tracing: update sample event documentation
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
7a8e76a3
SR
16#include <linux/init.h>
17#include <linux/hash.h>
18#include <linux/list.h>
554f786e 19#include <linux/cpu.h>
7a8e76a3
SR
20#include <linux/fs.h>
21
182e9f5f
SR
22#include "trace.h"
23
d1b182a8
SR
24/*
25 * The ring buffer header is special. We must manually up keep it.
26 */
27int ring_buffer_print_entry_header(struct trace_seq *s)
28{
29 int ret;
30
334d4169
LJ
31 ret = trace_seq_printf(s, "# compressed entry header\n");
32 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
33 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
34 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
35 ret = trace_seq_printf(s, "\n");
36 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
37 RINGBUF_TYPE_PADDING);
38 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
40 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
41 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
42
43 return ret;
44}
45
5cc98548
SR
46/*
47 * The ring buffer is made up of a list of pages. A separate list of pages is
48 * allocated for each CPU. A writer may only write to a buffer that is
49 * associated with the CPU it is currently executing on. A reader may read
50 * from any per cpu buffer.
51 *
52 * The reader is special. For each per cpu buffer, the reader has its own
53 * reader page. When a reader has read the entire reader page, this reader
54 * page is swapped with another page in the ring buffer.
55 *
56 * Now, as long as the writer is off the reader page, the reader can do what
57 * ever it wants with that page. The writer will never write to that page
58 * again (as long as it is out of the ring buffer).
59 *
60 * Here's some silly ASCII art.
61 *
62 * +------+
63 * |reader| RING BUFFER
64 * |page |
65 * +------+ +---+ +---+ +---+
66 * | |-->| |-->| |
67 * +---+ +---+ +---+
68 * ^ |
69 * | |
70 * +---------------+
71 *
72 *
73 * +------+
74 * |reader| RING BUFFER
75 * |page |------------------v
76 * +------+ +---+ +---+ +---+
77 * | |-->| |-->| |
78 * +---+ +---+ +---+
79 * ^ |
80 * | |
81 * +---------------+
82 *
83 *
84 * +------+
85 * |reader| RING BUFFER
86 * |page |------------------v
87 * +------+ +---+ +---+ +---+
88 * ^ | |-->| |-->| |
89 * | +---+ +---+ +---+
90 * | |
91 * | |
92 * +------------------------------+
93 *
94 *
95 * +------+
96 * |buffer| RING BUFFER
97 * |page |------------------v
98 * +------+ +---+ +---+ +---+
99 * ^ | | | |-->| |
100 * | New +---+ +---+ +---+
101 * | Reader------^ |
102 * | page |
103 * +------------------------------+
104 *
105 *
106 * After we make this swap, the reader can hand this page off to the splice
107 * code and be done with it. It can even allocate a new page if it needs to
108 * and swap that into the ring buffer.
109 *
110 * We will be using cmpxchg soon to make all this lockless.
111 *
112 */
113
033601a3
SR
114/*
115 * A fast way to enable or disable all ring buffers is to
116 * call tracing_on or tracing_off. Turning off the ring buffers
117 * prevents all ring buffers from being recorded to.
118 * Turning this switch on, makes it OK to write to the
119 * ring buffer, if the ring buffer is enabled itself.
120 *
121 * There's three layers that must be on in order to write
122 * to the ring buffer.
123 *
124 * 1) This global flag must be set.
125 * 2) The ring buffer must be enabled for recording.
126 * 3) The per cpu buffer must be enabled for recording.
127 *
128 * In case of an anomaly, this global flag has a bit set that
129 * will permantly disable all ring buffers.
130 */
131
132/*
133 * Global flag to disable all recording to ring buffers
134 * This has two bits: ON, DISABLED
135 *
136 * ON DISABLED
137 * ---- ----------
138 * 0 0 : ring buffers are off
139 * 1 0 : ring buffers are on
140 * X 1 : ring buffers are permanently disabled
141 */
142
143enum {
144 RB_BUFFERS_ON_BIT = 0,
145 RB_BUFFERS_DISABLED_BIT = 1,
146};
147
148enum {
149 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
150 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
151};
152
5e39841c 153static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 154
474d32b6
SR
155#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
a3583244
SR
157/**
158 * tracing_on - enable all tracing buffers
159 *
160 * This function enables all tracing buffers that may have been
161 * disabled with tracing_off.
162 */
163void tracing_on(void)
164{
033601a3 165 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 166}
c4f50183 167EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
168
169/**
170 * tracing_off - turn off all tracing buffers
171 *
172 * This function stops all tracing buffers from recording data.
173 * It does not disable any overhead the tracers themselves may
174 * be causing. This function simply causes all recording to
175 * the ring buffers to fail.
176 */
177void tracing_off(void)
178{
033601a3
SR
179 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180}
c4f50183 181EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
182
183/**
184 * tracing_off_permanent - permanently disable ring buffers
185 *
186 * This function, once called, will disable all ring buffers
c3706f00 187 * permanently.
033601a3
SR
188 */
189void tracing_off_permanent(void)
190{
191 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
192}
193
988ae9d6
SR
194/**
195 * tracing_is_on - show state of ring buffers enabled
196 */
197int tracing_is_on(void)
198{
199 return ring_buffer_flags == RB_BUFFERS_ON;
200}
201EXPORT_SYMBOL_GPL(tracing_is_on);
202
d06bbd66
IM
203#include "trace.h"
204
e3d6bf0a 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 206#define RB_ALIGNMENT 4U
334d4169 207#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 208#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169
LJ
209
210/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
211#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
212
213enum {
214 RB_LEN_TIME_EXTEND = 8,
215 RB_LEN_TIME_STAMP = 16,
216};
217
2d622719
TZ
218static inline int rb_null_event(struct ring_buffer_event *event)
219{
334d4169
LJ
220 return event->type_len == RINGBUF_TYPE_PADDING
221 && event->time_delta == 0;
2d622719
TZ
222}
223
224static inline int rb_discarded_event(struct ring_buffer_event *event)
225{
334d4169 226 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
2d622719
TZ
227}
228
229static void rb_event_set_padding(struct ring_buffer_event *event)
230{
334d4169 231 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
232 event->time_delta = 0;
233}
234
34a148bf 235static unsigned
2d622719 236rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
237{
238 unsigned length;
239
334d4169
LJ
240 if (event->type_len)
241 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
242 else
243 length = event->array[0];
244 return length + RB_EVNT_HDR_SIZE;
245}
246
247/* inline for ring buffer fast paths */
248static unsigned
249rb_event_length(struct ring_buffer_event *event)
250{
334d4169 251 switch (event->type_len) {
7a8e76a3 252 case RINGBUF_TYPE_PADDING:
2d622719
TZ
253 if (rb_null_event(event))
254 /* undefined */
255 return -1;
334d4169 256 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
257
258 case RINGBUF_TYPE_TIME_EXTEND:
259 return RB_LEN_TIME_EXTEND;
260
261 case RINGBUF_TYPE_TIME_STAMP:
262 return RB_LEN_TIME_STAMP;
263
264 case RINGBUF_TYPE_DATA:
2d622719 265 return rb_event_data_length(event);
7a8e76a3
SR
266 default:
267 BUG();
268 }
269 /* not hit */
270 return 0;
271}
272
273/**
274 * ring_buffer_event_length - return the length of the event
275 * @event: the event to get the length of
276 */
277unsigned ring_buffer_event_length(struct ring_buffer_event *event)
278{
465634ad 279 unsigned length = rb_event_length(event);
334d4169 280 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
281 return length;
282 length -= RB_EVNT_HDR_SIZE;
283 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
284 length -= sizeof(event->array[0]);
285 return length;
7a8e76a3 286}
c4f50183 287EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
288
289/* inline for ring buffer fast paths */
34a148bf 290static void *
7a8e76a3
SR
291rb_event_data(struct ring_buffer_event *event)
292{
334d4169 293 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 294 /* If length is in len field, then array[0] has the data */
334d4169 295 if (event->type_len)
7a8e76a3
SR
296 return (void *)&event->array[0];
297 /* Otherwise length is in array[0] and array[1] has the data */
298 return (void *)&event->array[1];
299}
300
301/**
302 * ring_buffer_event_data - return the data of the event
303 * @event: the event to get the data from
304 */
305void *ring_buffer_event_data(struct ring_buffer_event *event)
306{
307 return rb_event_data(event);
308}
c4f50183 309EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
310
311#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 312 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
313
314#define TS_SHIFT 27
315#define TS_MASK ((1ULL << TS_SHIFT) - 1)
316#define TS_DELTA_TEST (~TS_MASK)
317
abc9b56d 318struct buffer_data_page {
e4c2ce82 319 u64 time_stamp; /* page time stamp */
c3706f00 320 local_t commit; /* write committed index */
abc9b56d
SR
321 unsigned char data[]; /* data of buffer page */
322};
323
324struct buffer_page {
778c55d4 325 struct list_head list; /* list of buffer pages */
abc9b56d 326 local_t write; /* index for next write */
6f807acd 327 unsigned read; /* index for next read */
778c55d4 328 local_t entries; /* entries on this page */
abc9b56d 329 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
330};
331
044fa782 332static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 333{
044fa782 334 local_set(&bpage->commit, 0);
abc9b56d
SR
335}
336
474d32b6
SR
337/**
338 * ring_buffer_page_len - the size of data on the page.
339 * @page: The page to read
340 *
341 * Returns the amount of data on the page, including buffer page header.
342 */
ef7a4a16
SR
343size_t ring_buffer_page_len(void *page)
344{
474d32b6
SR
345 return local_read(&((struct buffer_data_page *)page)->commit)
346 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
347}
348
ed56829c
SR
349/*
350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351 * this issue out.
352 */
34a148bf 353static void free_buffer_page(struct buffer_page *bpage)
ed56829c 354{
34a148bf 355 free_page((unsigned long)bpage->page);
e4c2ce82 356 kfree(bpage);
ed56829c
SR
357}
358
7a8e76a3
SR
359/*
360 * We need to fit the time_stamp delta into 27 bits.
361 */
362static inline int test_time_stamp(u64 delta)
363{
364 if (delta & TS_DELTA_TEST)
365 return 1;
366 return 0;
367}
368
474d32b6 369#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 370
be957c44
SR
371/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373
ea05b57c
SR
374/* Max number of timestamps that can fit on a page */
375#define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
376
d1b182a8
SR
377int ring_buffer_print_page_header(struct trace_seq *s)
378{
379 struct buffer_data_page field;
380 int ret;
381
382 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
383 "offset:0;\tsize:%u;\n",
384 (unsigned int)sizeof(field.time_stamp));
385
386 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
387 "offset:%u;\tsize:%u;\n",
388 (unsigned int)offsetof(typeof(field), commit),
389 (unsigned int)sizeof(field.commit));
390
391 ret = trace_seq_printf(s, "\tfield: char data;\t"
392 "offset:%u;\tsize:%u;\n",
393 (unsigned int)offsetof(typeof(field), data),
394 (unsigned int)BUF_PAGE_SIZE);
395
396 return ret;
397}
398
7a8e76a3
SR
399/*
400 * head_page == tail_page && head == tail then buffer is empty.
