workqueue: protect wq->pwqs and iteration with wq->mutex
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
e22bee78 47
ea138446 48#include "workqueue_internal.h"
1da177e4 49
c8e55f36 50enum {
24647570
TH
51 /*
52 * worker_pool flags
bc2ae0f5 53 *
24647570 54 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 61 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 62 *
bc3a1afc
TH
63 * Note that DISASSOCIATED should be flipped only while holding
64 * manager_mutex to avoid changing binding state while
24647570 65 * create_worker() is in progress.
bc2ae0f5 66 */
11ebea50 67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 69 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 78 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 79
a9ab775b
TH
80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
81 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 82
e34cdddb 83 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 84
29c91e99 85 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 86 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
d565ed63 114 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 115 *
d565ed63
TH
116 * X: During normal operation, modification requires pool->lock and should
117 * be done only from local cpu. Either disabling preemption on local
118 * cpu or grabbing pool->lock is enough for read access. If
119 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
822d8405
TH
121 * MG: pool->manager_mutex and pool->lock protected. Writes require both
122 * locks. Reads can happen under either lock.
123 *
68e13a67 124 * PL: wq_pool_mutex protected.
5bcab335 125 *
68e13a67 126 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 127 *
794b18bc
TH
128 * PW: pwq_lock protected.
129 *
3c25a55d
LJ
130 * WQ: wq->mutex protected.
131 *
132 * WR: wq->mutex and pwq_lock protected for writes. Sched-RCU protected
133 * for reads.
2e109a28
TH
134 *
135 * MD: wq_mayday_lock protected.
1da177e4 136 */
1da177e4 137
2eaebdb3 138/* struct worker is defined in workqueue_internal.h */
c34056a3 139
bd7bdd43 140struct worker_pool {
d565ed63 141 spinlock_t lock; /* the pool lock */
d84ff051 142 int cpu; /* I: the associated cpu */
9daf9e67 143 int id; /* I: pool ID */
11ebea50 144 unsigned int flags; /* X: flags */
bd7bdd43
TH
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
148
149 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
c5aa87bb 156 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
bc3a1afc 160 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 161 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 162 struct mutex manager_mutex; /* manager exclusion */
822d8405 163 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 164
7a4e344c 165 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
166 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
167 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 168
e19e397a
TH
169 /*
170 * The current concurrency level. As it's likely to be accessed
171 * from other CPUs during try_to_wake_up(), put it in a separate
172 * cacheline.
173 */
174 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
175
176 /*
177 * Destruction of pool is sched-RCU protected to allow dereferences
178 * from get_work_pool().
179 */
180 struct rcu_head rcu;
8b03ae3c
TH
181} ____cacheline_aligned_in_smp;
182
1da177e4 183/*
112202d9
TH
184 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
185 * of work_struct->data are used for flags and the remaining high bits
186 * point to the pwq; thus, pwqs need to be aligned at two's power of the
187 * number of flag bits.
1da177e4 188 */
112202d9 189struct pool_workqueue {
bd7bdd43 190 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 191 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
192 int work_color; /* L: current color */
193 int flush_color; /* L: flushing color */
8864b4e5 194 int refcnt; /* L: reference count */
73f53c4a
TH
195 int nr_in_flight[WORK_NR_COLORS];
196 /* L: nr of in_flight works */
1e19ffc6 197 int nr_active; /* L: nr of active works */
a0a1a5fd 198 int max_active; /* L: max active works */
1e19ffc6 199 struct list_head delayed_works; /* L: delayed works */
3c25a55d 200 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 201 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
202
203 /*
204 * Release of unbound pwq is punted to system_wq. See put_pwq()
205 * and pwq_unbound_release_workfn() for details. pool_workqueue
206 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 207 * determined without grabbing wq->mutex.
8864b4e5
TH
208 */
209 struct work_struct unbound_release_work;
210 struct rcu_head rcu;
e904e6c2 211} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 212
73f53c4a
TH
213/*
214 * Structure used to wait for workqueue flush.
215 */
216struct wq_flusher {
3c25a55d
LJ
217 struct list_head list; /* WQ: list of flushers */
218 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
219 struct completion done; /* flush completion */
220};
221
226223ab
TH
222struct wq_device;
223
1da177e4 224/*
c5aa87bb
TH
225 * The externally visible workqueue. It relays the issued work items to
226 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
227 */
228struct workqueue_struct {
87fc741e 229 unsigned int flags; /* WQ: WQ_* flags */
420c0ddb 230 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
3c25a55d 231 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 232 struct list_head list; /* PL: list of all workqueues */
73f53c4a 233
3c25a55d
LJ
234 struct mutex mutex; /* protects this wq */
235 int work_color; /* WQ: current work color */
236 int flush_color; /* WQ: current flush color */
112202d9 237 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
238 struct wq_flusher *first_flusher; /* WQ: first flusher */
239 struct list_head flusher_queue; /* WQ: flush waiters */
240 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 241
2e109a28 242 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
243 struct worker *rescuer; /* I: rescue worker */
244
87fc741e 245 int nr_drainers; /* WQ: drain in progress */
794b18bc 246 int saved_max_active; /* PW: saved pwq max_active */
226223ab
TH
247
248#ifdef CONFIG_SYSFS
249 struct wq_device *wq_dev; /* I: for sysfs interface */
250#endif
4e6045f1 251#ifdef CONFIG_LOCKDEP
4690c4ab 252 struct lockdep_map lockdep_map;
4e6045f1 253#endif
b196be89 254 char name[]; /* I: workqueue name */
1da177e4
LT
255};
256
e904e6c2
TH
257static struct kmem_cache *pwq_cache;
258
68e13a67 259static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
794b18bc 260static DEFINE_SPINLOCK(pwq_lock); /* protects pool_workqueues */
2e109a28 261static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 262
68e13a67
LJ
263static LIST_HEAD(workqueues); /* PL: list of all workqueues */
264static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
265
266/* the per-cpu worker pools */
267static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
268 cpu_worker_pools);
269
68e13a67 270static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 271
68e13a67 272/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
273static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
274
c5aa87bb 275/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
276static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
277
d320c038 278struct workqueue_struct *system_wq __read_mostly;
d320c038 279EXPORT_SYMBOL_GPL(system_wq);
044c782c 280struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 281EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 282struct workqueue_struct *system_long_wq __read_mostly;
d320c038 283EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 284struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 285EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 286struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 287EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 288
7d19c5ce
TH
289static int worker_thread(void *__worker);
290static void copy_workqueue_attrs(struct workqueue_attrs *to,
291 const struct workqueue_attrs *from);
292
97bd2347
TH
293#define CREATE_TRACE_POINTS
294#include <trace/events/workqueue.h>
295
68e13a67 296#define assert_rcu_or_pool_mutex() \
5bcab335 297 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
298 lockdep_is_held(&wq_pool_mutex), \
299 "sched RCU or wq_pool_mutex should be held")
5bcab335 300
b09f4fd3 301#define assert_rcu_or_wq_mutex(wq) \
76af4d93 302 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b09f4fd3 303 lockdep_is_held(&wq->mutex) || \
794b18bc 304 lockdep_is_held(&pwq_lock), \
b09f4fd3 305 "sched RCU or wq->mutex should be held")
76af4d93 306
822d8405
TH
307#ifdef CONFIG_LOCKDEP
308#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
309 WARN_ONCE(debug_locks && \
310 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
311 !lockdep_is_held(&(pool)->lock), \
312 "pool->manager_mutex or ->lock should be held")
313#else
314#define assert_manager_or_pool_lock(pool) do { } while (0)
315#endif
316
f02ae73a
TH
317#define for_each_cpu_worker_pool(pool, cpu) \
318 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
319 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 320 (pool)++)
4ce62e9e 321
17116969
TH
322/**
323 * for_each_pool - iterate through all worker_pools in the system
324 * @pool: iteration cursor
611c92a0 325 * @pi: integer used for iteration
fa1b54e6 326 *
68e13a67
LJ
327 * This must be called either with wq_pool_mutex held or sched RCU read
328 * locked. If the pool needs to be used beyond the locking in effect, the
329 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
330 *
331 * The if/else clause exists only for the lockdep assertion and can be
332 * ignored.
17116969 333 */
611c92a0
TH
334#define for_each_pool(pool, pi) \
335 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 336 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 337 else
17116969 338
822d8405
TH
339/**
340 * for_each_pool_worker - iterate through all workers of a worker_pool
341 * @worker: iteration cursor
342 * @wi: integer used for iteration
343 * @pool: worker_pool to iterate workers of
344 *
345 * This must be called with either @pool->manager_mutex or ->lock held.
346 *
347 * The if/else clause exists only for the lockdep assertion and can be
348 * ignored.
349 */
350#define for_each_pool_worker(worker, wi, pool) \
351 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
352 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
353 else
354
49e3cf44
TH
355/**
356 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
357 * @pwq: iteration cursor
358 * @wq: the target workqueue
76af4d93 359 *
b09f4fd3 360 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
361 * If the pwq needs to be used beyond the locking in effect, the caller is
362 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
363 *
364 * The if/else clause exists only for the lockdep assertion and can be
365 * ignored.
49e3cf44
TH
366 */
367#define for_each_pwq(pwq, wq) \
76af4d93 368 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 369 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 370 else
f3421797 371
dc186ad7
TG
372#ifdef CONFIG_DEBUG_OBJECTS_WORK
373
374static struct debug_obj_descr work_debug_descr;
375
99777288
SG
376static void *work_debug_hint(void *addr)
377{
378 return ((struct work_struct *) addr)->func;
379}
380
dc186ad7
TG
381/*
382 * fixup_init is called when:
383 * - an active object is initialized
384 */
385static int work_fixup_init(void *addr, enum debug_obj_state state)
386{
387 struct work_struct *work = addr;
388
389 switch (state) {
390 case ODEBUG_STATE_ACTIVE:
391 cancel_work_sync(work);
392 debug_object_init(work, &work_debug_descr);
393 return 1;
394 default:
395 return 0;
396 }
397}
398
399/*
400 * fixup_activate is called when:
401 * - an active object is activated
402 * - an unknown object is activated (might be a statically initialized object)
403 */
404static int work_fixup_activate(void *addr, enum debug_obj_state state)
405{
406 struct work_struct *work = addr;
407
408 switch (state) {
409
410 case ODEBUG_STATE_NOTAVAILABLE:
411 /*
412 * This is not really a fixup. The work struct was
413 * statically initialized. We just make sure that it
414 * is tracked in the object tracker.
415 */
22df02bb 416 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
417 debug_object_init(work, &work_debug_descr);
418 debug_object_activate(work, &work_debug_descr);
419 return 0;
420 }
421 WARN_ON_ONCE(1);
422 return 0;
423
424 case ODEBUG_STATE_ACTIVE:
425 WARN_ON(1);
426
427 default:
428 return 0;
429 }
430}
431
432/*
433 * fixup_free is called when:
434 * - an active object is freed
435 */
436static int work_fixup_free(void *addr, enum debug_obj_state state)
437{
438 struct work_struct *work = addr;
439
440 switch (state) {
441 case ODEBUG_STATE_ACTIVE:
442 cancel_work_sync(work);
443 debug_object_free(work, &work_debug_descr);
444 return 1;
445 default:
446 return 0;
447 }
448}
449
450static struct debug_obj_descr work_debug_descr = {
451 .name = "work_struct",
99777288 452 .debug_hint = work_debug_hint,
dc186ad7
TG
453 .fixup_init = work_fixup_init,
454 .fixup_activate = work_fixup_activate,
455 .fixup_free = work_fixup_free,
456};
457
458static inline void debug_work_activate(struct work_struct *work)
459{
460 debug_object_activate(work, &work_debug_descr);
461}
462
463static inline void debug_work_deactivate(struct work_struct *work)
464{
465 debug_object_deactivate(work, &work_debug_descr);
466}
467
468void __init_work(struct work_struct *work, int onstack)
469{
470 if (onstack)
471 debug_object_init_on_stack(work, &work_debug_descr);
472 else
473 debug_object_init(work, &work_debug_descr);
474}
475EXPORT_SYMBOL_GPL(__init_work);
476
477void destroy_work_on_stack(struct work_struct *work)
478{
479 debug_object_free(work, &work_debug_descr);
480}
481EXPORT_SYMBOL_GPL(destroy_work_on_stack);
482
483#else
484static inline void debug_work_activate(struct work_struct *work) { }
485static inline void debug_work_deactivate(struct work_struct *work) { }
486#endif
487
9daf9e67
TH
488/* allocate ID and assign it to @pool */
489static int worker_pool_assign_id(struct worker_pool *pool)
490{
491 int ret;
492
68e13a67 493 lockdep_assert_held(&wq_pool_mutex);
5bcab335 494
fa1b54e6
TH
495 do {
496 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
497 return -ENOMEM;
fa1b54e6 498 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
fa1b54e6 499 } while (ret == -EAGAIN);
9daf9e67 500
fa1b54e6 501 return ret;
7c3eed5c
TH
502}
503
76af4d93
TH
504/**
505 * first_pwq - return the first pool_workqueue of the specified workqueue
506 * @wq: the target workqueue
507 *
b09f4fd3 508 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
509 * If the pwq needs to be used beyond the locking in effect, the caller is
510 * responsible for guaranteeing that the pwq stays online.
76af4d93 511 */
7fb98ea7 512static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 513{
b09f4fd3 514 assert_rcu_or_wq_mutex(wq);
76af4d93
TH
515 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
516 pwqs_node);
b1f4ec17
ON
517}
518
73f53c4a
TH
519static unsigned int work_color_to_flags(int color)
520{
521 return color << WORK_STRUCT_COLOR_SHIFT;
522}
523
524static int get_work_color(struct work_struct *work)
525{
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528}
529
530static int work_next_color(int color)
531{
532 return (color + 1) % WORK_NR_COLORS;
533}
1da177e4 534
14441960 535/*
112202d9
TH
536 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
537 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 538 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 539 *
112202d9
TH
540 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
541 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
542 * work->data. These functions should only be called while the work is
543 * owned - ie. while the PENDING bit is set.
7a22ad75 544 *
112202d9 545 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 546 * corresponding to a work. Pool is available once the work has been
112202d9 547 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 548 * available only while the work item is queued.
7a22ad75 549 *
bbb68dfa
TH
550 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
551 * canceled. While being canceled, a work item may have its PENDING set
552 * but stay off timer and worklist for arbitrarily long and nobody should
553 * try to steal the PENDING bit.
14441960 554 */
7a22ad75
TH
555static inline void set_work_data(struct work_struct *work, unsigned long data,
556 unsigned long flags)
365970a1 557{
6183c009 558 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
559 atomic_long_set(&work->data, data | flags | work_static(work));
560}
365970a1 561
112202d9 562static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
563 unsigned long extra_flags)
564{
112202d9
TH
565 set_work_data(work, (unsigned long)pwq,
566 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
567}
568
4468a00f
LJ
569static void set_work_pool_and_keep_pending(struct work_struct *work,
570 int pool_id)
571{
572 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
573 WORK_STRUCT_PENDING);
574}
575
7c3eed5c
TH
576static void set_work_pool_and_clear_pending(struct work_struct *work,
577 int pool_id)
7a22ad75 578{
23657bb1
TH
579 /*
580 * The following wmb is paired with the implied mb in
581 * test_and_set_bit(PENDING) and ensures all updates to @work made
582 * here are visible to and precede any updates by the next PENDING
583 * owner.
584 */
585 smp_wmb();
7c3eed5c 586 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 587}
f756d5e2 588
7a22ad75 589static void clear_work_data(struct work_struct *work)
1da177e4 590{
7c3eed5c
TH
591 smp_wmb(); /* see set_work_pool_and_clear_pending() */
592 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
593}
594
112202d9 595static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 596{
e120153d 597 unsigned long data = atomic_long_read(&work->data);
7a22ad75 598
112202d9 599 if (data & WORK_STRUCT_PWQ)
e120153d
TH
600 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
601 else
602 return NULL;
4d707b9f
ON
603}
604
7c3eed5c
TH
605/**
606 * get_work_pool - return the worker_pool a given work was associated with
607 * @work: the work item of interest
608 *
609 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 610 *
68e13a67
LJ
611 * Pools are created and destroyed under wq_pool_mutex, and allows read
612 * access under sched-RCU read lock. As such, this function should be
613 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
614 *
615 * All fields of the returned pool are accessible as long as the above
616 * mentioned locking is in effect. If the returned pool needs to be used
617 * beyond the critical section, the caller is responsible for ensuring the
618 * returned pool is and stays online.
7c3eed5c
TH
619 */
620static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 621{
e120153d 622 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 623 int pool_id;
7a22ad75 624
68e13a67 625 assert_rcu_or_pool_mutex();
fa1b54e6 626
112202d9
TH
627 if (data & WORK_STRUCT_PWQ)
628 return ((struct pool_workqueue *)
7c3eed5c 629 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 630
7c3eed5c
TH
631 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
632 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
633 return NULL;
634
fa1b54e6 635 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
636}
637
638/**
639 * get_work_pool_id - return the worker pool ID a given work is associated with
640 * @work: the work item of interest
641 *
642 * Return the worker_pool ID @work was last associated with.
643 * %WORK_OFFQ_POOL_NONE if none.
644 */
645static int get_work_pool_id(struct work_struct *work)
646{
54d5b7d0
LJ
647 unsigned long data = atomic_long_read(&work->data);
648
112202d9
TH
649 if (data & WORK_STRUCT_PWQ)
650 return ((struct pool_workqueue *)
54d5b7d0 651 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 652
54d5b7d0 653 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
654}
655
bbb68dfa
TH
656static void mark_work_canceling(struct work_struct *work)
657{
7c3eed5c 658 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 659
7c3eed5c
TH
660 pool_id <<= WORK_OFFQ_POOL_SHIFT;
661 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
662}
663
664static bool work_is_canceling(struct work_struct *work)
665{
666 unsigned long data = atomic_long_read(&work->data);
667
112202d9 668 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
669}
670
e22bee78 671/*
3270476a
TH
672 * Policy functions. These define the policies on how the global worker
673 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 674 * they're being called with pool->lock held.
e22bee78
TH
675 */
676
63d95a91 677static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 678{
e19e397a 679 return !atomic_read(&pool->nr_running);
a848e3b6
ON
680}
681
4594bf15 682/*
e22bee78
TH
683 * Need to wake up a worker? Called from anything but currently
684 * running workers.
