timekeeping: Add checks to cap clocksource reads to the 'max_cycles' value
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b 19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
8fcce546
JS
63/* flag for if timekeeping is suspended */
64int __read_mostly timekeeping_suspended;
65
31ade306
FT
66/* Flag for if there is a persistent clock on this platform */
67bool __read_mostly persistent_clock_exist = false;
68
1e75fa8b
JS
69static inline void tk_normalize_xtime(struct timekeeper *tk)
70{
d28ede83
TG
71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
1e75fa8b
JS
73 tk->xtime_sec++;
74 }
75}
76
c905fae4
TG
77static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78{
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
d28ede83 82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
c905fae4
TG
83 return ts;
84}
85
7d489d15 86static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
87{
88 tk->xtime_sec = ts->tv_sec;
d28ede83 89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
1e75fa8b
JS
90}
91
7d489d15 92static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
93{
94 tk->xtime_sec += ts->tv_sec;
d28ede83 95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
784ffcbb 96 tk_normalize_xtime(tk);
1e75fa8b 97}
8fcce546 98
7d489d15 99static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 100{
7d489d15 101 struct timespec64 tmp;
6d0ef903
JS
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
7d489d15 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 108 -tk->wall_to_monotonic.tv_nsec);
7d489d15 109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 110 tk->wall_to_monotonic = wtm;
7d489d15
JS
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
114}
115
47da70d3 116static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 117{
47da70d3 118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
119}
120
3c17ad19
JS
121#ifdef CONFIG_DEBUG_TIMEKEEPING
122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123{
124
125 cycle_t max_cycles = tk->tkr.clock->max_cycles;
126 const char *name = tk->tkr.clock->name;
127
128 if (offset > max_cycles) {
a558cd02 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 130 offset, name, max_cycles);
a558cd02 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
139}
a558cd02
JS
140
141static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
142{
143 cycle_t cycle_now, delta;
144
145 /* read clocksource */
146 cycle_now = tkr->read(tkr->clock);
147
148 /* calculate the delta since the last update_wall_time */
149 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
150
151 /* Cap delta value to the max_cycles values to avoid mult overflows */
152 if (unlikely(delta > tkr->clock->max_cycles))
153 delta = tkr->clock->max_cycles;
154
155 return delta;
156}
3c17ad19
JS
157#else
158static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
159{
160}
a558cd02
JS
161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162{
163 cycle_t cycle_now, delta;
164
165 /* read clocksource */
166 cycle_now = tkr->read(tkr->clock);
167
168 /* calculate the delta since the last update_wall_time */
169 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
170
171 return delta;
172}
3c17ad19
JS
173#endif
174
155ec602 175/**
d26e4fe0 176 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 177 *
d26e4fe0 178 * @tk: The target timekeeper to setup.
155ec602
MS
179 * @clock: Pointer to clocksource.
180 *
181 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
182 * pair and interval request.
183 *
184 * Unless you're the timekeeping code, you should not be using this!
185 */
f726a697 186static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
187{
188 cycle_t interval;
a386b5af 189 u64 tmp, ntpinterval;
1e75fa8b 190 struct clocksource *old_clock;
155ec602 191
d28ede83
TG
192 old_clock = tk->tkr.clock;
193 tk->tkr.clock = clock;
194 tk->tkr.read = clock->read;
195 tk->tkr.mask = clock->mask;
196 tk->tkr.cycle_last = tk->tkr.read(clock);
155ec602
MS
197
198 /* Do the ns -> cycle conversion first, using original mult */
199 tmp = NTP_INTERVAL_LENGTH;
200 tmp <<= clock->shift;
a386b5af 201 ntpinterval = tmp;
0a544198
MS
202 tmp += clock->mult/2;
203 do_div(tmp, clock->mult);
155ec602
MS
204 if (tmp == 0)
205 tmp = 1;
206
207 interval = (cycle_t) tmp;
f726a697 208 tk->cycle_interval = interval;
155ec602
MS
209
210 /* Go back from cycles -> shifted ns */
f726a697
JS
211 tk->xtime_interval = (u64) interval * clock->mult;
212 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
213 tk->raw_interval =
0a544198 214 ((u64) interval * clock->mult) >> clock->shift;
155ec602 215
1e75fa8b
JS
216 /* if changing clocks, convert xtime_nsec shift units */
217 if (old_clock) {
218 int shift_change = clock->shift - old_clock->shift;
219 if (shift_change < 0)
d28ede83 220 tk->tkr.xtime_nsec >>= -shift_change;
1e75fa8b 221 else
d28ede83 222 tk->tkr.xtime_nsec <<= shift_change;
1e75fa8b 223 }
d28ede83 224 tk->tkr.shift = clock->shift;
155ec602 225
f726a697
JS
226 tk->ntp_error = 0;
227 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 228 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
229
230 /*
231 * The timekeeper keeps its own mult values for the currently
232 * active clocksource. These value will be adjusted via NTP
233 * to counteract clock drifting.
234 */
d28ede83 235 tk->tkr.mult = clock->mult;
dc491596 236 tk->ntp_err_mult = 0;
155ec602 237}
8524070b 238
2ba2a305 239/* Timekeeper helper functions. */
7b1f6207
SW
240
241#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
242static u32 default_arch_gettimeoffset(void) { return 0; }
243u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 244#else
e06fde37 245static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
246#endif
247
0e5ac3a8 248static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 249{
a558cd02 250 cycle_t delta;
1e75fa8b 251 s64 nsec;
2ba2a305 252
a558cd02 253 delta = timekeeping_get_delta(tkr);
2ba2a305 254
0e5ac3a8
TG
255 nsec = delta * tkr->mult + tkr->xtime_nsec;
256 nsec >>= tkr->shift;
f2a5a085 257
7b1f6207 258 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 259 return nsec + arch_gettimeoffset();
2ba2a305
MS
260}
261
f726a697 262static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
2ba2a305 263{
d28ede83 264 struct clocksource *clock = tk->tkr.clock;
a558cd02 265 cycle_t delta;
f2a5a085 266 s64 nsec;
2ba2a305 267
a558cd02 268 delta = timekeeping_get_delta(&tk->tkr);
2ba2a305 269
f2a5a085 270 /* convert delta to nanoseconds. */
3a978377 271 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
f2a5a085 272
7b1f6207 273 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 274 return nsec + arch_gettimeoffset();
2ba2a305
MS
275}
276
4396e058
TG
277/**
278 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 279 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
280 *
281 * We want to use this from any context including NMI and tracing /
282 * instrumenting the timekeeping code itself.
283 *
284 * So we handle this differently than the other timekeeping accessor
285 * functions which retry when the sequence count has changed. The
286 * update side does:
287 *
288 * smp_wmb(); <- Ensure that the last base[1] update is visible
289 * tkf->seq++;
290 * smp_wmb(); <- Ensure that the seqcount update is visible
affe3e85 291 * update(tkf->base[0], tkr);
4396e058
TG
292 * smp_wmb(); <- Ensure that the base[0] update is visible
293 * tkf->seq++;
294 * smp_wmb(); <- Ensure that the seqcount update is visible
affe3e85 295 * update(tkf->base[1], tkr);
4396e058
TG
296 *
297 * The reader side does:
298 *
299 * do {
300 * seq = tkf->seq;
301 * smp_rmb();
302 * idx = seq & 0x01;
303 * now = now(tkf->base[idx]);
304 * smp_rmb();
305 * } while (seq != tkf->seq)
306 *
307 * As long as we update base[0] readers are forced off to
308 * base[1]. Once base[0] is updated readers are redirected to base[0]
309 * and the base[1] update takes place.
310 *
311 * So if a NMI hits the update of base[0] then it will use base[1]
312 * which is still consistent. In the worst case this can result is a
313 * slightly wrong timestamp (a few nanoseconds). See
314 * @ktime_get_mono_fast_ns.
