locktorture: Cleanup header usage
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
3c25a55d
LJ
130 * WQ: wq->mutex protected.
131 *
b5927605 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
133 *
134 * MD: wq_mayday_lock protected.
1da177e4 135 */
1da177e4 136
2eaebdb3 137/* struct worker is defined in workqueue_internal.h */
c34056a3 138
bd7bdd43 139struct worker_pool {
d565ed63 140 spinlock_t lock; /* the pool lock */
d84ff051 141 int cpu; /* I: the associated cpu */
f3f90ad4 142 int node; /* I: the associated node ID */
9daf9e67 143 int id; /* I: pool ID */
11ebea50 144 unsigned int flags; /* X: flags */
bd7bdd43
TH
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
148
149 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
c5aa87bb 156 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
bc3a1afc 160 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 161 struct mutex manager_arb; /* manager arbitration */
92f9c5c4
LJ
162 struct mutex attach_mutex; /* attach/detach exclusion */
163 struct list_head workers; /* A: attached workers */
60f5a4bc 164 struct completion *detach_completion; /* all workers detached */
e19e397a 165
7cda9aae 166 struct ida worker_ida; /* worker IDs for task name */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static cpumask_var_t *wq_numa_possible_cpumask;
269 /* possible CPUs of each node */
270
d55262c4
TH
271static bool wq_disable_numa;
272module_param_named(disable_numa, wq_disable_numa, bool, 0444);
273
cee22a15
VK
274/* see the comment above the definition of WQ_POWER_EFFICIENT */
275#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
276static bool wq_power_efficient = true;
277#else
278static bool wq_power_efficient;
279#endif
280
281module_param_named(power_efficient, wq_power_efficient, bool, 0444);
282
bce90380
TH
283static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
284
4c16bd32
TH
285/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
286static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
287
68e13a67 288static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 289static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 290
68e13a67
LJ
291static LIST_HEAD(workqueues); /* PL: list of all workqueues */
292static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
293
294/* the per-cpu worker pools */
295static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
296 cpu_worker_pools);
297
68e13a67 298static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 299
68e13a67 300/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
301static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
302
c5aa87bb 303/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
304static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
305
8a2b7538
TH
306/* I: attributes used when instantiating ordered pools on demand */
307static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
308
d320c038 309struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 310EXPORT_SYMBOL(system_wq);
044c782c 311struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 312EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 313struct workqueue_struct *system_long_wq __read_mostly;
d320c038 314EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 315struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 316EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 317struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 318EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
319struct workqueue_struct *system_power_efficient_wq __read_mostly;
320EXPORT_SYMBOL_GPL(system_power_efficient_wq);
321struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
322EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 323
7d19c5ce
TH
324static int worker_thread(void *__worker);
325static void copy_workqueue_attrs(struct workqueue_attrs *to,
326 const struct workqueue_attrs *from);
327
97bd2347
TH
328#define CREATE_TRACE_POINTS
329#include <trace/events/workqueue.h>
330
68e13a67 331#define assert_rcu_or_pool_mutex() \
5bcab335 332 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
333 lockdep_is_held(&wq_pool_mutex), \
334 "sched RCU or wq_pool_mutex should be held")
5bcab335 335
b09f4fd3 336#define assert_rcu_or_wq_mutex(wq) \
76af4d93 337 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 338 lockdep_is_held(&wq->mutex), \
b09f4fd3 339 "sched RCU or wq->mutex should be held")
76af4d93 340
f02ae73a
TH
341#define for_each_cpu_worker_pool(pool, cpu) \
342 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
343 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 344 (pool)++)
4ce62e9e 345
17116969
TH
346/**
347 * for_each_pool - iterate through all worker_pools in the system
348 * @pool: iteration cursor
611c92a0 349 * @pi: integer used for iteration
fa1b54e6 350 *
68e13a67
LJ
351 * This must be called either with wq_pool_mutex held or sched RCU read
352 * locked. If the pool needs to be used beyond the locking in effect, the
353 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
354 *
355 * The if/else clause exists only for the lockdep assertion and can be
356 * ignored.
17116969 357 */
611c92a0
TH
358#define for_each_pool(pool, pi) \
359 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 360 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 361 else
17116969 362
822d8405
TH
363/**
364 * for_each_pool_worker - iterate through all workers of a worker_pool
365 * @worker: iteration cursor
822d8405
TH
366 * @pool: worker_pool to iterate workers of
367 *
92f9c5c4 368 * This must be called with @pool->attach_mutex.
822d8405
TH
369 *
370 * The if/else clause exists only for the lockdep assertion and can be
371 * ignored.
372 */
da028469
LJ
373#define for_each_pool_worker(worker, pool) \
374 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 375 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
376 else
377
49e3cf44
TH
378/**
379 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
380 * @pwq: iteration cursor
381 * @wq: the target workqueue
76af4d93 382 *
b09f4fd3 383 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
384 * If the pwq needs to be used beyond the locking in effect, the caller is
385 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
386 *
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
49e3cf44
TH
389 */
390#define for_each_pwq(pwq, wq) \
76af4d93 391 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 392 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 393 else
f3421797 394
dc186ad7
TG
395#ifdef CONFIG_DEBUG_OBJECTS_WORK
396
397static struct debug_obj_descr work_debug_descr;
398
99777288
SG
399static void *work_debug_hint(void *addr)
400{
401 return ((struct work_struct *) addr)->func;
402}
403
dc186ad7
TG
404/*
405 * fixup_init is called when:
406 * - an active object is initialized
407 */
408static int work_fixup_init(void *addr, enum debug_obj_state state)
409{
410 struct work_struct *work = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 cancel_work_sync(work);
415 debug_object_init(work, &work_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420}
421
422/*
423 * fixup_activate is called when:
424 * - an active object is activated
425 * - an unknown object is activated (might be a statically initialized object)
426 */
427static int work_fixup_activate(void *addr, enum debug_obj_state state)
428{
429 struct work_struct *work = addr;
430
431 switch (state) {
432
433 case ODEBUG_STATE_NOTAVAILABLE:
434 /*
435 * This is not really a fixup. The work struct was
436 * statically initialized. We just make sure that it
437 * is tracked in the object tracker.
438 */
22df02bb 439 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
440 debug_object_init(work, &work_debug_descr);
441 debug_object_activate(work, &work_debug_descr);
442 return 0;
443 }
444 WARN_ON_ONCE(1);
445 return 0;
446
447 case ODEBUG_STATE_ACTIVE:
448 WARN_ON(1);
449
450 default:
451 return 0;
452 }
453}
454
455/*
456 * fixup_free is called when:
457 * - an active object is freed
458 */
459static int work_fixup_free(void *addr, enum debug_obj_state state)
460{
461 struct work_struct *work = addr;
462
463 switch (state) {
464 case ODEBUG_STATE_ACTIVE:
465 cancel_work_sync(work);
466 debug_object_free(work, &work_debug_descr);
467 return 1;
468 default:
469 return 0;
470 }
471}
472
473static struct debug_obj_descr work_debug_descr = {
474 .name = "work_struct",
99777288 475 .debug_hint = work_debug_hint,
dc186ad7
TG
476 .fixup_init = work_fixup_init,
477 .fixup_activate = work_fixup_activate,
478 .fixup_free = work_fixup_free,
479};
480
481static inline void debug_work_activate(struct work_struct *work)
482{
483 debug_object_activate(work, &work_debug_descr);
484}
485
486static inline void debug_work_deactivate(struct work_struct *work)
487{
488 debug_object_deactivate(work, &work_debug_descr);
489}
490
491void __init_work(struct work_struct *work, int onstack)
492{
493 if (onstack)
494 debug_object_init_on_stack(work, &work_debug_descr);
495 else
496 debug_object_init(work, &work_debug_descr);
497}
498EXPORT_SYMBOL_GPL(__init_work);
499
500void destroy_work_on_stack(struct work_struct *work)
501{
502 debug_object_free(work, &work_debug_descr);
503}
504EXPORT_SYMBOL_GPL(destroy_work_on_stack);
505
ea2e64f2
TG
506void destroy_delayed_work_on_stack(struct delayed_work *work)
507{
508 destroy_timer_on_stack(&work->timer);
509 debug_object_free(&work->work, &work_debug_descr);
510}
511EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
512
dc186ad7
TG
513#else
514static inline void debug_work_activate(struct work_struct *work) { }
515static inline void debug_work_deactivate(struct work_struct *work) { }
516#endif
517
4e8b22bd
LB
518/**
519 * worker_pool_assign_id - allocate ID and assing it to @pool
520 * @pool: the pool pointer of interest
521 *
522 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
523 * successfully, -errno on failure.
524 */
9daf9e67
TH
525static int worker_pool_assign_id(struct worker_pool *pool)
526{
527 int ret;
528
68e13a67 529 lockdep_assert_held(&wq_pool_mutex);
5bcab335 530
4e8b22bd
LB
531 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
532 GFP_KERNEL);
229641a6 533 if (ret >= 0) {
e68035fb 534 pool->id = ret;
229641a6
TH
535 return 0;
536 }
fa1b54e6 537 return ret;
7c3eed5c
TH
538}
539
df2d5ae4
TH
540/**
541 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
542 * @wq: the target workqueue
543 * @node: the node ID
544 *
545 * This must be called either with pwq_lock held or sched RCU read locked.
546 * If the pwq needs to be used beyond the locking in effect, the caller is
547 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
548 *
549 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
550 */
551static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
552 int node)
553{
554 assert_rcu_or_wq_mutex(wq);
555 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
556}
557
73f53c4a
TH
558static unsigned int work_color_to_flags(int color)
559{
560 return color << WORK_STRUCT_COLOR_SHIFT;
561}
562
563static int get_work_color(struct work_struct *work)
564{
565 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
566 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
567}
568
569static int work_next_color(int color)
570{
571 return (color + 1) % WORK_NR_COLORS;
572}
1da177e4 573
14441960 574/*
112202d9
TH
575 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
576 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 577 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 578 *
112202d9
TH
579 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
580 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
581 * work->data. These functions should only be called while the work is
582 * owned - ie. while the PENDING bit is set.
7a22ad75 583 *
112202d9 584 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 585 * corresponding to a work. Pool is available once the work has been
112202d9 586 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 587 * available only while the work item is queued.
7a22ad75 588 *
bbb68dfa
TH
589 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
590 * canceled. While being canceled, a work item may have its PENDING set
591 * but stay off timer and worklist for arbitrarily long and nobody should
592 * try to steal the PENDING bit.
14441960 593 */
7a22ad75
TH
594static inline void set_work_data(struct work_struct *work, unsigned long data,
595 unsigned long flags)
365970a1 596{
6183c009 597 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
598 atomic_long_set(&work->data, data | flags | work_static(work));
599}
365970a1 600
112202d9 601static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
602 unsigned long extra_flags)
603{
112202d9
TH
604 set_work_data(work, (unsigned long)pwq,
605 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
606}
607
4468a00f
LJ
608static void set_work_pool_and_keep_pending(struct work_struct *work,
609 int pool_id)
610{
611 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
612 WORK_STRUCT_PENDING);
613}
614
7c3eed5c
TH
615static void set_work_pool_and_clear_pending(struct work_struct *work,
616 int pool_id)
7a22ad75 617{
23657bb1
TH
618 /*
619 * The following wmb is paired with the implied mb in
620 * test_and_set_bit(PENDING) and ensures all updates to @work made
621 * here are visible to and precede any updates by the next PENDING
622 * owner.
623 */
624 smp_wmb();
7c3eed5c 625 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 626}
f756d5e2 627
7a22ad75 628static void clear_work_data(struct work_struct *work)
1da177e4 629{
7c3eed5c
TH
630 smp_wmb(); /* see set_work_pool_and_clear_pending() */
631 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
632}
633
112202d9 634static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 635{
e120153d 636 unsigned long data = atomic_long_read(&work->data);
7a22ad75 637
112202d9 638 if (data & WORK_STRUCT_PWQ)
e120153d
TH
639 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
640 else
641 return NULL;
4d707b9f
ON
642}
643
7c3eed5c
TH
644/**
645 * get_work_pool - return the worker_pool a given work was associated with
646 * @work: the work item of interest
647 *
68e13a67
LJ
648 * Pools are created and destroyed under wq_pool_mutex, and allows read
649 * access under sched-RCU read lock. As such, this function should be
650 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
651 *
652 * All fields of the returned pool are accessible as long as the above
653 * mentioned locking is in effect. If the returned pool needs to be used
654 * beyond the critical section, the caller is responsible for ensuring the
655 * returned pool is and stays online.
d185af30
YB
656 *
657 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
658 */
659static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 660{
e120153d 661 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 662 int pool_id;
7a22ad75 663
68e13a67 664 assert_rcu_or_pool_mutex();
fa1b54e6 665
112202d9
TH
666 if (data & WORK_STRUCT_PWQ)
667 return ((struct pool_workqueue *)
7c3eed5c 668 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 669
7c3eed5c
TH
670 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
671 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
672 return NULL;
673
fa1b54e6 674 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
675}
676
677/**
678 * get_work_pool_id - return the worker pool ID a given work is associated with
679 * @work: the work item of interest
680 *
d185af30 681 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
682 * %WORK_OFFQ_POOL_NONE if none.
683 */
684static int get_work_pool_id(struct work_struct *work)
685{
54d5b7d0
LJ
686 unsigned long data = atomic_long_read(&work->data);
687
112202d9
TH
688 if (data & WORK_STRUCT_PWQ)
689 return ((struct pool_workqueue *)
54d5b7d0 690 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 691
54d5b7d0 692 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
693}
694
bbb68dfa
TH
695static void mark_work_canceling(struct work_struct *work)
696{
7c3eed5c 697 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 698
7c3eed5c
TH
699 pool_id <<= WORK_OFFQ_POOL_SHIFT;
700 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
701}
702
703static bool work_is_canceling(struct work_struct *work)
704{
705 unsigned long data = atomic_long_read(&work->data);
706
112202d9 707 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
708}
709
e22bee78 710/*
3270476a
TH
711 * Policy functions. These define the policies on how the global worker
712 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 713 * they're being called with pool->lock held.
e22bee78
TH
714 */
715
63d95a91 716static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 717{
e19e397a 718 return !atomic_read(&pool->nr_running);
a848e3b6
ON
719}
720
4594bf15 721/*
e22bee78
TH
722 * Need to wake up a worker? Called from anything but currently
723 * running workers.
974271c4
TH
724 *
725 * Note that, because unbound workers never contribute to nr_running, this
706026c2 726 * function will always return %true for unbound pools as long as the
974271c4 727 * worklist isn't empty.
4594bf15 728 */
63d95a91 729static bool need_more_worker(struct worker_pool *pool)
365970a1 730{
63d95a91 731 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 732}
4594bf15 733
e22bee78 734/* Can I start working? Called from busy but !running workers. */
63d95a91 735static bool may_start_working(struct worker_pool *pool)
e22bee78 736{
63d95a91 737 return pool->nr_idle;
e22bee78
TH
738}
739
740/* Do I need to keep working? Called from currently running workers. */
63d95a91 741static bool keep_working(struct worker_pool *pool)
e22bee78 742{
e19e397a
TH
743 return !list_empty(&pool->worklist) &&
744 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
745}
746
747/* Do we need a new worker? Called from manager. */
63d95a91 748static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 749{
63d95a91 750 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 751}
365970a1 752
e22bee78 753/* Do we have too many workers and should some go away? */
63d95a91 754static bool too_many_workers(struct worker_pool *pool)
e22bee78 755{
34a06bd6 756 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
757 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
758 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
759
760 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
761}
762
4d707b9f 763/*
e22bee78
TH
764 * Wake up functions.
765 */
766
1037de36
LJ
767/* Return the first idle worker. Safe with preemption disabled */
768static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 769{
63d95a91 770 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
771 return NULL;
772
63d95a91 773 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
774}
775
776/**
777 * wake_up_worker - wake up an idle worker
63d95a91 778 * @pool: worker pool to wake worker from
7e11629d 779 *
63d95a91 780 * Wake up the first idle worker of @pool.
7e11629d
TH
781 *
782 * CONTEXT:
d565ed63 783 * spin_lock_irq(pool->lock).
7e11629d 784 */
63d95a91 785static void wake_up_worker(struct worker_pool *pool)
7e11629d 786{
1037de36 787 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
788
789 if (likely(worker))
790 wake_up_process(worker->task);
791}
792
d302f017 793/**
e22bee78
TH
794 * wq_worker_waking_up - a worker is waking up
795 * @task: task waking up
796 * @cpu: CPU @task is waking up to
797 *
798 * This function is called during try_to_wake_up() when a worker is
799 * being awoken.
800 *
801 * CONTEXT:
802 * spin_lock_irq(rq->lock)
803 */
d84ff051 804void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
805{
806 struct worker *worker = kthread_data(task);
807
36576000 808 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 809 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 810 atomic_inc(&worker->pool->nr_running);
36576000 811 }
e22bee78
TH
812}
813
814/**
815 * wq_worker_sleeping - a worker is going to sleep
816 * @task: task going to sleep
817 * @cpu: CPU in question, must be the current CPU number
818 *
819 * This function is called during schedule() when a busy worker is
820 * going to sleep. Worker on the same cpu can be woken up by
821 * returning pointer to its task.
822 *
823 * CONTEXT:
824 * spin_lock_irq(rq->lock)
825 *
d185af30 826 * Return:
e22bee78
TH
827 * Worker task on @cpu to wake up, %NULL if none.
828 */
d84ff051 829struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
830{
831 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 832 struct worker_pool *pool;
e22bee78 833
111c225a
TH
834 /*
835 * Rescuers, which may not have all the fields set up like normal
836 * workers, also reach here, let's not access anything before
837 * checking NOT_RUNNING.
