Merge branches 'tracing/ftrace' and 'tracing/urgent' into tracing/core
[deliverable/linux.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
7#include <linux/spinlock.h>
8#include <linux/debugfs.h>
9#include <linux/uaccess.h>
10#include <linux/module.h>
11#include <linux/percpu.h>
12#include <linux/mutex.h>
13#include <linux/sched.h> /* used for sched_clock() (for now) */
14#include <linux/init.h>
15#include <linux/hash.h>
16#include <linux/list.h>
17#include <linux/fs.h>
18
182e9f5f
SR
19#include "trace.h"
20
a3583244
SR
21/* Global flag to disable all recording to ring buffers */
22static int ring_buffers_off __read_mostly;
23
24/**
25 * tracing_on - enable all tracing buffers
26 *
27 * This function enables all tracing buffers that may have been
28 * disabled with tracing_off.
29 */
30void tracing_on(void)
31{
32 ring_buffers_off = 0;
33}
34
35/**
36 * tracing_off - turn off all tracing buffers
37 *
38 * This function stops all tracing buffers from recording data.
39 * It does not disable any overhead the tracers themselves may
40 * be causing. This function simply causes all recording to
41 * the ring buffers to fail.
42 */
43void tracing_off(void)
44{
45 ring_buffers_off = 1;
46}
47
d06bbd66
IM
48#include "trace.h"
49
7a8e76a3
SR
50/* Up this if you want to test the TIME_EXTENTS and normalization */
51#define DEBUG_SHIFT 0
52
53/* FIXME!!! */
54u64 ring_buffer_time_stamp(int cpu)
55{
56 /* shift to debug/test normalization and TIME_EXTENTS */
57 return sched_clock() << DEBUG_SHIFT;
58}
59
60void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
61{
62 /* Just stupid testing the normalize function and deltas */
63 *ts >>= DEBUG_SHIFT;
64}
65
66#define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
67#define RB_ALIGNMENT_SHIFT 2
68#define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
69#define RB_MAX_SMALL_DATA 28
70
71enum {
72 RB_LEN_TIME_EXTEND = 8,
73 RB_LEN_TIME_STAMP = 16,
74};
75
76/* inline for ring buffer fast paths */
77static inline unsigned
78rb_event_length(struct ring_buffer_event *event)
79{
80 unsigned length;
81
82 switch (event->type) {
83 case RINGBUF_TYPE_PADDING:
84 /* undefined */
85 return -1;
86
87 case RINGBUF_TYPE_TIME_EXTEND:
88 return RB_LEN_TIME_EXTEND;
89
90 case RINGBUF_TYPE_TIME_STAMP:
91 return RB_LEN_TIME_STAMP;
92
93 case RINGBUF_TYPE_DATA:
94 if (event->len)
95 length = event->len << RB_ALIGNMENT_SHIFT;
96 else
97 length = event->array[0];
98 return length + RB_EVNT_HDR_SIZE;
99 default:
100 BUG();
101 }
102 /* not hit */
103 return 0;
104}
105
106/**
107 * ring_buffer_event_length - return the length of the event
108 * @event: the event to get the length of
109 */
110unsigned ring_buffer_event_length(struct ring_buffer_event *event)
111{
112 return rb_event_length(event);
113}
114
115/* inline for ring buffer fast paths */
116static inline void *
117rb_event_data(struct ring_buffer_event *event)
118{
119 BUG_ON(event->type != RINGBUF_TYPE_DATA);
120 /* If length is in len field, then array[0] has the data */
121 if (event->len)
122 return (void *)&event->array[0];
123 /* Otherwise length is in array[0] and array[1] has the data */
124 return (void *)&event->array[1];
125}
126
127/**
128 * ring_buffer_event_data - return the data of the event
129 * @event: the event to get the data from
130 */
131void *ring_buffer_event_data(struct ring_buffer_event *event)
132{
133 return rb_event_data(event);
134}
135
136#define for_each_buffer_cpu(buffer, cpu) \
137 for_each_cpu_mask(cpu, buffer->cpumask)
138
139#define TS_SHIFT 27
140#define TS_MASK ((1ULL << TS_SHIFT) - 1)
141#define TS_DELTA_TEST (~TS_MASK)
142
143/*
144 * This hack stolen from mm/slob.c.
145 * We can store per page timing information in the page frame of the page.
146 * Thanks to Peter Zijlstra for suggesting this idea.
147 */
148struct buffer_page {
e4c2ce82 149 u64 time_stamp; /* page time stamp */
bf41a158
SR
150 local_t write; /* index for next write */
151 local_t commit; /* write commited index */
6f807acd 152 unsigned read; /* index for next read */
e4c2ce82
SR
153 struct list_head list; /* list of free pages */
154 void *page; /* Actual data page */
7a8e76a3
SR
155};
156
ed56829c
SR
157/*
158 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
159 * this issue out.
160 */
161static inline void free_buffer_page(struct buffer_page *bpage)
162{
e4c2ce82 163 if (bpage->page)
6ae2a076 164 free_page((unsigned long)bpage->page);
e4c2ce82 165 kfree(bpage);
ed56829c
SR
166}
167
7a8e76a3
SR
168/*
169 * We need to fit the time_stamp delta into 27 bits.
170 */
171static inline int test_time_stamp(u64 delta)
172{
173 if (delta & TS_DELTA_TEST)
174 return 1;
175 return 0;
176}
177
178#define BUF_PAGE_SIZE PAGE_SIZE
179
180/*
181 * head_page == tail_page && head == tail then buffer is empty.
182 */
183struct ring_buffer_per_cpu {
184 int cpu;
185 struct ring_buffer *buffer;
f83c9d0f 186 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 187 raw_spinlock_t lock;
7a8e76a3
SR
188 struct lock_class_key lock_key;
189 struct list_head pages;
6f807acd
SR
190 struct buffer_page *head_page; /* read from head */
191 struct buffer_page *tail_page; /* write to tail */
bf41a158 192 struct buffer_page *commit_page; /* commited pages */
d769041f 193 struct buffer_page *reader_page;
7a8e76a3
SR
194 unsigned long overrun;
195 unsigned long entries;
196 u64 write_stamp;
197 u64 read_stamp;
198 atomic_t record_disabled;
199};
200
201struct ring_buffer {
202 unsigned long size;
203 unsigned pages;
204 unsigned flags;
205 int cpus;
206 cpumask_t cpumask;
207 atomic_t record_disabled;
208
209 struct mutex mutex;
210
211 struct ring_buffer_per_cpu **buffers;
212};
213
214struct ring_buffer_iter {
215 struct ring_buffer_per_cpu *cpu_buffer;
216 unsigned long head;
217 struct buffer_page *head_page;
218 u64 read_stamp;
219};
220
f536aafc 221/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 222#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
223 ({ \
224 int _____ret = unlikely(cond); \
225 if (_____ret) { \
bf41a158
SR
226 atomic_inc(&buffer->record_disabled); \
227 WARN_ON(1); \
228 } \
3e89c7bb
SR
229 _____ret; \
230 })
f536aafc 231
7a8e76a3
SR
232/**
233 * check_pages - integrity check of buffer pages
234 * @cpu_buffer: CPU buffer with pages to test
235 *
236 * As a safty measure we check to make sure the data pages have not
237 * been corrupted.
