time: ntp: refactor and clean up ntp_update_offset()
[deliverable/linux.git] / kernel / time / ntp.c
CommitLineData
4c7ee8de 1/*
4c7ee8de 2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
aa0ac365 8#include <linux/capability.h>
7dffa3c6 9#include <linux/clocksource.h>
eb3f938f 10#include <linux/workqueue.h>
53bbfa9e
IM
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
4c7ee8de 17
b0ee7556 18/*
53bbfa9e 19 * NTP timekeeping variables:
b0ee7556 20 */
b0ee7556 21
53bbfa9e
IM
22/* USER_HZ period (usecs): */
23unsigned long tick_usec = TICK_USEC;
24
25/* ACTHZ period (nsecs): */
26unsigned long tick_nsec;
7dffa3c6 27
53bbfa9e
IM
28u64 tick_length;
29static u64 tick_length_base;
30
31static struct hrtimer leap_timer;
32
bbd12676 33#define MAX_TICKADJ 500LL /* usecs */
53bbfa9e 34#define MAX_TICKADJ_SCALED \
bbd12676 35 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
4c7ee8de 36
37/*
38 * phase-lock loop variables
39 */
53bbfa9e
IM
40
41/*
42 * clock synchronization status
43 *
44 * (TIME_ERROR prevents overwriting the CMOS clock)
45 */
46static int time_state = TIME_OK;
47
48/* clock status bits: */
49int time_status = STA_UNSYNC;
50
51/* TAI offset (secs): */
52static long time_tai;
53
54/* time adjustment (nsecs): */
55static s64 time_offset;
56
57/* pll time constant: */
58static long time_constant = 2;
59
60/* maximum error (usecs): */
61long time_maxerror = NTP_PHASE_LIMIT;
62
63/* estimated error (usecs): */
64long time_esterror = NTP_PHASE_LIMIT;
65
66/* frequency offset (scaled nsecs/secs): */
67static s64 time_freq;
68
69/* time at last adjustment (secs): */
70static long time_reftime;
71
72long time_adjust;
73
74static long ntp_tick_adj;
75
76/*
77 * NTP methods:
78 */
4c7ee8de 79
9ce616aa
IM
80/*
81 * Update (tick_length, tick_length_base, tick_nsec), based
82 * on (tick_usec, ntp_tick_adj, time_freq):
83 */
70bc42f9
AB
84static void ntp_update_frequency(void)
85{
9ce616aa 86 u64 second_length;
bc26c31d 87 u64 new_base;
9ce616aa
IM
88
89 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
90 << NTP_SCALE_SHIFT;
91
92 second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;
93 second_length += time_freq;
70bc42f9 94
9ce616aa 95 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
bc26c31d 96 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
fdcedf7b 97
98 /*
99 * Don't wait for the next second_overflow, apply
bc26c31d 100 * the change to the tick length immediately:
fdcedf7b 101 */
bc26c31d
IM
102 tick_length += new_base - tick_length_base;
103 tick_length_base = new_base;
70bc42f9
AB
104}
105
f939890b
IM
106static inline s64 ntp_update_offset_fll(s64 freq_adj, s64 offset64, long secs)
107{
108 time_status &= ~STA_MODE;
109
110 if (secs < MINSEC)
111 return freq_adj;
112
113 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
114 return freq_adj;
115
116 freq_adj += div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
117 time_status |= STA_MODE;
118
119 return freq_adj;
120}
121
ee9851b2
RZ
122static void ntp_update_offset(long offset)
123{
ee9851b2 124 s64 freq_adj;
f939890b
IM
125 s64 offset64;
126 long secs;
ee9851b2
RZ
127
128 if (!(time_status & STA_PLL))
129 return;
130
eea83d89 131 if (!(time_status & STA_NANO))
9f14f669 132 offset *= NSEC_PER_USEC;
ee9851b2
RZ
133
134 /*
135 * Scale the phase adjustment and
136 * clamp to the operating range.
137 */
9f14f669
RZ
138 offset = min(offset, MAXPHASE);
139 offset = max(offset, -MAXPHASE);
ee9851b2
RZ
140
141 /*
142 * Select how the frequency is to be controlled
143 * and in which mode (PLL or FLL).