838 */
2d64672e 839 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
840 return NULL;
841
111c225a 842 pool = worker->pool;
111c225a 843
e22bee78 844 /* this can only happen on the local cpu */
92b69f50 845 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 846 return NULL;
e22bee78
TH
847
848 /*
849 * The counterpart of the following dec_and_test, implied mb,
850 * worklist not empty test sequence is in insert_work().
851 * Please read comment there.
852 *
628c78e7
TH
853 * NOT_RUNNING is clear. This means that we're bound to and
854 * running on the local cpu w/ rq lock held and preemption
855 * disabled, which in turn means that none else could be
d565ed63 856 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 857 * lock is safe.
e22bee78 858 */
e19e397a
TH
859 if (atomic_dec_and_test(&pool->nr_running) &&
860 !list_empty(&pool->worklist))
1037de36 861 to_wakeup = first_idle_worker(pool);
e22bee78
TH
862 return to_wakeup ? to_wakeup->task : NULL;
863}
864
865/**
866 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 867 * @worker: self
d302f017 868 * @flags: flags to set
d302f017 869 *
228f1d00 870 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 871 *
cb444766 872 * CONTEXT:
d565ed63 873 * spin_lock_irq(pool->lock)
d302f017 874 */
228f1d00 875static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 876{
bd7bdd43 877 struct worker_pool *pool = worker->pool;
e22bee78 878
cb444766
TH
879 WARN_ON_ONCE(worker->task != current);
880
228f1d00 881 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
882 if ((flags & WORKER_NOT_RUNNING) &&
883 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 884 atomic_dec(&pool->nr_running);
e22bee78
TH
885 }
886
d302f017
TH
887 worker->flags |= flags;
888}
889
890/**
e22bee78 891 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 892 * @worker: self
d302f017
TH
893 * @flags: flags to clear
894 *
e22bee78 895 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 896 *
cb444766 897 * CONTEXT:
d565ed63 898 * spin_lock_irq(pool->lock)
d302f017
TH
899 */
900static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
901{
63d95a91 902 struct worker_pool *pool = worker->pool;
e22bee78
TH
903 unsigned int oflags = worker->flags;
904
cb444766
TH
905 WARN_ON_ONCE(worker->task != current);
906
d302f017 907 worker->flags &= ~flags;
e22bee78 908
42c025f3
TH
909 /*
910 * If transitioning out of NOT_RUNNING, increment nr_running. Note
911 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
912 * of multiple flags, not a single flag.
913 */
e22bee78
TH
914 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
915 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 916 atomic_inc(&pool->nr_running);
d302f017
TH
917}
918
8cca0eea
TH
919/**
920 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 921 * @pool: pool of interest
8cca0eea
TH
922 * @work: work to find worker for
923 *
c9e7cf27
TH
924 * Find a worker which is executing @work on @pool by searching
925 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
926 * to match, its current execution should match the address of @work and
927 * its work function. This is to avoid unwanted dependency between
928 * unrelated work executions through a work item being recycled while still
929 * being executed.
930 *
931 * This is a bit tricky. A work item may be freed once its execution
932 * starts and nothing prevents the freed area from being recycled for
933 * another work item. If the same work item address ends up being reused
934 * before the original execution finishes, workqueue will identify the
935 * recycled work item as currently executing and make it wait until the
936 * current execution finishes, introducing an unwanted dependency.
937 *
c5aa87bb
TH
938 * This function checks the work item address and work function to avoid
939 * false positives. Note that this isn't complete as one may construct a
940 * work function which can introduce dependency onto itself through a
941 * recycled work item. Well, if somebody wants to shoot oneself in the
942 * foot that badly, there's only so much we can do, and if such deadlock
943 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
944 *
945 * CONTEXT:
d565ed63 946 * spin_lock_irq(pool->lock).
8cca0eea 947 *
d185af30
YB
948 * Return:
949 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 950 * otherwise.
4d707b9f 951 */
c9e7cf27 952static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 953 struct work_struct *work)
4d707b9f 954{
42f8570f 955 struct worker *worker;
42f8570f 956
b67bfe0d 957 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
958 (unsigned long)work)
959 if (worker->current_work == work &&
960 worker->current_func == work->func)
42f8570f
SL
961 return worker;
962
963 return NULL;
4d707b9f
ON
964}
965
bf4ede01
TH
966/**
967 * move_linked_works - move linked works to a list
968 * @work: start of series of works to be scheduled
969 * @head: target list to append @work to
970 * @nextp: out paramter for nested worklist walking
971 *
972 * Schedule linked works starting from @work to @head. Work series to
973 * be scheduled starts at @work and includes any consecutive work with
974 * WORK_STRUCT_LINKED set in its predecessor.
975 *
976 * If @nextp is not NULL, it's updated to point to the next work of
977 * the last scheduled work. This allows move_linked_works() to be
978 * nested inside outer list_for_each_entry_safe().
979 *
980 * CONTEXT:
d565ed63 981 * spin_lock_irq(pool->lock).
bf4ede01
TH
982 */
983static void move_linked_works(struct work_struct *work, struct list_head *head,
984 struct work_struct **nextp)
985{
986 struct work_struct *n;
987
988 /*
989 * Linked worklist will always end before the end of the list,
990 * use NULL for list head.
991 */
992 list_for_each_entry_safe_from(work, n, NULL, entry) {
993 list_move_tail(&work->entry, head);
994 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
995 break;
996 }
997
998 /*
999 * If we're already inside safe list traversal and have moved
1000 * multiple works to the scheduled queue, the next position
1001 * needs to be updated.
1002 */
1003 if (nextp)
1004 *nextp = n;
1005}
1006
8864b4e5
TH
1007/**
1008 * get_pwq - get an extra reference on the specified pool_workqueue
1009 * @pwq: pool_workqueue to get
1010 *
1011 * Obtain an extra reference on @pwq. The caller should guarantee that
1012 * @pwq has positive refcnt and be holding the matching pool->lock.
1013 */
1014static void get_pwq(struct pool_workqueue *pwq)
1015{
1016 lockdep_assert_held(&pwq->pool->lock);
1017 WARN_ON_ONCE(pwq->refcnt <= 0);
1018 pwq->refcnt++;
1019}
1020
1021/**
1022 * put_pwq - put a pool_workqueue reference
1023 * @pwq: pool_workqueue to put
1024 *
1025 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1026 * destruction. The caller should be holding the matching pool->lock.
1027 */
1028static void put_pwq(struct pool_workqueue *pwq)
1029{
1030 lockdep_assert_held(&pwq->pool->lock);
1031 if (likely(--pwq->refcnt))
1032 return;
1033 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1034 return;
1035 /*
1036 * @pwq can't be released under pool->lock, bounce to
1037 * pwq_unbound_release_workfn(). This never recurses on the same
1038 * pool->lock as this path is taken only for unbound workqueues and
1039 * the release work item is scheduled on a per-cpu workqueue. To
1040 * avoid lockdep warning, unbound pool->locks are given lockdep
1041 * subclass of 1 in get_unbound_pool().
1042 */
1043 schedule_work(&pwq->unbound_release_work);
1044}
1045
dce90d47
TH
1046/**
1047 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1048 * @pwq: pool_workqueue to put (can be %NULL)
1049 *
1050 * put_pwq() with locking. This function also allows %NULL @pwq.
1051 */
1052static void put_pwq_unlocked(struct pool_workqueue *pwq)
1053{
1054 if (pwq) {
1055 /*
1056 * As both pwqs and pools are sched-RCU protected, the
1057 * following lock operations are safe.
1058 */
1059 spin_lock_irq(&pwq->pool->lock);
1060 put_pwq(pwq);
1061 spin_unlock_irq(&pwq->pool->lock);
1062 }
1063}
1064
112202d9 1065static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1066{
112202d9 1067 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1068
1069 trace_workqueue_activate_work(work);
112202d9 1070 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1071 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1072 pwq->nr_active++;
bf4ede01
TH
1073}
1074
112202d9 1075static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1076{
112202d9 1077 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1078 struct work_struct, entry);
1079
112202d9 1080 pwq_activate_delayed_work(work);
3aa62497
LJ
1081}
1082
bf4ede01 1083/**
112202d9
TH
1084 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1085 * @pwq: pwq of interest
bf4ede01 1086 * @color: color of work which left the queue
bf4ede01
TH
1087 *
1088 * A work either has completed or is removed from pending queue,
112202d9 1089 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1090 *
1091 * CONTEXT:
d565ed63 1092 * spin_lock_irq(pool->lock).
bf4ede01 1093 */
112202d9 1094static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1095{
8864b4e5 1096 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1097 if (color == WORK_NO_COLOR)
8864b4e5 1098 goto out_put;
bf4ede01 1099
112202d9 1100 pwq->nr_in_flight[color]--;
bf4ede01 1101
112202d9
TH
1102 pwq->nr_active--;
1103 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1104 /* one down, submit a delayed one */
112202d9
TH
1105 if (pwq->nr_active < pwq->max_active)
1106 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1107 }
1108
1109 /* is flush in progress and are we at the flushing tip? */
112202d9 1110 if (likely(pwq->flush_color != color))
8864b4e5 1111 goto out_put;
bf4ede01
TH
1112
1113 /* are there still in-flight works? */
112202d9 1114 if (pwq->nr_in_flight[color])
8864b4e5 1115 goto out_put;
bf4ede01 1116
112202d9
TH
1117 /* this pwq is done, clear flush_color */
1118 pwq->flush_color = -1;
bf4ede01
TH
1119
1120 /*
112202d9 1121 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1122 * will handle the rest.
1123 */
112202d9
TH
1124 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1125 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1126out_put:
1127 put_pwq(pwq);
bf4ede01
TH
1128}
1129
36e227d2 1130/**
bbb68dfa 1131 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1132 * @work: work item to steal
1133 * @is_dwork: @work is a delayed_work
bbb68dfa 1134 * @flags: place to store irq state
36e227d2
TH
1135 *
1136 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1137 * stable state - idle, on timer or on worklist.
36e227d2 1138 *
d185af30 1139 * Return:
36e227d2
TH
1140 * 1 if @work was pending and we successfully stole PENDING
1141 * 0 if @work was idle and we claimed PENDING
1142 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1143 * -ENOENT if someone else is canceling @work, this state may persist
1144 * for arbitrarily long
36e227d2 1145 *
d185af30 1146 * Note:
bbb68dfa 1147 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1148 * interrupted while holding PENDING and @work off queue, irq must be
1149 * disabled on entry. This, combined with delayed_work->timer being
1150 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1151 *
1152 * On successful return, >= 0, irq is disabled and the caller is
1153 * responsible for releasing it using local_irq_restore(*@flags).
1154 *
e0aecdd8 1155 * This function is safe to call from any context including IRQ handler.
bf4ede01 1156 */
bbb68dfa
TH
1157static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1158 unsigned long *flags)
bf4ede01 1159{
d565ed63 1160 struct worker_pool *pool;
112202d9 1161 struct pool_workqueue *pwq;
bf4ede01 1162
bbb68dfa
TH
1163 local_irq_save(*flags);
1164
36e227d2
TH
1165 /* try to steal the timer if it exists */
1166 if (is_dwork) {
1167 struct delayed_work *dwork = to_delayed_work(work);
1168
e0aecdd8
TH
1169 /*
1170 * dwork->timer is irqsafe. If del_timer() fails, it's
1171 * guaranteed that the timer is not queued anywhere and not
1172 * running on the local CPU.
1173 */
36e227d2
TH
1174 if (likely(del_timer(&dwork->timer)))
1175 return 1;
1176 }
1177
1178 /* try to claim PENDING the normal way */
bf4ede01
TH
1179 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1180 return 0;
1181
1182 /*
1183 * The queueing is in progress, or it is already queued. Try to
1184 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1185 */
d565ed63
TH
1186 pool = get_work_pool(work);
1187 if (!pool)
bbb68dfa 1188 goto fail;
bf4ede01 1189
d565ed63 1190 spin_lock(&pool->lock);
0b3dae68 1191 /*
112202d9
TH
1192 * work->data is guaranteed to point to pwq only while the work
1193 * item is queued on pwq->wq, and both updating work->data to point
1194 * to pwq on queueing and to pool on dequeueing are done under
1195 * pwq->pool->lock. This in turn guarantees that, if work->data
1196 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1197 * item is currently queued on that pool.
1198 */
112202d9
TH
1199 pwq = get_work_pwq(work);
1200 if (pwq && pwq->pool == pool) {
16062836
TH
1201 debug_work_deactivate(work);
1202
1203 /*
1204 * A delayed work item cannot be grabbed directly because
1205 * it might have linked NO_COLOR work items which, if left
112202d9 1206 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1207 * management later on and cause stall. Make sure the work
1208 * item is activated before grabbing.
1209 */
1210 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1211 pwq_activate_delayed_work(work);
16062836
TH
1212
1213 list_del_init(&work->entry);
9c34a704 1214 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1215
112202d9 1216 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1217 set_work_pool_and_keep_pending(work, pool->id);
1218
1219 spin_unlock(&pool->lock);
1220 return 1;
bf4ede01 1221 }
d565ed63 1222 spin_unlock(&pool->lock);
bbb68dfa
TH
1223fail:
1224 local_irq_restore(*flags);
1225 if (work_is_canceling(work))
1226 return -ENOENT;
1227 cpu_relax();
36e227d2 1228 return -EAGAIN;
bf4ede01
TH
1229}
1230
4690c4ab 1231/**
706026c2 1232 * insert_work - insert a work into a pool
112202d9 1233 * @pwq: pwq @work belongs to
4690c4ab
TH
1234 * @work: work to insert
1235 * @head: insertion point
1236 * @extra_flags: extra WORK_STRUCT_* flags to set
1237 *
112202d9 1238 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1239 * work_struct flags.
4690c4ab
TH
1240 *
1241 * CONTEXT:
d565ed63 1242 * spin_lock_irq(pool->lock).
4690c4ab 1243 */
112202d9
TH
1244static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1245 struct list_head *head, unsigned int extra_flags)
b89deed3 1246{
112202d9 1247 struct worker_pool *pool = pwq->pool;
e22bee78 1248
4690c4ab 1249 /* we own @work, set data and link */
112202d9 1250 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1251 list_add_tail(&work->entry, head);
8864b4e5 1252 get_pwq(pwq);
e22bee78
TH
1253
1254 /*
c5aa87bb
TH
1255 * Ensure either wq_worker_sleeping() sees the above
1256 * list_add_tail() or we see zero nr_running to avoid workers lying
1257 * around lazily while there are works to be processed.
e22bee78
TH
1258 */
1259 smp_mb();
1260
63d95a91
TH
1261 if (__need_more_worker(pool))
1262 wake_up_worker(pool);
b89deed3
ON
1263}
1264
c8efcc25
TH
1265/*
1266 * Test whether @work is being queued from another work executing on the
8d03ecfe 1267 * same workqueue.
c8efcc25
TH
1268 */
1269static bool is_chained_work(struct workqueue_struct *wq)
1270{
8d03ecfe
TH
1271 struct worker *worker;
1272
1273 worker = current_wq_worker();
1274 /*
1275 * Return %true iff I'm a worker execuing a work item on @wq. If
1276 * I'm @worker, it's safe to dereference it without locking.
1277 */
112202d9 1278 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1279}
1280
d84ff051 1281static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1282 struct work_struct *work)
1283{
112202d9 1284 struct pool_workqueue *pwq;
c9178087 1285 struct worker_pool *last_pool;
1e19ffc6 1286 struct list_head *worklist;
8a2e8e5d 1287 unsigned int work_flags;
b75cac93 1288 unsigned int req_cpu = cpu;
8930caba
TH
1289
1290 /*
1291 * While a work item is PENDING && off queue, a task trying to
1292 * steal the PENDING will busy-loop waiting for it to either get
1293 * queued or lose PENDING. Grabbing PENDING and queueing should
1294 * happen with IRQ disabled.
1295 */
1296 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1297
dc186ad7 1298 debug_work_activate(work);
1e19ffc6 1299
9ef28a73 1300 /* if draining, only works from the same workqueue are allowed */
618b01eb 1301 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1302 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1303 return;
9e8cd2f5 1304retry:
df2d5ae4
TH
1305 if (req_cpu == WORK_CPU_UNBOUND)
1306 cpu = raw_smp_processor_id();
1307
c9178087 1308 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1309 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1310 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1311 else
1312 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1313
c9178087
TH
1314 /*
1315 * If @work was previously on a different pool, it might still be
1316 * running there, in which case the work needs to be queued on that
1317 * pool to guarantee non-reentrancy.
1318 */
1319 last_pool = get_work_pool(work);
1320 if (last_pool && last_pool != pwq->pool) {
1321 struct worker *worker;
18aa9eff 1322
c9178087 1323 spin_lock(&last_pool->lock);
18aa9eff 1324
c9178087 1325 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1326
c9178087
TH
1327 if (worker && worker->current_pwq->wq == wq) {
1328 pwq = worker->current_pwq;
8930caba 1329 } else {
c9178087
TH
1330 /* meh... not running there, queue here */
1331 spin_unlock(&last_pool->lock);
112202d9 1332 spin_lock(&pwq->pool->lock);
8930caba 1333 }
f3421797 1334 } else {
112202d9 1335 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1336 }
1337
9e8cd2f5
TH
1338 /*
1339 * pwq is determined and locked. For unbound pools, we could have
1340 * raced with pwq release and it could already be dead. If its
1341 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1342 * without another pwq replacing it in the numa_pwq_tbl or while
1343 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1344 * make forward-progress.