238 */
239static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
240{
241 struct list_head *head = &cpu_buffer->pages;
242 struct buffer_page *page, *tmp;
243
3e89c7bb
SR
244 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
245 return -1;
246 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
247 return -1;
7a8e76a3
SR
248
249 list_for_each_entry_safe(page, tmp, head, list) {
3e89c7bb
SR
250 if (RB_WARN_ON(cpu_buffer,
251 page->list.next->prev != &page->list))
252 return -1;
253 if (RB_WARN_ON(cpu_buffer,
254 page->list.prev->next != &page->list))
255 return -1;
7a8e76a3
SR
256 }
257
258 return 0;
259}
260
7a8e76a3
SR
261static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
262 unsigned nr_pages)
263{
264 struct list_head *head = &cpu_buffer->pages;
265 struct buffer_page *page, *tmp;
266 unsigned long addr;
267 LIST_HEAD(pages);
268 unsigned i;
269
270 for (i = 0; i < nr_pages; i++) {
e4c2ce82 271 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
aa1e0e3b 272 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
e4c2ce82
SR
273 if (!page)
274 goto free_pages;
275 list_add(&page->list, &pages);
276
7a8e76a3
SR
277 addr = __get_free_page(GFP_KERNEL);
278 if (!addr)
279 goto free_pages;
e4c2ce82 280 page->page = (void *)addr;
7a8e76a3
SR
281 }
282
283 list_splice(&pages, head);
284
285 rb_check_pages(cpu_buffer);
286
287 return 0;
288
289 free_pages:
290 list_for_each_entry_safe(page, tmp, &pages, list) {
291 list_del_init(&page->list);
ed56829c 292 free_buffer_page(page);
7a8e76a3
SR
293 }
294 return -ENOMEM;
295}
296
297static struct ring_buffer_per_cpu *
298rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
299{
300 struct ring_buffer_per_cpu *cpu_buffer;
e4c2ce82 301 struct buffer_page *page;
d769041f 302 unsigned long addr;
7a8e76a3
SR
303 int ret;
304
305 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
306 GFP_KERNEL, cpu_to_node(cpu));
307 if (!cpu_buffer)
308 return NULL;
309
310 cpu_buffer->cpu = cpu;
311 cpu_buffer->buffer = buffer;
f83c9d0f 312 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 313 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
314 INIT_LIST_HEAD(&cpu_buffer->pages);
315
e4c2ce82
SR
316 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
317 GFP_KERNEL, cpu_to_node(cpu));
318 if (!page)
319 goto fail_free_buffer;
320
321 cpu_buffer->reader_page = page;
d769041f
SR
322 addr = __get_free_page(GFP_KERNEL);
323 if (!addr)
e4c2ce82
SR
324 goto fail_free_reader;
325 page->page = (void *)addr;
326
d769041f 327 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 328
7a8e76a3
SR
329 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
330 if (ret < 0)
d769041f 331 goto fail_free_reader;
7a8e76a3
SR
332
333 cpu_buffer->head_page
334 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 335 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
336
337 return cpu_buffer;
338
d769041f
SR
339 fail_free_reader:
340 free_buffer_page(cpu_buffer->reader_page);
341
7a8e76a3
SR
342 fail_free_buffer:
343 kfree(cpu_buffer);
344 return NULL;
345}
346
347static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
348{
349 struct list_head *head = &cpu_buffer->pages;
350 struct buffer_page *page, *tmp;
351
d769041f
SR
352 list_del_init(&cpu_buffer->reader_page->list);
353 free_buffer_page(cpu_buffer->reader_page);
354
7a8e76a3
SR
355 list_for_each_entry_safe(page, tmp, head, list) {
356 list_del_init(&page->list);
ed56829c 357 free_buffer_page(page);
7a8e76a3
SR
358 }
359 kfree(cpu_buffer);
360}
361
a7b13743
SR
362/*
363 * Causes compile errors if the struct buffer_page gets bigger
364 * than the struct page.
365 */
366extern int ring_buffer_page_too_big(void);
367
7a8e76a3
SR
368/**
369 * ring_buffer_alloc - allocate a new ring_buffer
370 * @size: the size in bytes that is needed.
371 * @flags: attributes to set for the ring buffer.
372 *
373 * Currently the only flag that is available is the RB_FL_OVERWRITE
374 * flag. This flag means that the buffer will overwrite old data
375 * when the buffer wraps. If this flag is not set, the buffer will
376 * drop data when the tail hits the head.
377 */
378struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
379{
380 struct ring_buffer *buffer;
381 int bsize;
382 int cpu;
383
a7b13743
SR
384 /* Paranoid! Optimizes out when all is well */
385 if (sizeof(struct buffer_page) > sizeof(struct page))
386 ring_buffer_page_too_big();
387
388
7a8e76a3
SR
389 /* keep it in its own cache line */
390 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
391 GFP_KERNEL);
392 if (!buffer)
393 return NULL;
394
395 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
396 buffer->flags = flags;
397
398 /* need at least two pages */
399 if (buffer->pages == 1)
400 buffer->pages++;
401
402 buffer->cpumask = cpu_possible_map;
403 buffer->cpus = nr_cpu_ids;
404
405 bsize = sizeof(void *) * nr_cpu_ids;
406 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
407 GFP_KERNEL);
408 if (!buffer->buffers)
409 goto fail_free_buffer;
410
411 for_each_buffer_cpu(buffer, cpu) {
412 buffer->buffers[cpu] =
413 rb_allocate_cpu_buffer(buffer, cpu);
414 if (!buffer->buffers[cpu])
415 goto fail_free_buffers;
416 }
417
418 mutex_init(&buffer->mutex);
419
420 return buffer;
421
422 fail_free_buffers:
423 for_each_buffer_cpu(buffer, cpu) {
424 if (buffer->buffers[cpu])
425 rb_free_cpu_buffer(buffer->buffers[cpu]);
426 }
427 kfree(buffer->buffers);
428
429 fail_free_buffer:
430 kfree(buffer);
431 return NULL;
432}
433
434/**
435 * ring_buffer_free - free a ring buffer.
436 * @buffer: the buffer to free.
437 */
438void
439ring_buffer_free(struct ring_buffer *buffer)
440{
441 int cpu;
442
443 for_each_buffer_cpu(buffer, cpu)
444 rb_free_cpu_buffer(buffer->buffers[cpu]);
445
446 kfree(buffer);
447}
448
449static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
450
451static void
452rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
453{
454 struct buffer_page *page;
455 struct list_head *p;
456 unsigned i;
457
458 atomic_inc(&cpu_buffer->record_disabled);
459 synchronize_sched();
460
461 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
462 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
463 return;
7a8e76a3
SR
464 p = cpu_buffer->pages.next;
465 page = list_entry(p, struct buffer_page, list);
466 list_del_init(&page->list);
ed56829c 467 free_buffer_page(page);
7a8e76a3 468 }
3e89c7bb
SR
469 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
470 return;
7a8e76a3
SR
471
472 rb_reset_cpu(cpu_buffer);
473
474 rb_check_pages(cpu_buffer);
475
476 atomic_dec(&cpu_buffer->record_disabled);
477
478}
479
480static void
481rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
482 struct list_head *pages, unsigned nr_pages)
483{
484 struct buffer_page *page;
485 struct list_head *p;
486 unsigned i;
487
488 atomic_inc(&cpu_buffer->record_disabled);
489 synchronize_sched();
490
491 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
492 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
493 return;
7a8e76a3
SR
494 p = pages->next;
495 page = list_entry(p, struct buffer_page, list);
496 list_del_init(&page->list);
497 list_add_tail(&page->list, &cpu_buffer->pages);
498 }
499 rb_reset_cpu(cpu_buffer);
500
501 rb_check_pages(cpu_buffer);
502
503 atomic_dec(&cpu_buffer->record_disabled);
504}
505
506/**
507 * ring_buffer_resize - resize the ring buffer
508 * @buffer: the buffer to resize.
509 * @size: the new size.
510 *
511 * The tracer is responsible for making sure that the buffer is
512 * not being used while changing the size.
513 * Note: We may be able to change the above requirement by using
514 * RCU synchronizations.
515 *
516 * Minimum size is 2 * BUF_PAGE_SIZE.
517 *
518 * Returns -1 on failure.
