Merge branch 'allocation-fixes' into integration
[deliverable/linux.git] / kernel / time / tick-sched.c
CommitLineData
79bf2bb3
TG
1/*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
b10db7f0 12 * Distribute under GPLv2.
79bf2bb3
TG
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
20#include <linux/profile.h>
21#include <linux/sched.h>
8083e4ad 22#include <linux/module.h>
79bf2bb3 23
9e203bcc
DM
24#include <asm/irq_regs.h>
25
79bf2bb3
TG
26#include "tick-internal.h"
27
28/*
29 * Per cpu nohz control structure
30 */
31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33/*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36static ktime_t last_jiffies_update;
37
289f480a
IM
38struct tick_sched *tick_get_tick_sched(int cpu)
39{
40 return &per_cpu(tick_cpu_sched, cpu);
41}
42
79bf2bb3
TG
43/*
44 * Must be called with interrupts disabled !
45 */
46static void tick_do_update_jiffies64(ktime_t now)
47{
48 unsigned long ticks = 0;
49 ktime_t delta;
50
7a14ce1d
IM
51 /*
52 * Do a quick check without holding xtime_lock:
53 */
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
57
79bf2bb3
TG
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
60
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
63
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
67
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
71
72 ticks = ktime_divns(delta, incr);
73
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
76 }
77 do_timer(++ticks);
49d670fb
TG
78
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
79bf2bb3
TG
81 }
82 write_sequnlock(&xtime_lock);
83}
84
85/*
86 * Initialize and return retrieve the jiffies update.
87 */
88static ktime_t tick_init_jiffy_update(void)
89{
90 ktime_t period;
91
92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update;
97 write_sequnlock(&xtime_lock);
98 return period;
99}
100
101/*
102 * NOHZ - aka dynamic tick functionality
103 */
104#ifdef CONFIG_NO_HZ
105/*
106 * NO HZ enabled ?
107 */
108static int tick_nohz_enabled __read_mostly = 1;
109
110/*
111 * Enable / Disable tickless mode
112 */
113static int __init setup_tick_nohz(char *str)
114{
115 if (!strcmp(str, "off"))
116 tick_nohz_enabled = 0;
117 else if (!strcmp(str, "on"))
118 tick_nohz_enabled = 1;
119 else
120 return 0;
121 return 1;
122}
123
124__setup("nohz=", setup_tick_nohz);
125
126/**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
eed3b9cf 136static void tick_nohz_update_jiffies(ktime_t now)
79bf2bb3
TG
137{
138 int cpu = smp_processor_id();
139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 unsigned long flags;
79bf2bb3 141
5df7fa1c 142 ts->idle_waketime = now;
79bf2bb3
TG
143
144 local_irq_save(flags);
145 tick_do_update_jiffies64(now);
146 local_irq_restore(flags);
02ff3755
IM
147
148 touch_softlockup_watchdog();
79bf2bb3
TG
149}
150
595aac48
AV
151/*
152 * Updates the per cpu time idle statistics counters
153 */
8d63bf94 154static void
8c215bd3 155update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
6378ddb5 156{
eed3b9cf 157 ktime_t delta;
6378ddb5 158
595aac48
AV
159 if (ts->idle_active) {
160 delta = ktime_sub(now, ts->idle_entrytime);
8c215bd3 161 if (nr_iowait_cpu(cpu) > 0)
0224cf4c 162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
6beea0cd
MH
163 else
164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
8c7b09f4 165 ts->idle_entrytime = now;
595aac48 166 }
8d63bf94 167
e0e37c20 168 if (last_update_time)
8d63bf94
AV
169 *last_update_time = ktime_to_us(now);
170
595aac48
AV
171}
172
173static void tick_nohz_stop_idle(int cpu, ktime_t now)
174{
175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176
8c215bd3 177 update_ts_time_stats(cpu, ts, now, NULL);
eed3b9cf 178 ts->idle_active = 0;
56c7426b 179
eed3b9cf 180 sched_clock_idle_wakeup_event(0);
6378ddb5
VP
181}
182
8c215bd3 183static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
6378ddb5 184{
595aac48 185 ktime_t now;
6378ddb5
VP
186
187 now = ktime_get();
595aac48 188
8c215bd3 189 update_ts_time_stats(cpu, ts, now, NULL);
595aac48 190
6378ddb5
VP
191 ts->idle_entrytime = now;
192 ts->idle_active = 1;
56c7426b 193 sched_clock_idle_sleep_event();
6378ddb5
VP
194 return now;
195}
196
b1f724c3
AV
197/**
198 * get_cpu_idle_time_us - get the total idle time of a cpu
199 * @cpu: CPU number to query
09a1d34f
MH
200 * @last_update_time: variable to store update time in. Do not update
201 * counters if NULL.