974271c4
TH
685 *
686 * Note that, because unbound workers never contribute to nr_running, this
706026c2 687 * function will always return %true for unbound pools as long as the
974271c4 688 * worklist isn't empty.
4594bf15 689 */
63d95a91 690static bool need_more_worker(struct worker_pool *pool)
365970a1 691{
63d95a91 692 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 693}
4594bf15 694
e22bee78 695/* Can I start working? Called from busy but !running workers. */
63d95a91 696static bool may_start_working(struct worker_pool *pool)
e22bee78 697{
63d95a91 698 return pool->nr_idle;
e22bee78
TH
699}
700
701/* Do I need to keep working? Called from currently running workers. */
63d95a91 702static bool keep_working(struct worker_pool *pool)
e22bee78 703{
e19e397a
TH
704 return !list_empty(&pool->worklist) &&
705 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
706}
707
708/* Do we need a new worker? Called from manager. */
63d95a91 709static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 710{
63d95a91 711 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 712}
365970a1 713
e22bee78 714/* Do I need to be the manager? */
63d95a91 715static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 716{
63d95a91 717 return need_to_create_worker(pool) ||
11ebea50 718 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
719}
720
721/* Do we have too many workers and should some go away? */
63d95a91 722static bool too_many_workers(struct worker_pool *pool)
e22bee78 723{
34a06bd6 724 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
725 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
726 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 727
ea1abd61
LJ
728 /*
729 * nr_idle and idle_list may disagree if idle rebinding is in
730 * progress. Never return %true if idle_list is empty.
731 */
732 if (list_empty(&pool->idle_list))
733 return false;
734
e22bee78 735 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
736}
737
4d707b9f 738/*
e22bee78
TH
739 * Wake up functions.
740 */
741
7e11629d 742/* Return the first worker. Safe with preemption disabled */
63d95a91 743static struct worker *first_worker(struct worker_pool *pool)
7e11629d 744{
63d95a91 745 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
746 return NULL;
747
63d95a91 748 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
749}
750
751/**
752 * wake_up_worker - wake up an idle worker
63d95a91 753 * @pool: worker pool to wake worker from
7e11629d 754 *
63d95a91 755 * Wake up the first idle worker of @pool.
7e11629d
TH
756 *
757 * CONTEXT:
d565ed63 758 * spin_lock_irq(pool->lock).
7e11629d 759 */
63d95a91 760static void wake_up_worker(struct worker_pool *pool)
7e11629d 761{
63d95a91 762 struct worker *worker = first_worker(pool);
7e11629d
TH
763
764 if (likely(worker))
765 wake_up_process(worker->task);
766}
767
d302f017 768/**
e22bee78
TH
769 * wq_worker_waking_up - a worker is waking up
770 * @task: task waking up
771 * @cpu: CPU @task is waking up to
772 *
773 * This function is called during try_to_wake_up() when a worker is
774 * being awoken.
775 *
776 * CONTEXT:
777 * spin_lock_irq(rq->lock)
778 */
d84ff051 779void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
780{
781 struct worker *worker = kthread_data(task);
782
36576000 783 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 784 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 785 atomic_inc(&worker->pool->nr_running);
36576000 786 }
e22bee78
TH
787}
788
789/**
790 * wq_worker_sleeping - a worker is going to sleep
791 * @task: task going to sleep
792 * @cpu: CPU in question, must be the current CPU number
793 *
794 * This function is called during schedule() when a busy worker is
795 * going to sleep. Worker on the same cpu can be woken up by
796 * returning pointer to its task.
797 *
798 * CONTEXT:
799 * spin_lock_irq(rq->lock)
800 *
801 * RETURNS:
802 * Worker task on @cpu to wake up, %NULL if none.
803 */
d84ff051 804struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
805{
806 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 807 struct worker_pool *pool;
e22bee78 808
111c225a
TH
809 /*
810 * Rescuers, which may not have all the fields set up like normal
811 * workers, also reach here, let's not access anything before
812 * checking NOT_RUNNING.
813 */
2d64672e 814 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
815 return NULL;
816
111c225a 817 pool = worker->pool;
111c225a 818
e22bee78 819 /* this can only happen on the local cpu */
6183c009
TH
820 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
821 return NULL;
e22bee78
TH
822
823 /*
824 * The counterpart of the following dec_and_test, implied mb,
825 * worklist not empty test sequence is in insert_work().
826 * Please read comment there.
827 *
628c78e7
TH
828 * NOT_RUNNING is clear. This means that we're bound to and
829 * running on the local cpu w/ rq lock held and preemption
830 * disabled, which in turn means that none else could be
d565ed63 831 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 832 * lock is safe.
e22bee78 833 */
e19e397a
TH
834 if (atomic_dec_and_test(&pool->nr_running) &&
835 !list_empty(&pool->worklist))
63d95a91 836 to_wakeup = first_worker(pool);
e22bee78
TH
837 return to_wakeup ? to_wakeup->task : NULL;
838}
839
840/**
841 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 842 * @worker: self
d302f017
TH
843 * @flags: flags to set
844 * @wakeup: wakeup an idle worker if necessary
845 *
e22bee78
TH
846 * Set @flags in @worker->flags and adjust nr_running accordingly. If
847 * nr_running becomes zero and @wakeup is %true, an idle worker is
848 * woken up.
d302f017 849 *
cb444766 850 * CONTEXT:
d565ed63 851 * spin_lock_irq(pool->lock)
d302f017
TH
852 */
853static inline void worker_set_flags(struct worker *worker, unsigned int flags,
854 bool wakeup)
855{
bd7bdd43 856 struct worker_pool *pool = worker->pool;
e22bee78 857
cb444766
TH
858 WARN_ON_ONCE(worker->task != current);
859
e22bee78
TH
860 /*
861 * If transitioning into NOT_RUNNING, adjust nr_running and
862 * wake up an idle worker as necessary if requested by
863 * @wakeup.
864 */
865 if ((flags & WORKER_NOT_RUNNING) &&
866 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 867 if (wakeup) {
e19e397a 868 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 869 !list_empty(&pool->worklist))
63d95a91 870 wake_up_worker(pool);
e22bee78 871 } else
e19e397a 872 atomic_dec(&pool->nr_running);
e22bee78
TH
873 }
874
d302f017
TH
875 worker->flags |= flags;
876}
877
878/**
e22bee78 879 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 880 * @worker: self
d302f017
TH
881 * @flags: flags to clear
882 *
e22bee78 883 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 884 *
cb444766 885 * CONTEXT:
d565ed63 886 * spin_lock_irq(pool->lock)
d302f017
TH
887 */
888static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
889{
63d95a91 890 struct worker_pool *pool = worker->pool;
e22bee78
TH
891 unsigned int oflags = worker->flags;
892
cb444766
TH
893 WARN_ON_ONCE(worker->task != current);
894
d302f017 895 worker->flags &= ~flags;
e22bee78 896
42c025f3
TH
897 /*
898 * If transitioning out of NOT_RUNNING, increment nr_running. Note
899 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
900 * of multiple flags, not a single flag.
901 */
e22bee78
TH
902 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
903 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 904 atomic_inc(&pool->nr_running);
d302f017
TH
905}
906
8cca0eea
TH
907/**
908 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 909 * @pool: pool of interest
8cca0eea
TH
910 * @work: work to find worker for
911 *
c9e7cf27
TH
912 * Find a worker which is executing @work on @pool by searching
913 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
914 * to match, its current execution should match the address of @work and
915 * its work function. This is to avoid unwanted dependency between
916 * unrelated work executions through a work item being recycled while still
917 * being executed.
918 *
919 * This is a bit tricky. A work item may be freed once its execution
920 * starts and nothing prevents the freed area from being recycled for
921 * another work item. If the same work item address ends up being reused
922 * before the original execution finishes, workqueue will identify the
923 * recycled work item as currently executing and make it wait until the
924 * current execution finishes, introducing an unwanted dependency.
925 *
c5aa87bb
TH
926 * This function checks the work item address and work function to avoid
927 * false positives. Note that this isn't complete as one may construct a
928 * work function which can introduce dependency onto itself through a
929 * recycled work item. Well, if somebody wants to shoot oneself in the
930 * foot that badly, there's only so much we can do, and if such deadlock
931 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
932 *
933 * CONTEXT:
d565ed63 934 * spin_lock_irq(pool->lock).
8cca0eea
TH
935 *
936 * RETURNS:
937 * Pointer to worker which is executing @work if found, NULL
938 * otherwise.
4d707b9f 939 */
c9e7cf27 940static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 941 struct work_struct *work)
4d707b9f 942{
42f8570f 943 struct worker *worker;
42f8570f 944
b67bfe0d 945 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
946 (unsigned long)work)
947 if (worker->current_work == work &&
948 worker->current_func == work->func)
42f8570f
SL
949 return worker;
950
951 return NULL;
4d707b9f
ON
952}
953
bf4ede01
TH
954/**
955 * move_linked_works - move linked works to a list
956 * @work: start of series of works to be scheduled
957 * @head: target list to append @work to
958 * @nextp: out paramter for nested worklist walking
959 *
960 * Schedule linked works starting from @work to @head. Work series to
961 * be scheduled starts at @work and includes any consecutive work with
962 * WORK_STRUCT_LINKED set in its predecessor.
963 *
964 * If @nextp is not NULL, it's updated to point to the next work of
965 * the last scheduled work. This allows move_linked_works() to be
966 * nested inside outer list_for_each_entry_safe().
967 *
968 * CONTEXT:
d565ed63 969 * spin_lock_irq(pool->lock).
bf4ede01
TH
970 */
971static void move_linked_works(struct work_struct *work, struct list_head *head,
972 struct work_struct **nextp)
973{
974 struct work_struct *n;
975
976 /*
977 * Linked worklist will always end before the end of the list,
978 * use NULL for list head.
979 */
980 list_for_each_entry_safe_from(work, n, NULL, entry) {
981 list_move_tail(&work->entry, head);
982 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
983 break;
984 }
985
986 /*
987 * If we're already inside safe list traversal and have moved
988 * multiple works to the scheduled queue, the next position
989 * needs to be updated.
990 */
991 if (nextp)
992 *nextp = n;
993}
994
8864b4e5
TH
995/**
996 * get_pwq - get an extra reference on the specified pool_workqueue
997 * @pwq: pool_workqueue to get
998 *
999 * Obtain an extra reference on @pwq. The caller should guarantee that
1000 * @pwq has positive refcnt and be holding the matching pool->lock.
1001 */
1002static void get_pwq(struct pool_workqueue *pwq)
1003{
1004 lockdep_assert_held(&pwq->pool->lock);
1005 WARN_ON_ONCE(pwq->refcnt <= 0);
1006 pwq->refcnt++;
1007}
1008
1009/**
1010 * put_pwq - put a pool_workqueue reference
1011 * @pwq: pool_workqueue to put
1012 *
1013 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1014 * destruction. The caller should be holding the matching pool->lock.
1015 */
1016static void put_pwq(struct pool_workqueue *pwq)
1017{
1018 lockdep_assert_held(&pwq->pool->lock);
1019 if (likely(--pwq->refcnt))
1020 return;
1021 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1022 return;
1023 /*
1024 * @pwq can't be released under pool->lock, bounce to
1025 * pwq_unbound_release_workfn(). This never recurses on the same
1026 * pool->lock as this path is taken only for unbound workqueues and
1027 * the release work item is scheduled on a per-cpu workqueue. To
1028 * avoid lockdep warning, unbound pool->locks are given lockdep
1029 * subclass of 1 in get_unbound_pool().
1030 */
1031 schedule_work(&pwq->unbound_release_work);
1032}
1033
112202d9 1034static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1035{
112202d9 1036 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1037
1038 trace_workqueue_activate_work(work);
112202d9 1039 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1040 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1041 pwq->nr_active++;
bf4ede01
TH
1042}
1043
112202d9 1044static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1045{
112202d9 1046 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1047 struct work_struct, entry);
1048
112202d9 1049 pwq_activate_delayed_work(work);
3aa62497
LJ
1050}
1051
bf4ede01 1052/**
112202d9
TH
1053 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1054 * @pwq: pwq of interest
bf4ede01 1055 * @color: color of work which left the queue
bf4ede01
TH
1056 *
1057 * A work either has completed or is removed from pending queue,
112202d9 1058 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1059 *
1060 * CONTEXT:
d565ed63 1061 * spin_lock_irq(pool->lock).
bf4ede01 1062 */
112202d9 1063static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1064{
8864b4e5 1065 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1066 if (color == WORK_NO_COLOR)
8864b4e5 1067 goto out_put;
bf4ede01 1068
112202d9 1069 pwq->nr_in_flight[color]--;
bf4ede01 1070
112202d9
TH
1071 pwq->nr_active--;
1072 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1073 /* one down, submit a delayed one */
112202d9
TH
1074 if (pwq->nr_active < pwq->max_active)
1075 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1076 }
1077
1078 /* is flush in progress and are we at the flushing tip? */
112202d9 1079 if (likely(pwq->flush_color != color))
8864b4e5 1080 goto out_put;
bf4ede01
TH
1081
1082 /* are there still in-flight works? */
112202d9 1083 if (pwq->nr_in_flight[color])
8864b4e5 1084 goto out_put;
bf4ede01 1085
112202d9
TH
1086 /* this pwq is done, clear flush_color */
1087 pwq->flush_color = -1;
bf4ede01
TH
1088
1089 /*
112202d9 1090 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1091 * will handle the rest.
1092 */
112202d9
TH
1093 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1094 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1095out_put:
1096 put_pwq(pwq);
bf4ede01
TH
1097}
1098
36e227d2 1099/**
bbb68dfa 1100 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1101 * @work: work item to steal
1102 * @is_dwork: @work is a delayed_work
bbb68dfa 1103 * @flags: place to store irq state
36e227d2
TH
1104 *
1105 * Try to grab PENDING bit of @work. This function can handle @work in any
1106 * stable state - idle, on timer or on worklist. Return values are
1107 *
1108 * 1 if @work was pending and we successfully stole PENDING
1109 * 0 if @work was idle and we claimed PENDING
1110 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1111 * -ENOENT if someone else is canceling @work, this state may persist
1112 * for arbitrarily long
36e227d2 1113 *
bbb68dfa 1114 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1115 * interrupted while holding PENDING and @work off queue, irq must be
1116 * disabled on entry. This, combined with delayed_work->timer being
1117 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1118 *
1119 * On successful return, >= 0, irq is disabled and the caller is
1120 * responsible for releasing it using local_irq_restore(*@flags).
1121 *
e0aecdd8 1122 * This function is safe to call from any context including IRQ handler.
bf4ede01 1123 */
bbb68dfa
TH
1124static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1125 unsigned long *flags)
bf4ede01 1126{
d565ed63 1127 struct worker_pool *pool;
112202d9 1128 struct pool_workqueue *pwq;
bf4ede01 1129
bbb68dfa
TH
1130 local_irq_save(*flags);
1131
36e227d2
TH
1132 /* try to steal the timer if it exists */
1133 if (is_dwork) {
1134 struct delayed_work *dwork = to_delayed_work(work);
1135
e0aecdd8
TH
1136 /*
1137 * dwork->timer is irqsafe. If del_timer() fails, it's
1138 * guaranteed that the timer is not queued anywhere and not
1139 * running on the local CPU.
1140 */
36e227d2
TH
1141 if (likely(del_timer(&dwork->timer)))
1142 return 1;
1143 }
1144
1145 /* try to claim PENDING the normal way */
bf4ede01
TH
1146 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1147 return 0;
1148
1149 /*
1150 * The queueing is in progress, or it is already queued. Try to
1151 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1152 */
d565ed63
TH
1153 pool = get_work_pool(work);
1154 if (!pool)
bbb68dfa 1155 goto fail;
bf4ede01 1156
d565ed63 1157 spin_lock(&pool->lock);
0b3dae68 1158 /*
112202d9
TH
1159 * work->data is guaranteed to point to pwq only while the work
1160 * item is queued on pwq->wq, and both updating work->data to point
1161 * to pwq on queueing and to pool on dequeueing are done under
1162 * pwq->pool->lock. This in turn guarantees that, if work->data
1163 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1164 * item is currently queued on that pool.
1165 */
112202d9
TH
1166 pwq = get_work_pwq(work);
1167 if (pwq && pwq->pool == pool) {
16062836
TH
1168 debug_work_deactivate(work);
1169
1170 /*
1171 * A delayed work item cannot be grabbed directly because
1172 * it might have linked NO_COLOR work items which, if left
112202d9 1173 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1174 * management later on and cause stall. Make sure the work
1175 * item is activated before grabbing.
1176 */
1177 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1178 pwq_activate_delayed_work(work);
16062836
TH
1179
1180 list_del_init(&work->entry);
112202d9 1181 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1182
112202d9 1183 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1184 set_work_pool_and_keep_pending(work, pool->id);
1185
1186 spin_unlock(&pool->lock);
1187 return 1;
bf4ede01 1188 }
d565ed63 1189 spin_unlock(&pool->lock);
bbb68dfa
TH
1190fail:
1191 local_irq_restore(*flags);
1192 if (work_is_canceling(work))
1193 return -ENOENT;
1194 cpu_relax();
36e227d2 1195 return -EAGAIN;
bf4ede01
TH
1196}
1197
4690c4ab 1198/**
706026c2 1199 * insert_work - insert a work into a pool
112202d9 1200 * @pwq: pwq @work belongs to
4690c4ab
TH
1201 * @work: work to insert
1202 * @head: insertion point
1203 * @extra_flags: extra WORK_STRUCT_* flags to set
1204 *
112202d9 1205 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1206 * work_struct flags.
4690c4ab
TH
1207 *
1208 * CONTEXT:
d565ed63 1209 * spin_lock_irq(pool->lock).
