hrtimer: Use bits for various boolean indicators
[deliverable/linux.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
eea08f32 50#include <linux/timer.h>
b0f8c44f 51#include <linux/freezer.h>
c0a31329
TG
52
53#include <asm/uaccess.h>
54
c6a2a177
XG
55#include <trace/events/timer.h>
56
c1797baf 57#include "tick-internal.h"
8b094cd0 58
c0a31329
TG
59/*
60 * The timer bases:
7978672c 61 *
e06383db
JS
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 66 */
54cdfdb4 67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 68{
84cc8fd2 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 70 .clock_base =
c0a31329 71 {
3c8aa39d 72 {
ab8177bc
TG
73 .index = HRTIMER_BASE_MONOTONIC,
74 .clockid = CLOCK_MONOTONIC,
3c8aa39d 75 .get_time = &ktime_get,
3c8aa39d 76 },
68fa61c0
TG
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
68fa61c0 81 },
70a08cca 82 {
ab8177bc
TG
83 .index = HRTIMER_BASE_BOOTTIME,
84 .clockid = CLOCK_BOOTTIME,
70a08cca 85 .get_time = &ktime_get_boottime,
70a08cca 86 },
90adda98
JS
87 {
88 .index = HRTIMER_BASE_TAI,
89 .clockid = CLOCK_TAI,
90 .get_time = &ktime_get_clocktai,
90adda98 91 },
3c8aa39d 92 }
c0a31329
TG
93};
94
942c3c5c 95static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
96 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
97 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
98 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 99 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 100};
e06383db
JS
101
102static inline int hrtimer_clockid_to_base(clockid_t clock_id)
103{
104 return hrtimer_clock_to_base_table[clock_id];
105}
106
c0a31329
TG
107/*
108 * Functions and macros which are different for UP/SMP systems are kept in a
109 * single place
110 */
111#ifdef CONFIG_SMP
112
c0a31329
TG
113/*
114 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
115 * means that all timers which are tied to this base via timer->base are
116 * locked, and the base itself is locked too.
117 *
118 * So __run_timers/migrate_timers can safely modify all timers which could
119 * be found on the lists/queues.
120 *
121 * When the timer's base is locked, and the timer removed from list, it is
122 * possible to set timer->base = NULL and drop the lock: the timer remains
123 * locked.
124 */
3c8aa39d
TG
125static
126struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
127 unsigned long *flags)
c0a31329 128{
3c8aa39d 129 struct hrtimer_clock_base *base;
c0a31329
TG
130
131 for (;;) {
132 base = timer->base;
133 if (likely(base != NULL)) {
ecb49d1a 134 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
135 if (likely(base == timer->base))
136 return base;
137 /* The timer has migrated to another CPU: */
ecb49d1a 138 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
139 }
140 cpu_relax();
141 }
142}
143
6ff7041d
TG
144/*
145 * With HIGHRES=y we do not migrate the timer when it is expiring
146 * before the next event on the target cpu because we cannot reprogram
147 * the target cpu hardware and we would cause it to fire late.
148 *
149 * Called with cpu_base->lock of target cpu held.
150 */
151static int
152hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
153{
154#ifdef CONFIG_HIGH_RES_TIMERS
155 ktime_t expires;
156
157 if (!new_base->cpu_base->hres_active)
158 return 0;
159
160 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
161 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
162#else
163 return 0;
164#endif
165}
166
c0a31329
TG
167/*
168 * Switch the timer base to the current CPU when possible.
169 */
3c8aa39d 170static inline struct hrtimer_clock_base *
597d0275
AB
171switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
172 int pinned)
c0a31329 173{
3c8aa39d
TG
174 struct hrtimer_clock_base *new_base;
175 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d 176 int this_cpu = smp_processor_id();
6201b4d6 177 int cpu = get_nohz_timer_target(pinned);
ab8177bc 178 int basenum = base->index;
c0a31329 179
eea08f32
AB
180again:
181 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 182 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
183
184 if (base != new_base) {
185 /*
6ff7041d 186 * We are trying to move timer to new_base.
c0a31329
TG
187 * However we can't change timer's base while it is running,
188 * so we keep it on the same CPU. No hassle vs. reprogramming
189 * the event source in the high resolution case. The softirq
190 * code will take care of this when the timer function has
191 * completed. There is no conflict as we hold the lock until
192 * the timer is enqueued.
193 */
54cdfdb4 194 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
195 return base;
196
197 /* See the comment in lock_timer_base() */
198 timer->base = NULL;
ecb49d1a
TG
199 raw_spin_unlock(&base->cpu_base->lock);
200 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 201
6ff7041d
TG
202 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
203 cpu = this_cpu;
ecb49d1a
TG
204 raw_spin_unlock(&new_base->cpu_base->lock);
205 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
206 timer->base = base;
207 goto again;
eea08f32 208 }
c0a31329 209 timer->base = new_base;
012a45e3
LM
210 } else {
211 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
212 cpu = this_cpu;
213 goto again;
214 }
c0a31329
TG
215 }
216 return new_base;
217}
218
219#else /* CONFIG_SMP */
220
3c8aa39d 221static inline struct hrtimer_clock_base *
c0a31329
TG
222lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
223{
3c8aa39d 224 struct hrtimer_clock_base *base = timer->base;
c0a31329 225
ecb49d1a 226 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
227
228 return base;
229}
230
eea08f32 231# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
232
233#endif /* !CONFIG_SMP */
234
235/*
236 * Functions for the union type storage format of ktime_t which are
237 * too large for inlining:
238 */
239#if BITS_PER_LONG < 64
c0a31329
TG
240/*
241 * Divide a ktime value by a nanosecond value
242 */
8b618628 243u64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 244{
900cfa46 245 u64 dclc;
c0a31329
TG
246 int sft = 0;
247
900cfa46 248 dclc = ktime_to_ns(kt);
c0a31329
TG
249 /* Make sure the divisor is less than 2^32: */
250 while (div >> 32) {
251 sft++;
252 div >>= 1;
253 }
254 dclc >>= sft;
255 do_div(dclc, (unsigned long) div);
256
4d672e7a 257 return dclc;
c0a31329 258}
8b618628 259EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
260#endif /* BITS_PER_LONG >= 64 */
261
5a7780e7
TG
262/*
263 * Add two ktime values and do a safety check for overflow:
264 */
265ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
266{
267 ktime_t res = ktime_add(lhs, rhs);
268
269 /*
270 * We use KTIME_SEC_MAX here, the maximum timeout which we can
271 * return to user space in a timespec:
272 */
273 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
274 res = ktime_set(KTIME_SEC_MAX, 0);
275
276 return res;
277}
278
8daa21e6
AB
279EXPORT_SYMBOL_GPL(ktime_add_safe);
280
237fc6e7
TG
281#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
282
283static struct debug_obj_descr hrtimer_debug_descr;
284
99777288
SG
285static void *hrtimer_debug_hint(void *addr)
286{
287 return ((struct hrtimer *) addr)->function;
288}
289
237fc6e7
TG
290/*
291 * fixup_init is called when:
292 * - an active object is initialized
293 */
294static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
295{
296 struct hrtimer *timer = addr;
297
298 switch (state) {
299 case ODEBUG_STATE_ACTIVE:
300 hrtimer_cancel(timer);
301 debug_object_init(timer, &hrtimer_debug_descr);
302 return 1;
303 default:
304 return 0;
305 }
306}
307
308/*
309 * fixup_activate is called when:
310 * - an active object is activated
311 * - an unknown object is activated (might be a statically initialized object)
312 */
313static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
314{
315 switch (state) {
316
317 case ODEBUG_STATE_NOTAVAILABLE:
318 WARN_ON_ONCE(1);
319 return 0;
320
321 case ODEBUG_STATE_ACTIVE:
322 WARN_ON(1);
323
324 default:
325 return 0;
326 }
327}
328
329/*
330 * fixup_free is called when:
331 * - an active object is freed
332 */
333static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
334{
335 struct hrtimer *timer = addr;
336
337 switch (state) {
338 case ODEBUG_STATE_ACTIVE:
339 hrtimer_cancel(timer);
340 debug_object_free(timer, &hrtimer_debug_descr);
341 return 1;
342 default:
343 return 0;
344 }
345}
346
347static struct debug_obj_descr hrtimer_debug_descr = {
348 .name = "hrtimer",
99777288 349 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
350 .fixup_init = hrtimer_fixup_init,
351 .fixup_activate = hrtimer_fixup_activate,
352 .fixup_free = hrtimer_fixup_free,
353};
354
355static inline void debug_hrtimer_init(struct hrtimer *timer)
356{
357 debug_object_init(timer, &hrtimer_debug_descr);
358}
359
360static inline void debug_hrtimer_activate(struct hrtimer *timer)
361{
362 debug_object_activate(timer, &hrtimer_debug_descr);
363}
364
365static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
366{
367 debug_object_deactivate(timer, &hrtimer_debug_descr);
368}
369
370static inline void debug_hrtimer_free(struct hrtimer *timer)
371{
372 debug_object_free(timer, &hrtimer_debug_descr);
373}
374
375static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
376 enum hrtimer_mode mode);
377
378void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
379 enum hrtimer_mode mode)
380{
381 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
382 __hrtimer_init(timer, clock_id, mode);
383}
2bc481cf 384EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
385
386void destroy_hrtimer_on_stack(struct hrtimer *timer)
387{
388 debug_object_free(timer, &hrtimer_debug_descr);
389}
390
391#else
392static inline void debug_hrtimer_init(struct hrtimer *timer) { }
393static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
394static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
395#endif
396
c6a2a177
XG
397static inline void
398debug_init(struct hrtimer *timer, clockid_t clockid,
399 enum hrtimer_mode mode)
400{
401 debug_hrtimer_init(timer);
402 trace_hrtimer_init(timer, clockid, mode);
403}
404
405static inline void debug_activate(struct hrtimer *timer)
406{
407 debug_hrtimer_activate(timer);
408 trace_hrtimer_start(timer);
409}
410
411static inline void debug_deactivate(struct hrtimer *timer)
412{
413 debug_hrtimer_deactivate(timer);
414 trace_hrtimer_cancel(timer);
415}
416
9bc74919 417#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
4ebbda52 418static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919
TG
419{
420 struct hrtimer_clock_base *base = cpu_base->clock_base;
421 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
422 int i;
423
424 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
425 struct timerqueue_node *next;
426 struct hrtimer *timer;
427
428 next = timerqueue_getnext(&base->active);
429 if (!next)
430 continue;
431
432 timer = container_of(next, struct hrtimer, node);
433 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
434 if (expires.tv64 < expires_next.tv64)
435 expires_next = expires;
436 }
437 /*
438 * clock_was_set() might have changed base->offset of any of
439 * the clock bases so the result might be negative. Fix it up
440 * to prevent a false positive in clockevents_program_event().
441 */
442 if (expires_next.tv64 < 0)
443 expires_next.tv64 = 0;
444 return expires_next;
445}
446#endif
447
21d6d52a
TG
448static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
449{
450 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
451 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
452 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
453
868a3e91
TG
454 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
455 offs_real, offs_boot, offs_tai);
21d6d52a
TG
456}
457
54cdfdb4
TG
458/* High resolution timer related functions */
459#ifdef CONFIG_HIGH_RES_TIMERS
460
461/*
462 * High resolution timer enabled ?
463 */
464static int hrtimer_hres_enabled __read_mostly = 1;
398ca17f
TG
465unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
466EXPORT_SYMBOL_GPL(hrtimer_resolution);
54cdfdb4
TG
467
468/*
469 * Enable / Disable high resolution mode
470 */
471static int __init setup_hrtimer_hres(char *str)
472{
473 if (!strcmp(str, "off"))
474 hrtimer_hres_enabled = 0;
475 else if (!strcmp(str, "on"))
476 hrtimer_hres_enabled = 1;
477 else
478 return 0;
479 return 1;
480}
481
482__setup("highres=", setup_hrtimer_hres);
483
484/*
485 * hrtimer_high_res_enabled - query, if the highres mode is enabled
486 */
487static inline int hrtimer_is_hres_enabled(void)
488{
489 return hrtimer_hres_enabled;
490}
491
492/*
493 * Is the high resolution mode active ?
494 */
e19ffe8b
TG
495static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
496{
497 return cpu_base->hres_active;
498}
499
54cdfdb4
TG
500static inline int hrtimer_hres_active(void)
501{
e19ffe8b 502 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
54cdfdb4
TG
503}
504
505/*
506 * Reprogram the event source with checking both queues for the
507 * next event
508 * Called with interrupts disabled and base->lock held
509 */
7403f41f
AC
510static void
511hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 512{
21d6d52a
TG
513 ktime_t expires_next;
514
515 if (!cpu_base->hres_active)
516 return;
517
518 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 519
7403f41f
AC
520 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
521 return;
522
523 cpu_base->expires_next.tv64 = expires_next.tv64;
524
6c6c0d5a
SH
525 /*
526 * If a hang was detected in the last timer interrupt then we
527 * leave the hang delay active in the hardware. We want the
528 * system to make progress. That also prevents the following
529 * scenario:
530 * T1 expires 50ms from now
531 * T2 expires 5s from now
532 *
533 * T1 is removed, so this code is called and would reprogram
534 * the hardware to 5s from now. Any hrtimer_start after that
535 * will not reprogram the hardware due to hang_detected being
536 * set. So we'd effectivly block all timers until the T2 event
537 * fires.
538 */
539 if (cpu_base->hang_detected)
540 return;
541
54cdfdb4
TG
542 if (cpu_base->expires_next.tv64 != KTIME_MAX)
543 tick_program_event(cpu_base->expires_next, 1);
544}
545
546/*
547 * Shared reprogramming for clock_realtime and clock_monotonic
548 *
549 * When a timer is enqueued and expires earlier than the already enqueued
550 * timers, we have to check, whether it expires earlier than the timer for
551 * which the clock event device was armed.