b1f724c3
AV
202 *
203 * Return the cummulative idle time (since boot) for a given
6beea0cd 204 * CPU, in microseconds.
b1f724c3
AV
205 *
206 * This time is measured via accounting rather than sampling,
207 * and is as accurate as ktime_get() is.
208 *
209 * This function returns -1 if NOHZ is not enabled.
210 */
6378ddb5
VP
211u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
212{
213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 214 ktime_t now, idle;
6378ddb5 215
8083e4ad 216 if (!tick_nohz_enabled)
217 return -1;
218
09a1d34f
MH
219 now = ktime_get();
220 if (last_update_time) {
221 update_ts_time_stats(cpu, ts, now, last_update_time);
222 idle = ts->idle_sleeptime;
223 } else {
224 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
225 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
226
227 idle = ktime_add(ts->idle_sleeptime, delta);
228 } else {
229 idle = ts->idle_sleeptime;
230 }
231 }
232
233 return ktime_to_us(idle);
8083e4ad 234
6378ddb5 235}
8083e4ad 236EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
6378ddb5 237
6beea0cd 238/**
0224cf4c
AV
239 * get_cpu_iowait_time_us - get the total iowait time of a cpu
240 * @cpu: CPU number to query
09a1d34f
MH
241 * @last_update_time: variable to store update time in. Do not update
242 * counters if NULL.
0224cf4c
AV
243 *
244 * Return the cummulative iowait time (since boot) for a given
245 * CPU, in microseconds.
246 *
247 * This time is measured via accounting rather than sampling,
248 * and is as accurate as ktime_get() is.
249 *
250 * This function returns -1 if NOHZ is not enabled.
251 */
252u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
253{
254 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 255 ktime_t now, iowait;
0224cf4c
AV
256
257 if (!tick_nohz_enabled)
258 return -1;
259
09a1d34f
MH
260 now = ktime_get();
261 if (last_update_time) {
262 update_ts_time_stats(cpu, ts, now, last_update_time);
263 iowait = ts->iowait_sleeptime;
264 } else {
265 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
266 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
0224cf4c 267
09a1d34f
MH
268 iowait = ktime_add(ts->iowait_sleeptime, delta);
269 } else {
270 iowait = ts->iowait_sleeptime;
271 }
272 }
0224cf4c 273
09a1d34f 274 return ktime_to_us(iowait);
0224cf4c
AV
275}
276EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
277
79bf2bb3
TG
278/**
279 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
280 *
281 * When the next event is more than a tick into the future, stop the idle tick
282 * Called either from the idle loop or from irq_exit() when an idle period was
283 * just interrupted by an interrupt which did not cause a reschedule.
284 */
b8f8c3cf 285void tick_nohz_stop_sched_tick(int inidle)
79bf2bb3
TG
286{
287 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
288 struct tick_sched *ts;
6378ddb5 289 ktime_t last_update, expires, now;
4f86d3a8 290 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
98962465 291 u64 time_delta;
79bf2bb3
TG
292 int cpu;
293
294 local_irq_save(flags);
295
296 cpu = smp_processor_id();
297 ts = &per_cpu(tick_cpu_sched, cpu);
f2e21c96
EN
298
299 /*
300 * Call to tick_nohz_start_idle stops the last_update_time from being
301 * updated. Thus, it must not be called in the event we are called from
302 * irq_exit() with the prior state different than idle.
