ftrace/graph: Trace function entry before updating index
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
d1b182a8
SR
26/*
27 * The ring buffer header is special. We must manually up keep it.
28 */
29int ring_buffer_print_entry_header(struct trace_seq *s)
30{
31 int ret;
32
334d4169
LJ
33 ret = trace_seq_printf(s, "# compressed entry header\n");
34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
36 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
37 ret = trace_seq_printf(s, "\n");
38 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING);
40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
44
45 return ret;
46}
47
5cc98548
SR
48/*
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
53 *
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
57 *
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
61 *
62 * Here's some silly ASCII art.
63 *
64 * +------+
65 * |reader| RING BUFFER
66 * |page |
67 * +------+ +---+ +---+ +---+
68 * | |-->| |-->| |
69 * +---+ +---+ +---+
70 * ^ |
71 * | |
72 * +---------------+
73 *
74 *
75 * +------+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
84 *
85 *
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * ^ | |-->| |-->| |
91 * | +---+ +---+ +---+
92 * | |
93 * | |
94 * +------------------------------+
95 *
96 *
97 * +------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | | | |-->| |
102 * | New +---+ +---+ +---+
103 * | Reader------^ |
104 * | page |
105 * +------------------------------+
106 *
107 *
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
111 *
112 * We will be using cmpxchg soon to make all this lockless.
113 *
114 */
115
033601a3
SR
116/*
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
122 *
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
125 *
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
129 *
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
132 */
133
134/*
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
137 *
138 * ON DISABLED
139 * ---- ----------
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
143 */
144
145enum {
146 RB_BUFFERS_ON_BIT = 0,
147 RB_BUFFERS_DISABLED_BIT = 1,
148};
149
150enum {
151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
153};
154
5e39841c 155static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 156
474d32b6
SR
157#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158
a3583244
SR
159/**
160 * tracing_on - enable all tracing buffers
161 *
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
164 */
165void tracing_on(void)
166{
033601a3 167 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 168}
c4f50183 169EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
170
171/**
172 * tracing_off - turn off all tracing buffers
173 *
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
178 */
179void tracing_off(void)
180{
033601a3
SR
181 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182}
c4f50183 183EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
184
185/**
186 * tracing_off_permanent - permanently disable ring buffers
187 *
188 * This function, once called, will disable all ring buffers
c3706f00 189 * permanently.
033601a3
SR
190 */
191void tracing_off_permanent(void)
192{
193 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
194}
195
988ae9d6
SR
196/**
197 * tracing_is_on - show state of ring buffers enabled
198 */
199int tracing_is_on(void)
200{
201 return ring_buffer_flags == RB_BUFFERS_ON;
202}
203EXPORT_SYMBOL_GPL(tracing_is_on);
204
e3d6bf0a 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 206#define RB_ALIGNMENT 4U
334d4169 207#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 208#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 209
2271048d
SR
210#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211# define RB_FORCE_8BYTE_ALIGNMENT 0
212# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
213#else
214# define RB_FORCE_8BYTE_ALIGNMENT 1
215# define RB_ARCH_ALIGNMENT 8U
216#endif
217
334d4169
LJ
218/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
220
221enum {
222 RB_LEN_TIME_EXTEND = 8,
223 RB_LEN_TIME_STAMP = 16,
224};
225
69d1b839
SR
226#define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
228
2d622719
TZ
229static inline int rb_null_event(struct ring_buffer_event *event)
230{
a1863c21 231 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
232}
233
234static void rb_event_set_padding(struct ring_buffer_event *event)
235{
a1863c21 236 /* padding has a NULL time_delta */
334d4169 237 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
238 event->time_delta = 0;
239}
240
34a148bf 241static unsigned
2d622719 242rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
243{
244 unsigned length;
245
334d4169
LJ
246 if (event->type_len)
247 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
248 else
249 length = event->array[0];
250 return length + RB_EVNT_HDR_SIZE;
251}
252
69d1b839
SR
253/*
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
256 * time extend.
257 */
258static inline unsigned
2d622719
TZ
259rb_event_length(struct ring_buffer_event *event)
260{
334d4169 261 switch (event->type_len) {
7a8e76a3 262 case RINGBUF_TYPE_PADDING:
2d622719
TZ
263 if (rb_null_event(event))
264 /* undefined */
265 return -1;
334d4169 266 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
267
268 case RINGBUF_TYPE_TIME_EXTEND:
269 return RB_LEN_TIME_EXTEND;
270
271 case RINGBUF_TYPE_TIME_STAMP:
272 return RB_LEN_TIME_STAMP;
273
274 case RINGBUF_TYPE_DATA:
2d622719 275 return rb_event_data_length(event);
7a8e76a3
SR
276 default:
277 BUG();
278 }
279 /* not hit */
280 return 0;
281}
282
69d1b839
SR
283/*
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
286 */
287static inline unsigned
288rb_event_ts_length(struct ring_buffer_event *event)
289{
290 unsigned len = 0;
291
292 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 /* time extends include the data event after it */
294 len = RB_LEN_TIME_EXTEND;
295 event = skip_time_extend(event);
296 }
297 return len + rb_event_length(event);
298}
299
7a8e76a3
SR
300/**
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
69d1b839
SR
303 *
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
7a8e76a3
SR
309 */
310unsigned ring_buffer_event_length(struct ring_buffer_event *event)
311{
69d1b839
SR
312 unsigned length;
313
314 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 event = skip_time_extend(event);
316
317 length = rb_event_length(event);
334d4169 318 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
319 return length;
320 length -= RB_EVNT_HDR_SIZE;
321 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322 length -= sizeof(event->array[0]);
323 return length;
7a8e76a3 324}
c4f50183 325EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
326
327/* inline for ring buffer fast paths */
34a148bf 328static void *
7a8e76a3
SR
329rb_event_data(struct ring_buffer_event *event)
330{
69d1b839
SR
331 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 event = skip_time_extend(event);
334d4169 333 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 334 /* If length is in len field, then array[0] has the data */
334d4169 335 if (event->type_len)
7a8e76a3
SR
336 return (void *)&event->array[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event->array[1];
339}
340
341/**
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
344 */
345void *ring_buffer_event_data(struct ring_buffer_event *event)
346{
347 return rb_event_data(event);
348}
c4f50183 349EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
350
351#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 352 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
353
354#define TS_SHIFT 27
355#define TS_MASK ((1ULL << TS_SHIFT) - 1)
356#define TS_DELTA_TEST (~TS_MASK)
357
66a8cb95
SR
358/* Flag when events were overwritten */
359#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
360/* Missed count stored at end */
361#define RB_MISSED_STORED (1 << 30)
66a8cb95 362
abc9b56d 363struct buffer_data_page {
e4c2ce82 364 u64 time_stamp; /* page time stamp */
c3706f00 365 local_t commit; /* write committed index */
abc9b56d
SR
366 unsigned char data[]; /* data of buffer page */
367};
368
77ae365e
SR
369/*
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
375 * lockless.
376 */
abc9b56d 377struct buffer_page {
778c55d4 378 struct list_head list; /* list of buffer pages */
abc9b56d 379 local_t write; /* index for next write */
6f807acd 380 unsigned read; /* index for next read */
778c55d4 381 local_t entries; /* entries on this page */
ff0ff84a 382 unsigned long real_end; /* real end of data */
abc9b56d 383 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
384};
385
77ae365e
SR
386/*
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
391 *
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
395 *
396 * The counter is 20 bits, and the state data is 12.
397 */
398#define RB_WRITE_MASK 0xfffff
399#define RB_WRITE_INTCNT (1 << 20)
400
044fa782 401static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 402{
044fa782 403 local_set(&bpage->commit, 0);
abc9b56d
SR
404}
405
474d32b6
SR
406/**
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
409 *
410 * Returns the amount of data on the page, including buffer page header.
411 */
ef7a4a16
SR
412size_t ring_buffer_page_len(void *page)
413{
474d32b6
SR
414 return local_read(&((struct buffer_data_page *)page)->commit)
415 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
416}
417
ed56829c
SR
418/*
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420 * this issue out.
421 */
34a148bf 422static void free_buffer_page(struct buffer_page *bpage)
ed56829c 423{
34a148bf 424 free_page((unsigned long)bpage->page);
e4c2ce82 425 kfree(bpage);
ed56829c
SR
426}
427
7a8e76a3
SR
428/*
429 * We need to fit the time_stamp delta into 27 bits.
430 */
431static inline int test_time_stamp(u64 delta)
432{
433 if (delta & TS_DELTA_TEST)
434 return 1;
435 return 0;
436}
437
474d32b6 438#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 439
be957c44
SR
440/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
442
d1b182a8
SR
443int ring_buffer_print_page_header(struct trace_seq *s)
444{
445 struct buffer_data_page field;
446 int ret;
447
448 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field.time_stamp),
451 (unsigned int)is_signed_type(u64));
d1b182a8
SR
452
453 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 455 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
456 (unsigned int)sizeof(field.commit),
457 (unsigned int)is_signed_type(long));
d1b182a8 458
66a8cb95
SR
459 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field), commit),
462 1,
463 (unsigned int)is_signed_type(long));
464
d1b182a8 465 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 467 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
468 (unsigned int)BUF_PAGE_SIZE,
469 (unsigned int)is_signed_type(char));
d1b182a8
SR
470
471 return ret;
472}
473
7a8e76a3
SR
474/*
475 * head_page == tail_page && head == tail then buffer is empty.
476 */
477struct ring_buffer_per_cpu {
478 int cpu;
985023de 479 atomic_t record_disabled;
7a8e76a3 480 struct ring_buffer *buffer;
77ae365e 481 spinlock_t reader_lock; /* serialize readers */
445c8951 482 arch_spinlock_t lock;
7a8e76a3 483 struct lock_class_key lock_key;
3adc54fa 484 struct list_head *pages;
6f807acd
SR
485 struct buffer_page *head_page; /* read from head */
486 struct buffer_page *tail_page; /* write to tail */
c3706f00 487 struct buffer_page *commit_page; /* committed pages */
d769041f 488 struct buffer_page *reader_page;
66a8cb95
SR
489 unsigned long lost_events;
490 unsigned long last_overrun;
77ae365e
SR
491 local_t commit_overrun;
492 local_t overrun;
e4906eff 493 local_t entries;
fa743953
SR
494 local_t committing;
495 local_t commits;
77ae365e 496 unsigned long read;
7a8e76a3
SR
497 u64 write_stamp;
498 u64 read_stamp;
7a8e76a3
SR
499};
500
501struct ring_buffer {
7a8e76a3
SR
502 unsigned pages;
503 unsigned flags;
504 int cpus;
7a8e76a3 505 atomic_t record_disabled;
00f62f61 506 cpumask_var_t cpumask;
7a8e76a3 507
1f8a6a10
PZ
508 struct lock_class_key *reader_lock_key;
509
7a8e76a3
SR
510 struct mutex mutex;
511
512 struct ring_buffer_per_cpu **buffers;
554f786e 513
59222efe 514#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
515 struct notifier_block cpu_notify;
516#endif
37886f6a 517 u64 (*clock)(void);
7a8e76a3
SR
518};
519
520struct ring_buffer_iter {
521 struct ring_buffer_per_cpu *cpu_buffer;
522 unsigned long head;
523 struct buffer_page *head_page;
492a74f4
SR
524 struct buffer_page *cache_reader_page;
525 unsigned long cache_read;
7a8e76a3
SR
526 u64 read_stamp;
527};
528
f536aafc 529/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
530#define RB_WARN_ON(b, cond) \
531 ({ \
532 int _____ret = unlikely(cond); \
533 if (_____ret) { \
534 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
535 struct ring_buffer_per_cpu *__b = \
536 (void *)b; \
537 atomic_inc(&__b->buffer->record_disabled); \
538 } else \
539 atomic_inc(&b->record_disabled); \
540 WARN_ON(1); \
541 } \
542 _____ret; \
3e89c7bb 543 })
f536aafc 544
37886f6a
SR
545/* Up this if you want to test the TIME_EXTENTS and normalization */
546#define DEBUG_SHIFT 0
547
6d3f1e12 548static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
549{
550 /* shift to debug/test normalization and TIME_EXTENTS */
551 return buffer->clock() << DEBUG_SHIFT;
552}
553
37886f6a
SR
554u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
555{
556 u64 time;
557
558 preempt_disable_notrace();
6d3f1e12 559 time = rb_time_stamp(buffer);
37886f6a
SR
560 preempt_enable_no_resched_notrace();
561
562 return time;
563}
564EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
565
566void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
567 int cpu, u64 *ts)
568{
569 /* Just stupid testing the normalize function and deltas */
570 *ts >>= DEBUG_SHIFT;
571}
572EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
573
77ae365e
SR
574/*
575 * Making the ring buffer lockless makes things tricky.
576 * Although writes only happen on the CPU that they are on,
577 * and they only need to worry about interrupts. Reads can
578 * happen on any CPU.
579 *
580 * The reader page is always off the ring buffer, but when the
581 * reader finishes with a page, it needs to swap its page with
582 * a new one from the buffer. The reader needs to take from
583 * the head (writes go to the tail). But if a writer is in overwrite
584 * mode and wraps, it must push the head page forward.
585 *
586 * Here lies the problem.
587 *
588 * The reader must be careful to replace only the head page, and
589 * not another one. As described at the top of the file in the
590 * ASCII art, the reader sets its old page to point to the next
591 * page after head. It then sets the page after head to point to
592 * the old reader page. But if the writer moves the head page
593 * during this operation, the reader could end up with the tail.
594 *
595 * We use cmpxchg to help prevent this race. We also do something
596 * special with the page before head. We set the LSB to 1.
597 *
598 * When the writer must push the page forward, it will clear the
599 * bit that points to the head page, move the head, and then set
600 * the bit that points to the new head page.
601 *
602 * We also don't want an interrupt coming in and moving the head
603 * page on another writer. Thus we use the second LSB to catch
604 * that too. Thus:
605 *
606 * head->list->prev->next bit 1 bit 0
607 * ------- -------
608 * Normal page 0 0
609 * Points to head page 0 1
610 * New head page 1 0
611 *
612 * Note we can not trust the prev pointer of the head page, because:
613 *
614 * +----+ +-----+ +-----+
615 * | |------>| T |---X--->| N |
616 * | |<------| | | |
617 * +----+ +-----+ +-----+
618 * ^ ^ |
619 * | +-----+ | |
620 * +----------| R |----------+ |
621 * | |<-----------+
622 * +-----+
623 *
624 * Key: ---X--> HEAD flag set in pointer
625 * T Tail page
626 * R Reader page
627 * N Next page
628 *
629 * (see __rb_reserve_next() to see where this happens)
630 *
631 * What the above shows is that the reader just swapped out
632 * the reader page with a page in the buffer, but before it
633 * could make the new header point back to the new page added
634 * it was preempted by a writer. The writer moved forward onto
635 * the new page added by the reader and is about to move forward
636 * again.
637 *
638 * You can see, it is legitimate for the previous pointer of
639 * the head (or any page) not to point back to itself. But only
640 * temporarially.
