time: Expose getboottime64 for in-kernel uses
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b 19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
8fcce546
JS
63/* flag for if timekeeping is suspended */
64int __read_mostly timekeeping_suspended;
65
31ade306
FT
66/* Flag for if there is a persistent clock on this platform */
67bool __read_mostly persistent_clock_exist = false;
68
1e75fa8b
JS
69static inline void tk_normalize_xtime(struct timekeeper *tk)
70{
d28ede83
TG
71 while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
1e75fa8b
JS
73 tk->xtime_sec++;
74 }
75}
76
c905fae4
TG
77static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78{
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
d28ede83 82 ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
c905fae4
TG
83 return ts;
84}
85
7d489d15 86static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
87{
88 tk->xtime_sec = ts->tv_sec;
d28ede83 89 tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
1e75fa8b
JS
90}
91
7d489d15 92static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
93{
94 tk->xtime_sec += ts->tv_sec;
d28ede83 95 tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
784ffcbb 96 tk_normalize_xtime(tk);
1e75fa8b 97}
8fcce546 98
7d489d15 99static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 100{
7d489d15 101 struct timespec64 tmp;
6d0ef903
JS
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
7d489d15 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 108 -tk->wall_to_monotonic.tv_nsec);
7d489d15 109 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 110 tk->wall_to_monotonic = wtm;
7d489d15
JS
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
114}
115
47da70d3 116static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 117{
47da70d3 118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
119}
120
155ec602 121/**
d26e4fe0 122 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 123 *
d26e4fe0 124 * @tk: The target timekeeper to setup.
155ec602
MS
125 * @clock: Pointer to clocksource.
126 *
127 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128 * pair and interval request.
129 *
130 * Unless you're the timekeeping code, you should not be using this!
131 */
f726a697 132static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
133{
134 cycle_t interval;
a386b5af 135 u64 tmp, ntpinterval;
1e75fa8b 136 struct clocksource *old_clock;
155ec602 137
d28ede83
TG
138 old_clock = tk->tkr.clock;
139 tk->tkr.clock = clock;
140 tk->tkr.read = clock->read;
141 tk->tkr.mask = clock->mask;
142 tk->tkr.cycle_last = tk->tkr.read(clock);
155ec602
MS
143
144 /* Do the ns -> cycle conversion first, using original mult */
145 tmp = NTP_INTERVAL_LENGTH;
146 tmp <<= clock->shift;
a386b5af 147 ntpinterval = tmp;
0a544198
MS
148 tmp += clock->mult/2;
149 do_div(tmp, clock->mult);
155ec602
MS
150 if (tmp == 0)
151 tmp = 1;
152
153 interval = (cycle_t) tmp;
f726a697 154 tk->cycle_interval = interval;
155ec602
MS
155
156 /* Go back from cycles -> shifted ns */
f726a697
JS
157 tk->xtime_interval = (u64) interval * clock->mult;
158 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 tk->raw_interval =
0a544198 160 ((u64) interval * clock->mult) >> clock->shift;
155ec602 161
1e75fa8b
JS
162 /* if changing clocks, convert xtime_nsec shift units */
163 if (old_clock) {
164 int shift_change = clock->shift - old_clock->shift;
165 if (shift_change < 0)
d28ede83 166 tk->tkr.xtime_nsec >>= -shift_change;
1e75fa8b 167 else
d28ede83 168 tk->tkr.xtime_nsec <<= shift_change;
1e75fa8b 169 }
d28ede83 170 tk->tkr.shift = clock->shift;
155ec602 171
f726a697
JS
172 tk->ntp_error = 0;
173 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 174 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
175
176 /*
177 * The timekeeper keeps its own mult values for the currently
178 * active clocksource. These value will be adjusted via NTP
179 * to counteract clock drifting.
180 */
d28ede83 181 tk->tkr.mult = clock->mult;
dc491596 182 tk->ntp_err_mult = 0;
155ec602 183}
8524070b 184
2ba2a305 185/* Timekeeper helper functions. */
7b1f6207
SW
186
187#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
188static u32 default_arch_gettimeoffset(void) { return 0; }
189u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 190#else
e06fde37 191static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
192#endif
193
0e5ac3a8 194static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 195{
3a978377 196 cycle_t cycle_now, delta;
1e75fa8b 197 s64 nsec;
2ba2a305
MS
198
199 /* read clocksource: */
0e5ac3a8 200 cycle_now = tkr->read(tkr->clock);
2ba2a305
MS
201
202 /* calculate the delta since the last update_wall_time: */
0e5ac3a8 203 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
2ba2a305 204
0e5ac3a8
TG
205 nsec = delta * tkr->mult + tkr->xtime_nsec;
206 nsec >>= tkr->shift;
f2a5a085 207
7b1f6207 208 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 209 return nsec + arch_gettimeoffset();
2ba2a305
MS
210}
211
f726a697 212static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
2ba2a305 213{
d28ede83 214 struct clocksource *clock = tk->tkr.clock;
3a978377 215 cycle_t cycle_now, delta;
f2a5a085 216 s64 nsec;
2ba2a305
MS
217
218 /* read clocksource: */
d28ede83 219 cycle_now = tk->tkr.read(clock);
2ba2a305
MS
220
221 /* calculate the delta since the last update_wall_time: */
d28ede83 222 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
2ba2a305 223
f2a5a085 224 /* convert delta to nanoseconds. */
3a978377 225 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
f2a5a085 226
7b1f6207 227 /* If arch requires, add in get_arch_timeoffset() */
e06fde37 228 return nsec + arch_gettimeoffset();
2ba2a305
MS
229}
230
4396e058
TG
231/**
232 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233 * @tk: The timekeeper from which we take the update
234 * @tkf: The fast timekeeper to update
235 * @tbase: The time base for the fast timekeeper (mono/raw)
236 *
237 * We want to use this from any context including NMI and tracing /
238 * instrumenting the timekeeping code itself.
239 *
240 * So we handle this differently than the other timekeeping accessor
241 * functions which retry when the sequence count has changed. The
242 * update side does:
243 *
244 * smp_wmb(); <- Ensure that the last base[1] update is visible
245 * tkf->seq++;
246 * smp_wmb(); <- Ensure that the seqcount update is visible
247 * update(tkf->base[0], tk);
248 * smp_wmb(); <- Ensure that the base[0] update is visible
249 * tkf->seq++;
250 * smp_wmb(); <- Ensure that the seqcount update is visible
251 * update(tkf->base[1], tk);
252 *
253 * The reader side does:
254 *
255 * do {
256 * seq = tkf->seq;
257 * smp_rmb();
258 * idx = seq & 0x01;
259 * now = now(tkf->base[idx]);
260 * smp_rmb();
261 * } while (seq != tkf->seq)
262 *
263 * As long as we update base[0] readers are forced off to
264 * base[1]. Once base[0] is updated readers are redirected to base[0]
265 * and the base[1] update takes place.
266 *
267 * So if a NMI hits the update of base[0] then it will use base[1]
268 * which is still consistent. In the worst case this can result is a
269 * slightly wrong timestamp (a few nanoseconds). See
270 * @ktime_get_mono_fast_ns.
271 */
272static void update_fast_timekeeper(struct timekeeper *tk)
273{
274 struct tk_read_base *base = tk_fast_mono.base;
275
276 /* Force readers off to base[1] */
277 raw_write_seqcount_latch(&tk_fast_mono.seq);
278
279 /* Update base[0] */
280 memcpy(base, &tk->tkr, sizeof(*base));
281
282 /* Force readers back to base[0] */
283 raw_write_seqcount_latch(&tk_fast_mono.seq);
284
285 /* Update base[1] */
286 memcpy(base + 1, base, sizeof(*base));
287}
288
289/**
290 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291 *
292 * This timestamp is not guaranteed to be monotonic across an update.