1345 */
1346 if (unlikely(!pwq->refcnt)) {
1347 if (wq->flags & WQ_UNBOUND) {
1348 spin_unlock(&pwq->pool->lock);
1349 cpu_relax();
1350 goto retry;
1351 }
1352 /* oops */
1353 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1354 wq->name, cpu);
1355 }
1356
112202d9
TH
1357 /* pwq determined, queue */
1358 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1359
f5b2552b 1360 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1361 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1362 return;
1363 }
1e19ffc6 1364
112202d9
TH
1365 pwq->nr_in_flight[pwq->work_color]++;
1366 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1367
112202d9 1368 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1369 trace_workqueue_activate_work(work);
112202d9
TH
1370 pwq->nr_active++;
1371 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1372 } else {
1373 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1374 worklist = &pwq->delayed_works;
8a2e8e5d 1375 }
1e19ffc6 1376
112202d9 1377 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1378
112202d9 1379 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1380}
1381
0fcb78c2 1382/**
c1a220e7
ZR
1383 * queue_work_on - queue work on specific cpu
1384 * @cpu: CPU number to execute work on
0fcb78c2
REB
1385 * @wq: workqueue to use
1386 * @work: work to queue
1387 *
c1a220e7
ZR
1388 * We queue the work to a specific CPU, the caller must ensure it
1389 * can't go away.
d185af30
YB
1390 *
1391 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1392 */
d4283e93
TH
1393bool queue_work_on(int cpu, struct workqueue_struct *wq,
1394 struct work_struct *work)
1da177e4 1395{
d4283e93 1396 bool ret = false;
8930caba 1397 unsigned long flags;
ef1ca236 1398
8930caba 1399 local_irq_save(flags);
c1a220e7 1400
22df02bb 1401 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1402 __queue_work(cpu, wq, work);
d4283e93 1403 ret = true;
c1a220e7 1404 }
ef1ca236 1405
8930caba 1406 local_irq_restore(flags);
1da177e4
LT
1407 return ret;
1408}
ad7b1f84 1409EXPORT_SYMBOL(queue_work_on);
1da177e4 1410
d8e794df 1411void delayed_work_timer_fn(unsigned long __data)
1da177e4 1412{
52bad64d 1413 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1414
e0aecdd8 1415 /* should have been called from irqsafe timer with irq already off */
60c057bc 1416 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1417}
1438ade5 1418EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1419
7beb2edf
TH
1420static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1421 struct delayed_work *dwork, unsigned long delay)
1da177e4 1422{
7beb2edf
TH
1423 struct timer_list *timer = &dwork->timer;
1424 struct work_struct *work = &dwork->work;
7beb2edf
TH
1425
1426 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1427 timer->data != (unsigned long)dwork);
fc4b514f
TH
1428 WARN_ON_ONCE(timer_pending(timer));
1429 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1430
8852aac2
TH
1431 /*
1432 * If @delay is 0, queue @dwork->work immediately. This is for
1433 * both optimization and correctness. The earliest @timer can
1434 * expire is on the closest next tick and delayed_work users depend
1435 * on that there's no such delay when @delay is 0.
1436 */
1437 if (!delay) {
1438 __queue_work(cpu, wq, &dwork->work);
1439 return;
1440 }
1441
7beb2edf 1442 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1443
60c057bc 1444 dwork->wq = wq;
1265057f 1445 dwork->cpu = cpu;
7beb2edf
TH
1446 timer->expires = jiffies + delay;
1447
1448 if (unlikely(cpu != WORK_CPU_UNBOUND))
1449 add_timer_on(timer, cpu);
1450 else
1451 add_timer(timer);
1da177e4
LT
1452}
1453
0fcb78c2
REB
1454/**
1455 * queue_delayed_work_on - queue work on specific CPU after delay
1456 * @cpu: CPU number to execute work on
1457 * @wq: workqueue to use
af9997e4 1458 * @dwork: work to queue
0fcb78c2
REB
1459 * @delay: number of jiffies to wait before queueing
1460 *
d185af30 1461 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1462 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1463 * execution.
0fcb78c2 1464 */
d4283e93
TH
1465bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1466 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1467{
52bad64d 1468 struct work_struct *work = &dwork->work;
d4283e93 1469 bool ret = false;
8930caba 1470 unsigned long flags;
7a6bc1cd 1471
8930caba
TH
1472 /* read the comment in __queue_work() */
1473 local_irq_save(flags);
7a6bc1cd 1474
22df02bb 1475 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1476 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1477 ret = true;
7a6bc1cd 1478 }
8a3e77cc 1479
8930caba 1480 local_irq_restore(flags);
7a6bc1cd
VP
1481 return ret;
1482}
ad7b1f84 1483EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1484
8376fe22
TH
1485/**
1486 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1487 * @cpu: CPU number to execute work on
1488 * @wq: workqueue to use
1489 * @dwork: work to queue
1490 * @delay: number of jiffies to wait before queueing
1491 *
1492 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1493 * modify @dwork's timer so that it expires after @delay. If @delay is
1494 * zero, @work is guaranteed to be scheduled immediately regardless of its
1495 * current state.
1496 *
d185af30 1497 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1498 * pending and its timer was modified.
1499 *
e0aecdd8 1500 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1501 * See try_to_grab_pending() for details.
1502 */
1503bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1504 struct delayed_work *dwork, unsigned long delay)
1505{
1506 unsigned long flags;
1507 int ret;
c7fc77f7 1508
8376fe22
TH
1509 do {
1510 ret = try_to_grab_pending(&dwork->work, true, &flags);
1511 } while (unlikely(ret == -EAGAIN));
63bc0362 1512
8376fe22
TH
1513 if (likely(ret >= 0)) {
1514 __queue_delayed_work(cpu, wq, dwork, delay);
1515 local_irq_restore(flags);
7a6bc1cd 1516 }
8376fe22
TH
1517
1518 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1519 return ret;
1520}
8376fe22
TH
1521EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1522
c8e55f36
TH
1523/**
1524 * worker_enter_idle - enter idle state
1525 * @worker: worker which is entering idle state
1526 *
1527 * @worker is entering idle state. Update stats and idle timer if
1528 * necessary.
1529 *
1530 * LOCKING:
d565ed63 1531 * spin_lock_irq(pool->lock).
c8e55f36
TH
1532 */
1533static void worker_enter_idle(struct worker *worker)
1da177e4 1534{
bd7bdd43 1535 struct worker_pool *pool = worker->pool;
c8e55f36 1536
6183c009
TH
1537 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1538 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1539 (worker->hentry.next || worker->hentry.pprev)))
1540 return;
c8e55f36 1541
051e1850 1542 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1543 worker->flags |= WORKER_IDLE;
bd7bdd43 1544 pool->nr_idle++;
e22bee78 1545 worker->last_active = jiffies;
c8e55f36
TH
1546
1547 /* idle_list is LIFO */
bd7bdd43 1548 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1549
628c78e7
TH
1550 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1551 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1552
544ecf31 1553 /*
706026c2 1554 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1555 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1556 * nr_running, the warning may trigger spuriously. Check iff
1557 * unbind is not in progress.
544ecf31 1558 */
24647570 1559 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1560 pool->nr_workers == pool->nr_idle &&
e19e397a 1561 atomic_read(&pool->nr_running));
c8e55f36
TH
1562}
1563
1564/**
1565 * worker_leave_idle - leave idle state
1566 * @worker: worker which is leaving idle state
1567 *
1568 * @worker is leaving idle state. Update stats.
1569 *
1570 * LOCKING:
d565ed63 1571 * spin_lock_irq(pool->lock).
c8e55f36
TH
1572 */
1573static void worker_leave_idle(struct worker *worker)
1574{
bd7bdd43 1575 struct worker_pool *pool = worker->pool;
c8e55f36 1576
6183c009
TH
1577 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1578 return;
d302f017 1579 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1580 pool->nr_idle--;
c8e55f36
TH
1581 list_del_init(&worker->entry);
1582}
1583
f7537df5 1584static struct worker *alloc_worker(int node)
c34056a3
TH
1585{
1586 struct worker *worker;
1587
f7537df5 1588 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1589 if (worker) {
1590 INIT_LIST_HEAD(&worker->entry);
affee4b2 1591 INIT_LIST_HEAD(&worker->scheduled);
da028469 1592 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1593 /* on creation a worker is in !idle && prep state */
1594 worker->flags = WORKER_PREP;
c8e55f36 1595 }
c34056a3
TH
1596 return worker;
1597}
1598
4736cbf7
LJ
1599/**
1600 * worker_attach_to_pool() - attach a worker to a pool
1601 * @worker: worker to be attached
1602 * @pool: the target pool
1603 *
1604 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1605 * cpu-binding of @worker are kept coordinated with the pool across
1606 * cpu-[un]hotplugs.
1607 */
1608static void worker_attach_to_pool(struct worker *worker,
1609 struct worker_pool *pool)
1610{
1611 mutex_lock(&pool->attach_mutex);
1612
1613 /*
1614 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1615 * online CPUs. It'll be re-applied when any of the CPUs come up.
1616 */
1617 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1618
1619 /*
1620 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1621 * stable across this function. See the comments above the
1622 * flag definition for details.
1623 */
1624 if (pool->flags & POOL_DISASSOCIATED)
1625 worker->flags |= WORKER_UNBOUND;
1626
1627 list_add_tail(&worker->node, &pool->workers);
1628
1629 mutex_unlock(&pool->attach_mutex);
1630}
1631
60f5a4bc
LJ
1632/**
1633 * worker_detach_from_pool() - detach a worker from its pool
1634 * @worker: worker which is attached to its pool
1635 * @pool: the pool @worker is attached to
1636 *
4736cbf7
LJ
1637 * Undo the attaching which had been done in worker_attach_to_pool(). The
1638 * caller worker shouldn't access to the pool after detached except it has
1639 * other reference to the pool.
60f5a4bc
LJ
1640 */
1641static void worker_detach_from_pool(struct worker *worker,
1642 struct worker_pool *pool)
1643{
1644 struct completion *detach_completion = NULL;
1645
92f9c5c4 1646 mutex_lock(&pool->attach_mutex);
da028469
LJ
1647 list_del(&worker->node);
1648 if (list_empty(&pool->workers))
60f5a4bc 1649 detach_completion = pool->detach_completion;
92f9c5c4 1650 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1651
b62c0751
LJ
1652 /* clear leftover flags without pool->lock after it is detached */
1653 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1654
60f5a4bc
LJ
1655 if (detach_completion)
1656 complete(detach_completion);
1657}
1658
c34056a3
TH
1659/**
1660 * create_worker - create a new workqueue worker
63d95a91 1661 * @pool: pool the new worker will belong to
c34056a3 1662 *
051e1850 1663 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1664 *
1665 * CONTEXT:
1666 * Might sleep. Does GFP_KERNEL allocations.
1667 *
d185af30 1668 * Return:
c34056a3
TH
1669 * Pointer to the newly created worker.
1670 */
bc2ae0f5 1671static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1672{
c34056a3 1673 struct worker *worker = NULL;
f3421797 1674 int id = -1;
e3c916a4 1675 char id_buf[16];
c34056a3 1676
7cda9aae
LJ
1677 /* ID is needed to determine kthread name */
1678 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1679 if (id < 0)
1680 goto fail;
c34056a3 1681
f7537df5 1682 worker = alloc_worker(pool->node);
c34056a3
TH
1683 if (!worker)
1684 goto fail;
1685
bd7bdd43 1686 worker->pool = pool;
c34056a3
TH
1687 worker->id = id;
1688
29c91e99 1689 if (pool->cpu >= 0)
e3c916a4
TH
1690 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1691 pool->attrs->nice < 0 ? "H" : "");
f3421797 1692 else
e3c916a4
TH
1693 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1694
f3f90ad4 1695 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1696 "kworker/%s", id_buf);
c34056a3
TH
1697 if (IS_ERR(worker->task))
1698 goto fail;
1699
91151228
ON
1700 set_user_nice(worker->task, pool->attrs->nice);
1701
1702 /* prevent userland from meddling with cpumask of workqueue workers */
1703 worker->task->flags |= PF_NO_SETAFFINITY;
1704
da028469 1705 /* successful, attach the worker to the pool */
4736cbf7 1706 worker_attach_to_pool(worker, pool);
822d8405 1707
051e1850
LJ
1708 /* start the newly created worker */
1709 spin_lock_irq(&pool->lock);
1710 worker->pool->nr_workers++;
1711 worker_enter_idle(worker);
1712 wake_up_process(worker->task);
1713 spin_unlock_irq(&pool->lock);
1714
c34056a3 1715 return worker;
822d8405 1716
c34056a3 1717fail:
9625ab17 1718 if (id >= 0)
7cda9aae 1719 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1720 kfree(worker);
1721 return NULL;
1722}
1723
c34056a3
TH
1724/**
1725 * destroy_worker - destroy a workqueue worker
1726 * @worker: worker to be destroyed
1727 *
73eb7fe7
LJ
1728 * Destroy @worker and adjust @pool stats accordingly. The worker should
1729 * be idle.
c8e55f36
TH
1730 *
1731 * CONTEXT:
60f5a4bc 1732 * spin_lock_irq(pool->lock).
c34056a3
TH
1733 */
1734static void destroy_worker(struct worker *worker)
1735{
bd7bdd43 1736 struct worker_pool *pool = worker->pool;
c34056a3 1737
cd549687
TH
1738 lockdep_assert_held(&pool->lock);
1739
c34056a3 1740 /* sanity check frenzy */
6183c009 1741 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1742 WARN_ON(!list_empty(&worker->scheduled)) ||
1743 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1744 return;
c34056a3 1745
73eb7fe7
LJ
1746 pool->nr_workers--;
1747 pool->nr_idle--;
5bdfff96 1748
c8e55f36 1749 list_del_init(&worker->entry);
cb444766 1750 worker->flags |= WORKER_DIE;
60f5a4bc 1751 wake_up_process(worker->task);
c34056a3
TH
1752}
1753
63d95a91 1754static void idle_worker_timeout(unsigned long __pool)
e22bee78 1755{
63d95a91 1756 struct worker_pool *pool = (void *)__pool;
e22bee78 1757
d565ed63 1758 spin_lock_irq(&pool->lock);
e22bee78 1759
3347fc9f 1760 while (too_many_workers(pool)) {
e22bee78
TH
1761 struct worker *worker;
1762 unsigned long expires;
1763
1764 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1765 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1766 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1767
3347fc9f 1768 if (time_before(jiffies, expires)) {
63d95a91 1769 mod_timer(&pool->idle_timer, expires);
3347fc9f 1770 break;
d5abe669 1771 }
3347fc9f
LJ
1772
1773 destroy_worker(worker);
e22bee78
TH
1774 }
1775
d565ed63 1776 spin_unlock_irq(&pool->lock);
e22bee78 1777}
d5abe669 1778
493a1724 1779static void send_mayday(struct work_struct *work)
e22bee78 1780{
112202d9
TH
1781 struct pool_workqueue *pwq = get_work_pwq(work);
1782 struct workqueue_struct *wq = pwq->wq;
493a1724 1783
2e109a28 1784 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1785
493008a8 1786 if (!wq->rescuer)
493a1724 1787 return;
e22bee78
TH
1788
1789 /* mayday mayday mayday */
493a1724 1790 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1791 /*
1792 * If @pwq is for an unbound wq, its base ref may be put at
1793 * any time due to an attribute change. Pin @pwq until the
1794 * rescuer is done with it.
1795 */
1796 get_pwq(pwq);
493a1724 1797 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1798 wake_up_process(wq->rescuer->task);
493a1724 1799 }
e22bee78
TH
1800}
1801
706026c2 1802static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1803{
63d95a91 1804 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1805 struct work_struct *work;
1806
2e109a28 1807 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1808 spin_lock(&pool->lock);
e22bee78 1809
63d95a91 1810 if (need_to_create_worker(pool)) {
e22bee78
TH
1811 /*
1812 * We've been trying to create a new worker but
1813 * haven't been successful. We might be hitting an
1814 * allocation deadlock. Send distress signals to
1815 * rescuers.
1816 */
63d95a91 1817 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1818 send_mayday(work);
1da177e4 1819 }
e22bee78 1820
493a1724 1821 spin_unlock(&pool->lock);
2e109a28 1822 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1823
63d95a91 1824 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1825}
1826
e22bee78
TH
1827/**
1828 * maybe_create_worker - create a new worker if necessary
63d95a91 1829 * @pool: pool to create a new worker for
e22bee78 1830 *
63d95a91 1831 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1832 * have at least one idle worker on return from this function. If
1833 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1834 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1835 * possible allocation deadlock.
1836 *
c5aa87bb
TH
1837 * On return, need_to_create_worker() is guaranteed to be %false and
1838 * may_start_working() %true.
e22bee78
TH
1839 *
1840 * LOCKING:
d565ed63 1841 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1842 * multiple times. Does GFP_KERNEL allocations. Called only from
1843 * manager.
1844 *
d185af30 1845 * Return:
c5aa87bb 1846 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1847 * otherwise.
1848 */
63d95a91 1849static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1850__releases(&pool->lock)
1851__acquires(&pool->lock)
1da177e4 1852{
63d95a91 1853 if (!need_to_create_worker(pool))
e22bee78
TH
1854 return false;
1855restart:
d565ed63 1856 spin_unlock_irq(&pool->lock);
9f9c2364 1857
e22bee78 1858 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1859 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1860
1861 while (true) {
051e1850 1862 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1863 break;
1da177e4 1864
e212f361 1865 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1866
63d95a91 1867 if (!need_to_create_worker(pool))
e22bee78
TH
1868 break;
1869 }
1870
63d95a91 1871 del_timer_sync(&pool->mayday_timer);
d565ed63 1872 spin_lock_irq(&pool->lock);
051e1850
LJ
1873 /*
1874 * This is necessary even after a new worker was just successfully
1875 * created as @pool->lock was dropped and the new worker might have
1876 * already become busy.