315 */
affe3e85 316static void update_fast_timekeeper(struct tk_read_base *tkr)
4396e058
TG
317{
318 struct tk_read_base *base = tk_fast_mono.base;
319
320 /* Force readers off to base[1] */
321 raw_write_seqcount_latch(&tk_fast_mono.seq);
322
323 /* Update base[0] */
affe3e85 324 memcpy(base, tkr, sizeof(*base));
4396e058
TG
325
326 /* Force readers back to base[0] */
327 raw_write_seqcount_latch(&tk_fast_mono.seq);
328
329 /* Update base[1] */
330 memcpy(base + 1, base, sizeof(*base));
331}
332
333/**
334 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
335 *
336 * This timestamp is not guaranteed to be monotonic across an update.
337 * The timestamp is calculated by:
338 *
339 * now = base_mono + clock_delta * slope
340 *
341 * So if the update lowers the slope, readers who are forced to the
342 * not yet updated second array are still using the old steeper slope.
343 *
344 * tmono
345 * ^
346 * | o n
347 * | o n
348 * | u
349 * | o
350 * |o
351 * |12345678---> reader order
352 *
353 * o = old slope
354 * u = update
355 * n = new slope
356 *
357 * So reader 6 will observe time going backwards versus reader 5.
358 *
359 * While other CPUs are likely to be able observe that, the only way
360 * for a CPU local observation is when an NMI hits in the middle of
361 * the update. Timestamps taken from that NMI context might be ahead
362 * of the following timestamps. Callers need to be aware of that and
363 * deal with it.
364 */
365u64 notrace ktime_get_mono_fast_ns(void)
366{
367 struct tk_read_base *tkr;
368 unsigned int seq;
369 u64 now;
370
371 do {
372 seq = raw_read_seqcount(&tk_fast_mono.seq);
373 tkr = tk_fast_mono.base + (seq & 0x01);
374 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
375
376 } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
377 return now;
378}
379EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
380
060407ae
RW
381/* Suspend-time cycles value for halted fast timekeeper. */
382static cycle_t cycles_at_suspend;
383
384static cycle_t dummy_clock_read(struct clocksource *cs)
385{
386 return cycles_at_suspend;
387}
388
389/**
390 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
391 * @tk: Timekeeper to snapshot.
392 *
393 * It generally is unsafe to access the clocksource after timekeeping has been
394 * suspended, so take a snapshot of the readout base of @tk and use it as the
395 * fast timekeeper's readout base while suspended. It will return the same
396 * number of cycles every time until timekeeping is resumed at which time the
397 * proper readout base for the fast timekeeper will be restored automatically.
398 */
399static void halt_fast_timekeeper(struct timekeeper *tk)
400{
401 static struct tk_read_base tkr_dummy;
402 struct tk_read_base *tkr = &tk->tkr;
403
404 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
405 cycles_at_suspend = tkr->read(tkr->clock);
406 tkr_dummy.read = dummy_clock_read;
407 update_fast_timekeeper(&tkr_dummy);
408}
409
c905fae4
TG
410#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
411
412static inline void update_vsyscall(struct timekeeper *tk)
413{
0680eb1f 414 struct timespec xt, wm;
c905fae4 415
e2dff1ec 416 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f
JS
417 wm = timespec64_to_timespec(tk->wall_to_monotonic);
418 update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
d28ede83 419 tk->tkr.cycle_last);
c905fae4
TG
420}
421
422static inline void old_vsyscall_fixup(struct timekeeper *tk)
423{
424 s64 remainder;
425
426 /*
427 * Store only full nanoseconds into xtime_nsec after rounding
428 * it up and add the remainder to the error difference.
429 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
430 * by truncating the remainder in vsyscalls. However, it causes
431 * additional work to be done in timekeeping_adjust(). Once
432 * the vsyscall implementations are converted to use xtime_nsec
433 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
434 * users are removed, this can be killed.
435 */
d28ede83
TG
436 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
437 tk->tkr.xtime_nsec -= remainder;
438 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
c905fae4 439 tk->ntp_error += remainder << tk->ntp_error_shift;
d28ede83 440 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
c905fae4
TG
441}
442#else
443#define old_vsyscall_fixup(tk)
444#endif
445
e0b306fe
MT
446static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
447
780427f0 448static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 449{
780427f0 450 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
451}
452
453/**
454 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
455 */
456int pvclock_gtod_register_notifier(struct notifier_block *nb)
457{
3fdb14fd 458 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
459 unsigned long flags;
460 int ret;
461
9a7a71b1 462 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 463 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 464 update_pvclock_gtod(tk, true);
9a7a71b1 465 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
466
467 return ret;
468}
469EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
470
471/**
472 * pvclock_gtod_unregister_notifier - unregister a pvclock
473 * timedata update listener
e0b306fe
MT
474 */
475int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
476{
e0b306fe
MT
477 unsigned long flags;
478 int ret;
479
9a7a71b1 480 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 481 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 482 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
483
484 return ret;
485}
486EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
487
7c032df5
TG
488/*
489 * Update the ktime_t based scalar nsec members of the timekeeper
490 */
491static inline void tk_update_ktime_data(struct timekeeper *tk)
492{
9e3680b1
HS
493 u64 seconds;
494 u32 nsec;
7c032df5
TG
495
496 /*
497 * The xtime based monotonic readout is:
498 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
499 * The ktime based monotonic readout is:
500 * nsec = base_mono + now();
501 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
502 */
9e3680b1
HS
503 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
504 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
505 tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
506
507 /* Update the monotonic raw base */
508 tk->base_raw = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
509
510 /*
511 * The sum of the nanoseconds portions of xtime and
512 * wall_to_monotonic can be greater/equal one second. Take
513 * this into account before updating tk->ktime_sec.
514 */
515 nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
516 if (nsec >= NSEC_PER_SEC)
517 seconds++;
518 tk->ktime_sec = seconds;
7c032df5
TG
519}
520
9a7a71b1 521/* must hold timekeeper_lock */
04397fe9 522static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 523{
04397fe9 524 if (action & TK_CLEAR_NTP) {
f726a697 525 tk->ntp_error = 0;
cc06268c
TG
526 ntp_clear();
527 }
48cdc135 528
7c032df5
TG
529 tk_update_ktime_data(tk);
530
9bf2419f
TG
531 update_vsyscall(tk);
532 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
533
04397fe9 534 if (action & TK_MIRROR)
3fdb14fd
TG
535 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
536 sizeof(tk_core.timekeeper));
4396e058 537
affe3e85 538 update_fast_timekeeper(&tk->tkr);
cc06268c
TG
539}
540
8524070b 541/**
155ec602 542 * timekeeping_forward_now - update clock to the current time
8524070b 543 *
9a055117
RZ
544 * Forward the current clock to update its state since the last call to
545 * update_wall_time(). This is useful before significant clock changes,
546 * as it avoids having to deal with this time offset explicitly.
8524070b 547 */
f726a697 548static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 549{
d28ede83 550 struct clocksource *clock = tk->tkr.clock;
3a978377 551 cycle_t cycle_now, delta;
9a055117 552 s64 nsec;
8524070b 553
d28ede83
TG
554 cycle_now = tk->tkr.read(clock);
555 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
556 tk->tkr.cycle_last = cycle_now;
8524070b 557
d28ede83 558 tk->tkr.xtime_nsec += delta * tk->tkr.mult;
7d27558c 559
7b1f6207 560 /* If arch requires, add in get_arch_timeoffset() */
d28ede83 561 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
7d27558c 562
f726a697 563 tk_normalize_xtime(tk);
2d42244a 564
3a978377 565 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
7d489d15 566 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 567}
568
569/**
d6d29896 570 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 571 * @ts: pointer to the timespec to be set
572 *
1e817fb6
KC
573 * Updates the time of day in the timespec.
