ACPI/PAD: Remove the local APIC nonsense
[deliverable/linux.git] / kernel / time / tick-broadcast.c
CommitLineData
f8381cba
TG
1/*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
d7b90689 17#include <linux/interrupt.h>
f8381cba
TG
18#include <linux/percpu.h>
19#include <linux/profile.h>
20#include <linux/sched.h>
12ad1000 21#include <linux/smp.h>
ccf33d68 22#include <linux/module.h>
f8381cba
TG
23
24#include "tick-internal.h"
25
26/*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
a52f5c56 31static struct tick_device tick_broadcast_device;
b352bc1c 32static cpumask_var_t tick_broadcast_mask;
07bd1172 33static cpumask_var_t tick_broadcast_on;
b352bc1c 34static cpumask_var_t tmpmask;
b5f91da0 35static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
aa276e1c 36static int tick_broadcast_force;
f8381cba 37
5590a536
TG
38#ifdef CONFIG_TICK_ONESHOT
39static void tick_broadcast_clear_oneshot(int cpu);
080873ce 40static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
5590a536
TG
41#else
42static inline void tick_broadcast_clear_oneshot(int cpu) { }
080873ce 43static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
5590a536
TG
44#endif
45
289f480a
IM
46/*
47 * Debugging: see timer_list.c
48 */
49struct tick_device *tick_get_broadcast_device(void)
50{
51 return &tick_broadcast_device;
52}
53
6b954823 54struct cpumask *tick_get_broadcast_mask(void)
289f480a 55{
b352bc1c 56 return tick_broadcast_mask;
289f480a
IM
57}
58
f8381cba
TG
59/*
60 * Start the device in periodic mode
61 */
62static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63{
18de5bc4 64 if (bc)
f8381cba
TG
65 tick_setup_periodic(bc, 1);
66}
67
68/*
69 * Check, if the device can be utilized as broadcast device:
70 */
45cb8e01
TG
71static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72 struct clock_event_device *newdev)
73{
74 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
245a3496 75 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
45cb8e01
TG
76 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77 return false;
78
79 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81 return false;
82
83 return !curdev || newdev->rating > curdev->rating;
84}
85
86/*
87 * Conditionally install/replace broadcast device
88 */
7172a286 89void tick_install_broadcast_device(struct clock_event_device *dev)
f8381cba 90{
6f7a05d7
TG
91 struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
45cb8e01 93 if (!tick_check_broadcast_device(cur, dev))
7172a286 94 return;
45cb8e01 95
ccf33d68
TG
96 if (!try_module_get(dev->owner))
97 return;
f8381cba 98
45cb8e01 99 clockevents_exchange_device(cur, dev);
6f7a05d7
TG
100 if (cur)
101 cur->event_handler = clockevents_handle_noop;
f8381cba 102 tick_broadcast_device.evtdev = dev;
b352bc1c 103 if (!cpumask_empty(tick_broadcast_mask))
f8381cba 104 tick_broadcast_start_periodic(dev);
c038c1c4
SB
105 /*
106 * Inform all cpus about this. We might be in a situation
107 * where we did not switch to oneshot mode because the per cpu
108 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109 * of a oneshot capable broadcast device. Without that
110 * notification the systems stays stuck in periodic mode
111 * forever.
112 */
113 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114 tick_clock_notify();
f8381cba
TG
115}
116
117/*
118 * Check, if the device is the broadcast device
119 */
120int tick_is_broadcast_device(struct clock_event_device *dev)
121{
122 return (dev && tick_broadcast_device.evtdev == dev);
123}
124
627ee794
TG
125int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126{
127 int ret = -ENODEV;
128
129 if (tick_is_broadcast_device(dev)) {
130 raw_spin_lock(&tick_broadcast_lock);
131 ret = __clockevents_update_freq(dev, freq);
132 raw_spin_unlock(&tick_broadcast_lock);
133 }
134 return ret;
135}
136
137
12ad1000
MR
138static void err_broadcast(const struct cpumask *mask)
139{
140 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141}
142
5d1d9a29
MR
143static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144{
145 if (!dev->broadcast)
146 dev->broadcast = tick_broadcast;
147 if (!dev->broadcast) {
148 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149 dev->name);
150 dev->broadcast = err_broadcast;
151 }
152}
153
f8381cba
TG
154/*
155 * Check, if the device is disfunctional and a place holder, which
156 * needs to be handled by the broadcast device.