293 * The timestamp is calculated by:
294 *
295 * now = base_mono + clock_delta * slope
296 *
297 * So if the update lowers the slope, readers who are forced to the
298 * not yet updated second array are still using the old steeper slope.
299 *
300 * tmono
301 * ^
302 * | o n
303 * | o n
304 * | u
305 * | o
306 * |o
307 * |12345678---> reader order
308 *
309 * o = old slope
310 * u = update
311 * n = new slope
312 *
313 * So reader 6 will observe time going backwards versus reader 5.
314 *
315 * While other CPUs are likely to be able observe that, the only way
316 * for a CPU local observation is when an NMI hits in the middle of
317 * the update. Timestamps taken from that NMI context might be ahead
318 * of the following timestamps. Callers need to be aware of that and
319 * deal with it.
320 */
321u64 notrace ktime_get_mono_fast_ns(void)
322{
323 struct tk_read_base *tkr;
324 unsigned int seq;
325 u64 now;
326
327 do {
328 seq = raw_read_seqcount(&tk_fast_mono.seq);
329 tkr = tk_fast_mono.base + (seq & 0x01);
330 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331
332 } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333 return now;
334}
335EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336
c905fae4
TG
337#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338
339static inline void update_vsyscall(struct timekeeper *tk)
340{
0680eb1f 341 struct timespec xt, wm;
c905fae4 342
e2dff1ec 343 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f
JS
344 wm = timespec64_to_timespec(tk->wall_to_monotonic);
345 update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
d28ede83 346 tk->tkr.cycle_last);
c905fae4
TG
347}
348
349static inline void old_vsyscall_fixup(struct timekeeper *tk)
350{
351 s64 remainder;
352
353 /*
354 * Store only full nanoseconds into xtime_nsec after rounding
355 * it up and add the remainder to the error difference.
356 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
357 * by truncating the remainder in vsyscalls. However, it causes
358 * additional work to be done in timekeeping_adjust(). Once
359 * the vsyscall implementations are converted to use xtime_nsec
360 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
361 * users are removed, this can be killed.
362 */
d28ede83
TG
363 remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
364 tk->tkr.xtime_nsec -= remainder;
365 tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
c905fae4 366 tk->ntp_error += remainder << tk->ntp_error_shift;
d28ede83 367 tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
c905fae4
TG
368}
369#else
370#define old_vsyscall_fixup(tk)
371#endif
372
e0b306fe
MT
373static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
374
780427f0 375static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 376{
780427f0 377 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
378}
379
380/**
381 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
382 */
383int pvclock_gtod_register_notifier(struct notifier_block *nb)
384{
3fdb14fd 385 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
386 unsigned long flags;
387 int ret;
388
9a7a71b1 389 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 390 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 391 update_pvclock_gtod(tk, true);
9a7a71b1 392 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
393
394 return ret;
395}
396EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
397
398/**
399 * pvclock_gtod_unregister_notifier - unregister a pvclock
400 * timedata update listener
e0b306fe
MT
401 */
402int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
403{
e0b306fe
MT
404 unsigned long flags;
405 int ret;
406
9a7a71b1 407 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 408 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 409 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
410
411 return ret;
412}
413EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
414
7c032df5
TG
415/*
416 * Update the ktime_t based scalar nsec members of the timekeeper
417 */
418static inline void tk_update_ktime_data(struct timekeeper *tk)
419{
9e3680b1
HS
420 u64 seconds;
421 u32 nsec;
7c032df5
TG
422
423 /*
424 * The xtime based monotonic readout is:
425 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
426 * The ktime based monotonic readout is:
427 * nsec = base_mono + now();
428 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
429 */
9e3680b1
HS
430 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
431 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
432 tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
433
434 /* Update the monotonic raw base */
435 tk->base_raw = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
436
437 /*
438 * The sum of the nanoseconds portions of xtime and
439 * wall_to_monotonic can be greater/equal one second. Take
440 * this into account before updating tk->ktime_sec.
441 */
442 nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
443 if (nsec >= NSEC_PER_SEC)
444 seconds++;
445 tk->ktime_sec = seconds;
7c032df5
TG
446}
447
9a7a71b1 448/* must hold timekeeper_lock */
04397fe9 449static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 450{
04397fe9 451 if (action & TK_CLEAR_NTP) {
f726a697 452 tk->ntp_error = 0;
cc06268c
TG
453 ntp_clear();
454 }
48cdc135 455
7c032df5
TG
456 tk_update_ktime_data(tk);
457
9bf2419f
TG
458 update_vsyscall(tk);
459 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
460
04397fe9 461 if (action & TK_MIRROR)
3fdb14fd
TG
462 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
463 sizeof(tk_core.timekeeper));
4396e058
TG
464
465 update_fast_timekeeper(tk);
cc06268c
TG
466}
467
8524070b 468/**
155ec602 469 * timekeeping_forward_now - update clock to the current time
8524070b 470 *
9a055117
RZ
471 * Forward the current clock to update its state since the last call to
472 * update_wall_time(). This is useful before significant clock changes,
473 * as it avoids having to deal with this time offset explicitly.
8524070b 474 */
f726a697 475static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 476{
d28ede83 477 struct clocksource *clock = tk->tkr.clock;
3a978377 478 cycle_t cycle_now, delta;
9a055117 479 s64 nsec;
8524070b 480
d28ede83
TG
481 cycle_now = tk->tkr.read(clock);
482 delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
483 tk->tkr.cycle_last = cycle_now;
8524070b 484
d28ede83 485 tk->tkr.xtime_nsec += delta * tk->tkr.mult;
7d27558c 486
7b1f6207 487 /* If arch requires, add in get_arch_timeoffset() */
d28ede83 488 tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
7d27558c 489
f726a697 490 tk_normalize_xtime(tk);
2d42244a 491
3a978377 492 nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
7d489d15 493 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 494}
495
496/**
d6d29896 497 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 498 * @ts: pointer to the timespec to be set
499 *
1e817fb6
KC
500 * Updates the time of day in the timespec.
501 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 502 */
d6d29896 503int __getnstimeofday64(struct timespec64 *ts)
8524070b 504{
3fdb14fd 505 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 506 unsigned long seq;
1e75fa8b 507 s64 nsecs = 0;
8524070b 508
509 do {
3fdb14fd 510 seq = read_seqcount_begin(&tk_core.seq);
8524070b 511
4e250fdd 512 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 513 nsecs = timekeeping_get_ns(&tk->tkr);
8524070b 514
3fdb14fd 515 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 516
ec145bab 517 ts->tv_nsec = 0;
d6d29896 518 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
519
520 /*
521 * Do not bail out early, in case there were callers still using
522 * the value, even in the face of the WARN_ON.