574 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 575 */
d6d29896 576int __getnstimeofday64(struct timespec64 *ts)
8524070b 577{
3fdb14fd 578 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 579 unsigned long seq;
1e75fa8b 580 s64 nsecs = 0;
8524070b 581
582 do {
3fdb14fd 583 seq = read_seqcount_begin(&tk_core.seq);
8524070b 584
4e250fdd 585 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 586 nsecs = timekeeping_get_ns(&tk->tkr);
8524070b 587
3fdb14fd 588 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 589
ec145bab 590 ts->tv_nsec = 0;
d6d29896 591 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
592
593 /*
594 * Do not bail out early, in case there were callers still using
595 * the value, even in the face of the WARN_ON.
596 */
597 if (unlikely(timekeeping_suspended))
598 return -EAGAIN;
599 return 0;
600}
d6d29896 601EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
602
603/**
d6d29896 604 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 605 * @ts: pointer to the timespec64 to be set
1e817fb6 606 *
5322e4c2 607 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 608 */
d6d29896 609void getnstimeofday64(struct timespec64 *ts)
1e817fb6 610{
d6d29896 611 WARN_ON(__getnstimeofday64(ts));
8524070b 612}
d6d29896 613EXPORT_SYMBOL(getnstimeofday64);
8524070b 614
951ed4d3
MS
615ktime_t ktime_get(void)
616{
3fdb14fd 617 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 618 unsigned int seq;
a016a5bd
TG
619 ktime_t base;
620 s64 nsecs;
951ed4d3
MS
621
622 WARN_ON(timekeeping_suspended);
623
624 do {
3fdb14fd 625 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 626 base = tk->tkr.base_mono;
0e5ac3a8 627 nsecs = timekeeping_get_ns(&tk->tkr);
951ed4d3 628
3fdb14fd 629 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 630
a016a5bd 631 return ktime_add_ns(base, nsecs);
951ed4d3
MS
632}
633EXPORT_SYMBOL_GPL(ktime_get);
634
0077dc60
TG
635static ktime_t *offsets[TK_OFFS_MAX] = {
636 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
637 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
638 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
639};
640
641ktime_t ktime_get_with_offset(enum tk_offsets offs)
642{
643 struct timekeeper *tk = &tk_core.timekeeper;
644 unsigned int seq;
645 ktime_t base, *offset = offsets[offs];
646 s64 nsecs;
647
648 WARN_ON(timekeeping_suspended);
649
650 do {
651 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 652 base = ktime_add(tk->tkr.base_mono, *offset);
0e5ac3a8 653 nsecs = timekeeping_get_ns(&tk->tkr);
0077dc60
TG
654
655 } while (read_seqcount_retry(&tk_core.seq, seq));
656
657 return ktime_add_ns(base, nsecs);
658
659}
660EXPORT_SYMBOL_GPL(ktime_get_with_offset);
661
9a6b5197
TG
662/**
663 * ktime_mono_to_any() - convert mononotic time to any other time
664 * @tmono: time to convert.
665 * @offs: which offset to use
666 */
667ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
668{
669 ktime_t *offset = offsets[offs];
670 unsigned long seq;
671 ktime_t tconv;
672
673 do {
674 seq = read_seqcount_begin(&tk_core.seq);
675 tconv = ktime_add(tmono, *offset);
676 } while (read_seqcount_retry(&tk_core.seq, seq));
677
678 return tconv;
679}
680EXPORT_SYMBOL_GPL(ktime_mono_to_any);
681
f519b1a2
TG
682/**
683 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
684 */
685ktime_t ktime_get_raw(void)
686{
687 struct timekeeper *tk = &tk_core.timekeeper;
688 unsigned int seq;
689 ktime_t base;
690 s64 nsecs;
691
692 do {
693 seq = read_seqcount_begin(&tk_core.seq);
694 base = tk->base_raw;
695 nsecs = timekeeping_get_ns_raw(tk);
696
697 } while (read_seqcount_retry(&tk_core.seq, seq));
698
699 return ktime_add_ns(base, nsecs);
700}
701EXPORT_SYMBOL_GPL(ktime_get_raw);
702
951ed4d3 703/**
d6d29896 704 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
705 * @ts: pointer to timespec variable
706 *
707 * The function calculates the monotonic clock from the realtime
708 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 709 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 710 */
d6d29896 711void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 712{
3fdb14fd 713 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 714 struct timespec64 tomono;
ec145bab 715 s64 nsec;
951ed4d3 716 unsigned int seq;
951ed4d3
MS
717
718 WARN_ON(timekeeping_suspended);
719
720 do {
3fdb14fd 721 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 722 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 723 nsec = timekeeping_get_ns(&tk->tkr);
4e250fdd 724 tomono = tk->wall_to_monotonic;
951ed4d3 725
3fdb14fd 726 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 727
d6d29896
TG
728 ts->tv_sec += tomono.tv_sec;
729 ts->tv_nsec = 0;
730 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 731}
d6d29896 732EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 733
9e3680b1
HS
734/**
735 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
736 *
737 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
738 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
739 * works on both 32 and 64 bit systems. On 32 bit systems the readout
740 * covers ~136 years of uptime which should be enough to prevent
741 * premature wrap arounds.
742 */
743time64_t ktime_get_seconds(void)
744{
745 struct timekeeper *tk = &tk_core.timekeeper;
746
747 WARN_ON(timekeeping_suspended);
748 return tk->ktime_sec;
749}
750EXPORT_SYMBOL_GPL(ktime_get_seconds);
751
dbe7aa62
HS
752/**
753 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
754 *
755 * Returns the wall clock seconds since 1970. This replaces the
756 * get_seconds() interface which is not y2038 safe on 32bit systems.
757 *
758 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
759 * 32bit systems the access must be protected with the sequence
760 * counter to provide "atomic" access to the 64bit tk->xtime_sec
761 * value.
762 */
763time64_t ktime_get_real_seconds(void)
764{
765 struct timekeeper *tk = &tk_core.timekeeper;
766 time64_t seconds;
767 unsigned int seq;
768
769 if (IS_ENABLED(CONFIG_64BIT))
770 return tk->xtime_sec;
771
772 do {
773 seq = read_seqcount_begin(&tk_core.seq);
774 seconds = tk->xtime_sec;
775
776 } while (read_seqcount_retry(&tk_core.seq, seq));
777
778 return seconds;
779}
780EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
781
e2c18e49
AG
782#ifdef CONFIG_NTP_PPS
783
784/**
785 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
786 * @ts_raw: pointer to the timespec to be set to raw monotonic time
787 * @ts_real: pointer to the timespec to be set to the time of day
788 *
789 * This function reads both the time of day and raw monotonic time at the
790 * same time atomically and stores the resulting timestamps in timespec
791 * format.
792 */
793void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
794{
3fdb14fd 795 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
796 unsigned long seq;
797 s64 nsecs_raw, nsecs_real;
798
799 WARN_ON_ONCE(timekeeping_suspended);
800
801 do {
3fdb14fd 802 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 803
7d489d15 804 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 805 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 806 ts_real->tv_nsec = 0;
e2c18e49 807
4e250fdd 808 nsecs_raw = timekeeping_get_ns_raw(tk);
0e5ac3a8 809 nsecs_real = timekeeping_get_ns(&tk->tkr);
e2c18e49 810
3fdb14fd 811 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
812
813 timespec_add_ns(ts_raw, nsecs_raw);
814 timespec_add_ns(ts_real, nsecs_real);
815}
816EXPORT_SYMBOL(getnstime_raw_and_real);
817
818#endif /* CONFIG_NTP_PPS */
819
8524070b 820/**
821 * do_gettimeofday - Returns the time of day in a timeval
822 * @tv: pointer to the timeval to be set
823 *
efd9ac86 824 * NOTE: Users should be converted to using getnstimeofday()
8524070b 825 */
826void do_gettimeofday(struct timeval *tv)
827{
d6d29896 828 struct timespec64 now;
8524070b 829
d6d29896 830 getnstimeofday64(&now);
8524070b 831 tv->tv_sec = now.tv_sec;
832 tv->tv_usec = now.tv_nsec/1000;
833}
8524070b 834EXPORT_SYMBOL(do_gettimeofday);
d239f49d 835
8524070b 836/**
21f7eca5 837 * do_settimeofday64 - Sets the time of day.