157 */
158int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159{
07bd1172 160 struct clock_event_device *bc = tick_broadcast_device.evtdev;
f8381cba 161 unsigned long flags;
07bd1172 162 int ret;
f8381cba 163
b5f91da0 164 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
f8381cba
TG
165
166 /*
167 * Devices might be registered with both periodic and oneshot
168 * mode disabled. This signals, that the device needs to be
169 * operated from the broadcast device and is a placeholder for
170 * the cpu local device.
171 */
172 if (!tick_device_is_functional(dev)) {
173 dev->event_handler = tick_handle_periodic;
5d1d9a29 174 tick_device_setup_broadcast_func(dev);
b352bc1c 175 cpumask_set_cpu(cpu, tick_broadcast_mask);
a272dcca
SB
176 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177 tick_broadcast_start_periodic(bc);
178 else
179 tick_broadcast_setup_oneshot(bc);
f8381cba 180 ret = 1;
5590a536
TG
181 } else {
182 /*
07bd1172
TG
183 * Clear the broadcast bit for this cpu if the
184 * device is not power state affected.
5590a536 185 */
07bd1172 186 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
b352bc1c 187 cpumask_clear_cpu(cpu, tick_broadcast_mask);
07bd1172 188 else
5d1d9a29 189 tick_device_setup_broadcast_func(dev);
07bd1172
TG
190
191 /*
192 * Clear the broadcast bit if the CPU is not in
193 * periodic broadcast on state.
194 */
195 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196 cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198 switch (tick_broadcast_device.mode) {
199 case TICKDEV_MODE_ONESHOT:
200 /*
201 * If the system is in oneshot mode we can
202 * unconditionally clear the oneshot mask bit,
203 * because the CPU is running and therefore
204 * not in an idle state which causes the power
205 * state affected device to stop. Let the
206 * caller initialize the device.
207 */
208 tick_broadcast_clear_oneshot(cpu);
209 ret = 0;
210 break;
211
212 case TICKDEV_MODE_PERIODIC:
213 /*
214 * If the system is in periodic mode, check
215 * whether the broadcast device can be
216 * switched off now.
217 */
218 if (cpumask_empty(tick_broadcast_mask) && bc)
219 clockevents_shutdown(bc);
220 /*
221 * If we kept the cpu in the broadcast mask,
222 * tell the caller to leave the per cpu device
223 * in shutdown state. The periodic interrupt
224 * is delivered by the broadcast device.
225 */
226 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
227 break;
228 default:
229 /* Nothing to do */
230 ret = 0;
231 break;
5590a536
TG
232 }
233 }
b5f91da0 234 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba
TG
235 return ret;
236}
237
12572dbb
MR
238#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239int tick_receive_broadcast(void)
240{
241 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
242 struct clock_event_device *evt = td->evtdev;
243
244 if (!evt)
245 return -ENODEV;
246
247 if (!evt->event_handler)
248 return -EINVAL;
249
250 evt->event_handler(evt);
251 return 0;
252}
253#endif
254
f8381cba 255/*
6b954823 256 * Broadcast the event to the cpus, which are set in the mask (mangled).