523 */
524 if (unlikely(timekeeping_suspended))
525 return -EAGAIN;
526 return 0;
527}
d6d29896 528EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
529
530/**
d6d29896 531 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 532 * @ts: pointer to the timespec64 to be set
1e817fb6 533 *
5322e4c2 534 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 535 */
d6d29896 536void getnstimeofday64(struct timespec64 *ts)
1e817fb6 537{
d6d29896 538 WARN_ON(__getnstimeofday64(ts));
8524070b 539}
d6d29896 540EXPORT_SYMBOL(getnstimeofday64);
8524070b 541
951ed4d3
MS
542ktime_t ktime_get(void)
543{
3fdb14fd 544 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 545 unsigned int seq;
a016a5bd
TG
546 ktime_t base;
547 s64 nsecs;
951ed4d3
MS
548
549 WARN_ON(timekeeping_suspended);
550
551 do {
3fdb14fd 552 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 553 base = tk->tkr.base_mono;
0e5ac3a8 554 nsecs = timekeeping_get_ns(&tk->tkr);
951ed4d3 555
3fdb14fd 556 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 557
a016a5bd 558 return ktime_add_ns(base, nsecs);
951ed4d3
MS
559}
560EXPORT_SYMBOL_GPL(ktime_get);
561
0077dc60
TG
562static ktime_t *offsets[TK_OFFS_MAX] = {
563 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
564 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
565 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
566};
567
568ktime_t ktime_get_with_offset(enum tk_offsets offs)
569{
570 struct timekeeper *tk = &tk_core.timekeeper;
571 unsigned int seq;
572 ktime_t base, *offset = offsets[offs];
573 s64 nsecs;
574
575 WARN_ON(timekeeping_suspended);
576
577 do {
578 seq = read_seqcount_begin(&tk_core.seq);
d28ede83 579 base = ktime_add(tk->tkr.base_mono, *offset);
0e5ac3a8 580 nsecs = timekeeping_get_ns(&tk->tkr);
0077dc60
TG
581
582 } while (read_seqcount_retry(&tk_core.seq, seq));
583
584 return ktime_add_ns(base, nsecs);
585
586}
587EXPORT_SYMBOL_GPL(ktime_get_with_offset);
588
9a6b5197
TG
589/**
590 * ktime_mono_to_any() - convert mononotic time to any other time
591 * @tmono: time to convert.
592 * @offs: which offset to use
593 */
594ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
595{
596 ktime_t *offset = offsets[offs];
597 unsigned long seq;
598 ktime_t tconv;
599
600 do {
601 seq = read_seqcount_begin(&tk_core.seq);
602 tconv = ktime_add(tmono, *offset);
603 } while (read_seqcount_retry(&tk_core.seq, seq));
604
605 return tconv;
606}
607EXPORT_SYMBOL_GPL(ktime_mono_to_any);
608
f519b1a2
TG
609/**
610 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
611 */
612ktime_t ktime_get_raw(void)
613{
614 struct timekeeper *tk = &tk_core.timekeeper;
615 unsigned int seq;
616 ktime_t base;
617 s64 nsecs;
618
619 do {
620 seq = read_seqcount_begin(&tk_core.seq);
621 base = tk->base_raw;
622 nsecs = timekeeping_get_ns_raw(tk);
623
624 } while (read_seqcount_retry(&tk_core.seq, seq));
625
626 return ktime_add_ns(base, nsecs);
627}
628EXPORT_SYMBOL_GPL(ktime_get_raw);
629
951ed4d3 630/**
d6d29896 631 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
632 * @ts: pointer to timespec variable
633 *
634 * The function calculates the monotonic clock from the realtime
635 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 636 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 637 */
d6d29896 638void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 639{
3fdb14fd 640 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 641 struct timespec64 tomono;
ec145bab 642 s64 nsec;
951ed4d3 643 unsigned int seq;
951ed4d3
MS
644
645 WARN_ON(timekeeping_suspended);
646
647 do {
3fdb14fd 648 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 649 ts->tv_sec = tk->xtime_sec;
0e5ac3a8 650 nsec = timekeeping_get_ns(&tk->tkr);
4e250fdd 651 tomono = tk->wall_to_monotonic;
951ed4d3 652
3fdb14fd 653 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 654
d6d29896
TG
655 ts->tv_sec += tomono.tv_sec;
656 ts->tv_nsec = 0;
657 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 658}
d6d29896 659EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 660
9e3680b1
HS
661/**
662 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
663 *
664 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
665 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
666 * works on both 32 and 64 bit systems. On 32 bit systems the readout
667 * covers ~136 years of uptime which should be enough to prevent
668 * premature wrap arounds.
669 */
670time64_t ktime_get_seconds(void)
671{
672 struct timekeeper *tk = &tk_core.timekeeper;
673
674 WARN_ON(timekeeping_suspended);
675 return tk->ktime_sec;
676}
677EXPORT_SYMBOL_GPL(ktime_get_seconds);
678
dbe7aa62
HS
679/**
680 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
681 *
682 * Returns the wall clock seconds since 1970. This replaces the
683 * get_seconds() interface which is not y2038 safe on 32bit systems.
684 *
685 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
686 * 32bit systems the access must be protected with the sequence
687 * counter to provide "atomic" access to the 64bit tk->xtime_sec
688 * value.
689 */
690time64_t ktime_get_real_seconds(void)
691{
692 struct timekeeper *tk = &tk_core.timekeeper;
693 time64_t seconds;
694 unsigned int seq;
695
696 if (IS_ENABLED(CONFIG_64BIT))
697 return tk->xtime_sec;
698
699 do {
700 seq = read_seqcount_begin(&tk_core.seq);
701 seconds = tk->xtime_sec;
702
703 } while (read_seqcount_retry(&tk_core.seq, seq));
704
705 return seconds;
706}
707EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
708
e2c18e49
AG
709#ifdef CONFIG_NTP_PPS
710
711/**
712 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
713 * @ts_raw: pointer to the timespec to be set to raw monotonic time
714 * @ts_real: pointer to the timespec to be set to the time of day
715 *
716 * This function reads both the time of day and raw monotonic time at the
717 * same time atomically and stores the resulting timestamps in timespec
718 * format.
719 */
720void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
721{
3fdb14fd 722 struct timekeeper *tk = &tk_core.timekeeper;
e2c18e49
AG
723 unsigned long seq;
724 s64 nsecs_raw, nsecs_real;
725
726 WARN_ON_ONCE(timekeeping_suspended);
727
728 do {
3fdb14fd 729 seq = read_seqcount_begin(&tk_core.seq);
e2c18e49 730
7d489d15 731 *ts_raw = timespec64_to_timespec(tk->raw_time);
4e250fdd 732 ts_real->tv_sec = tk->xtime_sec;
1e75fa8b 733 ts_real->tv_nsec = 0;
e2c18e49 734
4e250fdd 735 nsecs_raw = timekeeping_get_ns_raw(tk);
0e5ac3a8 736 nsecs_real = timekeeping_get_ns(&tk->tkr);
e2c18e49 737
3fdb14fd 738 } while (read_seqcount_retry(&tk_core.seq, seq));
e2c18e49
AG
739
740 timespec_add_ns(ts_raw, nsecs_raw);
741 timespec_add_ns(ts_real, nsecs_real);
742}
743EXPORT_SYMBOL(getnstime_raw_and_real);
744
745#endif /* CONFIG_NTP_PPS */
746
8524070b 747/**
748 * do_gettimeofday - Returns the time of day in a timeval
749 * @tv: pointer to the timeval to be set
750 *
efd9ac86 751 * NOTE: Users should be converted to using getnstimeofday()
8524070b 752 */
753void do_gettimeofday(struct timeval *tv)
754{
d6d29896 755 struct timespec64 now;
8524070b 756
d6d29896 757 getnstimeofday64(&now);
8524070b 758 tv->tv_sec = now.tv_sec;
759 tv->tv_usec = now.tv_nsec/1000;
760}
8524070b 761EXPORT_SYMBOL(do_gettimeofday);
d239f49d 762
8524070b 763/**
21f7eca5 764 * do_settimeofday64 - Sets the time of day.
765 * @ts: pointer to the timespec64 variable containing the new time
8524070b 766 *
767 * Sets the time of day to the new time and update NTP and notify hrtimers
768 */
21f7eca5 769int do_settimeofday64(const struct timespec64 *ts)
8524070b 770{
3fdb14fd 771 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 772 struct timespec64 ts_delta, xt;
92c1d3ed 773 unsigned long flags;
8524070b 774
21f7eca5 775 if (!timespec64_valid_strict(ts))
8524070b 776 return -EINVAL;
777
9a7a71b1 778 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 779 write_seqcount_begin(&tk_core.seq);
8524070b 780
4e250fdd 781 timekeeping_forward_now(tk);
9a055117 782
4e250fdd 783 xt = tk_xtime(tk);
21f7eca5 784 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
785 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 786
7d489d15 787 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 788
21f7eca5 789 tk_set_xtime(tk, ts);
1e75fa8b 790
780427f0 791 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 792
3fdb14fd 793 write_seqcount_end(&tk_core.seq);
9a7a71b1 794 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 795
796 /* signal hrtimers about time change */
797 clock_was_set();
798
799 return 0;
800}
21f7eca5 801EXPORT_SYMBOL(do_settimeofday64);
8524070b 802
c528f7c6
JS
803/**
804 * timekeeping_inject_offset - Adds or subtracts from the current time.