519 */
520int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
521{
522 struct ring_buffer_per_cpu *cpu_buffer;
523 unsigned nr_pages, rm_pages, new_pages;
524 struct buffer_page *page, *tmp;
525 unsigned long buffer_size;
526 unsigned long addr;
527 LIST_HEAD(pages);
528 int i, cpu;
529
530 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
531 size *= BUF_PAGE_SIZE;
532 buffer_size = buffer->pages * BUF_PAGE_SIZE;
533
534 /* we need a minimum of two pages */
535 if (size < BUF_PAGE_SIZE * 2)
536 size = BUF_PAGE_SIZE * 2;
537
538 if (size == buffer_size)
539 return size;
540
541 mutex_lock(&buffer->mutex);
542
543 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
544
545 if (size < buffer_size) {
546
547 /* easy case, just free pages */
3e89c7bb
SR
548 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
549 mutex_unlock(&buffer->mutex);
550 return -1;
551 }
7a8e76a3
SR
552
553 rm_pages = buffer->pages - nr_pages;
554
555 for_each_buffer_cpu(buffer, cpu) {
556 cpu_buffer = buffer->buffers[cpu];
557 rb_remove_pages(cpu_buffer, rm_pages);
558 }
559 goto out;
560 }
561
562 /*
563 * This is a bit more difficult. We only want to add pages
564 * when we can allocate enough for all CPUs. We do this
565 * by allocating all the pages and storing them on a local
566 * link list. If we succeed in our allocation, then we
567 * add these pages to the cpu_buffers. Otherwise we just free
568 * them all and return -ENOMEM;
569 */
3e89c7bb
SR
570 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
571 mutex_unlock(&buffer->mutex);
572 return -1;
573 }
f536aafc 574
7a8e76a3
SR
575 new_pages = nr_pages - buffer->pages;
576
577 for_each_buffer_cpu(buffer, cpu) {
578 for (i = 0; i < new_pages; i++) {
e4c2ce82
SR
579 page = kzalloc_node(ALIGN(sizeof(*page),
580 cache_line_size()),
581 GFP_KERNEL, cpu_to_node(cpu));
582 if (!page)
583 goto free_pages;
584 list_add(&page->list, &pages);
7a8e76a3
SR
585 addr = __get_free_page(GFP_KERNEL);
586 if (!addr)
587 goto free_pages;
e4c2ce82 588 page->page = (void *)addr;
7a8e76a3
SR
589 }
590 }
591
592 for_each_buffer_cpu(buffer, cpu) {
593 cpu_buffer = buffer->buffers[cpu];
594 rb_insert_pages(cpu_buffer, &pages, new_pages);
595 }
596
3e89c7bb
SR
597 if (RB_WARN_ON(buffer, !list_empty(&pages))) {
598 mutex_unlock(&buffer->mutex);
599 return -1;
600 }
7a8e76a3
SR
601
602 out:
603 buffer->pages = nr_pages;
604 mutex_unlock(&buffer->mutex);
605
606 return size;
607
608 free_pages:
609 list_for_each_entry_safe(page, tmp, &pages, list) {
610 list_del_init(&page->list);
ed56829c 611 free_buffer_page(page);
7a8e76a3
SR
612 }
613 return -ENOMEM;
614}
615
7a8e76a3
SR
616static inline int rb_null_event(struct ring_buffer_event *event)
617{
618 return event->type == RINGBUF_TYPE_PADDING;
619}
620
6f807acd 621static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
7a8e76a3 622{
e4c2ce82 623 return page->page + index;
7a8e76a3
SR
624}
625
626static inline struct ring_buffer_event *
d769041f 627rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 628{
6f807acd
SR
629 return __rb_page_index(cpu_buffer->reader_page,
630 cpu_buffer->reader_page->read);
631}
632
633static inline struct ring_buffer_event *
634rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
635{
636 return __rb_page_index(cpu_buffer->head_page,
637 cpu_buffer->head_page->read);
7a8e76a3
SR
638}
639
640static inline struct ring_buffer_event *
641rb_iter_head_event(struct ring_buffer_iter *iter)
642{
6f807acd 643 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
644}
645
bf41a158
SR
646static inline unsigned rb_page_write(struct buffer_page *bpage)
647{
648 return local_read(&bpage->write);
649}
650
651static inline unsigned rb_page_commit(struct buffer_page *bpage)
652{
653 return local_read(&bpage->commit);
654}
655
656/* Size is determined by what has been commited */
657static inline unsigned rb_page_size(struct buffer_page *bpage)
658{
659 return rb_page_commit(bpage);
660}
661
662static inline unsigned
663rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
664{
665 return rb_page_commit(cpu_buffer->commit_page);
666}
667
668static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
669{
670 return rb_page_commit(cpu_buffer->head_page);
671}
672
7a8e76a3
SR
673/*
674 * When the tail hits the head and the buffer is in overwrite mode,
675 * the head jumps to the next page and all content on the previous
676 * page is discarded. But before doing so, we update the overrun
677 * variable of the buffer.
678 */
679static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
680{
681 struct ring_buffer_event *event;
682 unsigned long head;
683
684 for (head = 0; head < rb_head_size(cpu_buffer);
685 head += rb_event_length(event)) {
686
6f807acd 687 event = __rb_page_index(cpu_buffer->head_page, head);
3e89c7bb
SR
688 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
689 return;
7a8e76a3
SR
690 /* Only count data entries */
691 if (event->type != RINGBUF_TYPE_DATA)
692 continue;
693 cpu_buffer->overrun++;
694 cpu_buffer->entries--;
695 }
696}
697
698static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
699 struct buffer_page **page)
700{
701 struct list_head *p = (*page)->list.next;
702
703 if (p == &cpu_buffer->pages)
704 p = p->next;
705
706 *page = list_entry(p, struct buffer_page, list);
707}
708
bf41a158
SR
709static inline unsigned
710rb_event_index(struct ring_buffer_event *event)
711{
712 unsigned long addr = (unsigned long)event;
713
714 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
715}
716
717static inline int
718rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
719 struct ring_buffer_event *event)
720{
721 unsigned long addr = (unsigned long)event;
722 unsigned long index;
723
724 index = rb_event_index(event);
725 addr &= PAGE_MASK;
726
727 return cpu_buffer->commit_page->page == (void *)addr &&
728 rb_commit_index(cpu_buffer) == index;
729}
730
7a8e76a3 731static inline void
bf41a158
SR
732rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
733 struct ring_buffer_event *event)
7a8e76a3 734{
bf41a158
SR
735 unsigned long addr = (unsigned long)event;
736 unsigned long index;
737
738 index = rb_event_index(event);
739 addr &= PAGE_MASK;
740
741 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
742 if (RB_WARN_ON(cpu_buffer,
743 cpu_buffer->commit_page == cpu_buffer->tail_page))
744 return;
bf41a158
SR
745 cpu_buffer->commit_page->commit =
746 cpu_buffer->commit_page->write;
747 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
748 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
749 }
750
751 /* Now set the commit to the event's index */
752 local_set(&cpu_buffer->commit_page->commit, index);
7a8e76a3
SR
753}
754
bf41a158
SR
755static inline void
756rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 757{
bf41a158
SR
758 /*
759 * We only race with interrupts and NMIs on this CPU.
760 * If we own the commit event, then we can commit
761 * all others that interrupted us, since the interruptions
762 * are in stack format (they finish before they come
763 * back to us). This allows us to do a simple loop to
764 * assign the commit to the tail.
765 */
766 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
767 cpu_buffer->commit_page->commit =
768 cpu_buffer->commit_page->write;
769 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
770 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
771 /* add barrier to keep gcc from optimizing too much */
772 barrier();
773 }
774 while (rb_commit_index(cpu_buffer) !=
775 rb_page_write(cpu_buffer->commit_page)) {
776 cpu_buffer->commit_page->commit =
777 cpu_buffer->commit_page->write;
778 barrier();
779 }
7a8e76a3
SR
780}
781
d769041f 782static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 783{
d769041f 784 cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
6f807acd 785 cpu_buffer->reader_page->read = 0;
d769041f
SR
786}
787
788static inline void rb_inc_iter(struct ring_buffer_iter *iter)
789{
790 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
791
792 /*
793 * The iterator could be on the reader page (it starts there).
794 * But the head could have moved, since the reader was
795 * found. Check for this case and assign the iterator
796 * to the head page instead of next.
797 */
798 if (iter->head_page == cpu_buffer->reader_page)
799 iter->head_page = cpu_buffer->head_page;
800 else
801 rb_inc_page(cpu_buffer, &iter->head_page);
802
7a8e76a3
SR
803 iter->read_stamp = iter->head_page->time_stamp;
804 iter->head = 0;
805}
806
807/**
808 * ring_buffer_update_event - update event type and data
809 * @event: the even to update
810 * @type: the type of event
811 * @length: the size of the event field in the ring buffer
812 *
813 * Update the type and data fields of the event. The length
814 * is the actual size that is written to the ring buffer,
815 * and with this, we can determine what to place into the
816 * data field.
817 */
818static inline void
819rb_update_event(struct ring_buffer_event *event,
820 unsigned type, unsigned length)
821{
822 event->type = type;
823
824 switch (type) {
825
826 case RINGBUF_TYPE_PADDING:
827 break;
828
829 case RINGBUF_TYPE_TIME_EXTEND:
830 event->len =
831 (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
832 >> RB_ALIGNMENT_SHIFT;
833 break;
834
835 case RINGBUF_TYPE_TIME_STAMP:
836 event->len =
837 (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
838 >> RB_ALIGNMENT_SHIFT;
839 break;
840
841 case RINGBUF_TYPE_DATA:
842 length -= RB_EVNT_HDR_SIZE;
843 if (length > RB_MAX_SMALL_DATA) {
844 event->len = 0;
845 event->array[0] = length;
846 } else
847 event->len =
848 (length + (RB_ALIGNMENT-1))
849 >> RB_ALIGNMENT_SHIFT;
850 break;
851 default:
852 BUG();
853 }
854}
855
856static inline unsigned rb_calculate_event_length(unsigned length)
857{
858 struct ring_buffer_event event; /* Used only for sizeof array */
859
860 /* zero length can cause confusions */
861 if (!length)
862 length = 1;
863
864 if (length > RB_MAX_SMALL_DATA)
865 length += sizeof(event.array[0]);
866
867 length += RB_EVNT_HDR_SIZE;
868 length = ALIGN(length, RB_ALIGNMENT);
869
870 return length;
871}
872
873static struct ring_buffer_event *
874__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
875 unsigned type, unsigned long length, u64 *ts)
876{
d769041f 877 struct buffer_page *tail_page, *head_page, *reader_page;
bf41a158 878 unsigned long tail, write;
7a8e76a3
SR
879 struct ring_buffer *buffer = cpu_buffer->buffer;
880 struct ring_buffer_event *event;
bf41a158 881 unsigned long flags;
7a8e76a3
SR
882
883 tail_page = cpu_buffer->tail_page;
bf41a158
SR
884 write = local_add_return(length, &tail_page->write);
885 tail = write - length;
7a8e76a3 886
bf41a158
SR
887 /* See if we shot pass the end of this buffer page */
888 if (write > BUF_PAGE_SIZE) {
7a8e76a3
SR
889 struct buffer_page *next_page = tail_page;
890
3e03fb7f
SR
891 local_irq_save(flags);
892 __raw_spin_lock(&cpu_buffer->lock);
bf41a158 893
7a8e76a3
SR
894 rb_inc_page(cpu_buffer, &next_page);
895
d769041f
SR
896 head_page = cpu_buffer->head_page;
897 reader_page = cpu_buffer->reader_page;
898
899 /* we grabbed the lock before incrementing */
3e89c7bb
SR
900 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
901 goto out_unlock;
bf41a158
SR
902
903 /*
904 * If for some reason, we had an interrupt storm that made
905 * it all the way around the buffer, bail, and warn
906 * about it.