401 */
402struct ring_buffer_per_cpu {
403 int cpu;
404 struct ring_buffer *buffer;
f83c9d0f 405 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 406 raw_spinlock_t lock;
7a8e76a3
SR
407 struct lock_class_key lock_key;
408 struct list_head pages;
6f807acd
SR
409 struct buffer_page *head_page; /* read from head */
410 struct buffer_page *tail_page; /* write to tail */
c3706f00 411 struct buffer_page *commit_page; /* committed pages */
d769041f 412 struct buffer_page *reader_page;
f0d2c681
SR
413 unsigned long nmi_dropped;
414 unsigned long commit_overrun;
7a8e76a3 415 unsigned long overrun;
e4906eff
SR
416 unsigned long read;
417 local_t entries;
fa743953
SR
418 local_t committing;
419 local_t commits;
7a8e76a3
SR
420 u64 write_stamp;
421 u64 read_stamp;
422 atomic_t record_disabled;
423};
424
425struct ring_buffer {
7a8e76a3
SR
426 unsigned pages;
427 unsigned flags;
428 int cpus;
7a8e76a3 429 atomic_t record_disabled;
00f62f61 430 cpumask_var_t cpumask;
7a8e76a3 431
1f8a6a10
PZ
432 struct lock_class_key *reader_lock_key;
433
7a8e76a3
SR
434 struct mutex mutex;
435
436 struct ring_buffer_per_cpu **buffers;
554f786e 437
59222efe 438#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
439 struct notifier_block cpu_notify;
440#endif
37886f6a 441 u64 (*clock)(void);
7a8e76a3
SR
442};
443
444struct ring_buffer_iter {
445 struct ring_buffer_per_cpu *cpu_buffer;
446 unsigned long head;
447 struct buffer_page *head_page;
448 u64 read_stamp;
449};
450
f536aafc 451/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 452#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
453 ({ \
454 int _____ret = unlikely(cond); \
455 if (_____ret) { \
bf41a158
SR
456 atomic_inc(&buffer->record_disabled); \
457 WARN_ON(1); \
458 } \
3e89c7bb
SR
459 _____ret; \
460 })
f536aafc 461
37886f6a
SR
462/* Up this if you want to test the TIME_EXTENTS and normalization */
463#define DEBUG_SHIFT 0
464
88eb0125
SR
465static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
466{
467 /* shift to debug/test normalization and TIME_EXTENTS */
468 return buffer->clock() << DEBUG_SHIFT;
469}
470
37886f6a
SR
471u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
472{
473 u64 time;
474
475 preempt_disable_notrace();
88eb0125 476 time = rb_time_stamp(buffer, cpu);
37886f6a
SR
477 preempt_enable_no_resched_notrace();
478
479 return time;
480}
481EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
482
483void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
484 int cpu, u64 *ts)
485{
486 /* Just stupid testing the normalize function and deltas */
487 *ts >>= DEBUG_SHIFT;
488}
489EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
490
7a8e76a3
SR
491/**
492 * check_pages - integrity check of buffer pages
493 * @cpu_buffer: CPU buffer with pages to test
494 *
c3706f00 495 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
496 * been corrupted.
497 */
498static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
499{
500 struct list_head *head = &cpu_buffer->pages;
044fa782 501 struct buffer_page *bpage, *tmp;
7a8e76a3 502
3e89c7bb
SR
503 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
504 return -1;
505 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
506 return -1;
7a8e76a3 507
044fa782 508 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 509 if (RB_WARN_ON(cpu_buffer,
044fa782 510 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
511 return -1;
512 if (RB_WARN_ON(cpu_buffer,
044fa782 513 bpage->list.prev->next != &bpage->list))
3e89c7bb 514 return -1;
7a8e76a3
SR
515 }
516
517 return 0;
518}
519
7a8e76a3
SR
520static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
521 unsigned nr_pages)
522{
523 struct list_head *head = &cpu_buffer->pages;
044fa782 524 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
525 unsigned long addr;
526 LIST_HEAD(pages);
527 unsigned i;
528
529 for (i = 0; i < nr_pages; i++) {
044fa782 530 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 531 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 532 if (!bpage)
e4c2ce82 533 goto free_pages;
044fa782 534 list_add(&bpage->list, &pages);
e4c2ce82 535
7a8e76a3
SR
536 addr = __get_free_page(GFP_KERNEL);
537 if (!addr)
538 goto free_pages;
044fa782
SR
539 bpage->page = (void *)addr;
540 rb_init_page(bpage->page);
7a8e76a3
SR
541 }
542
543 list_splice(&pages, head);
544
545 rb_check_pages(cpu_buffer);
546
547 return 0;
548
549 free_pages:
044fa782
SR
550 list_for_each_entry_safe(bpage, tmp, &pages, list) {
551 list_del_init(&bpage->list);
552 free_buffer_page(bpage);
7a8e76a3
SR
553 }
554 return -ENOMEM;
555}
556
557static struct ring_buffer_per_cpu *
558rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
559{
560 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 561 struct buffer_page *bpage;
d769041f 562 unsigned long addr;
7a8e76a3
SR
563 int ret;
564
565 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
566 GFP_KERNEL, cpu_to_node(cpu));
567 if (!cpu_buffer)
568 return NULL;
569
570 cpu_buffer->cpu = cpu;
571 cpu_buffer->buffer = buffer;
f83c9d0f 572 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 573 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
3e03fb7f 574 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
575 INIT_LIST_HEAD(&cpu_buffer->pages);
576
044fa782 577 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 578 GFP_KERNEL, cpu_to_node(cpu));
044fa782 579 if (!bpage)
e4c2ce82
SR
580 goto fail_free_buffer;
581
044fa782 582 cpu_buffer->reader_page = bpage;
d769041f
SR
583 addr = __get_free_page(GFP_KERNEL);
584 if (!addr)
e4c2ce82 585 goto fail_free_reader;
044fa782
SR
586 bpage->page = (void *)addr;
587 rb_init_page(bpage->page);
e4c2ce82 588
d769041f 589 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 590
7a8e76a3
SR
591 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
592 if (ret < 0)
d769041f 593 goto fail_free_reader;
7a8e76a3
SR
594
595 cpu_buffer->head_page
596 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 597 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
598
599 return cpu_buffer;
600
d769041f
SR
601 fail_free_reader:
602 free_buffer_page(cpu_buffer->reader_page);
603
7a8e76a3
SR
604 fail_free_buffer:
605 kfree(cpu_buffer);
606 return NULL;
607}
608
609static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
610{
611 struct list_head *head = &cpu_buffer->pages;
044fa782 612 struct buffer_page *bpage, *tmp;
7a8e76a3 613
d769041f
SR
614 free_buffer_page(cpu_buffer->reader_page);
615
044fa782
SR
616 list_for_each_entry_safe(bpage, tmp, head, list) {
617 list_del_init(&bpage->list);
618 free_buffer_page(bpage);
7a8e76a3
SR
619 }
620 kfree(cpu_buffer);
621}
622
a7b13743
SR
623/*
624 * Causes compile errors if the struct buffer_page gets bigger
625 * than the struct page.
626 */
627extern int ring_buffer_page_too_big(void);
628
59222efe 629#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
630static int rb_cpu_notify(struct notifier_block *self,
631 unsigned long action, void *hcpu);
554f786e
SR
632#endif
633
7a8e76a3
SR
634/**
635 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 636 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
637 * @flags: attributes to set for the ring buffer.
638 *
639 * Currently the only flag that is available is the RB_FL_OVERWRITE
640 * flag. This flag means that the buffer will overwrite old data
641 * when the buffer wraps. If this flag is not set, the buffer will
642 * drop data when the tail hits the head.
643 */
1f8a6a10
PZ
644struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
645 struct lock_class_key *key)
7a8e76a3
SR
646{
647 struct ring_buffer *buffer;
648 int bsize;
649 int cpu;
650
a7b13743
SR
651 /* Paranoid! Optimizes out when all is well */
652 if (sizeof(struct buffer_page) > sizeof(struct page))
653 ring_buffer_page_too_big();
654
655
7a8e76a3
SR
656 /* keep it in its own cache line */
657 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
658 GFP_KERNEL);
659 if (!buffer)
660 return NULL;
661
9e01c1b7
RR
662 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
663 goto fail_free_buffer;
664
7a8e76a3
SR
665 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
666 buffer->flags = flags;
37886f6a 667 buffer->clock = trace_clock_local;
1f8a6a10 668 buffer->reader_lock_key = key;
7a8e76a3
SR
669
670 /* need at least two pages */
671 if (buffer->pages == 1)
672 buffer->pages++;
673
3bf832ce
FW
674 /*
675 * In case of non-hotplug cpu, if the ring-buffer is allocated
676 * in early initcall, it will not be notified of secondary cpus.
677 * In that off case, we need to allocate for all possible cpus.
678 */
679#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
680 get_online_cpus();
681 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
682#else
683 cpumask_copy(buffer->cpumask, cpu_possible_mask);
684#endif
7a8e76a3
SR
685 buffer->cpus = nr_cpu_ids;
686
687 bsize = sizeof(void *) * nr_cpu_ids;
688 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
689 GFP_KERNEL);
690 if (!buffer->buffers)
9e01c1b7 691 goto fail_free_cpumask;
7a8e76a3
SR
692
693 for_each_buffer_cpu(buffer, cpu) {
694 buffer->buffers[cpu] =
695 rb_allocate_cpu_buffer(buffer, cpu);
696 if (!buffer->buffers[cpu])
697 goto fail_free_buffers;
698 }
699
59222efe 700#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
701 buffer->cpu_notify.notifier_call = rb_cpu_notify;
702 buffer->cpu_notify.priority = 0;
703 register_cpu_notifier(&buffer->cpu_notify);
704#endif
705
706 put_online_cpus();
7a8e76a3
SR
707 mutex_init(&buffer->mutex);
708
709 return buffer;
710
711 fail_free_buffers:
712 for_each_buffer_cpu(buffer, cpu) {
713 if (buffer->buffers[cpu])
714 rb_free_cpu_buffer(buffer->buffers[cpu]);
715 }
716 kfree(buffer->buffers);
717
9e01c1b7
RR
718 fail_free_cpumask:
719 free_cpumask_var(buffer->cpumask);
554f786e 720 put_online_cpus();
9e01c1b7 721
7a8e76a3
SR
722 fail_free_buffer:
723 kfree(buffer);
724 return NULL;
725}
1f8a6a10 726EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
727
728/**
729 * ring_buffer_free - free a ring buffer.
730 * @buffer: the buffer to free.
731 */
732void
733ring_buffer_free(struct ring_buffer *buffer)
734{
735 int cpu;
736
554f786e
SR
737 get_online_cpus();
738
59222efe 739#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
740 unregister_cpu_notifier(&buffer->cpu_notify);
741#endif
742
7a8e76a3
SR
743 for_each_buffer_cpu(buffer, cpu)
744 rb_free_cpu_buffer(buffer->buffers[cpu]);
745
554f786e
SR
746 put_online_cpus();
747
9e01c1b7
RR
748 free_cpumask_var(buffer->cpumask);
749
7a8e76a3
SR
750 kfree(buffer);
751}
c4f50183 752EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 753
37886f6a
SR
754void ring_buffer_set_clock(struct ring_buffer *buffer,
755 u64 (*clock)(void))
756{
757 buffer->clock = clock;
758}
759
7a8e76a3
SR
760static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
761
762static void
763rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
764{
044fa782 765 struct buffer_page *bpage;
7a8e76a3
SR
766 struct list_head *p;
767 unsigned i;
768
769 atomic_inc(&cpu_buffer->record_disabled);
770 synchronize_sched();
771
772 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
773 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
774 return;
7a8e76a3 775 p = cpu_buffer->pages.next;
044fa782
SR
776 bpage = list_entry(p, struct buffer_page, list);
777 list_del_init(&bpage->list);
778 free_buffer_page(bpage);
7a8e76a3 779 }
3e89c7bb
SR
780 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
781 return;
7a8e76a3
SR
782
783 rb_reset_cpu(cpu_buffer);
784
785 rb_check_pages(cpu_buffer);
786
787 atomic_dec(&cpu_buffer->record_disabled);
788
789}
790
791static void
792rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
793 struct list_head *pages, unsigned nr_pages)
794{
044fa782 795 struct buffer_page *bpage;
7a8e76a3
SR
796 struct list_head *p;
797 unsigned i;
798
799 atomic_inc(&cpu_buffer->record_disabled);
800 synchronize_sched();
801
802 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
803 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
804 return;
7a8e76a3 805 p = pages->next;
044fa782
SR
806 bpage = list_entry(p, struct buffer_page, list);
807 list_del_init(&bpage->list);
808 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
809 }
810 rb_reset_cpu(cpu_buffer);
811
812 rb_check_pages(cpu_buffer);
813
814 atomic_dec(&cpu_buffer->record_disabled);
815}
816
817/**
818 * ring_buffer_resize - resize the ring buffer
819 * @buffer: the buffer to resize.
820 * @size: the new size.
821 *
822 * The tracer is responsible for making sure that the buffer is
823 * not being used while changing the size.
824 * Note: We may be able to change the above requirement by using
825 * RCU synchronizations.
826 *
827 * Minimum size is 2 * BUF_PAGE_SIZE.
828 *
829 * Returns -1 on failure.