805 * @tv: pointer to the timespec variable containing the offset
806 *
807 * Adds or subtracts an offset value from the current time.
808 */
809int timekeeping_inject_offset(struct timespec *ts)
810{
3fdb14fd 811 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 812 unsigned long flags;
7d489d15 813 struct timespec64 ts64, tmp;
4e8b1452 814 int ret = 0;
c528f7c6
JS
815
816 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
817 return -EINVAL;
818
7d489d15
JS
819 ts64 = timespec_to_timespec64(*ts);
820
9a7a71b1 821 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 822 write_seqcount_begin(&tk_core.seq);
c528f7c6 823
4e250fdd 824 timekeeping_forward_now(tk);
c528f7c6 825
4e8b1452 826 /* Make sure the proposed value is valid */
7d489d15
JS
827 tmp = timespec64_add(tk_xtime(tk), ts64);
828 if (!timespec64_valid_strict(&tmp)) {
4e8b1452
JS
829 ret = -EINVAL;
830 goto error;
831 }
1e75fa8b 832
7d489d15
JS
833 tk_xtime_add(tk, &ts64);
834 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 835
4e8b1452 836error: /* even if we error out, we forwarded the time, so call update */
780427f0 837 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 838
3fdb14fd 839 write_seqcount_end(&tk_core.seq);
9a7a71b1 840 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
841
842 /* signal hrtimers about time change */
843 clock_was_set();
844
4e8b1452 845 return ret;
c528f7c6
JS
846}
847EXPORT_SYMBOL(timekeeping_inject_offset);
848
cc244dda
JS
849
850/**
851 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
852 *
853 */
854s32 timekeeping_get_tai_offset(void)
855{
3fdb14fd 856 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
857 unsigned int seq;
858 s32 ret;
859
860 do {
3fdb14fd 861 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 862 ret = tk->tai_offset;
3fdb14fd 863 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
864
865 return ret;
866}
867
868/**
869 * __timekeeping_set_tai_offset - Lock free worker function
870 *
871 */
dd5d70e8 872static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
873{
874 tk->tai_offset = tai_offset;
04005f60 875 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
876}
877
878/**
879 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
880 *
881 */
882void timekeeping_set_tai_offset(s32 tai_offset)
883{
3fdb14fd 884 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
885 unsigned long flags;
886
9a7a71b1 887 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 888 write_seqcount_begin(&tk_core.seq);
cc244dda 889 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 890 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 891 write_seqcount_end(&tk_core.seq);
9a7a71b1 892 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 893 clock_was_set();
cc244dda
JS
894}
895
8524070b 896/**
897 * change_clocksource - Swaps clocksources if a new one is available
898 *
899 * Accumulates current time interval and initializes new clocksource
900 */
75c5158f 901static int change_clocksource(void *data)
8524070b 902{
3fdb14fd 903 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 904 struct clocksource *new, *old;
f695cf94 905 unsigned long flags;
8524070b 906
75c5158f 907 new = (struct clocksource *) data;
8524070b 908
9a7a71b1 909 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 910 write_seqcount_begin(&tk_core.seq);
f695cf94 911
4e250fdd 912 timekeeping_forward_now(tk);
09ac369c
TG
913 /*
914 * If the cs is in module, get a module reference. Succeeds
915 * for built-in code (owner == NULL) as well.
916 */
917 if (try_module_get(new->owner)) {
918 if (!new->enable || new->enable(new) == 0) {
d28ede83 919 old = tk->tkr.clock;
09ac369c
TG
920 tk_setup_internals(tk, new);
921 if (old->disable)
922 old->disable(old);
923 module_put(old->owner);
924 } else {
925 module_put(new->owner);
926 }
75c5158f 927 }
780427f0 928 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 929
3fdb14fd 930 write_seqcount_end(&tk_core.seq);
9a7a71b1 931 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 932
75c5158f
MS
933 return 0;
934}
8524070b 935
75c5158f
MS
936/**
937 * timekeeping_notify - Install a new clock source
938 * @clock: pointer to the clock source
939 *
940 * This function is called from clocksource.c after a new, better clock
941 * source has been registered. The caller holds the clocksource_mutex.
942 */
ba919d1c 943int timekeeping_notify(struct clocksource *clock)
75c5158f 944{
3fdb14fd 945 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 946
d28ede83 947 if (tk->tkr.clock == clock)
ba919d1c 948 return 0;
75c5158f 949 stop_machine(change_clocksource, clock, NULL);
8524070b 950 tick_clock_notify();
d28ede83 951 return tk->tkr.clock == clock ? 0 : -1;
8524070b 952}
75c5158f 953
2d42244a 954/**
cdba2ec5
JS
955 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
956 * @ts: pointer to the timespec64 to be set
2d42244a
JS
957 *
958 * Returns the raw monotonic time (completely un-modified by ntp)
959 */
cdba2ec5 960void getrawmonotonic64(struct timespec64 *ts)
2d42244a 961{
3fdb14fd 962 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 963 struct timespec64 ts64;
2d42244a
JS
964 unsigned long seq;
965 s64 nsecs;
2d42244a
JS
966
967 do {
3fdb14fd 968 seq = read_seqcount_begin(&tk_core.seq);
4e250fdd 969 nsecs = timekeeping_get_ns_raw(tk);
7d489d15 970 ts64 = tk->raw_time;
2d42244a 971
3fdb14fd 972 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 973
7d489d15 974 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 975 *ts = ts64;
2d42244a 976}
cdba2ec5
JS
977EXPORT_SYMBOL(getrawmonotonic64);
978
2d42244a 979
8524070b 980/**
cf4fc6cb 981 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 982 */
cf4fc6cb 983int timekeeping_valid_for_hres(void)
8524070b 984{
3fdb14fd 985 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 986 unsigned long seq;
987 int ret;
988
989 do {
3fdb14fd 990 seq = read_seqcount_begin(&tk_core.seq);
8524070b 991
d28ede83 992 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 993
3fdb14fd 994 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 995
996 return ret;
997}
998
98962465
JH
999/**
1000 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1001 */
1002u64 timekeeping_max_deferment(void)
1003{
3fdb14fd 1004 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1005 unsigned long seq;
1006 u64 ret;
42e71e81 1007
70471f2f 1008 do {
3fdb14fd 1009 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1010
d28ede83 1011 ret = tk->tkr.clock->max_idle_ns;
70471f2f 1012
3fdb14fd 1013 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1014
1015 return ret;
98962465
JH
1016}
1017
8524070b 1018/**
d4f587c6 1019 * read_persistent_clock - Return time from the persistent clock.
8524070b 1020 *
1021 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1022 * Reads the time from the battery backed persistent clock.
1023 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1024 *
1025 * XXX - Do be sure to remove it once all arches implement it.
1026 */
52f5684c 1027void __weak read_persistent_clock(struct timespec *ts)
8524070b 1028{
d4f587c6
MS
1029 ts->tv_sec = 0;
1030 ts->tv_nsec = 0;
8524070b 1031}
1032
23970e38
MS
1033/**
1034 * read_boot_clock - Return time of the system start.
1035 *
1036 * Weak dummy function for arches that do not yet support it.
1037 * Function to read the exact time the system has been started.
1038 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1039 *
1040 * XXX - Do be sure to remove it once all arches implement it.