907 */
908 if (unlikely(next_page == cpu_buffer->commit_page)) {
909 WARN_ON_ONCE(1);
910 goto out_unlock;
911 }
d769041f 912
7a8e76a3 913 if (next_page == head_page) {
d769041f 914 if (!(buffer->flags & RB_FL_OVERWRITE)) {
bf41a158
SR
915 /* reset write */
916 if (tail <= BUF_PAGE_SIZE)
917 local_set(&tail_page->write, tail);
918 goto out_unlock;
d769041f 919 }
7a8e76a3 920
bf41a158
SR
921 /* tail_page has not moved yet? */
922 if (tail_page == cpu_buffer->tail_page) {
923 /* count overflows */
924 rb_update_overflow(cpu_buffer);
925
926 rb_inc_page(cpu_buffer, &head_page);
927 cpu_buffer->head_page = head_page;
928 cpu_buffer->head_page->read = 0;
929 }
930 }
7a8e76a3 931
bf41a158
SR
932 /*
933 * If the tail page is still the same as what we think
934 * it is, then it is up to us to update the tail
935 * pointer.
936 */
937 if (tail_page == cpu_buffer->tail_page) {
938 local_set(&next_page->write, 0);
939 local_set(&next_page->commit, 0);
940 cpu_buffer->tail_page = next_page;
941
942 /* reread the time stamp */
943 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
944 cpu_buffer->tail_page->time_stamp = *ts;
7a8e76a3
SR
945 }
946
bf41a158
SR
947 /*
948 * The actual tail page has moved forward.
949 */
950 if (tail < BUF_PAGE_SIZE) {
951 /* Mark the rest of the page with padding */
6f807acd 952 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
953 event->type = RINGBUF_TYPE_PADDING;
954 }
955
bf41a158
SR
956 if (tail <= BUF_PAGE_SIZE)
957 /* Set the write back to the previous setting */
958 local_set(&tail_page->write, tail);
959
960 /*
961 * If this was a commit entry that failed,
962 * increment that too
963 */
964 if (tail_page == cpu_buffer->commit_page &&
965 tail == rb_commit_index(cpu_buffer)) {
966 rb_set_commit_to_write(cpu_buffer);
967 }
968
3e03fb7f
SR
969 __raw_spin_unlock(&cpu_buffer->lock);
970 local_irq_restore(flags);
bf41a158
SR
971
972 /* fail and let the caller try again */
973 return ERR_PTR(-EAGAIN);
7a8e76a3
SR
974 }
975
bf41a158
SR
976 /* We reserved something on the buffer */
977
3e89c7bb
SR
978 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
979 return NULL;
7a8e76a3 980
6f807acd 981 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
982 rb_update_event(event, type, length);
983
bf41a158
SR
984 /*
985 * If this is a commit and the tail is zero, then update
986 * this page's time stamp.
987 */
988 if (!tail && rb_is_commit(cpu_buffer, event))
989 cpu_buffer->commit_page->time_stamp = *ts;
990
7a8e76a3 991 return event;
bf41a158
SR
992
993 out_unlock:
3e03fb7f
SR
994 __raw_spin_unlock(&cpu_buffer->lock);
995 local_irq_restore(flags);
bf41a158 996 return NULL;
7a8e76a3
SR
997}
998
999static int
1000rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1001 u64 *ts, u64 *delta)
1002{
1003 struct ring_buffer_event *event;
1004 static int once;
bf41a158 1005 int ret;
7a8e76a3
SR
1006
1007 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1008 printk(KERN_WARNING "Delta way too big! %llu"
1009 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1010 (unsigned long long)*delta,
1011 (unsigned long long)*ts,
1012 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1013 WARN_ON(1);
1014 }
1015
1016 /*
1017 * The delta is too big, we to add a
1018 * new timestamp.
1019 */
1020 event = __rb_reserve_next(cpu_buffer,
1021 RINGBUF_TYPE_TIME_EXTEND,
1022 RB_LEN_TIME_EXTEND,
1023 ts);
1024 if (!event)
bf41a158 1025 return -EBUSY;
7a8e76a3 1026
bf41a158
SR
1027 if (PTR_ERR(event) == -EAGAIN)
1028 return -EAGAIN;
1029
1030 /* Only a commited time event can update the write stamp */
1031 if (rb_is_commit(cpu_buffer, event)) {
1032 /*
1033 * If this is the first on the page, then we need to
1034 * update the page itself, and just put in a zero.
1035 */
1036 if (rb_event_index(event)) {
1037 event->time_delta = *delta & TS_MASK;
1038 event->array[0] = *delta >> TS_SHIFT;
1039 } else {
1040 cpu_buffer->commit_page->time_stamp = *ts;
1041 event->time_delta = 0;
1042 event->array[0] = 0;
1043 }
7a8e76a3 1044 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1045 /* let the caller know this was the commit */
1046 ret = 1;
1047 } else {
1048 /* Darn, this is just wasted space */
1049 event->time_delta = 0;
1050 event->array[0] = 0;
1051 ret = 0;
7a8e76a3
SR
1052 }
1053
bf41a158
SR
1054 *delta = 0;
1055
1056 return ret;
7a8e76a3
SR
1057}
1058
1059static struct ring_buffer_event *
1060rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1061 unsigned type, unsigned long length)
1062{
1063 struct ring_buffer_event *event;
1064 u64 ts, delta;
bf41a158 1065 int commit = 0;
818e3dd3 1066 int nr_loops = 0;
7a8e76a3 1067
bf41a158 1068 again:
818e3dd3
SR
1069 /*
1070 * We allow for interrupts to reenter here and do a trace.
1071 * If one does, it will cause this original code to loop
1072 * back here. Even with heavy interrupts happening, this
1073 * should only happen a few times in a row. If this happens
1074 * 1000 times in a row, there must be either an interrupt
1075 * storm or we have something buggy.
1076 * Bail!
1077 */
3e89c7bb 1078 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1079 return NULL;
818e3dd3 1080
7a8e76a3
SR
1081 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1082
bf41a158
SR
1083 /*
1084 * Only the first commit can update the timestamp.
1085 * Yes there is a race here. If an interrupt comes in
1086 * just after the conditional and it traces too, then it
1087 * will also check the deltas. More than one timestamp may
1088 * also be made. But only the entry that did the actual
1089 * commit will be something other than zero.
1090 */
1091 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1092 rb_page_write(cpu_buffer->tail_page) ==
1093 rb_commit_index(cpu_buffer)) {
1094
7a8e76a3
SR
1095 delta = ts - cpu_buffer->write_stamp;
1096
bf41a158
SR
1097 /* make sure this delta is calculated here */
1098 barrier();
1099
1100 /* Did the write stamp get updated already? */
1101 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1102 delta = 0;
bf41a158 1103
7a8e76a3 1104 if (test_time_stamp(delta)) {
7a8e76a3 1105
bf41a158
SR
1106 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1107
1108 if (commit == -EBUSY)
7a8e76a3 1109 return NULL;
bf41a158
SR
1110
1111 if (commit == -EAGAIN)
1112 goto again;
1113
1114 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1115 }
bf41a158
SR
1116 } else
1117 /* Non commits have zero deltas */
7a8e76a3 1118 delta = 0;
7a8e76a3
SR
1119
1120 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
bf41a158
SR
1121 if (PTR_ERR(event) == -EAGAIN)
1122 goto again;
1123
1124 if (!event) {
1125 if (unlikely(commit))
1126 /*
1127 * Ouch! We needed a timestamp and it was commited. But
1128 * we didn't get our event reserved.
