tick: Consolidate timekeeping handling code
[deliverable/linux.git] / kernel / time / tick-sched.c
CommitLineData
79bf2bb3
TG
1/*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
b10db7f0 12 * Distribute under GPLv2.
79bf2bb3
TG
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
20#include <linux/profile.h>
21#include <linux/sched.h>
8083e4ad 22#include <linux/module.h>
79bf2bb3 23
9e203bcc
DM
24#include <asm/irq_regs.h>
25
79bf2bb3
TG
26#include "tick-internal.h"
27
28/*
29 * Per cpu nohz control structure
30 */
31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33/*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36static ktime_t last_jiffies_update;
37
289f480a
IM
38struct tick_sched *tick_get_tick_sched(int cpu)
39{
40 return &per_cpu(tick_cpu_sched, cpu);
41}
42
79bf2bb3
TG
43/*
44 * Must be called with interrupts disabled !
45 */
46static void tick_do_update_jiffies64(ktime_t now)
47{
48 unsigned long ticks = 0;
49 ktime_t delta;
50
7a14ce1d
IM
51 /*
52 * Do a quick check without holding xtime_lock:
53 */
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
57
79bf2bb3
TG
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
60
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
63
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
67
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
71
72 ticks = ktime_divns(delta, incr);
73
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
76 }
77 do_timer(++ticks);
49d670fb
TG
78
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
79bf2bb3
TG
81 }
82 write_sequnlock(&xtime_lock);
83}
84
85/*
86 * Initialize and return retrieve the jiffies update.
87 */
88static ktime_t tick_init_jiffy_update(void)
89{
90 ktime_t period;
91
92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update;
97 write_sequnlock(&xtime_lock);
98 return period;
99}
100
5bb96226
FW
101
102static void tick_sched_do_timer(ktime_t now)
103{
104 int cpu = smp_processor_id();
105
106#ifdef CONFIG_NO_HZ
107 /*
108 * Check if the do_timer duty was dropped. We don't care about
109 * concurrency: This happens only when the cpu in charge went
110 * into a long sleep. If two cpus happen to assign themself to
111 * this duty, then the jiffies update is still serialized by
112 * xtime_lock.
113 */
114 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
115 tick_do_timer_cpu = cpu;
116#endif
117
118 /* Check, if the jiffies need an update */
119 if (tick_do_timer_cpu == cpu)
120 tick_do_update_jiffies64(now);
121}
122
79bf2bb3
TG
123/*
124 * NOHZ - aka dynamic tick functionality
125 */
126#ifdef CONFIG_NO_HZ
127/*
128 * NO HZ enabled ?
129 */
9d2ad243 130int tick_nohz_enabled __read_mostly = 1;
79bf2bb3
TG
131
132/*
133 * Enable / Disable tickless mode
134 */
135static int __init setup_tick_nohz(char *str)
136{
137 if (!strcmp(str, "off"))
138 tick_nohz_enabled = 0;
139 else if (!strcmp(str, "on"))
140 tick_nohz_enabled = 1;
141 else
142 return 0;
143 return 1;
144}
145
146__setup("nohz=", setup_tick_nohz);
147
148/**
149 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
150 *
151 * Called from interrupt entry when the CPU was idle
152 *
153 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
154 * must be updated. Otherwise an interrupt handler could use a stale jiffy
155 * value. We do this unconditionally on any cpu, as we don't know whether the
156 * cpu, which has the update task assigned is in a long sleep.