4690c4ab 1210 */
112202d9
TH
1211static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1212 struct list_head *head, unsigned int extra_flags)
b89deed3 1213{
112202d9 1214 struct worker_pool *pool = pwq->pool;
e22bee78 1215
4690c4ab 1216 /* we own @work, set data and link */
112202d9 1217 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1218 list_add_tail(&work->entry, head);
8864b4e5 1219 get_pwq(pwq);
e22bee78
TH
1220
1221 /*
c5aa87bb
TH
1222 * Ensure either wq_worker_sleeping() sees the above
1223 * list_add_tail() or we see zero nr_running to avoid workers lying
1224 * around lazily while there are works to be processed.
e22bee78
TH
1225 */
1226 smp_mb();
1227
63d95a91
TH
1228 if (__need_more_worker(pool))
1229 wake_up_worker(pool);
b89deed3
ON
1230}
1231
c8efcc25
TH
1232/*
1233 * Test whether @work is being queued from another work executing on the
8d03ecfe 1234 * same workqueue.
c8efcc25
TH
1235 */
1236static bool is_chained_work(struct workqueue_struct *wq)
1237{
8d03ecfe
TH
1238 struct worker *worker;
1239
1240 worker = current_wq_worker();
1241 /*
1242 * Return %true iff I'm a worker execuing a work item on @wq. If
1243 * I'm @worker, it's safe to dereference it without locking.
1244 */
112202d9 1245 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1246}
1247
d84ff051 1248static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1249 struct work_struct *work)
1250{
112202d9 1251 struct pool_workqueue *pwq;
c9178087 1252 struct worker_pool *last_pool;
1e19ffc6 1253 struct list_head *worklist;
8a2e8e5d 1254 unsigned int work_flags;
b75cac93 1255 unsigned int req_cpu = cpu;
8930caba
TH
1256
1257 /*
1258 * While a work item is PENDING && off queue, a task trying to
1259 * steal the PENDING will busy-loop waiting for it to either get
1260 * queued or lose PENDING. Grabbing PENDING and queueing should
1261 * happen with IRQ disabled.
1262 */
1263 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1264
dc186ad7 1265 debug_work_activate(work);
1e19ffc6 1266
c8efcc25 1267 /* if dying, only works from the same workqueue are allowed */
618b01eb 1268 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1269 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1270 return;
9e8cd2f5 1271retry:
c9178087 1272 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1273 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1274 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1275 cpu = raw_smp_processor_id();
7fb98ea7 1276 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1277 } else {
1278 pwq = first_pwq(wq);
1279 }
dbf2576e 1280
c9178087
TH
1281 /*
1282 * If @work was previously on a different pool, it might still be
1283 * running there, in which case the work needs to be queued on that
1284 * pool to guarantee non-reentrancy.
1285 */
1286 last_pool = get_work_pool(work);
1287 if (last_pool && last_pool != pwq->pool) {
1288 struct worker *worker;
18aa9eff 1289
c9178087 1290 spin_lock(&last_pool->lock);
18aa9eff 1291
c9178087 1292 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1293
c9178087
TH
1294 if (worker && worker->current_pwq->wq == wq) {
1295 pwq = worker->current_pwq;
8930caba 1296 } else {
c9178087
TH
1297 /* meh... not running there, queue here */
1298 spin_unlock(&last_pool->lock);
112202d9 1299 spin_lock(&pwq->pool->lock);
8930caba 1300 }
f3421797 1301 } else {
112202d9 1302 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1303 }
1304
9e8cd2f5
TH
1305 /*
1306 * pwq is determined and locked. For unbound pools, we could have
1307 * raced with pwq release and it could already be dead. If its
1308 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1309 * without another pwq replacing it as the first pwq or while a
1310 * work item is executing on it, so the retying is guaranteed to
1311 * make forward-progress.
1312 */
1313 if (unlikely(!pwq->refcnt)) {
1314 if (wq->flags & WQ_UNBOUND) {
1315 spin_unlock(&pwq->pool->lock);
1316 cpu_relax();
1317 goto retry;
1318 }
1319 /* oops */
1320 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1321 wq->name, cpu);
1322 }
1323
112202d9
TH
1324 /* pwq determined, queue */
1325 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1326
f5b2552b 1327 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1328 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1329 return;
1330 }
1e19ffc6 1331
112202d9
TH
1332 pwq->nr_in_flight[pwq->work_color]++;
1333 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1334
112202d9 1335 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1336 trace_workqueue_activate_work(work);
112202d9
TH
1337 pwq->nr_active++;
1338 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1339 } else {
1340 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1341 worklist = &pwq->delayed_works;
8a2e8e5d 1342 }
1e19ffc6 1343
112202d9 1344 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1345
112202d9 1346 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1347}
1348
0fcb78c2 1349/**
c1a220e7
ZR
1350 * queue_work_on - queue work on specific cpu
1351 * @cpu: CPU number to execute work on
0fcb78c2
REB
1352 * @wq: workqueue to use
1353 * @work: work to queue
1354 *
d4283e93 1355 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1356 *
c1a220e7
ZR
1357 * We queue the work to a specific CPU, the caller must ensure it
1358 * can't go away.
1da177e4 1359 */
d4283e93
TH
1360bool queue_work_on(int cpu, struct workqueue_struct *wq,
1361 struct work_struct *work)
1da177e4 1362{
d4283e93 1363 bool ret = false;
8930caba 1364 unsigned long flags;
ef1ca236 1365
8930caba 1366 local_irq_save(flags);
c1a220e7 1367
22df02bb 1368 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1369 __queue_work(cpu, wq, work);
d4283e93 1370 ret = true;
c1a220e7 1371 }
ef1ca236 1372
8930caba 1373 local_irq_restore(flags);
1da177e4
LT
1374 return ret;
1375}
c1a220e7 1376EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1377
d8e794df 1378void delayed_work_timer_fn(unsigned long __data)
1da177e4 1379{
52bad64d 1380 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1381
e0aecdd8 1382 /* should have been called from irqsafe timer with irq already off */
60c057bc 1383 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1384}
1438ade5 1385EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1386
7beb2edf
TH
1387static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1388 struct delayed_work *dwork, unsigned long delay)
1da177e4 1389{
7beb2edf
TH
1390 struct timer_list *timer = &dwork->timer;
1391 struct work_struct *work = &dwork->work;
7beb2edf
TH
1392
1393 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1394 timer->data != (unsigned long)dwork);
fc4b514f
TH
1395 WARN_ON_ONCE(timer_pending(timer));
1396 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1397
8852aac2
TH
1398 /*
1399 * If @delay is 0, queue @dwork->work immediately. This is for
1400 * both optimization and correctness. The earliest @timer can
1401 * expire is on the closest next tick and delayed_work users depend
1402 * on that there's no such delay when @delay is 0.
1403 */
1404 if (!delay) {
1405 __queue_work(cpu, wq, &dwork->work);
1406 return;
1407 }
1408
7beb2edf 1409 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1410
60c057bc 1411 dwork->wq = wq;
1265057f 1412 dwork->cpu = cpu;
7beb2edf
TH
1413 timer->expires = jiffies + delay;
1414
1415 if (unlikely(cpu != WORK_CPU_UNBOUND))
1416 add_timer_on(timer, cpu);
1417 else
1418 add_timer(timer);
1da177e4
LT
1419}
1420
0fcb78c2
REB
1421/**
1422 * queue_delayed_work_on - queue work on specific CPU after delay
1423 * @cpu: CPU number to execute work on
1424 * @wq: workqueue to use
af9997e4 1425 * @dwork: work to queue
0fcb78c2
REB
1426 * @delay: number of jiffies to wait before queueing
1427 *
715f1300
TH
1428 * Returns %false if @work was already on a queue, %true otherwise. If
1429 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1430 * execution.
0fcb78c2 1431 */
d4283e93
TH
1432bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1433 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1434{
52bad64d 1435 struct work_struct *work = &dwork->work;
d4283e93 1436 bool ret = false;
8930caba 1437 unsigned long flags;
7a6bc1cd 1438
8930caba
TH
1439 /* read the comment in __queue_work() */
1440 local_irq_save(flags);
7a6bc1cd 1441
22df02bb 1442 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1443 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1444 ret = true;
7a6bc1cd 1445 }
8a3e77cc 1446
8930caba 1447 local_irq_restore(flags);
7a6bc1cd
VP
1448 return ret;
1449}
ae90dd5d 1450EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1451
8376fe22
TH
1452/**
1453 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1454 * @cpu: CPU number to execute work on
1455 * @wq: workqueue to use
1456 * @dwork: work to queue
1457 * @delay: number of jiffies to wait before queueing
1458 *
1459 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1460 * modify @dwork's timer so that it expires after @delay. If @delay is
1461 * zero, @work is guaranteed to be scheduled immediately regardless of its
1462 * current state.
1463 *
1464 * Returns %false if @dwork was idle and queued, %true if @dwork was
1465 * pending and its timer was modified.
1466 *
e0aecdd8 1467 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1468 * See try_to_grab_pending() for details.
1469 */
1470bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1471 struct delayed_work *dwork, unsigned long delay)
1472{
1473 unsigned long flags;
1474 int ret;
c7fc77f7 1475
8376fe22
TH
1476 do {
1477 ret = try_to_grab_pending(&dwork->work, true, &flags);
1478 } while (unlikely(ret == -EAGAIN));
63bc0362 1479
8376fe22
TH
1480 if (likely(ret >= 0)) {
1481 __queue_delayed_work(cpu, wq, dwork, delay);
1482 local_irq_restore(flags);
7a6bc1cd 1483 }
8376fe22
TH
1484
1485 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1486 return ret;
1487}
8376fe22
TH
1488EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1489
c8e55f36
TH
1490/**
1491 * worker_enter_idle - enter idle state
1492 * @worker: worker which is entering idle state
1493 *
1494 * @worker is entering idle state. Update stats and idle timer if
1495 * necessary.
1496 *
1497 * LOCKING:
d565ed63 1498 * spin_lock_irq(pool->lock).
c8e55f36
TH
1499 */
1500static void worker_enter_idle(struct worker *worker)
1da177e4 1501{
bd7bdd43 1502 struct worker_pool *pool = worker->pool;
c8e55f36 1503
6183c009
TH
1504 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1505 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1506 (worker->hentry.next || worker->hentry.pprev)))
1507 return;
c8e55f36 1508
cb444766
TH
1509 /* can't use worker_set_flags(), also called from start_worker() */
1510 worker->flags |= WORKER_IDLE;
bd7bdd43 1511 pool->nr_idle++;
e22bee78 1512 worker->last_active = jiffies;
c8e55f36
TH
1513
1514 /* idle_list is LIFO */
bd7bdd43 1515 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1516
628c78e7
TH
1517 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1518 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1519
544ecf31 1520 /*
706026c2 1521 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1522 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1523 * nr_running, the warning may trigger spuriously. Check iff
1524 * unbind is not in progress.
544ecf31 1525 */
24647570 1526 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1527 pool->nr_workers == pool->nr_idle &&
e19e397a 1528 atomic_read(&pool->nr_running));
c8e55f36
TH
1529}
1530
1531/**
1532 * worker_leave_idle - leave idle state
1533 * @worker: worker which is leaving idle state
1534 *
1535 * @worker is leaving idle state. Update stats.
1536 *
1537 * LOCKING:
d565ed63 1538 * spin_lock_irq(pool->lock).
c8e55f36
TH
1539 */
1540static void worker_leave_idle(struct worker *worker)
1541{
bd7bdd43 1542 struct worker_pool *pool = worker->pool;
c8e55f36 1543
6183c009
TH
1544 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1545 return;
d302f017 1546 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1547 pool->nr_idle--;
c8e55f36
TH
1548 list_del_init(&worker->entry);
1549}
1550
e22bee78 1551/**
f36dc67b
LJ
1552 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1553 * @pool: target worker_pool
1554 *
1555 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1556 *
1557 * Works which are scheduled while the cpu is online must at least be
1558 * scheduled to a worker which is bound to the cpu so that if they are
1559 * flushed from cpu callbacks while cpu is going down, they are
1560 * guaranteed to execute on the cpu.
1561 *
f5faa077 1562 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1563 * themselves to the target cpu and may race with cpu going down or
1564 * coming online. kthread_bind() can't be used because it may put the
1565 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1566 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1567 * [dis]associated in the meantime.
1568 *
706026c2 1569 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1570 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1571 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1572 * enters idle state or fetches works without dropping lock, it can
1573 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1574 *
1575 * CONTEXT:
d565ed63 1576 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1577 * held.
1578 *
1579 * RETURNS:
706026c2 1580 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1581 * bound), %false if offline.
1582 */
f36dc67b 1583static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1584__acquires(&pool->lock)
e22bee78 1585{
e22bee78 1586 while (true) {
4e6045f1 1587 /*
e22bee78
TH
1588 * The following call may fail, succeed or succeed
1589 * without actually migrating the task to the cpu if
1590 * it races with cpu hotunplug operation. Verify
24647570 1591 * against POOL_DISASSOCIATED.
4e6045f1 1592 */
24647570 1593 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1594 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1595
d565ed63 1596 spin_lock_irq(&pool->lock);
24647570 1597 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1598 return false;
f5faa077 1599 if (task_cpu(current) == pool->cpu &&
7a4e344c 1600 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1601 return true;
d565ed63 1602 spin_unlock_irq(&pool->lock);
e22bee78 1603
5035b20f
TH
1604 /*
1605 * We've raced with CPU hot[un]plug. Give it a breather
1606 * and retry migration. cond_resched() is required here;
1607 * otherwise, we might deadlock against cpu_stop trying to
1608 * bring down the CPU on non-preemptive kernel.
1609 */
e22bee78 1610 cpu_relax();
5035b20f 1611 cond_resched();
e22bee78
TH
1612 }
1613}
1614
c34056a3
TH
1615static struct worker *alloc_worker(void)
1616{
1617 struct worker *worker;
1618
1619 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1620 if (worker) {
1621 INIT_LIST_HEAD(&worker->entry);
affee4b2 1622 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1623 /* on creation a worker is in !idle && prep state */
1624 worker->flags = WORKER_PREP;
c8e55f36 1625 }
c34056a3
TH
1626 return worker;
1627}
1628
1629/**
1630 * create_worker - create a new workqueue worker
63d95a91 1631 * @pool: pool the new worker will belong to
c34056a3 1632 *
63d95a91 1633 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1634 * can be started by calling start_worker() or destroyed using
1635 * destroy_worker().
1636 *
1637 * CONTEXT:
1638 * Might sleep. Does GFP_KERNEL allocations.
1639 *
1640 * RETURNS:
1641 * Pointer to the newly created worker.
1642 */
bc2ae0f5 1643static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1644{
7a4e344c 1645 const char *pri = pool->attrs->nice < 0 ? "H" : "";
c34056a3 1646 struct worker *worker = NULL;
f3421797 1647 int id = -1;
c34056a3 1648
cd549687
TH
1649 lockdep_assert_held(&pool->manager_mutex);
1650
822d8405
TH
1651 /*
1652 * ID is needed to determine kthread name. Allocate ID first
1653 * without installing the pointer.
1654 */
1655 idr_preload(GFP_KERNEL);
d565ed63 1656 spin_lock_irq(&pool->lock);
822d8405
TH
1657
1658 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1659
d565ed63 1660 spin_unlock_irq(&pool->lock);
822d8405
TH
1661 idr_preload_end();
1662 if (id < 0)
1663 goto fail;
c34056a3
TH
1664
1665 worker = alloc_worker();
1666 if (!worker)
1667 goto fail;
1668
bd7bdd43 1669 worker->pool = pool;
c34056a3
TH
1670 worker->id = id;
1671
29c91e99 1672 if (pool->cpu >= 0)
94dcf29a 1673 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1674 worker, cpu_to_node(pool->cpu),
d84ff051 1675 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1676 else
1677 worker->task = kthread_create(worker_thread, worker,
ac6104cd
TH
1678 "kworker/u%d:%d%s",
1679 pool->id, id, pri);
c34056a3
TH
1680 if (IS_ERR(worker->task))
1681 goto fail;
1682
c5aa87bb
TH
1683 /*
1684 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1685 * online CPUs. It'll be re-applied when any of the CPUs come up.
1686 */
7a4e344c
TH
1687 set_user_nice(worker->task, pool->attrs->nice);
1688 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1689
14a40ffc
TH
1690 /* prevent userland from meddling with cpumask of workqueue workers */
1691 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1692
1693 /*
1694 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1695 * remains stable across this function. See the comments above the
1696 * flag definition for details.