1129 */
1130 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1131 return NULL;
bf41a158 1132 }
7a8e76a3 1133
bf41a158
SR
1134 /*
1135 * If the timestamp was commited, make the commit our entry
1136 * now so that we will update it when needed.
1137 */
1138 if (commit)
1139 rb_set_commit_event(cpu_buffer, event);
1140 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1141 delta = 0;
1142
1143 event->time_delta = delta;
1144
1145 return event;
1146}
1147
bf41a158
SR
1148static DEFINE_PER_CPU(int, rb_need_resched);
1149
7a8e76a3
SR
1150/**
1151 * ring_buffer_lock_reserve - reserve a part of the buffer
1152 * @buffer: the ring buffer to reserve from
1153 * @length: the length of the data to reserve (excluding event header)
1154 * @flags: a pointer to save the interrupt flags
1155 *
1156 * Returns a reseverd event on the ring buffer to copy directly to.
1157 * The user of this interface will need to get the body to write into
1158 * and can use the ring_buffer_event_data() interface.
1159 *
1160 * The length is the length of the data needed, not the event length
1161 * which also includes the event header.
1162 *
1163 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1164 * If NULL is returned, then nothing has been allocated or locked.
1165 */
1166struct ring_buffer_event *
1167ring_buffer_lock_reserve(struct ring_buffer *buffer,
1168 unsigned long length,
1169 unsigned long *flags)
1170{
1171 struct ring_buffer_per_cpu *cpu_buffer;
1172 struct ring_buffer_event *event;
bf41a158 1173 int cpu, resched;
7a8e76a3 1174
a3583244
SR
1175 if (ring_buffers_off)
1176 return NULL;
1177
7a8e76a3
SR
1178 if (atomic_read(&buffer->record_disabled))
1179 return NULL;
1180
bf41a158 1181 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1182 resched = ftrace_preempt_disable();
bf41a158 1183
7a8e76a3
SR
1184 cpu = raw_smp_processor_id();
1185
1186 if (!cpu_isset(cpu, buffer->cpumask))
d769041f 1187 goto out;
7a8e76a3
SR
1188
1189 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1190
1191 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1192 goto out;
7a8e76a3
SR
1193
1194 length = rb_calculate_event_length(length);
1195 if (length > BUF_PAGE_SIZE)
bf41a158 1196 goto out;
7a8e76a3
SR
1197
1198 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1199 if (!event)
d769041f 1200 goto out;
7a8e76a3 1201
bf41a158
SR
1202 /*
1203 * Need to store resched state on this cpu.
1204 * Only the first needs to.
1205 */
1206
1207 if (preempt_count() == 1)
1208 per_cpu(rb_need_resched, cpu) = resched;
1209
7a8e76a3
SR
1210 return event;
1211
d769041f 1212 out:
182e9f5f 1213 ftrace_preempt_enable(resched);
7a8e76a3
SR
1214 return NULL;
1215}
1216
1217static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1218 struct ring_buffer_event *event)
1219{
7a8e76a3 1220 cpu_buffer->entries++;
bf41a158
SR
1221
1222 /* Only process further if we own the commit */
1223 if (!rb_is_commit(cpu_buffer, event))
1224 return;
1225
1226 cpu_buffer->write_stamp += event->time_delta;
1227
1228 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1229}
1230
1231/**
1232 * ring_buffer_unlock_commit - commit a reserved
1233 * @buffer: The buffer to commit to
1234 * @event: The event pointer to commit.
1235 * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1236 *
1237 * This commits the data to the ring buffer, and releases any locks held.
1238 *
1239 * Must be paired with ring_buffer_lock_reserve.
1240 */
1241int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1242 struct ring_buffer_event *event,
1243 unsigned long flags)
1244{
1245 struct ring_buffer_per_cpu *cpu_buffer;
1246 int cpu = raw_smp_processor_id();
1247
1248 cpu_buffer = buffer->buffers[cpu];
1249
7a8e76a3
SR
1250 rb_commit(cpu_buffer, event);
1251
bf41a158
SR
1252 /*
1253 * Only the last preempt count needs to restore preemption.
1254 */
182e9f5f
SR
1255 if (preempt_count() == 1)
1256 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1257 else
bf41a158 1258 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1259
1260 return 0;
1261}
1262
1263/**
1264 * ring_buffer_write - write data to the buffer without reserving
1265 * @buffer: The ring buffer to write to.
1266 * @length: The length of the data being written (excluding the event header)
1267 * @data: The data to write to the buffer.
1268 *
1269 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1270 * one function. If you already have the data to write to the buffer, it
1271 * may be easier to simply call this function.
1272 *
1273 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1274 * and not the length of the event which would hold the header.
1275 */
1276int ring_buffer_write(struct ring_buffer *buffer,
1277 unsigned long length,
1278 void *data)
1279{
1280 struct ring_buffer_per_cpu *cpu_buffer;
1281 struct ring_buffer_event *event;
bf41a158 1282 unsigned long event_length;
7a8e76a3
SR
1283 void *body;
1284 int ret = -EBUSY;
bf41a158 1285 int cpu, resched;
7a8e76a3 1286
a3583244
SR
1287 if (ring_buffers_off)
1288 return -EBUSY;
1289
7a8e76a3
SR
1290 if (atomic_read(&buffer->record_disabled))
1291 return -EBUSY;
1292
182e9f5f 1293 resched = ftrace_preempt_disable();
bf41a158 1294
7a8e76a3
SR
1295 cpu = raw_smp_processor_id();
1296
1297 if (!cpu_isset(cpu, buffer->cpumask))
d769041f 1298 goto out;
7a8e76a3
SR
1299
1300 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1301
1302 if (atomic_read(&cpu_buffer->record_disabled))
1303 goto out;
1304
1305 event_length = rb_calculate_event_length(length);
1306 event = rb_reserve_next_event(cpu_buffer,
1307 RINGBUF_TYPE_DATA, event_length);
1308 if (!event)
1309 goto out;
1310
1311 body = rb_event_data(event);
1312
1313 memcpy(body, data, length);
1314
1315 rb_commit(cpu_buffer, event);
1316
1317 ret = 0;
1318 out:
182e9f5f 1319 ftrace_preempt_enable(resched);
7a8e76a3
SR
1320
1321 return ret;
1322}
1323
bf41a158
SR
1324static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1325{
1326 struct buffer_page *reader = cpu_buffer->reader_page;
1327 struct buffer_page *head = cpu_buffer->head_page;
1328 struct buffer_page *commit = cpu_buffer->commit_page;
1329
1330 return reader->read == rb_page_commit(reader) &&
1331 (commit == reader ||
1332 (commit == head &&
1333 head->read == rb_page_commit(commit)));
1334}
1335
7a8e76a3
SR
1336/**
1337 * ring_buffer_record_disable - stop all writes into the buffer
1338 * @buffer: The ring buffer to stop writes to.
1339 *
1340 * This prevents all writes to the buffer. Any attempt to write
1341 * to the buffer after this will fail and return NULL.
1342 *
1343 * The caller should call synchronize_sched() after this.
1344 */
1345void ring_buffer_record_disable(struct ring_buffer *buffer)
1346{
1347 atomic_inc(&buffer->record_disabled);
1348}
1349
1350/**
1351 * ring_buffer_record_enable - enable writes to the buffer
1352 * @buffer: The ring buffer to enable writes
1353 *
1354 * Note, multiple disables will need the same number of enables
1355 * to truely enable the writing (much like preempt_disable).
1356 */
1357void ring_buffer_record_enable(struct ring_buffer *buffer)
1358{
1359 atomic_dec(&buffer->record_disabled);
1360}
1361
1362/**
1363 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1364 * @buffer: The ring buffer to stop writes to.
1365 * @cpu: The CPU buffer to stop
1366 *
1367 * This prevents all writes to the buffer. Any attempt to write
1368 * to the buffer after this will fail and return NULL.
1369 *
1370 * The caller should call synchronize_sched() after this.
1371 */
1372void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1373{
1374 struct ring_buffer_per_cpu *cpu_buffer;
1375
1376 if (!cpu_isset(cpu, buffer->cpumask))
1377 return;
1378
1379 cpu_buffer = buffer->buffers[cpu];
1380 atomic_inc(&cpu_buffer->record_disabled);
1381}
1382
1383/**
1384 * ring_buffer_record_enable_cpu - enable writes to the buffer
1385 * @buffer: The ring buffer to enable writes
1386 * @cpu: The CPU to enable.
1387 *
1388 * Note, multiple disables will need the same number of enables
1389 * to truely enable the writing (much like preempt_disable).