552 *
9e1e01dd
VK
553 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
554 * and no expiry check happens. The timer gets enqueued into the rbtree. The
555 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
556 * softirq.
557 *
54cdfdb4
TG
558 * Called with interrupts disabled and base->cpu_base.lock held
559 */
560static int hrtimer_reprogram(struct hrtimer *timer,
561 struct hrtimer_clock_base *base)
562{
dc5df73b 563 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
cc584b21 564 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
565 int res;
566
cc584b21 567 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 568
54cdfdb4
TG
569 /*
570 * When the callback is running, we do not reprogram the clock event
571 * device. The timer callback is either running on a different CPU or
3a4fa0a2 572 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
573 * reprogramming is handled either by the softirq, which called the
574 * callback or at the end of the hrtimer_interrupt.
575 */
576 if (hrtimer_callback_running(timer))
577 return 0;
578
63070a79
TG
579 /*
580 * CLOCK_REALTIME timer might be requested with an absolute
581 * expiry time which is less than base->offset. Nothing wrong
582 * about that, just avoid to call into the tick code, which
583 * has now objections against negative expiry values.
584 */
585 if (expires.tv64 < 0)
586 return -ETIME;
587
41d2e494
TG
588 if (expires.tv64 >= cpu_base->expires_next.tv64)
589 return 0;
590
9bc74919
TG
591 /*
592 * When the target cpu of the timer is currently executing
593 * hrtimer_interrupt(), then we do not touch the clock event
594 * device. hrtimer_interrupt() will reevaluate all clock bases
595 * before reprogramming the device.
596 */
597 if (cpu_base->in_hrtirq)
598 return 0;
599
41d2e494
TG
600 /*
601 * If a hang was detected in the last timer interrupt then we
602 * do not schedule a timer which is earlier than the expiry
603 * which we enforced in the hang detection. We want the system
604 * to make progress.
605 */
606 if (cpu_base->hang_detected)
54cdfdb4
TG
607 return 0;
608
609 /*
610 * Clockevents returns -ETIME, when the event was in the past.
611 */
612 res = tick_program_event(expires, 0);
613 if (!IS_ERR_VALUE(res))
41d2e494 614 cpu_base->expires_next = expires;
54cdfdb4
TG
615 return res;
616}
617
54cdfdb4
TG
618/*
619 * Initialize the high resolution related parts of cpu_base
620 */
621static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
622{
623 base->expires_next.tv64 = KTIME_MAX;
624 base->hres_active = 0;
54cdfdb4
TG
625}
626
9ec26907
TG
627/*
628 * Retrigger next event is called after clock was set
629 *
630 * Called with interrupts disabled via on_each_cpu()
631 */
632static void retrigger_next_event(void *arg)
633{
dc5df73b 634 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 635
e19ffe8b 636 if (!base->hres_active)
9ec26907
TG
637 return;
638
9ec26907 639 raw_spin_lock(&base->lock);
5baefd6d 640 hrtimer_update_base(base);
9ec26907
TG
641 hrtimer_force_reprogram(base, 0);
642 raw_spin_unlock(&base->lock);
643}
b12a03ce 644
54cdfdb4
TG
645/*
646 * Switch to high resolution mode
647 */
f8953856 648static int hrtimer_switch_to_hres(void)
54cdfdb4 649{
398ca17f 650 int cpu = smp_processor_id();
820de5c3 651 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
652 unsigned long flags;
653
654 if (base->hres_active)
f8953856 655 return 1;
54cdfdb4
TG
656
657 local_irq_save(flags);
658
659 if (tick_init_highres()) {
660 local_irq_restore(flags);
820de5c3
IM
661 printk(KERN_WARNING "Could not switch to high resolution "
662 "mode on CPU %d\n", cpu);
f8953856 663 return 0;
54cdfdb4
TG
664 }
665 base->hres_active = 1;
398ca17f 666 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
667
668 tick_setup_sched_timer();
54cdfdb4
TG
669 /* "Retrigger" the interrupt to get things going */
670 retrigger_next_event(NULL);
671 local_irq_restore(flags);
f8953856 672 return 1;
54cdfdb4
TG
673}
674
5ec2481b
TG
675static void clock_was_set_work(struct work_struct *work)
676{
677 clock_was_set();
678}
679
680static DECLARE_WORK(hrtimer_work, clock_was_set_work);
681
f55a6faa 682/*
5ec2481b
TG
683 * Called from timekeeping and resume code to reprogramm the hrtimer
684 * interrupt device on all cpus.
f55a6faa
JS
685 */
686void clock_was_set_delayed(void)
687{
5ec2481b 688 schedule_work(&hrtimer_work);
f55a6faa
JS
689}
690
54cdfdb4
TG
691#else
692
e19ffe8b 693static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
54cdfdb4
TG
694static inline int hrtimer_hres_active(void) { return 0; }
695static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 696static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
697static inline void
698hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
9e1e01dd
VK
699static inline int hrtimer_reprogram(struct hrtimer *timer,
700 struct hrtimer_clock_base *base)
54cdfdb4
TG
701{
702 return 0;
703}
54cdfdb4 704static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 705static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
706
707#endif /* CONFIG_HIGH_RES_TIMERS */
708
b12a03ce
TG
709/*
710 * Clock realtime was set
711 *
712 * Change the offset of the realtime clock vs. the monotonic
713 * clock.
714 *
715 * We might have to reprogram the high resolution timer interrupt. On
716 * SMP we call the architecture specific code to retrigger _all_ high
717 * resolution timer interrupts. On UP we just disable interrupts and
718 * call the high resolution interrupt code.
719 */
720void clock_was_set(void)
721{
90ff1f30 722#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
723 /* Retrigger the CPU local events everywhere */
724 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
725#endif
726 timerfd_clock_was_set();
b12a03ce
TG
727}
728
729/*
730 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
731 * interrupt on all online CPUs. However, all other CPUs will be
732 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 733 * must be deferred.
b12a03ce
TG
734 */
735void hrtimers_resume(void)
736{
737 WARN_ONCE(!irqs_disabled(),
738 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
739
5ec2481b 740 /* Retrigger on the local CPU */
b12a03ce 741 retrigger_next_event(NULL);
5ec2481b
TG
742 /* And schedule a retrigger for all others */
743 clock_was_set_delayed();
b12a03ce
TG
744}
745
5f201907 746static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 747{
5f201907 748#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
749 if (timer->start_site)
750 return;
5f201907 751 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
752 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
753 timer->start_pid = current->pid;
5f201907
HC
754#endif
755}
756
757static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
758{
759#ifdef CONFIG_TIMER_STATS
760 timer->start_site = NULL;
761#endif
82f67cd9 762}
5f201907
HC
763
764static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
765{
766#ifdef CONFIG_TIMER_STATS
767 if (likely(!timer_stats_active))
768 return;
769 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
770 timer->function, timer->start_comm, 0);
82f67cd9 771#endif
5f201907 772}
82f67cd9 773
c0a31329 774/*
6506f2aa 775 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
776 */
777static inline
778void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
779{
ecb49d1a 780 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
781}
782
783/**
784 * hrtimer_forward - forward the timer expiry
c0a31329 785 * @timer: hrtimer to forward
44f21475 786 * @now: forward past this time
c0a31329
TG
787 * @interval: the interval to forward
788 *
789 * Forward the timer expiry so it will expire in the future.