641 */
642
643#define RB_PAGE_NORMAL 0UL
644#define RB_PAGE_HEAD 1UL
645#define RB_PAGE_UPDATE 2UL
646
647
648#define RB_FLAG_MASK 3UL
649
650/* PAGE_MOVED is not part of the mask */
651#define RB_PAGE_MOVED 4UL
652
653/*
654 * rb_list_head - remove any bit
655 */
656static struct list_head *rb_list_head(struct list_head *list)
657{
658 unsigned long val = (unsigned long)list;
659
660 return (struct list_head *)(val & ~RB_FLAG_MASK);
661}
662
663/*
6d3f1e12 664 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
665 *
666 * Because the reader may move the head_page pointer, we can
667 * not trust what the head page is (it may be pointing to
668 * the reader page). But if the next page is a header page,
669 * its flags will be non zero.
670 */
671static int inline
672rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
673 struct buffer_page *page, struct list_head *list)
674{
675 unsigned long val;
676
677 val = (unsigned long)list->next;
678
679 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
680 return RB_PAGE_MOVED;
681
682 return val & RB_FLAG_MASK;
683}
684
685/*
686 * rb_is_reader_page
687 *
688 * The unique thing about the reader page, is that, if the
689 * writer is ever on it, the previous pointer never points
690 * back to the reader page.
691 */
692static int rb_is_reader_page(struct buffer_page *page)
693{
694 struct list_head *list = page->list.prev;
695
696 return rb_list_head(list->next) != &page->list;
697}
698
699/*
700 * rb_set_list_to_head - set a list_head to be pointing to head.
701 */
702static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
703 struct list_head *list)
704{
705 unsigned long *ptr;
706
707 ptr = (unsigned long *)&list->next;
708 *ptr |= RB_PAGE_HEAD;
709 *ptr &= ~RB_PAGE_UPDATE;
710}
711
712/*
713 * rb_head_page_activate - sets up head page
714 */
715static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
716{
717 struct buffer_page *head;
718
719 head = cpu_buffer->head_page;
720 if (!head)
721 return;
722
723 /*
724 * Set the previous list pointer to have the HEAD flag.
725 */
726 rb_set_list_to_head(cpu_buffer, head->list.prev);
727}
728
729static void rb_list_head_clear(struct list_head *list)
730{
731 unsigned long *ptr = (unsigned long *)&list->next;
732
733 *ptr &= ~RB_FLAG_MASK;
734}
735
736/*
737 * rb_head_page_dactivate - clears head page ptr (for free list)
738 */
739static void
740rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
741{
742 struct list_head *hd;
743
744 /* Go through the whole list and clear any pointers found. */
745 rb_list_head_clear(cpu_buffer->pages);
746
747 list_for_each(hd, cpu_buffer->pages)
748 rb_list_head_clear(hd);
749}
750
751static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
752 struct buffer_page *head,
753 struct buffer_page *prev,
754 int old_flag, int new_flag)
755{
756 struct list_head *list;
757 unsigned long val = (unsigned long)&head->list;
758 unsigned long ret;
759
760 list = &prev->list;
761
762 val &= ~RB_FLAG_MASK;
763
08a40816
SR
764 ret = cmpxchg((unsigned long *)&list->next,
765 val | old_flag, val | new_flag);
77ae365e
SR
766
767 /* check if the reader took the page */
768 if ((ret & ~RB_FLAG_MASK) != val)
769 return RB_PAGE_MOVED;
770
771 return ret & RB_FLAG_MASK;
772}
773
774static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
775 struct buffer_page *head,
776 struct buffer_page *prev,
777 int old_flag)
778{
779 return rb_head_page_set(cpu_buffer, head, prev,
780 old_flag, RB_PAGE_UPDATE);
781}
782
783static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
784 struct buffer_page *head,
785 struct buffer_page *prev,
786 int old_flag)
787{
788 return rb_head_page_set(cpu_buffer, head, prev,
789 old_flag, RB_PAGE_HEAD);
790}
791
792static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
793 struct buffer_page *head,
794 struct buffer_page *prev,
795 int old_flag)
796{
797 return rb_head_page_set(cpu_buffer, head, prev,
798 old_flag, RB_PAGE_NORMAL);
799}
800
801static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
802 struct buffer_page **bpage)
803{
804 struct list_head *p = rb_list_head((*bpage)->list.next);
805
806 *bpage = list_entry(p, struct buffer_page, list);
807}
808
809static struct buffer_page *
810rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
811{
812 struct buffer_page *head;
813 struct buffer_page *page;
814 struct list_head *list;
815 int i;
816
817 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
818 return NULL;
819
820 /* sanity check */
821 list = cpu_buffer->pages;
822 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
823 return NULL;
824
825 page = head = cpu_buffer->head_page;
826 /*
827 * It is possible that the writer moves the header behind
828 * where we started, and we miss in one loop.
829 * A second loop should grab the header, but we'll do
830 * three loops just because I'm paranoid.
831 */
832 for (i = 0; i < 3; i++) {
833 do {
834 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
835 cpu_buffer->head_page = page;
836 return page;
837 }
838 rb_inc_page(cpu_buffer, &page);
839 } while (page != head);
840 }
841
842 RB_WARN_ON(cpu_buffer, 1);
843
844 return NULL;
845}
846
847static int rb_head_page_replace(struct buffer_page *old,
848 struct buffer_page *new)
849{
850 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
851 unsigned long val;
852 unsigned long ret;
853
854 val = *ptr & ~RB_FLAG_MASK;
855 val |= RB_PAGE_HEAD;
856
08a40816 857 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
858
859 return ret == val;
860}
861
862/*
863 * rb_tail_page_update - move the tail page forward
864 *
865 * Returns 1 if moved tail page, 0 if someone else did.
866 */
867static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
868 struct buffer_page *tail_page,
869 struct buffer_page *next_page)
870{
871 struct buffer_page *old_tail;
872 unsigned long old_entries;
873 unsigned long old_write;
874 int ret = 0;
875
876 /*
877 * The tail page now needs to be moved forward.
878 *
879 * We need to reset the tail page, but without messing
880 * with possible erasing of data brought in by interrupts
881 * that have moved the tail page and are currently on it.
882 *
883 * We add a counter to the write field to denote this.
884 */
885 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
886 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
887
888 /*
889 * Just make sure we have seen our old_write and synchronize
890 * with any interrupts that come in.
891 */
892 barrier();
893
894 /*
895 * If the tail page is still the same as what we think
896 * it is, then it is up to us to update the tail
897 * pointer.
898 */
899 if (tail_page == cpu_buffer->tail_page) {
900 /* Zero the write counter */
901 unsigned long val = old_write & ~RB_WRITE_MASK;
902 unsigned long eval = old_entries & ~RB_WRITE_MASK;
903
904 /*
905 * This will only succeed if an interrupt did
906 * not come in and change it. In which case, we
907 * do not want to modify it.
da706d8b
LJ
908 *
909 * We add (void) to let the compiler know that we do not care
910 * about the return value of these functions. We use the
911 * cmpxchg to only update if an interrupt did not already
912 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 913 */
da706d8b
LJ
914 (void)local_cmpxchg(&next_page->write, old_write, val);
915 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
916
917 /*
918 * No need to worry about races with clearing out the commit.
919 * it only can increment when a commit takes place. But that
920 * only happens in the outer most nested commit.
921 */
922 local_set(&next_page->page->commit, 0);
923
924 old_tail = cmpxchg(&cpu_buffer->tail_page,
925 tail_page, next_page);
926
927 if (old_tail == tail_page)
928 ret = 1;
929 }
930
931 return ret;
932}
933
934static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
935 struct buffer_page *bpage)
936{
937 unsigned long val = (unsigned long)bpage;
938
939 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
940 return 1;
941
942 return 0;
943}
944
945/**
946 * rb_check_list - make sure a pointer to a list has the last bits zero
947 */
948static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
949 struct list_head *list)
950{
951 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
952 return 1;
953 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
954 return 1;
955 return 0;
956}
957
7a8e76a3
SR
958/**
959 * check_pages - integrity check of buffer pages
960 * @cpu_buffer: CPU buffer with pages to test
961 *
c3706f00 962 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
963 * been corrupted.
964 */
965static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
966{
3adc54fa 967 struct list_head *head = cpu_buffer->pages;
044fa782 968 struct buffer_page *bpage, *tmp;
7a8e76a3 969
77ae365e
SR
970 rb_head_page_deactivate(cpu_buffer);
971
3e89c7bb
SR
972 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
973 return -1;
974 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
975 return -1;
7a8e76a3 976
77ae365e
SR
977 if (rb_check_list(cpu_buffer, head))
978 return -1;
979
044fa782 980 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 981 if (RB_WARN_ON(cpu_buffer,
044fa782 982 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
983 return -1;
984 if (RB_WARN_ON(cpu_buffer,
044fa782 985 bpage->list.prev->next != &bpage->list))
3e89c7bb 986 return -1;
77ae365e
SR
987 if (rb_check_list(cpu_buffer, &bpage->list))
988 return -1;
7a8e76a3
SR
989 }
990
77ae365e
SR
991 rb_head_page_activate(cpu_buffer);
992
7a8e76a3
SR
993 return 0;
994}
995
7a8e76a3
SR
996static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
997 unsigned nr_pages)
998{
044fa782 999 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1000 unsigned long addr;
1001 LIST_HEAD(pages);
1002 unsigned i;
1003
3adc54fa
SR
1004 WARN_ON(!nr_pages);
1005
7a8e76a3 1006 for (i = 0; i < nr_pages; i++) {
044fa782 1007 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 1008 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 1009 if (!bpage)
e4c2ce82 1010 goto free_pages;
77ae365e
SR
1011
1012 rb_check_bpage(cpu_buffer, bpage);
1013
044fa782 1014 list_add(&bpage->list, &pages);
e4c2ce82 1015
7a8e76a3
SR
1016 addr = __get_free_page(GFP_KERNEL);
1017 if (!addr)
1018 goto free_pages;
044fa782
SR
1019 bpage->page = (void *)addr;
1020 rb_init_page(bpage->page);
7a8e76a3
SR
1021 }
1022
3adc54fa
SR
1023 /*
1024 * The ring buffer page list is a circular list that does not
1025 * start and end with a list head. All page list items point to
1026 * other pages.
1027 */
1028 cpu_buffer->pages = pages.next;
1029 list_del(&pages);
7a8e76a3
SR
1030
1031 rb_check_pages(cpu_buffer);
1032
1033 return 0;
1034
1035 free_pages:
044fa782
SR
1036 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1037 list_del_init(&bpage->list);
1038 free_buffer_page(bpage);
7a8e76a3
SR
1039 }
1040 return -ENOMEM;
1041}
1042
1043static struct ring_buffer_per_cpu *
1044rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1045{
1046 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1047 struct buffer_page *bpage;
d769041f 1048 unsigned long addr;
7a8e76a3
SR
1049 int ret;
1050
1051 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1052 GFP_KERNEL, cpu_to_node(cpu));
1053 if (!cpu_buffer)
1054 return NULL;
1055
1056 cpu_buffer->cpu = cpu;
1057 cpu_buffer->buffer = buffer;
f83c9d0f 1058 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1059 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1060 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
7a8e76a3 1061
044fa782 1062 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1063 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1064 if (!bpage)
e4c2ce82
SR
1065 goto fail_free_buffer;
1066
77ae365e
SR
1067 rb_check_bpage(cpu_buffer, bpage);
1068
044fa782 1069 cpu_buffer->reader_page = bpage;
d769041f
SR
1070 addr = __get_free_page(GFP_KERNEL);
1071 if (!addr)
e4c2ce82 1072 goto fail_free_reader;
044fa782
SR
1073 bpage->page = (void *)addr;
1074 rb_init_page(bpage->page);
e4c2ce82 1075
d769041f 1076 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1077
7a8e76a3
SR
1078 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1079 if (ret < 0)
d769041f 1080 goto fail_free_reader;
7a8e76a3
SR
1081
1082 cpu_buffer->head_page
3adc54fa 1083 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1084 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1085
77ae365e
SR
1086 rb_head_page_activate(cpu_buffer);
1087
7a8e76a3
SR
1088 return cpu_buffer;
1089
d769041f
SR
1090 fail_free_reader:
1091 free_buffer_page(cpu_buffer->reader_page);
1092
7a8e76a3
SR
1093 fail_free_buffer:
1094 kfree(cpu_buffer);
1095 return NULL;
1096}
1097
1098static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1099{
3adc54fa 1100 struct list_head *head = cpu_buffer->pages;
044fa782 1101 struct buffer_page *bpage, *tmp;
7a8e76a3 1102
d769041f
SR
1103 free_buffer_page(cpu_buffer->reader_page);
1104
77ae365e
SR
1105 rb_head_page_deactivate(cpu_buffer);
1106
3adc54fa
SR
1107 if (head) {
1108 list_for_each_entry_safe(bpage, tmp, head, list) {
1109 list_del_init(&bpage->list);
1110 free_buffer_page(bpage);
1111 }
1112 bpage = list_entry(head, struct buffer_page, list);
044fa782 1113 free_buffer_page(bpage);
7a8e76a3 1114 }
3adc54fa 1115
7a8e76a3
SR
1116 kfree(cpu_buffer);
1117}
1118
59222efe 1119#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1120static int rb_cpu_notify(struct notifier_block *self,
1121 unsigned long action, void *hcpu);
554f786e
SR
1122#endif
1123
7a8e76a3
SR
1124/**
1125 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1126 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1127 * @flags: attributes to set for the ring buffer.
1128 *
1129 * Currently the only flag that is available is the RB_FL_OVERWRITE
1130 * flag. This flag means that the buffer will overwrite old data
1131 * when the buffer wraps. If this flag is not set, the buffer will
1132 * drop data when the tail hits the head.
1133 */
1f8a6a10
PZ
1134struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1135 struct lock_class_key *key)
7a8e76a3
SR
1136{
1137 struct ring_buffer *buffer;
1138 int bsize;
1139 int cpu;
1140
1141 /* keep it in its own cache line */
1142 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1143 GFP_KERNEL);
1144 if (!buffer)
1145 return NULL;
1146
9e01c1b7
RR
1147 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1148 goto fail_free_buffer;
1149
7a8e76a3
SR
1150 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1151 buffer->flags = flags;
37886f6a 1152 buffer->clock = trace_clock_local;
1f8a6a10 1153 buffer->reader_lock_key = key;
7a8e76a3
SR
1154
1155 /* need at least two pages */
5f78abee
SR
1156 if (buffer->pages < 2)
1157 buffer->pages = 2;
7a8e76a3 1158
3bf832ce
FW
1159 /*
1160 * In case of non-hotplug cpu, if the ring-buffer is allocated
1161 * in early initcall, it will not be notified of secondary cpus.
1162 * In that off case, we need to allocate for all possible cpus.