157 */
eed3b9cf 158static void tick_nohz_update_jiffies(ktime_t now)
79bf2bb3
TG
159{
160 int cpu = smp_processor_id();
161 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
162 unsigned long flags;
79bf2bb3 163
5df7fa1c 164 ts->idle_waketime = now;
79bf2bb3
TG
165
166 local_irq_save(flags);
167 tick_do_update_jiffies64(now);
168 local_irq_restore(flags);
02ff3755
IM
169
170 touch_softlockup_watchdog();
79bf2bb3
TG
171}
172
595aac48
AV
173/*
174 * Updates the per cpu time idle statistics counters
175 */
8d63bf94 176static void
8c215bd3 177update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
6378ddb5 178{
eed3b9cf 179 ktime_t delta;
6378ddb5 180
595aac48
AV
181 if (ts->idle_active) {
182 delta = ktime_sub(now, ts->idle_entrytime);
8c215bd3 183 if (nr_iowait_cpu(cpu) > 0)
0224cf4c 184 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
6beea0cd
MH
185 else
186 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
8c7b09f4 187 ts->idle_entrytime = now;
595aac48 188 }
8d63bf94 189
e0e37c20 190 if (last_update_time)
8d63bf94
AV
191 *last_update_time = ktime_to_us(now);
192
595aac48
AV
193}
194
195static void tick_nohz_stop_idle(int cpu, ktime_t now)
196{
197 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
198
8c215bd3 199 update_ts_time_stats(cpu, ts, now, NULL);
eed3b9cf 200 ts->idle_active = 0;
56c7426b 201
eed3b9cf 202 sched_clock_idle_wakeup_event(0);
6378ddb5
VP
203}
204
8c215bd3 205static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
6378ddb5 206{
430ee881 207 ktime_t now = ktime_get();
595aac48 208
6378ddb5
VP
209 ts->idle_entrytime = now;
210 ts->idle_active = 1;
56c7426b 211 sched_clock_idle_sleep_event();
6378ddb5
VP
212 return now;
213}
214
b1f724c3
AV
215/**
216 * get_cpu_idle_time_us - get the total idle time of a cpu
217 * @cpu: CPU number to query
09a1d34f
MH
218 * @last_update_time: variable to store update time in. Do not update
219 * counters if NULL.
b1f724c3
AV
220 *
221 * Return the cummulative idle time (since boot) for a given
6beea0cd 222 * CPU, in microseconds.
b1f724c3
AV
223 *
224 * This time is measured via accounting rather than sampling,
225 * and is as accurate as ktime_get() is.
226 *
227 * This function returns -1 if NOHZ is not enabled.
228 */
6378ddb5
VP
229u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
230{
231 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 232 ktime_t now, idle;
6378ddb5 233
8083e4ad 234 if (!tick_nohz_enabled)
235 return -1;
236
09a1d34f
MH
237 now = ktime_get();
238 if (last_update_time) {
239 update_ts_time_stats(cpu, ts, now, last_update_time);
240 idle = ts->idle_sleeptime;
241 } else {
242 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
243 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
244
245 idle = ktime_add(ts->idle_sleeptime, delta);
246 } else {
247 idle = ts->idle_sleeptime;
248 }
249 }
250
251 return ktime_to_us(idle);
8083e4ad 252
6378ddb5 253}
8083e4ad 254EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
6378ddb5 255
6beea0cd 256/**
0224cf4c
AV
257 * get_cpu_iowait_time_us - get the total iowait time of a cpu
258 * @cpu: CPU number to query
09a1d34f
MH
259 * @last_update_time: variable to store update time in. Do not update
260 * counters if NULL.
0224cf4c
AV
261 *
262 * Return the cummulative iowait time (since boot) for a given
263 * CPU, in microseconds.
264 *
265 * This time is measured via accounting rather than sampling,
266 * and is as accurate as ktime_get() is.
267 *
268 * This function returns -1 if NOHZ is not enabled.