1877 */
63d95a91 1878 if (need_to_create_worker(pool))
e22bee78
TH
1879 goto restart;
1880 return true;
1881}
1882
73f53c4a 1883/**
e22bee78
TH
1884 * manage_workers - manage worker pool
1885 * @worker: self
73f53c4a 1886 *
706026c2 1887 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1888 * to. At any given time, there can be only zero or one manager per
706026c2 1889 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1890 *
1891 * The caller can safely start processing works on false return. On
1892 * true return, it's guaranteed that need_to_create_worker() is false
1893 * and may_start_working() is true.
73f53c4a
TH
1894 *
1895 * CONTEXT:
d565ed63 1896 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1897 * multiple times. Does GFP_KERNEL allocations.
1898 *
d185af30 1899 * Return:
2d498db9
L
1900 * %false if the pool don't need management and the caller can safely start
1901 * processing works, %true indicates that the function released pool->lock
1902 * and reacquired it to perform some management function and that the
1903 * conditions that the caller verified while holding the lock before
1904 * calling the function might no longer be true.
73f53c4a 1905 */
e22bee78 1906static bool manage_workers(struct worker *worker)
73f53c4a 1907{
63d95a91 1908 struct worker_pool *pool = worker->pool;
e22bee78 1909 bool ret = false;
73f53c4a 1910
bc3a1afc 1911 /*
bc3a1afc
TH
1912 * Anyone who successfully grabs manager_arb wins the arbitration
1913 * and becomes the manager. mutex_trylock() on pool->manager_arb
1914 * failure while holding pool->lock reliably indicates that someone
1915 * else is managing the pool and the worker which failed trylock
1916 * can proceed to executing work items. This means that anyone
1917 * grabbing manager_arb is responsible for actually performing
1918 * manager duties. If manager_arb is grabbed and released without
1919 * actual management, the pool may stall indefinitely.
bc3a1afc 1920 */
34a06bd6 1921 if (!mutex_trylock(&pool->manager_arb))
e22bee78 1922 return ret;
1e19ffc6 1923
63d95a91 1924 ret |= maybe_create_worker(pool);
e22bee78 1925
34a06bd6 1926 mutex_unlock(&pool->manager_arb);
e22bee78 1927 return ret;
73f53c4a
TH
1928}
1929
a62428c0
TH
1930/**
1931 * process_one_work - process single work
c34056a3 1932 * @worker: self
a62428c0
TH
1933 * @work: work to process
1934 *
1935 * Process @work. This function contains all the logics necessary to
1936 * process a single work including synchronization against and
1937 * interaction with other workers on the same cpu, queueing and
1938 * flushing. As long as context requirement is met, any worker can
1939 * call this function to process a work.
1940 *
1941 * CONTEXT:
d565ed63 1942 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 1943 */
c34056a3 1944static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
1945__releases(&pool->lock)
1946__acquires(&pool->lock)
a62428c0 1947{
112202d9 1948 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 1949 struct worker_pool *pool = worker->pool;
112202d9 1950 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 1951 int work_color;
7e11629d 1952 struct worker *collision;
a62428c0
TH
1953#ifdef CONFIG_LOCKDEP
1954 /*
1955 * It is permissible to free the struct work_struct from
1956 * inside the function that is called from it, this we need to
1957 * take into account for lockdep too. To avoid bogus "held
1958 * lock freed" warnings as well as problems when looking into
1959 * work->lockdep_map, make a copy and use that here.
1960 */
4d82a1de
PZ
1961 struct lockdep_map lockdep_map;
1962
1963 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1964#endif
807407c0 1965 /* ensure we're on the correct CPU */
85327af6 1966 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 1967 raw_smp_processor_id() != pool->cpu);
25511a47 1968
7e11629d
TH
1969 /*
1970 * A single work shouldn't be executed concurrently by
1971 * multiple workers on a single cpu. Check whether anyone is
1972 * already processing the work. If so, defer the work to the
1973 * currently executing one.
1974 */
c9e7cf27 1975 collision = find_worker_executing_work(pool, work);
7e11629d
TH
1976 if (unlikely(collision)) {
1977 move_linked_works(work, &collision->scheduled, NULL);
1978 return;
1979 }
1980
8930caba 1981 /* claim and dequeue */
a62428c0 1982 debug_work_deactivate(work);
c9e7cf27 1983 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 1984 worker->current_work = work;
a2c1c57b 1985 worker->current_func = work->func;
112202d9 1986 worker->current_pwq = pwq;
73f53c4a 1987 work_color = get_work_color(work);
7a22ad75 1988
a62428c0
TH
1989 list_del_init(&work->entry);
1990
fb0e7beb 1991 /*
228f1d00
LJ
1992 * CPU intensive works don't participate in concurrency management.
1993 * They're the scheduler's responsibility. This takes @worker out
1994 * of concurrency management and the next code block will chain
1995 * execution of the pending work items.
fb0e7beb
TH
1996 */
1997 if (unlikely(cpu_intensive))
228f1d00 1998 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 1999
974271c4 2000 /*
a489a03e
LJ
2001 * Wake up another worker if necessary. The condition is always
2002 * false for normal per-cpu workers since nr_running would always
2003 * be >= 1 at this point. This is used to chain execution of the
2004 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2005 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2006 */
a489a03e 2007 if (need_more_worker(pool))
63d95a91 2008 wake_up_worker(pool);
974271c4 2009
8930caba 2010 /*
7c3eed5c 2011 * Record the last pool and clear PENDING which should be the last
d565ed63 2012 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2013 * PENDING and queued state changes happen together while IRQ is
2014 * disabled.
8930caba 2015 */
7c3eed5c 2016 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2017
d565ed63 2018 spin_unlock_irq(&pool->lock);
a62428c0 2019
112202d9 2020 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2021 lock_map_acquire(&lockdep_map);
e36c886a 2022 trace_workqueue_execute_start(work);
a2c1c57b 2023 worker->current_func(work);
e36c886a
AV
2024 /*
2025 * While we must be careful to not use "work" after this, the trace
2026 * point will only record its address.
2027 */
2028 trace_workqueue_execute_end(work);
a62428c0 2029 lock_map_release(&lockdep_map);
112202d9 2030 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2031
2032 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2033 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2034 " last function: %pf\n",
a2c1c57b
TH
2035 current->comm, preempt_count(), task_pid_nr(current),
2036 worker->current_func);
a62428c0
TH
2037 debug_show_held_locks(current);
2038 dump_stack();
2039 }
2040
b22ce278
TH
2041 /*
2042 * The following prevents a kworker from hogging CPU on !PREEMPT
2043 * kernels, where a requeueing work item waiting for something to
2044 * happen could deadlock with stop_machine as such work item could
2045 * indefinitely requeue itself while all other CPUs are trapped in
2046 * stop_machine.
2047 */
2048 cond_resched();
2049
d565ed63 2050 spin_lock_irq(&pool->lock);
a62428c0 2051
fb0e7beb
TH
2052 /* clear cpu intensive status */
2053 if (unlikely(cpu_intensive))
2054 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2055
a62428c0 2056 /* we're done with it, release */
42f8570f 2057 hash_del(&worker->hentry);
c34056a3 2058 worker->current_work = NULL;
a2c1c57b 2059 worker->current_func = NULL;
112202d9 2060 worker->current_pwq = NULL;
3d1cb205 2061 worker->desc_valid = false;
112202d9 2062 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2063}
2064
affee4b2
TH
2065/**
2066 * process_scheduled_works - process scheduled works
2067 * @worker: self
2068 *
2069 * Process all scheduled works. Please note that the scheduled list
2070 * may change while processing a work, so this function repeatedly
2071 * fetches a work from the top and executes it.
2072 *
2073 * CONTEXT:
d565ed63 2074 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2075 * multiple times.
2076 */
2077static void process_scheduled_works(struct worker *worker)
1da177e4 2078{
affee4b2
TH
2079 while (!list_empty(&worker->scheduled)) {
2080 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2081 struct work_struct, entry);
c34056a3 2082 process_one_work(worker, work);
1da177e4 2083 }
1da177e4
LT
2084}
2085
4690c4ab
TH
2086/**
2087 * worker_thread - the worker thread function
c34056a3 2088 * @__worker: self
4690c4ab 2089 *
c5aa87bb
TH
2090 * The worker thread function. All workers belong to a worker_pool -
2091 * either a per-cpu one or dynamic unbound one. These workers process all
2092 * work items regardless of their specific target workqueue. The only
2093 * exception is work items which belong to workqueues with a rescuer which
2094 * will be explained in rescuer_thread().
d185af30
YB
2095 *
2096 * Return: 0
4690c4ab 2097 */
c34056a3 2098static int worker_thread(void *__worker)
1da177e4 2099{
c34056a3 2100 struct worker *worker = __worker;
bd7bdd43 2101 struct worker_pool *pool = worker->pool;
1da177e4 2102
e22bee78
TH
2103 /* tell the scheduler that this is a workqueue worker */
2104 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2105woke_up:
d565ed63 2106 spin_lock_irq(&pool->lock);
1da177e4 2107
a9ab775b
TH
2108 /* am I supposed to die? */
2109 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2110 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2111 WARN_ON_ONCE(!list_empty(&worker->entry));
2112 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2113
2114 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2115 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2116 worker_detach_from_pool(worker, pool);
2117 kfree(worker);
a9ab775b 2118 return 0;
c8e55f36 2119 }
affee4b2 2120
c8e55f36 2121 worker_leave_idle(worker);
db7bccf4 2122recheck:
e22bee78 2123 /* no more worker necessary? */
63d95a91 2124 if (!need_more_worker(pool))
e22bee78
TH
2125 goto sleep;
2126
2127 /* do we need to manage? */
63d95a91 2128 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2129 goto recheck;
2130
c8e55f36
TH
2131 /*
2132 * ->scheduled list can only be filled while a worker is
2133 * preparing to process a work or actually processing it.
2134 * Make sure nobody diddled with it while I was sleeping.
2135 */
6183c009 2136 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2137
e22bee78 2138 /*
a9ab775b
TH
2139 * Finish PREP stage. We're guaranteed to have at least one idle
2140 * worker or that someone else has already assumed the manager
2141 * role. This is where @worker starts participating in concurrency
2142 * management if applicable and concurrency management is restored
2143 * after being rebound. See rebind_workers() for details.
e22bee78 2144 */
a9ab775b 2145 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2146
2147 do {
c8e55f36 2148 struct work_struct *work =
bd7bdd43 2149 list_first_entry(&pool->worklist,
c8e55f36
TH
2150 struct work_struct, entry);
2151
2152 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2153 /* optimization path, not strictly necessary */
2154 process_one_work(worker, work);
2155 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2156 process_scheduled_works(worker);
c8e55f36
TH
2157 } else {
2158 move_linked_works(work, &worker->scheduled, NULL);
2159 process_scheduled_works(worker);
affee4b2 2160 }
63d95a91 2161 } while (keep_working(pool));
e22bee78 2162
228f1d00 2163 worker_set_flags(worker, WORKER_PREP);
d313dd85 2164sleep:
c8e55f36 2165 /*
d565ed63
TH
2166 * pool->lock is held and there's no work to process and no need to
2167 * manage, sleep. Workers are woken up only while holding
2168 * pool->lock or from local cpu, so setting the current state
2169 * before releasing pool->lock is enough to prevent losing any
2170 * event.
c8e55f36
TH
2171 */
2172 worker_enter_idle(worker);
2173 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2174 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2175 schedule();
2176 goto woke_up;
1da177e4
LT
2177}
2178
e22bee78
TH
2179/**
2180 * rescuer_thread - the rescuer thread function
111c225a 2181 * @__rescuer: self
e22bee78
TH
2182 *
2183 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2184 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2185 *
706026c2 2186 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2187 * worker which uses GFP_KERNEL allocation which has slight chance of
2188 * developing into deadlock if some works currently on the same queue
2189 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2190 * the problem rescuer solves.
2191 *
706026c2
TH
2192 * When such condition is possible, the pool summons rescuers of all
2193 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2194 * those works so that forward progress can be guaranteed.
2195 *
2196 * This should happen rarely.
d185af30
YB
2197 *
2198 * Return: 0
e22bee78 2199 */
111c225a 2200static int rescuer_thread(void *__rescuer)
e22bee78 2201{
111c225a
TH
2202 struct worker *rescuer = __rescuer;
2203 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2204 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2205 bool should_stop;
e22bee78
TH
2206
2207 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2208
2209 /*
2210 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2211 * doesn't participate in concurrency management.
2212 */
2213 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2214repeat:
2215 set_current_state(TASK_INTERRUPTIBLE);
2216
4d595b86
LJ
2217 /*
2218 * By the time the rescuer is requested to stop, the workqueue
2219 * shouldn't have any work pending, but @wq->maydays may still have
2220 * pwq(s) queued. This can happen by non-rescuer workers consuming
2221 * all the work items before the rescuer got to them. Go through
2222 * @wq->maydays processing before acting on should_stop so that the
2223 * list is always empty on exit.
2224 */
2225 should_stop = kthread_should_stop();
e22bee78 2226
493a1724 2227 /* see whether any pwq is asking for help */
2e109a28 2228 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2229
2230 while (!list_empty(&wq->maydays)) {
2231 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2232 struct pool_workqueue, mayday_node);
112202d9 2233 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2234 struct work_struct *work, *n;
2235
2236 __set_current_state(TASK_RUNNING);
493a1724
TH
2237 list_del_init(&pwq->mayday_node);
2238
2e109a28 2239 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2240
51697d39
LJ
2241 worker_attach_to_pool(rescuer, pool);
2242
2243 spin_lock_irq(&pool->lock);
b3104104 2244 rescuer->pool = pool;
e22bee78
TH
2245
2246 /*
2247 * Slurp in all works issued via this workqueue and
2248 * process'em.
2249 */
6183c009 2250 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2251 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2252 if (get_work_pwq(work) == pwq)
e22bee78
TH
2253 move_linked_works(work, scheduled, &n);
2254
2255 process_scheduled_works(rescuer);
7576958a 2256
77668c8b
LJ
2257 /*
2258 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2259 * go away while we're still attached to it.
77668c8b
LJ
2260 */
2261 put_pwq(pwq);
2262
7576958a 2263 /*
d8ca83e6 2264 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2265 * regular worker; otherwise, we end up with 0 concurrency
2266 * and stalling the execution.
2267 */
d8ca83e6 2268 if (need_more_worker(pool))
63d95a91 2269 wake_up_worker(pool);
7576958a 2270
b3104104 2271 rescuer->pool = NULL;
13b1d625
LJ
2272 spin_unlock_irq(&pool->lock);
2273
2274 worker_detach_from_pool(rescuer, pool);
2275
2276 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2277 }
2278
2e109a28 2279 spin_unlock_irq(&wq_mayday_lock);
493a1724 2280
4d595b86
LJ
2281 if (should_stop) {
2282 __set_current_state(TASK_RUNNING);
2283 rescuer->task->flags &= ~PF_WQ_WORKER;
2284 return 0;
2285 }
2286
111c225a
TH
2287 /* rescuers should never participate in concurrency management */
2288 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2289 schedule();
2290 goto repeat;
1da177e4
LT
2291}
2292
fc2e4d70
ON
2293struct wq_barrier {
2294 struct work_struct work;
2295 struct completion done;
2296};
2297
2298static void wq_barrier_func(struct work_struct *work)
2299{
2300 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2301 complete(&barr->done);
2302}
2303
4690c4ab
TH
2304/**
2305 * insert_wq_barrier - insert a barrier work
112202d9 2306 * @pwq: pwq to insert barrier into
4690c4ab 2307 * @barr: wq_barrier to insert
affee4b2
TH
2308 * @target: target work to attach @barr to
2309 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2310 *
affee4b2
TH
2311 * @barr is linked to @target such that @barr is completed only after
2312 * @target finishes execution. Please note that the ordering
2313 * guarantee is observed only with respect to @target and on the local
2314 * cpu.
2315 *
2316 * Currently, a queued barrier can't be canceled. This is because
2317 * try_to_grab_pending() can't determine whether the work to be
2318 * grabbed is at the head of the queue and thus can't clear LINKED
2319 * flag of the previous work while there must be a valid next work
2320 * after a work with LINKED flag set.
2321 *
2322 * Note that when @worker is non-NULL, @target may be modified
112202d9 2323 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2324 *
2325 * CONTEXT:
d565ed63 2326 * spin_lock_irq(pool->lock).
4690c4ab 2327 */
112202d9 2328static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2329 struct wq_barrier *barr,
2330 struct work_struct *target, struct worker *worker)
fc2e4d70 2331{
affee4b2
TH
2332 struct list_head *head;
2333 unsigned int linked = 0;
2334
dc186ad7 2335 /*
d565ed63 2336 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2337 * as we know for sure that this will not trigger any of the
2338 * checks and call back into the fixup functions where we
2339 * might deadlock.
2340 */
ca1cab37 2341 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2342 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2343 init_completion(&barr->done);
83c22520 2344
affee4b2
TH
2345 /*
2346 * If @target is currently being executed, schedule the
2347 * barrier to the worker; otherwise, put it after @target.