1163 */
1164#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1165 get_online_cpus();
1166 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1167#else
1168 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1169#endif
7a8e76a3
SR
1170 buffer->cpus = nr_cpu_ids;
1171
1172 bsize = sizeof(void *) * nr_cpu_ids;
1173 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1174 GFP_KERNEL);
1175 if (!buffer->buffers)
9e01c1b7 1176 goto fail_free_cpumask;
7a8e76a3
SR
1177
1178 for_each_buffer_cpu(buffer, cpu) {
1179 buffer->buffers[cpu] =
1180 rb_allocate_cpu_buffer(buffer, cpu);
1181 if (!buffer->buffers[cpu])
1182 goto fail_free_buffers;
1183 }
1184
59222efe 1185#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1186 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1187 buffer->cpu_notify.priority = 0;
1188 register_cpu_notifier(&buffer->cpu_notify);
1189#endif
1190
1191 put_online_cpus();
7a8e76a3
SR
1192 mutex_init(&buffer->mutex);
1193
1194 return buffer;
1195
1196 fail_free_buffers:
1197 for_each_buffer_cpu(buffer, cpu) {
1198 if (buffer->buffers[cpu])
1199 rb_free_cpu_buffer(buffer->buffers[cpu]);
1200 }
1201 kfree(buffer->buffers);
1202
9e01c1b7
RR
1203 fail_free_cpumask:
1204 free_cpumask_var(buffer->cpumask);
554f786e 1205 put_online_cpus();
9e01c1b7 1206
7a8e76a3
SR
1207 fail_free_buffer:
1208 kfree(buffer);
1209 return NULL;
1210}
1f8a6a10 1211EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1212
1213/**
1214 * ring_buffer_free - free a ring buffer.
1215 * @buffer: the buffer to free.
1216 */
1217void
1218ring_buffer_free(struct ring_buffer *buffer)
1219{
1220 int cpu;
1221
554f786e
SR
1222 get_online_cpus();
1223
59222efe 1224#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1225 unregister_cpu_notifier(&buffer->cpu_notify);
1226#endif
1227
7a8e76a3
SR
1228 for_each_buffer_cpu(buffer, cpu)
1229 rb_free_cpu_buffer(buffer->buffers[cpu]);
1230
554f786e
SR
1231 put_online_cpus();
1232
bd3f0221 1233 kfree(buffer->buffers);
9e01c1b7
RR
1234 free_cpumask_var(buffer->cpumask);
1235
7a8e76a3
SR
1236 kfree(buffer);
1237}
c4f50183 1238EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1239
37886f6a
SR
1240void ring_buffer_set_clock(struct ring_buffer *buffer,
1241 u64 (*clock)(void))
1242{
1243 buffer->clock = clock;
1244}
1245
7a8e76a3
SR
1246static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1247
1248static void
1249rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1250{
044fa782 1251 struct buffer_page *bpage;
7a8e76a3
SR
1252 struct list_head *p;
1253 unsigned i;
1254
f7112949 1255 spin_lock_irq(&cpu_buffer->reader_lock);
77ae365e
SR
1256 rb_head_page_deactivate(cpu_buffer);
1257
7a8e76a3 1258 for (i = 0; i < nr_pages; i++) {
3adc54fa 1259 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1260 goto out;
3adc54fa 1261 p = cpu_buffer->pages->next;
044fa782
SR
1262 bpage = list_entry(p, struct buffer_page, list);
1263 list_del_init(&bpage->list);
1264 free_buffer_page(bpage);
7a8e76a3 1265 }
3adc54fa 1266 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1267 goto out;
7a8e76a3
SR
1268
1269 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1270 rb_check_pages(cpu_buffer);
1271
292f60c0 1272out:
dd7f5943 1273 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1274}
1275
1276static void
1277rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1278 struct list_head *pages, unsigned nr_pages)
1279{
044fa782 1280 struct buffer_page *bpage;
7a8e76a3
SR
1281 struct list_head *p;
1282 unsigned i;
1283
77ae365e
SR
1284 spin_lock_irq(&cpu_buffer->reader_lock);
1285 rb_head_page_deactivate(cpu_buffer);
1286
7a8e76a3 1287 for (i = 0; i < nr_pages; i++) {
3e89c7bb 1288 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
292f60c0 1289 goto out;
7a8e76a3 1290 p = pages->next;
044fa782
SR
1291 bpage = list_entry(p, struct buffer_page, list);
1292 list_del_init(&bpage->list);
3adc54fa 1293 list_add_tail(&bpage->list, cpu_buffer->pages);
7a8e76a3
SR
1294 }
1295 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1296 rb_check_pages(cpu_buffer);
1297
292f60c0 1298out:
dd7f5943 1299 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1300}
1301
1302/**
1303 * ring_buffer_resize - resize the ring buffer
1304 * @buffer: the buffer to resize.
1305 * @size: the new size.
1306 *
7a8e76a3
SR
1307 * Minimum size is 2 * BUF_PAGE_SIZE.
1308 *
1309 * Returns -1 on failure.
1310 */
1311int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1312{
1313 struct ring_buffer_per_cpu *cpu_buffer;
1314 unsigned nr_pages, rm_pages, new_pages;
044fa782 1315 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1316 unsigned long buffer_size;
1317 unsigned long addr;
1318 LIST_HEAD(pages);
1319 int i, cpu;
1320
ee51a1de
IM
1321 /*
1322 * Always succeed at resizing a non-existent buffer:
1323 */
1324 if (!buffer)
1325 return size;
1326
7a8e76a3
SR
1327 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1328 size *= BUF_PAGE_SIZE;
1329 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1330
1331 /* we need a minimum of two pages */
1332 if (size < BUF_PAGE_SIZE * 2)
1333 size = BUF_PAGE_SIZE * 2;
1334
1335 if (size == buffer_size)
1336 return size;
1337
18421015
SR
1338 atomic_inc(&buffer->record_disabled);
1339
1340 /* Make sure all writers are done with this buffer. */
1341 synchronize_sched();
1342
7a8e76a3 1343 mutex_lock(&buffer->mutex);
554f786e 1344 get_online_cpus();
7a8e76a3
SR
1345
1346 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1347
1348 if (size < buffer_size) {
1349
1350 /* easy case, just free pages */
554f786e
SR
1351 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1352 goto out_fail;
7a8e76a3
SR
1353
1354 rm_pages = buffer->pages - nr_pages;
1355
1356 for_each_buffer_cpu(buffer, cpu) {
1357 cpu_buffer = buffer->buffers[cpu];
1358 rb_remove_pages(cpu_buffer, rm_pages);
1359 }
1360 goto out;
1361 }
1362
1363 /*
1364 * This is a bit more difficult. We only want to add pages
1365 * when we can allocate enough for all CPUs. We do this
1366 * by allocating all the pages and storing them on a local
1367 * link list. If we succeed in our allocation, then we
1368 * add these pages to the cpu_buffers. Otherwise we just free
1369 * them all and return -ENOMEM;
1370 */
554f786e
SR
1371 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1372 goto out_fail;
f536aafc 1373
7a8e76a3
SR
1374 new_pages = nr_pages - buffer->pages;
1375
1376 for_each_buffer_cpu(buffer, cpu) {
1377 for (i = 0; i < new_pages; i++) {
044fa782 1378 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
1379 cache_line_size()),
1380 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1381 if (!bpage)
e4c2ce82 1382 goto free_pages;
044fa782 1383 list_add(&bpage->list, &pages);
7a8e76a3
SR
1384 addr = __get_free_page(GFP_KERNEL);
1385 if (!addr)
1386 goto free_pages;
044fa782
SR
1387 bpage->page = (void *)addr;
1388 rb_init_page(bpage->page);
7a8e76a3
SR
1389 }
1390 }
1391
1392 for_each_buffer_cpu(buffer, cpu) {
1393 cpu_buffer = buffer->buffers[cpu];
1394 rb_insert_pages(cpu_buffer, &pages, new_pages);
1395 }
1396
554f786e
SR
1397 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1398 goto out_fail;
7a8e76a3
SR
1399
1400 out:
1401 buffer->pages = nr_pages;
554f786e 1402 put_online_cpus();
7a8e76a3
SR
1403 mutex_unlock(&buffer->mutex);
1404
18421015
SR
1405 atomic_dec(&buffer->record_disabled);
1406
7a8e76a3
SR
1407 return size;
1408
1409 free_pages:
044fa782
SR
1410 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1411 list_del_init(&bpage->list);
1412 free_buffer_page(bpage);
7a8e76a3 1413 }
554f786e 1414 put_online_cpus();
641d2f63 1415 mutex_unlock(&buffer->mutex);
18421015 1416 atomic_dec(&buffer->record_disabled);
7a8e76a3 1417 return -ENOMEM;
554f786e
SR
1418
1419 /*
1420 * Something went totally wrong, and we are too paranoid
1421 * to even clean up the mess.
1422 */
1423 out_fail:
1424 put_online_cpus();
1425 mutex_unlock(&buffer->mutex);
18421015 1426 atomic_dec(&buffer->record_disabled);
554f786e 1427 return -1;
7a8e76a3 1428}
c4f50183 1429EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1430
750912fa
DS
1431void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1432{
1433 mutex_lock(&buffer->mutex);
1434 if (val)
1435 buffer->flags |= RB_FL_OVERWRITE;
1436 else
1437 buffer->flags &= ~RB_FL_OVERWRITE;
1438 mutex_unlock(&buffer->mutex);
1439}
1440EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1441
8789a9e7 1442static inline void *
044fa782 1443__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1444{
044fa782 1445 return bpage->data + index;
8789a9e7
SR
1446}
1447
044fa782 1448static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1449{
044fa782 1450 return bpage->page->data + index;
7a8e76a3
SR
1451}
1452
1453static inline struct ring_buffer_event *
d769041f 1454rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1455{
6f807acd
SR
1456 return __rb_page_index(cpu_buffer->reader_page,
1457 cpu_buffer->reader_page->read);
1458}
1459
7a8e76a3
SR
1460static inline struct ring_buffer_event *
1461rb_iter_head_event(struct ring_buffer_iter *iter)
1462{
6f807acd 1463 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1464}
1465
77ae365e 1466static inline unsigned long rb_page_write(struct buffer_page *bpage)
bf41a158 1467{
77ae365e 1468 return local_read(&bpage->write) & RB_WRITE_MASK;
bf41a158
SR
1469}
1470
1471static inline unsigned rb_page_commit(struct buffer_page *bpage)
1472{
abc9b56d 1473 return local_read(&bpage->page->commit);
bf41a158
SR
1474}
1475
77ae365e
SR
1476static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1477{
1478 return local_read(&bpage->entries) & RB_WRITE_MASK;
1479}
1480
bf41a158
SR
1481/* Size is determined by what has been commited */
1482static inline unsigned rb_page_size(struct buffer_page *bpage)
1483{
1484 return rb_page_commit(bpage);
1485}
1486
1487static inline unsigned
1488rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1489{
1490 return rb_page_commit(cpu_buffer->commit_page);
1491}
1492
bf41a158
SR
1493static inline unsigned
1494rb_event_index(struct ring_buffer_event *event)
1495{
1496 unsigned long addr = (unsigned long)event;
1497
22f470f8 1498 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1499}
1500
0f0c85fc 1501static inline int
fa743953
SR
1502rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1503 struct ring_buffer_event *event)
bf41a158
SR
1504{
1505 unsigned long addr = (unsigned long)event;
1506 unsigned long index;
1507
1508 index = rb_event_index(event);
1509 addr &= PAGE_MASK;
1510
1511 return cpu_buffer->commit_page->page == (void *)addr &&
1512 rb_commit_index(cpu_buffer) == index;
1513}
1514
34a148bf 1515static void
bf41a158 1516rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1517{
77ae365e
SR
1518 unsigned long max_count;
1519
bf41a158
SR
1520 /*
1521 * We only race with interrupts and NMIs on this CPU.
1522 * If we own the commit event, then we can commit
1523 * all others that interrupted us, since the interruptions
1524 * are in stack format (they finish before they come
1525 * back to us). This allows us to do a simple loop to
1526 * assign the commit to the tail.
1527 */
a8ccf1d6 1528 again:
77ae365e
SR
1529 max_count = cpu_buffer->buffer->pages * 100;
1530
bf41a158 1531 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1532 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1533 return;
1534 if (RB_WARN_ON(cpu_buffer,
1535 rb_is_reader_page(cpu_buffer->tail_page)))
1536 return;
1537 local_set(&cpu_buffer->commit_page->page->commit,
1538 rb_page_write(cpu_buffer->commit_page));
bf41a158 1539 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1540 cpu_buffer->write_stamp =
1541 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1542 /* add barrier to keep gcc from optimizing too much */
1543 barrier();
1544 }
1545 while (rb_commit_index(cpu_buffer) !=
1546 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1547
1548 local_set(&cpu_buffer->commit_page->page->commit,
1549 rb_page_write(cpu_buffer->commit_page));
1550 RB_WARN_ON(cpu_buffer,
1551 local_read(&cpu_buffer->commit_page->page->commit) &
1552 ~RB_WRITE_MASK);
bf41a158
SR
1553 barrier();
1554 }
a8ccf1d6
SR
1555
1556 /* again, keep gcc from optimizing */
1557 barrier();
1558
1559 /*
1560 * If an interrupt came in just after the first while loop
1561 * and pushed the tail page forward, we will be left with
1562 * a dangling commit that will never go forward.
1563 */
1564 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1565 goto again;
7a8e76a3
SR
1566}
1567
d769041f 1568static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1569{
abc9b56d 1570 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1571 cpu_buffer->reader_page->read = 0;
d769041f
SR
1572}
1573
34a148bf 1574static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1575{
1576 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1577
1578 /*
1579 * The iterator could be on the reader page (it starts there).
1580 * But the head could have moved, since the reader was
1581 * found. Check for this case and assign the iterator
1582 * to the head page instead of next.
1583 */
1584 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1585 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1586 else
1587 rb_inc_page(cpu_buffer, &iter->head_page);
1588
abc9b56d 1589 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1590 iter->head = 0;
1591}
1592
69d1b839
SR
1593/* Slow path, do not inline */
1594static noinline struct ring_buffer_event *
1595rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1596{
1597 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1598
1599 /* Not the first event on the page? */
1600 if (rb_event_index(event)) {
1601 event->time_delta = delta & TS_MASK;
1602 event->array[0] = delta >> TS_SHIFT;
1603 } else {
1604 /* nope, just zero it */
1605 event->time_delta = 0;
1606 event->array[0] = 0;
1607 }
1608
1609 return skip_time_extend(event);
1610}
1611
7a8e76a3
SR
1612/**
1613 * ring_buffer_update_event - update event type and data
1614 * @event: the even to update
1615 * @type: the type of event
1616 * @length: the size of the event field in the ring buffer
1617 *
1618 * Update the type and data fields of the event. The length
1619 * is the actual size that is written to the ring buffer,
1620 * and with this, we can determine what to place into the
1621 * data field.
1622 */
34a148bf 1623static void
69d1b839
SR
1624rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1625 struct ring_buffer_event *event, unsigned length,
1626 int add_timestamp, u64 delta)
7a8e76a3 1627{
69d1b839
SR
1628 /* Only a commit updates the timestamp */
1629 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1630 delta = 0;
7a8e76a3 1631
69d1b839
SR
1632 /*
1633 * If we need to add a timestamp, then we
1634 * add it to the start of the resevered space.