269 */
270u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
271{
272 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
09a1d34f 273 ktime_t now, iowait;
0224cf4c
AV
274
275 if (!tick_nohz_enabled)
276 return -1;
277
09a1d34f
MH
278 now = ktime_get();
279 if (last_update_time) {
280 update_ts_time_stats(cpu, ts, now, last_update_time);
281 iowait = ts->iowait_sleeptime;
282 } else {
283 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
284 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
0224cf4c 285
09a1d34f
MH
286 iowait = ktime_add(ts->iowait_sleeptime, delta);
287 } else {
288 iowait = ts->iowait_sleeptime;
289 }
290 }
0224cf4c 291
09a1d34f 292 return ktime_to_us(iowait);
0224cf4c
AV
293}
294EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
295
84bf1bcc
FW
296static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
297 ktime_t now, int cpu)
79bf2bb3 298{
280f0677 299 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
84bf1bcc 300 ktime_t last_update, expires, ret = { .tv64 = 0 };
aa9b1630 301 unsigned long rcu_delta_jiffies;
4f86d3a8 302 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
98962465 303 u64 time_delta;
79bf2bb3 304
79bf2bb3
TG
305 /* Read jiffies and the time when jiffies were updated last */
306 do {
307 seq = read_seqbegin(&xtime_lock);
308 last_update = last_jiffies_update;
309 last_jiffies = jiffies;
27185016 310 time_delta = timekeeping_max_deferment();
79bf2bb3
TG
311 } while (read_seqretry(&xtime_lock, seq));
312
aa9b1630 313 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
396e894d 314 arch_needs_cpu(cpu)) {
3c5d92a0 315 next_jiffies = last_jiffies + 1;
6ba9b346 316 delta_jiffies = 1;
3c5d92a0
MS
317 } else {
318 /* Get the next timer wheel timer */
319 next_jiffies = get_next_timer_interrupt(last_jiffies);
320 delta_jiffies = next_jiffies - last_jiffies;
aa9b1630
PM
321 if (rcu_delta_jiffies < delta_jiffies) {
322 next_jiffies = last_jiffies + rcu_delta_jiffies;
323 delta_jiffies = rcu_delta_jiffies;
324 }
3c5d92a0 325 }
79bf2bb3
TG
326 /*
327 * Do not stop the tick, if we are only one off
328 * or if the cpu is required for rcu
329 */
6ba9b346 330 if (!ts->tick_stopped && delta_jiffies == 1)
79bf2bb3
TG
331 goto out;
332
333 /* Schedule the tick, if we are at least one jiffie off */
334 if ((long)delta_jiffies >= 1) {
335
00147449
WR
336 /*
337 * If this cpu is the one which updates jiffies, then
338 * give up the assignment and let it be taken by the
339 * cpu which runs the tick timer next, which might be
340 * this cpu as well. If we don't drop this here the
341 * jiffies might be stale and do_timer() never
27185016
TG
342 * invoked. Keep track of the fact that it was the one
343 * which had the do_timer() duty last. If this cpu is
344 * the one which had the do_timer() duty last, we
345 * limit the sleep time to the timekeeping
346 * max_deferement value which we retrieved
347 * above. Otherwise we can sleep as long as we want.
00147449 348 */
27185016 349 if (cpu == tick_do_timer_cpu) {
00147449 350 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
27185016
TG
351 ts->do_timer_last = 1;
352 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
353 time_delta = KTIME_MAX;
354 ts->do_timer_last = 0;
355 } else if (!ts->do_timer_last) {
356 time_delta = KTIME_MAX;
357 }
358
00147449 359 /*
98962465
JH
360 * calculate the expiry time for the next timer wheel
361 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
362 * that there is no timer pending or at least extremely
363 * far into the future (12 days for HZ=1000). In this
364 * case we set the expiry to the end of time.
365 */
366 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
367 /*
368 * Calculate the time delta for the next timer event.
369 * If the time delta exceeds the maximum time delta
370 * permitted by the current clocksource then adjust
371 * the time delta accordingly to ensure the
372 * clocksource does not wrap.