830 */
831int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
832{
833 struct ring_buffer_per_cpu *cpu_buffer;
834 unsigned nr_pages, rm_pages, new_pages;
044fa782 835 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
836 unsigned long buffer_size;
837 unsigned long addr;
838 LIST_HEAD(pages);
839 int i, cpu;
840
ee51a1de
IM
841 /*
842 * Always succeed at resizing a non-existent buffer:
843 */
844 if (!buffer)
845 return size;
846
7a8e76a3
SR
847 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
848 size *= BUF_PAGE_SIZE;
849 buffer_size = buffer->pages * BUF_PAGE_SIZE;
850
851 /* we need a minimum of two pages */
852 if (size < BUF_PAGE_SIZE * 2)
853 size = BUF_PAGE_SIZE * 2;
854
855 if (size == buffer_size)
856 return size;
857
858 mutex_lock(&buffer->mutex);
554f786e 859 get_online_cpus();
7a8e76a3
SR
860
861 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
862
863 if (size < buffer_size) {
864
865 /* easy case, just free pages */
554f786e
SR
866 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
867 goto out_fail;
7a8e76a3
SR
868
869 rm_pages = buffer->pages - nr_pages;
870
871 for_each_buffer_cpu(buffer, cpu) {
872 cpu_buffer = buffer->buffers[cpu];
873 rb_remove_pages(cpu_buffer, rm_pages);
874 }
875 goto out;
876 }
877
878 /*
879 * This is a bit more difficult. We only want to add pages
880 * when we can allocate enough for all CPUs. We do this
881 * by allocating all the pages and storing them on a local
882 * link list. If we succeed in our allocation, then we
883 * add these pages to the cpu_buffers. Otherwise we just free
884 * them all and return -ENOMEM;
885 */
554f786e
SR
886 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
887 goto out_fail;
f536aafc 888
7a8e76a3
SR
889 new_pages = nr_pages - buffer->pages;
890
891 for_each_buffer_cpu(buffer, cpu) {
892 for (i = 0; i < new_pages; i++) {
044fa782 893 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
894 cache_line_size()),
895 GFP_KERNEL, cpu_to_node(cpu));
044fa782 896 if (!bpage)
e4c2ce82 897 goto free_pages;
044fa782 898 list_add(&bpage->list, &pages);
7a8e76a3
SR
899 addr = __get_free_page(GFP_KERNEL);
900 if (!addr)
901 goto free_pages;
044fa782
SR
902 bpage->page = (void *)addr;
903 rb_init_page(bpage->page);
7a8e76a3
SR
904 }
905 }
906
907 for_each_buffer_cpu(buffer, cpu) {
908 cpu_buffer = buffer->buffers[cpu];
909 rb_insert_pages(cpu_buffer, &pages, new_pages);
910 }
911
554f786e
SR
912 if (RB_WARN_ON(buffer, !list_empty(&pages)))
913 goto out_fail;
7a8e76a3
SR
914
915 out:
916 buffer->pages = nr_pages;
554f786e 917 put_online_cpus();
7a8e76a3
SR
918 mutex_unlock(&buffer->mutex);
919
920 return size;
921
922 free_pages:
044fa782
SR
923 list_for_each_entry_safe(bpage, tmp, &pages, list) {
924 list_del_init(&bpage->list);
925 free_buffer_page(bpage);
7a8e76a3 926 }
554f786e 927 put_online_cpus();
641d2f63 928 mutex_unlock(&buffer->mutex);
7a8e76a3 929 return -ENOMEM;
554f786e
SR
930
931 /*
932 * Something went totally wrong, and we are too paranoid
933 * to even clean up the mess.
934 */
935 out_fail:
936 put_online_cpus();
937 mutex_unlock(&buffer->mutex);
938 return -1;
7a8e76a3 939}
c4f50183 940EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 941
8789a9e7 942static inline void *
044fa782 943__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 944{
044fa782 945 return bpage->data + index;
8789a9e7
SR
946}
947
044fa782 948static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 949{
044fa782 950 return bpage->page->data + index;
7a8e76a3
SR
951}
952
953static inline struct ring_buffer_event *
d769041f 954rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 955{
6f807acd
SR
956 return __rb_page_index(cpu_buffer->reader_page,
957 cpu_buffer->reader_page->read);
958}
959
960static inline struct ring_buffer_event *
961rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
962{
963 return __rb_page_index(cpu_buffer->head_page,
964 cpu_buffer->head_page->read);
7a8e76a3
SR
965}
966
967static inline struct ring_buffer_event *
968rb_iter_head_event(struct ring_buffer_iter *iter)
969{
6f807acd 970 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
971}
972
bf41a158
SR
973static inline unsigned rb_page_write(struct buffer_page *bpage)
974{
975 return local_read(&bpage->write);
976}
977
978static inline unsigned rb_page_commit(struct buffer_page *bpage)
979{
abc9b56d 980 return local_read(&bpage->page->commit);
bf41a158
SR
981}
982
983/* Size is determined by what has been commited */
984static inline unsigned rb_page_size(struct buffer_page *bpage)
985{
986 return rb_page_commit(bpage);
987}
988
989static inline unsigned
990rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
991{
992 return rb_page_commit(cpu_buffer->commit_page);
993}
994
995static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
996{
997 return rb_page_commit(cpu_buffer->head_page);
998}
999
7a8e76a3 1000static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 1001 struct buffer_page **bpage)
7a8e76a3 1002{
044fa782 1003 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
1004
1005 if (p == &cpu_buffer->pages)
1006 p = p->next;
1007
044fa782 1008 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
1009}
1010
bf41a158
SR
1011static inline unsigned
1012rb_event_index(struct ring_buffer_event *event)
1013{
1014 unsigned long addr = (unsigned long)event;
1015
1016 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1017}
1018
0f0c85fc 1019static inline int
fa743953
SR
1020rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1021 struct ring_buffer_event *event)
bf41a158
SR
1022{
1023 unsigned long addr = (unsigned long)event;
1024 unsigned long index;
1025
1026 index = rb_event_index(event);
1027 addr &= PAGE_MASK;
1028
1029 return cpu_buffer->commit_page->page == (void *)addr &&
1030 rb_commit_index(cpu_buffer) == index;
1031}
1032
34a148bf 1033static void
bf41a158 1034rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1035{
bf41a158
SR
1036 /*
1037 * We only race with interrupts and NMIs on this CPU.
1038 * If we own the commit event, then we can commit
1039 * all others that interrupted us, since the interruptions
1040 * are in stack format (they finish before they come
1041 * back to us). This allows us to do a simple loop to
1042 * assign the commit to the tail.
1043 */
a8ccf1d6 1044 again:
bf41a158 1045 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 1046 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1047 cpu_buffer->commit_page->write;
1048 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1049 cpu_buffer->write_stamp =
1050 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1051 /* add barrier to keep gcc from optimizing too much */
1052 barrier();
1053 }
1054 while (rb_commit_index(cpu_buffer) !=
1055 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 1056 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1057 cpu_buffer->commit_page->write;
1058 barrier();
1059 }
a8ccf1d6
SR
1060
1061 /* again, keep gcc from optimizing */
1062 barrier();
1063
1064 /*
1065 * If an interrupt came in just after the first while loop
1066 * and pushed the tail page forward, we will be left with
1067 * a dangling commit that will never go forward.
1068 */
1069 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1070 goto again;
7a8e76a3
SR
1071}
1072
d769041f 1073static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1074{
abc9b56d 1075 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1076 cpu_buffer->reader_page->read = 0;
d769041f
SR
1077}
1078
34a148bf 1079static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1080{
1081 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1082
1083 /*
1084 * The iterator could be on the reader page (it starts there).
1085 * But the head could have moved, since the reader was
1086 * found. Check for this case and assign the iterator
1087 * to the head page instead of next.
1088 */
1089 if (iter->head_page == cpu_buffer->reader_page)
1090 iter->head_page = cpu_buffer->head_page;
1091 else
1092 rb_inc_page(cpu_buffer, &iter->head_page);
1093
abc9b56d 1094 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1095 iter->head = 0;
1096}
1097
1098/**
1099 * ring_buffer_update_event - update event type and data
1100 * @event: the even to update
1101 * @type: the type of event
1102 * @length: the size of the event field in the ring buffer
1103 *
1104 * Update the type and data fields of the event. The length
1105 * is the actual size that is written to the ring buffer,
1106 * and with this, we can determine what to place into the
1107 * data field.
1108 */
34a148bf 1109static void
7a8e76a3
SR
1110rb_update_event(struct ring_buffer_event *event,
1111 unsigned type, unsigned length)
1112{
334d4169 1113 event->type_len = type;
7a8e76a3
SR
1114
1115 switch (type) {
1116
1117 case RINGBUF_TYPE_PADDING:
7a8e76a3 1118 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1119 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1120 break;
1121
334d4169 1122 case 0:
7a8e76a3 1123 length -= RB_EVNT_HDR_SIZE;
334d4169 1124 if (length > RB_MAX_SMALL_DATA)
7a8e76a3 1125 event->array[0] = length;
334d4169
LJ
1126 else
1127 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1128 break;
1129 default:
1130 BUG();
1131 }
1132}
1133
34a148bf 1134static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1135{
1136 struct ring_buffer_event event; /* Used only for sizeof array */
1137
1138 /* zero length can cause confusions */
1139 if (!length)
1140 length = 1;
1141
1142 if (length > RB_MAX_SMALL_DATA)
1143 length += sizeof(event.array[0]);
1144
1145 length += RB_EVNT_HDR_SIZE;
1146 length = ALIGN(length, RB_ALIGNMENT);
1147
1148 return length;
1149}
1150
c7b09308
SR
1151static inline void
1152rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1153 struct buffer_page *tail_page,
1154 unsigned long tail, unsigned long length)
1155{
1156 struct ring_buffer_event *event;
1157
1158 /*
1159 * Only the event that crossed the page boundary
1160 * must fill the old tail_page with padding.
1161 */
1162 if (tail >= BUF_PAGE_SIZE) {
1163 local_sub(length, &tail_page->write);
1164 return;
1165 }
1166
1167 event = __rb_page_index(tail_page, tail);
1168
1169 /*
1170 * If this event is bigger than the minimum size, then
1171 * we need to be careful that we don't subtract the
1172 * write counter enough to allow another writer to slip
1173 * in on this page.
1174 * We put in a discarded commit instead, to make sure
1175 * that this space is not used again.
1176 *
1177 * If we are less than the minimum size, we don't need to
1178 * worry about it.
1179 */
1180 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1181 /* No room for any events */
1182
1183 /* Mark the rest of the page with padding */
1184 rb_event_set_padding(event);
1185
1186 /* Set the write back to the previous setting */
1187 local_sub(length, &tail_page->write);
1188 return;
1189 }
1190
1191 /* Put in a discarded event */
1192 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1193 event->type_len = RINGBUF_TYPE_PADDING;
1194 /* time delta must be non zero */
1195 event->time_delta = 1;
1196 /* Account for this as an entry */
1197 local_inc(&tail_page->entries);
1198 local_inc(&cpu_buffer->entries);
1199
1200 /* Set write to end of buffer */
1201 length = (tail + length) - BUF_PAGE_SIZE;
1202 local_sub(length, &tail_page->write);
1203}
6634ff26 1204
7a8e76a3 1205static struct ring_buffer_event *
6634ff26
SR
1206rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1207 unsigned long length, unsigned long tail,
1208 struct buffer_page *commit_page,
1209 struct buffer_page *tail_page, u64 *ts)
7a8e76a3 1210{
6634ff26 1211 struct buffer_page *next_page, *head_page, *reader_page;
7a8e76a3 1212 struct ring_buffer *buffer = cpu_buffer->buffer;
78d904b4 1213 bool lock_taken = false;
6634ff26 1214 unsigned long flags;
aa20ae84
SR
1215
1216 next_page = tail_page;
1217
1218 local_irq_save(flags);
1219 /*
1220 * Since the write to the buffer is still not
1221 * fully lockless, we must be careful with NMIs.
1222 * The locks in the writers are taken when a write
1223 * crosses to a new page. The locks protect against
1224 * races with the readers (this will soon be fixed
1225 * with a lockless solution).
1226 *
1227 * Because we can not protect against NMIs, and we
1228 * want to keep traces reentrant, we need to manage
1229 * what happens when we are in an NMI.