1041 */
52f5684c 1042void __weak read_boot_clock(struct timespec *ts)
23970e38
MS
1043{
1044 ts->tv_sec = 0;
1045 ts->tv_nsec = 0;
1046}
1047
8524070b 1048/*
1049 * timekeeping_init - Initializes the clocksource and common timekeeping values
1050 */
1051void __init timekeeping_init(void)
1052{
3fdb14fd 1053 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1054 struct clocksource *clock;
8524070b 1055 unsigned long flags;
7d489d15
JS
1056 struct timespec64 now, boot, tmp;
1057 struct timespec ts;
31ade306 1058
7d489d15
JS
1059 read_persistent_clock(&ts);
1060 now = timespec_to_timespec64(ts);
1061 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1062 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1063 " Check your CMOS/BIOS settings.\n");
1064 now.tv_sec = 0;
1065 now.tv_nsec = 0;
31ade306
FT
1066 } else if (now.tv_sec || now.tv_nsec)
1067 persistent_clock_exist = true;
4e8b1452 1068
7d489d15
JS
1069 read_boot_clock(&ts);
1070 boot = timespec_to_timespec64(ts);
1071 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1072 pr_warn("WARNING: Boot clock returned invalid value!\n"
1073 " Check your CMOS/BIOS settings.\n");
1074 boot.tv_sec = 0;
1075 boot.tv_nsec = 0;
1076 }
8524070b 1077
9a7a71b1 1078 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1079 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1080 ntp_init();
1081
f1b82746 1082 clock = clocksource_default_clock();
a0f7d48b
MS
1083 if (clock->enable)
1084 clock->enable(clock);
4e250fdd 1085 tk_setup_internals(tk, clock);
8524070b 1086
4e250fdd
JS
1087 tk_set_xtime(tk, &now);
1088 tk->raw_time.tv_sec = 0;
1089 tk->raw_time.tv_nsec = 0;
f519b1a2 1090 tk->base_raw.tv64 = 0;
1e75fa8b 1091 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1092 boot = tk_xtime(tk);
1e75fa8b 1093
7d489d15 1094 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1095 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1096
f111adfd 1097 timekeeping_update(tk, TK_MIRROR);
48cdc135 1098
3fdb14fd 1099 write_seqcount_end(&tk_core.seq);
9a7a71b1 1100 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1101}
1102
8524070b 1103/* time in seconds when suspend began */
7d489d15 1104static struct timespec64 timekeeping_suspend_time;
8524070b 1105
304529b1
JS
1106/**
1107 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1108 * @delta: pointer to a timespec delta value
1109 *
1110 * Takes a timespec offset measuring a suspend interval and properly
1111 * adds the sleep offset to the timekeeping variables.
1112 */
f726a697 1113static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1114 struct timespec64 *delta)
304529b1 1115{
7d489d15 1116 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1117 printk_deferred(KERN_WARNING
1118 "__timekeeping_inject_sleeptime: Invalid "
1119 "sleep delta value!\n");
cb5de2f8
JS
1120 return;
1121 }
f726a697 1122 tk_xtime_add(tk, delta);
7d489d15 1123 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1124 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1125 tk_debug_account_sleep_time(delta);
304529b1
JS
1126}
1127
304529b1 1128/**
04d90890 1129 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1130 * @delta: pointer to a timespec64 delta value
304529b1
JS
1131 *
1132 * This hook is for architectures that cannot support read_persistent_clock
1133 * because their RTC/persistent clock is only accessible when irqs are enabled.
1134 *
1135 * This function should only be called by rtc_resume(), and allows
1136 * a suspend offset to be injected into the timekeeping values.
1137 */
04d90890 1138void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1139{
3fdb14fd 1140 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1141 unsigned long flags;
304529b1 1142
31ade306
FT
1143 /*
1144 * Make sure we don't set the clock twice, as timekeeping_resume()
1145 * already did it
1146 */
1147 if (has_persistent_clock())
304529b1
JS
1148 return;
1149
9a7a71b1 1150 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1151 write_seqcount_begin(&tk_core.seq);
70471f2f 1152
4e250fdd 1153 timekeeping_forward_now(tk);
304529b1 1154
04d90890 1155 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1156
780427f0 1157 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1158
3fdb14fd 1159 write_seqcount_end(&tk_core.seq);
9a7a71b1 1160 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1161
1162 /* signal hrtimers about time change */
1163 clock_was_set();
1164}
1165
8524070b 1166/**
1167 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1168 *
1169 * This is for the generic clocksource timekeeping.
1170 * xtime/wall_to_monotonic/jiffies/etc are
1171 * still managed by arch specific suspend/resume code.
1172 */
e1a85b2c 1173static void timekeeping_resume(void)
8524070b 1174{
3fdb14fd 1175 struct timekeeper *tk = &tk_core.timekeeper;
d28ede83 1176 struct clocksource *clock = tk->tkr.clock;
92c1d3ed 1177 unsigned long flags;
7d489d15
JS
1178 struct timespec64 ts_new, ts_delta;
1179 struct timespec tmp;
e445cf1c
FT
1180 cycle_t cycle_now, cycle_delta;
1181 bool suspendtime_found = false;
d4f587c6 1182
7d489d15
JS
1183 read_persistent_clock(&tmp);
1184 ts_new = timespec_to_timespec64(tmp);
8524070b 1185
adc78e6b 1186 clockevents_resume();
d10ff3fb
TG
1187 clocksource_resume();
1188
9a7a71b1 1189 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1190 write_seqcount_begin(&tk_core.seq);
8524070b 1191
e445cf1c
FT
1192 /*
1193 * After system resumes, we need to calculate the suspended time and
1194 * compensate it for the OS time. There are 3 sources that could be
1195 * used: Nonstop clocksource during suspend, persistent clock and rtc
1196 * device.
1197 *
1198 * One specific platform may have 1 or 2 or all of them, and the
1199 * preference will be:
1200 * suspend-nonstop clocksource -> persistent clock -> rtc
1201 * The less preferred source will only be tried if there is no better
1202 * usable source. The rtc part is handled separately in rtc core code.
1203 */
d28ede83 1204 cycle_now = tk->tkr.read(clock);
e445cf1c 1205 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
d28ede83 1206 cycle_now > tk->tkr.cycle_last) {
e445cf1c
FT
1207 u64 num, max = ULLONG_MAX;
1208 u32 mult = clock->mult;
1209 u32 shift = clock->shift;
1210 s64 nsec = 0;
1211
d28ede83
TG
1212 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1213 tk->tkr.mask);
e445cf1c
FT
1214
1215 /*
1216 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1217 * suspended time is too long. In that case we need do the
1218 * 64 bits math carefully
1219 */
1220 do_div(max, mult);
1221 if (cycle_delta > max) {
1222 num = div64_u64(cycle_delta, max);
1223 nsec = (((u64) max * mult) >> shift) * num;
1224 cycle_delta -= num * max;
1225 }
1226 nsec += ((u64) cycle_delta * mult) >> shift;
1227
7d489d15 1228 ts_delta = ns_to_timespec64(nsec);
e445cf1c 1229 suspendtime_found = true;
7d489d15
JS
1230 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1231 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
e445cf1c 1232 suspendtime_found = true;
8524070b 1233 }
e445cf1c
FT
1234
1235 if (suspendtime_found)
1236 __timekeeping_inject_sleeptime(tk, &ts_delta);
1237
1238 /* Re-base the last cycle value */
d28ede83 1239 tk->tkr.cycle_last = cycle_now;
4e250fdd 1240 tk->ntp_error = 0;
8524070b 1241 timekeeping_suspended = 0;
780427f0 1242 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1243 write_seqcount_end(&tk_core.seq);
9a7a71b1 1244 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1245
1246 touch_softlockup_watchdog();
1247
1248 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1249
1250 /* Resume hrtimers */
b12a03ce 1251 hrtimers_resume();
8524070b 1252}
1253
e1a85b2c 1254static int timekeeping_suspend(void)
8524070b 1255{
3fdb14fd 1256 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1257 unsigned long flags;
7d489d15
JS
1258 struct timespec64 delta, delta_delta;
1259 static struct timespec64 old_delta;
1260 struct timespec tmp;
8524070b 1261
7d489d15
JS
1262 read_persistent_clock(&tmp);
1263 timekeeping_suspend_time = timespec_to_timespec64(tmp);
3be90950 1264
0d6bd995
ZM
1265 /*
1266 * On some systems the persistent_clock can not be detected at
1267 * timekeeping_init by its return value, so if we see a valid
1268 * value returned, update the persistent_clock_exists flag.