1390 */
1391void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1392{
1393 struct ring_buffer_per_cpu *cpu_buffer;
1394
1395 if (!cpu_isset(cpu, buffer->cpumask))
1396 return;
1397
1398 cpu_buffer = buffer->buffers[cpu];
1399 atomic_dec(&cpu_buffer->record_disabled);
1400}
1401
1402/**
1403 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1404 * @buffer: The ring buffer
1405 * @cpu: The per CPU buffer to get the entries from.
1406 */
1407unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1408{
1409 struct ring_buffer_per_cpu *cpu_buffer;
1410
1411 if (!cpu_isset(cpu, buffer->cpumask))
1412 return 0;
1413
1414 cpu_buffer = buffer->buffers[cpu];
1415 return cpu_buffer->entries;
1416}
1417
1418/**
1419 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1420 * @buffer: The ring buffer
1421 * @cpu: The per CPU buffer to get the number of overruns from
1422 */
1423unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1424{
1425 struct ring_buffer_per_cpu *cpu_buffer;
1426
1427 if (!cpu_isset(cpu, buffer->cpumask))
1428 return 0;
1429
1430 cpu_buffer = buffer->buffers[cpu];
1431 return cpu_buffer->overrun;
1432}
1433
1434/**
1435 * ring_buffer_entries - get the number of entries in a buffer
1436 * @buffer: The ring buffer
1437 *
1438 * Returns the total number of entries in the ring buffer
1439 * (all CPU entries)
1440 */
1441unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1442{
1443 struct ring_buffer_per_cpu *cpu_buffer;
1444 unsigned long entries = 0;
1445 int cpu;
1446
1447 /* if you care about this being correct, lock the buffer */
1448 for_each_buffer_cpu(buffer, cpu) {
1449 cpu_buffer = buffer->buffers[cpu];
1450 entries += cpu_buffer->entries;
1451 }
1452
1453 return entries;
1454}
1455
1456/**
1457 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1458 * @buffer: The ring buffer
1459 *
1460 * Returns the total number of overruns in the ring buffer
1461 * (all CPU entries)
1462 */
1463unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1464{
1465 struct ring_buffer_per_cpu *cpu_buffer;
1466 unsigned long overruns = 0;
1467 int cpu;
1468
1469 /* if you care about this being correct, lock the buffer */
1470 for_each_buffer_cpu(buffer, cpu) {
1471 cpu_buffer = buffer->buffers[cpu];
1472 overruns += cpu_buffer->overrun;
1473 }
1474
1475 return overruns;
1476}
1477
1478/**
1479 * ring_buffer_iter_reset - reset an iterator
1480 * @iter: The iterator to reset
1481 *
1482 * Resets the iterator, so that it will start from the beginning
1483 * again.
1484 */
1485void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1486{
1487 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
f83c9d0f
SR
1488 unsigned long flags;
1489
1490 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7a8e76a3 1491
d769041f
SR
1492 /* Iterator usage is expected to have record disabled */
1493 if (list_empty(&cpu_buffer->reader_page->list)) {
1494 iter->head_page = cpu_buffer->head_page;
6f807acd 1495 iter->head = cpu_buffer->head_page->read;
d769041f
SR
1496 } else {
1497 iter->head_page = cpu_buffer->reader_page;
6f807acd 1498 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
1499 }
1500 if (iter->head)
1501 iter->read_stamp = cpu_buffer->read_stamp;
1502 else
1503 iter->read_stamp = iter->head_page->time_stamp;
f83c9d0f
SR
1504
1505 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
1506}
1507
1508/**
1509 * ring_buffer_iter_empty - check if an iterator has no more to read
1510 * @iter: The iterator to check
1511 */
1512int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1513{
1514 struct ring_buffer_per_cpu *cpu_buffer;
1515
1516 cpu_buffer = iter->cpu_buffer;
1517
bf41a158
SR
1518 return iter->head_page == cpu_buffer->commit_page &&
1519 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3
SR
1520}
1521
1522static void
1523rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1524 struct ring_buffer_event *event)
1525{
1526 u64 delta;
1527
1528 switch (event->type) {
1529 case RINGBUF_TYPE_PADDING:
1530 return;
1531
1532 case RINGBUF_TYPE_TIME_EXTEND:
1533 delta = event->array[0];
1534 delta <<= TS_SHIFT;
1535 delta += event->time_delta;
1536 cpu_buffer->read_stamp += delta;
1537 return;
1538
1539 case RINGBUF_TYPE_TIME_STAMP:
1540 /* FIXME: not implemented */
1541 return;
1542
1543 case RINGBUF_TYPE_DATA:
1544 cpu_buffer->read_stamp += event->time_delta;
1545 return;
1546
1547 default:
1548 BUG();
1549 }
1550 return;
1551}
1552
1553static void
1554rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1555 struct ring_buffer_event *event)
1556{
1557 u64 delta;
1558
1559 switch (event->type) {
1560 case RINGBUF_TYPE_PADDING:
1561 return;
1562
1563 case RINGBUF_TYPE_TIME_EXTEND:
1564 delta = event->array[0];
1565 delta <<= TS_SHIFT;
1566 delta += event->time_delta;
1567 iter->read_stamp += delta;
1568 return;
1569
1570 case RINGBUF_TYPE_TIME_STAMP:
1571 /* FIXME: not implemented */
1572 return;
1573
1574 case RINGBUF_TYPE_DATA:
1575 iter->read_stamp += event->time_delta;
1576 return;
1577
1578 default:
1579 BUG();
1580 }
1581 return;
1582}
1583
d769041f
SR
1584static struct buffer_page *
1585rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1586{
d769041f
SR
1587 struct buffer_page *reader = NULL;
1588 unsigned long flags;
818e3dd3 1589 int nr_loops = 0;
d769041f 1590
3e03fb7f
SR
1591 local_irq_save(flags);
1592 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
1593
1594 again:
818e3dd3
SR
1595 /*
1596 * This should normally only loop twice. But because the
1597 * start of the reader inserts an empty page, it causes
1598 * a case where we will loop three times. There should be no
1599 * reason to loop four times (that I know of).
1600 */
3e89c7bb 1601 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
1602 reader = NULL;
1603 goto out;
1604 }
1605
d769041f
SR
1606 reader = cpu_buffer->reader_page;
1607
1608 /* If there's more to read, return this page */
bf41a158 1609 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
1610 goto out;
1611
1612 /* Never should we have an index greater than the size */
3e89c7bb
SR
1613 if (RB_WARN_ON(cpu_buffer,
1614 cpu_buffer->reader_page->read > rb_page_size(reader)))
1615 goto out;
d769041f
SR
1616
1617 /* check if we caught up to the tail */
1618 reader = NULL;
bf41a158 1619 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 1620 goto out;
7a8e76a3
SR
1621
1622 /*
d769041f
SR
1623 * Splice the empty reader page into the list around the head.
1624 * Reset the reader page to size zero.
7a8e76a3 1625 */
7a8e76a3 1626
d769041f
SR
1627 reader = cpu_buffer->head_page;
1628 cpu_buffer->reader_page->list.next = reader->list.next;
1629 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
1630
1631 local_set(&cpu_buffer->reader_page->write, 0);
1632 local_set(&cpu_buffer->reader_page->commit, 0);
7a8e76a3 1633
d769041f
SR
1634 /* Make the reader page now replace the head */
1635 reader->list.prev->next = &cpu_buffer->reader_page->list;
1636 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
1637
1638 /*
d769041f
SR
1639 * If the tail is on the reader, then we must set the head
1640 * to the inserted page, otherwise we set it one before.
7a8e76a3 1641 */
d769041f 1642 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 1643
bf41a158 1644 if (cpu_buffer->commit_page != reader)
d769041f
SR
1645 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1646
1647 /* Finally update the reader page to the new head */
1648 cpu_buffer->reader_page = reader;
1649 rb_reset_reader_page(cpu_buffer);
1650
1651 goto again;
1652
1653 out:
3e03fb7f
SR
1654 __raw_spin_unlock(&cpu_buffer->lock);
1655 local_irq_restore(flags);
d769041f
SR
1656
1657 return reader;
1658}
1659
1660static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1661{
1662 struct ring_buffer_event *event;
1663 struct buffer_page *reader;
1664 unsigned length;
1665
1666 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 1667
d769041f 1668 /* This function should not be called when buffer is empty */
3e89c7bb
SR
1669 if (RB_WARN_ON(cpu_buffer, !reader))
1670 return;
7a8e76a3 1671
d769041f
SR
1672 event = rb_reader_event(cpu_buffer);
1673
1674 if (event->type == RINGBUF_TYPE_DATA)
1675 cpu_buffer->entries--;
1676
1677 rb_update_read_stamp(cpu_buffer, event);
1678
1679 length = rb_event_length(event);
6f807acd 1680 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
1681}
1682
1683static void rb_advance_iter(struct ring_buffer_iter *iter)
1684{
1685 struct ring_buffer *buffer;
1686 struct ring_buffer_per_cpu *cpu_buffer;
1687 struct ring_buffer_event *event;
1688 unsigned length;
1689
1690 cpu_buffer = iter->cpu_buffer;
1691 buffer = cpu_buffer->buffer;
1692
1693 /*
1694 * Check if we are at the end of the buffer.