1230 *
1231 * NMIs can happen after we take the lock.
1232 * If we are in an NMI, only take the lock
1233 * if it is not already taken. Otherwise
1234 * simply fail.
1235 */
1236 if (unlikely(in_nmi())) {
1237 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1238 cpu_buffer->nmi_dropped++;
1239 goto out_reset;
1240 }
1241 } else
1242 __raw_spin_lock(&cpu_buffer->lock);
1243
1244 lock_taken = true;
1245
1246 rb_inc_page(cpu_buffer, &next_page);
1247
1248 head_page = cpu_buffer->head_page;
1249 reader_page = cpu_buffer->reader_page;
1250
1251 /* we grabbed the lock before incrementing */
1252 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1253 goto out_reset;
1254
1255 /*
1256 * If for some reason, we had an interrupt storm that made
1257 * it all the way around the buffer, bail, and warn
1258 * about it.
1259 */
1260 if (unlikely(next_page == commit_page)) {
1261 cpu_buffer->commit_overrun++;
1262 goto out_reset;
1263 }
1264
1265 if (next_page == head_page) {
1266 if (!(buffer->flags & RB_FL_OVERWRITE))
1267 goto out_reset;
1268
1269 /* tail_page has not moved yet? */
1270 if (tail_page == cpu_buffer->tail_page) {
1271 /* count overflows */
1272 cpu_buffer->overrun +=
1273 local_read(&head_page->entries);
1274
1275 rb_inc_page(cpu_buffer, &head_page);
1276 cpu_buffer->head_page = head_page;
1277 cpu_buffer->head_page->read = 0;
1278 }
1279 }
1280
1281 /*
1282 * If the tail page is still the same as what we think
1283 * it is, then it is up to us to update the tail
1284 * pointer.
1285 */
1286 if (tail_page == cpu_buffer->tail_page) {
1287 local_set(&next_page->write, 0);
1288 local_set(&next_page->entries, 0);
1289 local_set(&next_page->page->commit, 0);
1290 cpu_buffer->tail_page = next_page;
1291
1292 /* reread the time stamp */
88eb0125 1293 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
aa20ae84
SR
1294 cpu_buffer->tail_page->page->time_stamp = *ts;
1295 }
1296
c7b09308 1297 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84 1298
aa20ae84
SR
1299 __raw_spin_unlock(&cpu_buffer->lock);
1300 local_irq_restore(flags);
1301
1302 /* fail and let the caller try again */
1303 return ERR_PTR(-EAGAIN);
1304
45141d46 1305 out_reset:
6f3b3440 1306 /* reset write */
c7b09308 1307 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 1308
78d904b4
SR
1309 if (likely(lock_taken))
1310 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1311 local_irq_restore(flags);
bf41a158 1312 return NULL;
7a8e76a3
SR
1313}
1314
6634ff26
SR
1315static struct ring_buffer_event *
1316__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1317 unsigned type, unsigned long length, u64 *ts)
1318{
1319 struct buffer_page *tail_page, *commit_page;
1320 struct ring_buffer_event *event;
1321 unsigned long tail, write;
1322
1323 commit_page = cpu_buffer->commit_page;
1324 /* we just need to protect against interrupts */
1325 barrier();
1326 tail_page = cpu_buffer->tail_page;
1327 write = local_add_return(length, &tail_page->write);
1328 tail = write - length;
1329
1330 /* See if we shot pass the end of this buffer page */
1331 if (write > BUF_PAGE_SIZE)
1332 return rb_move_tail(cpu_buffer, length, tail,
1333 commit_page, tail_page, ts);
1334
1335 /* We reserved something on the buffer */
1336
1337 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1338 return NULL;
1339
1340 event = __rb_page_index(tail_page, tail);
1341 rb_update_event(event, type, length);
1342
1343 /* The passed in type is zero for DATA */
1344 if (likely(!type))
1345 local_inc(&tail_page->entries);
1346
1347 /*
fa743953
SR
1348 * If this is the first commit on the page, then update
1349 * its timestamp.
6634ff26 1350 */
fa743953
SR
1351 if (!tail)
1352 tail_page->page->time_stamp = *ts;
6634ff26
SR
1353
1354 return event;
1355}
1356
edd813bf
SR
1357static inline int
1358rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1359 struct ring_buffer_event *event)
1360{
1361 unsigned long new_index, old_index;
1362 struct buffer_page *bpage;
1363 unsigned long index;
1364 unsigned long addr;
1365
1366 new_index = rb_event_index(event);
1367 old_index = new_index + rb_event_length(event);
1368 addr = (unsigned long)event;
1369 addr &= PAGE_MASK;
1370
1371 bpage = cpu_buffer->tail_page;
1372
1373 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1374 /*
1375 * This is on the tail page. It is possible that
1376 * a write could come in and move the tail page
1377 * and write to the next page. That is fine
1378 * because we just shorten what is on this page.
1379 */
1380 index = local_cmpxchg(&bpage->write, old_index, new_index);
1381 if (index == old_index)
1382 return 1;
1383 }
1384
1385 /* could not discard */
1386 return 0;
1387}
1388
7a8e76a3
SR
1389static int
1390rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1391 u64 *ts, u64 *delta)
1392{
1393 struct ring_buffer_event *event;
1394 static int once;
bf41a158 1395 int ret;
7a8e76a3
SR
1396
1397 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1398 printk(KERN_WARNING "Delta way too big! %llu"
1399 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1400 (unsigned long long)*delta,
1401 (unsigned long long)*ts,
1402 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1403 WARN_ON(1);
1404 }
1405
1406 /*
1407 * The delta is too big, we to add a
1408 * new timestamp.
1409 */
1410 event = __rb_reserve_next(cpu_buffer,
1411 RINGBUF_TYPE_TIME_EXTEND,
1412 RB_LEN_TIME_EXTEND,
1413 ts);
1414 if (!event)
bf41a158 1415 return -EBUSY;
7a8e76a3 1416
bf41a158
SR
1417 if (PTR_ERR(event) == -EAGAIN)
1418 return -EAGAIN;
1419
1420 /* Only a commited time event can update the write stamp */
fa743953 1421 if (rb_event_is_commit(cpu_buffer, event)) {
bf41a158 1422 /*
fa743953
SR
1423 * If this is the first on the page, then it was
1424 * updated with the page itself. Try to discard it
1425 * and if we can't just make it zero.
bf41a158
SR
1426 */
1427 if (rb_event_index(event)) {
1428 event->time_delta = *delta & TS_MASK;
1429 event->array[0] = *delta >> TS_SHIFT;
1430 } else {
ea05b57c
SR
1431 /* try to discard, since we do not need this */
1432 if (!rb_try_to_discard(cpu_buffer, event)) {
1433 /* nope, just zero it */
1434 event->time_delta = 0;
1435 event->array[0] = 0;
1436 }
bf41a158 1437 }
7a8e76a3 1438 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1439 /* let the caller know this was the commit */
1440 ret = 1;
1441 } else {
edd813bf
SR
1442 /* Try to discard the event */
1443 if (!rb_try_to_discard(cpu_buffer, event)) {
1444 /* Darn, this is just wasted space */
1445 event->time_delta = 0;
1446 event->array[0] = 0;
edd813bf 1447 }
f57a8a19 1448 ret = 0;
7a8e76a3
SR
1449 }
1450
bf41a158
SR
1451 *delta = 0;
1452
1453 return ret;
7a8e76a3
SR
1454}
1455
fa743953
SR
1456static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
1457{
1458 local_inc(&cpu_buffer->committing);
1459 local_inc(&cpu_buffer->commits);
1460}
1461
1462static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
1463{
1464 unsigned long commits;
1465
1466 if (RB_WARN_ON(cpu_buffer,
1467 !local_read(&cpu_buffer->committing)))
1468 return;
1469
1470 again:
1471 commits = local_read(&cpu_buffer->commits);
1472 /* synchronize with interrupts */
1473 barrier();
1474 if (local_read(&cpu_buffer->committing) == 1)
1475 rb_set_commit_to_write(cpu_buffer);
1476
1477 local_dec(&cpu_buffer->committing);
1478
1479 /* synchronize with interrupts */
1480 barrier();
1481
1482 /*
1483 * Need to account for interrupts coming in between the
1484 * updating of the commit page and the clearing of the
1485 * committing counter.
1486 */
1487 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
1488 !local_read(&cpu_buffer->committing)) {
1489 local_inc(&cpu_buffer->committing);
1490 goto again;
1491 }
1492}
1493
7a8e76a3
SR
1494static struct ring_buffer_event *
1495rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 1496 unsigned long length)
7a8e76a3
SR
1497{
1498 struct ring_buffer_event *event;
168b6b1d 1499 u64 ts, delta = 0;
bf41a158 1500 int commit = 0;
818e3dd3 1501 int nr_loops = 0;
7a8e76a3 1502
fa743953
SR
1503 rb_start_commit(cpu_buffer);
1504
be957c44 1505 length = rb_calculate_event_length(length);
bf41a158 1506 again:
818e3dd3
SR
1507 /*
1508 * We allow for interrupts to reenter here and do a trace.
1509 * If one does, it will cause this original code to loop
1510 * back here. Even with heavy interrupts happening, this
1511 * should only happen a few times in a row. If this happens
1512 * 1000 times in a row, there must be either an interrupt
1513 * storm or we have something buggy.
1514 * Bail!
1515 */
3e89c7bb 1516 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 1517 goto out_fail;
818e3dd3 1518
88eb0125 1519 ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
7a8e76a3 1520
bf41a158
SR
1521 /*
1522 * Only the first commit can update the timestamp.
1523 * Yes there is a race here. If an interrupt comes in
1524 * just after the conditional and it traces too, then it
1525 * will also check the deltas. More than one timestamp may
1526 * also be made. But only the entry that did the actual
1527 * commit will be something other than zero.
1528 */
0f0c85fc
SR
1529 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1530 rb_page_write(cpu_buffer->tail_page) ==
1531 rb_commit_index(cpu_buffer))) {
168b6b1d 1532 u64 diff;
bf41a158 1533
168b6b1d 1534 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 1535
168b6b1d 1536 /* make sure this diff is calculated here */
bf41a158
SR
1537 barrier();
1538
1539 /* Did the write stamp get updated already? */
1540 if (unlikely(ts < cpu_buffer->write_stamp))
168b6b1d 1541 goto get_event;
bf41a158 1542
168b6b1d
SR
1543 delta = diff;
1544 if (unlikely(test_time_stamp(delta))) {
7a8e76a3 1545
bf41a158 1546 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
bf41a158 1547 if (commit == -EBUSY)
fa743953 1548 goto out_fail;
bf41a158
SR
1549
1550 if (commit == -EAGAIN)
1551 goto again;
1552
1553 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1554 }
168b6b1d 1555 }
7a8e76a3 1556
168b6b1d 1557 get_event:
1cd8d735 1558 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
168b6b1d 1559 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
1560 goto again;
1561
fa743953
SR
1562 if (!event)
1563 goto out_fail;
7a8e76a3 1564
fa743953 1565 if (!rb_event_is_commit(cpu_buffer, event))
7a8e76a3
SR
1566 delta = 0;
1567
1568 event->time_delta = delta;
1569
1570 return event;
fa743953
SR
1571
1572 out_fail:
1573 rb_end_commit(cpu_buffer);
1574 return NULL;
7a8e76a3
SR
1575}
1576
aa18efb2 1577#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
1578
1579static int trace_recursive_lock(void)
1580{
aa18efb2 1581 current->trace_recursion++;
261842b7 1582
aa18efb2
SR
1583 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1584 return 0;
e057a5e5 1585
aa18efb2
SR
1586 /* Disable all tracing before we do anything else */
1587 tracing_off_permanent();
261842b7 1588
7d7d2b80 1589 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
1590 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1591 current->trace_recursion,
1592 hardirq_count() >> HARDIRQ_SHIFT,
1593 softirq_count() >> SOFTIRQ_SHIFT,
1594 in_nmi());
261842b7 1595
aa18efb2
SR
1596 WARN_ON_ONCE(1);
1597 return -1;
261842b7
SR
1598}
1599
1600static void trace_recursive_unlock(void)
1601{
aa18efb2 1602 WARN_ON_ONCE(!current->trace_recursion);
261842b7 1603
aa18efb2 1604 current->trace_recursion--;
261842b7
SR
1605}
1606
bf41a158
SR
1607static DEFINE_PER_CPU(int, rb_need_resched);
1608
7a8e76a3
SR
1609/**
1610 * ring_buffer_lock_reserve - reserve a part of the buffer
1611 * @buffer: the ring buffer to reserve from
1612 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1613 *
1614 * Returns a reseverd event on the ring buffer to copy directly to.