1697 */
1698 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1699 worker->flags |= WORKER_UNBOUND;
c34056a3 1700
822d8405
TH
1701 /* successful, commit the pointer to idr */
1702 spin_lock_irq(&pool->lock);
1703 idr_replace(&pool->worker_idr, worker, worker->id);
1704 spin_unlock_irq(&pool->lock);
1705
c34056a3 1706 return worker;
822d8405 1707
c34056a3
TH
1708fail:
1709 if (id >= 0) {
d565ed63 1710 spin_lock_irq(&pool->lock);
822d8405 1711 idr_remove(&pool->worker_idr, id);
d565ed63 1712 spin_unlock_irq(&pool->lock);
c34056a3
TH
1713 }
1714 kfree(worker);
1715 return NULL;
1716}
1717
1718/**
1719 * start_worker - start a newly created worker
1720 * @worker: worker to start
1721 *
706026c2 1722 * Make the pool aware of @worker and start it.
c34056a3
TH
1723 *
1724 * CONTEXT:
d565ed63 1725 * spin_lock_irq(pool->lock).
c34056a3
TH
1726 */
1727static void start_worker(struct worker *worker)
1728{
cb444766 1729 worker->flags |= WORKER_STARTED;
bd7bdd43 1730 worker->pool->nr_workers++;
c8e55f36 1731 worker_enter_idle(worker);
c34056a3
TH
1732 wake_up_process(worker->task);
1733}
1734
ebf44d16
TH
1735/**
1736 * create_and_start_worker - create and start a worker for a pool
1737 * @pool: the target pool
1738 *
cd549687 1739 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1740 */
1741static int create_and_start_worker(struct worker_pool *pool)
1742{
1743 struct worker *worker;
1744
cd549687
TH
1745 mutex_lock(&pool->manager_mutex);
1746
ebf44d16
TH
1747 worker = create_worker(pool);
1748 if (worker) {
1749 spin_lock_irq(&pool->lock);
1750 start_worker(worker);
1751 spin_unlock_irq(&pool->lock);
1752 }
1753
cd549687
TH
1754 mutex_unlock(&pool->manager_mutex);
1755
ebf44d16
TH
1756 return worker ? 0 : -ENOMEM;
1757}
1758
c34056a3
TH
1759/**
1760 * destroy_worker - destroy a workqueue worker
1761 * @worker: worker to be destroyed
1762 *
706026c2 1763 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1764 *
1765 * CONTEXT:
d565ed63 1766 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1767 */
1768static void destroy_worker(struct worker *worker)
1769{
bd7bdd43 1770 struct worker_pool *pool = worker->pool;
c34056a3 1771
cd549687
TH
1772 lockdep_assert_held(&pool->manager_mutex);
1773 lockdep_assert_held(&pool->lock);
1774
c34056a3 1775 /* sanity check frenzy */
6183c009
TH
1776 if (WARN_ON(worker->current_work) ||
1777 WARN_ON(!list_empty(&worker->scheduled)))
1778 return;
c34056a3 1779
c8e55f36 1780 if (worker->flags & WORKER_STARTED)
bd7bdd43 1781 pool->nr_workers--;
c8e55f36 1782 if (worker->flags & WORKER_IDLE)
bd7bdd43 1783 pool->nr_idle--;
c8e55f36
TH
1784
1785 list_del_init(&worker->entry);
cb444766 1786 worker->flags |= WORKER_DIE;
c8e55f36 1787
822d8405
TH
1788 idr_remove(&pool->worker_idr, worker->id);
1789
d565ed63 1790 spin_unlock_irq(&pool->lock);
c8e55f36 1791
c34056a3
TH
1792 kthread_stop(worker->task);
1793 kfree(worker);
1794
d565ed63 1795 spin_lock_irq(&pool->lock);
c34056a3
TH
1796}
1797
63d95a91 1798static void idle_worker_timeout(unsigned long __pool)
e22bee78 1799{
63d95a91 1800 struct worker_pool *pool = (void *)__pool;
e22bee78 1801
d565ed63 1802 spin_lock_irq(&pool->lock);
e22bee78 1803
63d95a91 1804 if (too_many_workers(pool)) {
e22bee78
TH
1805 struct worker *worker;
1806 unsigned long expires;
1807
1808 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1809 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1810 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1811
1812 if (time_before(jiffies, expires))
63d95a91 1813 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1814 else {
1815 /* it's been idle for too long, wake up manager */
11ebea50 1816 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1817 wake_up_worker(pool);
d5abe669 1818 }
e22bee78
TH
1819 }
1820
d565ed63 1821 spin_unlock_irq(&pool->lock);
e22bee78 1822}
d5abe669 1823
493a1724 1824static void send_mayday(struct work_struct *work)
e22bee78 1825{
112202d9
TH
1826 struct pool_workqueue *pwq = get_work_pwq(work);
1827 struct workqueue_struct *wq = pwq->wq;
493a1724 1828
2e109a28 1829 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1830
493008a8 1831 if (!wq->rescuer)
493a1724 1832 return;
e22bee78
TH
1833
1834 /* mayday mayday mayday */
493a1724
TH
1835 if (list_empty(&pwq->mayday_node)) {
1836 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1837 wake_up_process(wq->rescuer->task);
493a1724 1838 }
e22bee78
TH
1839}
1840
706026c2 1841static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1842{
63d95a91 1843 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1844 struct work_struct *work;
1845
2e109a28 1846 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1847 spin_lock(&pool->lock);
e22bee78 1848
63d95a91 1849 if (need_to_create_worker(pool)) {
e22bee78
TH
1850 /*
1851 * We've been trying to create a new worker but
1852 * haven't been successful. We might be hitting an
1853 * allocation deadlock. Send distress signals to
1854 * rescuers.
1855 */
63d95a91 1856 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1857 send_mayday(work);
1da177e4 1858 }
e22bee78 1859
493a1724 1860 spin_unlock(&pool->lock);
2e109a28 1861 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1862
63d95a91 1863 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1864}
1865
e22bee78
TH
1866/**
1867 * maybe_create_worker - create a new worker if necessary
63d95a91 1868 * @pool: pool to create a new worker for
e22bee78 1869 *
63d95a91 1870 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1871 * have at least one idle worker on return from this function. If
1872 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1873 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1874 * possible allocation deadlock.
1875 *
c5aa87bb
TH
1876 * On return, need_to_create_worker() is guaranteed to be %false and
1877 * may_start_working() %true.
e22bee78
TH
1878 *
1879 * LOCKING:
d565ed63 1880 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1881 * multiple times. Does GFP_KERNEL allocations. Called only from
1882 * manager.
1883 *
1884 * RETURNS:
c5aa87bb 1885 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1886 * otherwise.
1887 */
63d95a91 1888static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1889__releases(&pool->lock)
1890__acquires(&pool->lock)
1da177e4 1891{
63d95a91 1892 if (!need_to_create_worker(pool))
e22bee78
TH
1893 return false;
1894restart:
d565ed63 1895 spin_unlock_irq(&pool->lock);
9f9c2364 1896
e22bee78 1897 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1898 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1899
1900 while (true) {
1901 struct worker *worker;
1902
bc2ae0f5 1903 worker = create_worker(pool);
e22bee78 1904 if (worker) {
63d95a91 1905 del_timer_sync(&pool->mayday_timer);
d565ed63 1906 spin_lock_irq(&pool->lock);
e22bee78 1907 start_worker(worker);
6183c009
TH
1908 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1909 goto restart;
e22bee78
TH
1910 return true;
1911 }
1912
63d95a91 1913 if (!need_to_create_worker(pool))
e22bee78 1914 break;
1da177e4 1915
e22bee78
TH
1916 __set_current_state(TASK_INTERRUPTIBLE);
1917 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1918
63d95a91 1919 if (!need_to_create_worker(pool))
e22bee78
TH
1920 break;
1921 }
1922
63d95a91 1923 del_timer_sync(&pool->mayday_timer);
d565ed63 1924 spin_lock_irq(&pool->lock);
63d95a91 1925 if (need_to_create_worker(pool))
e22bee78
TH
1926 goto restart;
1927 return true;
1928}
1929
1930/**
1931 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1932 * @pool: pool to destroy workers for
e22bee78 1933 *
63d95a91 1934 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1935 * IDLE_WORKER_TIMEOUT.
1936 *
1937 * LOCKING:
d565ed63 1938 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1939 * multiple times. Called only from manager.
1940 *
1941 * RETURNS:
c5aa87bb 1942 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1943 * otherwise.
1944 */
63d95a91 1945static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1946{
1947 bool ret = false;
1da177e4 1948
63d95a91 1949 while (too_many_workers(pool)) {
e22bee78
TH
1950 struct worker *worker;
1951 unsigned long expires;
3af24433 1952
63d95a91 1953 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1954 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1955
e22bee78 1956 if (time_before(jiffies, expires)) {
63d95a91 1957 mod_timer(&pool->idle_timer, expires);
3af24433 1958 break;
e22bee78 1959 }
1da177e4 1960
e22bee78
TH
1961 destroy_worker(worker);
1962 ret = true;
1da177e4 1963 }
1e19ffc6 1964
e22bee78 1965 return ret;
1e19ffc6
TH
1966}
1967
73f53c4a 1968/**
e22bee78
TH
1969 * manage_workers - manage worker pool
1970 * @worker: self
73f53c4a 1971 *
706026c2 1972 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1973 * to. At any given time, there can be only zero or one manager per
706026c2 1974 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1975 *
1976 * The caller can safely start processing works on false return. On
1977 * true return, it's guaranteed that need_to_create_worker() is false
1978 * and may_start_working() is true.
73f53c4a
TH
1979 *
1980 * CONTEXT:
d565ed63 1981 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1982 * multiple times. Does GFP_KERNEL allocations.
1983 *
1984 * RETURNS:
d565ed63
TH
1985 * spin_lock_irq(pool->lock) which may be released and regrabbed
1986 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 1987 */
e22bee78 1988static bool manage_workers(struct worker *worker)
73f53c4a 1989{
63d95a91 1990 struct worker_pool *pool = worker->pool;
e22bee78 1991 bool ret = false;
73f53c4a 1992
bc3a1afc
TH
1993 /*
1994 * Managership is governed by two mutexes - manager_arb and
1995 * manager_mutex. manager_arb handles arbitration of manager role.
1996 * Anyone who successfully grabs manager_arb wins the arbitration
1997 * and becomes the manager. mutex_trylock() on pool->manager_arb
1998 * failure while holding pool->lock reliably indicates that someone
1999 * else is managing the pool and the worker which failed trylock
2000 * can proceed to executing work items. This means that anyone
2001 * grabbing manager_arb is responsible for actually performing
2002 * manager duties. If manager_arb is grabbed and released without
2003 * actual management, the pool may stall indefinitely.
2004 *
2005 * manager_mutex is used for exclusion of actual management
2006 * operations. The holder of manager_mutex can be sure that none
2007 * of management operations, including creation and destruction of
2008 * workers, won't take place until the mutex is released. Because
2009 * manager_mutex doesn't interfere with manager role arbitration,
2010 * it is guaranteed that the pool's management, while may be
2011 * delayed, won't be disturbed by someone else grabbing
2012 * manager_mutex.
2013 */
34a06bd6 2014 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2015 return ret;
1e19ffc6 2016
ee378aa4 2017 /*
bc3a1afc
TH
2018 * With manager arbitration won, manager_mutex would be free in
2019 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2020 */
bc3a1afc 2021 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2022 spin_unlock_irq(&pool->lock);
bc3a1afc 2023 mutex_lock(&pool->manager_mutex);
ee378aa4
LJ
2024 ret = true;
2025 }
73f53c4a 2026
11ebea50 2027 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2028
2029 /*
e22bee78
TH
2030 * Destroy and then create so that may_start_working() is true
2031 * on return.
73f53c4a 2032 */
63d95a91
TH
2033 ret |= maybe_destroy_workers(pool);
2034 ret |= maybe_create_worker(pool);
e22bee78 2035
bc3a1afc 2036 mutex_unlock(&pool->manager_mutex);
34a06bd6 2037 mutex_unlock(&pool->manager_arb);
e22bee78 2038 return ret;
73f53c4a
TH
2039}
2040
a62428c0
TH
2041/**
2042 * process_one_work - process single work
c34056a3 2043 * @worker: self
a62428c0
TH
2044 * @work: work to process
2045 *
2046 * Process @work. This function contains all the logics necessary to
2047 * process a single work including synchronization against and
2048 * interaction with other workers on the same cpu, queueing and
2049 * flushing. As long as context requirement is met, any worker can
2050 * call this function to process a work.
2051 *
2052 * CONTEXT:
d565ed63 2053 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2054 */
c34056a3 2055static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2056__releases(&pool->lock)
2057__acquires(&pool->lock)
a62428c0 2058{
112202d9 2059 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2060 struct worker_pool *pool = worker->pool;
112202d9 2061 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2062 int work_color;
7e11629d 2063 struct worker *collision;
a62428c0
TH
2064#ifdef CONFIG_LOCKDEP
2065 /*
2066 * It is permissible to free the struct work_struct from
2067 * inside the function that is called from it, this we need to
2068 * take into account for lockdep too. To avoid bogus "held
2069 * lock freed" warnings as well as problems when looking into
2070 * work->lockdep_map, make a copy and use that here.
2071 */
4d82a1de
PZ
2072 struct lockdep_map lockdep_map;
2073
2074 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2075#endif
6fec10a1
TH
2076 /*
2077 * Ensure we're on the correct CPU. DISASSOCIATED test is
2078 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2079 * unbound or a disassociated pool.
6fec10a1 2080 */
5f7dabfd 2081 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2082 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2083 raw_smp_processor_id() != pool->cpu);
25511a47 2084
7e11629d
TH
2085 /*
2086 * A single work shouldn't be executed concurrently by
2087 * multiple workers on a single cpu. Check whether anyone is
2088 * already processing the work. If so, defer the work to the
2089 * currently executing one.
2090 */
c9e7cf27 2091 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2092 if (unlikely(collision)) {
2093 move_linked_works(work, &collision->scheduled, NULL);
2094 return;
2095 }
2096
8930caba 2097 /* claim and dequeue */
a62428c0 2098 debug_work_deactivate(work);
c9e7cf27 2099 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2100 worker->current_work = work;
a2c1c57b 2101 worker->current_func = work->func;
112202d9 2102 worker->current_pwq = pwq;
73f53c4a 2103 work_color = get_work_color(work);
7a22ad75 2104
a62428c0
TH
2105 list_del_init(&work->entry);
2106
fb0e7beb
TH
2107 /*
2108 * CPU intensive works don't participate in concurrency
2109 * management. They're the scheduler's responsibility.
2110 */
2111 if (unlikely(cpu_intensive))
2112 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2113
974271c4 2114 /*
d565ed63 2115 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2116 * executed ASAP. Wake up another worker if necessary.
2117 */
63d95a91
TH
2118 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2119 wake_up_worker(pool);
974271c4 2120
8930caba 2121 /*
7c3eed5c 2122 * Record the last pool and clear PENDING which should be the last
d565ed63 2123 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2124 * PENDING and queued state changes happen together while IRQ is
2125 * disabled.
8930caba 2126 */
7c3eed5c 2127 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2128
d565ed63 2129 spin_unlock_irq(&pool->lock);
a62428c0 2130
112202d9 2131 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2132 lock_map_acquire(&lockdep_map);
e36c886a 2133 trace_workqueue_execute_start(work);
a2c1c57b 2134 worker->current_func(work);
e36c886a
AV
2135 /*
2136 * While we must be careful to not use "work" after this, the trace
2137 * point will only record its address.
2138 */
2139 trace_workqueue_execute_end(work);
a62428c0 2140 lock_map_release(&lockdep_map);
112202d9 2141 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2142
2143 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2144 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2145 " last function: %pf\n",
a2c1c57b
TH
2146 current->comm, preempt_count(), task_pid_nr(current),
2147 worker->current_func);
a62428c0
TH
2148 debug_show_held_locks(current);
2149 dump_stack();
2150 }
2151
d565ed63 2152 spin_lock_irq(&pool->lock);
a62428c0 2153
fb0e7beb
TH
2154 /* clear cpu intensive status */
2155 if (unlikely(cpu_intensive))
2156 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2157
a62428c0 2158 /* we're done with it, release */
42f8570f 2159 hash_del(&worker->hentry);
c34056a3 2160 worker->current_work = NULL;
a2c1c57b 2161 worker->current_func = NULL;
112202d9
TH
2162 worker->current_pwq = NULL;
2163 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2164}
2165
affee4b2
TH
2166/**
2167 * process_scheduled_works - process scheduled works
2168 * @worker: self
2169 *
2170 * Process all scheduled works. Please note that the scheduled list
2171 * may change while processing a work, so this function repeatedly
2172 * fetches a work from the top and executes it.
2173 *
2174 * CONTEXT:
d565ed63 2175 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2176 * multiple times.
2177 */
2178static void process_scheduled_works(struct worker *worker)
1da177e4 2179{
affee4b2
TH
2180 while (!list_empty(&worker->scheduled)) {
2181 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2182 struct work_struct, entry);
c34056a3 2183 process_one_work(worker, work);
1da177e4 2184 }
1da177e4
LT
2185}
2186
4690c4ab
TH
2187/**
2188 * worker_thread - the worker thread function
c34056a3 2189 * @__worker: self
4690c4ab 2190 *
c5aa87bb
TH
2191 * The worker thread function. All workers belong to a worker_pool -
2192 * either a per-cpu one or dynamic unbound one. These workers process all
2193 * work items regardless of their specific target workqueue. The only
2194 * exception is work items which belong to workqueues with a rescuer which
2195 * will be explained in rescuer_thread().
4690c4ab 2196 */
c34056a3 2197static int worker_thread(void *__worker)
1da177e4 2198{
c34056a3 2199 struct worker *worker = __worker;
bd7bdd43 2200 struct worker_pool *pool = worker->pool;
1da177e4 2201
e22bee78
TH
2202 /* tell the scheduler that this is a workqueue worker */
2203 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2204woke_up:
d565ed63 2205 spin_lock_irq(&pool->lock);
1da177e4 2206
a9ab775b
TH
2207 /* am I supposed to die? */
2208 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2209 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2210 WARN_ON_ONCE(!list_empty(&worker->entry));
2211 worker->task->flags &= ~PF_WQ_WORKER;
2212 return 0;
c8e55f36 2213 }
affee4b2 2214
c8e55f36 2215 worker_leave_idle(worker);
db7bccf4 2216recheck:
e22bee78 2217 /* no more worker necessary? */
63d95a91 2218 if (!need_more_worker(pool))
e22bee78
TH
2219 goto sleep;
2220
2221 /* do we need to manage? */
63d95a91 2222 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2223 goto recheck;
2224
c8e55f36
TH
2225 /*
2226 * ->scheduled list can only be filled while a worker is
2227 * preparing to process a work or actually processing it.
2228 * Make sure nobody diddled with it while I was sleeping.
2229 */
6183c009 2230 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2231
e22bee78 2232 /*
a9ab775b
TH
2233 * Finish PREP stage. We're guaranteed to have at least one idle
2234 * worker or that someone else has already assumed the manager
2235 * role. This is where @worker starts participating in concurrency
2236 * management if applicable and concurrency management is restored
2237 * after being rebound. See rebind_workers() for details.
e22bee78 2238 */
a9ab775b 2239 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2240
2241 do {
c8e55f36 2242 struct work_struct *work =
bd7bdd43 2243 list_first_entry(&pool->worklist,
c8e55f36
TH
2244 struct work_struct, entry);
2245
2246 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2247 /* optimization path, not strictly necessary */
2248 process_one_work(worker, work);
2249 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2250 process_scheduled_works(worker);
c8e55f36
TH
2251 } else {
2252 move_linked_works(work, &worker->scheduled, NULL);
2253 process_scheduled_works(worker);
affee4b2 2254 }
63d95a91 2255 } while (keep_working(pool));
e22bee78
TH
2256
2257 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2258sleep:
63d95a91 2259 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2260 goto recheck;
d313dd85 2261
c8e55f36 2262 /*
d565ed63
TH
2263 * pool->lock is held and there's no work to process and no need to
2264 * manage, sleep. Workers are woken up only while holding
2265 * pool->lock or from local cpu, so setting the current state
2266 * before releasing pool->lock is enough to prevent losing any
2267 * event.
c8e55f36
TH
2268 */
2269 worker_enter_idle(worker);
2270 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2271 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2272 schedule();
2273 goto woke_up;
1da177e4
LT
2274}
2275
e22bee78
TH
2276/**
2277 * rescuer_thread - the rescuer thread function
111c225a 2278 * @__rescuer: self
e22bee78
TH
2279 *
2280 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2281 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2282 *
706026c2 2283 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2284 * worker which uses GFP_KERNEL allocation which has slight chance of
2285 * developing into deadlock if some works currently on the same queue
2286 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2287 * the problem rescuer solves.