f8381cba 257 */
6b954823 258static void tick_do_broadcast(struct cpumask *mask)
f8381cba 259{
186e3cb8 260 int cpu = smp_processor_id();
f8381cba
TG
261 struct tick_device *td;
262
263 /*
264 * Check, if the current cpu is in the mask
265 */
6b954823
RR
266 if (cpumask_test_cpu(cpu, mask)) {
267 cpumask_clear_cpu(cpu, mask);
f8381cba
TG
268 td = &per_cpu(tick_cpu_device, cpu);
269 td->evtdev->event_handler(td->evtdev);
f8381cba
TG
270 }
271
6b954823 272 if (!cpumask_empty(mask)) {
f8381cba
TG
273 /*
274 * It might be necessary to actually check whether the devices
275 * have different broadcast functions. For now, just use the
276 * one of the first device. This works as long as we have this
277 * misfeature only on x86 (lapic)
278 */
6b954823
RR
279 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
280 td->evtdev->broadcast(mask);
f8381cba 281 }
f8381cba
TG
282}
283
284/*
285 * Periodic broadcast:
286 * - invoke the broadcast handlers
287 */
288static void tick_do_periodic_broadcast(void)
289{
b352bc1c
TG
290 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
291 tick_do_broadcast(tmpmask);
f8381cba
TG
292}
293
294/*
295 * Event handler for periodic broadcast ticks
296 */
297static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
298{
d4496b39
TG
299 ktime_t next;
300
627ee794
TG
301 raw_spin_lock(&tick_broadcast_lock);
302
f8381cba
TG
303 tick_do_periodic_broadcast();
304
305 /*
306 * The device is in periodic mode. No reprogramming necessary:
307 */
77e32c89 308 if (dev->state == CLOCK_EVT_STATE_PERIODIC)
627ee794 309 goto unlock;
f8381cba
TG
310
311 /*
312 * Setup the next period for devices, which do not have
d4496b39 313 * periodic mode. We read dev->next_event first and add to it
698f9315 314 * when the event already expired. clockevents_program_event()
d4496b39
TG
315 * sets dev->next_event only when the event is really
316 * programmed to the device.
f8381cba 317 */
d4496b39
TG
318 for (next = dev->next_event; ;) {
319 next = ktime_add(next, tick_period);
f8381cba 320
d1748302 321 if (!clockevents_program_event(dev, next, false))
627ee794 322 goto unlock;
f8381cba
TG
323 tick_do_periodic_broadcast();
324 }
627ee794
TG
325unlock:
326 raw_spin_unlock(&tick_broadcast_lock);
f8381cba
TG
327}
328
329/*
330 * Powerstate information: The system enters/leaves a state, where
331 * affected devices might stop
332 */
f833bab8 333static void tick_do_broadcast_on_off(unsigned long *reason)
f8381cba
TG
334{
335 struct clock_event_device *bc, *dev;
336 struct tick_device *td;
f833bab8 337 unsigned long flags;
9c17bcda 338 int cpu, bc_stopped;
f8381cba 339
b5f91da0 340 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
f8381cba
TG
341
342 cpu = smp_processor_id();
343 td = &per_cpu(tick_cpu_device, cpu);
344 dev = td->evtdev;
345 bc = tick_broadcast_device.evtdev;
346
347 /*
1595f452 348 * Is the device not affected by the powerstate ?
f8381cba 349 */
1595f452 350 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
f8381cba
TG
351 goto out;
352
3dfbc884
TG
353 if (!tick_device_is_functional(dev))
354 goto out;
1595f452 355
b352bc1c 356 bc_stopped = cpumask_empty(tick_broadcast_mask);
9c17bcda 357
1595f452
TG
358 switch (*reason) {
359 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
360 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
07bd1172 361 cpumask_set_cpu(cpu, tick_broadcast_on);
b352bc1c 362 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
07454bff
TG
363 if (tick_broadcast_device.mode ==
364 TICKDEV_MODE_PERIODIC)
2344abbc 365 clockevents_shutdown(dev);
f8381cba 366 }
3dfbc884 367 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
aa276e1c 368 tick_broadcast_force = 1;
1595f452
TG
369 break;
370 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
07bd1172
TG
371 if (tick_broadcast_force)
372 break;
373 cpumask_clear_cpu(cpu, tick_broadcast_on);
374 if (!tick_device_is_functional(dev))
375 break;
376 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
07454bff
TG
377 if (tick_broadcast_device.mode ==
378 TICKDEV_MODE_PERIODIC)
f8381cba
TG
379 tick_setup_periodic(dev, 0);
380 }
1595f452 381 break;
f8381cba
TG
382 }
383
b352bc1c 384 if (cpumask_empty(tick_broadcast_mask)) {
9c17bcda 385 if (!bc_stopped)
2344abbc 386 clockevents_shutdown(bc);
9c17bcda 387 } else if (bc_stopped) {
f8381cba
TG
388 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
389 tick_broadcast_start_periodic(bc);
79bf2bb3
TG
390 else
391 tick_broadcast_setup_oneshot(bc);
f8381cba
TG
392 }
393out:
b5f91da0 394 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba
TG
395}
396
397/*
398 * Powerstate information: The system enters/leaves a state, where
399 * affected devices might stop.