838 * @ts: pointer to the timespec64 variable containing the new time
8524070b 839 *
840 * Sets the time of day to the new time and update NTP and notify hrtimers
841 */
21f7eca5 842int do_settimeofday64(const struct timespec64 *ts)
8524070b 843{
3fdb14fd 844 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 845 struct timespec64 ts_delta, xt;
92c1d3ed 846 unsigned long flags;
8524070b 847
21f7eca5 848 if (!timespec64_valid_strict(ts))
8524070b 849 return -EINVAL;
850
9a7a71b1 851 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 852 write_seqcount_begin(&tk_core.seq);
8524070b 853
4e250fdd 854 timekeeping_forward_now(tk);
9a055117 855
4e250fdd 856 xt = tk_xtime(tk);
21f7eca5 857 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
858 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 859
7d489d15 860 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 861
21f7eca5 862 tk_set_xtime(tk, ts);
1e75fa8b 863
780427f0 864 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 865
3fdb14fd 866 write_seqcount_end(&tk_core.seq);
9a7a71b1 867 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 868
869 /* signal hrtimers about time change */
870 clock_was_set();
871
872 return 0;
873}
21f7eca5 874EXPORT_SYMBOL(do_settimeofday64);
8524070b 875
c528f7c6
JS
876/**
877 * timekeeping_inject_offset - Adds or subtracts from the current time.
878 * @tv: pointer to the timespec variable containing the offset
879 *
880 * Adds or subtracts an offset value from the current time.
881 */
882int timekeeping_inject_offset(struct timespec *ts)
883{
3fdb14fd 884 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 885 unsigned long flags;
7d489d15 886 struct timespec64 ts64, tmp;
4e8b1452 887 int ret = 0;
c528f7c6
JS
888
889 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
890 return -EINVAL;
891
7d489d15
JS
892 ts64 = timespec_to_timespec64(*ts);
893
9a7a71b1 894 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 895 write_seqcount_begin(&tk_core.seq);
c528f7c6 896
4e250fdd 897 timekeeping_forward_now(tk);
c528f7c6 898
4e8b1452 899 /* Make sure the proposed value is valid */
7d489d15
JS
900 tmp = timespec64_add(tk_xtime(tk), ts64);
901 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
902 ret = -EINVAL;
903 goto error;
904 }
1e75fa8b 905
7d489d15
JS
906 tk_xtime_add(tk, &ts64);
907 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 908
4e8b1452 909error: /* even if we error out, we forwarded the time, so call update */
780427f0 910 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 911
3fdb14fd 912 write_seqcount_end(&tk_core.seq);
9a7a71b1 913 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
914
915 /* signal hrtimers about time change */
916 clock_was_set();
917
4e8b1452 918 return ret;
c528f7c6
JS
919}
920EXPORT_SYMBOL(timekeeping_inject_offset);
921
cc244dda
JS
922
923/**
924 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
925 *
926 */
927s32 timekeeping_get_tai_offset(void)
928{
3fdb14fd 929 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
930 unsigned int seq;
931 s32 ret;
932
933 do {
3fdb14fd 934 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 935 ret = tk->tai_offset;
3fdb14fd 936 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
937
938 return ret;
939}
940
941/**
942 * __timekeeping_set_tai_offset - Lock free worker function
943 *
944 */
dd5d70e8 945static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
946{
947 tk->tai_offset = tai_offset;
04005f60 948 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
949}
950
951/**
952 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
953 *
954 */
955void timekeeping_set_tai_offset(s32 tai_offset)
956{
3fdb14fd 957 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
958 unsigned long flags;
959
9a7a71b1 960 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 961 write_seqcount_begin(&tk_core.seq);
cc244dda 962 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 963 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 964 write_seqcount_end(&tk_core.seq);
9a7a71b1 965 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 966 clock_was_set();
cc244dda
JS
967}
968
8524070b 969/**
970 * change_clocksource - Swaps clocksources if a new one is available
971 *
972 * Accumulates current time interval and initializes new clocksource
973 */
75c5158f 974static int change_clocksource(void *data)
8524070b 975{
3fdb14fd 976 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 977 struct clocksource *new, *old;
f695cf94 978 unsigned long flags;
8524070b 979
75c5158f 980 new = (struct clocksource *) data;
8524070b 981
9a7a71b1 982 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 983 write_seqcount_begin(&tk_core.seq);
f695cf94 984
4e250fdd 985 timekeeping_forward_now(tk);
09ac369c
TG
986 /*
987 * If the cs is in module, get a module reference. Succeeds
988 * for built-in code (owner == NULL) as well.
989 */
990 if (try_module_get(new->owner)) {
991 if (!new->enable || new->enable(new) == 0) {
d28ede83 992 old = tk->tkr.clock;
09ac369c
TG
993 tk_setup_internals(tk, new);
994 if (old->disable)
995 old->disable(old);
996 module_put(old->owner);
997 } else {
998 module_put(new->owner);
999 }
75c5158f 1000 }
780427f0 1001 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1002
3fdb14fd 1003 write_seqcount_end(&tk_core.seq);
9a7a71b1 1004 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1005
75c5158f
MS
1006 return 0;
1007}
8524070b 1008
75c5158f
MS
1009/**
1010 * timekeeping_notify - Install a new clock source
1011 * @clock: pointer to the clock source
1012 *
1013 * This function is called from clocksource.c after a new, better clock
1014 * source has been registered. The caller holds the clocksource_mutex.
1015 */
ba919d1c 1016int timekeeping_notify(struct clocksource *clock)
75c5158f 1017{
3fdb14fd 1018 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1019
d28ede83 1020 if (tk->tkr.clock == clock)
ba919d1c 1021 return 0;
75c5158f 1022 stop_machine(change_clocksource, clock, NULL);
8524070b 1023 tick_clock_notify();
d28ede83 1024 return tk->tkr.clock == clock ? 0 : -1;
8524070b 1025}
75c5158f 1026
2d42244a 1027/**
cdba2ec5
JS
1028 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1029 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1030 *
1031 * Returns the raw monotonic time (completely un-modified by ntp)
1032 */
cdba2ec5 1033void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1034{
3fdb14fd 1035 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1036 struct timespec64 ts64;
2d42244a
JS
1037 unsigned long seq;
1038 s64 nsecs;
2d42244a
JS
1039
1040 do {
3fdb14fd 1041 seq = read_seqcount_begin(&tk_core.seq);
4e250fdd 1042 nsecs = timekeeping_get_ns_raw(tk);
7d489d15 1043 ts64 = tk->raw_time;
2d42244a 1044
3fdb14fd 1045 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1046
7d489d15 1047 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1048 *ts = ts64;
2d42244a 1049}
cdba2ec5
JS
1050EXPORT_SYMBOL(getrawmonotonic64);
1051
2d42244a 1052
8524070b 1053/**
cf4fc6cb 1054 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1055 */
cf4fc6cb 1056int timekeeping_valid_for_hres(void)
8524070b 1057{
3fdb14fd 1058 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1059 unsigned long seq;
1060 int ret;
1061
1062 do {
3fdb14fd 1063 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1064
d28ede83 1065 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1066
3fdb14fd 1067 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1068
1069 return ret;
1070}
1071
98962465
JH
1072/**
1073 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1074 */
1075u64 timekeeping_max_deferment(void)
1076{
3fdb14fd 1077 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1078 unsigned long seq;
1079 u64 ret;
42e71e81 1080
70471f2f 1081 do {
3fdb14fd 1082 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1083
d28ede83 1084 ret = tk->tkr.clock->max_idle_ns;
70471f2f 1085
3fdb14fd 1086 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1087
1088 return ret;
98962465
JH
1089}
1090
8524070b 1091/**
d4f587c6 1092 * read_persistent_clock - Return time from the persistent clock.