1615 * The user of this interface will need to get the body to write into
1616 * and can use the ring_buffer_event_data() interface.
1617 *
1618 * The length is the length of the data needed, not the event length
1619 * which also includes the event header.
1620 *
1621 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1622 * If NULL is returned, then nothing has been allocated or locked.
1623 */
1624struct ring_buffer_event *
0a987751 1625ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1626{
1627 struct ring_buffer_per_cpu *cpu_buffer;
1628 struct ring_buffer_event *event;
bf41a158 1629 int cpu, resched;
7a8e76a3 1630
033601a3 1631 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1632 return NULL;
1633
7a8e76a3
SR
1634 if (atomic_read(&buffer->record_disabled))
1635 return NULL;
1636
bf41a158 1637 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1638 resched = ftrace_preempt_disable();
bf41a158 1639
261842b7
SR
1640 if (trace_recursive_lock())
1641 goto out_nocheck;
1642
7a8e76a3
SR
1643 cpu = raw_smp_processor_id();
1644
9e01c1b7 1645 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1646 goto out;
7a8e76a3
SR
1647
1648 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1649
1650 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1651 goto out;
7a8e76a3 1652
be957c44 1653 if (length > BUF_MAX_DATA_SIZE)
bf41a158 1654 goto out;
7a8e76a3 1655
1cd8d735 1656 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3 1657 if (!event)
d769041f 1658 goto out;
7a8e76a3 1659
bf41a158
SR
1660 /*
1661 * Need to store resched state on this cpu.
1662 * Only the first needs to.
1663 */
1664
1665 if (preempt_count() == 1)
1666 per_cpu(rb_need_resched, cpu) = resched;
1667
7a8e76a3
SR
1668 return event;
1669
d769041f 1670 out:
261842b7
SR
1671 trace_recursive_unlock();
1672
1673 out_nocheck:
182e9f5f 1674 ftrace_preempt_enable(resched);
7a8e76a3
SR
1675 return NULL;
1676}
c4f50183 1677EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1678
1679static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1680 struct ring_buffer_event *event)
1681{
e4906eff 1682 local_inc(&cpu_buffer->entries);
bf41a158 1683
fa743953
SR
1684 /*
1685 * The event first in the commit queue updates the
1686 * time stamp.
1687 */
1688 if (rb_event_is_commit(cpu_buffer, event))
1689 cpu_buffer->write_stamp += event->time_delta;
bf41a158 1690
fa743953 1691 rb_end_commit(cpu_buffer);
7a8e76a3
SR
1692}
1693
1694/**
1695 * ring_buffer_unlock_commit - commit a reserved
1696 * @buffer: The buffer to commit to
1697 * @event: The event pointer to commit.
7a8e76a3
SR
1698 *
1699 * This commits the data to the ring buffer, and releases any locks held.
1700 *
1701 * Must be paired with ring_buffer_lock_reserve.
1702 */
1703int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1704 struct ring_buffer_event *event)
7a8e76a3
SR
1705{
1706 struct ring_buffer_per_cpu *cpu_buffer;
1707 int cpu = raw_smp_processor_id();
1708
1709 cpu_buffer = buffer->buffers[cpu];
1710
7a8e76a3
SR
1711 rb_commit(cpu_buffer, event);
1712
261842b7
SR
1713 trace_recursive_unlock();
1714
bf41a158
SR
1715 /*
1716 * Only the last preempt count needs to restore preemption.
1717 */
182e9f5f
SR
1718 if (preempt_count() == 1)
1719 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1720 else
bf41a158 1721 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1722
1723 return 0;
1724}
c4f50183 1725EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 1726
f3b9aae1
FW
1727static inline void rb_event_discard(struct ring_buffer_event *event)
1728{
334d4169
LJ
1729 /* array[0] holds the actual length for the discarded event */
1730 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1731 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
1732 /* time delta must be non zero */
1733 if (!event->time_delta)
1734 event->time_delta = 1;
1735}
1736
fa1b47dd
SR
1737/**
1738 * ring_buffer_event_discard - discard any event in the ring buffer
1739 * @event: the event to discard
1740 *
1741 * Sometimes a event that is in the ring buffer needs to be ignored.
1742 * This function lets the user discard an event in the ring buffer
1743 * and then that event will not be read later.
1744 *
1745 * Note, it is up to the user to be careful with this, and protect
1746 * against races. If the user discards an event that has been consumed
1747 * it is possible that it could corrupt the ring buffer.
1748 */
1749void ring_buffer_event_discard(struct ring_buffer_event *event)
1750{
f3b9aae1 1751 rb_event_discard(event);
fa1b47dd
SR
1752}
1753EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1754
1755/**
1756 * ring_buffer_commit_discard - discard an event that has not been committed
1757 * @buffer: the ring buffer
1758 * @event: non committed event to discard
1759 *
1760 * This is similar to ring_buffer_event_discard but must only be
1761 * performed on an event that has not been committed yet. The difference
1762 * is that this will also try to free the event from the ring buffer
1763 * if another event has not been added behind it.
1764 *
1765 * If another event has been added behind it, it will set the event
1766 * up as discarded, and perform the commit.
1767 *
1768 * If this function is called, do not call ring_buffer_unlock_commit on
1769 * the event.
1770 */
1771void ring_buffer_discard_commit(struct ring_buffer *buffer,
1772 struct ring_buffer_event *event)
1773{
1774 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
1775 int cpu;
1776
1777 /* The event is discarded regardless */
f3b9aae1 1778 rb_event_discard(event);
fa1b47dd 1779
fa743953
SR
1780 cpu = smp_processor_id();
1781 cpu_buffer = buffer->buffers[cpu];
1782
fa1b47dd
SR
1783 /*
1784 * This must only be called if the event has not been
1785 * committed yet. Thus we can assume that preemption
1786 * is still disabled.
1787 */
fa743953 1788 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 1789
edd813bf
SR
1790 if (!rb_try_to_discard(cpu_buffer, event))
1791 goto out;
fa1b47dd
SR
1792
1793 /*
1794 * The commit is still visible by the reader, so we
1795 * must increment entries.
1796 */
e4906eff 1797 local_inc(&cpu_buffer->entries);
fa1b47dd 1798 out:
fa743953 1799 rb_end_commit(cpu_buffer);
fa1b47dd 1800
f3b9aae1
FW
1801 trace_recursive_unlock();
1802
fa1b47dd
SR
1803 /*
1804 * Only the last preempt count needs to restore preemption.
1805 */
1806 if (preempt_count() == 1)
1807 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1808 else
1809 preempt_enable_no_resched_notrace();
1810
1811}
1812EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1813
7a8e76a3
SR
1814/**
1815 * ring_buffer_write - write data to the buffer without reserving
1816 * @buffer: The ring buffer to write to.
1817 * @length: The length of the data being written (excluding the event header)
1818 * @data: The data to write to the buffer.
1819 *
1820 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1821 * one function. If you already have the data to write to the buffer, it
1822 * may be easier to simply call this function.
1823 *
1824 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1825 * and not the length of the event which would hold the header.
1826 */
1827int ring_buffer_write(struct ring_buffer *buffer,
1828 unsigned long length,
1829 void *data)
1830{
1831 struct ring_buffer_per_cpu *cpu_buffer;
1832 struct ring_buffer_event *event;
7a8e76a3
SR
1833 void *body;
1834 int ret = -EBUSY;
bf41a158 1835 int cpu, resched;
7a8e76a3 1836
033601a3 1837 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1838 return -EBUSY;
1839
7a8e76a3
SR
1840 if (atomic_read(&buffer->record_disabled))
1841 return -EBUSY;
1842
182e9f5f 1843 resched = ftrace_preempt_disable();
bf41a158 1844
7a8e76a3
SR
1845 cpu = raw_smp_processor_id();
1846
9e01c1b7 1847 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1848 goto out;
7a8e76a3
SR
1849
1850 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1851
1852 if (atomic_read(&cpu_buffer->record_disabled))
1853 goto out;
1854
be957c44
SR
1855 if (length > BUF_MAX_DATA_SIZE)
1856 goto out;
1857
1858 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3
SR
1859 if (!event)
1860 goto out;
1861
1862 body = rb_event_data(event);
1863
1864 memcpy(body, data, length);
1865
1866 rb_commit(cpu_buffer, event);
1867
1868 ret = 0;
1869 out:
182e9f5f 1870 ftrace_preempt_enable(resched);
7a8e76a3
SR
1871
1872 return ret;
1873}
c4f50183 1874EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1875
34a148bf 1876static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1877{
1878 struct buffer_page *reader = cpu_buffer->reader_page;
1879 struct buffer_page *head = cpu_buffer->head_page;
1880 struct buffer_page *commit = cpu_buffer->commit_page;
1881
1882 return reader->read == rb_page_commit(reader) &&
1883 (commit == reader ||
1884 (commit == head &&
1885 head->read == rb_page_commit(commit)));
1886}
1887
7a8e76a3
SR
1888/**
1889 * ring_buffer_record_disable - stop all writes into the buffer
1890 * @buffer: The ring buffer to stop writes to.
1891 *
1892 * This prevents all writes to the buffer. Any attempt to write
1893 * to the buffer after this will fail and return NULL.
1894 *
1895 * The caller should call synchronize_sched() after this.
1896 */
1897void ring_buffer_record_disable(struct ring_buffer *buffer)
1898{
1899 atomic_inc(&buffer->record_disabled);
1900}
c4f50183 1901EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1902
1903/**
1904 * ring_buffer_record_enable - enable writes to the buffer
1905 * @buffer: The ring buffer to enable writes
1906 *
1907 * Note, multiple disables will need the same number of enables
1908 * to truely enable the writing (much like preempt_disable).
1909 */
1910void ring_buffer_record_enable(struct ring_buffer *buffer)
1911{
1912 atomic_dec(&buffer->record_disabled);
1913}
c4f50183 1914EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1915
1916/**
1917 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1918 * @buffer: The ring buffer to stop writes to.
1919 * @cpu: The CPU buffer to stop
1920 *
1921 * This prevents all writes to the buffer. Any attempt to write
1922 * to the buffer after this will fail and return NULL.
1923 *
1924 * The caller should call synchronize_sched() after this.
1925 */
1926void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1927{
1928 struct ring_buffer_per_cpu *cpu_buffer;
1929
9e01c1b7 1930 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1931 return;
7a8e76a3
SR
1932
1933 cpu_buffer = buffer->buffers[cpu];
1934 atomic_inc(&cpu_buffer->record_disabled);
1935}
c4f50183 1936EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1937
1938/**
1939 * ring_buffer_record_enable_cpu - enable writes to the buffer
1940 * @buffer: The ring buffer to enable writes
1941 * @cpu: The CPU to enable.
1942 *
1943 * Note, multiple disables will need the same number of enables
1944 * to truely enable the writing (much like preempt_disable).
1945 */
1946void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1947{
1948 struct ring_buffer_per_cpu *cpu_buffer;
1949
9e01c1b7 1950 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1951 return;
7a8e76a3
SR
1952
1953 cpu_buffer = buffer->buffers[cpu];
1954 atomic_dec(&cpu_buffer->record_disabled);
1955}
c4f50183 1956EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1957
1958/**
1959 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1960 * @buffer: The ring buffer
1961 * @cpu: The per CPU buffer to get the entries from.