1635 */
1636 if (unlikely(add_timestamp)) {
1637 event = rb_add_time_stamp(event, delta);
1638 length -= RB_LEN_TIME_EXTEND;
1639 delta = 0;
7a8e76a3 1640 }
69d1b839
SR
1641
1642 event->time_delta = delta;
1643 length -= RB_EVNT_HDR_SIZE;
1644 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1645 event->type_len = 0;
1646 event->array[0] = length;
1647 } else
1648 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1649}
1650
77ae365e
SR
1651/*
1652 * rb_handle_head_page - writer hit the head page
1653 *
1654 * Returns: +1 to retry page
1655 * 0 to continue
1656 * -1 on error
1657 */
1658static int
1659rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1660 struct buffer_page *tail_page,
1661 struct buffer_page *next_page)
1662{
1663 struct buffer_page *new_head;
1664 int entries;
1665 int type;
1666 int ret;
1667
1668 entries = rb_page_entries(next_page);
1669
1670 /*
1671 * The hard part is here. We need to move the head
1672 * forward, and protect against both readers on
1673 * other CPUs and writers coming in via interrupts.
1674 */
1675 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1676 RB_PAGE_HEAD);
1677
1678 /*
1679 * type can be one of four:
1680 * NORMAL - an interrupt already moved it for us
1681 * HEAD - we are the first to get here.
1682 * UPDATE - we are the interrupt interrupting
1683 * a current move.
1684 * MOVED - a reader on another CPU moved the next
1685 * pointer to its reader page. Give up
1686 * and try again.
1687 */
1688
1689 switch (type) {
1690 case RB_PAGE_HEAD:
1691 /*
1692 * We changed the head to UPDATE, thus
1693 * it is our responsibility to update
1694 * the counters.
1695 */
1696 local_add(entries, &cpu_buffer->overrun);
1697
1698 /*
1699 * The entries will be zeroed out when we move the
1700 * tail page.
1701 */
1702
1703 /* still more to do */
1704 break;
1705
1706 case RB_PAGE_UPDATE:
1707 /*
1708 * This is an interrupt that interrupt the
1709 * previous update. Still more to do.
1710 */
1711 break;
1712 case RB_PAGE_NORMAL:
1713 /*
1714 * An interrupt came in before the update
1715 * and processed this for us.
1716 * Nothing left to do.
1717 */
1718 return 1;
1719 case RB_PAGE_MOVED:
1720 /*
1721 * The reader is on another CPU and just did
1722 * a swap with our next_page.
1723 * Try again.
1724 */
1725 return 1;
1726 default:
1727 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1728 return -1;
1729 }
1730
1731 /*
1732 * Now that we are here, the old head pointer is
1733 * set to UPDATE. This will keep the reader from
1734 * swapping the head page with the reader page.
1735 * The reader (on another CPU) will spin till
1736 * we are finished.
1737 *
1738 * We just need to protect against interrupts
1739 * doing the job. We will set the next pointer
1740 * to HEAD. After that, we set the old pointer
1741 * to NORMAL, but only if it was HEAD before.
1742 * otherwise we are an interrupt, and only
1743 * want the outer most commit to reset it.
1744 */
1745 new_head = next_page;
1746 rb_inc_page(cpu_buffer, &new_head);
1747
1748 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1749 RB_PAGE_NORMAL);
1750
1751 /*
1752 * Valid returns are:
1753 * HEAD - an interrupt came in and already set it.
1754 * NORMAL - One of two things:
1755 * 1) We really set it.
1756 * 2) A bunch of interrupts came in and moved
1757 * the page forward again.
1758 */
1759 switch (ret) {
1760 case RB_PAGE_HEAD:
1761 case RB_PAGE_NORMAL:
1762 /* OK */
1763 break;
1764 default:
1765 RB_WARN_ON(cpu_buffer, 1);
1766 return -1;
1767 }
1768
1769 /*
1770 * It is possible that an interrupt came in,
1771 * set the head up, then more interrupts came in
1772 * and moved it again. When we get back here,
1773 * the page would have been set to NORMAL but we
1774 * just set it back to HEAD.
1775 *
1776 * How do you detect this? Well, if that happened
1777 * the tail page would have moved.
1778 */
1779 if (ret == RB_PAGE_NORMAL) {
1780 /*
1781 * If the tail had moved passed next, then we need
1782 * to reset the pointer.
1783 */
1784 if (cpu_buffer->tail_page != tail_page &&
1785 cpu_buffer->tail_page != next_page)
1786 rb_head_page_set_normal(cpu_buffer, new_head,
1787 next_page,
1788 RB_PAGE_HEAD);
1789 }
1790
1791 /*
1792 * If this was the outer most commit (the one that
1793 * changed the original pointer from HEAD to UPDATE),
1794 * then it is up to us to reset it to NORMAL.
1795 */
1796 if (type == RB_PAGE_HEAD) {
1797 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1798 tail_page,
1799 RB_PAGE_UPDATE);
1800 if (RB_WARN_ON(cpu_buffer,
1801 ret != RB_PAGE_UPDATE))
1802 return -1;
1803 }
1804
1805 return 0;
1806}
1807
34a148bf 1808static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1809{
1810 struct ring_buffer_event event; /* Used only for sizeof array */
1811
1812 /* zero length can cause confusions */
1813 if (!length)
1814 length = 1;
1815
2271048d 1816 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
1817 length += sizeof(event.array[0]);
1818
1819 length += RB_EVNT_HDR_SIZE;
2271048d 1820 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
1821
1822 return length;
1823}
1824
c7b09308
SR
1825static inline void
1826rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1827 struct buffer_page *tail_page,
1828 unsigned long tail, unsigned long length)
1829{
1830 struct ring_buffer_event *event;
1831
1832 /*
1833 * Only the event that crossed the page boundary
1834 * must fill the old tail_page with padding.
1835 */
1836 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
1837 /*
1838 * If the page was filled, then we still need
1839 * to update the real_end. Reset it to zero
1840 * and the reader will ignore it.
1841 */
1842 if (tail == BUF_PAGE_SIZE)
1843 tail_page->real_end = 0;
1844
c7b09308
SR
1845 local_sub(length, &tail_page->write);
1846 return;
1847 }
1848
1849 event = __rb_page_index(tail_page, tail);
b0b7065b 1850 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 1851
ff0ff84a
SR
1852 /*
1853 * Save the original length to the meta data.
1854 * This will be used by the reader to add lost event
1855 * counter.
1856 */
1857 tail_page->real_end = tail;
1858
c7b09308
SR
1859 /*
1860 * If this event is bigger than the minimum size, then
1861 * we need to be careful that we don't subtract the
1862 * write counter enough to allow another writer to slip
1863 * in on this page.
1864 * We put in a discarded commit instead, to make sure
1865 * that this space is not used again.
1866 *
1867 * If we are less than the minimum size, we don't need to
1868 * worry about it.
1869 */
1870 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1871 /* No room for any events */
1872
1873 /* Mark the rest of the page with padding */
1874 rb_event_set_padding(event);
1875
1876 /* Set the write back to the previous setting */
1877 local_sub(length, &tail_page->write);
1878 return;
1879 }
1880
1881 /* Put in a discarded event */
1882 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1883 event->type_len = RINGBUF_TYPE_PADDING;
1884 /* time delta must be non zero */
1885 event->time_delta = 1;
c7b09308
SR
1886
1887 /* Set write to end of buffer */
1888 length = (tail + length) - BUF_PAGE_SIZE;
1889 local_sub(length, &tail_page->write);
1890}
6634ff26 1891
747e94ae
SR
1892/*
1893 * This is the slow path, force gcc not to inline it.
1894 */
1895static noinline struct ring_buffer_event *
6634ff26
SR
1896rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1897 unsigned long length, unsigned long tail,
e8bc43e8 1898 struct buffer_page *tail_page, u64 ts)
7a8e76a3 1899{
5a50e33c 1900 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 1901 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
1902 struct buffer_page *next_page;
1903 int ret;
aa20ae84
SR
1904
1905 next_page = tail_page;
1906
aa20ae84
SR
1907 rb_inc_page(cpu_buffer, &next_page);
1908
aa20ae84
SR
1909 /*
1910 * If for some reason, we had an interrupt storm that made
1911 * it all the way around the buffer, bail, and warn
1912 * about it.
1913 */
1914 if (unlikely(next_page == commit_page)) {
77ae365e 1915 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
1916 goto out_reset;
1917 }
1918
77ae365e
SR
1919 /*
1920 * This is where the fun begins!
1921 *
1922 * We are fighting against races between a reader that
1923 * could be on another CPU trying to swap its reader
1924 * page with the buffer head.
1925 *
1926 * We are also fighting against interrupts coming in and
1927 * moving the head or tail on us as well.
1928 *
1929 * If the next page is the head page then we have filled
1930 * the buffer, unless the commit page is still on the
1931 * reader page.
1932 */
1933 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 1934
77ae365e
SR
1935 /*
1936 * If the commit is not on the reader page, then
1937 * move the header page.
1938 */
1939 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1940 /*
1941 * If we are not in overwrite mode,
1942 * this is easy, just stop here.
1943 */
1944 if (!(buffer->flags & RB_FL_OVERWRITE))
1945 goto out_reset;
1946
1947 ret = rb_handle_head_page(cpu_buffer,
1948 tail_page,
1949 next_page);
1950 if (ret < 0)
1951 goto out_reset;
1952 if (ret)
1953 goto out_again;
1954 } else {
1955 /*
1956 * We need to be careful here too. The
1957 * commit page could still be on the reader
1958 * page. We could have a small buffer, and
1959 * have filled up the buffer with events
1960 * from interrupts and such, and wrapped.
1961 *
1962 * Note, if the tail page is also the on the
1963 * reader_page, we let it move out.
1964 */
1965 if (unlikely((cpu_buffer->commit_page !=
1966 cpu_buffer->tail_page) &&
1967 (cpu_buffer->commit_page ==
1968 cpu_buffer->reader_page))) {
1969 local_inc(&cpu_buffer->commit_overrun);
1970 goto out_reset;
1971 }
aa20ae84
SR
1972 }
1973 }
1974
77ae365e
SR
1975 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1976 if (ret) {
1977 /*
1978 * Nested commits always have zero deltas, so
1979 * just reread the time stamp
1980 */
e8bc43e8
SR
1981 ts = rb_time_stamp(buffer);
1982 next_page->page->time_stamp = ts;
aa20ae84
SR
1983 }
1984
77ae365e 1985 out_again:
aa20ae84 1986
77ae365e 1987 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
1988
1989 /* fail and let the caller try again */
1990 return ERR_PTR(-EAGAIN);
1991
45141d46 1992 out_reset:
6f3b3440 1993 /* reset write */
c7b09308 1994 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 1995
bf41a158 1996 return NULL;
7a8e76a3
SR
1997}
1998
6634ff26
SR
1999static struct ring_buffer_event *
2000__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2001 unsigned long length, u64 ts,
2002 u64 delta, int add_timestamp)
6634ff26 2003{
5a50e33c 2004 struct buffer_page *tail_page;
6634ff26
SR
2005 struct ring_buffer_event *event;
2006 unsigned long tail, write;
2007
69d1b839
SR
2008 /*
2009 * If the time delta since the last event is too big to
2010 * hold in the time field of the event, then we append a
2011 * TIME EXTEND event ahead of the data event.
2012 */
2013 if (unlikely(add_timestamp))
2014 length += RB_LEN_TIME_EXTEND;
2015
6634ff26
SR
2016 tail_page = cpu_buffer->tail_page;
2017 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2018
2019 /* set write to only the index of the write */
2020 write &= RB_WRITE_MASK;
6634ff26
SR
2021 tail = write - length;
2022
2023 /* See if we shot pass the end of this buffer page */
747e94ae 2024 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2025 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2026 tail_page, ts);
6634ff26
SR
2027
2028 /* We reserved something on the buffer */
2029
6634ff26 2030 event = __rb_page_index(tail_page, tail);
1744a21d 2031 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2032 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2033
69d1b839 2034 local_inc(&tail_page->entries);
6634ff26
SR
2035
2036 /*
fa743953
SR
2037 * If this is the first commit on the page, then update
2038 * its timestamp.
6634ff26 2039 */
fa743953 2040 if (!tail)
e8bc43e8 2041 tail_page->page->time_stamp = ts;
6634ff26
SR
2042
2043 return event;
2044}
2045
edd813bf
SR
2046static inline int
2047rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2048 struct ring_buffer_event *event)
2049{
2050 unsigned long new_index, old_index;
2051 struct buffer_page *bpage;
2052 unsigned long index;
2053 unsigned long addr;
2054
2055 new_index = rb_event_index(event);
69d1b839 2056 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2057 addr = (unsigned long)event;
2058 addr &= PAGE_MASK;
2059
2060 bpage = cpu_buffer->tail_page;
2061
2062 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2063 unsigned long write_mask =
2064 local_read(&bpage->write) & ~RB_WRITE_MASK;
edd813bf
SR
2065 /*
2066 * This is on the tail page. It is possible that
2067 * a write could come in and move the tail page
2068 * and write to the next page. That is fine
2069 * because we just shorten what is on this page.
2070 */
77ae365e
SR
2071 old_index += write_mask;
2072 new_index += write_mask;
edd813bf
SR
2073 index = local_cmpxchg(&bpage->write, old_index, new_index);
2074 if (index == old_index)
2075 return 1;
2076 }
2077
2078 /* could not discard */
2079 return 0;
2080}
2081
fa743953
SR
2082static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2083{
2084 local_inc(&cpu_buffer->committing);
2085 local_inc(&cpu_buffer->commits);
2086}
2087
d9abde21 2088static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2089{
2090 unsigned long commits;
2091
2092 if (RB_WARN_ON(cpu_buffer,
2093 !local_read(&cpu_buffer->committing)))
2094 return;
2095
2096 again:
2097 commits = local_read(&cpu_buffer->commits);
2098 /* synchronize with interrupts */
2099 barrier();
2100 if (local_read(&cpu_buffer->committing) == 1)
2101 rb_set_commit_to_write(cpu_buffer);
2102
2103 local_dec(&cpu_buffer->committing);
2104
2105 /* synchronize with interrupts */
2106 barrier();
2107
2108 /*
2109 * Need to account for interrupts coming in between the
2110 * updating of the commit page and the clearing of the
2111 * committing counter.
2112 */
2113 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2114 !local_read(&cpu_buffer->committing)) {
2115 local_inc(&cpu_buffer->committing);
2116 goto again;
2117 }
2118}
2119
7a8e76a3 2120static struct ring_buffer_event *
62f0b3eb
SR
2121rb_reserve_next_event(struct ring_buffer *buffer,
2122 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2123 unsigned long length)
7a8e76a3
SR
2124{
2125 struct ring_buffer_event *event;
69d1b839 2126 u64 ts, delta;
818e3dd3 2127 int nr_loops = 0;
69d1b839 2128 int add_timestamp;
140ff891 2129 u64 diff;
7a8e76a3 2130
fa743953
SR
2131 rb_start_commit(cpu_buffer);
2132
85bac32c 2133#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2134 /*
2135 * Due to the ability to swap a cpu buffer from a buffer
2136 * it is possible it was swapped before we committed.
2137 * (committing stops a swap). We check for it here and
2138 * if it happened, we have to fail the write.