373 */
374 time_delta = min_t(u64, time_delta,
375 tick_period.tv64 * delta_jiffies);
98962465 376 }
00147449 377
27185016
TG
378 if (time_delta < KTIME_MAX)
379 expires = ktime_add_ns(last_update, time_delta);
380 else
381 expires.tv64 = KTIME_MAX;
00147449 382
00147449
WR
383 /* Skip reprogram of event if its not changed */
384 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
385 goto out;
386
84bf1bcc
FW
387 ret = expires;
388
79bf2bb3
TG
389 /*
390 * nohz_stop_sched_tick can be called several times before
391 * the nohz_restart_sched_tick is called. This happens when
392 * interrupts arrive which do not cause a reschedule. In the
393 * first call we save the current tick time, so we can restart
394 * the scheduler tick in nohz_restart_sched_tick.
395 */
396 if (!ts->tick_stopped) {
c1cc017c 397 nohz_balance_enter_idle(cpu);
5167e8d5 398 calc_load_enter_idle();
46cb4b7c 399
f5d411c9 400 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
79bf2bb3 401 ts->tick_stopped = 1;
79bf2bb3 402 }
d3ed7824 403
eaad084b 404 /*
98962465
JH
405 * If the expiration time == KTIME_MAX, then
406 * in this case we simply stop the tick timer.
eaad084b 407 */
98962465 408 if (unlikely(expires.tv64 == KTIME_MAX)) {
eaad084b
TG
409 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
410 hrtimer_cancel(&ts->sched_timer);
411 goto out;
412 }
413
79bf2bb3
TG
414 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
415 hrtimer_start(&ts->sched_timer, expires,
5c333864 416 HRTIMER_MODE_ABS_PINNED);
79bf2bb3
TG
417 /* Check, if the timer was already in the past */
418 if (hrtimer_active(&ts->sched_timer))
419 goto out;
4c9dc641 420 } else if (!tick_program_event(expires, 0))
79bf2bb3
TG
421 goto out;
422 /*
423 * We are past the event already. So we crossed a
424 * jiffie boundary. Update jiffies and raise the
425 * softirq.
426 */
427 tick_do_update_jiffies64(ktime_get());
79bf2bb3
TG
428 }
429 raise_softirq_irqoff(TIMER_SOFTIRQ);
430out:
431 ts->next_jiffies = next_jiffies;
432 ts->last_jiffies = last_jiffies;
4f86d3a8 433 ts->sleep_length = ktime_sub(dev->next_event, now);
84bf1bcc
FW
434
435 return ret;
280f0677
FW
436}
437
5b39939a
FW
438static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
439{
440 /*
441 * If this cpu is offline and it is the one which updates
442 * jiffies, then give up the assignment and let it be taken by
443 * the cpu which runs the tick timer next. If we don't drop
444 * this here the jiffies might be stale and do_timer() never
445 * invoked.
446 */
447 if (unlikely(!cpu_online(cpu))) {
448 if (cpu == tick_do_timer_cpu)
449 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
450 }
451
452 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
453 return false;
454
455 if (need_resched())
456 return false;
457
458 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
459 static int ratelimit;
460
803b0eba
PM
461 if (ratelimit < 10 &&
462 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
5b39939a
FW
463 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
464 (unsigned int) local_softirq_pending());
465 ratelimit++;
466 }
467 return false;
468 }
469
470 return true;
471}
472
19f5f736
FW
473static void __tick_nohz_idle_enter(struct tick_sched *ts)
474{
84bf1bcc 475 ktime_t now, expires;
5b39939a 476 int cpu = smp_processor_id();
19f5f736 477
5b39939a 478 now = tick_nohz_start_idle(cpu, ts);
2ac0d98f 479
5b39939a
FW
480 if (can_stop_idle_tick(cpu, ts)) {
481 int was_stopped = ts->tick_stopped;
482
483 ts->idle_calls++;
84bf1bcc
FW
484
485 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
486 if (expires.tv64 > 0LL) {
487 ts->idle_sleeps++;
488 ts->idle_expires = expires;
489 }
5b39939a
FW
490
491 if (!was_stopped && ts->tick_stopped)
492 ts->idle_jiffies = ts->last_jiffies;
493 }
280f0677
FW
494}
495
496/**
497 * tick_nohz_idle_enter - stop the idle tick from the idle task
498 *
499 * When the next event is more than a tick into the future, stop the idle tick
500 * Called when we start the idle loop.