1269 */
1270 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1271 persistent_clock_exist = true;
1272
9a7a71b1 1273 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1274 write_seqcount_begin(&tk_core.seq);
4e250fdd 1275 timekeeping_forward_now(tk);
8524070b 1276 timekeeping_suspended = 1;
cb33217b
JS
1277
1278 /*
1279 * To avoid drift caused by repeated suspend/resumes,
1280 * which each can add ~1 second drift error,
1281 * try to compensate so the difference in system time
1282 * and persistent_clock time stays close to constant.
1283 */
7d489d15
JS
1284 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1285 delta_delta = timespec64_sub(delta, old_delta);
cb33217b
JS
1286 if (abs(delta_delta.tv_sec) >= 2) {
1287 /*
1288 * if delta_delta is too large, assume time correction
1289 * has occured and set old_delta to the current delta.
1290 */
1291 old_delta = delta;
1292 } else {
1293 /* Otherwise try to adjust old_system to compensate */
1294 timekeeping_suspend_time =
7d489d15 1295 timespec64_add(timekeeping_suspend_time, delta_delta);
cb33217b 1296 }
330a1617
JS
1297
1298 timekeeping_update(tk, TK_MIRROR);
3fdb14fd 1299 write_seqcount_end(&tk_core.seq);
9a7a71b1 1300 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1301
1302 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 1303 clocksource_suspend();
adc78e6b 1304 clockevents_suspend();
8524070b 1305
1306 return 0;
1307}
1308
1309/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1310static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1311 .resume = timekeeping_resume,
1312 .suspend = timekeeping_suspend,
8524070b 1313};
1314
e1a85b2c 1315static int __init timekeeping_init_ops(void)
8524070b 1316{
e1a85b2c
RW
1317 register_syscore_ops(&timekeeping_syscore_ops);
1318 return 0;
8524070b 1319}
e1a85b2c 1320device_initcall(timekeeping_init_ops);
8524070b 1321
1322/*
dc491596 1323 * Apply a multiplier adjustment to the timekeeper
8524070b 1324 */
dc491596
JS
1325static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1326 s64 offset,
1327 bool negative,
1328 int adj_scale)
8524070b 1329{
dc491596
JS
1330 s64 interval = tk->cycle_interval;
1331 s32 mult_adj = 1;
8524070b 1332
dc491596
JS
1333 if (negative) {
1334 mult_adj = -mult_adj;
1335 interval = -interval;
1336 offset = -offset;
1d17d174 1337 }
dc491596
JS
1338 mult_adj <<= adj_scale;
1339 interval <<= adj_scale;
1340 offset <<= adj_scale;
8524070b 1341
c2bc1111
JS
1342 /*
1343 * So the following can be confusing.
1344 *
dc491596 1345 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1346 *
dc491596 1347 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1348 * have been appropriately scaled so the math is the same.
1349 *
1350 * The basic idea here is that we're increasing the multiplier
1351 * by one, this causes the xtime_interval to be incremented by
1352 * one cycle_interval. This is because:
1353 * xtime_interval = cycle_interval * mult
1354 * So if mult is being incremented by one:
1355 * xtime_interval = cycle_interval * (mult + 1)
1356 * Its the same as:
1357 * xtime_interval = (cycle_interval * mult) + cycle_interval
1358 * Which can be shortened to:
1359 * xtime_interval += cycle_interval
1360 *
1361 * So offset stores the non-accumulated cycles. Thus the current
1362 * time (in shifted nanoseconds) is:
1363 * now = (offset * adj) + xtime_nsec
1364 * Now, even though we're adjusting the clock frequency, we have
1365 * to keep time consistent. In other words, we can't jump back
1366 * in time, and we also want to avoid jumping forward in time.
1367 *
1368 * So given the same offset value, we need the time to be the same
1369 * both before and after the freq adjustment.
1370 * now = (offset * adj_1) + xtime_nsec_1
1371 * now = (offset * adj_2) + xtime_nsec_2
1372 * So:
1373 * (offset * adj_1) + xtime_nsec_1 =
1374 * (offset * adj_2) + xtime_nsec_2
1375 * And we know:
1376 * adj_2 = adj_1 + 1
1377 * So:
1378 * (offset * adj_1) + xtime_nsec_1 =
1379 * (offset * (adj_1+1)) + xtime_nsec_2
1380 * (offset * adj_1) + xtime_nsec_1 =
1381 * (offset * adj_1) + offset + xtime_nsec_2
1382 * Canceling the sides:
1383 * xtime_nsec_1 = offset + xtime_nsec_2
1384 * Which gives us:
1385 * xtime_nsec_2 = xtime_nsec_1 - offset
1386 * Which simplfies to:
1387 * xtime_nsec -= offset
1388 *
1389 * XXX - TODO: Doc ntp_error calculation.
1390 */
cb2aa634 1391 if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
6067dc5a 1392 /* NTP adjustment caused clocksource mult overflow */
1393 WARN_ON_ONCE(1);
1394 return;
1395 }
1396
dc491596 1397 tk->tkr.mult += mult_adj;
f726a697 1398 tk->xtime_interval += interval;
d28ede83 1399 tk->tkr.xtime_nsec -= offset;
f726a697 1400 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1401}
1402
1403/*
1404 * Calculate the multiplier adjustment needed to match the frequency
1405 * specified by NTP
1406 */
1407static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1408 s64 offset)
1409{
1410 s64 interval = tk->cycle_interval;
1411 s64 xinterval = tk->xtime_interval;
1412 s64 tick_error;
1413 bool negative;
1414 u32 adj;
1415
1416 /* Remove any current error adj from freq calculation */
1417 if (tk->ntp_err_mult)
1418 xinterval -= tk->cycle_interval;
1419
375f45b5
JS
1420 tk->ntp_tick = ntp_tick_length();
1421
dc491596
JS
1422 /* Calculate current error per tick */
1423 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1424 tick_error -= (xinterval + tk->xtime_remainder);
1425
1426 /* Don't worry about correcting it if its small */
1427 if (likely((tick_error >= 0) && (tick_error <= interval)))
1428 return;
1429
1430 /* preserve the direction of correction */
1431 negative = (tick_error < 0);
1432
1433 /* Sort out the magnitude of the correction */
1434 tick_error = abs(tick_error);
1435 for (adj = 0; tick_error > interval; adj++)
1436 tick_error >>= 1;
1437
1438 /* scale the corrections */
1439 timekeeping_apply_adjustment(tk, offset, negative, adj);
1440}
1441
1442/*
1443 * Adjust the timekeeper's multiplier to the correct frequency
1444 * and also to reduce the accumulated error value.