1695 */
bf41a158 1696 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
1697 if (RB_WARN_ON(buffer,
1698 iter->head_page == cpu_buffer->commit_page))
1699 return;
d769041f 1700 rb_inc_iter(iter);
7a8e76a3
SR
1701 return;
1702 }
1703
1704 event = rb_iter_head_event(iter);
1705
1706 length = rb_event_length(event);
1707
1708 /*
1709 * This should not be called to advance the header if we are
1710 * at the tail of the buffer.
1711 */
3e89c7bb 1712 if (RB_WARN_ON(cpu_buffer,
f536aafc 1713 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
1714 (iter->head + length > rb_commit_index(cpu_buffer))))
1715 return;
7a8e76a3
SR
1716
1717 rb_update_iter_read_stamp(iter, event);
1718
1719 iter->head += length;
1720
1721 /* check for end of page padding */
bf41a158
SR
1722 if ((iter->head >= rb_page_size(iter->head_page)) &&
1723 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
1724 rb_advance_iter(iter);
1725}
1726
f83c9d0f
SR
1727static struct ring_buffer_event *
1728rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
1729{
1730 struct ring_buffer_per_cpu *cpu_buffer;
1731 struct ring_buffer_event *event;
d769041f 1732 struct buffer_page *reader;
818e3dd3 1733 int nr_loops = 0;
7a8e76a3
SR
1734
1735 if (!cpu_isset(cpu, buffer->cpumask))
1736 return NULL;
1737
1738 cpu_buffer = buffer->buffers[cpu];
1739
1740 again:
818e3dd3
SR
1741 /*
1742 * We repeat when a timestamp is encountered. It is possible
1743 * to get multiple timestamps from an interrupt entering just
1744 * as one timestamp is about to be written. The max times
1745 * that this can happen is the number of nested interrupts we
1746 * can have. Nesting 10 deep of interrupts is clearly
1747 * an anomaly.
1748 */
3e89c7bb 1749 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 1750 return NULL;
818e3dd3 1751
d769041f
SR
1752 reader = rb_get_reader_page(cpu_buffer);
1753 if (!reader)
7a8e76a3
SR
1754 return NULL;
1755
d769041f 1756 event = rb_reader_event(cpu_buffer);
7a8e76a3
SR
1757
1758 switch (event->type) {
1759 case RINGBUF_TYPE_PADDING:
bf41a158 1760 RB_WARN_ON(cpu_buffer, 1);
d769041f
SR
1761 rb_advance_reader(cpu_buffer);
1762 return NULL;
7a8e76a3
SR
1763
1764 case RINGBUF_TYPE_TIME_EXTEND:
1765 /* Internal data, OK to advance */
d769041f 1766 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1767 goto again;
1768
1769 case RINGBUF_TYPE_TIME_STAMP:
1770 /* FIXME: not implemented */
d769041f 1771 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1772 goto again;
1773
1774 case RINGBUF_TYPE_DATA:
1775 if (ts) {
1776 *ts = cpu_buffer->read_stamp + event->time_delta;
1777 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1778 }
1779 return event;
1780
1781 default:
1782 BUG();
1783 }
1784
1785 return NULL;
1786}
1787
f83c9d0f
SR
1788static struct ring_buffer_event *
1789rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
1790{
1791 struct ring_buffer *buffer;
1792 struct ring_buffer_per_cpu *cpu_buffer;
1793 struct ring_buffer_event *event;
818e3dd3 1794 int nr_loops = 0;
7a8e76a3
SR
1795
1796 if (ring_buffer_iter_empty(iter))
1797 return NULL;
1798
1799 cpu_buffer = iter->cpu_buffer;
1800 buffer = cpu_buffer->buffer;
1801
1802 again:
818e3dd3
SR
1803 /*
1804 * We repeat when a timestamp is encountered. It is possible
1805 * to get multiple timestamps from an interrupt entering just
1806 * as one timestamp is about to be written. The max times
1807 * that this can happen is the number of nested interrupts we
1808 * can have. Nesting 10 deep of interrupts is clearly
1809 * an anomaly.
1810 */
3e89c7bb 1811 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 1812 return NULL;
818e3dd3 1813
7a8e76a3
SR
1814 if (rb_per_cpu_empty(cpu_buffer))
1815 return NULL;
1816
1817 event = rb_iter_head_event(iter);
1818
1819 switch (event->type) {
1820 case RINGBUF_TYPE_PADDING:
d769041f 1821 rb_inc_iter(iter);
7a8e76a3
SR
1822 goto again;
1823
1824 case RINGBUF_TYPE_TIME_EXTEND:
1825 /* Internal data, OK to advance */
1826 rb_advance_iter(iter);
1827 goto again;
1828
1829 case RINGBUF_TYPE_TIME_STAMP:
1830 /* FIXME: not implemented */
1831 rb_advance_iter(iter);
1832 goto again;
1833
1834 case RINGBUF_TYPE_DATA:
1835 if (ts) {
1836 *ts = iter->read_stamp + event->time_delta;
1837 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1838 }
1839 return event;
1840
1841 default:
1842 BUG();
1843 }
1844
1845 return NULL;
1846}
1847
f83c9d0f
SR
1848/**
1849 * ring_buffer_peek - peek at the next event to be read
1850 * @buffer: The ring buffer to read
1851 * @cpu: The cpu to peak at
1852 * @ts: The timestamp counter of this event.
1853 *
1854 * This will return the event that will be read next, but does
1855 * not consume the data.
1856 */
1857struct ring_buffer_event *
1858ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1859{
1860 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1861 struct ring_buffer_event *event;
1862 unsigned long flags;
1863
1864 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1865 event = rb_buffer_peek(buffer, cpu, ts);
1866 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1867
1868 return event;
1869}
1870
1871/**
1872 * ring_buffer_iter_peek - peek at the next event to be read
1873 * @iter: The ring buffer iterator
1874 * @ts: The timestamp counter of this event.
1875 *
1876 * This will return the event that will be read next, but does
1877 * not increment the iterator.
1878 */
1879struct ring_buffer_event *
1880ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1881{
1882 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1883 struct ring_buffer_event *event;
1884 unsigned long flags;
1885
1886 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1887 event = rb_iter_peek(iter, ts);
1888 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1889
1890 return event;
1891}
1892
7a8e76a3
SR
1893/**
1894 * ring_buffer_consume - return an event and consume it
1895 * @buffer: The ring buffer to get the next event from
1896 *
1897 * Returns the next event in the ring buffer, and that event is consumed.
1898 * Meaning, that sequential reads will keep returning a different event,
1899 * and eventually empty the ring buffer if the producer is slower.
1900 */
1901struct ring_buffer_event *
1902ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1903{
f83c9d0f 1904 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1905 struct ring_buffer_event *event;
f83c9d0f 1906 unsigned long flags;
7a8e76a3
SR
1907
1908 if (!cpu_isset(cpu, buffer->cpumask))
1909 return NULL;
1910
f83c9d0f
SR
1911 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1912
1913 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 1914 if (!event)
f83c9d0f 1915 goto out;
7a8e76a3 1916
d769041f 1917 rb_advance_reader(cpu_buffer);
7a8e76a3 1918
f83c9d0f
SR
1919 out:
1920 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1921
7a8e76a3
SR
1922 return event;
1923}
1924
1925/**
1926 * ring_buffer_read_start - start a non consuming read of the buffer
1927 * @buffer: The ring buffer to read from
1928 * @cpu: The cpu buffer to iterate over
1929 *
1930 * This starts up an iteration through the buffer. It also disables
1931 * the recording to the buffer until the reading is finished.
1932 * This prevents the reading from being corrupted. This is not
1933 * a consuming read, so a producer is not expected.
1934 *
1935 * Must be paired with ring_buffer_finish.