8dca6f33 790 * Returns the number of overruns.
91e5a217
TG
791 *
792 * Can be safely called from the callback function of @timer. If
793 * called from other contexts @timer must neither be enqueued nor
794 * running the callback and the caller needs to take care of
795 * serialization.
796 *
797 * Note: This only updates the timer expiry value and does not requeue
798 * the timer.
c0a31329 799 */
4d672e7a 800u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 801{
4d672e7a 802 u64 orun = 1;
44f21475 803 ktime_t delta;
c0a31329 804
cc584b21 805 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
806
807 if (delta.tv64 < 0)
808 return 0;
809
398ca17f
TG
810 if (interval.tv64 < hrtimer_resolution)
811 interval.tv64 = hrtimer_resolution;
c9db4fa1 812
c0a31329 813 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 814 s64 incr = ktime_to_ns(interval);
c0a31329
TG
815
816 orun = ktime_divns(delta, incr);
cc584b21
AV
817 hrtimer_add_expires_ns(timer, incr * orun);
818 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
819 return orun;
820 /*
821 * This (and the ktime_add() below) is the
822 * correction for exact:
823 */
824 orun++;
825 }
cc584b21 826 hrtimer_add_expires(timer, interval);
c0a31329
TG
827
828 return orun;
829}
6bdb6b62 830EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
831
832/*
833 * enqueue_hrtimer - internal function to (re)start a timer
834 *
835 * The timer is inserted in expiry order. Insertion into the
836 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
837 *
838 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 839 */
a6037b61
PZ
840static int enqueue_hrtimer(struct hrtimer *timer,
841 struct hrtimer_clock_base *base)
c0a31329 842{
c6a2a177 843 debug_activate(timer);
237fc6e7 844
998adc3d 845 timerqueue_add(&base->active, &timer->node);
ab8177bc 846 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 847
303e967f
TG
848 /*
849 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
850 * state of a possibly running callback.
851 */
852 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 853
998adc3d 854 return (&timer->node == base->active.next);
288867ec 855}
c0a31329
TG
856
857/*
858 * __remove_hrtimer - internal function to remove a timer
859 *
860 * Caller must hold the base lock.
54cdfdb4
TG
861 *
862 * High resolution timer mode reprograms the clock event device when the
863 * timer is the one which expires next. The caller can disable this by setting
864 * reprogram to zero. This is useful, when the context does a reprogramming
865 * anyway (e.g. timer interrupt)
c0a31329 866 */
3c8aa39d 867static void __remove_hrtimer(struct hrtimer *timer,
303e967f 868 struct hrtimer_clock_base *base,
54cdfdb4 869 unsigned long newstate, int reprogram)
c0a31329 870{
e19ffe8b 871 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
27c9cd7e 872 struct timerqueue_node *next_timer;
e19ffe8b 873
7403f41f
AC
874 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
875 goto out;
876
27c9cd7e
JO
877 next_timer = timerqueue_getnext(&base->active);
878 timerqueue_del(&base->active, &timer->node);
d9f0acde 879 if (!timerqueue_getnext(&base->active))
e19ffe8b 880 cpu_base->active_bases &= ~(1 << base->index);
d9f0acde 881
27c9cd7e 882 if (&timer->node == next_timer) {
7403f41f
AC
883#ifdef CONFIG_HIGH_RES_TIMERS
884 /* Reprogram the clock event device. if enabled */
e19ffe8b 885 if (reprogram && cpu_base->hres_active) {
7403f41f
AC
886 ktime_t expires;
887
888 expires = ktime_sub(hrtimer_get_expires(timer),
889 base->offset);
e19ffe8b
TG
890 if (cpu_base->expires_next.tv64 == expires.tv64)
891 hrtimer_force_reprogram(cpu_base, 1);
54cdfdb4 892 }
7403f41f 893#endif
54cdfdb4 894 }
7403f41f 895out:
303e967f 896 timer->state = newstate;
c0a31329
TG
897}
898
899/*
900 * remove hrtimer, called with base lock held
901 */
902static inline int
3c8aa39d 903remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 904{
303e967f 905 if (hrtimer_is_queued(timer)) {
f13d4f97 906 unsigned long state;
54cdfdb4
TG
907 int reprogram;
908
909 /*
910 * Remove the timer and force reprogramming when high
911 * resolution mode is active and the timer is on the current
912 * CPU. If we remove a timer on another CPU, reprogramming is
913 * skipped. The interrupt event on this CPU is fired and
914 * reprogramming happens in the interrupt handler. This is a
915 * rare case and less expensive than a smp call.
916 */
c6a2a177 917 debug_deactivate(timer);
82f67cd9 918 timer_stats_hrtimer_clear_start_info(timer);
dc5df73b 919 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
f13d4f97
SQ
920 /*
921 * We must preserve the CALLBACK state flag here,
922 * otherwise we could move the timer base in
923 * switch_hrtimer_base.
924 */
925 state = timer->state & HRTIMER_STATE_CALLBACK;
926 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
927 return 1;
928 }
929 return 0;
930}
931
7f1e2ca9
PZ
932int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
933 unsigned long delta_ns, const enum hrtimer_mode mode,
934 int wakeup)
c0a31329 935{
3c8aa39d 936 struct hrtimer_clock_base *base, *new_base;
c0a31329 937 unsigned long flags;
a6037b61 938 int ret, leftmost;
c0a31329
TG
939
940 base = lock_hrtimer_base(timer, &flags);
941
942 /* Remove an active timer from the queue: */
943 ret = remove_hrtimer(timer, base);
944
597d0275 945 if (mode & HRTIMER_MODE_REL) {
84ea7fe3 946 tim = ktime_add_safe(tim, base->get_time());
06027bdd
IM
947 /*
948 * CONFIG_TIME_LOW_RES is a temporary way for architectures
949 * to signal that they simply return xtime in
950 * do_gettimeoffset(). In this case we want to round up by
951 * resolution when starting a relative timer, to avoid short
952 * timeouts. This will go away with the GTOD framework.
953 */
954#ifdef CONFIG_TIME_LOW_RES
398ca17f 955 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
06027bdd
IM
956#endif
957 }
237fc6e7 958
da8f2e17 959 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 960
84ea7fe3
VK
961 /* Switch the timer base, if necessary: */
962 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
963
82f67cd9
IM
964 timer_stats_hrtimer_set_start_info(timer);
965
a6037b61
PZ
966 leftmost = enqueue_hrtimer(timer, new_base);
967
49a2a075
VK
968 if (!leftmost) {
969 unlock_hrtimer_base(timer, &flags);
970 return ret;
971 }
972
973 if (!hrtimer_is_hres_active(timer)) {
974 /*
975 * Kick to reschedule the next tick to handle the new timer
976 * on dynticks target.