303 */
304 if (!inidle && !ts->inidle)
305 goto end;
306
fdc6f192
EN
307 /*
308 * Set ts->inidle unconditionally. Even if the system did not
309 * switch to NOHZ mode the cpu frequency governers rely on the
310 * update of the idle time accounting in tick_nohz_start_idle().
311 */
312 ts->inidle = 1;
313
8c215bd3 314 now = tick_nohz_start_idle(cpu, ts);
79bf2bb3 315
5e41d0d6
TG
316 /*
317 * If this cpu is offline and it is the one which updates
318 * jiffies, then give up the assignment and let it be taken by
319 * the cpu which runs the tick timer next. If we don't drop
320 * this here the jiffies might be stale and do_timer() never
321 * invoked.
322 */
323 if (unlikely(!cpu_online(cpu))) {
324 if (cpu == tick_do_timer_cpu)
6441402b 325 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
5e41d0d6
TG
326 }
327
79bf2bb3
TG
328 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
329 goto end;
330
331 if (need_resched())
332 goto end;
333
fa116ea3 334 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
35282316
TG
335 static int ratelimit;
336
337 if (ratelimit < 10) {
338 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
529eaccd 339 (unsigned int) local_softirq_pending());
35282316
TG
340 ratelimit++;
341 }
857f3fd7 342 goto end;
35282316 343 }
79bf2bb3 344
79bf2bb3 345 ts->idle_calls++;
79bf2bb3
TG
346 /* Read jiffies and the time when jiffies were updated last */
347 do {
348 seq = read_seqbegin(&xtime_lock);
349 last_update = last_jiffies_update;
350 last_jiffies = jiffies;
27185016 351 time_delta = timekeeping_max_deferment();
79bf2bb3
TG
352 } while (read_seqretry(&xtime_lock, seq));
353
3c5d92a0 354 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
396e894d 355 arch_needs_cpu(cpu)) {
3c5d92a0 356 next_jiffies = last_jiffies + 1;
6ba9b346 357 delta_jiffies = 1;
3c5d92a0
MS
358 } else {
359 /* Get the next timer wheel timer */
360 next_jiffies = get_next_timer_interrupt(last_jiffies);
361 delta_jiffies = next_jiffies - last_jiffies;
362 }
79bf2bb3
TG
363 /*
364 * Do not stop the tick, if we are only one off
365 * or if the cpu is required for rcu
366 */
6ba9b346 367 if (!ts->tick_stopped && delta_jiffies == 1)
79bf2bb3
TG
368 goto out;
369
370 /* Schedule the tick, if we are at least one jiffie off */
371 if ((long)delta_jiffies >= 1) {
372
00147449
WR
373 /*
374 * If this cpu is the one which updates jiffies, then
375 * give up the assignment and let it be taken by the
376 * cpu which runs the tick timer next, which might be
377 * this cpu as well. If we don't drop this here the
378 * jiffies might be stale and do_timer() never
27185016
TG
379 * invoked. Keep track of the fact that it was the one
380 * which had the do_timer() duty last. If this cpu is
381 * the one which had the do_timer() duty last, we
382 * limit the sleep time to the timekeeping
383 * max_deferement value which we retrieved
384 * above. Otherwise we can sleep as long as we want.
00147449 385 */
27185016 386 if (cpu == tick_do_timer_cpu) {
00147449 387 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
27185016
TG
388 ts->do_timer_last = 1;
389 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
390 time_delta = KTIME_MAX;
391 ts->do_timer_last = 0;
392 } else if (!ts->do_timer_last) {
393 time_delta = KTIME_MAX;
394 }
395
00147449 396 /*
98962465
JH
397 * calculate the expiry time for the next timer wheel
398 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
399 * that there is no timer pending or at least extremely
400 * far into the future (12 days for HZ=1000). In this
401 * case we set the expiry to the end of time.
402 */
403 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
404 /*
405 * Calculate the time delta for the next timer event.
406 * If the time delta exceeds the maximum time delta
407 * permitted by the current clocksource then adjust
408 * the time delta accordingly to ensure the
409 * clocksource does not wrap.