2139 */
2140 barrier();
2141 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2142 local_dec(&cpu_buffer->committing);
2143 local_dec(&cpu_buffer->commits);
2144 return NULL;
2145 }
85bac32c 2146#endif
62f0b3eb 2147
be957c44 2148 length = rb_calculate_event_length(length);
bf41a158 2149 again:
69d1b839
SR
2150 add_timestamp = 0;
2151 delta = 0;
2152
818e3dd3
SR
2153 /*
2154 * We allow for interrupts to reenter here and do a trace.
2155 * If one does, it will cause this original code to loop
2156 * back here. Even with heavy interrupts happening, this
2157 * should only happen a few times in a row. If this happens
2158 * 1000 times in a row, there must be either an interrupt
2159 * storm or we have something buggy.
2160 * Bail!
2161 */
3e89c7bb 2162 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2163 goto out_fail;
818e3dd3 2164
6d3f1e12 2165 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2166 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2167
140ff891
SR
2168 /* make sure this diff is calculated here */
2169 barrier();
bf41a158 2170
140ff891
SR
2171 /* Did the write stamp get updated already? */
2172 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2173 delta = diff;
2174 if (unlikely(test_time_stamp(delta))) {
69d1b839 2175 WARN_ONCE(delta > (1ULL << 59),
e9345aab 2176 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
69d1b839
SR
2177 (unsigned long long)delta,
2178 (unsigned long long)ts,
e9345aab 2179 (unsigned long long)cpu_buffer->write_stamp);
69d1b839 2180 add_timestamp = 1;
7a8e76a3 2181 }
168b6b1d 2182 }
7a8e76a3 2183
69d1b839
SR
2184 event = __rb_reserve_next(cpu_buffer, length, ts,
2185 delta, add_timestamp);
168b6b1d 2186 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2187 goto again;
2188
fa743953
SR
2189 if (!event)
2190 goto out_fail;
7a8e76a3 2191
7a8e76a3 2192 return event;
fa743953
SR
2193
2194 out_fail:
2195 rb_end_commit(cpu_buffer);
2196 return NULL;
7a8e76a3
SR
2197}
2198
1155de47
PM
2199#ifdef CONFIG_TRACING
2200
aa18efb2 2201#define TRACE_RECURSIVE_DEPTH 16
261842b7 2202
d9abde21
SR
2203/* Keep this code out of the fast path cache */
2204static noinline void trace_recursive_fail(void)
261842b7 2205{
aa18efb2
SR
2206 /* Disable all tracing before we do anything else */
2207 tracing_off_permanent();
261842b7 2208
7d7d2b80 2209 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
2210 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2211 current->trace_recursion,
2212 hardirq_count() >> HARDIRQ_SHIFT,
2213 softirq_count() >> SOFTIRQ_SHIFT,
2214 in_nmi());
261842b7 2215
aa18efb2 2216 WARN_ON_ONCE(1);
d9abde21
SR
2217}
2218
2219static inline int trace_recursive_lock(void)
2220{
2221 current->trace_recursion++;
2222
2223 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2224 return 0;
2225
2226 trace_recursive_fail();
2227
aa18efb2 2228 return -1;
261842b7
SR
2229}
2230
d9abde21 2231static inline void trace_recursive_unlock(void)
261842b7 2232{
aa18efb2 2233 WARN_ON_ONCE(!current->trace_recursion);
261842b7 2234
aa18efb2 2235 current->trace_recursion--;
261842b7
SR
2236}
2237
1155de47
PM
2238#else
2239
2240#define trace_recursive_lock() (0)
2241#define trace_recursive_unlock() do { } while (0)
2242
2243#endif
2244
7a8e76a3
SR
2245/**
2246 * ring_buffer_lock_reserve - reserve a part of the buffer
2247 * @buffer: the ring buffer to reserve from
2248 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2249 *
2250 * Returns a reseverd event on the ring buffer to copy directly to.
2251 * The user of this interface will need to get the body to write into
2252 * and can use the ring_buffer_event_data() interface.
2253 *
2254 * The length is the length of the data needed, not the event length
2255 * which also includes the event header.
2256 *
2257 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2258 * If NULL is returned, then nothing has been allocated or locked.
2259 */
2260struct ring_buffer_event *
0a987751 2261ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2262{
2263 struct ring_buffer_per_cpu *cpu_buffer;
2264 struct ring_buffer_event *event;
5168ae50 2265 int cpu;
7a8e76a3 2266
033601a3 2267 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2268 return NULL;
2269
bf41a158 2270 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2271 preempt_disable_notrace();
bf41a158 2272
52fbe9cd
LJ
2273 if (atomic_read(&buffer->record_disabled))
2274 goto out_nocheck;
2275
261842b7
SR
2276 if (trace_recursive_lock())
2277 goto out_nocheck;
2278
7a8e76a3
SR
2279 cpu = raw_smp_processor_id();
2280
9e01c1b7 2281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2282 goto out;
7a8e76a3
SR
2283
2284 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2285
2286 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2287 goto out;
7a8e76a3 2288
be957c44 2289 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2290 goto out;
7a8e76a3 2291
62f0b3eb 2292 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2293 if (!event)
d769041f 2294 goto out;
7a8e76a3
SR
2295
2296 return event;
2297
d769041f 2298 out:
261842b7
SR
2299 trace_recursive_unlock();
2300
2301 out_nocheck:
5168ae50 2302 preempt_enable_notrace();
7a8e76a3
SR
2303 return NULL;
2304}
c4f50183 2305EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2306
a1863c21
SR
2307static void
2308rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2309 struct ring_buffer_event *event)
2310{
69d1b839
SR
2311 u64 delta;
2312
fa743953
SR
2313 /*
2314 * The event first in the commit queue updates the
2315 * time stamp.
2316 */
69d1b839
SR
2317 if (rb_event_is_commit(cpu_buffer, event)) {
2318 /*
2319 * A commit event that is first on a page
2320 * updates the write timestamp with the page stamp
2321 */
2322 if (!rb_event_index(event))
2323 cpu_buffer->write_stamp =
2324 cpu_buffer->commit_page->page->time_stamp;
2325 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2326 delta = event->array[0];
2327 delta <<= TS_SHIFT;
2328 delta += event->time_delta;
2329 cpu_buffer->write_stamp += delta;
2330 } else
2331 cpu_buffer->write_stamp += event->time_delta;
2332 }
a1863c21 2333}
bf41a158 2334
a1863c21
SR
2335static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2336 struct ring_buffer_event *event)
2337{
2338 local_inc(&cpu_buffer->entries);
2339 rb_update_write_stamp(cpu_buffer, event);
fa743953 2340 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2341}
2342
2343/**
2344 * ring_buffer_unlock_commit - commit a reserved
2345 * @buffer: The buffer to commit to
2346 * @event: The event pointer to commit.
7a8e76a3
SR
2347 *
2348 * This commits the data to the ring buffer, and releases any locks held.
2349 *
2350 * Must be paired with ring_buffer_lock_reserve.
2351 */
2352int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2353 struct ring_buffer_event *event)
7a8e76a3
SR
2354{
2355 struct ring_buffer_per_cpu *cpu_buffer;
2356 int cpu = raw_smp_processor_id();
2357
2358 cpu_buffer = buffer->buffers[cpu];
2359
7a8e76a3
SR
2360 rb_commit(cpu_buffer, event);
2361
261842b7
SR
2362 trace_recursive_unlock();
2363
5168ae50 2364 preempt_enable_notrace();
7a8e76a3
SR
2365
2366 return 0;
2367}
c4f50183 2368EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2369
f3b9aae1
FW
2370static inline void rb_event_discard(struct ring_buffer_event *event)
2371{
69d1b839
SR
2372 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2373 event = skip_time_extend(event);
2374
334d4169
LJ
2375 /* array[0] holds the actual length for the discarded event */
2376 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2377 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2378 /* time delta must be non zero */
2379 if (!event->time_delta)
2380 event->time_delta = 1;
2381}
2382
a1863c21
SR
2383/*
2384 * Decrement the entries to the page that an event is on.
2385 * The event does not even need to exist, only the pointer
2386 * to the page it is on. This may only be called before the commit
2387 * takes place.
2388 */
2389static inline void
2390rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2391 struct ring_buffer_event *event)
2392{
2393 unsigned long addr = (unsigned long)event;
2394 struct buffer_page *bpage = cpu_buffer->commit_page;
2395 struct buffer_page *start;
2396
2397 addr &= PAGE_MASK;
2398
2399 /* Do the likely case first */
2400 if (likely(bpage->page == (void *)addr)) {
2401 local_dec(&bpage->entries);
2402 return;
2403 }
2404
2405 /*
2406 * Because the commit page may be on the reader page we
2407 * start with the next page and check the end loop there.
2408 */
2409 rb_inc_page(cpu_buffer, &bpage);
2410 start = bpage;
2411 do {
2412 if (bpage->page == (void *)addr) {
2413 local_dec(&bpage->entries);
2414 return;
2415 }
2416 rb_inc_page(cpu_buffer, &bpage);
2417 } while (bpage != start);
2418
2419 /* commit not part of this buffer?? */
2420 RB_WARN_ON(cpu_buffer, 1);
2421}
2422
fa1b47dd
SR
2423/**
2424 * ring_buffer_commit_discard - discard an event that has not been committed
2425 * @buffer: the ring buffer
2426 * @event: non committed event to discard
2427 *
dc892f73
SR
2428 * Sometimes an event that is in the ring buffer needs to be ignored.
2429 * This function lets the user discard an event in the ring buffer
2430 * and then that event will not be read later.
2431 *
2432 * This function only works if it is called before the the item has been
2433 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2434 * if another event has not been added behind it.
2435 *
2436 * If another event has been added behind it, it will set the event
2437 * up as discarded, and perform the commit.
2438 *
2439 * If this function is called, do not call ring_buffer_unlock_commit on
2440 * the event.
2441 */
2442void ring_buffer_discard_commit(struct ring_buffer *buffer,
2443 struct ring_buffer_event *event)
2444{
2445 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2446 int cpu;
2447
2448 /* The event is discarded regardless */
f3b9aae1 2449 rb_event_discard(event);
fa1b47dd 2450
fa743953
SR
2451 cpu = smp_processor_id();
2452 cpu_buffer = buffer->buffers[cpu];
2453
fa1b47dd
SR
2454 /*
2455 * This must only be called if the event has not been
2456 * committed yet. Thus we can assume that preemption
2457 * is still disabled.
2458 */
fa743953 2459 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2460
a1863c21 2461 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2462 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2463 goto out;
fa1b47dd
SR
2464
2465 /*
2466 * The commit is still visible by the reader, so we
a1863c21 2467 * must still update the timestamp.
fa1b47dd 2468 */
a1863c21 2469 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2470 out:
fa743953 2471 rb_end_commit(cpu_buffer);
fa1b47dd 2472
f3b9aae1
FW
2473 trace_recursive_unlock();
2474
5168ae50 2475 preempt_enable_notrace();
fa1b47dd
SR
2476
2477}
2478EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2479
7a8e76a3
SR
2480/**
2481 * ring_buffer_write - write data to the buffer without reserving
2482 * @buffer: The ring buffer to write to.
2483 * @length: The length of the data being written (excluding the event header)
2484 * @data: The data to write to the buffer.
2485 *
2486 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2487 * one function. If you already have the data to write to the buffer, it
2488 * may be easier to simply call this function.
2489 *
2490 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2491 * and not the length of the event which would hold the header.
2492 */
2493int ring_buffer_write(struct ring_buffer *buffer,
2494 unsigned long length,
2495 void *data)
2496{
2497 struct ring_buffer_per_cpu *cpu_buffer;
2498 struct ring_buffer_event *event;
7a8e76a3
SR
2499 void *body;
2500 int ret = -EBUSY;
5168ae50 2501 int cpu;
7a8e76a3 2502
033601a3 2503 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2504 return -EBUSY;
2505
5168ae50 2506 preempt_disable_notrace();
bf41a158 2507
52fbe9cd
LJ
2508 if (atomic_read(&buffer->record_disabled))
2509 goto out;
2510
7a8e76a3
SR
2511 cpu = raw_smp_processor_id();
2512
9e01c1b7 2513 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2514 goto out;
7a8e76a3
SR
2515
2516 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2517
2518 if (atomic_read(&cpu_buffer->record_disabled))
2519 goto out;
2520
be957c44
SR
2521 if (length > BUF_MAX_DATA_SIZE)
2522 goto out;
2523
62f0b3eb 2524 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2525 if (!event)
2526 goto out;
2527
2528 body = rb_event_data(event);
2529
2530 memcpy(body, data, length);
2531
2532 rb_commit(cpu_buffer, event);
2533
2534 ret = 0;
2535 out:
5168ae50 2536 preempt_enable_notrace();
7a8e76a3
SR
2537
2538 return ret;
2539}
c4f50183 2540EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2541
34a148bf 2542static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2543{
2544 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2545 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2546 struct buffer_page *commit = cpu_buffer->commit_page;
2547
77ae365e
SR
2548 /* In case of error, head will be NULL */
2549 if (unlikely(!head))
2550 return 1;
2551
bf41a158
SR
2552 return reader->read == rb_page_commit(reader) &&
2553 (commit == reader ||
2554 (commit == head &&
2555 head->read == rb_page_commit(commit)));
2556}
2557
7a8e76a3
SR
2558/**
2559 * ring_buffer_record_disable - stop all writes into the buffer
2560 * @buffer: The ring buffer to stop writes to.
2561 *
2562 * This prevents all writes to the buffer. Any attempt to write
2563 * to the buffer after this will fail and return NULL.
2564 *
2565 * The caller should call synchronize_sched() after this.
2566 */
2567void ring_buffer_record_disable(struct ring_buffer *buffer)
2568{
2569 atomic_inc(&buffer->record_disabled);
2570}
c4f50183 2571EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2572
2573/**
2574 * ring_buffer_record_enable - enable writes to the buffer
2575 * @buffer: The ring buffer to enable writes
2576 *
2577 * Note, multiple disables will need the same number of enables
c41b20e7 2578 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2579 */
2580void ring_buffer_record_enable(struct ring_buffer *buffer)
2581{
2582 atomic_dec(&buffer->record_disabled);
2583}
c4f50183 2584EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
2585
2586/**
2587 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2588 * @buffer: The ring buffer to stop writes to.
2589 * @cpu: The CPU buffer to stop
2590 *
2591 * This prevents all writes to the buffer. Any attempt to write
2592 * to the buffer after this will fail and return NULL.
2593 *
2594 * The caller should call synchronize_sched() after this.
2595 */
2596void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2597{
2598 struct ring_buffer_per_cpu *cpu_buffer;
2599
9e01c1b7 2600 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2601 return;
7a8e76a3
SR
2602
2603 cpu_buffer = buffer->buffers[cpu];
2604 atomic_inc(&cpu_buffer->record_disabled);
2605}
c4f50183 2606EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2607
2608/**
2609 * ring_buffer_record_enable_cpu - enable writes to the buffer
2610 * @buffer: The ring buffer to enable writes
2611 * @cpu: The CPU to enable.