2288 *
706026c2
TH
2289 * When such condition is possible, the pool summons rescuers of all
2290 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2291 * those works so that forward progress can be guaranteed.
2292 *
2293 * This should happen rarely.
2294 */
111c225a 2295static int rescuer_thread(void *__rescuer)
e22bee78 2296{
111c225a
TH
2297 struct worker *rescuer = __rescuer;
2298 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2299 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2300
2301 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2302
2303 /*
2304 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2305 * doesn't participate in concurrency management.
2306 */
2307 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2308repeat:
2309 set_current_state(TASK_INTERRUPTIBLE);
2310
412d32e6
MG
2311 if (kthread_should_stop()) {
2312 __set_current_state(TASK_RUNNING);
111c225a 2313 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2314 return 0;
412d32e6 2315 }
e22bee78 2316
493a1724 2317 /* see whether any pwq is asking for help */
2e109a28 2318 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2319
2320 while (!list_empty(&wq->maydays)) {
2321 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2322 struct pool_workqueue, mayday_node);
112202d9 2323 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2324 struct work_struct *work, *n;
2325
2326 __set_current_state(TASK_RUNNING);
493a1724
TH
2327 list_del_init(&pwq->mayday_node);
2328
2e109a28 2329 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2330
2331 /* migrate to the target cpu if possible */
f36dc67b 2332 worker_maybe_bind_and_lock(pool);
b3104104 2333 rescuer->pool = pool;
e22bee78
TH
2334
2335 /*
2336 * Slurp in all works issued via this workqueue and
2337 * process'em.
2338 */
6183c009 2339 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2340 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2341 if (get_work_pwq(work) == pwq)
e22bee78
TH
2342 move_linked_works(work, scheduled, &n);
2343
2344 process_scheduled_works(rescuer);
7576958a
TH
2345
2346 /*
d565ed63 2347 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2348 * regular worker; otherwise, we end up with 0 concurrency
2349 * and stalling the execution.
2350 */
63d95a91
TH
2351 if (keep_working(pool))
2352 wake_up_worker(pool);
7576958a 2353
b3104104 2354 rescuer->pool = NULL;
493a1724 2355 spin_unlock(&pool->lock);
2e109a28 2356 spin_lock(&wq_mayday_lock);
e22bee78
TH
2357 }
2358
2e109a28 2359 spin_unlock_irq(&wq_mayday_lock);
493a1724 2360
111c225a
TH
2361 /* rescuers should never participate in concurrency management */
2362 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2363 schedule();
2364 goto repeat;
1da177e4
LT
2365}
2366
fc2e4d70
ON
2367struct wq_barrier {
2368 struct work_struct work;
2369 struct completion done;
2370};
2371
2372static void wq_barrier_func(struct work_struct *work)
2373{
2374 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2375 complete(&barr->done);
2376}
2377
4690c4ab
TH
2378/**
2379 * insert_wq_barrier - insert a barrier work
112202d9 2380 * @pwq: pwq to insert barrier into
4690c4ab 2381 * @barr: wq_barrier to insert
affee4b2
TH
2382 * @target: target work to attach @barr to
2383 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2384 *
affee4b2
TH
2385 * @barr is linked to @target such that @barr is completed only after
2386 * @target finishes execution. Please note that the ordering
2387 * guarantee is observed only with respect to @target and on the local
2388 * cpu.
2389 *
2390 * Currently, a queued barrier can't be canceled. This is because
2391 * try_to_grab_pending() can't determine whether the work to be
2392 * grabbed is at the head of the queue and thus can't clear LINKED
2393 * flag of the previous work while there must be a valid next work
2394 * after a work with LINKED flag set.
2395 *
2396 * Note that when @worker is non-NULL, @target may be modified
112202d9 2397 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2398 *
2399 * CONTEXT:
d565ed63 2400 * spin_lock_irq(pool->lock).
4690c4ab 2401 */
112202d9 2402static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2403 struct wq_barrier *barr,
2404 struct work_struct *target, struct worker *worker)
fc2e4d70 2405{
affee4b2
TH
2406 struct list_head *head;
2407 unsigned int linked = 0;
2408
dc186ad7 2409 /*
d565ed63 2410 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2411 * as we know for sure that this will not trigger any of the
2412 * checks and call back into the fixup functions where we
2413 * might deadlock.
2414 */
ca1cab37 2415 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2416 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2417 init_completion(&barr->done);
83c22520 2418
affee4b2
TH
2419 /*
2420 * If @target is currently being executed, schedule the
2421 * barrier to the worker; otherwise, put it after @target.
2422 */
2423 if (worker)
2424 head = worker->scheduled.next;
2425 else {
2426 unsigned long *bits = work_data_bits(target);
2427
2428 head = target->entry.next;
2429 /* there can already be other linked works, inherit and set */
2430 linked = *bits & WORK_STRUCT_LINKED;
2431 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2432 }
2433
dc186ad7 2434 debug_work_activate(&barr->work);
112202d9 2435 insert_work(pwq, &barr->work, head,
affee4b2 2436 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2437}
2438
73f53c4a 2439/**
112202d9 2440 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2441 * @wq: workqueue being flushed
2442 * @flush_color: new flush color, < 0 for no-op
2443 * @work_color: new work color, < 0 for no-op
2444 *
112202d9 2445 * Prepare pwqs for workqueue flushing.
73f53c4a 2446 *
112202d9
TH
2447 * If @flush_color is non-negative, flush_color on all pwqs should be
2448 * -1. If no pwq has in-flight commands at the specified color, all
2449 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2450 * has in flight commands, its pwq->flush_color is set to
2451 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2452 * wakeup logic is armed and %true is returned.
2453 *
2454 * The caller should have initialized @wq->first_flusher prior to
2455 * calling this function with non-negative @flush_color. If
2456 * @flush_color is negative, no flush color update is done and %false
2457 * is returned.
2458 *
112202d9 2459 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2460 * work_color which is previous to @work_color and all will be
2461 * advanced to @work_color.
2462 *
2463 * CONTEXT:
3c25a55d 2464 * mutex_lock(wq->mutex).
73f53c4a
TH
2465 *
2466 * RETURNS:
2467 * %true if @flush_color >= 0 and there's something to flush. %false
2468 * otherwise.
2469 */
112202d9 2470static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2471 int flush_color, int work_color)
1da177e4 2472{
73f53c4a 2473 bool wait = false;
49e3cf44 2474 struct pool_workqueue *pwq;
1da177e4 2475
73f53c4a 2476 if (flush_color >= 0) {
6183c009 2477 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2478 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2479 }
2355b70f 2480
49e3cf44 2481 for_each_pwq(pwq, wq) {
112202d9 2482 struct worker_pool *pool = pwq->pool;
fc2e4d70 2483
b09f4fd3 2484 spin_lock_irq(&pool->lock);
83c22520 2485
73f53c4a 2486 if (flush_color >= 0) {
6183c009 2487 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2488
112202d9
TH
2489 if (pwq->nr_in_flight[flush_color]) {
2490 pwq->flush_color = flush_color;
2491 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2492 wait = true;
2493 }
2494 }
1da177e4 2495
73f53c4a 2496 if (work_color >= 0) {
6183c009 2497 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2498 pwq->work_color = work_color;
73f53c4a 2499 }
1da177e4 2500
b09f4fd3 2501 spin_unlock_irq(&pool->lock);
1da177e4 2502 }
2355b70f 2503
112202d9 2504 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2505 complete(&wq->first_flusher->done);
14441960 2506
73f53c4a 2507 return wait;
1da177e4
LT
2508}
2509
0fcb78c2 2510/**
1da177e4 2511 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2512 * @wq: workqueue to flush
1da177e4 2513 *
c5aa87bb
TH
2514 * This function sleeps until all work items which were queued on entry
2515 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2516 */
7ad5b3a5 2517void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2518{
73f53c4a
TH
2519 struct wq_flusher this_flusher = {
2520 .list = LIST_HEAD_INIT(this_flusher.list),
2521 .flush_color = -1,
2522 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2523 };
2524 int next_color;
1da177e4 2525
3295f0ef
IM
2526 lock_map_acquire(&wq->lockdep_map);
2527 lock_map_release(&wq->lockdep_map);
73f53c4a 2528
3c25a55d 2529 mutex_lock(&wq->mutex);
73f53c4a
TH
2530
2531 /*
2532 * Start-to-wait phase
2533 */
2534 next_color = work_next_color(wq->work_color);
2535
2536 if (next_color != wq->flush_color) {
2537 /*
2538 * Color space is not full. The current work_color
2539 * becomes our flush_color and work_color is advanced
2540 * by one.
2541 */
6183c009 2542 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2543 this_flusher.flush_color = wq->work_color;
2544 wq->work_color = next_color;
2545
2546 if (!wq->first_flusher) {
2547 /* no flush in progress, become the first flusher */
6183c009 2548 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2549
2550 wq->first_flusher = &this_flusher;
2551
112202d9 2552 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2553 wq->work_color)) {
2554 /* nothing to flush, done */
2555 wq->flush_color = next_color;
2556 wq->first_flusher = NULL;
2557 goto out_unlock;
2558 }
2559 } else {
2560 /* wait in queue */
6183c009 2561 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2562 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2563 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2564 }
2565 } else {
2566 /*
2567 * Oops, color space is full, wait on overflow queue.
2568 * The next flush completion will assign us
2569 * flush_color and transfer to flusher_queue.
2570 */
2571 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2572 }
2573
3c25a55d 2574 mutex_unlock(&wq->mutex);
73f53c4a
TH
2575
2576 wait_for_completion(&this_flusher.done);
2577
2578 /*
2579 * Wake-up-and-cascade phase
2580 *
2581 * First flushers are responsible for cascading flushes and
2582 * handling overflow. Non-first flushers can simply return.
2583 */
2584 if (wq->first_flusher != &this_flusher)
2585 return;
2586
3c25a55d 2587 mutex_lock(&wq->mutex);
73f53c4a 2588
4ce48b37
TH
2589 /* we might have raced, check again with mutex held */
2590 if (wq->first_flusher != &this_flusher)
2591 goto out_unlock;
2592
73f53c4a
TH
2593 wq->first_flusher = NULL;
2594
6183c009
TH
2595 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2596 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2597
2598 while (true) {
2599 struct wq_flusher *next, *tmp;
2600
2601 /* complete all the flushers sharing the current flush color */
2602 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2603 if (next->flush_color != wq->flush_color)
2604 break;
2605 list_del_init(&next->list);
2606 complete(&next->done);
2607 }
2608
6183c009
TH
2609 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2610 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2611
2612 /* this flush_color is finished, advance by one */
2613 wq->flush_color = work_next_color(wq->flush_color);
2614
2615 /* one color has been freed, handle overflow queue */
2616 if (!list_empty(&wq->flusher_overflow)) {
2617 /*
2618 * Assign the same color to all overflowed
2619 * flushers, advance work_color and append to
2620 * flusher_queue. This is the start-to-wait
2621 * phase for these overflowed flushers.
2622 */
2623 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2624 tmp->flush_color = wq->work_color;
2625
2626 wq->work_color = work_next_color(wq->work_color);
2627
2628 list_splice_tail_init(&wq->flusher_overflow,
2629 &wq->flusher_queue);
112202d9 2630 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2631 }
2632
2633 if (list_empty(&wq->flusher_queue)) {
6183c009 2634 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2635 break;
2636 }
2637
2638 /*
2639 * Need to flush more colors. Make the next flusher
112202d9 2640 * the new first flusher and arm pwqs.
73f53c4a 2641 */
6183c009
TH
2642 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2643 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2644
2645 list_del_init(&next->list);
2646 wq->first_flusher = next;
2647
112202d9 2648 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2649 break;
2650
2651 /*
2652 * Meh... this color is already done, clear first
2653 * flusher and repeat cascading.
2654 */
2655 wq->first_flusher = NULL;
2656 }
2657
2658out_unlock:
3c25a55d 2659 mutex_unlock(&wq->mutex);
1da177e4 2660}
ae90dd5d 2661EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2662
9c5a2ba7
TH
2663/**
2664 * drain_workqueue - drain a workqueue
2665 * @wq: workqueue to drain
2666 *
2667 * Wait until the workqueue becomes empty. While draining is in progress,
2668 * only chain queueing is allowed. IOW, only currently pending or running
2669 * work items on @wq can queue further work items on it. @wq is flushed
2670 * repeatedly until it becomes empty. The number of flushing is detemined
2671 * by the depth of chaining and should be relatively short. Whine if it
2672 * takes too long.
2673 */
2674void drain_workqueue(struct workqueue_struct *wq)
2675{
2676 unsigned int flush_cnt = 0;
49e3cf44 2677 struct pool_workqueue *pwq;
9c5a2ba7
TH
2678
2679 /*
2680 * __queue_work() needs to test whether there are drainers, is much
2681 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2682 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2683 */
87fc741e 2684 mutex_lock(&wq->mutex);
9c5a2ba7 2685 if (!wq->nr_drainers++)
618b01eb 2686 wq->flags |= __WQ_DRAINING;
87fc741e 2687 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2688reflush:
2689 flush_workqueue(wq);
2690
b09f4fd3 2691 mutex_lock(&wq->mutex);
76af4d93 2692
49e3cf44 2693 for_each_pwq(pwq, wq) {
fa2563e4 2694 bool drained;
9c5a2ba7 2695
b09f4fd3 2696 spin_lock_irq(&pwq->pool->lock);
112202d9 2697 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2698 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2699
2700 if (drained)
9c5a2ba7
TH
2701 continue;
2702
2703 if (++flush_cnt == 10 ||
2704 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2705 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2706 wq->name, flush_cnt);
76af4d93 2707
b09f4fd3 2708 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2709 goto reflush;
2710 }
2711
9c5a2ba7 2712 if (!--wq->nr_drainers)
618b01eb 2713 wq->flags &= ~__WQ_DRAINING;
87fc741e 2714 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2715}
2716EXPORT_SYMBOL_GPL(drain_workqueue);
2717
606a5020 2718static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2719{
affee4b2 2720 struct worker *worker = NULL;
c9e7cf27 2721 struct worker_pool *pool;
112202d9 2722 struct pool_workqueue *pwq;
db700897
ON
2723
2724 might_sleep();
fa1b54e6
TH
2725
2726 local_irq_disable();
c9e7cf27 2727 pool = get_work_pool(work);
fa1b54e6
TH
2728 if (!pool) {
2729 local_irq_enable();
baf59022 2730 return false;
fa1b54e6 2731 }
db700897 2732
fa1b54e6 2733 spin_lock(&pool->lock);
0b3dae68 2734 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2735 pwq = get_work_pwq(work);
2736 if (pwq) {
2737 if (unlikely(pwq->pool != pool))
4690c4ab 2738 goto already_gone;
606a5020 2739 } else {
c9e7cf27 2740 worker = find_worker_executing_work(pool, work);
affee4b2 2741 if (!worker)
4690c4ab 2742 goto already_gone;
112202d9 2743 pwq = worker->current_pwq;
606a5020 2744 }
db700897 2745
112202d9 2746 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2747 spin_unlock_irq(&pool->lock);
7a22ad75 2748
e159489b
TH
2749 /*
2750 * If @max_active is 1 or rescuer is in use, flushing another work
2751 * item on the same workqueue may lead to deadlock. Make sure the
2752 * flusher is not running on the same workqueue by verifying write
2753 * access.
2754 */
493008a8 2755 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2756 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2757 else
112202d9
TH
2758 lock_map_acquire_read(&pwq->wq->lockdep_map);
2759 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2760
401a8d04 2761 return true;
4690c4ab 2762already_gone:
d565ed63 2763 spin_unlock_irq(&pool->lock);
401a8d04 2764 return false;
db700897 2765}
baf59022
TH
2766
2767/**
2768 * flush_work - wait for a work to finish executing the last queueing instance
2769 * @work: the work to flush
2770 *
606a5020
TH
2771 * Wait until @work has finished execution. @work is guaranteed to be idle
2772 * on return if it hasn't been requeued since flush started.
baf59022
TH
2773 *
2774 * RETURNS:
2775 * %true if flush_work() waited for the work to finish execution,
2776 * %false if it was already idle.
2777 */
2778bool flush_work(struct work_struct *work)
2779{
2780 struct wq_barrier barr;
2781
0976dfc1
SB
2782 lock_map_acquire(&work->lockdep_map);
2783 lock_map_release(&work->lockdep_map);
2784
606a5020 2785 if (start_flush_work(work, &barr)) {
401a8d04
TH
2786 wait_for_completion(&barr.done);
2787 destroy_work_on_stack(&barr.work);
2788 return true;
606a5020 2789 } else {
401a8d04 2790 return false;
6e84d644 2791 }
6e84d644 2792}
606a5020 2793EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2794
36e227d2 2795static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2796{
bbb68dfa 2797 unsigned long flags;
1f1f642e
ON
2798 int ret;
2799
2800 do {
bbb68dfa
TH
2801 ret = try_to_grab_pending(work, is_dwork, &flags);
2802 /*
2803 * If someone else is canceling, wait for the same event it
2804 * would be waiting for before retrying.
2805 */
2806 if (unlikely(ret == -ENOENT))
606a5020 2807 flush_work(work);
1f1f642e
ON
2808 } while (unlikely(ret < 0));
2809
bbb68dfa
TH
2810 /* tell other tasks trying to grab @work to back off */
2811 mark_work_canceling(work);
2812 local_irq_restore(flags);
2813
606a5020 2814 flush_work(work);
7a22ad75 2815 clear_work_data(work);
1f1f642e
ON
2816 return ret;
2817}
2818
6e84d644 2819/**
401a8d04
TH
2820 * cancel_work_sync - cancel a work and wait for it to finish
2821 * @work: the work to cancel
6e84d644 2822 *
401a8d04
TH
2823 * Cancel @work and wait for its execution to finish. This function
2824 * can be used even if the work re-queues itself or migrates to
2825 * another workqueue. On return from this function, @work is
2826 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2827 *
401a8d04
TH
2828 * cancel_work_sync(&delayed_work->work) must not be used for
2829 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2830 *
401a8d04 2831 * The caller must ensure that the workqueue on which @work was last
6e84d644 2832 * queued can't be destroyed before this function returns.