410 */
411 time_delta = min_t(u64, time_delta,
412 tick_period.tv64 * delta_jiffies);
98962465 413 }
00147449 414
27185016
TG
415 if (time_delta < KTIME_MAX)
416 expires = ktime_add_ns(last_update, time_delta);
417 else
418 expires.tv64 = KTIME_MAX;
00147449 419
00147449
WR
420 /* Skip reprogram of event if its not changed */
421 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
422 goto out;
423
79bf2bb3
TG
424 /*
425 * nohz_stop_sched_tick can be called several times before
426 * the nohz_restart_sched_tick is called. This happens when
427 * interrupts arrive which do not cause a reschedule. In the
428 * first call we save the current tick time, so we can restart
429 * the scheduler tick in nohz_restart_sched_tick.
430 */
431 if (!ts->tick_stopped) {
83cd4fe2 432 select_nohz_load_balancer(1);
46cb4b7c 433
cc584b21 434 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
79bf2bb3
TG
435 ts->tick_stopped = 1;
436 ts->idle_jiffies = last_jiffies;
2232c2d8 437 rcu_enter_nohz();
79bf2bb3 438 }
d3ed7824 439
eaad084b
TG
440 ts->idle_sleeps++;
441
98962465
JH
442 /* Mark expires */
443 ts->idle_expires = expires;
444
eaad084b 445 /*
98962465
JH
446 * If the expiration time == KTIME_MAX, then
447 * in this case we simply stop the tick timer.
eaad084b 448 */
98962465 449 if (unlikely(expires.tv64 == KTIME_MAX)) {
eaad084b
TG
450 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
451 hrtimer_cancel(&ts->sched_timer);
452 goto out;
453 }
454
79bf2bb3
TG
455 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
456 hrtimer_start(&ts->sched_timer, expires,
5c333864 457 HRTIMER_MODE_ABS_PINNED);
79bf2bb3
TG
458 /* Check, if the timer was already in the past */
459 if (hrtimer_active(&ts->sched_timer))
460 goto out;
4c9dc641 461 } else if (!tick_program_event(expires, 0))
79bf2bb3
TG
462 goto out;
463 /*
464 * We are past the event already. So we crossed a
465 * jiffie boundary. Update jiffies and raise the
466 * softirq.
467 */
468 tick_do_update_jiffies64(ktime_get());
79bf2bb3
TG
469 }
470 raise_softirq_irqoff(TIMER_SOFTIRQ);
471out:
472 ts->next_jiffies = next_jiffies;
473 ts->last_jiffies = last_jiffies;
4f86d3a8 474 ts->sleep_length = ktime_sub(dev->next_event, now);
79bf2bb3
TG
475end:
476 local_irq_restore(flags);
477}
478
4f86d3a8
LB
479/**
480 * tick_nohz_get_sleep_length - return the length of the current sleep
481 *
482 * Called from power state control code with interrupts disabled
483 */
484ktime_t tick_nohz_get_sleep_length(void)
485{
486 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
487
488 return ts->sleep_length;
489}
490
c34bec5a
TG
491static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
492{
493 hrtimer_cancel(&ts->sched_timer);
268a3dcf 494 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
c34bec5a
TG
495
496 while (1) {
497 /* Forward the time to expire in the future */
498 hrtimer_forward(&ts->sched_timer, now, tick_period);
499
500 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
268a3dcf 501 hrtimer_start_expires(&ts->sched_timer,
5c333864 502 HRTIMER_MODE_ABS_PINNED);
c34bec5a
TG
503 /* Check, if the timer was already in the past */
504 if (hrtimer_active(&ts->sched_timer))
505 break;
506 } else {
268a3dcf
TG
507 if (!tick_program_event(
508 hrtimer_get_expires(&ts->sched_timer), 0))
c34bec5a
TG
509 break;
510 }
511 /* Update jiffies and reread time */
512 tick_do_update_jiffies64(now);
