ntp: increase time_offset resolution
[deliverable/linux.git] / kernel / time / ntp.c
CommitLineData
4c7ee8de 1/*
2 * linux/kernel/time/ntp.c
3 *
4 * NTP state machine interfaces and logic.
5 *
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
8 * changelogs.
9 */
10
11#include <linux/mm.h>
12#include <linux/time.h>
82644459 13#include <linux/timer.h>
4c7ee8de 14#include <linux/timex.h>
e8edc6e0
AD
15#include <linux/jiffies.h>
16#include <linux/hrtimer.h>
aa0ac365 17#include <linux/capability.h>
71abb3af 18#include <linux/math64.h>
4c7ee8de 19#include <asm/timex.h>
20
b0ee7556
RZ
21/*
22 * Timekeeping variables
23 */
24unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
25unsigned long tick_nsec; /* ACTHZ period (nsec) */
26static u64 tick_length, tick_length_base;
27
8f807f8d
RZ
28#define MAX_TICKADJ 500 /* microsecs */
29#define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
f4304ab2 30 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
4c7ee8de 31
32/*
33 * phase-lock loop variables
34 */
35/* TIME_ERROR prevents overwriting the CMOS clock */
70bc42f9 36static int time_state = TIME_OK; /* clock synchronization status */
4c7ee8de 37int time_status = STA_UNSYNC; /* clock status bits */
ee9851b2 38static s64 time_offset; /* time adjustment (ns) */
70bc42f9 39static long time_constant = 2; /* pll time constant */
4c7ee8de 40long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
41long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
074b3b87 42static s64 time_freq; /* frequency offset (scaled ns/s)*/
70bc42f9 43static long time_reftime; /* time at last adjustment (s) */
4c7ee8de 44long time_adjust;
10a398d0 45static long ntp_tick_adj;
4c7ee8de 46
70bc42f9
AB
47static void ntp_update_frequency(void)
48{
f4304ab2 49 u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
50 << TICK_LENGTH_SHIFT;
10a398d0 51 second_length += (s64)ntp_tick_adj << TICK_LENGTH_SHIFT;
074b3b87 52 second_length += time_freq;
70bc42f9 53
f4304ab2 54 tick_length_base = second_length;
70bc42f9 55
71abb3af
RZ
56 tick_nsec = div_u64(second_length, HZ) >> TICK_LENGTH_SHIFT;
57 tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ);
70bc42f9
AB
58}
59
ee9851b2
RZ
60static void ntp_update_offset(long offset)
61{
62 long mtemp;
63 s64 freq_adj;
64
65 if (!(time_status & STA_PLL))
66 return;
67
eea83d89 68 if (!(time_status & STA_NANO))
9f14f669 69 offset *= NSEC_PER_USEC;
ee9851b2
RZ
70
71 /*
72 * Scale the phase adjustment and
73 * clamp to the operating range.
74 */
9f14f669
RZ
75 offset = min(offset, MAXPHASE);
76 offset = max(offset, -MAXPHASE);
ee9851b2
RZ
77
78 /*
79 * Select how the frequency is to be controlled
80 * and in which mode (PLL or FLL).
81 */
82 if (time_status & STA_FREQHOLD || time_reftime == 0)
83 time_reftime = xtime.tv_sec;
84 mtemp = xtime.tv_sec - time_reftime;
85 time_reftime = xtime.tv_sec;
86
9f14f669 87 freq_adj = (s64)offset * mtemp;
074b3b87 88 freq_adj <<= TICK_LENGTH_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant);
eea83d89
RZ
89 time_status &= ~STA_MODE;
90 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
9f14f669 91 freq_adj += div_s64((s64)offset << (TICK_LENGTH_SHIFT - SHIFT_FLL),
074b3b87 92 mtemp);
eea83d89
RZ
93 time_status |= STA_MODE;
94 }
ee9851b2 95 freq_adj += time_freq;
074b3b87
RZ
96 freq_adj = min(freq_adj, MAXFREQ_SCALED);
97 time_freq = max(freq_adj, -MAXFREQ_SCALED);
9f14f669
RZ
98
99 time_offset = div_s64((s64)offset << TICK_LENGTH_SHIFT, NTP_INTERVAL_FREQ);
ee9851b2
RZ
100}
101
b0ee7556
RZ
102/**
103 * ntp_clear - Clears the NTP state variables
104 *
105 * Must be called while holding a write on the xtime_lock
106 */
107void ntp_clear(void)
108{
109 time_adjust = 0; /* stop active adjtime() */
110 time_status |= STA_UNSYNC;
111 time_maxerror = NTP_PHASE_LIMIT;
112 time_esterror = NTP_PHASE_LIMIT;
113
114 ntp_update_frequency();
115
116 tick_length = tick_length_base;
3d3675cc 117 time_offset = 0;
b0ee7556
RZ
118}
119
4c7ee8de 120/*
121 * this routine handles the overflow of the microsecond field
122 *
123 * The tricky bits of code to handle the accurate clock support
124 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
125 * They were originally developed for SUN and DEC kernels.