977 */
978 wake_up_nohz_cpu(new_base->cpu_base->cpu);
dc5df73b 979 } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
9e1e01dd 980 hrtimer_reprogram(timer, new_base)) {
49a2a075
VK
981 /*
982 * Only allow reprogramming if the new base is on this CPU.
983 * (it might still be on another CPU if the timer was pending)
984 *
985 * XXX send_remote_softirq() ?
986 */
b22affe0
LS
987 if (wakeup) {
988 /*
989 * We need to drop cpu_base->lock to avoid a
990 * lock ordering issue vs. rq->lock.
991 */
992 raw_spin_unlock(&new_base->cpu_base->lock);
993 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
994 local_irq_restore(flags);
995 return ret;
996 } else {
997 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
998 }
999 }
c0a31329
TG
1000
1001 unlock_hrtimer_base(timer, &flags);
1002
1003 return ret;
1004}
8588a2bb 1005EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
7f1e2ca9
PZ
1006
1007/**
1008 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1009 * @timer: the timer to be added
1010 * @tim: expiry time
1011 * @delta_ns: "slack" range for the timer
8ffbc7d9
DD
1012 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1013 * relative (HRTIMER_MODE_REL)
7f1e2ca9
PZ
1014 *
1015 * Returns:
1016 * 0 on success
1017 * 1 when the timer was active
1018 */
1019int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1020 unsigned long delta_ns, const enum hrtimer_mode mode)
1021{
1022 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1023}
da8f2e17
AV
1024EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1025
1026/**
e1dd7bc5 1027 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1028 * @timer: the timer to be added
1029 * @tim: expiry time
8ffbc7d9
DD
1030 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1031 * relative (HRTIMER_MODE_REL)
da8f2e17
AV
1032 *
1033 * Returns:
1034 * 0 on success
1035 * 1 when the timer was active
1036 */
1037int
1038hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1039{
7f1e2ca9 1040 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1041}
8d16b764 1042EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1043
da8f2e17 1044
c0a31329
TG
1045/**
1046 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1047 * @timer: hrtimer to stop
1048 *
1049 * Returns:
1050 * 0 when the timer was not active
1051 * 1 when the timer was active
1052 * -1 when the timer is currently excuting the callback function and
fa9799e3 1053 * cannot be stopped
c0a31329
TG
1054 */
1055int hrtimer_try_to_cancel(struct hrtimer *timer)
1056{
3c8aa39d 1057 struct hrtimer_clock_base *base;
c0a31329
TG
1058 unsigned long flags;
1059 int ret = -1;
1060
1061 base = lock_hrtimer_base(timer, &flags);
1062
303e967f 1063 if (!hrtimer_callback_running(timer))
c0a31329
TG
1064 ret = remove_hrtimer(timer, base);
1065
1066 unlock_hrtimer_base(timer, &flags);
1067
1068 return ret;
1069
1070}
8d16b764 1071EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1072
1073/**
1074 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1075 * @timer: the timer to be cancelled
1076 *
1077 * Returns:
1078 * 0 when the timer was not active
1079 * 1 when the timer was active
1080 */
1081int hrtimer_cancel(struct hrtimer *timer)
1082{
1083 for (;;) {
1084 int ret = hrtimer_try_to_cancel(timer);
1085
1086 if (ret >= 0)
1087 return ret;
5ef37b19 1088 cpu_relax();
c0a31329
TG
1089 }
1090}
8d16b764 1091EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1092
1093/**
1094 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1095 * @timer: the timer to read
1096 */
1097ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1098{
c0a31329
TG
1099 unsigned long flags;
1100 ktime_t rem;
1101
b3bd3de6 1102 lock_hrtimer_base(timer, &flags);
cc584b21 1103 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1104 unlock_hrtimer_base(timer, &flags);
1105
1106 return rem;
1107}
8d16b764 1108EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1109
3451d024 1110#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1111/**
1112 * hrtimer_get_next_event - get the time until next expiry event
1113 *
1114 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1115 * is pending.
1116 */
1117ktime_t hrtimer_get_next_event(void)
1118{
dc5df73b 1119 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
9bc74919 1120 ktime_t mindelta = { .tv64 = KTIME_MAX };
69239749 1121 unsigned long flags;
69239749 1122
ecb49d1a 1123 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1124
e19ffe8b 1125 if (!__hrtimer_hres_active(cpu_base))
9bc74919
TG
1126 mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
1127 ktime_get());
3c8aa39d 1128
ecb49d1a 1129 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1130
69239749
TL
1131 if (mindelta.tv64 < 0)
1132 mindelta.tv64 = 0;
1133 return mindelta;
1134}
1135#endif
1136
237fc6e7
TG
1137static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1138 enum hrtimer_mode mode)
c0a31329 1139{
3c8aa39d 1140 struct hrtimer_cpu_base *cpu_base;
e06383db 1141 int base;
c0a31329 1142
7978672c
GA
1143 memset(timer, 0, sizeof(struct hrtimer));
1144
22127e93 1145 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1146
c9cb2e3d 1147 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1148 clock_id = CLOCK_MONOTONIC;
1149
e06383db
JS
1150 base = hrtimer_clockid_to_base(clock_id);
1151 timer->base = &cpu_base->clock_base[base];
998adc3d 1152 timerqueue_init(&timer->node);
82f67cd9
IM
1153
1154#ifdef CONFIG_TIMER_STATS
1155 timer->start_site = NULL;
1156 timer->start_pid = -1;
1157 memset(timer->start_comm, 0, TASK_COMM_LEN);
1158#endif
c0a31329 1159}
237fc6e7
TG
1160
1161/**
1162 * hrtimer_init - initialize a timer to the given clock
1163 * @timer: the timer to be initialized
1164 * @clock_id: the clock to be used
1165 * @mode: timer mode abs/rel
1166 */
1167void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1168 enum hrtimer_mode mode)
1169{
c6a2a177 1170 debug_init(timer, clock_id, mode);
237fc6e7
TG
1171 __hrtimer_init(timer, clock_id, mode);
1172}
8d16b764 1173EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1174
21d6d52a
TG
1175static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1176 struct hrtimer_clock_base *base,
1177 struct hrtimer *timer, ktime_t *now)
d3d74453 1178{
d3d74453
PZ
1179 enum hrtimer_restart (*fn)(struct hrtimer *);
1180 int restart;
1181
ca109491
PZ
1182 WARN_ON(!irqs_disabled());
1183
c6a2a177 1184 debug_deactivate(timer);
d3d74453
PZ
1185 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1186 timer_stats_account_hrtimer(timer);
d3d74453 1187 fn = timer->function;
ca109491
PZ
1188
1189 /*
1190 * Because we run timers from hardirq context, there is no chance
1191 * they get migrated to another cpu, therefore its safe to unlock
1192 * the timer base.