1936 */
1937struct ring_buffer_iter *
1938ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1939{
1940 struct ring_buffer_per_cpu *cpu_buffer;
1941 struct ring_buffer_iter *iter;
d769041f 1942 unsigned long flags;
7a8e76a3
SR
1943
1944 if (!cpu_isset(cpu, buffer->cpumask))
1945 return NULL;
1946
1947 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1948 if (!iter)
1949 return NULL;
1950
1951 cpu_buffer = buffer->buffers[cpu];
1952
1953 iter->cpu_buffer = cpu_buffer;
1954
1955 atomic_inc(&cpu_buffer->record_disabled);
1956 synchronize_sched();
1957
f83c9d0f 1958 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 1959 __raw_spin_lock(&cpu_buffer->lock);
d769041f 1960 ring_buffer_iter_reset(iter);
3e03fb7f 1961 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 1962 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
1963
1964 return iter;
1965}
1966
1967/**
1968 * ring_buffer_finish - finish reading the iterator of the buffer
1969 * @iter: The iterator retrieved by ring_buffer_start
1970 *
1971 * This re-enables the recording to the buffer, and frees the
1972 * iterator.
1973 */
1974void
1975ring_buffer_read_finish(struct ring_buffer_iter *iter)
1976{
1977 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1978
1979 atomic_dec(&cpu_buffer->record_disabled);
1980 kfree(iter);
1981}
1982
1983/**
1984 * ring_buffer_read - read the next item in the ring buffer by the iterator
1985 * @iter: The ring buffer iterator
1986 * @ts: The time stamp of the event read.
1987 *
1988 * This reads the next event in the ring buffer and increments the iterator.
1989 */
1990struct ring_buffer_event *
1991ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1992{
1993 struct ring_buffer_event *event;
f83c9d0f
SR
1994 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1995 unsigned long flags;
7a8e76a3 1996
f83c9d0f
SR
1997 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1998 event = rb_iter_peek(iter, ts);
7a8e76a3 1999 if (!event)
f83c9d0f 2000 goto out;
7a8e76a3
SR
2001
2002 rb_advance_iter(iter);
f83c9d0f
SR
2003 out:
2004 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2005
2006 return event;
2007}
2008
2009/**
2010 * ring_buffer_size - return the size of the ring buffer (in bytes)
2011 * @buffer: The ring buffer.
2012 */
2013unsigned long ring_buffer_size(struct ring_buffer *buffer)
2014{
2015 return BUF_PAGE_SIZE * buffer->pages;
2016}
2017
2018static void
2019rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2020{
2021 cpu_buffer->head_page
2022 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158
SR
2023 local_set(&cpu_buffer->head_page->write, 0);
2024 local_set(&cpu_buffer->head_page->commit, 0);
d769041f 2025
6f807acd 2026 cpu_buffer->head_page->read = 0;
bf41a158
SR
2027
2028 cpu_buffer->tail_page = cpu_buffer->head_page;
2029 cpu_buffer->commit_page = cpu_buffer->head_page;
2030
2031 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2032 local_set(&cpu_buffer->reader_page->write, 0);
2033 local_set(&cpu_buffer->reader_page->commit, 0);
6f807acd 2034 cpu_buffer->reader_page->read = 0;
7a8e76a3 2035
7a8e76a3
SR
2036 cpu_buffer->overrun = 0;
2037 cpu_buffer->entries = 0;
2038}
2039
2040/**
2041 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2042 * @buffer: The ring buffer to reset a per cpu buffer of
2043 * @cpu: The CPU buffer to be reset
2044 */
2045void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2046{
2047 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2048 unsigned long flags;
2049
2050 if (!cpu_isset(cpu, buffer->cpumask))
2051 return;
2052
f83c9d0f
SR
2053 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2054
3e03fb7f 2055 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2056
2057 rb_reset_cpu(cpu_buffer);
2058
3e03fb7f 2059 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2060
2061 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2062}
2063
2064/**
2065 * ring_buffer_reset - reset a ring buffer
2066 * @buffer: The ring buffer to reset all cpu buffers
2067 */
2068void ring_buffer_reset(struct ring_buffer *buffer)
2069{
7a8e76a3
SR
2070 int cpu;
2071
7a8e76a3 2072 for_each_buffer_cpu(buffer, cpu)
d769041f 2073 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3
SR
2074}
2075
2076/**
2077 * rind_buffer_empty - is the ring buffer empty?
2078 * @buffer: The ring buffer to test
2079 */
2080int ring_buffer_empty(struct ring_buffer *buffer)
2081{
2082 struct ring_buffer_per_cpu *cpu_buffer;
2083 int cpu;
2084
2085 /* yes this is racy, but if you don't like the race, lock the buffer */
2086 for_each_buffer_cpu(buffer, cpu) {
2087 cpu_buffer = buffer->buffers[cpu];
2088 if (!rb_per_cpu_empty(cpu_buffer))
2089 return 0;
2090 }
2091 return 1;
2092}
2093
2094/**
2095 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2096 * @buffer: The ring buffer
2097 * @cpu: The CPU buffer to test
2098 */
2099int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2100{
2101 struct ring_buffer_per_cpu *cpu_buffer;
2102
2103 if (!cpu_isset(cpu, buffer->cpumask))
2104 return 1;
2105
2106 cpu_buffer = buffer->buffers[cpu];
2107 return rb_per_cpu_empty(cpu_buffer);
2108}
2109
2110/**
2111 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2112 * @buffer_a: One buffer to swap with
2113 * @buffer_b: The other buffer to swap with
2114 *
2115 * This function is useful for tracers that want to take a "snapshot"
2116 * of a CPU buffer and has another back up buffer lying around.
2117 * it is expected that the tracer handles the cpu buffer not being
2118 * used at the moment.
2119 */
2120int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2121 struct ring_buffer *buffer_b, int cpu)
2122{
2123 struct ring_buffer_per_cpu *cpu_buffer_a;
2124 struct ring_buffer_per_cpu *cpu_buffer_b;
2125
2126 if (!cpu_isset(cpu, buffer_a->cpumask) ||
2127 !cpu_isset(cpu, buffer_b->cpumask))
2128 return -EINVAL;
2129
2130 /* At least make sure the two buffers are somewhat the same */
2131 if (buffer_a->size != buffer_b->size ||
2132 buffer_a->pages != buffer_b->pages)
2133 return -EINVAL;
2134
2135 cpu_buffer_a = buffer_a->buffers[cpu];
2136 cpu_buffer_b = buffer_b->buffers[cpu];
2137
2138 /*
2139 * We can't do a synchronize_sched here because this
2140 * function can be called in atomic context.
2141 * Normally this will be called from the same CPU as cpu.
2142 * If not it's up to the caller to protect this.
2143 */
2144 atomic_inc(&cpu_buffer_a->record_disabled);
2145 atomic_inc(&cpu_buffer_b->record_disabled);
2146
2147 buffer_a->buffers[cpu] = cpu_buffer_b;
2148 buffer_b->buffers[cpu] = cpu_buffer_a;
2149
2150 cpu_buffer_b->buffer = buffer_a;
2151 cpu_buffer_a->buffer = buffer_b;
2152
2153 atomic_dec(&cpu_buffer_a->record_disabled);
2154 atomic_dec(&cpu_buffer_b->record_disabled);
2155
2156 return 0;
2157}
2158
a3583244
SR
2159static ssize_t
2160rb_simple_read(struct file *filp, char __user *ubuf,
2161 size_t cnt, loff_t *ppos)
2162{
2163 int *p = filp->private_data;
2164 char buf[64];
2165 int r;
2166
2167 /* !ring_buffers_off == tracing_on */
2168 r = sprintf(buf, "%d\n", !*p);
2169
2170 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2171}
2172
2173static ssize_t
2174rb_simple_write(struct file *filp, const char __user *ubuf,
2175 size_t cnt, loff_t *ppos)
2176{
2177 int *p = filp->private_data;
2178 char buf[64];
2179 long val;
2180 int ret;
2181
2182 if (cnt >= sizeof(buf))
2183 return -EINVAL;
2184
2185 if (copy_from_user(&buf, ubuf, cnt))
2186 return -EFAULT;
2187
2188 buf[cnt] = 0;
2189
2190 ret = strict_strtoul(buf, 10, &val);
2191 if (ret < 0)
2192 return ret;
2193
2194 /* !ring_buffers_off == tracing_on */
2195 *p = !val;
2196
2197 (*ppos)++;
2198
2199 return cnt;
2200}
2201
2202static struct file_operations rb_simple_fops = {
2203 .open = tracing_open_generic,
2204 .read = rb_simple_read,
2205 .write = rb_simple_write,
2206};
2207
2208
2209static __init int rb_init_debugfs(void)
2210{
2211 struct dentry *d_tracer;
2212 struct dentry *entry;
2213
2214 d_tracer = tracing_init_dentry();
2215
2216 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2217 &ring_buffers_off, &rb_simple_fops);
2218 if (!entry)
2219 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2220
2221 return 0;
2222}
2223
2224fs_initcall(rb_init_debugfs);
This page took 0.127084 seconds and 5 git commands to generate.