2bbb6817 501 *
1268fbc7 502 * The arch is responsible of calling:
2bbb6817
FW
503 *
504 * - rcu_idle_enter() after its last use of RCU before the CPU is put
505 * to sleep.
506 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
280f0677 507 */
1268fbc7 508void tick_nohz_idle_enter(void)
280f0677
FW
509{
510 struct tick_sched *ts;
511
1268fbc7
FW
512 WARN_ON_ONCE(irqs_disabled());
513
0db49b72
LT
514 /*
515 * Update the idle state in the scheduler domain hierarchy
516 * when tick_nohz_stop_sched_tick() is called from the idle loop.
517 * State will be updated to busy during the first busy tick after
518 * exiting idle.
519 */
520 set_cpu_sd_state_idle();
521
1268fbc7
FW
522 local_irq_disable();
523
280f0677
FW
524 ts = &__get_cpu_var(tick_cpu_sched);
525 /*
526 * set ts->inidle unconditionally. even if the system did not
527 * switch to nohz mode the cpu frequency governers rely on the
528 * update of the idle time accounting in tick_nohz_start_idle().
529 */
530 ts->inidle = 1;
19f5f736 531 __tick_nohz_idle_enter(ts);
1268fbc7
FW
532
533 local_irq_enable();
280f0677
FW
534}
535
536/**
537 * tick_nohz_irq_exit - update next tick event from interrupt exit
538 *
539 * When an interrupt fires while we are idle and it doesn't cause
540 * a reschedule, it may still add, modify or delete a timer, enqueue
541 * an RCU callback, etc...
542 * So we need to re-calculate and reprogram the next tick event.
543 */
544void tick_nohz_irq_exit(void)
545{
546 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
547
548 if (!ts->inidle)
549 return;
550
19f5f736 551 __tick_nohz_idle_enter(ts);
79bf2bb3
TG
552}
553
4f86d3a8
LB
554/**
555 * tick_nohz_get_sleep_length - return the length of the current sleep
556 *
557 * Called from power state control code with interrupts disabled
558 */
559ktime_t tick_nohz_get_sleep_length(void)
560{
561 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
562
563 return ts->sleep_length;
564}
565
c34bec5a
TG
566static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
567{
568 hrtimer_cancel(&ts->sched_timer);
f5d411c9 569 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
c34bec5a
TG
570
571 while (1) {
572 /* Forward the time to expire in the future */
573 hrtimer_forward(&ts->sched_timer, now, tick_period);
574
575 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
268a3dcf 576 hrtimer_start_expires(&ts->sched_timer,
5c333864 577 HRTIMER_MODE_ABS_PINNED);
c34bec5a
TG
578 /* Check, if the timer was already in the past */
579 if (hrtimer_active(&ts->sched_timer))
580 break;
581 } else {
268a3dcf
TG
582 if (!tick_program_event(
583 hrtimer_get_expires(&ts->sched_timer), 0))
c34bec5a
TG
584 break;
585 }
6f103929 586 /* Reread time and update jiffies */
c34bec5a 587 now = ktime_get();
6f103929 588 tick_do_update_jiffies64(now);
c34bec5a
TG
589 }
590}
591
19f5f736 592static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
79bf2bb3 593{
79bf2bb3 594 /* Update jiffies first */
79bf2bb3 595 tick_do_update_jiffies64(now);
5aaa0b7a 596 update_cpu_load_nohz();
79bf2bb3 597
749c8814 598 calc_load_exit_idle();
2ac0d98f
FW
599 touch_softlockup_watchdog();
600 /*
601 * Cancel the scheduled timer and restore the tick
602 */
603 ts->tick_stopped = 0;
604 ts->idle_exittime = now;
605
606 tick_nohz_restart(ts, now);
607}
608
609static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
610{
79741dd3 611#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2ac0d98f 612 unsigned long ticks;
79bf2bb3
TG
613 /*
614 * We stopped the tick in idle. Update process times would miss the
615 * time we slept as update_process_times does only a 1 tick
616 * accounting. Enforce that this is accounted to idle !