1193 */
ecb49d1a 1194 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1195 trace_hrtimer_expire_entry(timer, now);
ca109491 1196 restart = fn(timer);
c6a2a177 1197 trace_hrtimer_expire_exit(timer);
ecb49d1a 1198 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1199
1200 /*
e3f1d883
TG
1201 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1202 * we do not reprogramm the event hardware. Happens either in
1203 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1204 */
1205 if (restart != HRTIMER_NORESTART) {
1206 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1207 enqueue_hrtimer(timer, base);
d3d74453 1208 }
f13d4f97
SQ
1209
1210 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1211
d3d74453
PZ
1212 timer->state &= ~HRTIMER_STATE_CALLBACK;
1213}
1214
21d6d52a 1215static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1216{
21d6d52a 1217 int i;
6ff7041d 1218
54cdfdb4 1219 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ab8177bc 1220 struct hrtimer_clock_base *base;
998adc3d 1221 struct timerqueue_node *node;
ab8177bc
TG
1222 ktime_t basenow;
1223
1224 if (!(cpu_base->active_bases & (1 << i)))
1225 continue;
54cdfdb4 1226
ab8177bc 1227 base = cpu_base->clock_base + i;
54cdfdb4
TG
1228 basenow = ktime_add(now, base->offset);
1229
998adc3d 1230 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1231 struct hrtimer *timer;
1232
998adc3d 1233 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1234
654c8e0b
AV
1235 /*
1236 * The immediate goal for using the softexpires is
1237 * minimizing wakeups, not running timers at the
1238 * earliest interrupt after their soft expiration.
1239 * This allows us to avoid using a Priority Search
1240 * Tree, which can answer a stabbing querry for
1241 * overlapping intervals and instead use the simple
1242 * BST we already have.
1243 * We don't add extra wakeups by delaying timers that
1244 * are right-of a not yet expired timer, because that
1245 * timer will have to trigger a wakeup anyway.
1246 */
9bc74919 1247 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1248 break;
54cdfdb4 1249
21d6d52a 1250 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1251 }
54cdfdb4 1252 }
21d6d52a
TG
1253}
1254
1255#ifdef CONFIG_HIGH_RES_TIMERS
1256
1257/*
1258 * High resolution timer interrupt
1259 * Called with interrupts disabled
1260 */
1261void hrtimer_interrupt(struct clock_event_device *dev)
1262{
1263 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1264 ktime_t expires_next, now, entry_time, delta;
1265 int retries = 0;
1266
1267 BUG_ON(!cpu_base->hres_active);
1268 cpu_base->nr_events++;
1269 dev->next_event.tv64 = KTIME_MAX;
1270
1271 raw_spin_lock(&cpu_base->lock);
1272 entry_time = now = hrtimer_update_base(cpu_base);
1273retry:
1274 cpu_base->in_hrtirq = 1;
1275 /*
1276 * We set expires_next to KTIME_MAX here with cpu_base->lock
1277 * held to prevent that a timer is enqueued in our queue via
1278 * the migration code. This does not affect enqueueing of
1279 * timers which run their callback and need to be requeued on
1280 * this CPU.
1281 */
1282 cpu_base->expires_next.tv64 = KTIME_MAX;
1283
1284 __hrtimer_run_queues(cpu_base, now);
1285
9bc74919
TG
1286 /* Reevaluate the clock bases for the next expiry */
1287 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1288 /*
1289 * Store the new expiry value so the migration code can verify
1290 * against it.
1291 */
54cdfdb4 1292 cpu_base->expires_next = expires_next;
9bc74919 1293 cpu_base->in_hrtirq = 0;
ecb49d1a 1294 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1295
1296 /* Reprogramming necessary ? */
41d2e494
TG
1297 if (expires_next.tv64 == KTIME_MAX ||
1298 !tick_program_event(expires_next, 0)) {
1299 cpu_base->hang_detected = 0;
1300 return;
54cdfdb4 1301 }
41d2e494
TG
1302
1303 /*
1304 * The next timer was already expired due to:
1305 * - tracing
1306 * - long lasting callbacks
1307 * - being scheduled away when running in a VM
1308 *
1309 * We need to prevent that we loop forever in the hrtimer
1310 * interrupt routine. We give it 3 attempts to avoid
1311 * overreacting on some spurious event.
5baefd6d
JS
1312 *
1313 * Acquire base lock for updating the offsets and retrieving
1314 * the current time.
41d2e494 1315 */
196951e9 1316 raw_spin_lock(&cpu_base->lock);
5baefd6d 1317 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1318 cpu_base->nr_retries++;
1319 if (++retries < 3)
1320 goto retry;
1321 /*
1322 * Give the system a chance to do something else than looping
1323 * here. We stored the entry time, so we know exactly how long
1324 * we spent here. We schedule the next event this amount of
1325 * time away.
1326 */
1327 cpu_base->nr_hangs++;
1328 cpu_base->hang_detected = 1;
196951e9 1329 raw_spin_unlock(&cpu_base->lock);
41d2e494 1330 delta = ktime_sub(now, entry_time);
a6ffebce
TG
1331 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1332 cpu_base->max_hang_time = (unsigned int) delta.tv64;
41d2e494
TG
1333 /*
1334 * Limit it to a sensible value as we enforce a longer
1335 * delay. Give the CPU at least 100ms to catch up.
1336 */
1337 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1338 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1339 else
1340 expires_next = ktime_add(now, delta);
1341 tick_program_event(expires_next, 1);
1342 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1343 ktime_to_ns(delta));
54cdfdb4
TG
1344}
1345
8bdec955
TG
1346/*
1347 * local version of hrtimer_peek_ahead_timers() called with interrupts
1348 * disabled.
1349 */
1350static void __hrtimer_peek_ahead_timers(void)
1351{
1352 struct tick_device *td;
1353
1354 if (!hrtimer_hres_active())
1355 return;
1356
22127e93 1357 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1358 if (td && td->evtdev)
1359 hrtimer_interrupt(td->evtdev);
1360}
1361
2e94d1f7
AV
1362/**
1363 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1364 *
1365 * hrtimer_peek_ahead_timers will peek at the timer queue of
1366 * the current cpu and check if there are any timers for which
1367 * the soft expires time has passed. If any such timers exist,
1368 * they are run immediately and then removed from the timer queue.
1369 *
1370 */
1371void hrtimer_peek_ahead_timers(void)
1372{
643bdf68 1373 unsigned long flags;
dc4304f7 1374
2e94d1f7 1375 local_irq_save(flags);
8bdec955 1376 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1377 local_irq_restore(flags);
1378}
1379
a6037b61
PZ
1380static void run_hrtimer_softirq(struct softirq_action *h)
1381{
1382 hrtimer_peek_ahead_timers();
1383}
1384
82c5b7b5
IM
1385#else /* CONFIG_HIGH_RES_TIMERS */
1386
1387static inline void __hrtimer_peek_ahead_timers(void) { }
1388
1389#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1390
d3d74453
PZ
1391/*
1392 * Called from timer softirq every jiffy, expire hrtimers:
1393 *
1394 * For HRT its the fall back code to run the softirq in the timer
1395 * softirq context in case the hrtimer initialization failed or has
1396 * not been done yet.