2348 */
2349 if (worker)
2350 head = worker->scheduled.next;
2351 else {
2352 unsigned long *bits = work_data_bits(target);
2353
2354 head = target->entry.next;
2355 /* there can already be other linked works, inherit and set */
2356 linked = *bits & WORK_STRUCT_LINKED;
2357 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2358 }
2359
dc186ad7 2360 debug_work_activate(&barr->work);
112202d9 2361 insert_work(pwq, &barr->work, head,
affee4b2 2362 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2363}
2364
73f53c4a 2365/**
112202d9 2366 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2367 * @wq: workqueue being flushed
2368 * @flush_color: new flush color, < 0 for no-op
2369 * @work_color: new work color, < 0 for no-op
2370 *
112202d9 2371 * Prepare pwqs for workqueue flushing.
73f53c4a 2372 *
112202d9
TH
2373 * If @flush_color is non-negative, flush_color on all pwqs should be
2374 * -1. If no pwq has in-flight commands at the specified color, all
2375 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2376 * has in flight commands, its pwq->flush_color is set to
2377 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2378 * wakeup logic is armed and %true is returned.
2379 *
2380 * The caller should have initialized @wq->first_flusher prior to
2381 * calling this function with non-negative @flush_color. If
2382 * @flush_color is negative, no flush color update is done and %false
2383 * is returned.
2384 *
112202d9 2385 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2386 * work_color which is previous to @work_color and all will be
2387 * advanced to @work_color.
2388 *
2389 * CONTEXT:
3c25a55d 2390 * mutex_lock(wq->mutex).
73f53c4a 2391 *
d185af30 2392 * Return:
73f53c4a
TH
2393 * %true if @flush_color >= 0 and there's something to flush. %false
2394 * otherwise.
2395 */
112202d9 2396static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2397 int flush_color, int work_color)
1da177e4 2398{
73f53c4a 2399 bool wait = false;
49e3cf44 2400 struct pool_workqueue *pwq;
1da177e4 2401
73f53c4a 2402 if (flush_color >= 0) {
6183c009 2403 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2404 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2405 }
2355b70f 2406
49e3cf44 2407 for_each_pwq(pwq, wq) {
112202d9 2408 struct worker_pool *pool = pwq->pool;
fc2e4d70 2409
b09f4fd3 2410 spin_lock_irq(&pool->lock);
83c22520 2411
73f53c4a 2412 if (flush_color >= 0) {
6183c009 2413 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2414
112202d9
TH
2415 if (pwq->nr_in_flight[flush_color]) {
2416 pwq->flush_color = flush_color;
2417 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2418 wait = true;
2419 }
2420 }
1da177e4 2421
73f53c4a 2422 if (work_color >= 0) {
6183c009 2423 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2424 pwq->work_color = work_color;
73f53c4a 2425 }
1da177e4 2426
b09f4fd3 2427 spin_unlock_irq(&pool->lock);
1da177e4 2428 }
2355b70f 2429
112202d9 2430 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2431 complete(&wq->first_flusher->done);
14441960 2432
73f53c4a 2433 return wait;
1da177e4
LT
2434}
2435
0fcb78c2 2436/**
1da177e4 2437 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2438 * @wq: workqueue to flush
1da177e4 2439 *
c5aa87bb
TH
2440 * This function sleeps until all work items which were queued on entry
2441 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2442 */
7ad5b3a5 2443void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2444{
73f53c4a
TH
2445 struct wq_flusher this_flusher = {
2446 .list = LIST_HEAD_INIT(this_flusher.list),
2447 .flush_color = -1,
2448 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2449 };
2450 int next_color;
1da177e4 2451
3295f0ef
IM
2452 lock_map_acquire(&wq->lockdep_map);
2453 lock_map_release(&wq->lockdep_map);
73f53c4a 2454
3c25a55d 2455 mutex_lock(&wq->mutex);
73f53c4a
TH
2456
2457 /*
2458 * Start-to-wait phase
2459 */
2460 next_color = work_next_color(wq->work_color);
2461
2462 if (next_color != wq->flush_color) {
2463 /*
2464 * Color space is not full. The current work_color
2465 * becomes our flush_color and work_color is advanced
2466 * by one.
2467 */
6183c009 2468 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2469 this_flusher.flush_color = wq->work_color;
2470 wq->work_color = next_color;
2471
2472 if (!wq->first_flusher) {
2473 /* no flush in progress, become the first flusher */
6183c009 2474 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2475
2476 wq->first_flusher = &this_flusher;
2477
112202d9 2478 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2479 wq->work_color)) {
2480 /* nothing to flush, done */
2481 wq->flush_color = next_color;
2482 wq->first_flusher = NULL;
2483 goto out_unlock;
2484 }
2485 } else {
2486 /* wait in queue */
6183c009 2487 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2488 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2489 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2490 }
2491 } else {
2492 /*
2493 * Oops, color space is full, wait on overflow queue.
2494 * The next flush completion will assign us
2495 * flush_color and transfer to flusher_queue.
2496 */
2497 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2498 }
2499
3c25a55d 2500 mutex_unlock(&wq->mutex);
73f53c4a
TH
2501
2502 wait_for_completion(&this_flusher.done);
2503
2504 /*
2505 * Wake-up-and-cascade phase
2506 *
2507 * First flushers are responsible for cascading flushes and
2508 * handling overflow. Non-first flushers can simply return.
2509 */
2510 if (wq->first_flusher != &this_flusher)
2511 return;
2512
3c25a55d 2513 mutex_lock(&wq->mutex);
73f53c4a 2514
4ce48b37
TH
2515 /* we might have raced, check again with mutex held */
2516 if (wq->first_flusher != &this_flusher)
2517 goto out_unlock;
2518
73f53c4a
TH
2519 wq->first_flusher = NULL;
2520
6183c009
TH
2521 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2522 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2523
2524 while (true) {
2525 struct wq_flusher *next, *tmp;
2526
2527 /* complete all the flushers sharing the current flush color */
2528 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2529 if (next->flush_color != wq->flush_color)
2530 break;
2531 list_del_init(&next->list);
2532 complete(&next->done);
2533 }
2534
6183c009
TH
2535 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2536 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2537
2538 /* this flush_color is finished, advance by one */
2539 wq->flush_color = work_next_color(wq->flush_color);
2540
2541 /* one color has been freed, handle overflow queue */
2542 if (!list_empty(&wq->flusher_overflow)) {
2543 /*
2544 * Assign the same color to all overflowed
2545 * flushers, advance work_color and append to
2546 * flusher_queue. This is the start-to-wait
2547 * phase for these overflowed flushers.
2548 */
2549 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2550 tmp->flush_color = wq->work_color;
2551
2552 wq->work_color = work_next_color(wq->work_color);
2553
2554 list_splice_tail_init(&wq->flusher_overflow,
2555 &wq->flusher_queue);
112202d9 2556 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2557 }
2558
2559 if (list_empty(&wq->flusher_queue)) {
6183c009 2560 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2561 break;
2562 }
2563
2564 /*
2565 * Need to flush more colors. Make the next flusher
112202d9 2566 * the new first flusher and arm pwqs.
73f53c4a 2567 */
6183c009
TH
2568 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2569 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2570
2571 list_del_init(&next->list);
2572 wq->first_flusher = next;
2573
112202d9 2574 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2575 break;
2576
2577 /*
2578 * Meh... this color is already done, clear first
2579 * flusher and repeat cascading.
2580 */
2581 wq->first_flusher = NULL;
2582 }
2583
2584out_unlock:
3c25a55d 2585 mutex_unlock(&wq->mutex);
1da177e4 2586}
ae90dd5d 2587EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2588
9c5a2ba7
TH
2589/**
2590 * drain_workqueue - drain a workqueue
2591 * @wq: workqueue to drain
2592 *
2593 * Wait until the workqueue becomes empty. While draining is in progress,
2594 * only chain queueing is allowed. IOW, only currently pending or running
2595 * work items on @wq can queue further work items on it. @wq is flushed
2596 * repeatedly until it becomes empty. The number of flushing is detemined
2597 * by the depth of chaining and should be relatively short. Whine if it
2598 * takes too long.
2599 */
2600void drain_workqueue(struct workqueue_struct *wq)
2601{
2602 unsigned int flush_cnt = 0;
49e3cf44 2603 struct pool_workqueue *pwq;
9c5a2ba7
TH
2604
2605 /*
2606 * __queue_work() needs to test whether there are drainers, is much
2607 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2608 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2609 */
87fc741e 2610 mutex_lock(&wq->mutex);
9c5a2ba7 2611 if (!wq->nr_drainers++)
618b01eb 2612 wq->flags |= __WQ_DRAINING;
87fc741e 2613 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2614reflush:
2615 flush_workqueue(wq);
2616
b09f4fd3 2617 mutex_lock(&wq->mutex);
76af4d93 2618
49e3cf44 2619 for_each_pwq(pwq, wq) {
fa2563e4 2620 bool drained;
9c5a2ba7 2621
b09f4fd3 2622 spin_lock_irq(&pwq->pool->lock);
112202d9 2623 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2624 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2625
2626 if (drained)
9c5a2ba7
TH
2627 continue;
2628
2629 if (++flush_cnt == 10 ||
2630 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2631 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2632 wq->name, flush_cnt);
76af4d93 2633
b09f4fd3 2634 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2635 goto reflush;
2636 }
2637
9c5a2ba7 2638 if (!--wq->nr_drainers)
618b01eb 2639 wq->flags &= ~__WQ_DRAINING;
87fc741e 2640 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2641}
2642EXPORT_SYMBOL_GPL(drain_workqueue);
2643
606a5020 2644static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2645{
affee4b2 2646 struct worker *worker = NULL;
c9e7cf27 2647 struct worker_pool *pool;
112202d9 2648 struct pool_workqueue *pwq;
db700897
ON
2649
2650 might_sleep();
fa1b54e6
TH
2651
2652 local_irq_disable();
c9e7cf27 2653 pool = get_work_pool(work);
fa1b54e6
TH
2654 if (!pool) {
2655 local_irq_enable();
baf59022 2656 return false;
fa1b54e6 2657 }
db700897 2658
fa1b54e6 2659 spin_lock(&pool->lock);
0b3dae68 2660 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2661 pwq = get_work_pwq(work);
2662 if (pwq) {
2663 if (unlikely(pwq->pool != pool))
4690c4ab 2664 goto already_gone;
606a5020 2665 } else {
c9e7cf27 2666 worker = find_worker_executing_work(pool, work);
affee4b2 2667 if (!worker)
4690c4ab 2668 goto already_gone;
112202d9 2669 pwq = worker->current_pwq;
606a5020 2670 }
db700897 2671
112202d9 2672 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2673 spin_unlock_irq(&pool->lock);
7a22ad75 2674
e159489b
TH
2675 /*
2676 * If @max_active is 1 or rescuer is in use, flushing another work
2677 * item on the same workqueue may lead to deadlock. Make sure the
2678 * flusher is not running on the same workqueue by verifying write
2679 * access.
2680 */
493008a8 2681 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2682 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2683 else
112202d9
TH
2684 lock_map_acquire_read(&pwq->wq->lockdep_map);
2685 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2686
401a8d04 2687 return true;
4690c4ab 2688already_gone:
d565ed63 2689 spin_unlock_irq(&pool->lock);
401a8d04 2690 return false;
db700897 2691}
baf59022
TH
2692
2693/**
2694 * flush_work - wait for a work to finish executing the last queueing instance
2695 * @work: the work to flush
2696 *
606a5020
TH
2697 * Wait until @work has finished execution. @work is guaranteed to be idle
2698 * on return if it hasn't been requeued since flush started.
baf59022 2699 *
d185af30 2700 * Return:
baf59022
TH
2701 * %true if flush_work() waited for the work to finish execution,
2702 * %false if it was already idle.
2703 */
2704bool flush_work(struct work_struct *work)
2705{
12997d1a
BH
2706 struct wq_barrier barr;
2707
0976dfc1
SB
2708 lock_map_acquire(&work->lockdep_map);
2709 lock_map_release(&work->lockdep_map);
2710
12997d1a
BH
2711 if (start_flush_work(work, &barr)) {
2712 wait_for_completion(&barr.done);
2713 destroy_work_on_stack(&barr.work);
2714 return true;
2715 } else {
2716 return false;
2717 }
6e84d644 2718}
606a5020 2719EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2720
36e227d2 2721static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2722{
bbb68dfa 2723 unsigned long flags;
1f1f642e
ON
2724 int ret;
2725
2726 do {
bbb68dfa
TH
2727 ret = try_to_grab_pending(work, is_dwork, &flags);
2728 /*
2729 * If someone else is canceling, wait for the same event it
2730 * would be waiting for before retrying.
2731 */
2732 if (unlikely(ret == -ENOENT))
606a5020 2733 flush_work(work);
1f1f642e
ON
2734 } while (unlikely(ret < 0));
2735
bbb68dfa
TH
2736 /* tell other tasks trying to grab @work to back off */
2737 mark_work_canceling(work);
2738 local_irq_restore(flags);
2739
606a5020 2740 flush_work(work);
7a22ad75 2741 clear_work_data(work);
1f1f642e
ON
2742 return ret;
2743}
2744
6e84d644 2745/**
401a8d04
TH
2746 * cancel_work_sync - cancel a work and wait for it to finish
2747 * @work: the work to cancel
6e84d644 2748 *
401a8d04
TH
2749 * Cancel @work and wait for its execution to finish. This function
2750 * can be used even if the work re-queues itself or migrates to
2751 * another workqueue. On return from this function, @work is
2752 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2753 *
401a8d04
TH
2754 * cancel_work_sync(&delayed_work->work) must not be used for
2755 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2756 *
401a8d04 2757 * The caller must ensure that the workqueue on which @work was last
6e84d644 2758 * queued can't be destroyed before this function returns.
401a8d04 2759 *
d185af30 2760 * Return:
401a8d04 2761 * %true if @work was pending, %false otherwise.
6e84d644 2762 */
401a8d04 2763bool cancel_work_sync(struct work_struct *work)
6e84d644 2764{
36e227d2 2765 return __cancel_work_timer(work, false);
b89deed3 2766}
28e53bdd 2767EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2768
6e84d644 2769/**
401a8d04
TH
2770 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2771 * @dwork: the delayed work to flush
6e84d644 2772 *
401a8d04
TH
2773 * Delayed timer is cancelled and the pending work is queued for
2774 * immediate execution. Like flush_work(), this function only
2775 * considers the last queueing instance of @dwork.
1f1f642e 2776 *
d185af30 2777 * Return:
401a8d04
TH
2778 * %true if flush_work() waited for the work to finish execution,
2779 * %false if it was already idle.
6e84d644 2780 */
401a8d04
TH
2781bool flush_delayed_work(struct delayed_work *dwork)
2782{
8930caba 2783 local_irq_disable();
401a8d04 2784 if (del_timer_sync(&dwork->timer))
60c057bc 2785 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2786 local_irq_enable();
401a8d04
TH
2787 return flush_work(&dwork->work);
2788}
2789EXPORT_SYMBOL(flush_delayed_work);
2790
09383498 2791/**
57b30ae7
TH
2792 * cancel_delayed_work - cancel a delayed work
2793 * @dwork: delayed_work to cancel
09383498 2794 *
d185af30
YB
2795 * Kill off a pending delayed_work.
2796 *
2797 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2798 * pending.
2799 *
2800 * Note:
2801 * The work callback function may still be running on return, unless
2802 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2803 * use cancel_delayed_work_sync() to wait on it.
09383498 2804 *
57b30ae7 2805 * This function is safe to call from any context including IRQ handler.
09383498 2806 */
57b30ae7 2807bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2808{
57b30ae7
TH
2809 unsigned long flags;
2810 int ret;
2811
2812 do {
2813 ret = try_to_grab_pending(&dwork->work, true, &flags);
2814 } while (unlikely(ret == -EAGAIN));
2815
2816 if (unlikely(ret < 0))
2817 return false;
2818
7c3eed5c
TH
2819 set_work_pool_and_clear_pending(&dwork->work,
2820 get_work_pool_id(&dwork->work));
57b30ae7 2821 local_irq_restore(flags);
c0158ca6 2822 return ret;
09383498 2823}
57b30ae7 2824EXPORT_SYMBOL(cancel_delayed_work);
09383498 2825
401a8d04
TH
2826/**
2827 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2828 * @dwork: the delayed work cancel
2829 *
2830 * This is cancel_work_sync() for delayed works.
2831 *
d185af30 2832 * Return:
401a8d04
TH
2833 * %true if @dwork was pending, %false otherwise.
2834 */
2835bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2836{
36e227d2 2837 return __cancel_work_timer(&dwork->work, true);
6e84d644 2838}
f5a421a4 2839EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2840
b6136773 2841/**
31ddd871 2842 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2843 * @func: the function to call
b6136773 2844 *
31ddd871
TH
2845 * schedule_on_each_cpu() executes @func on each online CPU using the
2846 * system workqueue and blocks until all CPUs have completed.
b6136773 2847 * schedule_on_each_cpu() is very slow.
31ddd871 2848 *
d185af30 2849 * Return:
31ddd871 2850 * 0 on success, -errno on failure.
b6136773 2851 */
65f27f38 2852int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2853{
2854 int cpu;
38f51568 2855 struct work_struct __percpu *works;
15316ba8 2856
b6136773
AM
2857 works = alloc_percpu(struct work_struct);
2858 if (!works)
15316ba8 2859 return -ENOMEM;
b6136773 2860
93981800
TH
2861 get_online_cpus();
2862
15316ba8 2863 for_each_online_cpu(cpu) {
9bfb1839
IM
2864 struct work_struct *work = per_cpu_ptr(works, cpu);
2865
2866 INIT_WORK(work, func);
b71ab8c2 2867 schedule_work_on(cpu, work);
65a64464 2868 }
93981800
TH
2869
2870 for_each_online_cpu(cpu)
2871 flush_work(per_cpu_ptr(works, cpu));
2872
95402b38 2873 put_online_cpus();
b6136773 2874 free_percpu(works);
15316ba8
CL
2875 return 0;
2876}
2877
eef6a7d5
AS
2878/**
2879 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2880 *
2881 * Forces execution of the kernel-global workqueue and blocks until its
2882 * completion.