513 now = ktime_get();
514 }
515}
516
79bf2bb3 517/**
8dce39c2 518 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
79bf2bb3
TG
519 *
520 * Restart the idle tick when the CPU is woken up from idle
521 */
522void tick_nohz_restart_sched_tick(void)
523{
524 int cpu = smp_processor_id();
525 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
79741dd3 526#ifndef CONFIG_VIRT_CPU_ACCOUNTING
79bf2bb3 527 unsigned long ticks;
79741dd3 528#endif
6378ddb5 529 ktime_t now;
79bf2bb3 530
6378ddb5 531 local_irq_disable();
eed3b9cf
MS
532 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
533 now = ktime_get();
534
535 if (ts->idle_active)
536 tick_nohz_stop_idle(cpu, now);
6378ddb5 537
b8f8c3cf
TG
538 if (!ts->inidle || !ts->tick_stopped) {
539 ts->inidle = 0;
6378ddb5 540 local_irq_enable();
79bf2bb3 541 return;
6378ddb5 542 }
79bf2bb3 543
b8f8c3cf
TG
544 ts->inidle = 0;
545
2232c2d8
SR
546 rcu_exit_nohz();
547
79bf2bb3 548 /* Update jiffies first */
46cb4b7c 549 select_nohz_load_balancer(0);
79bf2bb3 550 tick_do_update_jiffies64(now);
79bf2bb3 551
79741dd3 552#ifndef CONFIG_VIRT_CPU_ACCOUNTING
79bf2bb3
TG
553 /*
554 * We stopped the tick in idle. Update process times would miss the
555 * time we slept as update_process_times does only a 1 tick
556 * accounting. Enforce that this is accounted to idle !
557 */
558 ticks = jiffies - ts->idle_jiffies;
559 /*
560 * We might be one off. Do not randomly account a huge number of ticks!
561 */
79741dd3
MS
562 if (ticks && ticks < LONG_MAX)
563 account_idle_ticks(ticks);
564#endif
79bf2bb3 565
126e01bf 566 touch_softlockup_watchdog();
79bf2bb3
TG
567 /*
568 * Cancel the scheduled timer and restore the tick
569 */
570 ts->tick_stopped = 0;
5df7fa1c 571 ts->idle_exittime = now;
79bf2bb3 572
c34bec5a 573 tick_nohz_restart(ts, now);
79bf2bb3 574
79bf2bb3
TG
575 local_irq_enable();
576}
577
578static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
579{
580 hrtimer_forward(&ts->sched_timer, now, tick_period);
cc584b21 581 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
79bf2bb3
TG
582}
583
584/*
585 * The nohz low res interrupt handler
586 */
587static void tick_nohz_handler(struct clock_event_device *dev)
588{
589 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
590 struct pt_regs *regs = get_irq_regs();
d3ed7824 591 int cpu = smp_processor_id();
79bf2bb3
TG
592 ktime_t now = ktime_get();
593
594 dev->next_event.tv64 = KTIME_MAX;
595
d3ed7824
TG
596 /*
597 * Check if the do_timer duty was dropped. We don't care about
598 * concurrency: This happens only when the cpu in charge went
599 * into a long sleep. If two cpus happen to assign themself to
600 * this duty, then the jiffies update is still serialized by
601 * xtime_lock.
602 */
6441402b 603 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
d3ed7824
TG
604 tick_do_timer_cpu = cpu;
605
79bf2bb3 606 /* Check, if the jiffies need an update */
d3ed7824
TG
607 if (tick_do_timer_cpu == cpu)
608 tick_do_update_jiffies64(now);
79bf2bb3
TG
609
610 /*
611 * When we are idle and the tick is stopped, we have to touch
612 * the watchdog as we might not schedule for a really long
613 * time. This happens on complete idle SMP systems while
614 * waiting on the login prompt. We also increment the "start
615 * of idle" jiffy stamp so the idle accounting adjustment we
616 * do when we go busy again does not account too much ticks.