1397 */
1398void hrtimer_run_pending(void)
1399{
d3d74453
PZ
1400 if (hrtimer_hres_active())
1401 return;
54cdfdb4 1402
d3d74453
PZ
1403 /*
1404 * This _is_ ugly: We have to check in the softirq context,
1405 * whether we can switch to highres and / or nohz mode. The
1406 * clocksource switch happens in the timer interrupt with
1407 * xtime_lock held. Notification from there only sets the
1408 * check bit in the tick_oneshot code, otherwise we might
1409 * deadlock vs. xtime_lock.
1410 */
1411 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1412 hrtimer_switch_to_hres();
54cdfdb4
TG
1413}
1414
c0a31329 1415/*
d3d74453 1416 * Called from hardirq context every jiffy
c0a31329 1417 */
833883d9 1418void hrtimer_run_queues(void)
c0a31329 1419{
dc5df73b 1420 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1421 ktime_t now;
c0a31329 1422
e19ffe8b 1423 if (__hrtimer_hres_active(cpu_base))
3055adda
DS
1424 return;
1425
21d6d52a
TG
1426 raw_spin_lock(&cpu_base->lock);
1427 now = hrtimer_update_base(cpu_base);
1428 __hrtimer_run_queues(cpu_base, now);
1429 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1430}
1431
10c94ec1
TG
1432/*
1433 * Sleep related functions:
1434 */
c9cb2e3d 1435static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1436{
1437 struct hrtimer_sleeper *t =
1438 container_of(timer, struct hrtimer_sleeper, timer);
1439 struct task_struct *task = t->task;
1440
1441 t->task = NULL;
1442 if (task)
1443 wake_up_process(task);
1444
1445 return HRTIMER_NORESTART;
1446}
1447
36c8b586 1448void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1449{
1450 sl->timer.function = hrtimer_wakeup;
1451 sl->task = task;
1452}
2bc481cf 1453EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1454
669d7868 1455static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1456{
669d7868 1457 hrtimer_init_sleeper(t, current);
10c94ec1 1458
432569bb
RZ
1459 do {
1460 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1461 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1462 if (!hrtimer_active(&t->timer))
1463 t->task = NULL;
432569bb 1464
54cdfdb4 1465 if (likely(t->task))
b0f8c44f 1466 freezable_schedule();
432569bb 1467
669d7868 1468 hrtimer_cancel(&t->timer);
c9cb2e3d 1469 mode = HRTIMER_MODE_ABS;
669d7868
TG
1470
1471 } while (t->task && !signal_pending(current));
432569bb 1472
3588a085
PZ
1473 __set_current_state(TASK_RUNNING);
1474
669d7868 1475 return t->task == NULL;
10c94ec1
TG
1476}
1477
080344b9
ON
1478static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1479{
1480 struct timespec rmt;
1481 ktime_t rem;
1482
cc584b21 1483 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1484 if (rem.tv64 <= 0)
1485 return 0;
1486 rmt = ktime_to_timespec(rem);
1487
1488 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1489 return -EFAULT;
1490
1491 return 1;
1492}
1493
1711ef38 1494long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1495{
669d7868 1496 struct hrtimer_sleeper t;
080344b9 1497 struct timespec __user *rmtp;
237fc6e7 1498 int ret = 0;
10c94ec1 1499
ab8177bc 1500 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1501 HRTIMER_MODE_ABS);
cc584b21 1502 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1503
c9cb2e3d 1504 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1505 goto out;
10c94ec1 1506
029a07e0 1507 rmtp = restart->nanosleep.rmtp;
432569bb 1508 if (rmtp) {
237fc6e7 1509 ret = update_rmtp(&t.timer, rmtp);
080344b9 1510 if (ret <= 0)
237fc6e7 1511 goto out;
432569bb 1512 }
10c94ec1 1513
10c94ec1 1514 /* The other values in restart are already filled in */
237fc6e7
TG
1515 ret = -ERESTART_RESTARTBLOCK;
1516out:
1517 destroy_hrtimer_on_stack(&t.timer);
1518 return ret;
10c94ec1
TG
1519}
1520
080344b9 1521long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1522 const enum hrtimer_mode mode, const clockid_t clockid)
1523{
1524 struct restart_block *restart;
669d7868 1525 struct hrtimer_sleeper t;
237fc6e7 1526 int ret = 0;
3bd01206
AV
1527 unsigned long slack;
1528
1529 slack = current->timer_slack_ns;
aab03e05 1530 if (dl_task(current) || rt_task(current))
3bd01206 1531 slack = 0;
10c94ec1 1532
237fc6e7 1533 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1534 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1535 if (do_nanosleep(&t, mode))
237fc6e7 1536 goto out;
10c94ec1 1537
7978672c 1538 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1539 if (mode == HRTIMER_MODE_ABS) {
1540 ret = -ERESTARTNOHAND;
1541 goto out;
1542 }
10c94ec1 1543
432569bb 1544 if (rmtp) {
237fc6e7 1545 ret = update_rmtp(&t.timer, rmtp);
080344b9 1546 if (ret <= 0)
237fc6e7 1547 goto out;
432569bb 1548 }
10c94ec1 1549
f56141e3 1550 restart = &current->restart_block;
1711ef38 1551 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1552 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1553 restart->nanosleep.rmtp = rmtp;
cc584b21 1554 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1555
237fc6e7
TG
1556 ret = -ERESTART_RESTARTBLOCK;
1557out:
1558 destroy_hrtimer_on_stack(&t.timer);
1559 return ret;
10c94ec1
TG
1560}
1561
58fd3aa2
HC
1562SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1563 struct timespec __user *, rmtp)
6ba1b912 1564{
080344b9 1565 struct timespec tu;
6ba1b912
TG
1566
1567 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1568 return -EFAULT;
1569
1570 if (!timespec_valid(&tu))
1571 return -EINVAL;
1572
080344b9 1573 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1574}
1575
c0a31329
TG
1576/*
1577 * Functions related to boot-time initialization:
1578 */
0db0628d 1579static void init_hrtimers_cpu(int cpu)
c0a31329 1580{
3c8aa39d 1581 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1582 int i;
1583
998adc3d 1584 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1585 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1586 timerqueue_init_head(&cpu_base->clock_base[i].active);
1587 }
3c8aa39d 1588
cddd0248 1589 cpu_base->cpu = cpu;
54cdfdb4 1590 hrtimer_init_hres(cpu_base);
c0a31329
TG
1591}
1592
1593#ifdef CONFIG_HOTPLUG_CPU
1594
ca109491 1595static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1596 struct hrtimer_clock_base *new_base)
c0a31329
TG
1597{
1598 struct hrtimer *timer;
998adc3d 1599 struct timerqueue_node *node;
c0a31329 1600
998adc3d
JS
1601 while ((node = timerqueue_getnext(&old_base->active))) {
1602 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1603 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1604 debug_deactivate(timer);
b00c1a99
TG
1605
1606 /*
1607 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1608 * timer could be seen as !active and just vanish away
1609 * under us on another CPU
1610 */
1611 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1612 timer->base = new_base;
54cdfdb4 1613 /*
e3f1d883
TG
1614 * Enqueue the timers on the new cpu. This does not
1615 * reprogram the event device in case the timer
1616 * expires before the earliest on this CPU, but we run
1617 * hrtimer_interrupt after we migrated everything to
1618 * sort out already expired timers and reprogram the
1619 * event device.