2883 *
2884 * Think twice before calling this function! It's very easy to get into
2885 * trouble if you don't take great care. Either of the following situations
2886 * will lead to deadlock:
2887 *
2888 * One of the work items currently on the workqueue needs to acquire
2889 * a lock held by your code or its caller.
2890 *
2891 * Your code is running in the context of a work routine.
2892 *
2893 * They will be detected by lockdep when they occur, but the first might not
2894 * occur very often. It depends on what work items are on the workqueue and
2895 * what locks they need, which you have no control over.
2896 *
2897 * In most situations flushing the entire workqueue is overkill; you merely
2898 * need to know that a particular work item isn't queued and isn't running.
2899 * In such cases you should use cancel_delayed_work_sync() or
2900 * cancel_work_sync() instead.
2901 */
1da177e4
LT
2902void flush_scheduled_work(void)
2903{
d320c038 2904 flush_workqueue(system_wq);
1da177e4 2905}
ae90dd5d 2906EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2907
1fa44eca
JB
2908/**
2909 * execute_in_process_context - reliably execute the routine with user context
2910 * @fn: the function to execute
1fa44eca
JB
2911 * @ew: guaranteed storage for the execute work structure (must
2912 * be available when the work executes)
2913 *
2914 * Executes the function immediately if process context is available,
2915 * otherwise schedules the function for delayed execution.
2916 *
d185af30 2917 * Return: 0 - function was executed
1fa44eca
JB
2918 * 1 - function was scheduled for execution
2919 */
65f27f38 2920int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2921{
2922 if (!in_interrupt()) {
65f27f38 2923 fn(&ew->work);
1fa44eca
JB
2924 return 0;
2925 }
2926
65f27f38 2927 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2928 schedule_work(&ew->work);
2929
2930 return 1;
2931}
2932EXPORT_SYMBOL_GPL(execute_in_process_context);
2933
226223ab
TH
2934#ifdef CONFIG_SYSFS
2935/*
2936 * Workqueues with WQ_SYSFS flag set is visible to userland via
2937 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
2938 * following attributes.
2939 *
2940 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
2941 * max_active RW int : maximum number of in-flight work items
2942 *
2943 * Unbound workqueues have the following extra attributes.
2944 *
2945 * id RO int : the associated pool ID
2946 * nice RW int : nice value of the workers
2947 * cpumask RW mask : bitmask of allowed CPUs for the workers
2948 */
2949struct wq_device {
2950 struct workqueue_struct *wq;
2951 struct device dev;
2952};
2953
2954static struct workqueue_struct *dev_to_wq(struct device *dev)
2955{
2956 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
2957
2958 return wq_dev->wq;
2959}
2960
1a6661da
GKH
2961static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
2962 char *buf)
226223ab
TH
2963{
2964 struct workqueue_struct *wq = dev_to_wq(dev);
2965
2966 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
2967}
1a6661da 2968static DEVICE_ATTR_RO(per_cpu);
226223ab 2969
1a6661da
GKH
2970static ssize_t max_active_show(struct device *dev,
2971 struct device_attribute *attr, char *buf)
226223ab
TH
2972{
2973 struct workqueue_struct *wq = dev_to_wq(dev);
2974
2975 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
2976}
2977
1a6661da
GKH
2978static ssize_t max_active_store(struct device *dev,
2979 struct device_attribute *attr, const char *buf,
2980 size_t count)
226223ab
TH
2981{
2982 struct workqueue_struct *wq = dev_to_wq(dev);
2983 int val;
2984
2985 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
2986 return -EINVAL;
2987
2988 workqueue_set_max_active(wq, val);
2989 return count;
2990}
1a6661da 2991static DEVICE_ATTR_RW(max_active);
226223ab 2992
1a6661da
GKH
2993static struct attribute *wq_sysfs_attrs[] = {
2994 &dev_attr_per_cpu.attr,
2995 &dev_attr_max_active.attr,
2996 NULL,
226223ab 2997};
1a6661da 2998ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 2999
d55262c4
TH
3000static ssize_t wq_pool_ids_show(struct device *dev,
3001 struct device_attribute *attr, char *buf)
226223ab
TH
3002{
3003 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3004 const char *delim = "";
3005 int node, written = 0;
226223ab
TH
3006
3007 rcu_read_lock_sched();
d55262c4
TH
3008 for_each_node(node) {
3009 written += scnprintf(buf + written, PAGE_SIZE - written,
3010 "%s%d:%d", delim, node,
3011 unbound_pwq_by_node(wq, node)->pool->id);
3012 delim = " ";
3013 }
3014 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3015 rcu_read_unlock_sched();
3016
3017 return written;
3018}
3019
3020static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3021 char *buf)
3022{
3023 struct workqueue_struct *wq = dev_to_wq(dev);
3024 int written;
3025
6029a918
TH
3026 mutex_lock(&wq->mutex);
3027 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3028 mutex_unlock(&wq->mutex);
226223ab
TH
3029
3030 return written;
3031}
3032
3033/* prepare workqueue_attrs for sysfs store operations */
3034static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3035{
3036 struct workqueue_attrs *attrs;
3037
3038 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3039 if (!attrs)
3040 return NULL;
3041
6029a918
TH
3042 mutex_lock(&wq->mutex);
3043 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3044 mutex_unlock(&wq->mutex);
226223ab
TH
3045 return attrs;
3046}
3047
3048static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3049 const char *buf, size_t count)
3050{
3051 struct workqueue_struct *wq = dev_to_wq(dev);
3052 struct workqueue_attrs *attrs;
3053 int ret;
3054
3055 attrs = wq_sysfs_prep_attrs(wq);
3056 if (!attrs)
3057 return -ENOMEM;
3058
3059 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3060 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3061 ret = apply_workqueue_attrs(wq, attrs);
3062 else
3063 ret = -EINVAL;
3064
3065 free_workqueue_attrs(attrs);
3066 return ret ?: count;
3067}
3068
3069static ssize_t wq_cpumask_show(struct device *dev,
3070 struct device_attribute *attr, char *buf)
3071{
3072 struct workqueue_struct *wq = dev_to_wq(dev);
3073 int written;
3074
6029a918
TH
3075 mutex_lock(&wq->mutex);
3076 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3077 mutex_unlock(&wq->mutex);
226223ab
TH
3078
3079 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3080 return written;
3081}
3082
3083static ssize_t wq_cpumask_store(struct device *dev,
3084 struct device_attribute *attr,
3085 const char *buf, size_t count)
3086{
3087 struct workqueue_struct *wq = dev_to_wq(dev);
3088 struct workqueue_attrs *attrs;
3089 int ret;
3090
3091 attrs = wq_sysfs_prep_attrs(wq);
3092 if (!attrs)
3093 return -ENOMEM;
3094
3095 ret = cpumask_parse(buf, attrs->cpumask);
3096 if (!ret)
3097 ret = apply_workqueue_attrs(wq, attrs);
3098
3099 free_workqueue_attrs(attrs);
3100 return ret ?: count;
3101}
3102
d55262c4
TH
3103static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3104 char *buf)
3105{
3106 struct workqueue_struct *wq = dev_to_wq(dev);
3107 int written;
3108
3109 mutex_lock(&wq->mutex);
3110 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3111 !wq->unbound_attrs->no_numa);
3112 mutex_unlock(&wq->mutex);
3113
3114 return written;
3115}
3116
3117static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3118 const char *buf, size_t count)
3119{
3120 struct workqueue_struct *wq = dev_to_wq(dev);
3121 struct workqueue_attrs *attrs;
3122 int v, ret;
3123
3124 attrs = wq_sysfs_prep_attrs(wq);
3125 if (!attrs)
3126 return -ENOMEM;
3127
3128 ret = -EINVAL;
3129 if (sscanf(buf, "%d", &v) == 1) {
3130 attrs->no_numa = !v;
3131 ret = apply_workqueue_attrs(wq, attrs);
3132 }
3133
3134 free_workqueue_attrs(attrs);
3135 return ret ?: count;
3136}
3137
226223ab 3138static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3139 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3140 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3141 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3142 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3143 __ATTR_NULL,
3144};
3145
3146static struct bus_type wq_subsys = {
3147 .name = "workqueue",
1a6661da 3148 .dev_groups = wq_sysfs_groups,
226223ab
TH
3149};
3150
3151static int __init wq_sysfs_init(void)
3152{
3153 return subsys_virtual_register(&wq_subsys, NULL);
3154}
3155core_initcall(wq_sysfs_init);
3156
3157static void wq_device_release(struct device *dev)
3158{
3159 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3160
3161 kfree(wq_dev);
3162}
3163
3164/**
3165 * workqueue_sysfs_register - make a workqueue visible in sysfs
3166 * @wq: the workqueue to register
3167 *
3168 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3169 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3170 * which is the preferred method.
3171 *
3172 * Workqueue user should use this function directly iff it wants to apply
3173 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3174 * apply_workqueue_attrs() may race against userland updating the
3175 * attributes.
3176 *
d185af30 3177 * Return: 0 on success, -errno on failure.
226223ab
TH
3178 */
3179int workqueue_sysfs_register(struct workqueue_struct *wq)
3180{
3181 struct wq_device *wq_dev;
3182 int ret;
3183
3184 /*
3185 * Adjusting max_active or creating new pwqs by applyting
3186 * attributes breaks ordering guarantee. Disallow exposing ordered
3187 * workqueues.
3188 */
3189 if (WARN_ON(wq->flags & __WQ_ORDERED))
3190 return -EINVAL;
3191
3192 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3193 if (!wq_dev)
3194 return -ENOMEM;
3195
3196 wq_dev->wq = wq;
3197 wq_dev->dev.bus = &wq_subsys;
3198 wq_dev->dev.init_name = wq->name;
3199 wq_dev->dev.release = wq_device_release;
3200
3201 /*
3202 * unbound_attrs are created separately. Suppress uevent until
3203 * everything is ready.
3204 */
3205 dev_set_uevent_suppress(&wq_dev->dev, true);
3206
3207 ret = device_register(&wq_dev->dev);
3208 if (ret) {
3209 kfree(wq_dev);
3210 wq->wq_dev = NULL;
3211 return ret;
3212 }
3213
3214 if (wq->flags & WQ_UNBOUND) {
3215 struct device_attribute *attr;
3216
3217 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3218 ret = device_create_file(&wq_dev->dev, attr);
3219 if (ret) {
3220 device_unregister(&wq_dev->dev);
3221 wq->wq_dev = NULL;
3222 return ret;
3223 }
3224 }
3225 }
3226
bddbceb6 3227 dev_set_uevent_suppress(&wq_dev->dev, false);
226223ab
TH
3228 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3229 return 0;
3230}
3231
3232/**
3233 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3234 * @wq: the workqueue to unregister
3235 *
3236 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3237 */
3238static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3239{
3240 struct wq_device *wq_dev = wq->wq_dev;
3241
3242 if (!wq->wq_dev)
3243 return;
3244
3245 wq->wq_dev = NULL;
3246 device_unregister(&wq_dev->dev);
3247}
3248#else /* CONFIG_SYSFS */
3249static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3250#endif /* CONFIG_SYSFS */
3251
7a4e344c
TH
3252/**
3253 * free_workqueue_attrs - free a workqueue_attrs
3254 * @attrs: workqueue_attrs to free
3255 *
3256 * Undo alloc_workqueue_attrs().
3257 */
3258void free_workqueue_attrs(struct workqueue_attrs *attrs)
3259{
3260 if (attrs) {
3261 free_cpumask_var(attrs->cpumask);
3262 kfree(attrs);
3263 }
3264}
3265
3266/**
3267 * alloc_workqueue_attrs - allocate a workqueue_attrs
3268 * @gfp_mask: allocation mask to use
3269 *
3270 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3271 * return it.
3272 *
3273 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3274 */
3275struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3276{
3277 struct workqueue_attrs *attrs;
3278
3279 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3280 if (!attrs)
3281 goto fail;
3282 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3283 goto fail;
3284
13e2e556 3285 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3286 return attrs;
3287fail:
3288 free_workqueue_attrs(attrs);
3289 return NULL;
3290}
3291
29c91e99
TH
3292static void copy_workqueue_attrs(struct workqueue_attrs *to,
3293 const struct workqueue_attrs *from)
3294{
3295 to->nice = from->nice;
3296 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3297 /*
3298 * Unlike hash and equality test, this function doesn't ignore
3299 * ->no_numa as it is used for both pool and wq attrs. Instead,
3300 * get_unbound_pool() explicitly clears ->no_numa after copying.
3301 */
3302 to->no_numa = from->no_numa;
29c91e99
TH
3303}
3304
29c91e99
TH
3305/* hash value of the content of @attr */
3306static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3307{
3308 u32 hash = 0;
3309
3310 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3311 hash = jhash(cpumask_bits(attrs->cpumask),
3312 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3313 return hash;
3314}
3315
3316/* content equality test */
3317static bool wqattrs_equal(const struct workqueue_attrs *a,
3318 const struct workqueue_attrs *b)
3319{
3320 if (a->nice != b->nice)
3321 return false;
3322 if (!cpumask_equal(a->cpumask, b->cpumask))
3323 return false;
3324 return true;
3325}
3326
7a4e344c
TH
3327/**
3328 * init_worker_pool - initialize a newly zalloc'd worker_pool
3329 * @pool: worker_pool to initialize
3330 *
3331 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3332 *
3333 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3334 * inside @pool proper are initialized and put_unbound_pool() can be called
3335 * on @pool safely to release it.
7a4e344c
TH
3336 */
3337static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3338{
3339 spin_lock_init(&pool->lock);
29c91e99
TH
3340 pool->id = -1;
3341 pool->cpu = -1;
f3f90ad4 3342 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3343 pool->flags |= POOL_DISASSOCIATED;
3344 INIT_LIST_HEAD(&pool->worklist);
3345 INIT_LIST_HEAD(&pool->idle_list);
3346 hash_init(pool->busy_hash);
3347
3348 init_timer_deferrable(&pool->idle_timer);
3349 pool->idle_timer.function = idle_worker_timeout;
3350 pool->idle_timer.data = (unsigned long)pool;
3351
3352 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3353 (unsigned long)pool);
3354
3355 mutex_init(&pool->manager_arb);
92f9c5c4 3356 mutex_init(&pool->attach_mutex);
da028469 3357 INIT_LIST_HEAD(&pool->workers);
7a4e344c 3358
7cda9aae 3359 ida_init(&pool->worker_ida);
29c91e99
TH
3360 INIT_HLIST_NODE(&pool->hash_node);
3361 pool->refcnt = 1;
3362
3363 /* shouldn't fail above this point */
7a4e344c
TH
3364 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3365 if (!pool->attrs)
3366 return -ENOMEM;
3367 return 0;
4e1a1f9a
TH
3368}
3369
29c91e99
TH
3370static void rcu_free_pool(struct rcu_head *rcu)
3371{
3372 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3373
7cda9aae 3374 ida_destroy(&pool->worker_ida);
29c91e99
TH
3375 free_workqueue_attrs(pool->attrs);
3376 kfree(pool);
3377}
3378
3379/**
3380 * put_unbound_pool - put a worker_pool
3381 * @pool: worker_pool to put
3382 *
3383 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3384 * safe manner. get_unbound_pool() calls this function on its failure path
3385 * and this function should be able to release pools which went through,
3386 * successfully or not, init_worker_pool().
a892cacc
TH
3387 *
3388 * Should be called with wq_pool_mutex held.
29c91e99
TH
3389 */
3390static void put_unbound_pool(struct worker_pool *pool)
3391{
60f5a4bc 3392 DECLARE_COMPLETION_ONSTACK(detach_completion);
29c91e99
TH
3393 struct worker *worker;
3394
a892cacc
TH
3395 lockdep_assert_held(&wq_pool_mutex);
3396
3397 if (--pool->refcnt)
29c91e99 3398 return;
29c91e99
TH
3399
3400 /* sanity checks */
61d0fbb4 3401 if (WARN_ON(!(pool->cpu < 0)) ||
a892cacc 3402 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3403 return;
29c91e99
TH
3404
3405 /* release id and unhash */
3406 if (pool->id >= 0)
3407 idr_remove(&worker_pool_idr, pool->id);
3408 hash_del(&pool->hash_node);
3409
c5aa87bb
TH
3410 /*
3411 * Become the manager and destroy all workers. Grabbing
3412 * manager_arb prevents @pool's workers from blocking on
92f9c5c4 3413 * attach_mutex.
c5aa87bb 3414 */
29c91e99 3415 mutex_lock(&pool->manager_arb);
29c91e99 3416
60f5a4bc 3417 spin_lock_irq(&pool->lock);
1037de36 3418 while ((worker = first_idle_worker(pool)))
29c91e99
TH
3419 destroy_worker(worker);
3420 WARN_ON(pool->nr_workers || pool->nr_idle);
29c91e99 3421 spin_unlock_irq(&pool->lock);
60f5a4bc 3422
92f9c5c4 3423 mutex_lock(&pool->attach_mutex);
da028469 3424 if (!list_empty(&pool->workers))
60f5a4bc 3425 pool->detach_completion = &detach_completion;
92f9c5c4 3426 mutex_unlock(&pool->attach_mutex);
60f5a4bc
LJ
3427
3428 if (pool->detach_completion)
3429 wait_for_completion(pool->detach_completion);
3430
29c91e99
TH
3431 mutex_unlock(&pool->manager_arb);
3432
3433 /* shut down the timers */
3434 del_timer_sync(&pool->idle_timer);
3435 del_timer_sync(&pool->mayday_timer);
3436
3437 /* sched-RCU protected to allow dereferences from get_work_pool() */
3438 call_rcu_sched(&pool->rcu, rcu_free_pool);
3439}
3440
3441/**
3442 * get_unbound_pool - get a worker_pool with the specified attributes
3443 * @attrs: the attributes of the worker_pool to get
3444 *
3445 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3446 * reference count and return it. If there already is a matching
3447 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3448 * create a new one.
a892cacc
TH
3449 *
3450 * Should be called with wq_pool_mutex held.
d185af30
YB
3451 *
3452 * Return: On success, a worker_pool with the same attributes as @attrs.