126 * All the kudos should go to Dave for this stuff.
127 */
128void second_overflow(void)
129{
9f14f669 130 s64 time_adj;
4c7ee8de 131
132 /* Bump the maxerror field */
074b3b87 133 time_maxerror += MAXFREQ / NSEC_PER_USEC;
4c7ee8de 134 if (time_maxerror > NTP_PHASE_LIMIT) {
135 time_maxerror = NTP_PHASE_LIMIT;
136 time_status |= STA_UNSYNC;
137 }
138
139 /*
140 * Leap second processing. If in leap-insert state at the end of the
141 * day, the system clock is set back one second; if in leap-delete
142 * state, the system clock is set ahead one second. The microtime()
143 * routine or external clock driver will insure that reported time is
144 * always monotonic. The ugly divides should be replaced.
145 */
146 switch (time_state) {
147 case TIME_OK:
148 if (time_status & STA_INS)
149 time_state = TIME_INS;
150 else if (time_status & STA_DEL)
151 time_state = TIME_DEL;
152 break;
153 case TIME_INS:
154 if (xtime.tv_sec % 86400 == 0) {
155 xtime.tv_sec--;
156 wall_to_monotonic.tv_sec++;
4c7ee8de 157 time_state = TIME_OOP;
4c7ee8de 158 printk(KERN_NOTICE "Clock: inserting leap second "
159 "23:59:60 UTC\n");
160 }
161 break;
162 case TIME_DEL:
163 if ((xtime.tv_sec + 1) % 86400 == 0) {
164 xtime.tv_sec++;
165 wall_to_monotonic.tv_sec--;
4c7ee8de 166 time_state = TIME_WAIT;
4c7ee8de 167 printk(KERN_NOTICE "Clock: deleting leap second "
168 "23:59:59 UTC\n");
169 }
170 break;
171 case TIME_OOP:
172 time_state = TIME_WAIT;
173 break;
174 case TIME_WAIT:
175 if (!(time_status & (STA_INS | STA_DEL)))
ee9851b2 176 time_state = TIME_OK;
4c7ee8de 177 }
178
179 /*
f1992393
RZ
180 * Compute the phase adjustment for the next second. The offset is
181 * reduced by a fixed factor times the time constant.
4c7ee8de 182 */
b0ee7556 183 tick_length = tick_length_base;
f1992393 184 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
3d3675cc 185 time_offset -= time_adj;
9f14f669 186 tick_length += time_adj;
4c7ee8de 187
8f807f8d
RZ
188 if (unlikely(time_adjust)) {
189 if (time_adjust > MAX_TICKADJ) {
190 time_adjust -= MAX_TICKADJ;
191 tick_length += MAX_TICKADJ_SCALED;
192 } else if (time_adjust < -MAX_TICKADJ) {
193 time_adjust += MAX_TICKADJ;
194 tick_length -= MAX_TICKADJ_SCALED;
195 } else {
8f807f8d 196 tick_length += (s64)(time_adjust * NSEC_PER_USEC /
f4304ab2 197 NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
bb1d8605 198 time_adjust = 0;
8f807f8d 199 }
4c7ee8de 200 }
201}
202
203/*
204 * Return how long ticks are at the moment, that is, how much time
205 * update_wall_time_one_tick will add to xtime next time we call it
206 * (assuming no calls to do_adjtimex in the meantime).