8524070b 1093 *
1094 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1095 * Reads the time from the battery backed persistent clock.
1096 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1097 *
1098 * XXX - Do be sure to remove it once all arches implement it.
1099 */
52f5684c 1100void __weak read_persistent_clock(struct timespec *ts)
8524070b 1101{
d4f587c6
MS
1102 ts->tv_sec = 0;
1103 ts->tv_nsec = 0;
8524070b 1104}
1105
23970e38
MS
1106/**
1107 * read_boot_clock - Return time of the system start.
1108 *
1109 * Weak dummy function for arches that do not yet support it.
1110 * Function to read the exact time the system has been started.
1111 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1112 *
1113 * XXX - Do be sure to remove it once all arches implement it.
1114 */
52f5684c 1115void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
1116{
1117 ts->tv_sec = 0;
1118 ts->tv_nsec = 0;
1119}
1120
8524070b 1121/*
1122 * timekeeping_init - Initializes the clocksource and common timekeeping values
1123 */
1124void __init timekeeping_init(void)
1125{
3fdb14fd 1126 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1127 struct clocksource *clock;
8524070b 1128 unsigned long flags;
7d489d15
JS
1129 struct timespec64 now, boot, tmp;
1130 struct timespec ts;
31ade306 1131
7d489d15
JS
1132 read_persistent_clock(&ts);
1133 now = timespec_to_timespec64(ts);
1134 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1135 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1136 " Check your CMOS/BIOS settings.\n");
1137 now.tv_sec = 0;
1138 now.tv_nsec = 0;
31ade306
FT
1139 } else if (now.tv_sec || now.tv_nsec)
1140 persistent_clock_exist = true;
4e8b1452 1141
7d489d15
JS
1142 read_boot_clock(&ts);
1143 boot = timespec_to_timespec64(ts);
1144 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1145 pr_warn("WARNING: Boot clock returned invalid value!\n"
1146 " Check your CMOS/BIOS settings.\n");
1147 boot.tv_sec = 0;
1148 boot.tv_nsec = 0;
1149 }
8524070b 1150
9a7a71b1 1151 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1152 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1153 ntp_init();
1154
f1b82746 1155 clock = clocksource_default_clock();
a0f7d48b
MS
1156 if (clock->enable)
1157 clock->enable(clock);
4e250fdd 1158 tk_setup_internals(tk, clock);
8524070b 1159
4e250fdd
JS
1160 tk_set_xtime(tk, &now);
1161 tk->raw_time.tv_sec = 0;
1162 tk->raw_time.tv_nsec = 0;
f519b1a2 1163 tk->base_raw.tv64 = 0;
1e75fa8b 1164 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1165 boot = tk_xtime(tk);
1e75fa8b 1166
7d489d15 1167 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1168 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1169
f111adfd 1170 timekeeping_update(tk, TK_MIRROR);
48cdc135 1171
3fdb14fd 1172 write_seqcount_end(&tk_core.seq);
9a7a71b1 1173 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1174}
1175
8524070b 1176/* time in seconds when suspend began */
7d489d15 1177static struct timespec64 timekeeping_suspend_time;
8524070b 1178
304529b1
JS
1179/**
1180 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1181 * @delta: pointer to a timespec delta value
1182 *
1183 * Takes a timespec offset measuring a suspend interval and properly
1184 * adds the sleep offset to the timekeeping variables.
1185 */
f726a697 1186static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1187 struct timespec64 *delta)
304529b1 1188{
7d489d15 1189 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1190 printk_deferred(KERN_WARNING
1191 "__timekeeping_inject_sleeptime: Invalid "
1192 "sleep delta value!\n");
cb5de2f8
JS
1193 return;
1194 }
f726a697 1195 tk_xtime_add(tk, delta);
7d489d15 1196 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1197 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1198 tk_debug_account_sleep_time(delta);
304529b1
JS
1199}
1200
304529b1 1201/**
04d90890 1202 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1203 * @delta: pointer to a timespec64 delta value
304529b1
JS
1204 *
1205 * This hook is for architectures that cannot support read_persistent_clock
1206 * because their RTC/persistent clock is only accessible when irqs are enabled.
1207 *
1208 * This function should only be called by rtc_resume(), and allows
1209 * a suspend offset to be injected into the timekeeping values.
1210 */
04d90890 1211void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1212{
3fdb14fd 1213 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1214 unsigned long flags;
304529b1 1215
31ade306
FT
1216 /*
1217 * Make sure we don't set the clock twice, as timekeeping_resume()
1218 * already did it
1219 */
1220 if (has_persistent_clock())
304529b1
JS
1221 return;
1222
9a7a71b1 1223 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1224 write_seqcount_begin(&tk_core.seq);
70471f2f 1225
4e250fdd 1226 timekeeping_forward_now(tk);
304529b1 1227
04d90890 1228 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1229
780427f0 1230 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1231
3fdb14fd 1232 write_seqcount_end(&tk_core.seq);
9a7a71b1 1233 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1234
1235 /* signal hrtimers about time change */
1236 clock_was_set();
1237}
1238
8524070b 1239/**
1240 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1241 *
1242 * This is for the generic clocksource timekeeping.
1243 * xtime/wall_to_monotonic/jiffies/etc are
1244 * still managed by arch specific suspend/resume code.
1245 */
124cf911 1246void timekeeping_resume(void)
8524070b 1247{
3fdb14fd 1248 struct timekeeper *tk = &tk_core.timekeeper;
d28ede83 1249 struct clocksource *clock = tk->tkr.clock;
92c1d3ed 1250 unsigned long flags;
7d489d15
JS
1251 struct timespec64 ts_new, ts_delta;
1252 struct timespec tmp;
e445cf1c
FT
1253 cycle_t cycle_now, cycle_delta;
1254 bool suspendtime_found = false;
d4f587c6 1255
7d489d15
JS
1256 read_persistent_clock(&tmp);
1257 ts_new = timespec_to_timespec64(tmp);
8524070b 1258
adc78e6b 1259 clockevents_resume();
d10ff3fb
TG
1260 clocksource_resume();
1261
9a7a71b1 1262 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1263 write_seqcount_begin(&tk_core.seq);
8524070b 1264
e445cf1c
FT
1265 /*
1266 * After system resumes, we need to calculate the suspended time and
1267 * compensate it for the OS time. There are 3 sources that could be
1268 * used: Nonstop clocksource during suspend, persistent clock and rtc
1269 * device.
1270 *
1271 * One specific platform may have 1 or 2 or all of them, and the
1272 * preference will be:
1273 * suspend-nonstop clocksource -> persistent clock -> rtc
1274 * The less preferred source will only be tried if there is no better
1275 * usable source. The rtc part is handled separately in rtc core code.