2612 *
2613 * Note, multiple disables will need the same number of enables
c41b20e7 2614 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2615 */
2616void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2617{
2618 struct ring_buffer_per_cpu *cpu_buffer;
2619
9e01c1b7 2620 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2621 return;
7a8e76a3
SR
2622
2623 cpu_buffer = buffer->buffers[cpu];
2624 atomic_dec(&cpu_buffer->record_disabled);
2625}
c4f50183 2626EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2627
f6195aa0
SR
2628/*
2629 * The total entries in the ring buffer is the running counter
2630 * of entries entered into the ring buffer, minus the sum of
2631 * the entries read from the ring buffer and the number of
2632 * entries that were overwritten.
2633 */
2634static inline unsigned long
2635rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2636{
2637 return local_read(&cpu_buffer->entries) -
2638 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2639}
2640
7a8e76a3
SR
2641/**
2642 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2643 * @buffer: The ring buffer
2644 * @cpu: The per CPU buffer to get the entries from.
2645 */
2646unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2647{
2648 struct ring_buffer_per_cpu *cpu_buffer;
2649
9e01c1b7 2650 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2651 return 0;
7a8e76a3
SR
2652
2653 cpu_buffer = buffer->buffers[cpu];
554f786e 2654
f6195aa0 2655 return rb_num_of_entries(cpu_buffer);
7a8e76a3 2656}
c4f50183 2657EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2658
2659/**
2660 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2661 * @buffer: The ring buffer
2662 * @cpu: The per CPU buffer to get the number of overruns from
2663 */
2664unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2665{
2666 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2667 unsigned long ret;
7a8e76a3 2668
9e01c1b7 2669 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2670 return 0;
7a8e76a3
SR
2671
2672 cpu_buffer = buffer->buffers[cpu];
77ae365e 2673 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2674
2675 return ret;
7a8e76a3 2676}
c4f50183 2677EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2678
f0d2c681
SR
2679/**
2680 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2681 * @buffer: The ring buffer
2682 * @cpu: The per CPU buffer to get the number of overruns from
2683 */
2684unsigned long
2685ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2686{
2687 struct ring_buffer_per_cpu *cpu_buffer;
2688 unsigned long ret;
2689
2690 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2691 return 0;
2692
2693 cpu_buffer = buffer->buffers[cpu];
77ae365e 2694 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
2695
2696 return ret;
2697}
2698EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2699
7a8e76a3
SR
2700/**
2701 * ring_buffer_entries - get the number of entries in a buffer
2702 * @buffer: The ring buffer
2703 *
2704 * Returns the total number of entries in the ring buffer
2705 * (all CPU entries)
2706 */
2707unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2708{
2709 struct ring_buffer_per_cpu *cpu_buffer;
2710 unsigned long entries = 0;
2711 int cpu;
2712
2713 /* if you care about this being correct, lock the buffer */
2714 for_each_buffer_cpu(buffer, cpu) {
2715 cpu_buffer = buffer->buffers[cpu];
f6195aa0 2716 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
2717 }
2718
2719 return entries;
2720}
c4f50183 2721EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2722
2723/**
67b394f7 2724 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
2725 * @buffer: The ring buffer
2726 *
2727 * Returns the total number of overruns in the ring buffer
2728 * (all CPU entries)
2729 */
2730unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2731{
2732 struct ring_buffer_per_cpu *cpu_buffer;
2733 unsigned long overruns = 0;
2734 int cpu;
2735
2736 /* if you care about this being correct, lock the buffer */
2737 for_each_buffer_cpu(buffer, cpu) {
2738 cpu_buffer = buffer->buffers[cpu];
77ae365e 2739 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
2740 }
2741
2742 return overruns;
2743}
c4f50183 2744EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2745
642edba5 2746static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2747{
2748 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2749
d769041f
SR
2750 /* Iterator usage is expected to have record disabled */
2751 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
2752 iter->head_page = rb_set_head_page(cpu_buffer);
2753 if (unlikely(!iter->head_page))
2754 return;
2755 iter->head = iter->head_page->read;
d769041f
SR
2756 } else {
2757 iter->head_page = cpu_buffer->reader_page;
6f807acd 2758 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2759 }
2760 if (iter->head)
2761 iter->read_stamp = cpu_buffer->read_stamp;
2762 else
abc9b56d 2763 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
2764 iter->cache_reader_page = cpu_buffer->reader_page;
2765 iter->cache_read = cpu_buffer->read;
642edba5 2766}
f83c9d0f 2767
642edba5
SR
2768/**
2769 * ring_buffer_iter_reset - reset an iterator
2770 * @iter: The iterator to reset
2771 *
2772 * Resets the iterator, so that it will start from the beginning
2773 * again.
2774 */
2775void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2776{
554f786e 2777 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2778 unsigned long flags;
2779
554f786e
SR
2780 if (!iter)
2781 return;
2782
2783 cpu_buffer = iter->cpu_buffer;
2784
642edba5
SR
2785 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2786 rb_iter_reset(iter);
f83c9d0f 2787 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2788}
c4f50183 2789EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2790
2791/**
2792 * ring_buffer_iter_empty - check if an iterator has no more to read
2793 * @iter: The iterator to check
2794 */
2795int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2796{
2797 struct ring_buffer_per_cpu *cpu_buffer;
2798
2799 cpu_buffer = iter->cpu_buffer;
2800
bf41a158
SR
2801 return iter->head_page == cpu_buffer->commit_page &&
2802 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2803}
c4f50183 2804EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2805
2806static void
2807rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2808 struct ring_buffer_event *event)
2809{
2810 u64 delta;
2811
334d4169 2812 switch (event->type_len) {
7a8e76a3
SR
2813 case RINGBUF_TYPE_PADDING:
2814 return;
2815
2816 case RINGBUF_TYPE_TIME_EXTEND:
2817 delta = event->array[0];
2818 delta <<= TS_SHIFT;
2819 delta += event->time_delta;
2820 cpu_buffer->read_stamp += delta;
2821 return;
2822
2823 case RINGBUF_TYPE_TIME_STAMP:
2824 /* FIXME: not implemented */
2825 return;
2826
2827 case RINGBUF_TYPE_DATA:
2828 cpu_buffer->read_stamp += event->time_delta;
2829 return;
2830
2831 default:
2832 BUG();
2833 }
2834 return;
2835}
2836
2837static void
2838rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2839 struct ring_buffer_event *event)
2840{
2841 u64 delta;
2842
334d4169 2843 switch (event->type_len) {
7a8e76a3
SR
2844 case RINGBUF_TYPE_PADDING:
2845 return;
2846
2847 case RINGBUF_TYPE_TIME_EXTEND:
2848 delta = event->array[0];
2849 delta <<= TS_SHIFT;
2850 delta += event->time_delta;
2851 iter->read_stamp += delta;
2852 return;
2853
2854 case RINGBUF_TYPE_TIME_STAMP:
2855 /* FIXME: not implemented */
2856 return;
2857
2858 case RINGBUF_TYPE_DATA:
2859 iter->read_stamp += event->time_delta;
2860 return;
2861
2862 default:
2863 BUG();
2864 }
2865 return;
2866}
2867
d769041f
SR
2868static struct buffer_page *
2869rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2870{
d769041f 2871 struct buffer_page *reader = NULL;
66a8cb95 2872 unsigned long overwrite;
d769041f 2873 unsigned long flags;
818e3dd3 2874 int nr_loops = 0;
77ae365e 2875 int ret;
d769041f 2876
3e03fb7f 2877 local_irq_save(flags);
0199c4e6 2878 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
2879
2880 again:
818e3dd3
SR
2881 /*
2882 * This should normally only loop twice. But because the
2883 * start of the reader inserts an empty page, it causes
2884 * a case where we will loop three times. There should be no
2885 * reason to loop four times (that I know of).
2886 */
3e89c7bb 2887 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2888 reader = NULL;
2889 goto out;
2890 }
2891
d769041f
SR
2892 reader = cpu_buffer->reader_page;
2893
2894 /* If there's more to read, return this page */
bf41a158 2895 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2896 goto out;
2897
2898 /* Never should we have an index greater than the size */
3e89c7bb
SR
2899 if (RB_WARN_ON(cpu_buffer,
2900 cpu_buffer->reader_page->read > rb_page_size(reader)))
2901 goto out;
d769041f
SR
2902
2903 /* check if we caught up to the tail */
2904 reader = NULL;
bf41a158 2905 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2906 goto out;
7a8e76a3
SR
2907
2908 /*
d769041f 2909 * Reset the reader page to size zero.
7a8e76a3 2910 */
77ae365e
SR
2911 local_set(&cpu_buffer->reader_page->write, 0);
2912 local_set(&cpu_buffer->reader_page->entries, 0);
2913 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 2914 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 2915
77ae365e
SR
2916 spin:
2917 /*
2918 * Splice the empty reader page into the list around the head.
2919 */
2920 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 2921 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 2922 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 2923
3adc54fa
SR
2924 /*
2925 * cpu_buffer->pages just needs to point to the buffer, it
2926 * has no specific buffer page to point to. Lets move it out
2927 * of our way so we don't accidently swap it.
2928 */
2929 cpu_buffer->pages = reader->list.prev;
2930
77ae365e
SR
2931 /* The reader page will be pointing to the new head */
2932 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 2933
66a8cb95
SR
2934 /*
2935 * We want to make sure we read the overruns after we set up our
2936 * pointers to the next object. The writer side does a
2937 * cmpxchg to cross pages which acts as the mb on the writer
2938 * side. Note, the reader will constantly fail the swap
2939 * while the writer is updating the pointers, so this
2940 * guarantees that the overwrite recorded here is the one we
2941 * want to compare with the last_overrun.
2942 */
2943 smp_mb();
2944 overwrite = local_read(&(cpu_buffer->overrun));
2945
77ae365e
SR
2946 /*
2947 * Here's the tricky part.
2948 *
2949 * We need to move the pointer past the header page.
2950 * But we can only do that if a writer is not currently
2951 * moving it. The page before the header page has the
2952 * flag bit '1' set if it is pointing to the page we want.
2953 * but if the writer is in the process of moving it
2954 * than it will be '2' or already moved '0'.
2955 */
2956
2957 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
2958
2959 /*
77ae365e 2960 * If we did not convert it, then we must try again.
7a8e76a3 2961 */
77ae365e
SR
2962 if (!ret)
2963 goto spin;
7a8e76a3 2964
77ae365e
SR
2965 /*
2966 * Yeah! We succeeded in replacing the page.
2967 *
2968 * Now make the new head point back to the reader page.
2969 */
5ded3dc6 2970 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 2971 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
2972
2973 /* Finally update the reader page to the new head */
2974 cpu_buffer->reader_page = reader;
2975 rb_reset_reader_page(cpu_buffer);
2976
66a8cb95
SR
2977 if (overwrite != cpu_buffer->last_overrun) {
2978 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2979 cpu_buffer->last_overrun = overwrite;
2980 }
2981
d769041f
SR
2982 goto again;
2983
2984 out:
0199c4e6 2985 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 2986 local_irq_restore(flags);
d769041f
SR
2987
2988 return reader;
2989}
2990
2991static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2992{
2993 struct ring_buffer_event *event;
2994 struct buffer_page *reader;
2995 unsigned length;
2996
2997 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2998
d769041f 2999 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3000 if (RB_WARN_ON(cpu_buffer, !reader))
3001 return;
7a8e76a3 3002
d769041f
SR
3003 event = rb_reader_event(cpu_buffer);
3004
a1863c21 3005 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3006 cpu_buffer->read++;
d769041f
SR
3007
3008 rb_update_read_stamp(cpu_buffer, event);
3009
3010 length = rb_event_length(event);
6f807acd 3011 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3012}
3013
3014static void rb_advance_iter(struct ring_buffer_iter *iter)
3015{
7a8e76a3
SR
3016 struct ring_buffer_per_cpu *cpu_buffer;
3017 struct ring_buffer_event *event;
3018 unsigned length;
3019
3020 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3021
3022 /*
3023 * Check if we are at the end of the buffer.
3024 */
bf41a158 3025 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3026 /* discarded commits can make the page empty */
3027 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3028 return;
d769041f 3029 rb_inc_iter(iter);
7a8e76a3
SR
3030 return;
3031 }
3032
3033 event = rb_iter_head_event(iter);
3034
3035 length = rb_event_length(event);
3036
3037 /*
3038 * This should not be called to advance the header if we are
3039 * at the tail of the buffer.
3040 */
3e89c7bb 3041 if (RB_WARN_ON(cpu_buffer,
f536aafc 3042 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3043 (iter->head + length > rb_commit_index(cpu_buffer))))
3044 return;
7a8e76a3
SR
3045
3046 rb_update_iter_read_stamp(iter, event);
3047
3048 iter->head += length;
3049
3050 /* check for end of page padding */
bf41a158
SR
3051 if ((iter->head >= rb_page_size(iter->head_page)) &&
3052 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3053 rb_advance_iter(iter);
3054}
3055
66a8cb95
SR
3056static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3057{
3058 return cpu_buffer->lost_events;
3059}
3060
f83c9d0f 3061static struct ring_buffer_event *
66a8cb95
SR
3062rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3063 unsigned long *lost_events)
7a8e76a3 3064{
7a8e76a3 3065 struct ring_buffer_event *event;
d769041f 3066 struct buffer_page *reader;
818e3dd3 3067 int nr_loops = 0;
7a8e76a3 3068
7a8e76a3 3069 again:
818e3dd3 3070 /*
69d1b839
SR
3071 * We repeat when a time extend is encountered.
3072 * Since the time extend is always attached to a data event,
3073 * we should never loop more than once.
3074 * (We never hit the following condition more than twice).
818e3dd3 3075 */
69d1b839 3076 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3077 return NULL;
818e3dd3 3078
d769041f
SR
3079 reader = rb_get_reader_page(cpu_buffer);
3080 if (!reader)
7a8e76a3
SR
3081 return NULL;
3082
d769041f 3083 event = rb_reader_event(cpu_buffer);
7a8e76a3 3084
334d4169 3085 switch (event->type_len) {
7a8e76a3 3086 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3087 if (rb_null_event(event))
3088 RB_WARN_ON(cpu_buffer, 1);
3089 /*
3090 * Because the writer could be discarding every
3091 * event it creates (which would probably be bad)
3092 * if we were to go back to "again" then we may never
3093 * catch up, and will trigger the warn on, or lock
3094 * the box. Return the padding, and we will release
3095 * the current locks, and try again.
3096 */
2d622719 3097 return event;
7a8e76a3
SR
3098
3099 case RINGBUF_TYPE_TIME_EXTEND:
3100 /* Internal data, OK to advance */
d769041f 3101 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3102 goto again;
3103
3104 case RINGBUF_TYPE_TIME_STAMP:
3105 /* FIXME: not implemented */
d769041f 3106 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3107 goto again;
3108
3109 case RINGBUF_TYPE_DATA:
3110 if (ts) {
3111 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3112 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3113 cpu_buffer->cpu, ts);
7a8e76a3 3114 }
66a8cb95
SR
3115 if (lost_events)
3116 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3117 return event;
3118
3119 default:
3120 BUG();
3121 }
3122
3123 return NULL;
3124}
c4f50183 3125EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3126
f83c9d0f
SR
3127static struct ring_buffer_event *
3128rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3129{
3130 struct ring_buffer *buffer;
3131 struct ring_buffer_per_cpu *cpu_buffer;
3132 struct ring_buffer_event *event;
818e3dd3 3133 int nr_loops = 0;
7a8e76a3 3134
7a8e76a3
SR
3135 cpu_buffer = iter->cpu_buffer;
3136 buffer = cpu_buffer->buffer;
3137
492a74f4
SR
3138 /*
3139 * Check if someone performed a consuming read to
3140 * the buffer. A consuming read invalidates the iterator
3141 * and we need to reset the iterator in this case.