1445 */
1446static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1447{
1448 /* Correct for the current frequency error */
1449 timekeeping_freqadjust(tk, offset);
1450
1451 /* Next make a small adjustment to fix any cumulative error */
1452 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1453 tk->ntp_err_mult = 1;
1454 timekeeping_apply_adjustment(tk, offset, 0, 0);
1455 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1456 /* Undo any existing error adjustment */
1457 timekeeping_apply_adjustment(tk, offset, 1, 0);
1458 tk->ntp_err_mult = 0;
1459 }
1460
1461 if (unlikely(tk->tkr.clock->maxadj &&
659bc17b 1462 (abs(tk->tkr.mult - tk->tkr.clock->mult)
1463 > tk->tkr.clock->maxadj))) {
dc491596
JS
1464 printk_once(KERN_WARNING
1465 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1466 tk->tkr.clock->name, (long)tk->tkr.mult,
1467 (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1468 }
2a8c0883
JS
1469
1470 /*
1471 * It may be possible that when we entered this function, xtime_nsec
1472 * was very small. Further, if we're slightly speeding the clocksource
1473 * in the code above, its possible the required corrective factor to
1474 * xtime_nsec could cause it to underflow.
1475 *
1476 * Now, since we already accumulated the second, cannot simply roll
1477 * the accumulated second back, since the NTP subsystem has been
1478 * notified via second_overflow. So instead we push xtime_nsec forward
1479 * by the amount we underflowed, and add that amount into the error.
1480 *
1481 * We'll correct this error next time through this function, when
1482 * xtime_nsec is not as small.
1483 */
d28ede83
TG
1484 if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1485 s64 neg = -(s64)tk->tkr.xtime_nsec;
1486 tk->tkr.xtime_nsec = 0;
f726a697 1487 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1488 }
8524070b 1489}
1490
1f4f9487
JS
1491/**
1492 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1493 *
1494 * Helper function that accumulates a the nsecs greater then a second
1495 * from the xtime_nsec field to the xtime_secs field.
1496 * It also calls into the NTP code to handle leapsecond processing.
1497 *
1498 */
780427f0 1499static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1500{
d28ede83 1501 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
5258d3f2 1502 unsigned int clock_set = 0;
1f4f9487 1503
d28ede83 1504 while (tk->tkr.xtime_nsec >= nsecps) {
1f4f9487
JS
1505 int leap;
1506
d28ede83 1507 tk->tkr.xtime_nsec -= nsecps;
1f4f9487
JS
1508 tk->xtime_sec++;
1509
1510 /* Figure out if its a leap sec and apply if needed */
1511 leap = second_overflow(tk->xtime_sec);
6d0ef903 1512 if (unlikely(leap)) {
7d489d15 1513 struct timespec64 ts;
6d0ef903
JS
1514
1515 tk->xtime_sec += leap;
1f4f9487 1516
6d0ef903
JS
1517 ts.tv_sec = leap;
1518 ts.tv_nsec = 0;
1519 tk_set_wall_to_mono(tk,
7d489d15 1520 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1521
cc244dda
JS
1522 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1523
5258d3f2 1524 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1525 }
1f4f9487 1526 }
5258d3f2 1527 return clock_set;
1f4f9487
JS
1528}
1529
a092ff0f 1530/**
1531 * logarithmic_accumulation - shifted accumulation of cycles
1532 *
1533 * This functions accumulates a shifted interval of cycles into
1534 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1535 * loop.
1536 *
1537 * Returns the unconsumed cycles.
1538 */
f726a697 1539static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
1540 u32 shift,
1541 unsigned int *clock_set)
a092ff0f 1542{
23a9537a 1543 cycle_t interval = tk->cycle_interval << shift;
deda2e81 1544 u64 raw_nsecs;
a092ff0f 1545
f726a697 1546 /* If the offset is smaller then a shifted interval, do nothing */
23a9537a 1547 if (offset < interval)
a092ff0f 1548 return offset;
1549
1550 /* Accumulate one shifted interval */
23a9537a 1551 offset -= interval;
d28ede83 1552 tk->tkr.cycle_last += interval;
a092ff0f 1553
d28ede83 1554 tk->tkr.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1555 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1556
deda2e81 1557 /* Accumulate raw time */
5b3900cd 1558 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1559 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1560 if (raw_nsecs >= NSEC_PER_SEC) {
1561 u64 raw_secs = raw_nsecs;
1562 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1563 tk->raw_time.tv_sec += raw_secs;
a092ff0f 1564 }
f726a697 1565 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 1566
1567 /* Accumulate error between NTP and clock interval */
375f45b5 1568 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
1569 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1570 (tk->ntp_error_shift + shift);
a092ff0f 1571
1572 return offset;
1573}
1574
8524070b 1575/**
1576 * update_wall_time - Uses the current clocksource to increment the wall time
1577 *
8524070b 1578 */
47a1b796 1579void update_wall_time(void)
8524070b 1580{
3fdb14fd 1581 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 1582 struct timekeeper *tk = &shadow_timekeeper;
8524070b 1583 cycle_t offset;
a092ff0f 1584 int shift = 0, maxshift;
5258d3f2 1585 unsigned int clock_set = 0;
70471f2f
JS
1586 unsigned long flags;
1587
9a7a71b1 1588 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 1589
1590 /* Make sure we're fully resumed: */
1591 if (unlikely(timekeeping_suspended))
70471f2f 1592 goto out;
8524070b 1593
592913ec 1594#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 1595 offset = real_tk->cycle_interval;
592913ec 1596#else
d28ede83
TG
1597 offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1598 tk->tkr.cycle_last, tk->tkr.mask);
8524070b 1599#endif
8524070b 1600
bf2ac312 1601 /* Check if there's really nothing to do */
48cdc135 1602 if (offset < real_tk->cycle_interval)
bf2ac312
JS
1603 goto out;
1604
a092ff0f 1605 /*
1606 * With NO_HZ we may have to accumulate many cycle_intervals
1607 * (think "ticks") worth of time at once. To do this efficiently,
1608 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1609 * that is smaller than the offset. We then accumulate that
a092ff0f 1610 * chunk in one go, and then try to consume the next smaller
1611 * doubled multiple.
8524070b 1612 */
4e250fdd 1613 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 1614 shift = max(0, shift);
88b28adf 1615 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1616 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1617 shift = min(shift, maxshift);
4e250fdd 1618 while (offset >= tk->cycle_interval) {
5258d3f2
JS
1619 offset = logarithmic_accumulation(tk, offset, shift,
1620 &clock_set);
4e250fdd 1621 if (offset < tk->cycle_interval<<shift)
830ec045 1622 shift--;
8524070b 1623 }
1624
1625 /* correct the clock when NTP error is too big */
4e250fdd 1626 timekeeping_adjust(tk, offset);
8524070b 1627
6a867a39 1628 /*
92bb1fcf
JS
1629 * XXX This can be killed once everyone converts
1630 * to the new update_vsyscall.
1631 */
1632 old_vsyscall_fixup(tk);
8524070b 1633
6a867a39
JS
1634 /*
1635 * Finally, make sure that after the rounding
1e75fa8b 1636 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1637 */
5258d3f2 1638 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 1639
3fdb14fd 1640 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
1641 /*
1642 * Update the real timekeeper.
1643 *
1644 * We could avoid this memcpy by switching pointers, but that
1645 * requires changes to all other timekeeper usage sites as
1646 * well, i.e. move the timekeeper pointer getter into the
1647 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 1648 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
1649 * updating.
1650 */
1651 memcpy(real_tk, tk, sizeof(*tk));
5258d3f2 1652 timekeeping_update(real_tk, clock_set);
3fdb14fd 1653 write_seqcount_end(&tk_core.seq);
ca4523cd 1654out:
9a7a71b1 1655 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 1656 if (clock_set)
cab5e127
JS
1657 /* Have to call _delayed version, since in irq context*/
1658 clock_was_set_delayed();
8524070b 1659}
7c3f1a57
TJ
1660
1661/**
d08c0cdd
JS
1662 * getboottime64 - Return the real time of system boot.
1663 * @ts: pointer to the timespec64 to be set
7c3f1a57 1664 *
d08c0cdd 1665 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
1666 *
1667 * This is based on the wall_to_monotonic offset and the total suspend
1668 * time. Calls to settimeofday will affect the value returned (which
1669 * basically means that however wrong your real time clock is at boot time,
1670 * you get the right time here).