1276 */
d28ede83 1277 cycle_now = tk->tkr.read(clock);
e445cf1c 1278 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
d28ede83 1279 cycle_now > tk->tkr.cycle_last) {
e445cf1c
FT
1280 u64 num, max = ULLONG_MAX;
1281 u32 mult = clock->mult;
1282 u32 shift = clock->shift;
1283 s64 nsec = 0;
1284
d28ede83
TG
1285 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1286 tk->tkr.mask);
e445cf1c
FT
1287
1288 /*
1289 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1290 * suspended time is too long. In that case we need do the
1291 * 64 bits math carefully
1292 */
1293 do_div(max, mult);
1294 if (cycle_delta > max) {
1295 num = div64_u64(cycle_delta, max);
1296 nsec = (((u64) max * mult) >> shift) * num;
1297 cycle_delta -= num * max;
1298 }
1299 nsec += ((u64) cycle_delta * mult) >> shift;
1300
7d489d15 1301 ts_delta = ns_to_timespec64(nsec);
e445cf1c 1302 suspendtime_found = true;
7d489d15
JS
1303 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1304 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
e445cf1c 1305 suspendtime_found = true;
8524070b 1306 }
e445cf1c
FT
1307
1308 if (suspendtime_found)
1309 __timekeeping_inject_sleeptime(tk, &ts_delta);
1310
1311 /* Re-base the last cycle value */
d28ede83 1312 tk->tkr.cycle_last = cycle_now;
4e250fdd 1313 tk->ntp_error = 0;
8524070b 1314 timekeeping_suspended = 0;
780427f0 1315 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1316 write_seqcount_end(&tk_core.seq);
9a7a71b1 1317 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1318
1319 touch_softlockup_watchdog();
1320
1321 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1322
1323 /* Resume hrtimers */
b12a03ce 1324 hrtimers_resume();
8524070b 1325}
1326
124cf911 1327int timekeeping_suspend(void)
8524070b 1328{
3fdb14fd 1329 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1330 unsigned long flags;
7d489d15
JS
1331 struct timespec64 delta, delta_delta;
1332 static struct timespec64 old_delta;
1333 struct timespec tmp;
8524070b 1334
7d489d15
JS
1335 read_persistent_clock(&tmp);
1336 timekeeping_suspend_time = timespec_to_timespec64(tmp);
3be90950 1337
0d6bd995
ZM
1338 /*
1339 * On some systems the persistent_clock can not be detected at
1340 * timekeeping_init by its return value, so if we see a valid
1341 * value returned, update the persistent_clock_exists flag.
1342 */
1343 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1344 persistent_clock_exist = true;
1345
9a7a71b1 1346 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1347 write_seqcount_begin(&tk_core.seq);
4e250fdd 1348 timekeeping_forward_now(tk);
8524070b 1349 timekeeping_suspended = 1;
cb33217b
JS
1350
1351 /*
1352 * To avoid drift caused by repeated suspend/resumes,
1353 * which each can add ~1 second drift error,
1354 * try to compensate so the difference in system time
1355 * and persistent_clock time stays close to constant.
1356 */
7d489d15
JS
1357 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1358 delta_delta = timespec64_sub(delta, old_delta);
cb33217b
JS
1359 if (abs(delta_delta.tv_sec) >= 2) {
1360 /*
1361 * if delta_delta is too large, assume time correction
1362 * has occured and set old_delta to the current delta.
1363 */
1364 old_delta = delta;
1365 } else {
1366 /* Otherwise try to adjust old_system to compensate */
1367 timekeeping_suspend_time =
7d489d15 1368 timespec64_add(timekeeping_suspend_time, delta_delta);
cb33217b 1369 }
330a1617
JS
1370
1371 timekeeping_update(tk, TK_MIRROR);
060407ae 1372 halt_fast_timekeeper(tk);
3fdb14fd 1373 write_seqcount_end(&tk_core.seq);
9a7a71b1 1374 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1375
1376 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 1377 clocksource_suspend();
adc78e6b 1378 clockevents_suspend();
8524070b 1379
1380 return 0;
1381}
1382
1383/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1384static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1385 .resume = timekeeping_resume,
1386 .suspend = timekeeping_suspend,
8524070b 1387};
1388
e1a85b2c 1389static int __init timekeeping_init_ops(void)
8524070b 1390{
e1a85b2c
RW
1391 register_syscore_ops(&timekeeping_syscore_ops);
1392 return 0;
8524070b 1393}
e1a85b2c 1394device_initcall(timekeeping_init_ops);
8524070b 1395
1396/*
dc491596 1397 * Apply a multiplier adjustment to the timekeeper
8524070b 1398 */
dc491596
JS
1399static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1400 s64 offset,
1401 bool negative,
1402 int adj_scale)
8524070b 1403{
dc491596
JS
1404 s64 interval = tk->cycle_interval;
1405 s32 mult_adj = 1;
8524070b 1406
dc491596
JS
1407 if (negative) {
1408 mult_adj = -mult_adj;
1409 interval = -interval;
1410 offset = -offset;
1d17d174 1411 }
dc491596
JS
1412 mult_adj <<= adj_scale;
1413 interval <<= adj_scale;
1414 offset <<= adj_scale;
8524070b 1415
c2bc1111
JS
1416 /*
1417 * So the following can be confusing.
1418 *
dc491596 1419 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1420 *
dc491596 1421 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1422 * have been appropriately scaled so the math is the same.
1423 *
1424 * The basic idea here is that we're increasing the multiplier
1425 * by one, this causes the xtime_interval to be incremented by
1426 * one cycle_interval. This is because:
1427 * xtime_interval = cycle_interval * mult
1428 * So if mult is being incremented by one:
1429 * xtime_interval = cycle_interval * (mult + 1)
1430 * Its the same as:
1431 * xtime_interval = (cycle_interval * mult) + cycle_interval
1432 * Which can be shortened to:
1433 * xtime_interval += cycle_interval
1434 *
1435 * So offset stores the non-accumulated cycles. Thus the current
1436 * time (in shifted nanoseconds) is:
1437 * now = (offset * adj) + xtime_nsec
1438 * Now, even though we're adjusting the clock frequency, we have
1439 * to keep time consistent. In other words, we can't jump back
1440 * in time, and we also want to avoid jumping forward in time.
1441 *
1442 * So given the same offset value, we need the time to be the same
1443 * both before and after the freq adjustment.
1444 * now = (offset * adj_1) + xtime_nsec_1
1445 * now = (offset * adj_2) + xtime_nsec_2
1446 * So:
1447 * (offset * adj_1) + xtime_nsec_1 =
1448 * (offset * adj_2) + xtime_nsec_2
1449 * And we know:
1450 * adj_2 = adj_1 + 1
1451 * So:
1452 * (offset * adj_1) + xtime_nsec_1 =
1453 * (offset * (adj_1+1)) + xtime_nsec_2
1454 * (offset * adj_1) + xtime_nsec_1 =
1455 * (offset * adj_1) + offset + xtime_nsec_2
1456 * Canceling the sides:
1457 * xtime_nsec_1 = offset + xtime_nsec_2
1458 * Which gives us:
1459 * xtime_nsec_2 = xtime_nsec_1 - offset
1460 * Which simplfies to:
1461 * xtime_nsec -= offset
1462 *
1463 * XXX - TODO: Doc ntp_error calculation.
1464 */
cb2aa634 1465 if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
6067dc5a 1466 /* NTP adjustment caused clocksource mult overflow */
1467 WARN_ON_ONCE(1);
1468 return;
1469 }
1470
dc491596 1471 tk->tkr.mult += mult_adj;
f726a697 1472 tk->xtime_interval += interval;
d28ede83 1473 tk->tkr.xtime_nsec -= offset;
f726a697 1474 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1475}
1476
1477/*
1478 * Calculate the multiplier adjustment needed to match the frequency
1479 * specified by NTP
1480 */
1481static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1482 s64 offset)
1483{
1484 s64 interval = tk->cycle_interval;
1485 s64 xinterval = tk->xtime_interval;
1486 s64 tick_error;
1487 bool negative;
1488 u32 adj;
1489
1490 /* Remove any current error adj from freq calculation */
1491 if (tk->ntp_err_mult)
1492 xinterval -= tk->cycle_interval;
1493
375f45b5
JS
1494 tk->ntp_tick = ntp_tick_length();
1495
dc491596
JS
1496 /* Calculate current error per tick */
1497 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1498 tick_error -= (xinterval + tk->xtime_remainder);
1499
1500 /* Don't worry about correcting it if its small */
1501 if (likely((tick_error >= 0) && (tick_error <= interval)))
1502 return;
1503
1504 /* preserve the direction of correction */
1505 negative = (tick_error < 0);
1506
1507 /* Sort out the magnitude of the correction */
1508 tick_error = abs(tick_error);
1509 for (adj = 0; tick_error > interval; adj++)
1510 tick_error >>= 1;
1511
1512 /* scale the corrections */
1513 timekeeping_apply_adjustment(tk, offset, negative, adj);
1514}
1515
1516/*
1517 * Adjust the timekeeper's multiplier to the correct frequency
1518 * and also to reduce the accumulated error value.