3142 */
3143 if (unlikely(iter->cache_read != cpu_buffer->read ||
3144 iter->cache_reader_page != cpu_buffer->reader_page))
3145 rb_iter_reset(iter);
3146
7a8e76a3 3147 again:
3c05d748
SR
3148 if (ring_buffer_iter_empty(iter))
3149 return NULL;
3150
818e3dd3 3151 /*
69d1b839
SR
3152 * We repeat when a time extend is encountered.
3153 * Since the time extend is always attached to a data event,
3154 * we should never loop more than once.
3155 * (We never hit the following condition more than twice).
818e3dd3 3156 */
69d1b839 3157 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3158 return NULL;
818e3dd3 3159
7a8e76a3
SR
3160 if (rb_per_cpu_empty(cpu_buffer))
3161 return NULL;
3162
3c05d748
SR
3163 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3164 rb_inc_iter(iter);
3165 goto again;
3166 }
3167
7a8e76a3
SR
3168 event = rb_iter_head_event(iter);
3169
334d4169 3170 switch (event->type_len) {
7a8e76a3 3171 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3172 if (rb_null_event(event)) {
3173 rb_inc_iter(iter);
3174 goto again;
3175 }
3176 rb_advance_iter(iter);
3177 return event;
7a8e76a3
SR
3178
3179 case RINGBUF_TYPE_TIME_EXTEND:
3180 /* Internal data, OK to advance */
3181 rb_advance_iter(iter);
3182 goto again;
3183
3184 case RINGBUF_TYPE_TIME_STAMP:
3185 /* FIXME: not implemented */
3186 rb_advance_iter(iter);
3187 goto again;
3188
3189 case RINGBUF_TYPE_DATA:
3190 if (ts) {
3191 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3192 ring_buffer_normalize_time_stamp(buffer,
3193 cpu_buffer->cpu, ts);
7a8e76a3
SR
3194 }
3195 return event;
3196
3197 default:
3198 BUG();
3199 }
3200
3201 return NULL;
3202}
c4f50183 3203EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3204
8d707e8e
SR
3205static inline int rb_ok_to_lock(void)
3206{
3207 /*
3208 * If an NMI die dumps out the content of the ring buffer
3209 * do not grab locks. We also permanently disable the ring
3210 * buffer too. A one time deal is all you get from reading
3211 * the ring buffer from an NMI.
3212 */
464e85eb 3213 if (likely(!in_nmi()))
8d707e8e
SR
3214 return 1;
3215
3216 tracing_off_permanent();
3217 return 0;
3218}
3219
f83c9d0f
SR
3220/**
3221 * ring_buffer_peek - peek at the next event to be read
3222 * @buffer: The ring buffer to read
3223 * @cpu: The cpu to peak at
3224 * @ts: The timestamp counter of this event.
66a8cb95 3225 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3226 *
3227 * This will return the event that will be read next, but does
3228 * not consume the data.
3229 */
3230struct ring_buffer_event *
66a8cb95
SR
3231ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3232 unsigned long *lost_events)
f83c9d0f
SR
3233{
3234 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3235 struct ring_buffer_event *event;
f83c9d0f 3236 unsigned long flags;
8d707e8e 3237 int dolock;
f83c9d0f 3238
554f786e 3239 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3240 return NULL;
554f786e 3241
8d707e8e 3242 dolock = rb_ok_to_lock();
2d622719 3243 again:
8d707e8e
SR
3244 local_irq_save(flags);
3245 if (dolock)
3246 spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3247 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3248 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3249 rb_advance_reader(cpu_buffer);
8d707e8e
SR
3250 if (dolock)
3251 spin_unlock(&cpu_buffer->reader_lock);
3252 local_irq_restore(flags);
f83c9d0f 3253
1b959e18 3254 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3255 goto again;
2d622719 3256
f83c9d0f
SR
3257 return event;
3258}
3259
3260/**
3261 * ring_buffer_iter_peek - peek at the next event to be read
3262 * @iter: The ring buffer iterator
3263 * @ts: The timestamp counter of this event.
3264 *
3265 * This will return the event that will be read next, but does
3266 * not increment the iterator.
3267 */
3268struct ring_buffer_event *
3269ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3270{
3271 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3272 struct ring_buffer_event *event;
3273 unsigned long flags;
3274
2d622719 3275 again:
f83c9d0f
SR
3276 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3277 event = rb_iter_peek(iter, ts);
3278 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3279
1b959e18 3280 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3281 goto again;
2d622719 3282
f83c9d0f
SR
3283 return event;
3284}
3285
7a8e76a3
SR
3286/**
3287 * ring_buffer_consume - return an event and consume it
3288 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3289 * @cpu: the cpu to read the buffer from
3290 * @ts: a variable to store the timestamp (may be NULL)
3291 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3292 *
3293 * Returns the next event in the ring buffer, and that event is consumed.
3294 * Meaning, that sequential reads will keep returning a different event,
3295 * and eventually empty the ring buffer if the producer is slower.
3296 */
3297struct ring_buffer_event *
66a8cb95
SR
3298ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3299 unsigned long *lost_events)
7a8e76a3 3300{
554f786e
SR
3301 struct ring_buffer_per_cpu *cpu_buffer;
3302 struct ring_buffer_event *event = NULL;
f83c9d0f 3303 unsigned long flags;
8d707e8e
SR
3304 int dolock;
3305
3306 dolock = rb_ok_to_lock();
7a8e76a3 3307
2d622719 3308 again:
554f786e
SR
3309 /* might be called in atomic */
3310 preempt_disable();
3311
9e01c1b7 3312 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3313 goto out;
7a8e76a3 3314
554f786e 3315 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3316 local_irq_save(flags);
3317 if (dolock)
3318 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3319
66a8cb95
SR
3320 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3321 if (event) {
3322 cpu_buffer->lost_events = 0;
469535a5 3323 rb_advance_reader(cpu_buffer);
66a8cb95 3324 }
7a8e76a3 3325
8d707e8e
SR
3326 if (dolock)
3327 spin_unlock(&cpu_buffer->reader_lock);
3328 local_irq_restore(flags);
f83c9d0f 3329
554f786e
SR
3330 out:
3331 preempt_enable();
3332
1b959e18 3333 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3334 goto again;
2d622719 3335
7a8e76a3
SR
3336 return event;
3337}
c4f50183 3338EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3339
3340/**
72c9ddfd 3341 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3342 * @buffer: The ring buffer to read from
3343 * @cpu: The cpu buffer to iterate over
3344 *
72c9ddfd
DM
3345 * This performs the initial preparations necessary to iterate
3346 * through the buffer. Memory is allocated, buffer recording
3347 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3348 *
72c9ddfd
DM
3349 * Disabling buffer recordng prevents the reading from being
3350 * corrupted. This is not a consuming read, so a producer is not
3351 * expected.
3352 *
3353 * After a sequence of ring_buffer_read_prepare calls, the user is
3354 * expected to make at least one call to ring_buffer_prepare_sync.
3355 * Afterwards, ring_buffer_read_start is invoked to get things going
3356 * for real.
3357 *
3358 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3359 */
3360struct ring_buffer_iter *
72c9ddfd 3361ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3362{
3363 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3364 struct ring_buffer_iter *iter;
7a8e76a3 3365
9e01c1b7 3366 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3367 return NULL;
7a8e76a3
SR
3368
3369 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3370 if (!iter)
8aabee57 3371 return NULL;
7a8e76a3
SR
3372
3373 cpu_buffer = buffer->buffers[cpu];
3374
3375 iter->cpu_buffer = cpu_buffer;
3376
3377 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3378
3379 return iter;
3380}
3381EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3382
3383/**
3384 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3385 *
3386 * All previously invoked ring_buffer_read_prepare calls to prepare
3387 * iterators will be synchronized. Afterwards, read_buffer_read_start
3388 * calls on those iterators are allowed.
3389 */
3390void
3391ring_buffer_read_prepare_sync(void)
3392{
7a8e76a3 3393 synchronize_sched();
72c9ddfd
DM
3394}
3395EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3396
3397/**
3398 * ring_buffer_read_start - start a non consuming read of the buffer
3399 * @iter: The iterator returned by ring_buffer_read_prepare
3400 *
3401 * This finalizes the startup of an iteration through the buffer.
3402 * The iterator comes from a call to ring_buffer_read_prepare and
3403 * an intervening ring_buffer_read_prepare_sync must have been
3404 * performed.
3405 *
3406 * Must be paired with ring_buffer_finish.
3407 */
3408void
3409ring_buffer_read_start(struct ring_buffer_iter *iter)
3410{
3411 struct ring_buffer_per_cpu *cpu_buffer;
3412 unsigned long flags;
3413
3414 if (!iter)
3415 return;
3416
3417 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3418
f83c9d0f 3419 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3420 arch_spin_lock(&cpu_buffer->lock);
642edba5 3421 rb_iter_reset(iter);
0199c4e6 3422 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3423 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3424}
c4f50183 3425EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3426
3427/**
3428 * ring_buffer_finish - finish reading the iterator of the buffer
3429 * @iter: The iterator retrieved by ring_buffer_start
3430 *
3431 * This re-enables the recording to the buffer, and frees the
3432 * iterator.
3433 */
3434void
3435ring_buffer_read_finish(struct ring_buffer_iter *iter)
3436{
3437 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3438
3439 atomic_dec(&cpu_buffer->record_disabled);
3440 kfree(iter);
3441}
c4f50183 3442EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3443
3444/**
3445 * ring_buffer_read - read the next item in the ring buffer by the iterator
3446 * @iter: The ring buffer iterator
3447 * @ts: The time stamp of the event read.
3448 *
3449 * This reads the next event in the ring buffer and increments the iterator.
3450 */
3451struct ring_buffer_event *
3452ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3453{
3454 struct ring_buffer_event *event;
f83c9d0f
SR
3455 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3456 unsigned long flags;
7a8e76a3 3457
f83c9d0f 3458 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3459 again:
f83c9d0f 3460 event = rb_iter_peek(iter, ts);
7a8e76a3 3461 if (!event)
f83c9d0f 3462 goto out;
7a8e76a3 3463
7e9391cf
SR
3464 if (event->type_len == RINGBUF_TYPE_PADDING)
3465 goto again;
3466
7a8e76a3 3467 rb_advance_iter(iter);
f83c9d0f
SR
3468 out:
3469 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3470
3471 return event;
3472}
c4f50183 3473EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3474
3475/**
3476 * ring_buffer_size - return the size of the ring buffer (in bytes)
3477 * @buffer: The ring buffer.
3478 */
3479unsigned long ring_buffer_size(struct ring_buffer *buffer)
3480{
3481 return BUF_PAGE_SIZE * buffer->pages;
3482}
c4f50183 3483EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3484
3485static void
3486rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3487{
77ae365e
SR
3488 rb_head_page_deactivate(cpu_buffer);
3489
7a8e76a3 3490 cpu_buffer->head_page
3adc54fa 3491 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3492 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3493 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3494 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3495
6f807acd 3496 cpu_buffer->head_page->read = 0;
bf41a158
SR
3497
3498 cpu_buffer->tail_page = cpu_buffer->head_page;
3499 cpu_buffer->commit_page = cpu_buffer->head_page;
3500
3501 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3502 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3503 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3504 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3505 cpu_buffer->reader_page->read = 0;
7a8e76a3 3506
77ae365e
SR
3507 local_set(&cpu_buffer->commit_overrun, 0);
3508 local_set(&cpu_buffer->overrun, 0);
e4906eff 3509 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3510 local_set(&cpu_buffer->committing, 0);
3511 local_set(&cpu_buffer->commits, 0);
77ae365e 3512 cpu_buffer->read = 0;
69507c06
SR
3513
3514 cpu_buffer->write_stamp = 0;
3515 cpu_buffer->read_stamp = 0;
77ae365e 3516
66a8cb95
SR
3517 cpu_buffer->lost_events = 0;
3518 cpu_buffer->last_overrun = 0;
3519
77ae365e 3520 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3521}
3522
3523/**
3524 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3525 * @buffer: The ring buffer to reset a per cpu buffer of
3526 * @cpu: The CPU buffer to be reset
3527 */
3528void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3529{
3530 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3531 unsigned long flags;
3532
9e01c1b7 3533 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3534 return;
7a8e76a3 3535
41ede23e
SR
3536 atomic_inc(&cpu_buffer->record_disabled);
3537
f83c9d0f
SR
3538 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3539
41b6a95d
SR
3540 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3541 goto out;
3542
0199c4e6 3543 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3544
3545 rb_reset_cpu(cpu_buffer);
3546
0199c4e6 3547 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3548
41b6a95d 3549 out:
f83c9d0f 3550 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3551
3552 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 3553}
c4f50183 3554EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3555
3556/**
3557 * ring_buffer_reset - reset a ring buffer
3558 * @buffer: The ring buffer to reset all cpu buffers
3559 */
3560void ring_buffer_reset(struct ring_buffer *buffer)
3561{
7a8e76a3
SR
3562 int cpu;
3563
7a8e76a3 3564 for_each_buffer_cpu(buffer, cpu)
d769041f 3565 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3566}
c4f50183 3567EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3568
3569/**
3570 * rind_buffer_empty - is the ring buffer empty?
3571 * @buffer: The ring buffer to test
3572 */
3573int ring_buffer_empty(struct ring_buffer *buffer)
3574{
3575 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3576 unsigned long flags;
8d707e8e 3577 int dolock;
7a8e76a3 3578 int cpu;
d4788207 3579 int ret;
7a8e76a3 3580
8d707e8e 3581 dolock = rb_ok_to_lock();
7a8e76a3
SR
3582
3583 /* yes this is racy, but if you don't like the race, lock the buffer */
3584 for_each_buffer_cpu(buffer, cpu) {
3585 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3586 local_irq_save(flags);
3587 if (dolock)
3588 spin_lock(&cpu_buffer->reader_lock);
d4788207 3589 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3590 if (dolock)
3591 spin_unlock(&cpu_buffer->reader_lock);
3592 local_irq_restore(flags);
3593
d4788207 3594 if (!ret)
7a8e76a3
SR
3595 return 0;
3596 }
554f786e 3597
7a8e76a3
SR
3598 return 1;
3599}
c4f50183 3600EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3601
3602/**
3603 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3604 * @buffer: The ring buffer
3605 * @cpu: The CPU buffer to test
3606 */
3607int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3608{
3609 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3610 unsigned long flags;
8d707e8e 3611 int dolock;
8aabee57 3612 int ret;
7a8e76a3 3613
9e01c1b7 3614 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3615 return 1;
7a8e76a3 3616
8d707e8e
SR
3617 dolock = rb_ok_to_lock();
3618
7a8e76a3 3619 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3620 local_irq_save(flags);
3621 if (dolock)
3622 spin_lock(&cpu_buffer->reader_lock);
554f786e 3623 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3624 if (dolock)
3625 spin_unlock(&cpu_buffer->reader_lock);
3626 local_irq_restore(flags);
554f786e
SR
3627
3628 return ret;
7a8e76a3 3629}
c4f50183 3630EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3631
85bac32c 3632#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3633/**
3634 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3635 * @buffer_a: One buffer to swap with
3636 * @buffer_b: The other buffer to swap with
3637 *
3638 * This function is useful for tracers that want to take a "snapshot"
3639 * of a CPU buffer and has another back up buffer lying around.