1671 */
d08c0cdd 1672void getboottime64(struct timespec64 *ts)
7c3f1a57 1673{
3fdb14fd 1674 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
1675 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1676
d08c0cdd 1677 *ts = ktime_to_timespec64(t);
7c3f1a57 1678}
d08c0cdd 1679EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 1680
17c38b74 1681unsigned long get_seconds(void)
1682{
3fdb14fd 1683 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
1684
1685 return tk->xtime_sec;
17c38b74 1686}
1687EXPORT_SYMBOL(get_seconds);
1688
da15cfda 1689struct timespec __current_kernel_time(void)
1690{
3fdb14fd 1691 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1692
7d489d15 1693 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 1694}
17c38b74 1695
2c6b47de 1696struct timespec current_kernel_time(void)
1697{
3fdb14fd 1698 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1699 struct timespec64 now;
2c6b47de 1700 unsigned long seq;
1701
1702 do {
3fdb14fd 1703 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1704
4e250fdd 1705 now = tk_xtime(tk);
3fdb14fd 1706 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 1707
7d489d15 1708 return timespec64_to_timespec(now);
2c6b47de 1709}
2c6b47de 1710EXPORT_SYMBOL(current_kernel_time);
da15cfda 1711
334334b5 1712struct timespec64 get_monotonic_coarse64(void)
da15cfda 1713{
3fdb14fd 1714 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1715 struct timespec64 now, mono;
da15cfda 1716 unsigned long seq;
1717
1718 do {
3fdb14fd 1719 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 1720
4e250fdd
JS
1721 now = tk_xtime(tk);
1722 mono = tk->wall_to_monotonic;
3fdb14fd 1723 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 1724
7d489d15 1725 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 1726 now.tv_nsec + mono.tv_nsec);
7d489d15 1727
334334b5 1728 return now;
da15cfda 1729}
871cf1e5
TH
1730
1731/*
d6ad4187 1732 * Must hold jiffies_lock
871cf1e5
TH
1733 */
1734void do_timer(unsigned long ticks)
1735{
1736 jiffies_64 += ticks;
871cf1e5
TH
1737 calc_global_load(ticks);
1738}
48cf76f7
TH
1739
1740/**
76f41088
JS
1741 * ktime_get_update_offsets_tick - hrtimer helper
1742 * @offs_real: pointer to storage for monotonic -> realtime offset
1743 * @offs_boot: pointer to storage for monotonic -> boottime offset
1744 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1745 *
1746 * Returns monotonic time at last tick and various offsets
48cf76f7 1747 */
76f41088
JS
1748ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1749 ktime_t *offs_tai)
48cf76f7 1750{
3fdb14fd 1751 struct timekeeper *tk = &tk_core.timekeeper;
76f41088 1752 unsigned int seq;
48064f5f
TG
1753 ktime_t base;
1754 u64 nsecs;
48cf76f7
TH
1755
1756 do {
3fdb14fd 1757 seq = read_seqcount_begin(&tk_core.seq);
76f41088 1758
d28ede83
TG
1759 base = tk->tkr.base_mono;
1760 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
48064f5f 1761
76f41088
JS
1762 *offs_real = tk->offs_real;
1763 *offs_boot = tk->offs_boot;
1764 *offs_tai = tk->offs_tai;
3fdb14fd 1765 } while (read_seqcount_retry(&tk_core.seq, seq));
76f41088 1766
48064f5f 1767 return ktime_add_ns(base, nsecs);
48cf76f7 1768}
f0af911a 1769
f6c06abf
TG
1770#ifdef CONFIG_HIGH_RES_TIMERS
1771/**
76f41088 1772 * ktime_get_update_offsets_now - hrtimer helper
f6c06abf
TG
1773 * @offs_real: pointer to storage for monotonic -> realtime offset
1774 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 1775 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf
TG
1776 *
1777 * Returns current monotonic time and updates the offsets
b7bc50e4 1778 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 1779 */
76f41088 1780ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
90adda98 1781 ktime_t *offs_tai)
f6c06abf 1782{
3fdb14fd 1783 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 1784 unsigned int seq;
a37c0aad
TG
1785 ktime_t base;
1786 u64 nsecs;
f6c06abf
TG
1787
1788 do {
3fdb14fd 1789 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 1790
d28ede83 1791 base = tk->tkr.base_mono;
0e5ac3a8 1792 nsecs = timekeeping_get_ns(&tk->tkr);
f6c06abf 1793
4e250fdd
JS
1794 *offs_real = tk->offs_real;
1795 *offs_boot = tk->offs_boot;
90adda98 1796 *offs_tai = tk->offs_tai;
3fdb14fd 1797 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 1798
a37c0aad 1799 return ktime_add_ns(base, nsecs);
f6c06abf
TG
1800}
1801#endif
1802
aa6f9c59
JS
1803/**
1804 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1805 */
1806int do_adjtimex(struct timex *txc)
1807{
3fdb14fd 1808 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 1809 unsigned long flags;
7d489d15 1810 struct timespec64 ts;
4e8f8b34 1811 s32 orig_tai, tai;
e4085693
JS
1812 int ret;
1813
1814 /* Validate the data before disabling interrupts */
1815 ret = ntp_validate_timex(txc);
1816 if (ret)
1817 return ret;
1818
cef90377
JS
1819 if (txc->modes & ADJ_SETOFFSET) {
1820 struct timespec delta;
1821 delta.tv_sec = txc->time.tv_sec;
1822 delta.tv_nsec = txc->time.tv_usec;
1823 if (!(txc->modes & ADJ_NANO))
1824 delta.tv_nsec *= 1000;
1825 ret = timekeeping_inject_offset(&delta);
1826 if (ret)
1827 return ret;
1828 }
1829
d6d29896 1830 getnstimeofday64(&ts);
87ace39b 1831
06c017fd 1832 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1833 write_seqcount_begin(&tk_core.seq);
06c017fd 1834
4e8f8b34 1835 orig_tai = tai = tk->tai_offset;
87ace39b 1836 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 1837
4e8f8b34
JS
1838 if (tai != orig_tai) {
1839 __timekeeping_set_tai_offset(tk, tai);
f55c0760 1840 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 1841 }
3fdb14fd 1842 write_seqcount_end(&tk_core.seq);
06c017fd
JS
1843 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1844
6fdda9a9
JS
1845 if (tai != orig_tai)
1846 clock_was_set();
1847
7bd36014
JS
1848 ntp_notify_cmos_timer();
1849
87ace39b
JS
1850 return ret;
1851}
aa6f9c59
JS
1852
1853#ifdef CONFIG_NTP_PPS
1854/**
1855 * hardpps() - Accessor function to NTP __hardpps function
1856 */
1857void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1858{
06c017fd
JS
1859 unsigned long flags;
1860
1861 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1862 write_seqcount_begin(&tk_core.seq);
06c017fd 1863
aa6f9c59 1864 __hardpps(phase_ts, raw_ts);
06c017fd 1865
3fdb14fd 1866 write_seqcount_end(&tk_core.seq);
06c017fd 1867 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
1868}
1869EXPORT_SYMBOL(hardpps);
1870#endif
1871
f0af911a
TH
1872/**
1873 * xtime_update() - advances the timekeeping infrastructure
1874 * @ticks: number of ticks, that have elapsed since the last call.
1875 *
1876 * Must be called with interrupts disabled.
1877 */
1878void xtime_update(unsigned long ticks)
1879{
d6ad4187 1880 write_seqlock(&jiffies_lock);
f0af911a 1881 do_timer(ticks);
d6ad4187 1882 write_sequnlock(&jiffies_lock);
47a1b796 1883 update_wall_time();
f0af911a 1884}
This page took 0.700483 seconds and 5 git commands to generate.