400 */
401void tick_broadcast_on_off(unsigned long reason, int *oncpu)
402{
6b954823 403 if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
833df317 404 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
72fcde96 405 "offline CPU #%d\n", *oncpu);
bf020cb7 406 else
f833bab8 407 tick_do_broadcast_on_off(&reason);
f8381cba
TG
408}
409
410/*
411 * Set the periodic handler depending on broadcast on/off
412 */
413void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
414{
415 if (!broadcast)
416 dev->event_handler = tick_handle_periodic;
417 else
418 dev->event_handler = tick_handle_periodic_broadcast;
419}
420
421/*
422 * Remove a CPU from broadcasting
423 */
424void tick_shutdown_broadcast(unsigned int *cpup)
425{
426 struct clock_event_device *bc;
427 unsigned long flags;
428 unsigned int cpu = *cpup;
429
b5f91da0 430 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
f8381cba
TG
431
432 bc = tick_broadcast_device.evtdev;
b352bc1c 433 cpumask_clear_cpu(cpu, tick_broadcast_mask);
07bd1172 434 cpumask_clear_cpu(cpu, tick_broadcast_on);
f8381cba
TG
435
436 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
b352bc1c 437 if (bc && cpumask_empty(tick_broadcast_mask))
2344abbc 438 clockevents_shutdown(bc);
f8381cba
TG
439 }
440
b5f91da0 441 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
f8381cba 442}
79bf2bb3 443
6321dd60
TG
444void tick_suspend_broadcast(void)
445{
446 struct clock_event_device *bc;
447 unsigned long flags;
448
b5f91da0 449 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
6321dd60
TG
450
451 bc = tick_broadcast_device.evtdev;
18de5bc4 452 if (bc)
2344abbc 453 clockevents_shutdown(bc);
6321dd60 454
b5f91da0 455 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
6321dd60
TG
456}
457
f46481d0
TG
458/*
459 * This is called from tick_resume_local() on a resuming CPU. That's
460 * called from the core resume function, tick_unfreeze() and the magic XEN
461 * resume hackery.
462 *
463 * In none of these cases the broadcast device mode can change and the
464 * bit of the resuming CPU in the broadcast mask is safe as well.
465 */
466bool tick_resume_check_broadcast(void)
467{
468 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
469 return false;
470 else
471 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
472}
473
474void tick_resume_broadcast(void)
6321dd60
TG
475{
476 struct clock_event_device *bc;
477 unsigned long flags;
6321dd60 478
b5f91da0 479 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
6321dd60
TG
480
481 bc = tick_broadcast_device.evtdev;
6321dd60 482
cd05a1f8 483 if (bc) {
554ef387 484 clockevents_tick_resume(bc);
18de5bc4 485
cd05a1f8
TG
486 switch (tick_broadcast_device.mode) {
487 case TICKDEV_MODE_PERIODIC:
b352bc1c 488 if (!cpumask_empty(tick_broadcast_mask))
cd05a1f8 489 tick_broadcast_start_periodic(bc);
cd05a1f8
TG
490 break;
491 case TICKDEV_MODE_ONESHOT:
b352bc1c 492 if (!cpumask_empty(tick_broadcast_mask))
080873ce 493 tick_resume_broadcast_oneshot(bc);
cd05a1f8
TG
494 break;
495 }
6321dd60 496 }
b5f91da0 497 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
6321dd60
TG
498}
499
79bf2bb3
TG
500#ifdef CONFIG_TICK_ONESHOT
501
b352bc1c 502static cpumask_var_t tick_broadcast_oneshot_mask;
26517f3e 503static cpumask_var_t tick_broadcast_pending_mask;
989dcb64 504static cpumask_var_t tick_broadcast_force_mask;
79bf2bb3 505
289f480a 506/*
6b954823 507 * Exposed for debugging: see timer_list.c
289f480a 508 */
6b954823 509struct cpumask *tick_get_broadcast_oneshot_mask(void)
289f480a 510{
b352bc1c 511 return tick_broadcast_oneshot_mask;
289f480a
IM
512}
513
eaa907c5
TG
514/*
515 * Called before going idle with interrupts disabled. Checks whether a
516 * broadcast event from the other core is about to happen. We detected
517 * that in tick_broadcast_oneshot_control(). The callsite can use this
518 * to avoid a deep idle transition as we are about to get the
519 * broadcast IPI right away.