1962 */
1963unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1964{
1965 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1966 unsigned long ret;
7a8e76a3 1967
9e01c1b7 1968 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1969 return 0;
7a8e76a3
SR
1970
1971 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
1972 ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1973 - cpu_buffer->read;
554f786e
SR
1974
1975 return ret;
7a8e76a3 1976}
c4f50183 1977EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1978
1979/**
1980 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1981 * @buffer: The ring buffer
1982 * @cpu: The per CPU buffer to get the number of overruns from
1983 */
1984unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1985{
1986 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1987 unsigned long ret;
7a8e76a3 1988
9e01c1b7 1989 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1990 return 0;
7a8e76a3
SR
1991
1992 cpu_buffer = buffer->buffers[cpu];
554f786e 1993 ret = cpu_buffer->overrun;
554f786e
SR
1994
1995 return ret;
7a8e76a3 1996}
c4f50183 1997EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 1998
f0d2c681
SR
1999/**
2000 * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
2001 * @buffer: The ring buffer
2002 * @cpu: The per CPU buffer to get the number of overruns from
2003 */
2004unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
2005{
2006 struct ring_buffer_per_cpu *cpu_buffer;
2007 unsigned long ret;
2008
2009 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2010 return 0;
2011
2012 cpu_buffer = buffer->buffers[cpu];
2013 ret = cpu_buffer->nmi_dropped;
2014
2015 return ret;
2016}
2017EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
2018
2019/**
2020 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2021 * @buffer: The ring buffer
2022 * @cpu: The per CPU buffer to get the number of overruns from
2023 */
2024unsigned long
2025ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2026{
2027 struct ring_buffer_per_cpu *cpu_buffer;
2028 unsigned long ret;
2029
2030 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2031 return 0;
2032
2033 cpu_buffer = buffer->buffers[cpu];
2034 ret = cpu_buffer->commit_overrun;
2035
2036 return ret;
2037}
2038EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2039
7a8e76a3
SR
2040/**
2041 * ring_buffer_entries - get the number of entries in a buffer
2042 * @buffer: The ring buffer
2043 *
2044 * Returns the total number of entries in the ring buffer
2045 * (all CPU entries)
2046 */
2047unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2048{
2049 struct ring_buffer_per_cpu *cpu_buffer;
2050 unsigned long entries = 0;
2051 int cpu;
2052
2053 /* if you care about this being correct, lock the buffer */
2054 for_each_buffer_cpu(buffer, cpu) {
2055 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
2056 entries += (local_read(&cpu_buffer->entries) -
2057 cpu_buffer->overrun) - cpu_buffer->read;
7a8e76a3
SR
2058 }
2059
2060 return entries;
2061}
c4f50183 2062EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2063
2064/**
2065 * ring_buffer_overrun_cpu - get the number of overruns in buffer
2066 * @buffer: The ring buffer
2067 *
2068 * Returns the total number of overruns in the ring buffer
2069 * (all CPU entries)
2070 */
2071unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2072{
2073 struct ring_buffer_per_cpu *cpu_buffer;
2074 unsigned long overruns = 0;
2075 int cpu;
2076
2077 /* if you care about this being correct, lock the buffer */
2078 for_each_buffer_cpu(buffer, cpu) {
2079 cpu_buffer = buffer->buffers[cpu];
2080 overruns += cpu_buffer->overrun;
2081 }
2082
2083 return overruns;
2084}
c4f50183 2085EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2086
642edba5 2087static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2088{
2089 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2090
d769041f
SR
2091 /* Iterator usage is expected to have record disabled */
2092 if (list_empty(&cpu_buffer->reader_page->list)) {
2093 iter->head_page = cpu_buffer->head_page;
6f807acd 2094 iter->head = cpu_buffer->head_page->read;
d769041f
SR
2095 } else {
2096 iter->head_page = cpu_buffer->reader_page;
6f807acd 2097 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2098 }
2099 if (iter->head)
2100 iter->read_stamp = cpu_buffer->read_stamp;
2101 else
abc9b56d 2102 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 2103}
f83c9d0f 2104
642edba5
SR
2105/**
2106 * ring_buffer_iter_reset - reset an iterator
2107 * @iter: The iterator to reset
2108 *
2109 * Resets the iterator, so that it will start from the beginning
2110 * again.
2111 */
2112void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2113{
554f786e 2114 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2115 unsigned long flags;
2116
554f786e
SR
2117 if (!iter)
2118 return;
2119
2120 cpu_buffer = iter->cpu_buffer;
2121
642edba5
SR
2122 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2123 rb_iter_reset(iter);
f83c9d0f 2124 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2125}
c4f50183 2126EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2127
2128/**
2129 * ring_buffer_iter_empty - check if an iterator has no more to read
2130 * @iter: The iterator to check
2131 */
2132int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2133{
2134 struct ring_buffer_per_cpu *cpu_buffer;
2135
2136 cpu_buffer = iter->cpu_buffer;
2137
bf41a158
SR
2138 return iter->head_page == cpu_buffer->commit_page &&
2139 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2140}
c4f50183 2141EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2142
2143static void
2144rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2145 struct ring_buffer_event *event)
2146{
2147 u64 delta;
2148
334d4169 2149 switch (event->type_len) {
7a8e76a3
SR
2150 case RINGBUF_TYPE_PADDING:
2151 return;
2152
2153 case RINGBUF_TYPE_TIME_EXTEND:
2154 delta = event->array[0];
2155 delta <<= TS_SHIFT;
2156 delta += event->time_delta;
2157 cpu_buffer->read_stamp += delta;
2158 return;
2159
2160 case RINGBUF_TYPE_TIME_STAMP:
2161 /* FIXME: not implemented */
2162 return;
2163
2164 case RINGBUF_TYPE_DATA:
2165 cpu_buffer->read_stamp += event->time_delta;
2166 return;
2167
2168 default:
2169 BUG();
2170 }
2171 return;
2172}
2173
2174static void
2175rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2176 struct ring_buffer_event *event)
2177{
2178 u64 delta;
2179
334d4169 2180 switch (event->type_len) {
7a8e76a3
SR
2181 case RINGBUF_TYPE_PADDING:
2182 return;
2183
2184 case RINGBUF_TYPE_TIME_EXTEND:
2185 delta = event->array[0];
2186 delta <<= TS_SHIFT;
2187 delta += event->time_delta;
2188 iter->read_stamp += delta;
2189 return;
2190
2191 case RINGBUF_TYPE_TIME_STAMP:
2192 /* FIXME: not implemented */
2193 return;
2194
2195 case RINGBUF_TYPE_DATA:
2196 iter->read_stamp += event->time_delta;
2197 return;
2198
2199 default:
2200 BUG();
2201 }
2202 return;
2203}
2204
d769041f
SR
2205static struct buffer_page *
2206rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2207{
d769041f
SR
2208 struct buffer_page *reader = NULL;
2209 unsigned long flags;
818e3dd3 2210 int nr_loops = 0;
d769041f 2211
3e03fb7f
SR
2212 local_irq_save(flags);
2213 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
2214
2215 again:
818e3dd3
SR
2216 /*
2217 * This should normally only loop twice. But because the
2218 * start of the reader inserts an empty page, it causes
2219 * a case where we will loop three times. There should be no
2220 * reason to loop four times (that I know of).
2221 */
3e89c7bb 2222 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2223 reader = NULL;
2224 goto out;
2225 }
2226
d769041f
SR
2227 reader = cpu_buffer->reader_page;
2228
2229 /* If there's more to read, return this page */
bf41a158 2230 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2231 goto out;
2232
2233 /* Never should we have an index greater than the size */
3e89c7bb
SR
2234 if (RB_WARN_ON(cpu_buffer,
2235 cpu_buffer->reader_page->read > rb_page_size(reader)))
2236 goto out;
d769041f
SR
2237
2238 /* check if we caught up to the tail */
2239 reader = NULL;
bf41a158 2240 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2241 goto out;
7a8e76a3
SR
2242
2243 /*
d769041f
SR
2244 * Splice the empty reader page into the list around the head.
2245 * Reset the reader page to size zero.
7a8e76a3 2246 */
7a8e76a3 2247
d769041f
SR
2248 reader = cpu_buffer->head_page;
2249 cpu_buffer->reader_page->list.next = reader->list.next;
2250 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
2251
2252 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2253 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2254 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2255
d769041f
SR
2256 /* Make the reader page now replace the head */
2257 reader->list.prev->next = &cpu_buffer->reader_page->list;
2258 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
2259
2260 /*
d769041f
SR
2261 * If the tail is on the reader, then we must set the head
2262 * to the inserted page, otherwise we set it one before.
7a8e76a3 2263 */
d769041f 2264 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 2265
bf41a158 2266 if (cpu_buffer->commit_page != reader)
d769041f
SR
2267 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2268
2269 /* Finally update the reader page to the new head */
2270 cpu_buffer->reader_page = reader;
2271 rb_reset_reader_page(cpu_buffer);
2272
2273 goto again;
2274
2275 out:
3e03fb7f
SR
2276 __raw_spin_unlock(&cpu_buffer->lock);
2277 local_irq_restore(flags);
d769041f
SR
2278
2279 return reader;
2280}
2281
2282static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2283{
2284 struct ring_buffer_event *event;
2285 struct buffer_page *reader;
2286 unsigned length;
2287
2288 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2289
d769041f 2290 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2291 if (RB_WARN_ON(cpu_buffer, !reader))
2292 return;
7a8e76a3 2293
d769041f
SR
2294 event = rb_reader_event(cpu_buffer);
2295
334d4169
LJ
2296 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2297 || rb_discarded_event(event))
e4906eff 2298 cpu_buffer->read++;
d769041f
SR
2299
2300 rb_update_read_stamp(cpu_buffer, event);
2301
2302 length = rb_event_length(event);
6f807acd 2303 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2304}
2305
2306static void rb_advance_iter(struct ring_buffer_iter *iter)
2307{
2308 struct ring_buffer *buffer;
2309 struct ring_buffer_per_cpu *cpu_buffer;
2310 struct ring_buffer_event *event;
2311 unsigned length;
2312
2313 cpu_buffer = iter->cpu_buffer;
2314 buffer = cpu_buffer->buffer;
2315
2316 /*
2317 * Check if we are at the end of the buffer.
2318 */
bf41a158 2319 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
2320 /* discarded commits can make the page empty */
2321 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 2322 return;
d769041f 2323 rb_inc_iter(iter);
7a8e76a3
SR
2324 return;
2325 }
2326
2327 event = rb_iter_head_event(iter);
2328
2329 length = rb_event_length(event);
2330
2331 /*
2332 * This should not be called to advance the header if we are
2333 * at the tail of the buffer.
2334 */
3e89c7bb 2335 if (RB_WARN_ON(cpu_buffer,
f536aafc 2336 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2337 (iter->head + length > rb_commit_index(cpu_buffer))))
2338 return;
7a8e76a3
SR
2339
2340 rb_update_iter_read_stamp(iter, event);
2341
2342 iter->head += length;
2343
2344 /* check for end of page padding */
bf41a158
SR
2345 if ((iter->head >= rb_page_size(iter->head_page)) &&
2346 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2347 rb_advance_iter(iter);
2348}
2349
f83c9d0f
SR
2350static struct ring_buffer_event *
2351rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2352{
2353 struct ring_buffer_per_cpu *cpu_buffer;
2354 struct ring_buffer_event *event;
d769041f 2355 struct buffer_page *reader;
818e3dd3 2356 int nr_loops = 0;
7a8e76a3 2357
7a8e76a3
SR
2358 cpu_buffer = buffer->buffers[cpu];
2359
2360 again:
818e3dd3
SR
2361 /*
2362 * We repeat when a timestamp is encountered. It is possible
2363 * to get multiple timestamps from an interrupt entering just
ea05b57c
SR
2364 * as one timestamp is about to be written, or from discarded
2365 * commits. The most that we can have is the number on a single page.
818e3dd3 2366 */
ea05b57c 2367 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 2368 return NULL;
818e3dd3 2369
d769041f
SR
2370 reader = rb_get_reader_page(cpu_buffer);
2371 if (!reader)
7a8e76a3
SR
2372 return NULL;
2373
d769041f 2374 event = rb_reader_event(cpu_buffer);
7a8e76a3 2375
334d4169 2376 switch (event->type_len) {
7a8e76a3 2377 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2378 if (rb_null_event(event))
2379 RB_WARN_ON(cpu_buffer, 1);
2380 /*
2381 * Because the writer could be discarding every
2382 * event it creates (which would probably be bad)
2383 * if we were to go back to "again" then we may never
2384 * catch up, and will trigger the warn on, or lock
2385 * the box. Return the padding, and we will release
2386 * the current locks, and try again.