207 * The return value is in fixed-point nanoseconds shifted by the
208 * specified number of bits to the right of the binary point.
209 * This function has no side-effects.
210 */
211u64 current_tick_length(void)
212{
8f807f8d 213 return tick_length;
4c7ee8de 214}
215
82644459 216#ifdef CONFIG_GENERIC_CMOS_UPDATE
4c7ee8de 217
82644459
TG
218/* Disable the cmos update - used by virtualization and embedded */
219int no_sync_cmos_clock __read_mostly;
220
221static void sync_cmos_clock(unsigned long dummy);
222
223static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
224
225static void sync_cmos_clock(unsigned long dummy)
226{
227 struct timespec now, next;
228 int fail = 1;
229
230 /*
231 * If we have an externally synchronized Linux clock, then update
232 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
233 * called as close as possible to 500 ms before the new second starts.
234 * This code is run on a timer. If the clock is set, that timer
235 * may not expire at the correct time. Thus, we adjust...
236 */
237 if (!ntp_synced())
238 /*
239 * Not synced, exit, do not restart a timer (if one is
240 * running, let it run out).
241 */
242 return;
243
244 getnstimeofday(&now);
fa6a1a55 245 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
82644459
TG
246 fail = update_persistent_clock(now);
247
248 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec;
249 if (next.tv_nsec <= 0)
250 next.tv_nsec += NSEC_PER_SEC;
251
252 if (!fail)
253 next.tv_sec = 659;
254 else
255 next.tv_sec = 0;
256
257 if (next.tv_nsec >= NSEC_PER_SEC) {
258 next.tv_sec++;
259 next.tv_nsec -= NSEC_PER_SEC;
260 }
261 mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));
262}
263
264static void notify_cmos_timer(void)
4c7ee8de 265{
298a5df4 266 if (!no_sync_cmos_clock)
82644459 267 mod_timer(&sync_cmos_timer, jiffies + 1);
4c7ee8de 268}
269
82644459
TG
270#else
271static inline void notify_cmos_timer(void) { }
272#endif
273
4c7ee8de 274/* adjtimex mainly allows reading (and writing, if superuser) of
275 * kernel time-keeping variables. used by xntpd.
276 */
277int do_adjtimex(struct timex *txc)
278{
eea83d89 279 struct timespec ts;
ee9851b2 280 long save_adjust;
4c7ee8de 281 int result;
282
283 /* In order to modify anything, you gotta be super-user! */
284 if (txc->modes && !capable(CAP_SYS_TIME))
285 return -EPERM;
286
287 /* Now we validate the data before disabling interrupts */
288
52bfb360 289 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) {
eea83d89
RZ
290 /* singleshot must not be used with any other mode bits */
291 if (txc->modes & ~ADJ_OFFSET_SS_READ)
4c7ee8de 292 return -EINVAL;
52bfb360 293 }
4c7ee8de 294
4c7ee8de 295 /* if the quartz is off by more than 10% something is VERY wrong ! */
296 if (txc->modes & ADJ_TICK)
297 if (txc->tick < 900000/USER_HZ ||
298 txc->tick > 1100000/USER_HZ)
299 return -EINVAL;
300
301 write_seqlock_irq(&xtime_lock);
4c7ee8de 302
303 /* Save for later - semantics of adjtime is to return old value */
8f807f8d 304 save_adjust = time_adjust;
4c7ee8de 305
4c7ee8de 306 /* If there are input parameters, then process them */
ee9851b2 307 if (txc->modes) {
eea83d89
RZ
308 if (txc->modes & ADJ_STATUS) {