144 */
145 if (time_status & STA_FREQHOLD || time_reftime == 0)
146 time_reftime = xtime.tv_sec;
f939890b
IM
147
148 secs = xtime.tv_sec - time_reftime;
ee9851b2
RZ
149 time_reftime = xtime.tv_sec;
150
f939890b
IM
151 offset64 = offset;
152 freq_adj = (offset64 * secs) <<
153 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
154
155 freq_adj = ntp_update_offset_fll(freq_adj, offset64, secs);
156
157 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
158
159 time_freq = max(freq_adj, -MAXFREQ_SCALED);
160
161 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
ee9851b2
RZ
162}
163
b0ee7556
RZ
164/**
165 * ntp_clear - Clears the NTP state variables
166 *
167 * Must be called while holding a write on the xtime_lock
168 */
169void ntp_clear(void)
170{
53bbfa9e
IM
171 time_adjust = 0; /* stop active adjtime() */
172 time_status |= STA_UNSYNC;
173 time_maxerror = NTP_PHASE_LIMIT;
174 time_esterror = NTP_PHASE_LIMIT;
b0ee7556
RZ
175
176 ntp_update_frequency();
177
53bbfa9e
IM
178 tick_length = tick_length_base;
179 time_offset = 0;
b0ee7556
RZ
180}
181
4c7ee8de 182/*
7dffa3c6
RZ
183 * Leap second processing. If in leap-insert state at the end of the
184 * day, the system clock is set back one second; if in leap-delete
185 * state, the system clock is set ahead one second.
4c7ee8de 186 */
7dffa3c6 187static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
4c7ee8de 188{
7dffa3c6 189 enum hrtimer_restart res = HRTIMER_NORESTART;
4c7ee8de 190
ca109491 191 write_seqlock(&xtime_lock);
4c7ee8de 192
4c7ee8de 193 switch (time_state) {
194 case TIME_OK:
4c7ee8de 195 break;
196 case TIME_INS:
7dffa3c6
RZ
197 xtime.tv_sec--;
198 wall_to_monotonic.tv_sec++;
199 time_state = TIME_OOP;
53bbfa9e
IM
200 printk(KERN_NOTICE
201 "Clock: inserting leap second 23:59:60 UTC\n");
cc584b21 202 hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
7dffa3c6 203 res = HRTIMER_RESTART;
4c7ee8de 204 break;
205 case TIME_DEL:
7dffa3c6
RZ
206 xtime.tv_sec++;
207 time_tai--;
208 wall_to_monotonic.tv_sec--;
209 time_state = TIME_WAIT;
53bbfa9e
IM
210 printk(KERN_NOTICE
211 "Clock: deleting leap second 23:59:59 UTC\n");
4c7ee8de 212 break;
213 case TIME_OOP:
153b5d05 214 time_tai++;
4c7ee8de 215 time_state = TIME_WAIT;
7dffa3c6 216 /* fall through */
4c7ee8de 217 case TIME_WAIT:
218 if (!(time_status & (STA_INS | STA_DEL)))
ee9851b2 219 time_state = TIME_OK;
7dffa3c6
RZ
220 break;
221 }
222 update_vsyscall(&xtime, clock);
223
ca109491 224 write_sequnlock(&xtime_lock);
7dffa3c6
RZ
225
226 return res;
227}
228
229/*
230 * this routine handles the overflow of the microsecond field
231 *
232 * The tricky bits of code to handle the accurate clock support
233 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
234 * They were originally developed for SUN and DEC kernels.
235 * All the kudos should go to Dave for this stuff.
236 */
237void second_overflow(void)
238{
239 s64 time_adj;
240
241 /* Bump the maxerror field */
242 time_maxerror += MAXFREQ / NSEC_PER_USEC;
243 if (time_maxerror > NTP_PHASE_LIMIT) {
244 time_maxerror = NTP_PHASE_LIMIT;
245 time_status |= STA_UNSYNC;
4c7ee8de 246 }
247
248 /*
f1992393
RZ
249 * Compute the phase adjustment for the next second. The offset is
250 * reduced by a fixed factor times the time constant.
4c7ee8de 251 */
53bbfa9e
IM
252 tick_length = tick_length_base;
253 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
254 time_offset -= time_adj;
255 tick_length += time_adj;
4c7ee8de 256
3c972c24
IM
257 if (!time_adjust)
258 return;
259
260 if (time_adjust > MAX_TICKADJ) {
261 time_adjust -= MAX_TICKADJ;
262 tick_length += MAX_TICKADJ_SCALED;
263 return;
4c7ee8de 264 }
3c972c24
IM
265
266 if (time_adjust < -MAX_TICKADJ) {
267 time_adjust += MAX_TICKADJ;
268 tick_length -= MAX_TICKADJ_SCALED;
269 return;
270 }
271
272 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
273 << NTP_SCALE_SHIFT;
274 time_adjust = 0;
4c7ee8de 275}
276
82644459 277#ifdef CONFIG_GENERIC_CMOS_UPDATE
4c7ee8de 278
82644459
TG
279/* Disable the cmos update - used by virtualization and embedded */
280int no_sync_cmos_clock __read_mostly;
281
eb3f938f 282static void sync_cmos_clock(struct work_struct *work);
82644459 283
eb3f938f 284static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
82644459 285
eb3f938f 286static void sync_cmos_clock(struct work_struct *work)
82644459
TG
287{
288 struct timespec now, next;
289 int fail = 1;
290
291 /*
292 * If we have an externally synchronized Linux clock, then update
293 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
294 * called as close as possible to 500 ms before the new second starts.