617 */
618 ticks = jiffies - ts->idle_jiffies;
619 /*
620 * We might be one off. Do not randomly account a huge number of ticks!
621 */
79741dd3
MS
622 if (ticks && ticks < LONG_MAX)
623 account_idle_ticks(ticks);
624#endif
19f5f736
FW
625}
626
79bf2bb3 627/**
280f0677 628 * tick_nohz_idle_exit - restart the idle tick from the idle task
79bf2bb3
TG
629 *
630 * Restart the idle tick when the CPU is woken up from idle
280f0677
FW
631 * This also exit the RCU extended quiescent state. The CPU
632 * can use RCU again after this function is called.
79bf2bb3 633 */
280f0677 634void tick_nohz_idle_exit(void)
79bf2bb3
TG
635{
636 int cpu = smp_processor_id();
637 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
6378ddb5 638 ktime_t now;
79bf2bb3 639
6378ddb5 640 local_irq_disable();
2bbb6817 641
15f827be
FW
642 WARN_ON_ONCE(!ts->inidle);
643
644 ts->inidle = 0;
645
646 if (ts->idle_active || ts->tick_stopped)
eed3b9cf
MS
647 now = ktime_get();
648
649 if (ts->idle_active)
650 tick_nohz_stop_idle(cpu, now);
6378ddb5 651
2ac0d98f 652 if (ts->tick_stopped) {
19f5f736 653 tick_nohz_restart_sched_tick(ts, now);
2ac0d98f 654 tick_nohz_account_idle_ticks(ts);
6378ddb5 655 }
79bf2bb3 656
79bf2bb3
TG
657 local_irq_enable();
658}
659
660static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
661{
662 hrtimer_forward(&ts->sched_timer, now, tick_period);
cc584b21 663 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
79bf2bb3
TG
664}
665
666/*
667 * The nohz low res interrupt handler
668 */
669static void tick_nohz_handler(struct clock_event_device *dev)
670{
671 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
672 struct pt_regs *regs = get_irq_regs();
673 ktime_t now = ktime_get();
674
675 dev->next_event.tv64 = KTIME_MAX;
676
5bb96226 677 tick_sched_do_timer(now);
79bf2bb3
TG
678
679 /*
680 * When we are idle and the tick is stopped, we have to touch
681 * the watchdog as we might not schedule for a really long
682 * time. This happens on complete idle SMP systems while
683 * waiting on the login prompt. We also increment the "start
684 * of idle" jiffy stamp so the idle accounting adjustment we
685 * do when we go busy again does not account too much ticks.
686 */
687 if (ts->tick_stopped) {
688 touch_softlockup_watchdog();
689 ts->idle_jiffies++;
690 }
691
692 update_process_times(user_mode(regs));
693 profile_tick(CPU_PROFILING);
694
79bf2bb3
TG
695 while (tick_nohz_reprogram(ts, now)) {
696 now = ktime_get();
697 tick_do_update_jiffies64(now);
698 }
699}
700
701/**
702 * tick_nohz_switch_to_nohz - switch to nohz mode
703 */
704static void tick_nohz_switch_to_nohz(void)
705{
706 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
707 ktime_t next;
708
709 if (!tick_nohz_enabled)
710 return;
711
712 local_irq_disable();
713 if (tick_switch_to_oneshot(tick_nohz_handler)) {
714 local_irq_enable();
715 return;
716 }
717
718 ts->nohz_mode = NOHZ_MODE_LOWRES;
719
720 /*
721 * Recycle the hrtimer in ts, so we can share the
722 * hrtimer_forward with the highres code.