3453 * On failure, %NULL.
29c91e99
TH
3454 */
3455static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3456{
29c91e99
TH
3457 u32 hash = wqattrs_hash(attrs);
3458 struct worker_pool *pool;
f3f90ad4 3459 int node;
29c91e99 3460
a892cacc 3461 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3462
3463 /* do we already have a matching pool? */
29c91e99
TH
3464 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3465 if (wqattrs_equal(pool->attrs, attrs)) {
3466 pool->refcnt++;
3fb1823c 3467 return pool;
29c91e99
TH
3468 }
3469 }
29c91e99
TH
3470
3471 /* nope, create a new one */
3472 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3473 if (!pool || init_worker_pool(pool) < 0)
3474 goto fail;
3475
8864b4e5 3476 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3477 copy_workqueue_attrs(pool->attrs, attrs);
3478
2865a8fb
SL
3479 /*
3480 * no_numa isn't a worker_pool attribute, always clear it. See
3481 * 'struct workqueue_attrs' comments for detail.
3482 */
3483 pool->attrs->no_numa = false;
3484
f3f90ad4
TH
3485 /* if cpumask is contained inside a NUMA node, we belong to that node */
3486 if (wq_numa_enabled) {
3487 for_each_node(node) {
3488 if (cpumask_subset(pool->attrs->cpumask,
3489 wq_numa_possible_cpumask[node])) {
3490 pool->node = node;
3491 break;
3492 }
3493 }
3494 }
3495
29c91e99
TH
3496 if (worker_pool_assign_id(pool) < 0)
3497 goto fail;
3498
3499 /* create and start the initial worker */
051e1850 3500 if (!create_worker(pool))
29c91e99
TH
3501 goto fail;
3502
29c91e99 3503 /* install */
29c91e99 3504 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3fb1823c 3505
29c91e99
TH
3506 return pool;
3507fail:
29c91e99
TH
3508 if (pool)
3509 put_unbound_pool(pool);
3510 return NULL;
3511}
3512
8864b4e5
TH
3513static void rcu_free_pwq(struct rcu_head *rcu)
3514{
3515 kmem_cache_free(pwq_cache,
3516 container_of(rcu, struct pool_workqueue, rcu));
3517}
3518
3519/*
3520 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3521 * and needs to be destroyed.
3522 */
3523static void pwq_unbound_release_workfn(struct work_struct *work)
3524{
3525 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3526 unbound_release_work);
3527 struct workqueue_struct *wq = pwq->wq;
3528 struct worker_pool *pool = pwq->pool;
bc0caf09 3529 bool is_last;
8864b4e5
TH
3530
3531 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3532 return;
3533
3c25a55d 3534 mutex_lock(&wq->mutex);
8864b4e5 3535 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3536 is_last = list_empty(&wq->pwqs);
3c25a55d 3537 mutex_unlock(&wq->mutex);
8864b4e5 3538
a892cacc 3539 mutex_lock(&wq_pool_mutex);
8864b4e5 3540 put_unbound_pool(pool);
a892cacc
TH
3541 mutex_unlock(&wq_pool_mutex);
3542
8864b4e5
TH
3543 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3544
3545 /*
3546 * If we're the last pwq going away, @wq is already dead and no one
3547 * is gonna access it anymore. Free it.
3548 */
6029a918
TH
3549 if (is_last) {
3550 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3551 kfree(wq);
6029a918 3552 }
8864b4e5
TH
3553}
3554
0fbd95aa 3555/**
699ce097 3556 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3557 * @pwq: target pool_workqueue
0fbd95aa 3558 *
699ce097
TH
3559 * If @pwq isn't freezing, set @pwq->max_active to the associated
3560 * workqueue's saved_max_active and activate delayed work items
3561 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3562 */
699ce097 3563static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3564{
699ce097
TH
3565 struct workqueue_struct *wq = pwq->wq;
3566 bool freezable = wq->flags & WQ_FREEZABLE;
3567
3568 /* for @wq->saved_max_active */
a357fc03 3569 lockdep_assert_held(&wq->mutex);
699ce097
TH
3570
3571 /* fast exit for non-freezable wqs */
3572 if (!freezable && pwq->max_active == wq->saved_max_active)
3573 return;
3574
a357fc03 3575 spin_lock_irq(&pwq->pool->lock);
699ce097 3576
74b414ea
LJ
3577 /*
3578 * During [un]freezing, the caller is responsible for ensuring that
3579 * this function is called at least once after @workqueue_freezing
3580 * is updated and visible.
3581 */
3582 if (!freezable || !workqueue_freezing) {
699ce097 3583 pwq->max_active = wq->saved_max_active;
0fbd95aa 3584
699ce097
TH
3585 while (!list_empty(&pwq->delayed_works) &&
3586 pwq->nr_active < pwq->max_active)
3587 pwq_activate_first_delayed(pwq);
951a078a
LJ
3588
3589 /*
3590 * Need to kick a worker after thawed or an unbound wq's
3591 * max_active is bumped. It's a slow path. Do it always.
3592 */
3593 wake_up_worker(pwq->pool);
699ce097
TH
3594 } else {
3595 pwq->max_active = 0;
3596 }
3597
a357fc03 3598 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3599}
3600
e50aba9a 3601/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3602static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3603 struct worker_pool *pool)
d2c1d404
TH
3604{
3605 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3606
e50aba9a
TH
3607 memset(pwq, 0, sizeof(*pwq));
3608
d2c1d404
TH
3609 pwq->pool = pool;
3610 pwq->wq = wq;
3611 pwq->flush_color = -1;
8864b4e5 3612 pwq->refcnt = 1;
d2c1d404 3613 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3614 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3615 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3616 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3617}
d2c1d404 3618
f147f29e 3619/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3620static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3621{
3622 struct workqueue_struct *wq = pwq->wq;
3623
3624 lockdep_assert_held(&wq->mutex);
75ccf595 3625
1befcf30
TH
3626 /* may be called multiple times, ignore if already linked */
3627 if (!list_empty(&pwq->pwqs_node))
3628 return;
3629
29b1cb41 3630 /* set the matching work_color */
75ccf595 3631 pwq->work_color = wq->work_color;
983ca25e
TH
3632
3633 /* sync max_active to the current setting */
3634 pwq_adjust_max_active(pwq);
3635
3636 /* link in @pwq */
9e8cd2f5 3637 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3638}
a357fc03 3639
f147f29e
TH
3640/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3641static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3642 const struct workqueue_attrs *attrs)
3643{
3644 struct worker_pool *pool;
3645 struct pool_workqueue *pwq;
3646
3647 lockdep_assert_held(&wq_pool_mutex);
3648
3649 pool = get_unbound_pool(attrs);
3650 if (!pool)
3651 return NULL;
3652
e50aba9a 3653 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3654 if (!pwq) {
3655 put_unbound_pool(pool);
3656 return NULL;
df2d5ae4 3657 }
6029a918 3658
f147f29e
TH
3659 init_pwq(pwq, wq, pool);
3660 return pwq;
d2c1d404
TH
3661}
3662
4c16bd32
TH
3663/* undo alloc_unbound_pwq(), used only in the error path */
3664static void free_unbound_pwq(struct pool_workqueue *pwq)
3665{
3666 lockdep_assert_held(&wq_pool_mutex);
3667
3668 if (pwq) {
3669 put_unbound_pool(pwq->pool);
cece95df 3670 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3671 }
3672}
3673
3674/**
3675 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3676 * @attrs: the wq_attrs of interest
3677 * @node: the target NUMA node
3678 * @cpu_going_down: if >= 0, the CPU to consider as offline
3679 * @cpumask: outarg, the resulting cpumask
3680 *
3681 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3682 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3683 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3684 *
3685 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3686 * enabled and @node has online CPUs requested by @attrs, the returned
3687 * cpumask is the intersection of the possible CPUs of @node and
3688 * @attrs->cpumask.
3689 *
3690 * The caller is responsible for ensuring that the cpumask of @node stays
3691 * stable.
d185af30
YB
3692 *
3693 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3694 * %false if equal.
4c16bd32
TH
3695 */
3696static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3697 int cpu_going_down, cpumask_t *cpumask)
3698{
d55262c4 3699 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3700 goto use_dfl;
3701
3702 /* does @node have any online CPUs @attrs wants? */
3703 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3704 if (cpu_going_down >= 0)
3705 cpumask_clear_cpu(cpu_going_down, cpumask);
3706
3707 if (cpumask_empty(cpumask))
3708 goto use_dfl;
3709
3710 /* yeap, return possible CPUs in @node that @attrs wants */
3711 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3712 return !cpumask_equal(cpumask, attrs->cpumask);
3713
3714use_dfl:
3715 cpumask_copy(cpumask, attrs->cpumask);
3716 return false;
3717}
3718
1befcf30
TH
3719/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3720static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3721 int node,
3722 struct pool_workqueue *pwq)
3723{
3724 struct pool_workqueue *old_pwq;
3725
3726 lockdep_assert_held(&wq->mutex);
3727
3728 /* link_pwq() can handle duplicate calls */
3729 link_pwq(pwq);
3730
3731 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3732 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3733 return old_pwq;
3734}
3735
9e8cd2f5
TH
3736/**
3737 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3738 * @wq: the target workqueue
3739 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3740 *
4c16bd32
TH
3741 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3742 * machines, this function maps a separate pwq to each NUMA node with
3743 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3744 * NUMA node it was issued on. Older pwqs are released as in-flight work
3745 * items finish. Note that a work item which repeatedly requeues itself
3746 * back-to-back will stay on its current pwq.
9e8cd2f5 3747 *
d185af30
YB
3748 * Performs GFP_KERNEL allocations.
3749 *
3750 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3751 */
3752int apply_workqueue_attrs(struct workqueue_struct *wq,
3753 const struct workqueue_attrs *attrs)
3754{
4c16bd32
TH
3755 struct workqueue_attrs *new_attrs, *tmp_attrs;
3756 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3757 int node, ret;
9e8cd2f5 3758
8719dcea 3759 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3760 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3761 return -EINVAL;
3762
8719dcea
TH
3763 /* creating multiple pwqs breaks ordering guarantee */
3764 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3765 return -EINVAL;
3766
ddcb57e2 3767 pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3768 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3769 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3770 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3771 goto enomem;
3772
4c16bd32 3773 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3774 copy_workqueue_attrs(new_attrs, attrs);
3775 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3776
4c16bd32
TH
3777 /*
3778 * We may create multiple pwqs with differing cpumasks. Make a
3779 * copy of @new_attrs which will be modified and used to obtain
3780 * pools.
3781 */
3782 copy_workqueue_attrs(tmp_attrs, new_attrs);
3783
3784 /*
3785 * CPUs should stay stable across pwq creations and installations.
3786 * Pin CPUs, determine the target cpumask for each node and create
3787 * pwqs accordingly.
3788 */
3789 get_online_cpus();
3790
a892cacc 3791 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3792
3793 /*
3794 * If something goes wrong during CPU up/down, we'll fall back to
3795 * the default pwq covering whole @attrs->cpumask. Always create
3796 * it even if we don't use it immediately.
3797 */
3798 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3799 if (!dfl_pwq)
3800 goto enomem_pwq;
3801
3802 for_each_node(node) {
3803 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3804 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3805 if (!pwq_tbl[node])
3806 goto enomem_pwq;
3807 } else {
3808 dfl_pwq->refcnt++;
3809 pwq_tbl[node] = dfl_pwq;
3810 }
3811 }
3812
f147f29e 3813 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3814
4c16bd32 3815 /* all pwqs have been created successfully, let's install'em */
f147f29e 3816 mutex_lock(&wq->mutex);
a892cacc 3817
f147f29e 3818 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3819
3820 /* save the previous pwq and install the new one */
f147f29e 3821 for_each_node(node)
4c16bd32
TH
3822 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3823
3824 /* @dfl_pwq might not have been used, ensure it's linked */
3825 link_pwq(dfl_pwq);
3826 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3827
3828 mutex_unlock(&wq->mutex);
9e8cd2f5 3829
4c16bd32
TH
3830 /* put the old pwqs */
3831 for_each_node(node)
3832 put_pwq_unlocked(pwq_tbl[node]);
3833 put_pwq_unlocked(dfl_pwq);
3834
3835 put_online_cpus();
4862125b
TH
3836 ret = 0;
3837 /* fall through */
3838out_free:
4c16bd32 3839 free_workqueue_attrs(tmp_attrs);
4862125b 3840 free_workqueue_attrs(new_attrs);
4c16bd32 3841 kfree(pwq_tbl);
4862125b 3842 return ret;
13e2e556 3843
4c16bd32
TH
3844enomem_pwq:
3845 free_unbound_pwq(dfl_pwq);
3846 for_each_node(node)
3847 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3848 free_unbound_pwq(pwq_tbl[node]);
3849 mutex_unlock(&wq_pool_mutex);
3850 put_online_cpus();
13e2e556 3851enomem:
4862125b
TH
3852 ret = -ENOMEM;
3853 goto out_free;
9e8cd2f5
TH
3854}
3855
4c16bd32
TH
3856/**
3857 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3858 * @wq: the target workqueue
3859 * @cpu: the CPU coming up or going down
3860 * @online: whether @cpu is coming up or going down
3861 *
3862 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3863 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3864 * @wq accordingly.
3865 *
3866 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3867 * falls back to @wq->dfl_pwq which may not be optimal but is always
3868 * correct.
3869 *
3870 * Note that when the last allowed CPU of a NUMA node goes offline for a
3871 * workqueue with a cpumask spanning multiple nodes, the workers which were
3872 * already executing the work items for the workqueue will lose their CPU
3873 * affinity and may execute on any CPU. This is similar to how per-cpu
3874 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3875 * affinity, it's the user's responsibility to flush the work item from
3876 * CPU_DOWN_PREPARE.
3877 */
3878static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3879 bool online)
3880{
3881 int node = cpu_to_node(cpu);
3882 int cpu_off = online ? -1 : cpu;
3883 struct pool_workqueue *old_pwq = NULL, *pwq;
3884 struct workqueue_attrs *target_attrs;
3885 cpumask_t *cpumask;
3886
3887 lockdep_assert_held(&wq_pool_mutex);
3888
3889 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3890 return;
3891
3892 /*
3893 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3894 * Let's use a preallocated one. The following buf is protected by
3895 * CPU hotplug exclusion.
3896 */
3897 target_attrs = wq_update_unbound_numa_attrs_buf;
3898 cpumask = target_attrs->cpumask;
3899
3900 mutex_lock(&wq->mutex);
d55262c4
TH
3901 if (wq->unbound_attrs->no_numa)
3902 goto out_unlock;
4c16bd32
TH
3903
3904 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3905 pwq = unbound_pwq_by_node(wq, node);
3906
3907 /*
3908 * Let's determine what needs to be done. If the target cpumask is
3909 * different from wq's, we need to compare it to @pwq's and create
3910 * a new one if they don't match. If the target cpumask equals
534a3fbb 3911 * wq's, the default pwq should be used.
4c16bd32
TH
3912 */
3913 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3914 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3915 goto out_unlock;
3916 } else {
534a3fbb 3917 goto use_dfl_pwq;
4c16bd32
TH
3918 }
3919
3920 mutex_unlock(&wq->mutex);
3921
3922 /* create a new pwq */
3923 pwq = alloc_unbound_pwq(wq, target_attrs);
3924 if (!pwq) {
2d916033
FF
3925 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3926 wq->name);
77f300b1
DY
3927 mutex_lock(&wq->mutex);
3928 goto use_dfl_pwq;
4c16bd32
TH
3929 }
3930
3931 /*
3932 * Install the new pwq. As this function is called only from CPU
3933 * hotplug callbacks and applying a new attrs is wrapped with
3934 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3935 * inbetween.