520 */
521int tick_check_broadcast_expired(void)
522{
523 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
524}
525
d2348fb6
DL
526/*
527 * Set broadcast interrupt affinity
528 */
529static void tick_broadcast_set_affinity(struct clock_event_device *bc,
530 const struct cpumask *cpumask)
531{
532 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
533 return;
534
535 if (cpumask_equal(bc->cpumask, cpumask))
536 return;
537
538 bc->cpumask = cpumask;
539 irq_set_affinity(bc->irq, bc->cpumask);
540}
541
542static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
f9ae39d0 543 ktime_t expires, int force)
79bf2bb3 544{
d2348fb6
DL
545 int ret;
546
77e32c89
VK
547 if (bc->state != CLOCK_EVT_STATE_ONESHOT)
548 clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
b9a6a235 549
d2348fb6
DL
550 ret = clockevents_program_event(bc, expires, force);
551 if (!ret)
552 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
553 return ret;
79bf2bb3
TG
554}
555
080873ce 556static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
cd05a1f8 557{
77e32c89 558 clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
cd05a1f8
TG
559}
560
fb02fbc1
TG
561/*
562 * Called from irq_enter() when idle was interrupted to reenable the
563 * per cpu device.
564 */
e8fcaa5c 565void tick_check_oneshot_broadcast_this_cpu(void)
fb02fbc1 566{
e8fcaa5c 567 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
22127e93 568 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
fb02fbc1 569
1f73a980
TG
570 /*
571 * We might be in the middle of switching over from
572 * periodic to oneshot. If the CPU has not yet
573 * switched over, leave the device alone.
574 */
575 if (td->mode == TICKDEV_MODE_ONESHOT) {
77e32c89
VK
576 clockevents_set_state(td->evtdev,
577 CLOCK_EVT_STATE_ONESHOT);
1f73a980 578 }
fb02fbc1
TG
579 }
580}
581
79bf2bb3
TG
582/*
583 * Handle oneshot mode broadcasting
584 */
585static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
586{
587 struct tick_device *td;
cdc6f27d 588 ktime_t now, next_event;
d2348fb6 589 int cpu, next_cpu = 0;
79bf2bb3 590
b5f91da0 591 raw_spin_lock(&tick_broadcast_lock);
79bf2bb3
TG
592again:
593 dev->next_event.tv64 = KTIME_MAX;
cdc6f27d 594 next_event.tv64 = KTIME_MAX;
b352bc1c 595 cpumask_clear(tmpmask);
79bf2bb3
TG
596 now = ktime_get();
597 /* Find all expired events */
b352bc1c 598 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
79bf2bb3 599 td = &per_cpu(tick_cpu_device, cpu);
d2348fb6 600 if (td->evtdev->next_event.tv64 <= now.tv64) {
b352bc1c 601 cpumask_set_cpu(cpu, tmpmask);
26517f3e
TG
602 /*
603 * Mark the remote cpu in the pending mask, so
604 * it can avoid reprogramming the cpu local
605 * timer in tick_broadcast_oneshot_control().