723 */
724 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
725 /* Get the next period */
726 next = tick_init_jiffy_update();
727
728 for (;;) {
cc584b21 729 hrtimer_set_expires(&ts->sched_timer, next);
79bf2bb3
TG
730 if (!tick_program_event(next, 0))
731 break;
732 next = ktime_add(next, tick_period);
733 }
734 local_irq_enable();
79bf2bb3
TG
735}
736
fb02fbc1
TG
737/*
738 * When NOHZ is enabled and the tick is stopped, we need to kick the
739 * tick timer from irq_enter() so that the jiffies update is kept
740 * alive during long running softirqs. That's ugly as hell, but
741 * correctness is key even if we need to fix the offending softirq in
742 * the first place.
743 *
744 * Note, this is different to tick_nohz_restart. We just kick the
745 * timer and do not touch the other magic bits which need to be done
746 * when idle is left.
747 */
eed3b9cf 748static void tick_nohz_kick_tick(int cpu, ktime_t now)
fb02fbc1 749{
ae99286b
TG
750#if 0
751 /* Switch back to 2.6.27 behaviour */
752
fb02fbc1 753 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
eed3b9cf 754 ktime_t delta;
fb02fbc1 755
c4bd822e
TG
756 /*
757 * Do not touch the tick device, when the next expiry is either
758 * already reached or less/equal than the tick period.
759 */
268a3dcf 760 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
c4bd822e
TG
761 if (delta.tv64 <= tick_period.tv64)
762 return;
763
764 tick_nohz_restart(ts, now);
ae99286b 765#endif
fb02fbc1
TG
766}
767
eed3b9cf
MS
768static inline void tick_check_nohz(int cpu)
769{
770 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
771 ktime_t now;
772
773 if (!ts->idle_active && !ts->tick_stopped)
774 return;
775 now = ktime_get();
776 if (ts->idle_active)
777 tick_nohz_stop_idle(cpu, now);
778 if (ts->tick_stopped) {
779 tick_nohz_update_jiffies(now);
780 tick_nohz_kick_tick(cpu, now);
781 }
782}
783
79bf2bb3
TG
784#else
785
786static inline void tick_nohz_switch_to_nohz(void) { }
eed3b9cf 787static inline void tick_check_nohz(int cpu) { }
79bf2bb3
TG
788
789#endif /* NO_HZ */
790
719254fa
TG
791/*
792 * Called from irq_enter to notify about the possible interruption of idle()
793 */
794void tick_check_idle(int cpu)
795{
fb02fbc1 796 tick_check_oneshot_broadcast(cpu);
eed3b9cf 797 tick_check_nohz(cpu);
719254fa
TG
798}
799
79bf2bb3
TG
800/*
801 * High resolution timer specific code
802 */
803#ifdef CONFIG_HIGH_RES_TIMERS
804/*
4c9dc641 805 * We rearm the timer until we get disabled by the idle code.
79bf2bb3
TG
806 * Called with interrupts disabled and timer->base->cpu_base->lock held.
807 */
808static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
809{
810 struct tick_sched *ts =
811 container_of(timer, struct tick_sched, sched_timer);
79bf2bb3
TG
812 struct pt_regs *regs = get_irq_regs();
813 ktime_t now = ktime_get();
d3ed7824 814
5bb96226 815 tick_sched_do_timer(now);
79bf2bb3
TG
816
817 /*
818 * Do not call, when we are not in irq context and have
819 * no valid regs pointer
820 */
821 if (regs) {
822 /*
823 * When we are idle and the tick is stopped, we have to touch
824 * the watchdog as we might not schedule for a really long
825 * time. This happens on complete idle SMP systems while
826 * waiting on the login prompt. We also increment the "start of
827 * idle" jiffy stamp so the idle accounting adjustment we do
828 * when we go busy again does not account too much ticks.