401a8d04
TH
2833 *
2834 * RETURNS:
2835 * %true if @work was pending, %false otherwise.
6e84d644 2836 */
401a8d04 2837bool cancel_work_sync(struct work_struct *work)
6e84d644 2838{
36e227d2 2839 return __cancel_work_timer(work, false);
b89deed3 2840}
28e53bdd 2841EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2842
6e84d644 2843/**
401a8d04
TH
2844 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2845 * @dwork: the delayed work to flush
6e84d644 2846 *
401a8d04
TH
2847 * Delayed timer is cancelled and the pending work is queued for
2848 * immediate execution. Like flush_work(), this function only
2849 * considers the last queueing instance of @dwork.
1f1f642e 2850 *
401a8d04
TH
2851 * RETURNS:
2852 * %true if flush_work() waited for the work to finish execution,
2853 * %false if it was already idle.
6e84d644 2854 */
401a8d04
TH
2855bool flush_delayed_work(struct delayed_work *dwork)
2856{
8930caba 2857 local_irq_disable();
401a8d04 2858 if (del_timer_sync(&dwork->timer))
60c057bc 2859 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2860 local_irq_enable();
401a8d04
TH
2861 return flush_work(&dwork->work);
2862}
2863EXPORT_SYMBOL(flush_delayed_work);
2864
09383498 2865/**
57b30ae7
TH
2866 * cancel_delayed_work - cancel a delayed work
2867 * @dwork: delayed_work to cancel
09383498 2868 *
57b30ae7
TH
2869 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2870 * and canceled; %false if wasn't pending. Note that the work callback
2871 * function may still be running on return, unless it returns %true and the
2872 * work doesn't re-arm itself. Explicitly flush or use
2873 * cancel_delayed_work_sync() to wait on it.
09383498 2874 *
57b30ae7 2875 * This function is safe to call from any context including IRQ handler.
09383498 2876 */
57b30ae7 2877bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2878{
57b30ae7
TH
2879 unsigned long flags;
2880 int ret;
2881
2882 do {
2883 ret = try_to_grab_pending(&dwork->work, true, &flags);
2884 } while (unlikely(ret == -EAGAIN));
2885
2886 if (unlikely(ret < 0))
2887 return false;
2888
7c3eed5c
TH
2889 set_work_pool_and_clear_pending(&dwork->work,
2890 get_work_pool_id(&dwork->work));
57b30ae7 2891 local_irq_restore(flags);
c0158ca6 2892 return ret;
09383498 2893}
57b30ae7 2894EXPORT_SYMBOL(cancel_delayed_work);
09383498 2895
401a8d04
TH
2896/**
2897 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2898 * @dwork: the delayed work cancel
2899 *
2900 * This is cancel_work_sync() for delayed works.
2901 *
2902 * RETURNS:
2903 * %true if @dwork was pending, %false otherwise.
2904 */
2905bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2906{
36e227d2 2907 return __cancel_work_timer(&dwork->work, true);
6e84d644 2908}
f5a421a4 2909EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2910
b6136773 2911/**
31ddd871 2912 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2913 * @func: the function to call
b6136773 2914 *
31ddd871
TH
2915 * schedule_on_each_cpu() executes @func on each online CPU using the
2916 * system workqueue and blocks until all CPUs have completed.
b6136773 2917 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2918 *
2919 * RETURNS:
2920 * 0 on success, -errno on failure.
b6136773 2921 */
65f27f38 2922int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2923{
2924 int cpu;
38f51568 2925 struct work_struct __percpu *works;
15316ba8 2926
b6136773
AM
2927 works = alloc_percpu(struct work_struct);
2928 if (!works)
15316ba8 2929 return -ENOMEM;
b6136773 2930
93981800
TH
2931 get_online_cpus();
2932
15316ba8 2933 for_each_online_cpu(cpu) {
9bfb1839
IM
2934 struct work_struct *work = per_cpu_ptr(works, cpu);
2935
2936 INIT_WORK(work, func);
b71ab8c2 2937 schedule_work_on(cpu, work);
65a64464 2938 }
93981800
TH
2939
2940 for_each_online_cpu(cpu)
2941 flush_work(per_cpu_ptr(works, cpu));
2942
95402b38 2943 put_online_cpus();
b6136773 2944 free_percpu(works);
15316ba8
CL
2945 return 0;
2946}
2947
eef6a7d5
AS
2948/**
2949 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2950 *
2951 * Forces execution of the kernel-global workqueue and blocks until its
2952 * completion.
2953 *
2954 * Think twice before calling this function! It's very easy to get into
2955 * trouble if you don't take great care. Either of the following situations
2956 * will lead to deadlock:
2957 *
2958 * One of the work items currently on the workqueue needs to acquire
2959 * a lock held by your code or its caller.
2960 *
2961 * Your code is running in the context of a work routine.
2962 *
2963 * They will be detected by lockdep when they occur, but the first might not
2964 * occur very often. It depends on what work items are on the workqueue and
2965 * what locks they need, which you have no control over.
2966 *
2967 * In most situations flushing the entire workqueue is overkill; you merely
2968 * need to know that a particular work item isn't queued and isn't running.
2969 * In such cases you should use cancel_delayed_work_sync() or
2970 * cancel_work_sync() instead.
2971 */
1da177e4
LT
2972void flush_scheduled_work(void)
2973{
d320c038 2974 flush_workqueue(system_wq);
1da177e4 2975}
ae90dd5d 2976EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2977
1fa44eca
JB
2978/**
2979 * execute_in_process_context - reliably execute the routine with user context
2980 * @fn: the function to execute
1fa44eca
JB
2981 * @ew: guaranteed storage for the execute work structure (must
2982 * be available when the work executes)
2983 *
2984 * Executes the function immediately if process context is available,
2985 * otherwise schedules the function for delayed execution.
2986 *
2987 * Returns: 0 - function was executed
2988 * 1 - function was scheduled for execution
2989 */
65f27f38 2990int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2991{
2992 if (!in_interrupt()) {
65f27f38 2993 fn(&ew->work);
1fa44eca
JB
2994 return 0;
2995 }
2996
65f27f38 2997 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2998 schedule_work(&ew->work);
2999
3000 return 1;
3001}
3002EXPORT_SYMBOL_GPL(execute_in_process_context);
3003
226223ab
TH
3004#ifdef CONFIG_SYSFS
3005/*
3006 * Workqueues with WQ_SYSFS flag set is visible to userland via
3007 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3008 * following attributes.
3009 *
3010 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3011 * max_active RW int : maximum number of in-flight work items
3012 *
3013 * Unbound workqueues have the following extra attributes.
3014 *
3015 * id RO int : the associated pool ID
3016 * nice RW int : nice value of the workers
3017 * cpumask RW mask : bitmask of allowed CPUs for the workers
3018 */
3019struct wq_device {
3020 struct workqueue_struct *wq;
3021 struct device dev;
3022};
3023
3024static struct workqueue_struct *dev_to_wq(struct device *dev)
3025{
3026 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3027
3028 return wq_dev->wq;
3029}
3030
3031static ssize_t wq_per_cpu_show(struct device *dev,
3032 struct device_attribute *attr, char *buf)
3033{
3034 struct workqueue_struct *wq = dev_to_wq(dev);
3035
3036 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3037}
3038
3039static ssize_t wq_max_active_show(struct device *dev,
3040 struct device_attribute *attr, char *buf)
3041{
3042 struct workqueue_struct *wq = dev_to_wq(dev);
3043
3044 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3045}
3046
3047static ssize_t wq_max_active_store(struct device *dev,
3048 struct device_attribute *attr,
3049 const char *buf, size_t count)
3050{
3051 struct workqueue_struct *wq = dev_to_wq(dev);
3052 int val;
3053
3054 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3055 return -EINVAL;
3056
3057 workqueue_set_max_active(wq, val);
3058 return count;
3059}
3060
3061static struct device_attribute wq_sysfs_attrs[] = {
3062 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3063 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3064 __ATTR_NULL,
3065};
3066
3067static ssize_t wq_pool_id_show(struct device *dev,
3068 struct device_attribute *attr, char *buf)
3069{
3070 struct workqueue_struct *wq = dev_to_wq(dev);
3071 struct worker_pool *pool;
3072 int written;
3073
3074 rcu_read_lock_sched();
3075 pool = first_pwq(wq)->pool;
3076 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3077 rcu_read_unlock_sched();
3078
3079 return written;
3080}
3081
3082static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3083 char *buf)
3084{
3085 struct workqueue_struct *wq = dev_to_wq(dev);
3086 int written;
3087
3088 rcu_read_lock_sched();
3089 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3090 first_pwq(wq)->pool->attrs->nice);
3091 rcu_read_unlock_sched();
3092
3093 return written;
3094}
3095
3096/* prepare workqueue_attrs for sysfs store operations */
3097static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3098{
3099 struct workqueue_attrs *attrs;
3100
3101 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3102 if (!attrs)
3103 return NULL;
3104
3105 rcu_read_lock_sched();
3106 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3107 rcu_read_unlock_sched();
3108 return attrs;
3109}
3110
3111static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3112 const char *buf, size_t count)
3113{
3114 struct workqueue_struct *wq = dev_to_wq(dev);
3115 struct workqueue_attrs *attrs;
3116 int ret;
3117
3118 attrs = wq_sysfs_prep_attrs(wq);
3119 if (!attrs)
3120 return -ENOMEM;
3121
3122 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3123 attrs->nice >= -20 && attrs->nice <= 19)
3124 ret = apply_workqueue_attrs(wq, attrs);
3125 else
3126 ret = -EINVAL;
3127
3128 free_workqueue_attrs(attrs);
3129 return ret ?: count;
3130}
3131
3132static ssize_t wq_cpumask_show(struct device *dev,
3133 struct device_attribute *attr, char *buf)
3134{
3135 struct workqueue_struct *wq = dev_to_wq(dev);
3136 int written;
3137
3138 rcu_read_lock_sched();
3139 written = cpumask_scnprintf(buf, PAGE_SIZE,
3140 first_pwq(wq)->pool->attrs->cpumask);
3141 rcu_read_unlock_sched();
3142
3143 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3144 return written;
3145}
3146
3147static ssize_t wq_cpumask_store(struct device *dev,
3148 struct device_attribute *attr,
3149 const char *buf, size_t count)
3150{
3151 struct workqueue_struct *wq = dev_to_wq(dev);
3152 struct workqueue_attrs *attrs;
3153 int ret;
3154
3155 attrs = wq_sysfs_prep_attrs(wq);
3156 if (!attrs)
3157 return -ENOMEM;
3158
3159 ret = cpumask_parse(buf, attrs->cpumask);
3160 if (!ret)
3161 ret = apply_workqueue_attrs(wq, attrs);
3162
3163 free_workqueue_attrs(attrs);
3164 return ret ?: count;
3165}
3166
3167static struct device_attribute wq_sysfs_unbound_attrs[] = {
3168 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3169 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3170 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3171 __ATTR_NULL,
3172};
3173
3174static struct bus_type wq_subsys = {
3175 .name = "workqueue",
3176 .dev_attrs = wq_sysfs_attrs,
3177};
3178
3179static int __init wq_sysfs_init(void)
3180{
3181 return subsys_virtual_register(&wq_subsys, NULL);
3182}
3183core_initcall(wq_sysfs_init);
3184
3185static void wq_device_release(struct device *dev)
3186{
3187 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3188
3189 kfree(wq_dev);
3190}
3191
3192/**
3193 * workqueue_sysfs_register - make a workqueue visible in sysfs
3194 * @wq: the workqueue to register
3195 *
3196 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3197 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3198 * which is the preferred method.
3199 *
3200 * Workqueue user should use this function directly iff it wants to apply
3201 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3202 * apply_workqueue_attrs() may race against userland updating the
3203 * attributes.
3204 *
3205 * Returns 0 on success, -errno on failure.
3206 */
3207int workqueue_sysfs_register(struct workqueue_struct *wq)
3208{
3209 struct wq_device *wq_dev;
3210 int ret;
3211
3212 /*
3213 * Adjusting max_active or creating new pwqs by applyting
3214 * attributes breaks ordering guarantee. Disallow exposing ordered
3215 * workqueues.
3216 */
3217 if (WARN_ON(wq->flags & __WQ_ORDERED))
3218 return -EINVAL;
3219
3220 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3221 if (!wq_dev)
3222 return -ENOMEM;
3223
3224 wq_dev->wq = wq;
3225 wq_dev->dev.bus = &wq_subsys;
3226 wq_dev->dev.init_name = wq->name;
3227 wq_dev->dev.release = wq_device_release;
3228
3229 /*
3230 * unbound_attrs are created separately. Suppress uevent until
3231 * everything is ready.
3232 */
3233 dev_set_uevent_suppress(&wq_dev->dev, true);
3234
3235 ret = device_register(&wq_dev->dev);
3236 if (ret) {
3237 kfree(wq_dev);
3238 wq->wq_dev = NULL;
3239 return ret;
3240 }
3241
3242 if (wq->flags & WQ_UNBOUND) {
3243 struct device_attribute *attr;
3244
3245 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3246 ret = device_create_file(&wq_dev->dev, attr);
3247 if (ret) {
3248 device_unregister(&wq_dev->dev);
3249 wq->wq_dev = NULL;
3250 return ret;
3251 }
3252 }
3253 }
3254
3255 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3256 return 0;
3257}
3258
3259/**
3260 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3261 * @wq: the workqueue to unregister
3262 *
3263 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3264 */
3265static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3266{
3267 struct wq_device *wq_dev = wq->wq_dev;
3268
3269 if (!wq->wq_dev)
3270 return;
3271
3272 wq->wq_dev = NULL;
3273 device_unregister(&wq_dev->dev);
3274}
3275#else /* CONFIG_SYSFS */
3276static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3277#endif /* CONFIG_SYSFS */
3278
7a4e344c
TH
3279/**
3280 * free_workqueue_attrs - free a workqueue_attrs
3281 * @attrs: workqueue_attrs to free
3282 *
3283 * Undo alloc_workqueue_attrs().
3284 */
3285void free_workqueue_attrs(struct workqueue_attrs *attrs)
3286{
3287 if (attrs) {
3288 free_cpumask_var(attrs->cpumask);
3289 kfree(attrs);
3290 }
3291}
3292
3293/**
3294 * alloc_workqueue_attrs - allocate a workqueue_attrs
3295 * @gfp_mask: allocation mask to use
3296 *
3297 * Allocate a new workqueue_attrs, initialize with default settings and
3298 * return it. Returns NULL on failure.
3299 */
3300struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3301{
3302 struct workqueue_attrs *attrs;
3303
3304 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3305 if (!attrs)
3306 goto fail;
3307 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3308 goto fail;
3309
3310 cpumask_setall(attrs->cpumask);
3311 return attrs;
3312fail:
3313 free_workqueue_attrs(attrs);
3314 return NULL;
3315}
3316
29c91e99
TH
3317static void copy_workqueue_attrs(struct workqueue_attrs *to,
3318 const struct workqueue_attrs *from)
3319{
3320 to->nice = from->nice;
3321 cpumask_copy(to->cpumask, from->cpumask);
3322}
3323
3324/*
3325 * Hacky implementation of jhash of bitmaps which only considers the
3326 * specified number of bits. We probably want a proper implementation in
3327 * include/linux/jhash.h.
3328 */
3329static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3330{
3331 int nr_longs = bits / BITS_PER_LONG;
3332 int nr_leftover = bits % BITS_PER_LONG;
3333 unsigned long leftover = 0;
3334
3335 if (nr_longs)
3336 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3337 if (nr_leftover) {
3338 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3339 hash = jhash(&leftover, sizeof(long), hash);
3340 }
3341 return hash;
3342}
3343
3344/* hash value of the content of @attr */
3345static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3346{
3347 u32 hash = 0;
3348
3349 hash = jhash_1word(attrs->nice, hash);
3350 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3351 return hash;
3352}
3353
3354/* content equality test */
3355static bool wqattrs_equal(const struct workqueue_attrs *a,
3356 const struct workqueue_attrs *b)
3357{
3358 if (a->nice != b->nice)
3359 return false;
3360 if (!cpumask_equal(a->cpumask, b->cpumask))
3361 return false;
3362 return true;
3363}
3364
7a4e344c
TH
3365/**
3366 * init_worker_pool - initialize a newly zalloc'd worker_pool
3367 * @pool: worker_pool to initialize
3368 *
3369 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3370 * Returns 0 on success, -errno on failure. Even on failure, all fields
3371 * inside @pool proper are initialized and put_unbound_pool() can be called
3372 * on @pool safely to release it.
7a4e344c
TH
3373 */
3374static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3375{
3376 spin_lock_init(&pool->lock);
29c91e99
TH
3377 pool->id = -1;
3378 pool->cpu = -1;
4e1a1f9a
TH
3379 pool->flags |= POOL_DISASSOCIATED;
3380 INIT_LIST_HEAD(&pool->worklist);
3381 INIT_LIST_HEAD(&pool->idle_list);
3382 hash_init(pool->busy_hash);
3383
3384 init_timer_deferrable(&pool->idle_timer);
3385 pool->idle_timer.function = idle_worker_timeout;
3386 pool->idle_timer.data = (unsigned long)pool;
3387
3388 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3389 (unsigned long)pool);
3390
3391 mutex_init(&pool->manager_arb);
bc3a1afc 3392 mutex_init(&pool->manager_mutex);
822d8405 3393 idr_init(&pool->worker_idr);
7a4e344c 3394
29c91e99
TH
3395 INIT_HLIST_NODE(&pool->hash_node);
3396 pool->refcnt = 1;
3397
3398 /* shouldn't fail above this point */
7a4e344c
TH
3399 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3400 if (!pool->attrs)
3401 return -ENOMEM;
3402 return 0;
4e1a1f9a
TH
3403}
3404
29c91e99
TH
3405static void rcu_free_pool(struct rcu_head *rcu)
3406{
3407 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3408
822d8405 3409 idr_destroy(&pool->worker_idr);
29c91e99
TH
3410 free_workqueue_attrs(pool->attrs);
3411 kfree(pool);
3412}
3413
3414/**
3415 * put_unbound_pool - put a worker_pool
3416 * @pool: worker_pool to put
3417 *
3418 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3419 * safe manner. get_unbound_pool() calls this function on its failure path
3420 * and this function should be able to release pools which went through,
3421 * successfully or not, init_worker_pool().