606 */
607 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
d2348fb6 608 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
cdc6f27d 609 next_event.tv64 = td->evtdev->next_event.tv64;
d2348fb6
DL
610 next_cpu = cpu;
611 }
79bf2bb3
TG
612 }
613
2938d275
TG
614 /*
615 * Remove the current cpu from the pending mask. The event is
616 * delivered immediately in tick_do_broadcast() !
617 */
618 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
619
989dcb64
TG
620 /* Take care of enforced broadcast requests */
621 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
622 cpumask_clear(tick_broadcast_force_mask);
623
c9b5a266
TG
624 /*
625 * Sanity check. Catch the case where we try to broadcast to
626 * offline cpus.
627 */
628 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
629 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
630
79bf2bb3 631 /*
cdc6f27d
TG
632 * Wakeup the cpus which have an expired event.
633 */
b352bc1c 634 tick_do_broadcast(tmpmask);
cdc6f27d
TG
635
636 /*
637 * Two reasons for reprogram:
638 *
639 * - The global event did not expire any CPU local
640 * events. This happens in dyntick mode, as the maximum PIT
641 * delta is quite small.
642 *
643 * - There are pending events on sleeping CPUs which were not
644 * in the event mask
79bf2bb3 645 */
cdc6f27d 646 if (next_event.tv64 != KTIME_MAX) {
79bf2bb3 647 /*
cdc6f27d
TG
648 * Rearm the broadcast device. If event expired,
649 * repeat the above
79bf2bb3 650 */
d2348fb6 651 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
79bf2bb3
TG
652 goto again;
653 }
b5f91da0 654 raw_spin_unlock(&tick_broadcast_lock);
79bf2bb3
TG
655}
656
5d1638ac
PM
657static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
658{
659 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
660 return 0;
661 if (bc->next_event.tv64 == KTIME_MAX)
662 return 0;
663 return bc->bound_on == cpu ? -EBUSY : 0;
664}
665
666static void broadcast_shutdown_local(struct clock_event_device *bc,
667 struct clock_event_device *dev)
668{
669 /*
670 * For hrtimer based broadcasting we cannot shutdown the cpu
671 * local device if our own event is the first one to expire or
672 * if we own the broadcast timer.
673 */
674 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
675 if (broadcast_needs_cpu(bc, smp_processor_id()))
676 return;
677 if (dev->next_event.tv64 < bc->next_event.tv64)
678 return;
679 }
77e32c89 680 clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
5d1638ac
PM
681}
682
345527b1 683void hotplug_cpu__broadcast_tick_pull(int deadcpu)
5d1638ac 684{
345527b1
PM
685 struct clock_event_device *bc;
686 unsigned long flags;
5d1638ac 687
345527b1
PM
688 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
689 bc = tick_broadcast_device.evtdev;
690
691 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
692 /* This moves the broadcast assignment to this CPU: */
693 clockevents_program_event(bc, bc->next_event, 1);
694 }
695 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
5d1638ac
PM
696}
697
79bf2bb3
TG
698/*
699 * Powerstate information: The system enters/leaves a state, where
700 * affected devices might stop
da7e6f45 701 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
79bf2bb3 702 */
da7e6f45 703int tick_broadcast_oneshot_control(unsigned long reason)
79bf2bb3
TG
704{
705 struct clock_event_device *bc, *dev;
706 struct tick_device *td;
707 unsigned long flags;
989dcb64 708 ktime_t now;
da7e6f45 709 int cpu, ret = 0;
79bf2bb3 710
79bf2bb3
TG
711 /*
712 * Periodic mode does not care about the enter/exit of power
713 * states
714 */
715 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
5d1638ac 716 return 0;
79bf2bb3 717
7372b0b1
AK
718 /*
719 * We are called with preemtion disabled from the depth of the
720 * idle code, so we can't be moved away.