829 */
830 if (ts->tick_stopped) {
831 touch_softlockup_watchdog();
2b17c545 832 if (is_idle_task(current))
2ac0d98f 833 ts->idle_jiffies++;
79bf2bb3 834 }
79bf2bb3
TG
835 update_process_times(user_mode(regs));
836 profile_tick(CPU_PROFILING);
79bf2bb3
TG
837 }
838
79bf2bb3
TG
839 hrtimer_forward(timer, now, tick_period);
840
841 return HRTIMER_RESTART;
842}
843
5307c955
MG
844static int sched_skew_tick;
845
62cf20b3
TG
846static int __init skew_tick(char *str)
847{
848 get_option(&str, &sched_skew_tick);
849
850 return 0;
851}
852early_param("skew_tick", skew_tick);
853
79bf2bb3
TG
854/**
855 * tick_setup_sched_timer - setup the tick emulation timer
856 */
857void tick_setup_sched_timer(void)
858{
859 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
860 ktime_t now = ktime_get();
861
862 /*
863 * Emulate tick processing via per-CPU hrtimers:
864 */
865 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
866 ts->sched_timer.function = tick_sched_timer;
79bf2bb3 867
3704540b 868 /* Get the next period (per cpu) */
cc584b21 869 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
79bf2bb3 870
5307c955
MG
871 /* Offset the tick to avert xtime_lock contention. */
872 if (sched_skew_tick) {
873 u64 offset = ktime_to_ns(tick_period) >> 1;
874 do_div(offset, num_possible_cpus());
875 offset *= smp_processor_id();
876 hrtimer_add_expires_ns(&ts->sched_timer, offset);
877 }
878
79bf2bb3
TG
879 for (;;) {
880 hrtimer_forward(&ts->sched_timer, now, tick_period);
5c333864
AB
881 hrtimer_start_expires(&ts->sched_timer,
882 HRTIMER_MODE_ABS_PINNED);
79bf2bb3
TG
883 /* Check, if the timer was already in the past */
884 if (hrtimer_active(&ts->sched_timer))
885 break;
886 now = ktime_get();
887 }
888
889#ifdef CONFIG_NO_HZ
29c158e8 890 if (tick_nohz_enabled)
79bf2bb3
TG
891 ts->nohz_mode = NOHZ_MODE_HIGHRES;
892#endif
893}
3c4fbe5e 894#endif /* HIGH_RES_TIMERS */
79bf2bb3 895
3c4fbe5e 896#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
897void tick_cancel_sched_timer(int cpu)
898{
899 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
900
3c4fbe5e 901# ifdef CONFIG_HIGH_RES_TIMERS
79bf2bb3
TG
902 if (ts->sched_timer.base)
903 hrtimer_cancel(&ts->sched_timer);
3c4fbe5e 904# endif
a7901766 905
79bf2bb3
TG
906 ts->nohz_mode = NOHZ_MODE_INACTIVE;
907}
3c4fbe5e 908#endif
79bf2bb3
TG
909
910/**
911 * Async notification about clocksource changes
912 */
913void tick_clock_notify(void)
914{
915 int cpu;
916
917 for_each_possible_cpu(cpu)
918 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
919}
920
921/*
922 * Async notification about clock event changes
923 */
924void tick_oneshot_notify(void)
925{
926 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
927
928 set_bit(0, &ts->check_clocks);
929}
930
931/**
932 * Check, if a change happened, which makes oneshot possible.
933 *
934 * Called cyclic from the hrtimer softirq (driven by the timer
935 * softirq) allow_nohz signals, that we can switch into low-res nohz
936 * mode, because high resolution timers are disabled (either compile
937 * or runtime).
938 */
939int tick_check_oneshot_change(int allow_nohz)
940{
941 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
942
943 if (!test_and_clear_bit(0, &ts->check_clocks))
944 return 0;
945
946 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
947 return 0;
948
cf4fc6cb 949 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
79bf2bb3
TG
950 return 0;
951
952 if (!allow_nohz)
953 return 1;
954
955 tick_nohz_switch_to_nohz();
956 return 0;
957}
This page took 0.532716 seconds and 5 git commands to generate.