1519 */
1520static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1521{
1522 /* Correct for the current frequency error */
1523 timekeeping_freqadjust(tk, offset);
1524
1525 /* Next make a small adjustment to fix any cumulative error */
1526 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1527 tk->ntp_err_mult = 1;
1528 timekeeping_apply_adjustment(tk, offset, 0, 0);
1529 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1530 /* Undo any existing error adjustment */
1531 timekeeping_apply_adjustment(tk, offset, 1, 0);
1532 tk->ntp_err_mult = 0;
1533 }
1534
1535 if (unlikely(tk->tkr.clock->maxadj &&
659bc17b 1536 (abs(tk->tkr.mult - tk->tkr.clock->mult)
1537 > tk->tkr.clock->maxadj))) {
dc491596
JS
1538 printk_once(KERN_WARNING
1539 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1540 tk->tkr.clock->name, (long)tk->tkr.mult,
1541 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1542 }
2a8c0883
JS
1543
1544 /*
1545 * It may be possible that when we entered this function, xtime_nsec
1546 * was very small. Further, if we're slightly speeding the clocksource
1547 * in the code above, its possible the required corrective factor to
1548 * xtime_nsec could cause it to underflow.
1549 *
1550 * Now, since we already accumulated the second, cannot simply roll
1551 * the accumulated second back, since the NTP subsystem has been
1552 * notified via second_overflow. So instead we push xtime_nsec forward
1553 * by the amount we underflowed, and add that amount into the error.
1554 *
1555 * We'll correct this error next time through this function, when
1556 * xtime_nsec is not as small.
1557 */
d28ede83
TG
1558 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1559 s64 neg = -(s64)tk->tkr.xtime_nsec;
1560 tk->tkr.xtime_nsec = 0;
f726a697 1561 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1562 }
8524070b 1563}
1564
1f4f9487
JS
1565/**
1566 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1567 *
1568 * Helper function that accumulates a the nsecs greater then a second
1569 * from the xtime_nsec field to the xtime_secs field.
1570 * It also calls into the NTP code to handle leapsecond processing.
1571 *
1572 */
780427f0 1573static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1574{
d28ede83 1575 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
5258d3f2 1576 unsigned int clock_set = 0;
1f4f9487 1577
d28ede83 1578 while (tk->tkr.xtime_nsec >= nsecps) {
1f4f9487
JS
1579 int leap;
1580
d28ede83 1581 tk->tkr.xtime_nsec -= nsecps;
1f4f9487
JS
1582 tk->xtime_sec++;
1583
1584 /* Figure out if its a leap sec and apply if needed */
1585 leap = second_overflow(tk->xtime_sec);
6d0ef903 1586 if (unlikely(leap)) {
7d489d15 1587 struct timespec64 ts;
6d0ef903
JS
1588
1589 tk->xtime_sec += leap;
1f4f9487 1590
6d0ef903
JS
1591 ts.tv_sec = leap;
1592 ts.tv_nsec = 0;
1593 tk_set_wall_to_mono(tk,
7d489d15 1594 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1595
cc244dda
JS
1596 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1597
5258d3f2 1598 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1599 }
1f4f9487 1600 }
5258d3f2 1601 return clock_set;
1f4f9487
JS
1602}
1603
a092ff0f 1604/**
1605 * logarithmic_accumulation - shifted accumulation of cycles
1606 *
1607 * This functions accumulates a shifted interval of cycles into
1608 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1609 * loop.
1610 *
1611 * Returns the unconsumed cycles.
1612 */
f726a697 1613static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1614 u32 shift,
1615 unsigned int *clock_set)
a092ff0f 1616{
23a9537a 1617 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1618 u64 raw_nsecs;
a092ff0f 1619
f726a697 1620 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1621 if (offset < interval)
a092ff0f 1622 return offset;
1623
1624 /* Accumulate one shifted interval */
23a9537a 1625 offset -= interval;
d28ede83 1626 tk->tkr.cycle_last += interval;
a092ff0f 1627
d28ede83 1628 tk->tkr.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1629 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1630
deda2e81 1631 /* Accumulate raw time */
5b3900cd 1632 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1633 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1634 if (raw_nsecs >= NSEC_PER_SEC) {
1635 u64 raw_secs = raw_nsecs;
1636 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1637 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1638 }
f726a697 1639 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 1640
1641 /* Accumulate error between NTP and clock interval */
375f45b5 1642 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1643 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1644 (tk->ntp_error_shift + shift);
a092ff0f 1645
1646 return offset;
1647}
1648
8524070b 1649/**
1650 * update_wall_time - Uses the current clocksource to increment the wall time
1651 *
8524070b 1652 */
47a1b796 1653void update_wall_time(void)
8524070b 1654{
3fdb14fd 1655 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1656 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1657 cycle_t offset;
a092ff0f 1658 int shift = 0, maxshift;
5258d3f2 1659 unsigned int clock_set = 0;
70471f2f
JS
1660 unsigned long flags;
1661
9a7a71b1 1662 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 1663
1664 /* Make sure we're fully resumed: */
1665 if (unlikely(timekeeping_suspended))
70471f2f 1666 goto out;
8524070b 1667
592913ec 1668#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1669 offset = real_tk->cycle_interval;
592913ec 1670#else
d28ede83
TG
1671 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1672 tk->tkr.cycle_last, tk->tkr.mask);
8524070b 1673#endif
8524070b 1674
bf2ac312 1675 /* Check if there's really nothing to do */
48cdc135 1676 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1677 goto out;
1678
3c17ad19
JS
1679 /* Do some additional sanity checking */
1680 timekeeping_check_update(real_tk, offset);
1681
a092ff0f 1682 /*
1683 * With NO_HZ we may have to accumulate many cycle_intervals
1684 * (think "ticks") worth of time at once. To do this efficiently,
1685 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1686 * that is smaller than the offset. We then accumulate that
a092ff0f 1687 * chunk in one go, and then try to consume the next smaller
1688 * doubled multiple.
8524070b 1689 */
4e250fdd 1690 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1691 shift = max(0, shift);
88b28adf 1692 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1693 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1694 shift = min(shift, maxshift);
4e250fdd 1695 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1696 offset = logarithmic_accumulation(tk, offset, shift,
1697 &clock_set);
4e250fdd 1698 if (offset < tk->cycle_interval<<shift)
830ec045 1699 shift--;
8524070b 1700 }
1701
1702 /* correct the clock when NTP error is too big */
4e250fdd 1703 timekeeping_adjust(tk, offset);
8524070b 1704
6a867a39 1705 /*
92bb1fcf
JS
1706 * XXX This can be killed once everyone converts
1707 * to the new update_vsyscall.
1708 */
1709 old_vsyscall_fixup(tk);
8524070b 1710
6a867a39
JS
1711 /*
1712 * Finally, make sure that after the rounding
1e75fa8b 1713 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1714 */
5258d3f2 1715 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1716
3fdb14fd 1717 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1718 /*
1719 * Update the real timekeeper.
1720 *
1721 * We could avoid this memcpy by switching pointers, but that
1722 * requires changes to all other timekeeper usage sites as
1723 * well, i.e. move the timekeeper pointer getter into the
1724 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1725 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1726 * updating.
1727 */
1728 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1729 timekeeping_update(real_tk, clock_set);
3fdb14fd 1730 write_seqcount_end(&tk_core.seq);
ca4523cd 1731out:
9a7a71b1 1732 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1733 if (clock_set)
cab5e127
JS
1734 /* Have to call _delayed version, since in irq context*/
1735 clock_was_set_delayed();
8524070b 1736}
7c3f1a57
TJ
1737
1738/**
d08c0cdd
JS
1739 * getboottime64 - Return the real time of system boot.