2387 */
d769041f 2388 rb_advance_reader(cpu_buffer);
2d622719 2389 return event;
7a8e76a3
SR
2390
2391 case RINGBUF_TYPE_TIME_EXTEND:
2392 /* Internal data, OK to advance */
d769041f 2393 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2394 goto again;
2395
2396 case RINGBUF_TYPE_TIME_STAMP:
2397 /* FIXME: not implemented */
d769041f 2398 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2399 goto again;
2400
2401 case RINGBUF_TYPE_DATA:
2402 if (ts) {
2403 *ts = cpu_buffer->read_stamp + event->time_delta;
37886f6a
SR
2404 ring_buffer_normalize_time_stamp(buffer,
2405 cpu_buffer->cpu, ts);
7a8e76a3
SR
2406 }
2407 return event;
2408
2409 default:
2410 BUG();
2411 }
2412
2413 return NULL;
2414}
c4f50183 2415EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 2416
f83c9d0f
SR
2417static struct ring_buffer_event *
2418rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2419{
2420 struct ring_buffer *buffer;
2421 struct ring_buffer_per_cpu *cpu_buffer;
2422 struct ring_buffer_event *event;
818e3dd3 2423 int nr_loops = 0;
7a8e76a3
SR
2424
2425 if (ring_buffer_iter_empty(iter))
2426 return NULL;
2427
2428 cpu_buffer = iter->cpu_buffer;
2429 buffer = cpu_buffer->buffer;
2430
2431 again:
818e3dd3 2432 /*
ea05b57c
SR
2433 * We repeat when a timestamp is encountered.
2434 * We can get multiple timestamps by nested interrupts or also
2435 * if filtering is on (discarding commits). Since discarding
2436 * commits can be frequent we can get a lot of timestamps.
2437 * But we limit them by not adding timestamps if they begin
2438 * at the start of a page.
818e3dd3 2439 */
ea05b57c 2440 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 2441 return NULL;
818e3dd3 2442
7a8e76a3
SR
2443 if (rb_per_cpu_empty(cpu_buffer))
2444 return NULL;
2445
2446 event = rb_iter_head_event(iter);
2447
334d4169 2448 switch (event->type_len) {
7a8e76a3 2449 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2450 if (rb_null_event(event)) {
2451 rb_inc_iter(iter);
2452 goto again;
2453 }
2454 rb_advance_iter(iter);
2455 return event;
7a8e76a3
SR
2456
2457 case RINGBUF_TYPE_TIME_EXTEND:
2458 /* Internal data, OK to advance */
2459 rb_advance_iter(iter);
2460 goto again;
2461
2462 case RINGBUF_TYPE_TIME_STAMP:
2463 /* FIXME: not implemented */
2464 rb_advance_iter(iter);
2465 goto again;
2466
2467 case RINGBUF_TYPE_DATA:
2468 if (ts) {
2469 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
2470 ring_buffer_normalize_time_stamp(buffer,
2471 cpu_buffer->cpu, ts);
7a8e76a3
SR
2472 }
2473 return event;
2474
2475 default:
2476 BUG();
2477 }
2478
2479 return NULL;
2480}
c4f50183 2481EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2482
f83c9d0f
SR
2483/**
2484 * ring_buffer_peek - peek at the next event to be read
2485 * @buffer: The ring buffer to read
2486 * @cpu: The cpu to peak at
2487 * @ts: The timestamp counter of this event.
2488 *
2489 * This will return the event that will be read next, but does
2490 * not consume the data.
2491 */
2492struct ring_buffer_event *
2493ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2494{
2495 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2496 struct ring_buffer_event *event;
f83c9d0f
SR
2497 unsigned long flags;
2498
554f786e 2499 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2500 return NULL;
554f786e 2501
2d622719 2502 again:
f83c9d0f
SR
2503 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2504 event = rb_buffer_peek(buffer, cpu, ts);
2505 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2506
334d4169 2507 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2508 cpu_relax();
2509 goto again;
2510 }
2511
f83c9d0f
SR
2512 return event;
2513}
2514
2515/**
2516 * ring_buffer_iter_peek - peek at the next event to be read
2517 * @iter: The ring buffer iterator
2518 * @ts: The timestamp counter of this event.
2519 *
2520 * This will return the event that will be read next, but does
2521 * not increment the iterator.
2522 */
2523struct ring_buffer_event *
2524ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2525{
2526 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2527 struct ring_buffer_event *event;
2528 unsigned long flags;
2529
2d622719 2530 again:
f83c9d0f
SR
2531 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2532 event = rb_iter_peek(iter, ts);
2533 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2534
334d4169 2535 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2536 cpu_relax();
2537 goto again;
2538 }
2539
f83c9d0f
SR
2540 return event;
2541}
2542
7a8e76a3
SR
2543/**
2544 * ring_buffer_consume - return an event and consume it
2545 * @buffer: The ring buffer to get the next event from
2546 *
2547 * Returns the next event in the ring buffer, and that event is consumed.
2548 * Meaning, that sequential reads will keep returning a different event,
2549 * and eventually empty the ring buffer if the producer is slower.
2550 */
2551struct ring_buffer_event *
2552ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2553{
554f786e
SR
2554 struct ring_buffer_per_cpu *cpu_buffer;
2555 struct ring_buffer_event *event = NULL;
f83c9d0f 2556 unsigned long flags;
7a8e76a3 2557
2d622719 2558 again:
554f786e
SR
2559 /* might be called in atomic */
2560 preempt_disable();
2561
9e01c1b7 2562 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2563 goto out;
7a8e76a3 2564
554f786e 2565 cpu_buffer = buffer->buffers[cpu];
f83c9d0f
SR
2566 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2567
2568 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2569 if (!event)
554f786e 2570 goto out_unlock;
7a8e76a3 2571
d769041f 2572 rb_advance_reader(cpu_buffer);
7a8e76a3 2573
554f786e 2574 out_unlock:
f83c9d0f
SR
2575 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2576
554f786e
SR
2577 out:
2578 preempt_enable();
2579
334d4169 2580 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2581 cpu_relax();
2582 goto again;
2583 }
2584
7a8e76a3
SR
2585 return event;
2586}
c4f50183 2587EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2588
2589/**
2590 * ring_buffer_read_start - start a non consuming read of the buffer
2591 * @buffer: The ring buffer to read from
2592 * @cpu: The cpu buffer to iterate over
2593 *
2594 * This starts up an iteration through the buffer. It also disables
2595 * the recording to the buffer until the reading is finished.
2596 * This prevents the reading from being corrupted. This is not
2597 * a consuming read, so a producer is not expected.
2598 *
2599 * Must be paired with ring_buffer_finish.
2600 */
2601struct ring_buffer_iter *
2602ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2603{
2604 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2605 struct ring_buffer_iter *iter;
d769041f 2606 unsigned long flags;
7a8e76a3 2607
9e01c1b7 2608 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2609 return NULL;
7a8e76a3
SR
2610
2611 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2612 if (!iter)
8aabee57 2613 return NULL;
7a8e76a3
SR
2614
2615 cpu_buffer = buffer->buffers[cpu];
2616
2617 iter->cpu_buffer = cpu_buffer;
2618
2619 atomic_inc(&cpu_buffer->record_disabled);
2620 synchronize_sched();
2621
f83c9d0f 2622 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2623 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2624 rb_iter_reset(iter);
3e03fb7f 2625 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2626 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2627
2628 return iter;
2629}
c4f50183 2630EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2631
2632/**
2633 * ring_buffer_finish - finish reading the iterator of the buffer
2634 * @iter: The iterator retrieved by ring_buffer_start
2635 *
2636 * This re-enables the recording to the buffer, and frees the
2637 * iterator.
2638 */
2639void
2640ring_buffer_read_finish(struct ring_buffer_iter *iter)
2641{
2642 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2643
2644 atomic_dec(&cpu_buffer->record_disabled);
2645 kfree(iter);
2646}
c4f50183 2647EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2648
2649/**
2650 * ring_buffer_read - read the next item in the ring buffer by the iterator
2651 * @iter: The ring buffer iterator
2652 * @ts: The time stamp of the event read.
2653 *
2654 * This reads the next event in the ring buffer and increments the iterator.
2655 */
2656struct ring_buffer_event *
2657ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2658{
2659 struct ring_buffer_event *event;
f83c9d0f
SR
2660 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2661 unsigned long flags;
7a8e76a3 2662
2d622719 2663 again:
f83c9d0f
SR
2664 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2665 event = rb_iter_peek(iter, ts);
7a8e76a3 2666 if (!event)
f83c9d0f 2667 goto out;
7a8e76a3
SR
2668
2669 rb_advance_iter(iter);
f83c9d0f
SR
2670 out:
2671 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2672
334d4169 2673 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2674 cpu_relax();
2675 goto again;
2676 }
2677
7a8e76a3
SR
2678 return event;
2679}
c4f50183 2680EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2681
2682/**
2683 * ring_buffer_size - return the size of the ring buffer (in bytes)
2684 * @buffer: The ring buffer.
2685 */
2686unsigned long ring_buffer_size(struct ring_buffer *buffer)
2687{
2688 return BUF_PAGE_SIZE * buffer->pages;
2689}
c4f50183 2690EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2691
2692static void
2693rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2694{
2695 cpu_buffer->head_page
2696 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2697 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 2698 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 2699 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2700
6f807acd 2701 cpu_buffer->head_page->read = 0;
bf41a158
SR
2702
2703 cpu_buffer->tail_page = cpu_buffer->head_page;
2704 cpu_buffer->commit_page = cpu_buffer->head_page;
2705
2706 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2707 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2708 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2709 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2710 cpu_buffer->reader_page->read = 0;
7a8e76a3 2711
f0d2c681
SR
2712 cpu_buffer->nmi_dropped = 0;
2713 cpu_buffer->commit_overrun = 0;
7a8e76a3 2714 cpu_buffer->overrun = 0;
e4906eff
SR
2715 cpu_buffer->read = 0;
2716 local_set(&cpu_buffer->entries, 0);
fa743953
SR
2717 local_set(&cpu_buffer->committing, 0);
2718 local_set(&cpu_buffer->commits, 0);
69507c06
SR
2719
2720 cpu_buffer->write_stamp = 0;
2721 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2722}
2723
2724/**
2725 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2726 * @buffer: The ring buffer to reset a per cpu buffer of
2727 * @cpu: The CPU buffer to be reset
2728 */
2729void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2730{
2731 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2732 unsigned long flags;
2733
9e01c1b7 2734 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2735 return;
7a8e76a3 2736
41ede23e
SR
2737 atomic_inc(&cpu_buffer->record_disabled);
2738
f83c9d0f
SR
2739 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2740
3e03fb7f 2741 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2742
2743 rb_reset_cpu(cpu_buffer);
2744
3e03fb7f 2745 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2746
2747 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
2748
2749 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 2750}
c4f50183 2751EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2752
2753/**
2754 * ring_buffer_reset - reset a ring buffer
2755 * @buffer: The ring buffer to reset all cpu buffers
2756 */
2757void ring_buffer_reset(struct ring_buffer *buffer)
2758{
7a8e76a3
SR
2759 int cpu;
2760
7a8e76a3 2761 for_each_buffer_cpu(buffer, cpu)
d769041f 2762 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2763}
c4f50183 2764EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2765
2766/**
2767 * rind_buffer_empty - is the ring buffer empty?
2768 * @buffer: The ring buffer to test
2769 */
2770int ring_buffer_empty(struct ring_buffer *buffer)
2771{
2772 struct ring_buffer_per_cpu *cpu_buffer;
2773 int cpu;
2774
2775 /* yes this is racy, but if you don't like the race, lock the buffer */
2776 for_each_buffer_cpu(buffer, cpu) {
2777 cpu_buffer = buffer->buffers[cpu];
2778 if (!rb_per_cpu_empty(cpu_buffer))
2779 return 0;
2780 }
554f786e 2781
7a8e76a3
SR
2782 return 1;
2783}
c4f50183 2784EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2785
2786/**
2787 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2788 * @buffer: The ring buffer
2789 * @cpu: The CPU buffer to test
2790 */
2791int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2792{
2793 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2794 int ret;
7a8e76a3 2795
9e01c1b7 2796 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2797 return 1;
7a8e76a3
SR
2798
2799 cpu_buffer = buffer->buffers[cpu];
554f786e
SR
2800 ret = rb_per_cpu_empty(cpu_buffer);
2801
554f786e
SR
2802
2803 return ret;
7a8e76a3 2804}
c4f50183 2805EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2806
2807/**
2808 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2809 * @buffer_a: One buffer to swap with
2810 * @buffer_b: The other buffer to swap with
2811 *
2812 * This function is useful for tracers that want to take a "snapshot"
2813 * of a CPU buffer and has another back up buffer lying around.