54cdfdb4 1620 */
a6037b61 1621 enqueue_hrtimer(timer, new_base);
41e1022e 1622
b00c1a99
TG
1623 /* Clear the migration state bit */
1624 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1625 }
1626}
1627
d5fd43c4 1628static void migrate_hrtimers(int scpu)
c0a31329 1629{
3c8aa39d 1630 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1631 int i;
c0a31329 1632
37810659 1633 BUG_ON(cpu_online(scpu));
37810659 1634 tick_cancel_sched_timer(scpu);
731a55ba
TG
1635
1636 local_irq_disable();
1637 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1638 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1639 /*
1640 * The caller is globally serialized and nobody else
1641 * takes two locks at once, deadlock is not possible.
1642 */
ecb49d1a
TG
1643 raw_spin_lock(&new_base->lock);
1644 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1645
3c8aa39d 1646 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1647 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1648 &new_base->clock_base[i]);
c0a31329
TG
1649 }
1650
ecb49d1a
TG
1651 raw_spin_unlock(&old_base->lock);
1652 raw_spin_unlock(&new_base->lock);
37810659 1653
731a55ba
TG
1654 /* Check, if we got expired work to do */
1655 __hrtimer_peek_ahead_timers();
1656 local_irq_enable();
c0a31329 1657}
37810659 1658
c0a31329
TG
1659#endif /* CONFIG_HOTPLUG_CPU */
1660
0db0628d 1661static int hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1662 unsigned long action, void *hcpu)
1663{
b2e3c0ad 1664 int scpu = (long)hcpu;
c0a31329
TG
1665
1666 switch (action) {
1667
1668 case CPU_UP_PREPARE:
8bb78442 1669 case CPU_UP_PREPARE_FROZEN:
37810659 1670 init_hrtimers_cpu(scpu);
c0a31329
TG
1671 break;
1672
1673#ifdef CONFIG_HOTPLUG_CPU
1674 case CPU_DEAD:
8bb78442 1675 case CPU_DEAD_FROZEN:
d5fd43c4 1676 migrate_hrtimers(scpu);
c0a31329
TG
1677 break;
1678#endif
1679
1680 default:
1681 break;
1682 }
1683
1684 return NOTIFY_OK;
1685}
1686
0db0628d 1687static struct notifier_block hrtimers_nb = {
c0a31329
TG
1688 .notifier_call = hrtimer_cpu_notify,
1689};
1690
1691void __init hrtimers_init(void)
1692{
1693 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1694 (void *)(long)smp_processor_id());
1695 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1696#ifdef CONFIG_HIGH_RES_TIMERS
1697 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1698#endif
c0a31329
TG
1699}
1700
7bb67439 1701/**
351b3f7a 1702 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1703 * @expires: timeout value (ktime_t)
654c8e0b 1704 * @delta: slack in expires timeout (ktime_t)
7bb67439 1705 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1706 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1707 */
351b3f7a
CE
1708int __sched
1709schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1710 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1711{
1712 struct hrtimer_sleeper t;
1713
1714 /*
1715 * Optimize when a zero timeout value is given. It does not
1716 * matter whether this is an absolute or a relative time.
1717 */
1718 if (expires && !expires->tv64) {
1719 __set_current_state(TASK_RUNNING);
1720 return 0;
1721 }
1722
1723 /*
43b21013 1724 * A NULL parameter means "infinite"
7bb67439
AV
1725 */
1726 if (!expires) {
1727 schedule();
7bb67439
AV
1728 return -EINTR;
1729 }
1730
351b3f7a 1731 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1732 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1733
1734 hrtimer_init_sleeper(&t, current);
1735
cc584b21 1736 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1737 if (!hrtimer_active(&t.timer))
1738 t.task = NULL;
1739
1740 if (likely(t.task))
1741 schedule();
1742
1743 hrtimer_cancel(&t.timer);
1744 destroy_hrtimer_on_stack(&t.timer);
1745
1746 __set_current_state(TASK_RUNNING);
1747
1748 return !t.task ? 0 : -EINTR;
1749}
351b3f7a
CE
1750
1751/**
1752 * schedule_hrtimeout_range - sleep until timeout
1753 * @expires: timeout value (ktime_t)
1754 * @delta: slack in expires timeout (ktime_t)
1755 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1756 *
1757 * Make the current task sleep until the given expiry time has
1758 * elapsed. The routine will return immediately unless
1759 * the current task state has been set (see set_current_state()).
1760 *
1761 * The @delta argument gives the kernel the freedom to schedule the
1762 * actual wakeup to a time that is both power and performance friendly.
1763 * The kernel give the normal best effort behavior for "@expires+@delta",
1764 * but may decide to fire the timer earlier, but no earlier than @expires.
1765 *
1766 * You can set the task state as follows -
1767 *
1768 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1769 * pass before the routine returns.
1770 *
1771 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1772 * delivered to the current task.
1773 *
1774 * The current task state is guaranteed to be TASK_RUNNING when this
1775 * routine returns.
1776 *
1777 * Returns 0 when the timer has expired otherwise -EINTR
1778 */
1779int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1780 const enum hrtimer_mode mode)
1781{
1782 return schedule_hrtimeout_range_clock(expires, delta, mode,
1783 CLOCK_MONOTONIC);
1784}
654c8e0b
AV
1785EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1786
1787/**
1788 * schedule_hrtimeout - sleep until timeout
1789 * @expires: timeout value (ktime_t)
1790 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1791 *
1792 * Make the current task sleep until the given expiry time has
1793 * elapsed. The routine will return immediately unless
1794 * the current task state has been set (see set_current_state()).
1795 *
1796 * You can set the task state as follows -
1797 *
1798 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1799 * pass before the routine returns.
1800 *
1801 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1802 * delivered to the current task.
1803 *
1804 * The current task state is guaranteed to be TASK_RUNNING when this
1805 * routine returns.
1806 *
1807 * Returns 0 when the timer has expired otherwise -EINTR
1808 */
1809int __sched schedule_hrtimeout(ktime_t *expires,
1810 const enum hrtimer_mode mode)
1811{
1812 return schedule_hrtimeout_range(expires, 0, mode);
1813}
7bb67439 1814EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 1.281231 seconds and 5 git commands to generate.