617 */
618 if (ts->tick_stopped) {
619 touch_softlockup_watchdog();
620 ts->idle_jiffies++;
621 }
622
623 update_process_times(user_mode(regs));
624 profile_tick(CPU_PROFILING);
625
79bf2bb3
TG
626 while (tick_nohz_reprogram(ts, now)) {
627 now = ktime_get();
628 tick_do_update_jiffies64(now);
629 }
630}
631
632/**
633 * tick_nohz_switch_to_nohz - switch to nohz mode
634 */
635static void tick_nohz_switch_to_nohz(void)
636{
637 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
638 ktime_t next;
639
640 if (!tick_nohz_enabled)
641 return;
642
643 local_irq_disable();
644 if (tick_switch_to_oneshot(tick_nohz_handler)) {
645 local_irq_enable();
646 return;
647 }
648
649 ts->nohz_mode = NOHZ_MODE_LOWRES;
650
651 /*
652 * Recycle the hrtimer in ts, so we can share the
653 * hrtimer_forward with the highres code.
654 */
655 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
656 /* Get the next period */
657 next = tick_init_jiffy_update();
658
659 for (;;) {
cc584b21 660 hrtimer_set_expires(&ts->sched_timer, next);
79bf2bb3
TG
661 if (!tick_program_event(next, 0))
662 break;
663 next = ktime_add(next, tick_period);
664 }
665 local_irq_enable();
79bf2bb3
TG
666}
667
fb02fbc1
TG
668/*
669 * When NOHZ is enabled and the tick is stopped, we need to kick the
670 * tick timer from irq_enter() so that the jiffies update is kept
671 * alive during long running softirqs. That's ugly as hell, but
672 * correctness is key even if we need to fix the offending softirq in
673 * the first place.
674 *
675 * Note, this is different to tick_nohz_restart. We just kick the
676 * timer and do not touch the other magic bits which need to be done
677 * when idle is left.
678 */
eed3b9cf 679static void tick_nohz_kick_tick(int cpu, ktime_t now)
fb02fbc1 680{
ae99286b
TG
681#if 0
682 /* Switch back to 2.6.27 behaviour */
683
fb02fbc1 684 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
eed3b9cf 685 ktime_t delta;
fb02fbc1 686
c4bd822e
TG
687 /*
688 * Do not touch the tick device, when the next expiry is either
689 * already reached or less/equal than the tick period.
690 */
268a3dcf 691 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
c4bd822e
TG
692 if (delta.tv64 <= tick_period.tv64)
693 return;
694
695 tick_nohz_restart(ts, now);
ae99286b 696#endif
fb02fbc1
TG
697}
698
eed3b9cf
MS
699static inline void tick_check_nohz(int cpu)
700{
701 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
702 ktime_t now;
703
704 if (!ts->idle_active && !ts->tick_stopped)
705 return;
706 now = ktime_get();
707 if (ts->idle_active)
708 tick_nohz_stop_idle(cpu, now);
709 if (ts->tick_stopped) {
710 tick_nohz_update_jiffies(now);
711 tick_nohz_kick_tick(cpu, now);
712 }
713}
714
79bf2bb3
TG
715#else
716
717static inline void tick_nohz_switch_to_nohz(void) { }
eed3b9cf 718static inline void tick_check_nohz(int cpu) { }
79bf2bb3
TG
719
720#endif /* NO_HZ */
721
719254fa
TG
722/*
723 * Called from irq_enter to notify about the possible interruption of idle()
724 */
725void tick_check_idle(int cpu)
726{
fb02fbc1 727 tick_check_oneshot_broadcast(cpu);
eed3b9cf 728 tick_check_nohz(cpu);
719254fa
TG
729}
730
79bf2bb3
TG
731/*
732 * High resolution timer specific code
733 */
734#ifdef CONFIG_HIGH_RES_TIMERS
735/*
4c9dc641 736 * We rearm the timer until we get disabled by the idle code.
79bf2bb3
TG
737 * Called with interrupts disabled and timer->base->cpu_base->lock held.
738 */
739static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
740{
741 struct tick_sched *ts =
742 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
743 struct pt_regs *regs = get_irq_regs();
744 ktime_t now = ktime_get();
d3ed7824
TG
745 int cpu = smp_processor_id();
746
747#ifdef CONFIG_NO_HZ
748 /*
749 * Check if the do_timer duty was dropped. We don't care about
750 * concurrency: This happens only when the cpu in charge went
751 * into a long sleep. If two cpus happen to assign themself to
752 * this duty, then the jiffies update is still serialized by
753 * xtime_lock.
