick_cancel_sched_timer(scpu);
731a55ba
TG
1541
1542 local_irq_disable();
1543 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1544 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1545 /*
1546 * The caller is globally serialized and nobody else
1547 * takes two locks at once, deadlock is not possible.
1548 */
ecb49d1a
TG
1549 raw_spin_lock(&new_base->lock);
1550 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1551
3c8aa39d 1552 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1553 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1554 &new_base->clock_base[i]);
c0a31329
TG
1555 }
1556
ecb49d1a
TG
1557 raw_spin_unlock(&old_base->lock);
1558 raw_spin_unlock(&new_base->lock);
37810659 1559
731a55ba
TG
1560 /* Check, if we got expired work to do */
1561 __hrtimer_peek_ahead_timers();
1562 local_irq_enable();
c0a31329 1563}
37810659 1564
c0a31329
TG
1565#endif /* CONFIG_HOTPLUG_CPU */
1566
0db0628d 1567static int hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1568 unsigned long action, void *hcpu)
1569{
b2e3c0ad 1570 int scpu = (long)hcpu;
c0a31329
TG
1571
1572 switch (action) {
1573
1574 case CPU_UP_PREPARE:
8bb78442 1575 case CPU_UP_PREPARE_FROZEN:
37810659 1576 init_hrtimers_cpu(scpu);
c0a31329
TG
1577 break;
1578
1579#ifdef CONFIG_HOTPLUG_CPU
1580 case CPU_DEAD:
8bb78442 1581 case CPU_DEAD_FROZEN:
d5fd43c4 1582 migrate_hrtimers(scpu);
c0a31329
TG
1583 break;
1584#endif
1585
1586 default:
1587 break;
1588 }
1589
1590 return NOTIFY_OK;
1591}
1592
0db0628d 1593static struct notifier_block hrtimers_nb = {
c0a31329
TG
1594 .notifier_call = hrtimer_cpu_notify,
1595};
1596
1597void __init hrtimers_init(void)
1598{
1599 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1600 (void *)(long)smp_processor_id());
1601 register_cpu_notifier(&hrtimers_nb);
1602}
1603
7bb67439 1604/**
351b3f7a 1605 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1606 * @expires: timeout value (ktime_t)
654c8e0b 1607 * @delta: slack in expires timeout (ktime_t)
7bb67439 1608 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1609 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1610 */
351b3f7a
CE
1611int __sched
1612schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1613 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1614{
1615 struct hrtimer_sleeper t;
1616
1617 /*
1618 * Optimize when a zero timeout value is given. It does not
1619 * matter whether this is an absolute or a relative time.
1620 */
1621 if (expires && !expires->tv64) {
1622 __set_current_state(TASK_RUNNING);
1623 return 0;
1624 }
1625
1626 /*
43b21013 1627 * A NULL parameter means "infinite"
7bb67439
AV
1628 */
1629 if (!expires) {
1630 schedule();
7bb67439
AV
1631 return -EINTR;
1632 }
1633
351b3f7a 1634 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1635 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1636
1637 hrtimer_init_sleeper(&t, current);
1638
cc584b21 1639 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1640
1641 if (likely(t.task))
1642 schedule();
1643
1644 hrtimer_cancel(&t.timer);
1645 destroy_hrtimer_on_stack(&t.timer);
1646
1647 __set_current_state(TASK_RUNNING);
1648
1649 return !t.task ? 0 : -EINTR;
1650}
351b3f7a
CE
1651
1652/**
1653 * schedule_hrtimeout_range - sleep until timeout
1654 * @expires: timeout value (ktime_t)
1655 * @delta: slack in expires timeout (ktime_t)
1656 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1657 *
1658 * Make the current task sleep until the given expiry time has
1659 * elapsed. The routine will return immediately unless
1660 * the current task state has been set (see set_current_state()).
1661 *
1662 * The @delta argument gives the kernel the freedom to schedule the
1663 * actual wakeup to a time that is both power and performance friendly.
1664 * The kernel give the normal best effort behavior for "@expires+@delta",
1665 * but may decide to fire the timer earlier, but no earlier than @expires.
1666 *
1667 * You can set the task state as follows -
1668 *
1669 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1670 * pass before the routine returns.
1671 *
1672 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1673 * delivered to the current task.
1674 *
1675 * The current task state is guaranteed to be TASK_RUNNING when this
1676 * routine returns.
1677 *
1678 * Returns 0 when the timer has expired otherwise -EINTR
1679 */
1680int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1681 const enum hrtimer_mode mode)
1682{
1683 return schedule_hrtimeout_range_clock(expires, delta, mode,
1684 CLOCK_MONOTONIC);
1685}
654c8e0b
AV
1686EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1687
1688/**
1689 * schedule_hrtimeout - sleep until timeout
1690 * @expires: timeout value (ktime_t)
1691 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1692 *
1693 * Make the current task sleep until the given expiry time has
1694 * elapsed. The routine will return immediately unless
1695 * the current task state has been set (see set_current_state()).
1696 *
1697 * You can set the task state as follows -
1698 *
1699 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1700 * pass before the routine returns.
1701 *
1702 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1703 * delivered to the current task.
1704 *
1705 * The current task state is guaranteed to be TASK_RUNNING when this
1706 * routine returns.
1707 *
1708 * Returns 0 when the timer has expired otherwise -EINTR
1709 */
1710int __sched schedule_hrtimeout(ktime_t *expires,
1711 const enum hrtimer_mode mode)
1712{
1713 return schedule_hrtimeout_range(expires, 0, mode);
1714}
7bb67439 1715EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.90537 seconds and 5 git commands to generate.