295 * This code is run on a timer. If the clock is set, that timer
296 * may not expire at the correct time. Thus, we adjust...
297 */
53bbfa9e 298 if (!ntp_synced()) {
82644459
TG
299 /*
300 * Not synced, exit, do not restart a timer (if one is
301 * running, let it run out).
302 */
303 return;
53bbfa9e 304 }
82644459
TG
305
306 getnstimeofday(&now);
fa6a1a55 307 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
82644459
TG
308 fail = update_persistent_clock(now);
309
4ff4b9e1 310 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
82644459
TG
311 if (next.tv_nsec <= 0)
312 next.tv_nsec += NSEC_PER_SEC;
313
314 if (!fail)
315 next.tv_sec = 659;
316 else
317 next.tv_sec = 0;
318
319 if (next.tv_nsec >= NSEC_PER_SEC) {
320 next.tv_sec++;
321 next.tv_nsec -= NSEC_PER_SEC;
322 }
eb3f938f 323 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
82644459
TG
324}
325
326static void notify_cmos_timer(void)
4c7ee8de 327{
298a5df4 328 if (!no_sync_cmos_clock)
eb3f938f 329 schedule_delayed_work(&sync_cmos_work, 0);
4c7ee8de 330}
331
82644459
TG
332#else
333static inline void notify_cmos_timer(void) { }
334#endif
335
53bbfa9e
IM
336/*
337 * adjtimex mainly allows reading (and writing, if superuser) of
4c7ee8de 338 * kernel time-keeping variables. used by xntpd.
339 */
340int do_adjtimex(struct timex *txc)
341{
eea83d89 342 struct timespec ts;
4c7ee8de 343 int result;
344
916c7a85
RZ
345 /* Validate the data before disabling interrupts */
346 if (txc->modes & ADJ_ADJTIME) {
eea83d89 347 /* singleshot must not be used with any other mode bits */
916c7a85 348 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
4c7ee8de 349 return -EINVAL;
916c7a85
RZ
350 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
351 !capable(CAP_SYS_TIME))
352 return -EPERM;
353 } else {
354 /* In order to modify anything, you gotta be super-user! */
355 if (txc->modes && !capable(CAP_SYS_TIME))
356 return -EPERM;
357
53bbfa9e
IM
358 /*
359 * if the quartz is off by more than 10% then
360 * something is VERY wrong!
361 */
916c7a85
RZ
362 if (txc->modes & ADJ_TICK &&
363 (txc->tick < 900000/USER_HZ ||
364 txc->tick > 1100000/USER_HZ))
365 return -EINVAL;
366
367 if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
368 hrtimer_cancel(&leap_timer);
52bfb360 369 }
4c7ee8de 370
7dffa3c6
RZ
371 getnstimeofday(&ts);
372
4c7ee8de 373 write_seqlock_irq(&xtime_lock);
4c7ee8de 374
4c7ee8de 375 /* If there are input parameters, then process them */
916c7a85
RZ
376 if (txc->modes & ADJ_ADJTIME) {
377 long save_adjust = time_adjust;
378
379 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
380 /* adjtime() is independent from ntp_adjtime() */
381 time_adjust = txc->offset;
382 ntp_update_frequency();
383 }
384 txc->offset = save_adjust;
385 goto adj_done;
386 }
ee9851b2 387 if (txc->modes) {
916c7a85
RZ
388 long sec;
389
eea83d89
RZ
390 if (txc->modes & ADJ_STATUS) {
391 if ((time_status & STA_PLL) &&
392 !(txc->status & STA_PLL)) {
393 time_state = TIME_OK;
394 time_status = STA_UNSYNC;
395 }
396 /* only set allowed bits */
397 time_status &= STA_RONLY;
398 time_status |= txc->status & ~STA_RONLY;
7dffa3c6
RZ
399
400 switch (time_state) {
401 case TIME_OK:
402 start_timer:
403 sec = ts.tv_sec;
404 if (time_status & STA_INS) {
405 time_state = TIME_INS;
406 sec += 86400 - sec % 86400;
407 hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