754 */
6441402b 755 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
d3ed7824
TG
756 tick_do_timer_cpu = cpu;
757#endif
79bf2bb3
TG
758
759 /* Check, if the jiffies need an update */
d3ed7824
TG
760 if (tick_do_timer_cpu == cpu)
761 tick_do_update_jiffies64(now);
79bf2bb3
TG
762
763 /*
764 * Do not call, when we are not in irq context and have
765 * no valid regs pointer
766 */
767 if (regs) {
768 /*
769 * When we are idle and the tick is stopped, we have to touch
770 * the watchdog as we might not schedule for a really long
771 * time. This happens on complete idle SMP systems while
772 * waiting on the login prompt. We also increment the "start of
773 * idle" jiffy stamp so the idle accounting adjustment we do
774 * when we go busy again does not account too much ticks.
775 */
776 if (ts->tick_stopped) {
777 touch_softlockup_watchdog();
778 ts->idle_jiffies++;
779 }
79bf2bb3
TG
780 update_process_times(user_mode(regs));
781 profile_tick(CPU_PROFILING);
79bf2bb3
TG
782 }
783
79bf2bb3
TG
784 hrtimer_forward(timer, now, tick_period);
785
786 return HRTIMER_RESTART;
787}
788
789/**
790 * tick_setup_sched_timer - setup the tick emulation timer
791 */
792void tick_setup_sched_timer(void)
793{
794 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
795 ktime_t now = ktime_get();
796
797 /*
798 * Emulate tick processing via per-CPU hrtimers:
799 */
800 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
801 ts->sched_timer.function = tick_sched_timer;
79bf2bb3 802
3704540b 803 /* Get the next period (per cpu) */
cc584b21 804 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
79bf2bb3
TG
805
806 for (;;) {
807 hrtimer_forward(&ts->sched_timer, now, tick_period);
5c333864
AB
808 hrtimer_start_expires(&ts->sched_timer,
809 HRTIMER_MODE_ABS_PINNED);
79bf2bb3
TG
810 /* Check, if the timer was already in the past */
811 if (hrtimer_active(&ts->sched_timer))
812 break;
813 now = ktime_get();
814 }
815
816#ifdef CONFIG_NO_HZ
29c158e8 817 if (tick_nohz_enabled)
79bf2bb3
TG
818 ts->nohz_mode = NOHZ_MODE_HIGHRES;
819#endif
820}
3c4fbe5e 821#endif /* HIGH_RES_TIMERS */
79bf2bb3 822
3c4fbe5e 823#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
824void tick_cancel_sched_timer(int cpu)
825{
826 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
827
3c4fbe5e 828# ifdef CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
829 if (ts->sched_timer.base)
830 hrtimer_cancel(&ts->sched_timer);
3c4fbe5e 831# endif
a7901766 832
79bf2bb3
TG
833 ts->nohz_mode = NOHZ_MODE_INACTIVE;
834}
3c4fbe5e 835#endif
79bf2bb3
TG
836
837/**
838 * Async notification about clocksource changes
839 */
840void tick_clock_notify(void)
841{
842 int cpu;
843
844 for_each_possible_cpu(cpu)
845 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
846}
847
848/*
849 * Async notification about clock event changes
850 */
851void tick_oneshot_notify(void)
852{
853 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
854
855 set_bit(0, &ts->check_clocks);
856}
857
858/**
859 * Check, if a change happened, which makes oneshot possible.
860 *
861 * Called cyclic from the hrtimer softirq (driven by the timer
862 * softirq) allow_nohz signals, that we can switch into low-res nohz
863 * mode, because high resolution timers are disabled (either compile
864 * or runtime).
865 */
866int tick_check_oneshot_change(int allow_nohz)
867{
868 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
869
870 if (!test_and_clear_bit(0, &ts->check_clocks))
871 return 0;
872
873 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
874 return 0;
875
cf4fc6cb 876 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
877 return 0;
878
879 if (!allow_nohz)
880 return 1;
881
882 tick_nohz_switch_to_nohz();
883 return 0;
884}
This page took 0.451866 seconds and 5 git commands to generate.