1740 * @ts: pointer to the timespec64 to be set
7c3f1a57 1741 *
d08c0cdd 1742 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
1743 *
1744 * This is based on the wall_to_monotonic offset and the total suspend
1745 * time. Calls to settimeofday will affect the value returned (which
1746 * basically means that however wrong your real time clock is at boot time,
1747 * you get the right time here).
1748 */
d08c0cdd 1749void getboottime64(struct timespec64 *ts)
7c3f1a57 1750{
3fdb14fd 1751 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1752 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1753
d08c0cdd 1754 *ts = ktime_to_timespec64(t);
7c3f1a57 1755}
d08c0cdd 1756EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 1757
17c38b74 1758unsigned long get_seconds(void)
1759{
3fdb14fd 1760 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1761
1762 return tk->xtime_sec;
17c38b74 1763}
1764EXPORT_SYMBOL(get_seconds);
1765
da15cfda 1766struct timespec __current_kernel_time(void)
1767{
3fdb14fd 1768 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1769
7d489d15 1770 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1771}
17c38b74 1772
2c6b47de 1773struct timespec current_kernel_time(void)
1774{
3fdb14fd 1775 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1776 struct timespec64 now;
2c6b47de 1777 unsigned long seq;
1778
1779 do {
3fdb14fd 1780 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1781
4e250fdd 1782 now = tk_xtime(tk);
3fdb14fd 1783 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1784
7d489d15 1785 return timespec64_to_timespec(now);
2c6b47de 1786}
2c6b47de 1787EXPORT_SYMBOL(current_kernel_time);
da15cfda 1788
334334b5 1789struct timespec64 get_monotonic_coarse64(void)
da15cfda 1790{
3fdb14fd 1791 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1792 struct timespec64 now, mono;
da15cfda 1793 unsigned long seq;
1794
1795 do {
3fdb14fd 1796 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1797
4e250fdd
JS
1798 now = tk_xtime(tk);
1799 mono = tk->wall_to_monotonic;
3fdb14fd 1800 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1801
7d489d15 1802 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1803 now.tv_nsec + mono.tv_nsec);
7d489d15 1804
334334b5 1805 return now;
da15cfda 1806}
871cf1e5
TH
1807
1808/*
d6ad4187 1809 * Must hold jiffies_lock
871cf1e5
TH
1810 */
1811void do_timer(unsigned long ticks)
1812{
1813 jiffies_64 += ticks;
871cf1e5
TH
1814 calc_global_load(ticks);
1815}
48cf76f7
TH
1816
1817/**
76f41088
JS
1818 * ktime_get_update_offsets_tick - hrtimer helper
1819 * @offs_real: pointer to storage for monotonic -> realtime offset
1820 * @offs_boot: pointer to storage for monotonic -> boottime offset
1821 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1822 *
1823 * Returns monotonic time at last tick and various offsets
48cf76f7 1824 */
76f41088
JS
1825ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1826 ktime_t *offs_tai)
48cf76f7 1827{
3fdb14fd 1828 struct timekeeper *tk = &tk_core.timekeeper;
76f41088 1829 unsigned int seq;
48064f5f
TG
1830 ktime_t base;
1831 u64 nsecs;
48cf76f7
TH
1832
1833 do {
3fdb14fd 1834 seq = read_seqcount_begin(&tk_core.seq);
76f41088 1835
d28ede83
TG
1836 base = tk->tkr.base_mono;
1837 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
48064f5f 1838
76f41088
JS
1839 *offs_real = tk->offs_real;
1840 *offs_boot = tk->offs_boot;
1841 *offs_tai = tk->offs_tai;
3fdb14fd 1842 } while (read_seqcount_retry(&tk_core.seq, seq));
76f41088 1843
48064f5f 1844 return ktime_add_ns(base, nsecs);
48cf76f7 1845}
f0af911a 1846
f6c06abf
TG
1847#ifdef CONFIG_HIGH_RES_TIMERS
1848/**
76f41088 1849 * ktime_get_update_offsets_now - hrtimer helper
f6c06abf
TG
1850 * @offs_real: pointer to storage for monotonic -> realtime offset
1851 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1852 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf
TG
1853 *
1854 * Returns current monotonic time and updates the offsets
b7bc50e4 1855 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1856 */
76f41088 1857ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
90adda98 1858 ktime_t *offs_tai)
f6c06abf 1859{
3fdb14fd 1860 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1861 unsigned int seq;
a37c0aad
TG
1862 ktime_t base;
1863 u64 nsecs;
f6c06abf
TG
1864
1865 do {
3fdb14fd 1866 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1867
d28ede83 1868 base = tk->tkr.base_mono;
0e5ac3a8 1869 nsecs = timekeeping_get_ns(&tk->tkr);
f6c06abf 1870
4e250fdd
JS
1871 *offs_real = tk->offs_real;
1872 *offs_boot = tk->offs_boot;
90adda98 1873 *offs_tai = tk->offs_tai;
3fdb14fd 1874 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1875
a37c0aad 1876 return ktime_add_ns(base, nsecs);
f6c06abf
TG
1877}
1878#endif
1879
aa6f9c59
JS
1880/**
1881 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1882 */
1883int do_adjtimex(struct timex *txc)
1884{
3fdb14fd 1885 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1886 unsigned long flags;
7d489d15 1887 struct timespec64 ts;
4e8f8b34 1888 s32 orig_tai, tai;
e4085693
JS
1889 int ret;
1890
1891 /* Validate the data before disabling interrupts */
1892 ret = ntp_validate_timex(txc);
1893 if (ret)
1894 return ret;
1895
cef90377
JS
1896 if (txc->modes & ADJ_SETOFFSET) {
1897 struct timespec delta;
1898 delta.tv_sec = txc->time.tv_sec;
1899 delta.tv_nsec = txc->time.tv_usec;
1900 if (!(txc->modes & ADJ_NANO))
1901 delta.tv_nsec *= 1000;
1902 ret = timekeeping_inject_offset(&delta);
1903 if (ret)
1904 return ret;
1905 }
1906
d6d29896 1907 getnstimeofday64(&ts);
87ace39b 1908
06c017fd 1909 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1910 write_seqcount_begin(&tk_core.seq);
06c017fd 1911
4e8f8b34 1912 orig_tai = tai = tk->tai_offset;
87ace39b 1913 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 1914
4e8f8b34
JS
1915 if (tai != orig_tai) {
1916 __timekeeping_set_tai_offset(tk, tai);
f55c0760 1917 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 1918 }
3fdb14fd 1919 write_seqcount_end(&tk_core.seq);
06c017fd
JS
1920 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1921
6fdda9a9
JS
1922 if (tai != orig_tai)
1923 clock_was_set();
1924
7bd36014
JS
1925 ntp_notify_cmos_timer();
1926
87ace39b
JS
1927 return ret;
1928}
aa6f9c59
JS
1929
1930#ifdef CONFIG_NTP_PPS
1931/**
1932 * hardpps() - Accessor function to NTP __hardpps function
1933 */
1934void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1935{
06c017fd
JS
1936 unsigned long flags;
1937
1938 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1939 write_seqcount_begin(&tk_core.seq);
06c017fd 1940
aa6f9c59 1941 __hardpps(phase_ts, raw_ts);
06c017fd 1942
3fdb14fd 1943 write_seqcount_end(&tk_core.seq);
06c017fd 1944 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
1945}
1946EXPORT_SYMBOL(hardpps);
1947#endif
1948
f0af911a
TH
1949/**
1950 * xtime_update() - advances the timekeeping infrastructure
1951 * @ticks: number of ticks, that have elapsed since the last call.
1952 *
1953 * Must be called with interrupts disabled.
1954 */
1955void xtime_update(unsigned long ticks)
1956{
d6ad4187 1957 write_seqlock(&jiffies_lock);
f0af911a 1958 do_timer(ticks);
d6ad4187 1959 write_sequnlock(&jiffies_lock);
47a1b796 1960 update_wall_time();
f0af911a 1961}
This page took 0.654536 seconds and 5 git commands to generate.