2814 * it is expected that the tracer handles the cpu buffer not being
2815 * used at the moment.
2816 */
2817int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2818 struct ring_buffer *buffer_b, int cpu)
2819{
2820 struct ring_buffer_per_cpu *cpu_buffer_a;
2821 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2822 int ret = -EINVAL;
2823
9e01c1b7
RR
2824 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2825 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2826 goto out;
7a8e76a3
SR
2827
2828 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2829 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2830 goto out;
2831
2832 ret = -EAGAIN;
7a8e76a3 2833
97b17efe 2834 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2835 goto out;
97b17efe
SR
2836
2837 if (atomic_read(&buffer_a->record_disabled))
554f786e 2838 goto out;
97b17efe
SR
2839
2840 if (atomic_read(&buffer_b->record_disabled))
554f786e 2841 goto out;
97b17efe 2842
7a8e76a3
SR
2843 cpu_buffer_a = buffer_a->buffers[cpu];
2844 cpu_buffer_b = buffer_b->buffers[cpu];
2845
97b17efe 2846 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2847 goto out;
97b17efe
SR
2848
2849 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2850 goto out;
97b17efe 2851
7a8e76a3
SR
2852 /*
2853 * We can't do a synchronize_sched here because this
2854 * function can be called in atomic context.
2855 * Normally this will be called from the same CPU as cpu.
2856 * If not it's up to the caller to protect this.
2857 */
2858 atomic_inc(&cpu_buffer_a->record_disabled);
2859 atomic_inc(&cpu_buffer_b->record_disabled);
2860
2861 buffer_a->buffers[cpu] = cpu_buffer_b;
2862 buffer_b->buffers[cpu] = cpu_buffer_a;
2863
2864 cpu_buffer_b->buffer = buffer_a;
2865 cpu_buffer_a->buffer = buffer_b;
2866
2867 atomic_dec(&cpu_buffer_a->record_disabled);
2868 atomic_dec(&cpu_buffer_b->record_disabled);
2869
554f786e
SR
2870 ret = 0;
2871out:
554f786e 2872 return ret;
7a8e76a3 2873}
c4f50183 2874EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2875
8789a9e7
SR
2876/**
2877 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2878 * @buffer: the buffer to allocate for.
2879 *
2880 * This function is used in conjunction with ring_buffer_read_page.
2881 * When reading a full page from the ring buffer, these functions
2882 * can be used to speed up the process. The calling function should
2883 * allocate a few pages first with this function. Then when it
2884 * needs to get pages from the ring buffer, it passes the result
2885 * of this function into ring_buffer_read_page, which will swap
2886 * the page that was allocated, with the read page of the buffer.
2887 *
2888 * Returns:
2889 * The page allocated, or NULL on error.
2890 */
2891void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2892{
044fa782 2893 struct buffer_data_page *bpage;
ef7a4a16 2894 unsigned long addr;
8789a9e7
SR
2895
2896 addr = __get_free_page(GFP_KERNEL);
2897 if (!addr)
2898 return NULL;
2899
044fa782 2900 bpage = (void *)addr;
8789a9e7 2901
ef7a4a16
SR
2902 rb_init_page(bpage);
2903
044fa782 2904 return bpage;
8789a9e7 2905}
d6ce96da 2906EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
2907
2908/**
2909 * ring_buffer_free_read_page - free an allocated read page
2910 * @buffer: the buffer the page was allocate for
2911 * @data: the page to free
2912 *
2913 * Free a page allocated from ring_buffer_alloc_read_page.
2914 */
2915void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2916{
2917 free_page((unsigned long)data);
2918}
d6ce96da 2919EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
2920
2921/**
2922 * ring_buffer_read_page - extract a page from the ring buffer
2923 * @buffer: buffer to extract from
2924 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2925 * @len: amount to extract
8789a9e7
SR
2926 * @cpu: the cpu of the buffer to extract
2927 * @full: should the extraction only happen when the page is full.
2928 *
2929 * This function will pull out a page from the ring buffer and consume it.
2930 * @data_page must be the address of the variable that was returned
2931 * from ring_buffer_alloc_read_page. This is because the page might be used
2932 * to swap with a page in the ring buffer.
2933 *
2934 * for example:
b85fa01e 2935 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2936 * if (!rpage)
2937 * return error;
ef7a4a16 2938 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2939 * if (ret >= 0)
2940 * process_page(rpage, ret);
8789a9e7
SR
2941 *
2942 * When @full is set, the function will not return true unless
2943 * the writer is off the reader page.
2944 *
2945 * Note: it is up to the calling functions to handle sleeps and wakeups.
2946 * The ring buffer can be used anywhere in the kernel and can not
2947 * blindly call wake_up. The layer that uses the ring buffer must be
2948 * responsible for that.
2949 *
2950 * Returns:
667d2412
LJ
2951 * >=0 if data has been transferred, returns the offset of consumed data.
2952 * <0 if no data has been transferred.
8789a9e7
SR
2953 */
2954int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2955 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2956{
2957 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2958 struct ring_buffer_event *event;
044fa782 2959 struct buffer_data_page *bpage;
ef7a4a16 2960 struct buffer_page *reader;
8789a9e7 2961 unsigned long flags;
ef7a4a16 2962 unsigned int commit;
667d2412 2963 unsigned int read;
4f3640f8 2964 u64 save_timestamp;
667d2412 2965 int ret = -1;
8789a9e7 2966
554f786e
SR
2967 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2968 goto out;
2969
474d32b6
SR
2970 /*
2971 * If len is not big enough to hold the page header, then
2972 * we can not copy anything.
2973 */
2974 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 2975 goto out;
474d32b6
SR
2976
2977 len -= BUF_PAGE_HDR_SIZE;
2978
8789a9e7 2979 if (!data_page)
554f786e 2980 goto out;
8789a9e7 2981
044fa782
SR
2982 bpage = *data_page;
2983 if (!bpage)
554f786e 2984 goto out;
8789a9e7
SR
2985
2986 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2987
ef7a4a16
SR
2988 reader = rb_get_reader_page(cpu_buffer);
2989 if (!reader)
554f786e 2990 goto out_unlock;
8789a9e7 2991
ef7a4a16
SR
2992 event = rb_reader_event(cpu_buffer);
2993
2994 read = reader->read;
2995 commit = rb_page_commit(reader);
667d2412 2996
8789a9e7 2997 /*
474d32b6
SR
2998 * If this page has been partially read or
2999 * if len is not big enough to read the rest of the page or
3000 * a writer is still on the page, then
3001 * we must copy the data from the page to the buffer.
3002 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3003 */
474d32b6 3004 if (read || (len < (commit - read)) ||
ef7a4a16 3005 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3006 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3007 unsigned int rpos = read;
3008 unsigned int pos = 0;
ef7a4a16 3009 unsigned int size;
8789a9e7
SR
3010
3011 if (full)
554f786e 3012 goto out_unlock;
8789a9e7 3013
ef7a4a16
SR
3014 if (len > (commit - read))
3015 len = (commit - read);
3016
3017 size = rb_event_length(event);
3018
3019 if (len < size)
554f786e 3020 goto out_unlock;
ef7a4a16 3021
4f3640f8
SR
3022 /* save the current timestamp, since the user will need it */
3023 save_timestamp = cpu_buffer->read_stamp;
3024
ef7a4a16
SR
3025 /* Need to copy one event at a time */
3026 do {
474d32b6 3027 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3028
3029 len -= size;
3030
3031 rb_advance_reader(cpu_buffer);
474d32b6
SR
3032 rpos = reader->read;
3033 pos += size;
ef7a4a16
SR
3034
3035 event = rb_reader_event(cpu_buffer);
3036 size = rb_event_length(event);
3037 } while (len > size);
667d2412
LJ
3038
3039 /* update bpage */
ef7a4a16 3040 local_set(&bpage->commit, pos);
4f3640f8 3041 bpage->time_stamp = save_timestamp;
ef7a4a16 3042
474d32b6
SR
3043 /* we copied everything to the beginning */
3044 read = 0;
8789a9e7 3045 } else {
afbab76a
SR
3046 /* update the entry counter */
3047 cpu_buffer->read += local_read(&reader->entries);
3048
8789a9e7 3049 /* swap the pages */
044fa782 3050 rb_init_page(bpage);
ef7a4a16
SR
3051 bpage = reader->page;
3052 reader->page = *data_page;
3053 local_set(&reader->write, 0);
778c55d4 3054 local_set(&reader->entries, 0);
ef7a4a16 3055 reader->read = 0;
044fa782 3056 *data_page = bpage;
8789a9e7 3057 }
667d2412 3058 ret = read;
8789a9e7 3059
554f786e 3060 out_unlock:
8789a9e7
SR
3061 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3062
554f786e 3063 out:
8789a9e7
SR
3064 return ret;
3065}
d6ce96da 3066EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3067
a3583244
SR
3068static ssize_t
3069rb_simple_read(struct file *filp, char __user *ubuf,
3070 size_t cnt, loff_t *ppos)
3071{
5e39841c 3072 unsigned long *p = filp->private_data;
a3583244
SR
3073 char buf[64];
3074 int r;
3075
033601a3
SR
3076 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3077 r = sprintf(buf, "permanently disabled\n");
3078 else
3079 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3080
3081 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3082}
3083
3084static ssize_t
3085rb_simple_write(struct file *filp, const char __user *ubuf,
3086 size_t cnt, loff_t *ppos)
3087{
5e39841c 3088 unsigned long *p = filp->private_data;
a3583244 3089 char buf[64];
5e39841c 3090 unsigned long val;
a3583244
SR
3091 int ret;
3092
3093 if (cnt >= sizeof(buf))
3094 return -EINVAL;
3095
3096 if (copy_from_user(&buf, ubuf, cnt))
3097 return -EFAULT;
3098
3099 buf[cnt] = 0;
3100
3101 ret = strict_strtoul(buf, 10, &val);
3102 if (ret < 0)
3103 return ret;
3104
033601a3
SR
3105 if (val)
3106 set_bit(RB_BUFFERS_ON_BIT, p);
3107 else
3108 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3109
3110 (*ppos)++;
3111
3112 return cnt;
3113}
3114
5e2336a0 3115static const struct file_operations rb_simple_fops = {
a3583244
SR
3116 .open = tracing_open_generic,
3117 .read = rb_simple_read,
3118 .write = rb_simple_write,
3119};
3120
3121
3122static __init int rb_init_debugfs(void)
3123{
3124 struct dentry *d_tracer;
a3583244
SR
3125
3126 d_tracer = tracing_init_dentry();
3127
5452af66
FW
3128 trace_create_file("tracing_on", 0644, d_tracer,
3129 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3130
3131 return 0;
3132}
3133
3134fs_initcall(rb_init_debugfs);
554f786e 3135
59222efe 3136#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3137static int rb_cpu_notify(struct notifier_block *self,
3138 unsigned long action, void *hcpu)
554f786e
SR
3139{
3140 struct ring_buffer *buffer =
3141 container_of(self, struct ring_buffer, cpu_notify);
3142 long cpu = (long)hcpu;
3143
3144 switch (action) {
3145 case CPU_UP_PREPARE:
3146 case CPU_UP_PREPARE_FROZEN:
3f237a79 3147 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
3148 return NOTIFY_OK;
3149
3150 buffer->buffers[cpu] =
3151 rb_allocate_cpu_buffer(buffer, cpu);
3152 if (!buffer->buffers[cpu]) {
3153 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3154 cpu);
3155 return NOTIFY_OK;
3156 }
3157 smp_wmb();
3f237a79 3158 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
3159 break;
3160 case CPU_DOWN_PREPARE:
3161 case CPU_DOWN_PREPARE_FROZEN:
3162 /*
3163 * Do nothing.
3164 * If we were to free the buffer, then the user would
3165 * lose any trace that was in the buffer.
3166 */
3167 break;
3168 default:
3169 break;
3170 }
3171 return NOTIFY_OK;
3172}
3173#endif
This page took 0.861512 seconds and 5 git commands to generate.