309 if ((time_status & STA_PLL) &&
310 !(txc->status & STA_PLL)) {
311 time_state = TIME_OK;
312 time_status = STA_UNSYNC;
313 }
314 /* only set allowed bits */
315 time_status &= STA_RONLY;
316 time_status |= txc->status & ~STA_RONLY;
317 }
318
319 if (txc->modes & ADJ_NANO)
320 time_status |= STA_NANO;
321 if (txc->modes & ADJ_MICRO)
322 time_status &= ~STA_NANO;
ee9851b2
RZ
323
324 if (txc->modes & ADJ_FREQUENCY) {
074b3b87
RZ
325 time_freq = (s64)txc->freq * PPM_SCALE;
326 time_freq = min(time_freq, MAXFREQ_SCALED);
327 time_freq = max(time_freq, -MAXFREQ_SCALED);
4c7ee8de 328 }
ee9851b2 329
eea83d89 330 if (txc->modes & ADJ_MAXERROR)
ee9851b2 331 time_maxerror = txc->maxerror;
eea83d89 332 if (txc->modes & ADJ_ESTERROR)
ee9851b2 333 time_esterror = txc->esterror;
4c7ee8de 334
ee9851b2 335 if (txc->modes & ADJ_TIMECONST) {
eea83d89
RZ
336 time_constant = txc->constant;
337 if (!(time_status & STA_NANO))
338 time_constant += 4;
339 time_constant = min(time_constant, (long)MAXTC);
340 time_constant = max(time_constant, 0l);
4c7ee8de 341 }
4c7ee8de 342
ee9851b2
RZ
343 if (txc->modes & ADJ_OFFSET) {
344 if (txc->modes == ADJ_OFFSET_SINGLESHOT)
345 /* adjtime() is independent from ntp_adjtime() */
346 time_adjust = txc->offset;
347 else
348 ntp_update_offset(txc->offset);
4c7ee8de 349 }
ee9851b2
RZ
350 if (txc->modes & ADJ_TICK)
351 tick_usec = txc->tick;
352
353 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
354 ntp_update_frequency();
355 }
eea83d89
RZ
356
357 result = time_state; /* mostly `TIME_OK' */
ee9851b2 358 if (time_status & (STA_UNSYNC|STA_CLOCKERR))
4c7ee8de 359 result = TIME_ERROR;
360
52bfb360 361 if ((txc->modes == ADJ_OFFSET_SINGLESHOT) ||
ee9851b2 362 (txc->modes == ADJ_OFFSET_SS_READ))
d62ac21a 363 txc->offset = save_adjust;
eea83d89 364 else {
9f14f669
RZ
365 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
366 TICK_LENGTH_SHIFT);
eea83d89
RZ
367 if (!(time_status & STA_NANO))
368 txc->offset /= NSEC_PER_USEC;
369 }
074b3b87
RZ
370 txc->freq = shift_right((s32)(time_freq >> PPM_SCALE_INV_SHIFT) *
371 (s64)PPM_SCALE_INV,
372 TICK_LENGTH_SHIFT);
4c7ee8de 373 txc->maxerror = time_maxerror;
374 txc->esterror = time_esterror;
375 txc->status = time_status;
376 txc->constant = time_constant;
70bc42f9 377 txc->precision = 1;
074b3b87 378 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
4c7ee8de 379 txc->tick = tick_usec;
380
381 /* PPS is not implemented, so these are zero */
382 txc->ppsfreq = 0;
383 txc->jitter = 0;
384 txc->shift = 0;
385 txc->stabil = 0;
386 txc->jitcnt = 0;
387 txc->calcnt = 0;
388 txc->errcnt = 0;
389 txc->stbcnt = 0;
390 write_sequnlock_irq(&xtime_lock);
ee9851b2 391
eea83d89
RZ
392 getnstimeofday(&ts);
393 txc->time.tv_sec = ts.tv_sec;
394 txc->time.tv_usec = ts.tv_nsec;
395 if (!(time_status & STA_NANO))
396 txc->time.tv_usec /= NSEC_PER_USEC;
ee9851b2 397
82644459 398 notify_cmos_timer();
ee9851b2
RZ
399
400 return result;
4c7ee8de 401}
10a398d0
RZ
402
403static int __init ntp_tick_adj_setup(char *str)
404{
405 ntp_tick_adj = simple_strtol(str, NULL, 0);
406 return 1;
407}
408
409__setup("ntp_tick_adj=", ntp_tick_adj_setup);
This page took 0.437314 seconds and 5 git commands to generate.