3640 * it is expected that the tracer handles the cpu buffer not being
3641 * used at the moment.
3642 */
3643int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3644 struct ring_buffer *buffer_b, int cpu)
3645{
3646 struct ring_buffer_per_cpu *cpu_buffer_a;
3647 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3648 int ret = -EINVAL;
3649
9e01c1b7
RR
3650 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3651 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3652 goto out;
7a8e76a3
SR
3653
3654 /* At least make sure the two buffers are somewhat the same */
6d102bc6 3655 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
3656 goto out;
3657
3658 ret = -EAGAIN;
7a8e76a3 3659
97b17efe 3660 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3661 goto out;
97b17efe
SR
3662
3663 if (atomic_read(&buffer_a->record_disabled))
554f786e 3664 goto out;
97b17efe
SR
3665
3666 if (atomic_read(&buffer_b->record_disabled))
554f786e 3667 goto out;
97b17efe 3668
7a8e76a3
SR
3669 cpu_buffer_a = buffer_a->buffers[cpu];
3670 cpu_buffer_b = buffer_b->buffers[cpu];
3671
97b17efe 3672 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 3673 goto out;
97b17efe
SR
3674
3675 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 3676 goto out;
97b17efe 3677
7a8e76a3
SR
3678 /*
3679 * We can't do a synchronize_sched here because this
3680 * function can be called in atomic context.
3681 * Normally this will be called from the same CPU as cpu.
3682 * If not it's up to the caller to protect this.
3683 */
3684 atomic_inc(&cpu_buffer_a->record_disabled);
3685 atomic_inc(&cpu_buffer_b->record_disabled);
3686
98277991
SR
3687 ret = -EBUSY;
3688 if (local_read(&cpu_buffer_a->committing))
3689 goto out_dec;
3690 if (local_read(&cpu_buffer_b->committing))
3691 goto out_dec;
3692
7a8e76a3
SR
3693 buffer_a->buffers[cpu] = cpu_buffer_b;
3694 buffer_b->buffers[cpu] = cpu_buffer_a;
3695
3696 cpu_buffer_b->buffer = buffer_a;
3697 cpu_buffer_a->buffer = buffer_b;
3698
98277991
SR
3699 ret = 0;
3700
3701out_dec:
7a8e76a3
SR
3702 atomic_dec(&cpu_buffer_a->record_disabled);
3703 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 3704out:
554f786e 3705 return ret;
7a8e76a3 3706}
c4f50183 3707EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 3708#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 3709
8789a9e7
SR
3710/**
3711 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3712 * @buffer: the buffer to allocate for.
3713 *
3714 * This function is used in conjunction with ring_buffer_read_page.
3715 * When reading a full page from the ring buffer, these functions
3716 * can be used to speed up the process. The calling function should
3717 * allocate a few pages first with this function. Then when it
3718 * needs to get pages from the ring buffer, it passes the result
3719 * of this function into ring_buffer_read_page, which will swap
3720 * the page that was allocated, with the read page of the buffer.
3721 *
3722 * Returns:
3723 * The page allocated, or NULL on error.
3724 */
3725void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3726{
044fa782 3727 struct buffer_data_page *bpage;
ef7a4a16 3728 unsigned long addr;
8789a9e7
SR
3729
3730 addr = __get_free_page(GFP_KERNEL);
3731 if (!addr)
3732 return NULL;
3733
044fa782 3734 bpage = (void *)addr;
8789a9e7 3735
ef7a4a16
SR
3736 rb_init_page(bpage);
3737
044fa782 3738 return bpage;
8789a9e7 3739}
d6ce96da 3740EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
3741
3742/**
3743 * ring_buffer_free_read_page - free an allocated read page
3744 * @buffer: the buffer the page was allocate for
3745 * @data: the page to free
3746 *
3747 * Free a page allocated from ring_buffer_alloc_read_page.
3748 */
3749void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3750{
3751 free_page((unsigned long)data);
3752}
d6ce96da 3753EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
3754
3755/**
3756 * ring_buffer_read_page - extract a page from the ring buffer
3757 * @buffer: buffer to extract from
3758 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 3759 * @len: amount to extract
8789a9e7
SR
3760 * @cpu: the cpu of the buffer to extract
3761 * @full: should the extraction only happen when the page is full.
3762 *
3763 * This function will pull out a page from the ring buffer and consume it.
3764 * @data_page must be the address of the variable that was returned
3765 * from ring_buffer_alloc_read_page. This is because the page might be used
3766 * to swap with a page in the ring buffer.
3767 *
3768 * for example:
b85fa01e 3769 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
3770 * if (!rpage)
3771 * return error;
ef7a4a16 3772 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
3773 * if (ret >= 0)
3774 * process_page(rpage, ret);
8789a9e7
SR
3775 *
3776 * When @full is set, the function will not return true unless
3777 * the writer is off the reader page.
3778 *
3779 * Note: it is up to the calling functions to handle sleeps and wakeups.
3780 * The ring buffer can be used anywhere in the kernel and can not
3781 * blindly call wake_up. The layer that uses the ring buffer must be
3782 * responsible for that.
3783 *
3784 * Returns:
667d2412
LJ
3785 * >=0 if data has been transferred, returns the offset of consumed data.
3786 * <0 if no data has been transferred.
8789a9e7
SR
3787 */
3788int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 3789 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
3790{
3791 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3792 struct ring_buffer_event *event;
044fa782 3793 struct buffer_data_page *bpage;
ef7a4a16 3794 struct buffer_page *reader;
ff0ff84a 3795 unsigned long missed_events;
8789a9e7 3796 unsigned long flags;
ef7a4a16 3797 unsigned int commit;
667d2412 3798 unsigned int read;
4f3640f8 3799 u64 save_timestamp;
667d2412 3800 int ret = -1;
8789a9e7 3801
554f786e
SR
3802 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3803 goto out;
3804
474d32b6
SR
3805 /*
3806 * If len is not big enough to hold the page header, then
3807 * we can not copy anything.
3808 */
3809 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 3810 goto out;
474d32b6
SR
3811
3812 len -= BUF_PAGE_HDR_SIZE;
3813
8789a9e7 3814 if (!data_page)
554f786e 3815 goto out;
8789a9e7 3816
044fa782
SR
3817 bpage = *data_page;
3818 if (!bpage)
554f786e 3819 goto out;
8789a9e7
SR
3820
3821 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3822
ef7a4a16
SR
3823 reader = rb_get_reader_page(cpu_buffer);
3824 if (!reader)
554f786e 3825 goto out_unlock;
8789a9e7 3826
ef7a4a16
SR
3827 event = rb_reader_event(cpu_buffer);
3828
3829 read = reader->read;
3830 commit = rb_page_commit(reader);
667d2412 3831
66a8cb95 3832 /* Check if any events were dropped */
ff0ff84a 3833 missed_events = cpu_buffer->lost_events;
66a8cb95 3834
8789a9e7 3835 /*
474d32b6
SR
3836 * If this page has been partially read or
3837 * if len is not big enough to read the rest of the page or
3838 * a writer is still on the page, then
3839 * we must copy the data from the page to the buffer.
3840 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3841 */
474d32b6 3842 if (read || (len < (commit - read)) ||
ef7a4a16 3843 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3844 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3845 unsigned int rpos = read;
3846 unsigned int pos = 0;
ef7a4a16 3847 unsigned int size;
8789a9e7
SR
3848
3849 if (full)
554f786e 3850 goto out_unlock;
8789a9e7 3851
ef7a4a16
SR
3852 if (len > (commit - read))
3853 len = (commit - read);
3854
69d1b839
SR
3855 /* Always keep the time extend and data together */
3856 size = rb_event_ts_length(event);
ef7a4a16
SR
3857
3858 if (len < size)
554f786e 3859 goto out_unlock;
ef7a4a16 3860
4f3640f8
SR
3861 /* save the current timestamp, since the user will need it */
3862 save_timestamp = cpu_buffer->read_stamp;
3863
ef7a4a16
SR
3864 /* Need to copy one event at a time */
3865 do {
e1e35927
DS
3866 /* We need the size of one event, because
3867 * rb_advance_reader only advances by one event,
3868 * whereas rb_event_ts_length may include the size of
3869 * one or two events.
3870 * We have already ensured there's enough space if this
3871 * is a time extend. */
3872 size = rb_event_length(event);
474d32b6 3873 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3874
3875 len -= size;
3876
3877 rb_advance_reader(cpu_buffer);
474d32b6
SR
3878 rpos = reader->read;
3879 pos += size;
ef7a4a16 3880
18fab912
HY
3881 if (rpos >= commit)
3882 break;
3883
ef7a4a16 3884 event = rb_reader_event(cpu_buffer);
69d1b839
SR
3885 /* Always keep the time extend and data together */
3886 size = rb_event_ts_length(event);
e1e35927 3887 } while (len >= size);
667d2412
LJ
3888
3889 /* update bpage */
ef7a4a16 3890 local_set(&bpage->commit, pos);
4f3640f8 3891 bpage->time_stamp = save_timestamp;
ef7a4a16 3892
474d32b6
SR
3893 /* we copied everything to the beginning */
3894 read = 0;
8789a9e7 3895 } else {
afbab76a 3896 /* update the entry counter */
77ae365e 3897 cpu_buffer->read += rb_page_entries(reader);
afbab76a 3898
8789a9e7 3899 /* swap the pages */
044fa782 3900 rb_init_page(bpage);
ef7a4a16
SR
3901 bpage = reader->page;
3902 reader->page = *data_page;
3903 local_set(&reader->write, 0);
778c55d4 3904 local_set(&reader->entries, 0);
ef7a4a16 3905 reader->read = 0;
044fa782 3906 *data_page = bpage;
ff0ff84a
SR
3907
3908 /*
3909 * Use the real_end for the data size,
3910 * This gives us a chance to store the lost events
3911 * on the page.
3912 */
3913 if (reader->real_end)
3914 local_set(&bpage->commit, reader->real_end);
8789a9e7 3915 }
667d2412 3916 ret = read;
8789a9e7 3917
66a8cb95 3918 cpu_buffer->lost_events = 0;
2711ca23
SR
3919
3920 commit = local_read(&bpage->commit);
66a8cb95
SR
3921 /*
3922 * Set a flag in the commit field if we lost events
3923 */
ff0ff84a 3924 if (missed_events) {
ff0ff84a
SR
3925 /* If there is room at the end of the page to save the
3926 * missed events, then record it there.
3927 */
3928 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3929 memcpy(&bpage->data[commit], &missed_events,
3930 sizeof(missed_events));
3931 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 3932 commit += sizeof(missed_events);
ff0ff84a 3933 }
66a8cb95 3934 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 3935 }
66a8cb95 3936
2711ca23
SR
3937 /*
3938 * This page may be off to user land. Zero it out here.
3939 */
3940 if (commit < BUF_PAGE_SIZE)
3941 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3942
554f786e 3943 out_unlock:
8789a9e7
SR
3944 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3945
554f786e 3946 out:
8789a9e7
SR
3947 return ret;
3948}
d6ce96da 3949EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3950
1155de47 3951#ifdef CONFIG_TRACING
a3583244
SR
3952static ssize_t
3953rb_simple_read(struct file *filp, char __user *ubuf,
3954 size_t cnt, loff_t *ppos)
3955{
5e39841c 3956 unsigned long *p = filp->private_data;
a3583244
SR
3957 char buf[64];
3958 int r;
3959
033601a3
SR
3960 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3961 r = sprintf(buf, "permanently disabled\n");
3962 else
3963 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3964
3965 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3966}
3967
3968static ssize_t
3969rb_simple_write(struct file *filp, const char __user *ubuf,
3970 size_t cnt, loff_t *ppos)
3971{
5e39841c 3972 unsigned long *p = filp->private_data;
a3583244 3973 char buf[64];
5e39841c 3974 unsigned long val;
a3583244
SR
3975 int ret;
3976
3977 if (cnt >= sizeof(buf))
3978 return -EINVAL;
3979
3980 if (copy_from_user(&buf, ubuf, cnt))
3981 return -EFAULT;
3982
3983 buf[cnt] = 0;
3984
3985 ret = strict_strtoul(buf, 10, &val);
3986 if (ret < 0)
3987 return ret;
3988
033601a3
SR
3989 if (val)
3990 set_bit(RB_BUFFERS_ON_BIT, p);
3991 else
3992 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3993
3994 (*ppos)++;
3995
3996 return cnt;
3997}
3998
5e2336a0 3999static const struct file_operations rb_simple_fops = {
a3583244
SR
4000 .open = tracing_open_generic,
4001 .read = rb_simple_read,
4002 .write = rb_simple_write,
6038f373 4003 .llseek = default_llseek,
a3583244
SR
4004};
4005
4006
4007static __init int rb_init_debugfs(void)
4008{
4009 struct dentry *d_tracer;
a3583244
SR
4010
4011 d_tracer = tracing_init_dentry();
4012
5452af66
FW
4013 trace_create_file("tracing_on", 0644, d_tracer,
4014 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
4015
4016 return 0;
4017}
4018
4019fs_initcall(rb_init_debugfs);
1155de47 4020#endif
554f786e 4021
59222efe 4022#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4023static int rb_cpu_notify(struct notifier_block *self,
4024 unsigned long action, void *hcpu)
554f786e
SR
4025{
4026 struct ring_buffer *buffer =
4027 container_of(self, struct ring_buffer, cpu_notify);
4028 long cpu = (long)hcpu;
4029
4030 switch (action) {
4031 case CPU_UP_PREPARE:
4032 case CPU_UP_PREPARE_FROZEN:
3f237a79 4033 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4034 return NOTIFY_OK;
4035
4036 buffer->buffers[cpu] =
4037 rb_allocate_cpu_buffer(buffer, cpu);
4038 if (!buffer->buffers[cpu]) {
4039 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4040 cpu);
4041 return NOTIFY_OK;
4042 }
4043 smp_wmb();
3f237a79 4044 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4045 break;
4046 case CPU_DOWN_PREPARE:
4047 case CPU_DOWN_PREPARE_FROZEN:
4048 /*
4049 * Do nothing.
4050 * If we were to free the buffer, then the user would
4051 * lose any trace that was in the buffer.
4052 */
4053 break;
4054 default:
4055 break;
4056 }
4057 return NOTIFY_OK;
4058}
4059#endif
This page took 0.503602 seconds and 5 git commands to generate.