721 */
79bf2bb3
TG
722 cpu = smp_processor_id();
723 td = &per_cpu(tick_cpu_device, cpu);
724 dev = td->evtdev;
725
726 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
5d1638ac 727 return 0;
7372b0b1
AK
728
729 bc = tick_broadcast_device.evtdev;
79bf2bb3 730
7372b0b1 731 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
79bf2bb3 732 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
b352bc1c 733 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
2938d275 734 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
5d1638ac 735 broadcast_shutdown_local(bc, dev);
989dcb64
TG
736 /*
737 * We only reprogram the broadcast timer if we
738 * did not mark ourself in the force mask and
739 * if the cpu local event is earlier than the
740 * broadcast event. If the current CPU is in
741 * the force mask, then we are going to be
742 * woken by the IPI right away.
743 */
744 if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
745 dev->next_event.tv64 < bc->next_event.tv64)
d2348fb6 746 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
79bf2bb3 747 }
5d1638ac
PM
748 /*
749 * If the current CPU owns the hrtimer broadcast
750 * mechanism, it cannot go deep idle and we remove the
751 * CPU from the broadcast mask. We don't have to go
752 * through the EXIT path as the local timer is not
753 * shutdown.
754 */
755 ret = broadcast_needs_cpu(bc, cpu);
756 if (ret)
757 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
79bf2bb3 758 } else {
b352bc1c 759 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
77e32c89 760 clockevents_set_state(dev, CLOCK_EVT_STATE_ONESHOT);
26517f3e
TG
761 /*
762 * The cpu which was handling the broadcast
763 * timer marked this cpu in the broadcast
764 * pending mask and fired the broadcast
765 * IPI. So we are going to handle the expired
766 * event anyway via the broadcast IPI
767 * handler. No need to reprogram the timer
768 * with an already expired event.
769 */
770 if (cpumask_test_and_clear_cpu(cpu,
771 tick_broadcast_pending_mask))
772 goto out;
773
ea8deb8d
DL
774 /*
775 * Bail out if there is no next event.
776 */
777 if (dev->next_event.tv64 == KTIME_MAX)
778 goto out;
989dcb64
TG
779 /*
780 * If the pending bit is not set, then we are
781 * either the CPU handling the broadcast
782 * interrupt or we got woken by something else.
783 *
784 * We are not longer in the broadcast mask, so
785 * if the cpu local expiry time is already
786 * reached, we would reprogram the cpu local
787 * timer with an already expired event.
788 *
789 * This can lead to a ping-pong when we return
790 * to idle and therefor rearm the broadcast
791 * timer before the cpu local timer was able
792 * to fire. This happens because the forced
793 * reprogramming makes sure that the event
794 * will happen in the future and depending on
795 * the min_delta setting this might be far
796 * enough out that the ping-pong starts.
797 *
798 * If the cpu local next_event has expired
799 * then we know that the broadcast timer
800 * next_event has expired as well and
801 * broadcast is about to be handled. So we
802 * avoid reprogramming and enforce that the
803 * broadcast handler, which did not run yet,
804 * will invoke the cpu local handler.
805 *
806 * We cannot call the handler directly from
807 * here, because we might be in a NOHZ phase
808 * and we did not go through the irq_enter()
809 * nohz fixups.
810 */
811 now = ktime_get();
812 if (dev->next_event.tv64 <= now.tv64) {
813 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
814 goto out;
815 }
816 /*
817 * We got woken by something else. Reprogram
818 * the cpu local timer device.