29c91e99
TH
3422 */
3423static void put_unbound_pool(struct worker_pool *pool)
3424{
3425 struct worker *worker;
3426
68e13a67 3427 mutex_lock(&wq_pool_mutex);
29c91e99 3428 if (--pool->refcnt) {
68e13a67 3429 mutex_unlock(&wq_pool_mutex);
29c91e99
TH
3430 return;
3431 }
3432
3433 /* sanity checks */
3434 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3435 WARN_ON(!list_empty(&pool->worklist))) {
68e13a67 3436 mutex_unlock(&wq_pool_mutex);
29c91e99
TH
3437 return;
3438 }
3439
3440 /* release id and unhash */
3441 if (pool->id >= 0)
3442 idr_remove(&worker_pool_idr, pool->id);
3443 hash_del(&pool->hash_node);
3444
68e13a67 3445 mutex_unlock(&wq_pool_mutex);
29c91e99 3446
c5aa87bb
TH
3447 /*
3448 * Become the manager and destroy all workers. Grabbing
3449 * manager_arb prevents @pool's workers from blocking on
3450 * manager_mutex.
3451 */
29c91e99 3452 mutex_lock(&pool->manager_arb);
cd549687 3453 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3454 spin_lock_irq(&pool->lock);
3455
3456 while ((worker = first_worker(pool)))
3457 destroy_worker(worker);
3458 WARN_ON(pool->nr_workers || pool->nr_idle);
3459
3460 spin_unlock_irq(&pool->lock);
cd549687 3461 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3462 mutex_unlock(&pool->manager_arb);
3463
3464 /* shut down the timers */
3465 del_timer_sync(&pool->idle_timer);
3466 del_timer_sync(&pool->mayday_timer);
3467
3468 /* sched-RCU protected to allow dereferences from get_work_pool() */
3469 call_rcu_sched(&pool->rcu, rcu_free_pool);
3470}
3471
3472/**
3473 * get_unbound_pool - get a worker_pool with the specified attributes
3474 * @attrs: the attributes of the worker_pool to get
3475 *
3476 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3477 * reference count and return it. If there already is a matching
3478 * worker_pool, it will be used; otherwise, this function attempts to
3479 * create a new one. On failure, returns NULL.
3480 */
3481static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3482{
29c91e99
TH
3483 u32 hash = wqattrs_hash(attrs);
3484 struct worker_pool *pool;
29c91e99 3485
68e13a67 3486 mutex_lock(&wq_pool_mutex);
29c91e99
TH
3487
3488 /* do we already have a matching pool? */
29c91e99
TH
3489 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3490 if (wqattrs_equal(pool->attrs, attrs)) {
3491 pool->refcnt++;
3492 goto out_unlock;
3493 }
3494 }
29c91e99
TH
3495
3496 /* nope, create a new one */
3497 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3498 if (!pool || init_worker_pool(pool) < 0)
3499 goto fail;
3500
12ee4fc6
LJ
3501 if (workqueue_freezing)
3502 pool->flags |= POOL_FREEZING;
3503
8864b4e5 3504 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3505 copy_workqueue_attrs(pool->attrs, attrs);
3506
3507 if (worker_pool_assign_id(pool) < 0)
3508 goto fail;
3509
3510 /* create and start the initial worker */
ebf44d16 3511 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3512 goto fail;
3513
29c91e99 3514 /* install */
29c91e99
TH
3515 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3516out_unlock:
68e13a67 3517 mutex_unlock(&wq_pool_mutex);
29c91e99
TH
3518 return pool;
3519fail:
68e13a67 3520 mutex_unlock(&wq_pool_mutex);
29c91e99
TH
3521 if (pool)
3522 put_unbound_pool(pool);
3523 return NULL;
3524}
3525
8864b4e5
TH
3526static void rcu_free_pwq(struct rcu_head *rcu)
3527{
3528 kmem_cache_free(pwq_cache,
3529 container_of(rcu, struct pool_workqueue, rcu));
3530}
3531
3532/*
3533 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3534 * and needs to be destroyed.
3535 */
3536static void pwq_unbound_release_workfn(struct work_struct *work)
3537{
3538 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3539 unbound_release_work);
3540 struct workqueue_struct *wq = pwq->wq;
3541 struct worker_pool *pool = pwq->pool;
3542
3543 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3544 return;
3545
75ccf595 3546 /*
3c25a55d 3547 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3548 * necessary on release but do it anyway. It's easier to verify
3549 * and consistent with the linking path.
3550 */
3c25a55d 3551 mutex_lock(&wq->mutex);
794b18bc 3552 spin_lock_irq(&pwq_lock);
8864b4e5 3553 list_del_rcu(&pwq->pwqs_node);
794b18bc 3554 spin_unlock_irq(&pwq_lock);
3c25a55d 3555 mutex_unlock(&wq->mutex);
8864b4e5
TH
3556
3557 put_unbound_pool(pool);
3558 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3559
3560 /*
3561 * If we're the last pwq going away, @wq is already dead and no one
3562 * is gonna access it anymore. Free it.
3563 */
3564 if (list_empty(&wq->pwqs))
3565 kfree(wq);
3566}
3567
0fbd95aa 3568/**
699ce097 3569 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3570 * @pwq: target pool_workqueue
0fbd95aa 3571 *
699ce097
TH
3572 * If @pwq isn't freezing, set @pwq->max_active to the associated
3573 * workqueue's saved_max_active and activate delayed work items
3574 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3575 */
699ce097 3576static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3577{
699ce097
TH
3578 struct workqueue_struct *wq = pwq->wq;
3579 bool freezable = wq->flags & WQ_FREEZABLE;
3580
3581 /* for @wq->saved_max_active */
794b18bc 3582 lockdep_assert_held(&pwq_lock);
699ce097
TH
3583
3584 /* fast exit for non-freezable wqs */
3585 if (!freezable && pwq->max_active == wq->saved_max_active)
3586 return;
3587
3588 spin_lock(&pwq->pool->lock);
3589
3590 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3591 pwq->max_active = wq->saved_max_active;
0fbd95aa 3592
699ce097
TH
3593 while (!list_empty(&pwq->delayed_works) &&
3594 pwq->nr_active < pwq->max_active)
3595 pwq_activate_first_delayed(pwq);
951a078a
LJ
3596
3597 /*
3598 * Need to kick a worker after thawed or an unbound wq's
3599 * max_active is bumped. It's a slow path. Do it always.
3600 */
3601 wake_up_worker(pwq->pool);
699ce097
TH
3602 } else {
3603 pwq->max_active = 0;
3604 }
3605
3606 spin_unlock(&pwq->pool->lock);
0fbd95aa
TH
3607}
3608
d2c1d404
TH
3609static void init_and_link_pwq(struct pool_workqueue *pwq,
3610 struct workqueue_struct *wq,
9e8cd2f5
TH
3611 struct worker_pool *pool,
3612 struct pool_workqueue **p_last_pwq)
d2c1d404
TH
3613{
3614 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3615
3616 pwq->pool = pool;
3617 pwq->wq = wq;
3618 pwq->flush_color = -1;
8864b4e5 3619 pwq->refcnt = 1;
d2c1d404
TH
3620 INIT_LIST_HEAD(&pwq->delayed_works);
3621 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3622 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3623
3c25a55d 3624 mutex_lock(&wq->mutex);
794b18bc 3625 spin_lock_irq(&pwq_lock);
75ccf595 3626
983ca25e
TH
3627 /*
3628 * Set the matching work_color. This is synchronized with
3c25a55d 3629 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3630 */
9e8cd2f5
TH
3631 if (p_last_pwq)
3632 *p_last_pwq = first_pwq(wq);
75ccf595 3633 pwq->work_color = wq->work_color;
983ca25e
TH
3634
3635 /* sync max_active to the current setting */
3636 pwq_adjust_max_active(pwq);
3637
3638 /* link in @pwq */
9e8cd2f5 3639 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
75ccf595 3640
794b18bc 3641 spin_unlock_irq(&pwq_lock);
3c25a55d 3642 mutex_unlock(&wq->mutex);
d2c1d404
TH
3643}
3644
9e8cd2f5
TH
3645/**
3646 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3647 * @wq: the target workqueue
3648 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3649 *
3650 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3651 * current attributes, a new pwq is created and made the first pwq which
3652 * will serve all new work items. Older pwqs are released as in-flight
3653 * work items finish. Note that a work item which repeatedly requeues
3654 * itself back-to-back will stay on its current pwq.
3655 *
3656 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3657 * failure.
3658 */
3659int apply_workqueue_attrs(struct workqueue_struct *wq,
3660 const struct workqueue_attrs *attrs)
3661{
3662 struct pool_workqueue *pwq, *last_pwq;
3663 struct worker_pool *pool;
3664
8719dcea 3665 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3666 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3667 return -EINVAL;
3668
8719dcea
TH
3669 /* creating multiple pwqs breaks ordering guarantee */
3670 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3671 return -EINVAL;
3672
9e8cd2f5
TH
3673 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3674 if (!pwq)
3675 return -ENOMEM;
3676
3677 pool = get_unbound_pool(attrs);
3678 if (!pool) {
3679 kmem_cache_free(pwq_cache, pwq);
3680 return -ENOMEM;
3681 }
3682
3683 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3684 if (last_pwq) {
3685 spin_lock_irq(&last_pwq->pool->lock);
3686 put_pwq(last_pwq);
3687 spin_unlock_irq(&last_pwq->pool->lock);
3688 }
3689
3690 return 0;
3691}
3692
30cdf249 3693static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3694{
49e3cf44 3695 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3696 int cpu;
3697
3698 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3699 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3700 if (!wq->cpu_pwqs)
30cdf249
TH
3701 return -ENOMEM;
3702
3703 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3704 struct pool_workqueue *pwq =
3705 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3706 struct worker_pool *cpu_pools =
f02ae73a 3707 per_cpu(cpu_worker_pools, cpu);
f3421797 3708
9e8cd2f5 3709 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
30cdf249 3710 }
9e8cd2f5 3711 return 0;
30cdf249 3712 } else {
9e8cd2f5 3713 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3714 }
0f900049
TH
3715}
3716
f3421797
TH
3717static int wq_clamp_max_active(int max_active, unsigned int flags,
3718 const char *name)
b71ab8c2 3719{
f3421797
TH
3720 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3721
3722 if (max_active < 1 || max_active > lim)
044c782c
VI
3723 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3724 max_active, name, 1, lim);
b71ab8c2 3725
f3421797 3726 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3727}
3728
b196be89 3729struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3730 unsigned int flags,
3731 int max_active,
3732 struct lock_class_key *key,
b196be89 3733 const char *lock_name, ...)
1da177e4 3734{
b196be89 3735 va_list args, args1;
1da177e4 3736 struct workqueue_struct *wq;
49e3cf44 3737 struct pool_workqueue *pwq;
b196be89
TH
3738 size_t namelen;
3739
3740 /* determine namelen, allocate wq and format name */
3741 va_start(args, lock_name);
3742 va_copy(args1, args);
3743 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3744
3745 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3746 if (!wq)
d2c1d404 3747 return NULL;
b196be89
TH
3748
3749 vsnprintf(wq->name, namelen, fmt, args1);
3750 va_end(args);
3751 va_end(args1);
1da177e4 3752
d320c038 3753 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3754 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3755
b196be89 3756 /* init wq */
97e37d7b 3757 wq->flags = flags;
a0a1a5fd 3758 wq->saved_max_active = max_active;
3c25a55d 3759 mutex_init(&wq->mutex);
112202d9 3760 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3761 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3762 INIT_LIST_HEAD(&wq->flusher_queue);
3763 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3764 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3765
eb13ba87 3766 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3767 INIT_LIST_HEAD(&wq->list);
3af24433 3768
30cdf249 3769 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3770 goto err_free_wq;
1537663f 3771
493008a8
TH
3772 /*
3773 * Workqueues which may be used during memory reclaim should
3774 * have a rescuer to guarantee forward progress.
3775 */
3776 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3777 struct worker *rescuer;
3778
d2c1d404 3779 rescuer = alloc_worker();
e22bee78 3780 if (!rescuer)
d2c1d404 3781 goto err_destroy;
e22bee78 3782
111c225a
TH
3783 rescuer->rescue_wq = wq;
3784 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3785 wq->name);
d2c1d404
TH
3786 if (IS_ERR(rescuer->task)) {
3787 kfree(rescuer);
3788 goto err_destroy;
3789 }
e22bee78 3790
d2c1d404 3791 wq->rescuer = rescuer;
14a40ffc 3792 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 3793 wake_up_process(rescuer->task);
3af24433
ON
3794 }
3795
226223ab
TH
3796 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3797 goto err_destroy;
3798
a0a1a5fd 3799 /*
68e13a67
LJ
3800 * wq_pool_mutex protects global freeze state and workqueues list.
3801 * Grab it, adjust max_active and add the new @wq to workqueues
3802 * list.
a0a1a5fd 3803 */
68e13a67 3804 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3805
794b18bc 3806 spin_lock_irq(&pwq_lock);
699ce097
TH
3807 for_each_pwq(pwq, wq)
3808 pwq_adjust_max_active(pwq);
794b18bc 3809 spin_unlock_irq(&pwq_lock);
a0a1a5fd 3810
1537663f 3811 list_add(&wq->list, &workqueues);
a0a1a5fd 3812
68e13a67 3813 mutex_unlock(&wq_pool_mutex);
1537663f 3814
3af24433 3815 return wq;
d2c1d404
TH
3816
3817err_free_wq:
3818 kfree(wq);
3819 return NULL;
3820err_destroy:
3821 destroy_workqueue(wq);
4690c4ab 3822 return NULL;
3af24433 3823}
d320c038 3824EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3825
3af24433
ON
3826/**
3827 * destroy_workqueue - safely terminate a workqueue
3828 * @wq: target workqueue
3829 *
3830 * Safely destroy a workqueue. All work currently pending will be done first.
3831 */
3832void destroy_workqueue(struct workqueue_struct *wq)
3833{
49e3cf44 3834 struct pool_workqueue *pwq;
3af24433 3835
9c5a2ba7
TH
3836 /* drain it before proceeding with destruction */
3837 drain_workqueue(wq);
c8efcc25 3838
6183c009 3839 /* sanity checks */
b09f4fd3 3840 mutex_lock(&wq->mutex);
49e3cf44 3841 for_each_pwq(pwq, wq) {
6183c009
TH
3842 int i;
3843
76af4d93
TH
3844 for (i = 0; i < WORK_NR_COLORS; i++) {
3845 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 3846 mutex_unlock(&wq->mutex);
6183c009 3847 return;
76af4d93
TH
3848 }
3849 }
3850
8864b4e5
TH
3851 if (WARN_ON(pwq->refcnt > 1) ||
3852 WARN_ON(pwq->nr_active) ||
76af4d93 3853 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 3854 mutex_unlock(&wq->mutex);
6183c009 3855 return;
76af4d93 3856 }
6183c009 3857 }
b09f4fd3 3858 mutex_unlock(&wq->mutex);
6183c009 3859
a0a1a5fd
TH
3860 /*
3861 * wq list is used to freeze wq, remove from list after
3862 * flushing is complete in case freeze races us.
3863 */
68e13a67 3864 mutex_lock(&wq_pool_mutex);
d2c1d404 3865 list_del_init(&wq->list);
68e13a67 3866 mutex_unlock(&wq_pool_mutex);
3af24433 3867
226223ab
TH
3868 workqueue_sysfs_unregister(wq);
3869
493008a8 3870 if (wq->rescuer) {
e22bee78 3871 kthread_stop(wq->rescuer->task);
8d9df9f0 3872 kfree(wq->rescuer);
493008a8 3873 wq->rescuer = NULL;
e22bee78
TH
3874 }
3875
8864b4e5
TH
3876 if (!(wq->flags & WQ_UNBOUND)) {
3877 /*
3878 * The base ref is never dropped on per-cpu pwqs. Directly
3879 * free the pwqs and wq.
3880 */
3881 free_percpu(wq->cpu_pwqs);
3882 kfree(wq);
3883 } else {
3884 /*
3885 * We're the sole accessor of @wq at this point. Directly
3886 * access the first pwq and put the base ref. As both pwqs
3887 * and pools are sched-RCU protected, the lock operations
3888 * are safe. @wq will be freed when the last pwq is
3889 * released.
3890 */
29c91e99
TH
3891 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3892 pwqs_node);
8864b4e5
TH
3893 spin_lock_irq(&pwq->pool->lock);
3894 put_pwq(pwq);
3895 spin_unlock_irq(&pwq->pool->lock);
29c91e99 3896 }
3af24433
ON
3897}
3898EXPORT_SYMBOL_GPL(destroy_workqueue);
3899
dcd989cb
TH
3900/**
3901 * workqueue_set_max_active - adjust max_active of a workqueue
3902 * @wq: target workqueue
3903 * @max_active: new max_active value.
3904 *
3905 * Set max_active of @wq to @max_active.
3906 *
3907 * CONTEXT:
3908 * Don't call from IRQ context.
3909 */
3910void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3911{
49e3cf44 3912 struct pool_workqueue *pwq;
dcd989cb 3913
8719dcea
TH
3914 /* disallow meddling with max_active for ordered workqueues */
3915 if (WARN_ON(wq->flags & __WQ_ORDERED))
3916 return;
3917
f3421797 3918 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3919
794b18bc 3920 spin_lock_irq(&pwq_lock);
dcd989cb
TH
3921
3922 wq->saved_max_active = max_active;
3923
699ce097
TH
3924 for_each_pwq(pwq, wq)
3925 pwq_adjust_max_active(pwq);
93981800 3926
794b18bc 3927 spin_unlock_irq(&pwq_lock);
15316ba8 3928}
dcd989cb 3929EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3930
e6267616
TH
3931/**
3932 * current_is_workqueue_rescuer - is %current workqueue rescuer?
3933 *
3934 * Determine whether %current is a workqueue rescuer. Can be used from
3935 * work functions to determine whether it's being run off the rescuer task.