408 } else if (time_status & STA_DEL) {
409 time_state = TIME_DEL;
410 sec += 86400 - (sec + 1) % 86400;
411 hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
412 }
413 break;
414 case TIME_INS:
415 case TIME_DEL:
416 time_state = TIME_OK;
417 goto start_timer;
418 break;
419 case TIME_WAIT:
420 if (!(time_status & (STA_INS | STA_DEL)))
421 time_state = TIME_OK;
422 break;
423 case TIME_OOP:
424 hrtimer_restart(&leap_timer);
425 break;
426 }
eea83d89
RZ
427 }
428
429 if (txc->modes & ADJ_NANO)
430 time_status |= STA_NANO;
431 if (txc->modes & ADJ_MICRO)
432 time_status &= ~STA_NANO;
ee9851b2
RZ
433
434 if (txc->modes & ADJ_FREQUENCY) {
074b3b87
RZ
435 time_freq = (s64)txc->freq * PPM_SCALE;
436 time_freq = min(time_freq, MAXFREQ_SCALED);
437 time_freq = max(time_freq, -MAXFREQ_SCALED);
4c7ee8de 438 }
ee9851b2 439
eea83d89 440 if (txc->modes & ADJ_MAXERROR)
ee9851b2 441 time_maxerror = txc->maxerror;
eea83d89 442 if (txc->modes & ADJ_ESTERROR)
ee9851b2 443 time_esterror = txc->esterror;
4c7ee8de 444
ee9851b2 445 if (txc->modes & ADJ_TIMECONST) {
eea83d89
RZ
446 time_constant = txc->constant;
447 if (!(time_status & STA_NANO))
448 time_constant += 4;
449 time_constant = min(time_constant, (long)MAXTC);
450 time_constant = max(time_constant, 0l);
4c7ee8de 451 }
4c7ee8de 452
153b5d05
RZ
453 if (txc->modes & ADJ_TAI && txc->constant > 0)
454 time_tai = txc->constant;
455
916c7a85
RZ
456 if (txc->modes & ADJ_OFFSET)
457 ntp_update_offset(txc->offset);
ee9851b2
RZ
458 if (txc->modes & ADJ_TICK)
459 tick_usec = txc->tick;
460
461 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
462 ntp_update_frequency();
463 }
eea83d89 464
916c7a85
RZ
465 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
466 NTP_SCALE_SHIFT);
467 if (!(time_status & STA_NANO))
468 txc->offset /= NSEC_PER_USEC;
469
470adj_done:
eea83d89 471 result = time_state; /* mostly `TIME_OK' */
ee9851b2 472 if (time_status & (STA_UNSYNC|STA_CLOCKERR))
4c7ee8de 473 result = TIME_ERROR;
474
d40e944c
RZ
475 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
476 (s64)PPM_SCALE_INV, NTP_SCALE_SHIFT);
4c7ee8de 477 txc->maxerror = time_maxerror;
478 txc->esterror = time_esterror;
479 txc->status = time_status;
480 txc->constant = time_constant;
70bc42f9 481 txc->precision = 1;
074b3b87 482 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
4c7ee8de 483 txc->tick = tick_usec;
153b5d05 484 txc->tai = time_tai;
4c7ee8de 485
486 /* PPS is not implemented, so these are zero */
487 txc->ppsfreq = 0;
488 txc->jitter = 0;
489 txc->shift = 0;
490 txc->stabil = 0;
491 txc->jitcnt = 0;
492 txc->calcnt = 0;
493 txc->errcnt = 0;
494 txc->stbcnt = 0;
495 write_sequnlock_irq(&xtime_lock);
ee9851b2 496
eea83d89
RZ
497 txc->time.tv_sec = ts.tv_sec;
498 txc->time.tv_usec = ts.tv_nsec;
499 if (!(time_status & STA_NANO))
500 txc->time.tv_usec /= NSEC_PER_USEC;
ee9851b2 501
82644459 502 notify_cmos_timer();
ee9851b2
RZ
503
504 return result;
4c7ee8de 505}
10a398d0
RZ
506
507static int __init ntp_tick_adj_setup(char *str)
508{
509 ntp_tick_adj = simple_strtol(str, NULL, 0);
510 return 1;
511}
512
513__setup("ntp_tick_adj=", ntp_tick_adj_setup);
7dffa3c6
RZ
514
515void __init ntp_init(void)
516{
517 ntp_clear();
518 hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
519 leap_timer.function = ntp_leap_second;
520}
This page took 0.398423 seconds and 5 git commands to generate.