819 */
26517f3e 820 tick_program_event(dev->next_event, 1);
79bf2bb3
TG
821 }
822 }
26517f3e 823out:
b5f91da0 824 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
da7e6f45 825 return ret;
79bf2bb3
TG
826}
827
5590a536
TG
828/*
829 * Reset the one shot broadcast for a cpu
830 *
831 * Called with tick_broadcast_lock held
832 */
833static void tick_broadcast_clear_oneshot(int cpu)
834{
b352bc1c 835 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
dd5fd9b9 836 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
5590a536
TG
837}
838
6b954823
RR
839static void tick_broadcast_init_next_event(struct cpumask *mask,
840 ktime_t expires)
7300711e
TG
841{
842 struct tick_device *td;
843 int cpu;
844
5db0e1e9 845 for_each_cpu(cpu, mask) {
7300711e
TG
846 td = &per_cpu(tick_cpu_device, cpu);
847 if (td->evtdev)
848 td->evtdev->next_event = expires;
849 }
850}
851
79bf2bb3 852/**
8dce39c2 853 * tick_broadcast_setup_oneshot - setup the broadcast device
79bf2bb3
TG
854 */
855void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
856{
07f4beb0
TG
857 int cpu = smp_processor_id();
858
9c17bcda
TG
859 /* Set it up only once ! */
860 if (bc->event_handler != tick_handle_oneshot_broadcast) {
77e32c89 861 int was_periodic = bc->state == CLOCK_EVT_STATE_PERIODIC;
7300711e 862
9c17bcda 863 bc->event_handler = tick_handle_oneshot_broadcast;
7300711e 864
7300711e
TG
865 /*
866 * We must be careful here. There might be other CPUs
867 * waiting for periodic broadcast. We need to set the
868 * oneshot_mask bits for those and program the
869 * broadcast device to fire.
870 */
b352bc1c
TG
871 cpumask_copy(tmpmask, tick_broadcast_mask);
872 cpumask_clear_cpu(cpu, tmpmask);
873 cpumask_or(tick_broadcast_oneshot_mask,
874 tick_broadcast_oneshot_mask, tmpmask);
6b954823 875
b352bc1c 876 if (was_periodic && !cpumask_empty(tmpmask)) {
77e32c89 877 clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
b352bc1c 878 tick_broadcast_init_next_event(tmpmask,
6b954823 879 tick_next_period);
d2348fb6 880 tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
7300711e
TG
881 } else
882 bc->next_event.tv64 = KTIME_MAX;
07f4beb0
TG
883 } else {
884 /*
885 * The first cpu which switches to oneshot mode sets
886 * the bit for all other cpus which are in the general
887 * (periodic) broadcast mask. So the bit is set and
888 * would prevent the first broadcast enter after this
889 * to program the bc device.
890 */
891 tick_broadcast_clear_oneshot(cpu);
9c17bcda 892 }
79bf2bb3
TG
893}
894
895/*
896 * Select oneshot operating mode for the broadcast device
897 */
898void tick_broadcast_switch_to_oneshot(void)
899{
900 struct clock_event_device *bc;
901 unsigned long flags;
902
b5f91da0 903 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
fa4da365
SS
904
905 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
79bf2bb3
TG
906 bc = tick_broadcast_device.evtdev;
907 if (bc)
908 tick_broadcast_setup_oneshot(bc);
77b0d60c 909
b5f91da0 910 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
79bf2bb3
TG
911}
912
913
914/*
915 * Remove a dead CPU from broadcasting
916 */
917void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
918{
79bf2bb3
TG
919 unsigned long flags;
920 unsigned int cpu = *cpup;
921
b5f91da0 922 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
79bf2bb3 923
31d9b393 924 /*
c9b5a266
TG
925 * Clear the broadcast masks for the dead cpu, but do not stop
926 * the broadcast device!
31d9b393 927 */
b352bc1c 928 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
c9b5a266
TG
929 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
930 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
79bf2bb3 931
b5f91da0 932 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
79bf2bb3
TG
933}
934
27ce4cb4
TG
935/*
936 * Check, whether the broadcast device is in one shot mode
937 */
938int tick_broadcast_oneshot_active(void)
939{
940 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
941}
942
3a142a06
TG
943/*
944 * Check whether the broadcast device supports oneshot.
945 */
946bool tick_broadcast_oneshot_available(void)
947{
948 struct clock_event_device *bc = tick_broadcast_device.evtdev;
949
950 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
951}
952
79bf2bb3 953#endif
b352bc1c
TG
954
955void __init tick_broadcast_init(void)
956{
fbd44a60 957 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
07bd1172 958 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
fbd44a60 959 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
b352bc1c 960#ifdef CONFIG_TICK_ONESHOT
fbd44a60
TG
961 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
962 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
963 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
b352bc1c
TG
964#endif
965}
This page took 0.568736 seconds and 5 git commands to generate.