3936 */
3937bool current_is_workqueue_rescuer(void)
3938{
3939 struct worker *worker = current_wq_worker();
3940
6a092dfd 3941 return worker && worker->rescue_wq;
e6267616
TH
3942}
3943
eef6a7d5 3944/**
dcd989cb
TH
3945 * workqueue_congested - test whether a workqueue is congested
3946 * @cpu: CPU in question
3947 * @wq: target workqueue
eef6a7d5 3948 *
dcd989cb
TH
3949 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3950 * no synchronization around this function and the test result is
3951 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3952 *
dcd989cb
TH
3953 * RETURNS:
3954 * %true if congested, %false otherwise.
eef6a7d5 3955 */
d84ff051 3956bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 3957{
7fb98ea7 3958 struct pool_workqueue *pwq;
76af4d93
TH
3959 bool ret;
3960
88109453 3961 rcu_read_lock_sched();
7fb98ea7
TH
3962
3963 if (!(wq->flags & WQ_UNBOUND))
3964 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3965 else
3966 pwq = first_pwq(wq);
dcd989cb 3967
76af4d93 3968 ret = !list_empty(&pwq->delayed_works);
88109453 3969 rcu_read_unlock_sched();
76af4d93
TH
3970
3971 return ret;
1da177e4 3972}
dcd989cb 3973EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3974
dcd989cb
TH
3975/**
3976 * work_busy - test whether a work is currently pending or running
3977 * @work: the work to be tested
3978 *
3979 * Test whether @work is currently pending or running. There is no
3980 * synchronization around this function and the test result is
3981 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3982 *
3983 * RETURNS:
3984 * OR'd bitmask of WORK_BUSY_* bits.
3985 */
3986unsigned int work_busy(struct work_struct *work)
1da177e4 3987{
fa1b54e6 3988 struct worker_pool *pool;
dcd989cb
TH
3989 unsigned long flags;
3990 unsigned int ret = 0;
1da177e4 3991
dcd989cb
TH
3992 if (work_pending(work))
3993 ret |= WORK_BUSY_PENDING;
1da177e4 3994
fa1b54e6
TH
3995 local_irq_save(flags);
3996 pool = get_work_pool(work);
038366c5 3997 if (pool) {
fa1b54e6 3998 spin_lock(&pool->lock);
038366c5
LJ
3999 if (find_worker_executing_work(pool, work))
4000 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4001 spin_unlock(&pool->lock);
038366c5 4002 }
fa1b54e6 4003 local_irq_restore(flags);
1da177e4 4004
dcd989cb 4005 return ret;
1da177e4 4006}
dcd989cb 4007EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4008
db7bccf4
TH
4009/*
4010 * CPU hotplug.
4011 *
e22bee78 4012 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4013 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4014 * pool which make migrating pending and scheduled works very
e22bee78 4015 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4016 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4017 * blocked draining impractical.
4018 *
24647570 4019 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4020 * running as an unbound one and allowing it to be reattached later if the
4021 * cpu comes back online.
db7bccf4 4022 */
1da177e4 4023
706026c2 4024static void wq_unbind_fn(struct work_struct *work)
3af24433 4025{
38db41d9 4026 int cpu = smp_processor_id();
4ce62e9e 4027 struct worker_pool *pool;
db7bccf4 4028 struct worker *worker;
a9ab775b 4029 int wi;
3af24433 4030
f02ae73a 4031 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4032 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4033
bc3a1afc 4034 mutex_lock(&pool->manager_mutex);
94cf58bb 4035 spin_lock_irq(&pool->lock);
3af24433 4036
94cf58bb 4037 /*
bc3a1afc 4038 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4039 * unbound and set DISASSOCIATED. Before this, all workers
4040 * except for the ones which are still executing works from
4041 * before the last CPU down must be on the cpu. After
4042 * this, they may become diasporas.
4043 */
a9ab775b 4044 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4045 worker->flags |= WORKER_UNBOUND;
06ba38a9 4046
24647570 4047 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4048
94cf58bb 4049 spin_unlock_irq(&pool->lock);
bc3a1afc 4050 mutex_unlock(&pool->manager_mutex);
94cf58bb 4051 }
628c78e7 4052
e22bee78 4053 /*
403c821d 4054 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4055 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4056 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4057 */
e22bee78 4058 schedule();
06ba38a9 4059
e22bee78 4060 /*
628c78e7
TH
4061 * Sched callbacks are disabled now. Zap nr_running. After this,
4062 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4063 * are always true as long as the worklist is not empty. Pools on
4064 * @cpu now behave as unbound (in terms of concurrency management)
4065 * pools which are served by workers tied to the CPU.
628c78e7
TH
4066 *
4067 * On return from this function, the current worker would trigger
4068 * unbound chain execution of pending work items if other workers
4069 * didn't already.
e22bee78 4070 */
f02ae73a 4071 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4072 atomic_set(&pool->nr_running, 0);
3af24433 4073}
3af24433 4074
bd7c089e
TH
4075/**
4076 * rebind_workers - rebind all workers of a pool to the associated CPU
4077 * @pool: pool of interest
4078 *
a9ab775b 4079 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4080 */
4081static void rebind_workers(struct worker_pool *pool)
4082{
a9ab775b
TH
4083 struct worker *worker;
4084 int wi;
bd7c089e
TH
4085
4086 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4087
a9ab775b
TH
4088 /*
4089 * Restore CPU affinity of all workers. As all idle workers should
4090 * be on the run-queue of the associated CPU before any local
4091 * wake-ups for concurrency management happen, restore CPU affinty
4092 * of all workers first and then clear UNBOUND. As we're called
4093 * from CPU_ONLINE, the following shouldn't fail.
4094 */
4095 for_each_pool_worker(worker, wi, pool)
4096 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4097 pool->attrs->cpumask) < 0);
bd7c089e 4098
a9ab775b 4099 spin_lock_irq(&pool->lock);
bd7c089e 4100
a9ab775b
TH
4101 for_each_pool_worker(worker, wi, pool) {
4102 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4103
4104 /*
a9ab775b
TH
4105 * A bound idle worker should actually be on the runqueue
4106 * of the associated CPU for local wake-ups targeting it to
4107 * work. Kick all idle workers so that they migrate to the
4108 * associated CPU. Doing this in the same loop as
4109 * replacing UNBOUND with REBOUND is safe as no worker will
4110 * be bound before @pool->lock is released.
bd7c089e 4111 */
a9ab775b
TH
4112 if (worker_flags & WORKER_IDLE)
4113 wake_up_process(worker->task);
bd7c089e 4114
a9ab775b
TH
4115 /*
4116 * We want to clear UNBOUND but can't directly call
4117 * worker_clr_flags() or adjust nr_running. Atomically
4118 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4119 * @worker will clear REBOUND using worker_clr_flags() when
4120 * it initiates the next execution cycle thus restoring
4121 * concurrency management. Note that when or whether
4122 * @worker clears REBOUND doesn't affect correctness.
4123 *
4124 * ACCESS_ONCE() is necessary because @worker->flags may be
4125 * tested without holding any lock in
4126 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4127 * fail incorrectly leading to premature concurrency
4128 * management operations.
4129 */
4130 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4131 worker_flags |= WORKER_REBOUND;
4132 worker_flags &= ~WORKER_UNBOUND;
4133 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4134 }
a9ab775b
TH
4135
4136 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4137}
4138
7dbc725e
TH
4139/**
4140 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4141 * @pool: unbound pool of interest
4142 * @cpu: the CPU which is coming up
4143 *
4144 * An unbound pool may end up with a cpumask which doesn't have any online
4145 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4146 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4147 * online CPU before, cpus_allowed of all its workers should be restored.
4148 */
4149static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4150{
4151 static cpumask_t cpumask;
4152 struct worker *worker;
4153 int wi;
4154
4155 lockdep_assert_held(&pool->manager_mutex);
4156
4157 /* is @cpu allowed for @pool? */
4158 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4159 return;
4160
4161 /* is @cpu the only online CPU? */
4162 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4163 if (cpumask_weight(&cpumask) != 1)
4164 return;
4165
4166 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4167 for_each_pool_worker(worker, wi, pool)
4168 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4169 pool->attrs->cpumask) < 0);
4170}
4171
8db25e78
TH
4172/*
4173 * Workqueues should be brought up before normal priority CPU notifiers.
4174 * This will be registered high priority CPU notifier.
4175 */
9fdf9b73 4176static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4177 unsigned long action,
4178 void *hcpu)
3af24433 4179{
d84ff051 4180 int cpu = (unsigned long)hcpu;
4ce62e9e 4181 struct worker_pool *pool;
7dbc725e 4182 int pi;
3ce63377 4183
8db25e78 4184 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4185 case CPU_UP_PREPARE:
f02ae73a 4186 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4187 if (pool->nr_workers)
4188 continue;
ebf44d16 4189 if (create_and_start_worker(pool) < 0)
3ce63377 4190 return NOTIFY_BAD;
3af24433 4191 }
8db25e78 4192 break;
3af24433 4193
db7bccf4
TH
4194 case CPU_DOWN_FAILED:
4195 case CPU_ONLINE:
68e13a67 4196 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4197
4198 for_each_pool(pool, pi) {
bc3a1afc 4199 mutex_lock(&pool->manager_mutex);
94cf58bb 4200
7dbc725e
TH
4201 if (pool->cpu == cpu) {
4202 spin_lock_irq(&pool->lock);
4203 pool->flags &= ~POOL_DISASSOCIATED;
4204 spin_unlock_irq(&pool->lock);
a9ab775b 4205
7dbc725e
TH
4206 rebind_workers(pool);
4207 } else if (pool->cpu < 0) {
4208 restore_unbound_workers_cpumask(pool, cpu);
4209 }
94cf58bb 4210
bc3a1afc 4211 mutex_unlock(&pool->manager_mutex);
94cf58bb 4212 }
7dbc725e 4213
68e13a67 4214 mutex_unlock(&wq_pool_mutex);
db7bccf4 4215 break;
00dfcaf7 4216 }
65758202
TH
4217 return NOTIFY_OK;
4218}
4219
4220/*
4221 * Workqueues should be brought down after normal priority CPU notifiers.
4222 * This will be registered as low priority CPU notifier.
4223 */
9fdf9b73 4224static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4225 unsigned long action,
4226 void *hcpu)
4227{
d84ff051 4228 int cpu = (unsigned long)hcpu;
8db25e78
TH
4229 struct work_struct unbind_work;
4230
65758202
TH
4231 switch (action & ~CPU_TASKS_FROZEN) {
4232 case CPU_DOWN_PREPARE:
8db25e78 4233 /* unbinding should happen on the local CPU */
706026c2 4234 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4235 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
4236 flush_work(&unbind_work);
4237 break;
65758202
TH
4238 }
4239 return NOTIFY_OK;
4240}
4241
2d3854a3 4242#ifdef CONFIG_SMP
8ccad40d 4243
2d3854a3 4244struct work_for_cpu {
ed48ece2 4245 struct work_struct work;
2d3854a3
RR
4246 long (*fn)(void *);
4247 void *arg;
4248 long ret;
4249};
4250
ed48ece2 4251static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4252{
ed48ece2
TH
4253 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4254
2d3854a3
RR
4255 wfc->ret = wfc->fn(wfc->arg);
4256}
4257
4258/**
4259 * work_on_cpu - run a function in user context on a particular cpu
4260 * @cpu: the cpu to run on
4261 * @fn: the function to run
4262 * @arg: the function arg
4263 *
31ad9081
RR
4264 * This will return the value @fn returns.
4265 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4266 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4267 */
d84ff051 4268long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4269{
ed48ece2 4270 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4271
ed48ece2
TH
4272 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4273 schedule_work_on(cpu, &wfc.work);
4274 flush_work(&wfc.work);
2d3854a3
RR
4275 return wfc.ret;
4276}
4277EXPORT_SYMBOL_GPL(work_on_cpu);
4278#endif /* CONFIG_SMP */
4279
a0a1a5fd
TH
4280#ifdef CONFIG_FREEZER
4281
4282/**
4283 * freeze_workqueues_begin - begin freezing workqueues
4284 *
58a69cb4 4285 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4286 * workqueues will queue new works to their delayed_works list instead of
706026c2 4287 * pool->worklist.
a0a1a5fd
TH
4288 *
4289 * CONTEXT:
68e13a67 4290 * Grabs and releases wq_pool_mutex, pwq_lock and pool->lock's.
a0a1a5fd
TH
4291 */
4292void freeze_workqueues_begin(void)
4293{
17116969 4294 struct worker_pool *pool;
24b8a847
TH
4295 struct workqueue_struct *wq;
4296 struct pool_workqueue *pwq;
611c92a0 4297 int pi;
a0a1a5fd 4298
68e13a67 4299 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4300
6183c009 4301 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4302 workqueue_freezing = true;
4303
24b8a847 4304 /* set FREEZING */
611c92a0 4305 for_each_pool(pool, pi) {
5bcab335 4306 spin_lock_irq(&pool->lock);
17116969
TH
4307 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4308 pool->flags |= POOL_FREEZING;
5bcab335 4309 spin_unlock_irq(&pool->lock);
24b8a847 4310 }
a0a1a5fd 4311
24b8a847 4312 /* suppress further executions by setting max_active to zero */
794b18bc 4313 spin_lock_irq(&pwq_lock);
24b8a847 4314 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4315 for_each_pwq(pwq, wq)
4316 pwq_adjust_max_active(pwq);
a0a1a5fd 4317 }
794b18bc 4318 spin_unlock_irq(&pwq_lock);
5bcab335 4319
68e13a67 4320 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4321}
4322
4323/**
58a69cb4 4324 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4325 *
4326 * Check whether freezing is complete. This function must be called
4327 * between freeze_workqueues_begin() and thaw_workqueues().
4328 *
4329 * CONTEXT:
68e13a67 4330 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4331 *
4332 * RETURNS:
58a69cb4
TH
4333 * %true if some freezable workqueues are still busy. %false if freezing
4334 * is complete.
a0a1a5fd
TH
4335 */
4336bool freeze_workqueues_busy(void)
4337{
a0a1a5fd 4338 bool busy = false;
24b8a847
TH
4339 struct workqueue_struct *wq;
4340 struct pool_workqueue *pwq;
a0a1a5fd 4341
68e13a67 4342 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4343
6183c009 4344 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4345
24b8a847
TH
4346 list_for_each_entry(wq, &workqueues, list) {
4347 if (!(wq->flags & WQ_FREEZABLE))
4348 continue;
a0a1a5fd
TH
4349 /*
4350 * nr_active is monotonically decreasing. It's safe
4351 * to peek without lock.
4352 */
88109453 4353 rcu_read_lock_sched();
24b8a847 4354 for_each_pwq(pwq, wq) {
6183c009 4355 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4356 if (pwq->nr_active) {
a0a1a5fd 4357 busy = true;
88109453 4358 rcu_read_unlock_sched();
a0a1a5fd
TH
4359 goto out_unlock;
4360 }
4361 }
88109453 4362 rcu_read_unlock_sched();
a0a1a5fd
TH
4363 }
4364out_unlock:
68e13a67 4365 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4366 return busy;
4367}
4368
4369/**
4370 * thaw_workqueues - thaw workqueues
4371 *
4372 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4373 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4374 *
4375 * CONTEXT:
68e13a67 4376 * Grabs and releases wq_pool_mutex, pwq_lock and pool->lock's.
a0a1a5fd
TH
4377 */
4378void thaw_workqueues(void)
4379{
24b8a847
TH
4380 struct workqueue_struct *wq;
4381 struct pool_workqueue *pwq;
4382 struct worker_pool *pool;
611c92a0 4383 int pi;
a0a1a5fd 4384
68e13a67 4385 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4386
4387 if (!workqueue_freezing)
4388 goto out_unlock;
4389
24b8a847 4390 /* clear FREEZING */
611c92a0 4391 for_each_pool(pool, pi) {
5bcab335 4392 spin_lock_irq(&pool->lock);
24b8a847
TH
4393 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4394 pool->flags &= ~POOL_FREEZING;
5bcab335 4395 spin_unlock_irq(&pool->lock);
24b8a847 4396 }
8b03ae3c 4397
24b8a847 4398 /* restore max_active and repopulate worklist */
794b18bc 4399 spin_lock_irq(&pwq_lock);
24b8a847 4400 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4401 for_each_pwq(pwq, wq)
4402 pwq_adjust_max_active(pwq);
a0a1a5fd 4403 }
794b18bc 4404 spin_unlock_irq(&pwq_lock);
a0a1a5fd
TH
4405
4406 workqueue_freezing = false;
4407out_unlock:
68e13a67 4408 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4409}
4410#endif /* CONFIG_FREEZER */
4411
6ee0578b 4412static int __init init_workqueues(void)
1da177e4 4413{
7a4e344c
TH
4414 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4415 int i, cpu;
c34056a3 4416
7c3eed5c
TH
4417 /* make sure we have enough bits for OFFQ pool ID */
4418 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4419 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4420
e904e6c2
TH
4421 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4422
4423 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4424
65758202 4425 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4426 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4427
706026c2 4428 /* initialize CPU pools */
29c91e99 4429 for_each_possible_cpu(cpu) {
4ce62e9e 4430 struct worker_pool *pool;
8b03ae3c 4431
7a4e344c 4432 i = 0;
f02ae73a 4433 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4434 BUG_ON(init_worker_pool(pool));
ec22ca5e 4435 pool->cpu = cpu;
29c91e99 4436 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c
TH
4437 pool->attrs->nice = std_nice[i++];
4438
9daf9e67 4439 /* alloc pool ID */
68e13a67 4440 mutex_lock(&wq_pool_mutex);
9daf9e67 4441 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4442 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4443 }
8b03ae3c
TH
4444 }
4445
e22bee78 4446 /* create the initial worker */
29c91e99 4447 for_each_online_cpu(cpu) {
4ce62e9e 4448 struct worker_pool *pool;
e22bee78 4449
f02ae73a 4450 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4451 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4452 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4453 }
e22bee78
TH
4454 }
4455
29c91e99
TH
4456 /* create default unbound wq attrs */
4457 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4458 struct workqueue_attrs *attrs;
4459
4460 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4461
4462 attrs->nice = std_nice[i];
4463 cpumask_setall(attrs->cpumask);
4464
4465 unbound_std_wq_attrs[i] = attrs;
4466 }
4467
d320c038 4468 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4469 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4470 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4471 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4472 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4473 system_freezable_wq = alloc_workqueue("events_freezable",
4474 WQ_FREEZABLE, 0);
1aabe902 4475 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4476 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4477 return 0;
1da177e4 4478}
6ee0578b 4479early_initcall(init_workqueues);
This page took 0.94177 seconds and 5 git commands to generate.