3936 */
3937 mutex_lock(&wq->mutex);
3938 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3939 goto out_unlock;
3940
3941use_dfl_pwq:
3942 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3943 get_pwq(wq->dfl_pwq);
3944 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3945 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3946out_unlock:
3947 mutex_unlock(&wq->mutex);
3948 put_pwq_unlocked(old_pwq);
3949}
3950
30cdf249 3951static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3952{
49e3cf44 3953 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3954 int cpu, ret;
30cdf249
TH
3955
3956 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3957 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3958 if (!wq->cpu_pwqs)
30cdf249
TH
3959 return -ENOMEM;
3960
3961 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3962 struct pool_workqueue *pwq =
3963 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3964 struct worker_pool *cpu_pools =
f02ae73a 3965 per_cpu(cpu_worker_pools, cpu);
f3421797 3966
f147f29e
TH
3967 init_pwq(pwq, wq, &cpu_pools[highpri]);
3968
3969 mutex_lock(&wq->mutex);
1befcf30 3970 link_pwq(pwq);
f147f29e 3971 mutex_unlock(&wq->mutex);
30cdf249 3972 }
9e8cd2f5 3973 return 0;
8a2b7538
TH
3974 } else if (wq->flags & __WQ_ORDERED) {
3975 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3976 /* there should only be single pwq for ordering guarantee */
3977 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3978 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3979 "ordering guarantee broken for workqueue %s\n", wq->name);
3980 return ret;
30cdf249 3981 } else {
9e8cd2f5 3982 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3983 }
0f900049
TH
3984}
3985
f3421797
TH
3986static int wq_clamp_max_active(int max_active, unsigned int flags,
3987 const char *name)
b71ab8c2 3988{
f3421797
TH
3989 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3990
3991 if (max_active < 1 || max_active > lim)
044c782c
VI
3992 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3993 max_active, name, 1, lim);
b71ab8c2 3994
f3421797 3995 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3996}
3997
b196be89 3998struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3999 unsigned int flags,
4000 int max_active,
4001 struct lock_class_key *key,
b196be89 4002 const char *lock_name, ...)
1da177e4 4003{
df2d5ae4 4004 size_t tbl_size = 0;
ecf6881f 4005 va_list args;
1da177e4 4006 struct workqueue_struct *wq;
49e3cf44 4007 struct pool_workqueue *pwq;
b196be89 4008
cee22a15
VK
4009 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4010 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4011 flags |= WQ_UNBOUND;
4012
ecf6881f 4013 /* allocate wq and format name */
df2d5ae4 4014 if (flags & WQ_UNBOUND)
ddcb57e2 4015 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4016
4017 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4018 if (!wq)
d2c1d404 4019 return NULL;
b196be89 4020
6029a918
TH
4021 if (flags & WQ_UNBOUND) {
4022 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4023 if (!wq->unbound_attrs)
4024 goto err_free_wq;
4025 }
4026
ecf6881f
TH
4027 va_start(args, lock_name);
4028 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4029 va_end(args);
1da177e4 4030
d320c038 4031 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4032 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4033
b196be89 4034 /* init wq */
97e37d7b 4035 wq->flags = flags;
a0a1a5fd 4036 wq->saved_max_active = max_active;
3c25a55d 4037 mutex_init(&wq->mutex);
112202d9 4038 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4039 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4040 INIT_LIST_HEAD(&wq->flusher_queue);
4041 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4042 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4043
eb13ba87 4044 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4045 INIT_LIST_HEAD(&wq->list);
3af24433 4046
30cdf249 4047 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4048 goto err_free_wq;
1537663f 4049
493008a8
TH
4050 /*
4051 * Workqueues which may be used during memory reclaim should
4052 * have a rescuer to guarantee forward progress.
4053 */
4054 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4055 struct worker *rescuer;
4056
f7537df5 4057 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 4058 if (!rescuer)
d2c1d404 4059 goto err_destroy;
e22bee78 4060
111c225a
TH
4061 rescuer->rescue_wq = wq;
4062 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4063 wq->name);
d2c1d404
TH
4064 if (IS_ERR(rescuer->task)) {
4065 kfree(rescuer);
4066 goto err_destroy;
4067 }
e22bee78 4068
d2c1d404 4069 wq->rescuer = rescuer;
14a40ffc 4070 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4071 wake_up_process(rescuer->task);
3af24433
ON
4072 }
4073
226223ab
TH
4074 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4075 goto err_destroy;
4076
a0a1a5fd 4077 /*
68e13a67
LJ
4078 * wq_pool_mutex protects global freeze state and workqueues list.
4079 * Grab it, adjust max_active and add the new @wq to workqueues
4080 * list.
a0a1a5fd 4081 */
68e13a67 4082 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4083
a357fc03 4084 mutex_lock(&wq->mutex);
699ce097
TH
4085 for_each_pwq(pwq, wq)
4086 pwq_adjust_max_active(pwq);
a357fc03 4087 mutex_unlock(&wq->mutex);
a0a1a5fd 4088
1537663f 4089 list_add(&wq->list, &workqueues);
a0a1a5fd 4090
68e13a67 4091 mutex_unlock(&wq_pool_mutex);
1537663f 4092
3af24433 4093 return wq;
d2c1d404
TH
4094
4095err_free_wq:
6029a918 4096 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4097 kfree(wq);
4098 return NULL;
4099err_destroy:
4100 destroy_workqueue(wq);
4690c4ab 4101 return NULL;
3af24433 4102}
d320c038 4103EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4104
3af24433
ON
4105/**
4106 * destroy_workqueue - safely terminate a workqueue
4107 * @wq: target workqueue
4108 *
4109 * Safely destroy a workqueue. All work currently pending will be done first.
4110 */
4111void destroy_workqueue(struct workqueue_struct *wq)
4112{
49e3cf44 4113 struct pool_workqueue *pwq;
4c16bd32 4114 int node;
3af24433 4115
9c5a2ba7
TH
4116 /* drain it before proceeding with destruction */
4117 drain_workqueue(wq);
c8efcc25 4118
6183c009 4119 /* sanity checks */
b09f4fd3 4120 mutex_lock(&wq->mutex);
49e3cf44 4121 for_each_pwq(pwq, wq) {
6183c009
TH
4122 int i;
4123
76af4d93
TH
4124 for (i = 0; i < WORK_NR_COLORS; i++) {
4125 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4126 mutex_unlock(&wq->mutex);
6183c009 4127 return;
76af4d93
TH
4128 }
4129 }
4130
5c529597 4131 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4132 WARN_ON(pwq->nr_active) ||
76af4d93 4133 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4134 mutex_unlock(&wq->mutex);
6183c009 4135 return;
76af4d93 4136 }
6183c009 4137 }
b09f4fd3 4138 mutex_unlock(&wq->mutex);
6183c009 4139
a0a1a5fd
TH
4140 /*
4141 * wq list is used to freeze wq, remove from list after
4142 * flushing is complete in case freeze races us.
4143 */
68e13a67 4144 mutex_lock(&wq_pool_mutex);
d2c1d404 4145 list_del_init(&wq->list);
68e13a67 4146 mutex_unlock(&wq_pool_mutex);
3af24433 4147
226223ab
TH
4148 workqueue_sysfs_unregister(wq);
4149
493008a8 4150 if (wq->rescuer) {
e22bee78 4151 kthread_stop(wq->rescuer->task);
8d9df9f0 4152 kfree(wq->rescuer);
493008a8 4153 wq->rescuer = NULL;
e22bee78
TH
4154 }
4155
8864b4e5
TH
4156 if (!(wq->flags & WQ_UNBOUND)) {
4157 /*
4158 * The base ref is never dropped on per-cpu pwqs. Directly
4159 * free the pwqs and wq.
4160 */
4161 free_percpu(wq->cpu_pwqs);
4162 kfree(wq);
4163 } else {
4164 /*
4165 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4166 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4167 * @wq will be freed when the last pwq is released.
8864b4e5 4168 */
4c16bd32
TH
4169 for_each_node(node) {
4170 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4171 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4172 put_pwq_unlocked(pwq);
4173 }
4174
4175 /*
4176 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4177 * put. Don't access it afterwards.
4178 */
4179 pwq = wq->dfl_pwq;
4180 wq->dfl_pwq = NULL;
dce90d47 4181 put_pwq_unlocked(pwq);
29c91e99 4182 }
3af24433
ON
4183}
4184EXPORT_SYMBOL_GPL(destroy_workqueue);
4185
dcd989cb
TH
4186/**
4187 * workqueue_set_max_active - adjust max_active of a workqueue
4188 * @wq: target workqueue
4189 * @max_active: new max_active value.
4190 *
4191 * Set max_active of @wq to @max_active.
4192 *
4193 * CONTEXT:
4194 * Don't call from IRQ context.
4195 */
4196void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4197{
49e3cf44 4198 struct pool_workqueue *pwq;
dcd989cb 4199
8719dcea
TH
4200 /* disallow meddling with max_active for ordered workqueues */
4201 if (WARN_ON(wq->flags & __WQ_ORDERED))
4202 return;
4203
f3421797 4204 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4205
a357fc03 4206 mutex_lock(&wq->mutex);
dcd989cb
TH
4207
4208 wq->saved_max_active = max_active;
4209
699ce097
TH
4210 for_each_pwq(pwq, wq)
4211 pwq_adjust_max_active(pwq);
93981800 4212
a357fc03 4213 mutex_unlock(&wq->mutex);
15316ba8 4214}
dcd989cb 4215EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4216
e6267616
TH
4217/**
4218 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4219 *
4220 * Determine whether %current is a workqueue rescuer. Can be used from
4221 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4222 *
4223 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4224 */
4225bool current_is_workqueue_rescuer(void)
4226{
4227 struct worker *worker = current_wq_worker();
4228
6a092dfd 4229 return worker && worker->rescue_wq;
e6267616
TH
4230}
4231
eef6a7d5 4232/**
dcd989cb
TH
4233 * workqueue_congested - test whether a workqueue is congested
4234 * @cpu: CPU in question
4235 * @wq: target workqueue
eef6a7d5 4236 *
dcd989cb
TH
4237 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4238 * no synchronization around this function and the test result is
4239 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4240 *
d3251859
TH
4241 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4242 * Note that both per-cpu and unbound workqueues may be associated with
4243 * multiple pool_workqueues which have separate congested states. A
4244 * workqueue being congested on one CPU doesn't mean the workqueue is also
4245 * contested on other CPUs / NUMA nodes.
4246 *
d185af30 4247 * Return:
dcd989cb 4248 * %true if congested, %false otherwise.
eef6a7d5 4249 */
d84ff051 4250bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4251{
7fb98ea7 4252 struct pool_workqueue *pwq;
76af4d93
TH
4253 bool ret;
4254
88109453 4255 rcu_read_lock_sched();
7fb98ea7 4256
d3251859
TH
4257 if (cpu == WORK_CPU_UNBOUND)
4258 cpu = smp_processor_id();
4259
7fb98ea7
TH
4260 if (!(wq->flags & WQ_UNBOUND))
4261 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4262 else
df2d5ae4 4263 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4264
76af4d93 4265 ret = !list_empty(&pwq->delayed_works);
88109453 4266 rcu_read_unlock_sched();
76af4d93
TH
4267
4268 return ret;
1da177e4 4269}
dcd989cb 4270EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4271
dcd989cb
TH
4272/**
4273 * work_busy - test whether a work is currently pending or running
4274 * @work: the work to be tested
4275 *
4276 * Test whether @work is currently pending or running. There is no
4277 * synchronization around this function and the test result is
4278 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4279 *
d185af30 4280 * Return:
dcd989cb
TH
4281 * OR'd bitmask of WORK_BUSY_* bits.
4282 */
4283unsigned int work_busy(struct work_struct *work)
1da177e4 4284{
fa1b54e6 4285 struct worker_pool *pool;
dcd989cb
TH
4286 unsigned long flags;
4287 unsigned int ret = 0;
1da177e4 4288
dcd989cb
TH
4289 if (work_pending(work))
4290 ret |= WORK_BUSY_PENDING;
1da177e4 4291
fa1b54e6
TH
4292 local_irq_save(flags);
4293 pool = get_work_pool(work);
038366c5 4294 if (pool) {
fa1b54e6 4295 spin_lock(&pool->lock);
038366c5
LJ
4296 if (find_worker_executing_work(pool, work))
4297 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4298 spin_unlock(&pool->lock);
038366c5 4299 }
fa1b54e6 4300 local_irq_restore(flags);
1da177e4 4301
dcd989cb 4302 return ret;
1da177e4 4303}
dcd989cb 4304EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4305
3d1cb205
TH
4306/**
4307 * set_worker_desc - set description for the current work item
4308 * @fmt: printf-style format string
4309 * @...: arguments for the format string
4310 *
4311 * This function can be called by a running work function to describe what
4312 * the work item is about. If the worker task gets dumped, this
4313 * information will be printed out together to help debugging. The
4314 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4315 */
4316void set_worker_desc(const char *fmt, ...)
4317{
4318 struct worker *worker = current_wq_worker();
4319 va_list args;
4320
4321 if (worker) {
4322 va_start(args, fmt);
4323 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4324 va_end(args);
4325 worker->desc_valid = true;
4326 }
4327}
4328
4329/**
4330 * print_worker_info - print out worker information and description
4331 * @log_lvl: the log level to use when printing
4332 * @task: target task
4333 *
4334 * If @task is a worker and currently executing a work item, print out the
4335 * name of the workqueue being serviced and worker description set with
4336 * set_worker_desc() by the currently executing work item.
4337 *
4338 * This function can be safely called on any task as long as the
4339 * task_struct itself is accessible. While safe, this function isn't
4340 * synchronized and may print out mixups or garbages of limited length.
4341 */
4342void print_worker_info(const char *log_lvl, struct task_struct *task)
4343{
4344 work_func_t *fn = NULL;
4345 char name[WQ_NAME_LEN] = { };
4346 char desc[WORKER_DESC_LEN] = { };
4347 struct pool_workqueue *pwq = NULL;
4348 struct workqueue_struct *wq = NULL;
4349 bool desc_valid = false;
4350 struct worker *worker;
4351
4352 if (!(task->flags & PF_WQ_WORKER))
4353 return;
4354
4355 /*
4356 * This function is called without any synchronization and @task
4357 * could be in any state. Be careful with dereferences.
4358 */
4359 worker = probe_kthread_data(task);
4360
4361 /*
4362 * Carefully copy the associated workqueue's workfn and name. Keep
4363 * the original last '\0' in case the original contains garbage.
4364 */
4365 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4366 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4367 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4368 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4369
4370 /* copy worker description */
4371 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4372 if (desc_valid)
4373 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4374
4375 if (fn || name[0] || desc[0]) {
4376 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4377 if (desc[0])
4378 pr_cont(" (%s)", desc);
4379 pr_cont("\n");
4380 }
4381}
4382
db7bccf4
TH
4383/*
4384 * CPU hotplug.
4385 *
e22bee78 4386 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4387 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4388 * pool which make migrating pending and scheduled works very
e22bee78 4389 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4390 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4391 * blocked draining impractical.
4392 *
24647570 4393 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4394 * running as an unbound one and allowing it to be reattached later if the
4395 * cpu comes back online.
db7bccf4 4396 */
1da177e4 4397
706026c2 4398static void wq_unbind_fn(struct work_struct *work)
3af24433 4399{
38db41d9 4400 int cpu = smp_processor_id();
4ce62e9e 4401 struct worker_pool *pool;
db7bccf4 4402 struct worker *worker;
3af24433 4403
f02ae73a 4404 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4405 mutex_lock(&pool->attach_mutex);
94cf58bb 4406 spin_lock_irq(&pool->lock);
3af24433 4407
94cf58bb 4408 /*
92f9c5c4 4409 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4410 * unbound and set DISASSOCIATED. Before this, all workers
4411 * except for the ones which are still executing works from
4412 * before the last CPU down must be on the cpu. After
4413 * this, they may become diasporas.
4414 */
da028469 4415 for_each_pool_worker(worker, pool)
c9e7cf27 4416 worker->flags |= WORKER_UNBOUND;
06ba38a9 4417
24647570 4418 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4419
94cf58bb 4420 spin_unlock_irq(&pool->lock);
92f9c5c4 4421 mutex_unlock(&pool->attach_mutex);
628c78e7 4422
eb283428
LJ
4423 /*
4424 * Call schedule() so that we cross rq->lock and thus can
4425 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4426 * This is necessary as scheduler callbacks may be invoked
4427 * from other cpus.
4428 */
4429 schedule();
06ba38a9 4430
eb283428
LJ
4431 /*
4432 * Sched callbacks are disabled now. Zap nr_running.
4433 * After this, nr_running stays zero and need_more_worker()
4434 * and keep_working() are always true as long as the
4435 * worklist is not empty. This pool now behaves as an
4436 * unbound (in terms of concurrency management) pool which
4437 * are served by workers tied to the pool.
4438 */
e19e397a 4439 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4440
4441 /*
4442 * With concurrency management just turned off, a busy
4443 * worker blocking could lead to lengthy stalls. Kick off
4444 * unbound chain execution of currently pending work items.
4445 */
4446 spin_lock_irq(&pool->lock);
4447 wake_up_worker(pool);
4448 spin_unlock_irq(&pool->lock);
4449 }
3af24433 4450}
3af24433 4451
bd7c089e
TH
4452/**
4453 * rebind_workers - rebind all workers of a pool to the associated CPU
4454 * @pool: pool of interest
4455 *
a9ab775b 4456 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4457 */
4458static void rebind_workers(struct worker_pool *pool)
4459{
a9ab775b 4460 struct worker *worker;
bd7c089e 4461
92f9c5c4 4462 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4463
a9ab775b
TH
4464 /*
4465 * Restore CPU affinity of all workers. As all idle workers should
4466 * be on the run-queue of the associated CPU before any local
4467 * wake-ups for concurrency management happen, restore CPU affinty
4468 * of all workers first and then clear UNBOUND. As we're called
4469 * from CPU_ONLINE, the following shouldn't fail.
4470 */
da028469 4471 for_each_pool_worker(worker, pool)
a9ab775b
TH
4472 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4473 pool->attrs->cpumask) < 0);
bd7c089e 4474
a9ab775b 4475 spin_lock_irq(&pool->lock);
3de5e884 4476 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4477
da028469 4478 for_each_pool_worker(worker, pool) {
a9ab775b 4479 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4480
4481 /*
a9ab775b
TH
4482 * A bound idle worker should actually be on the runqueue
4483 * of the associated CPU for local wake-ups targeting it to
4484 * work. Kick all idle workers so that they migrate to the
4485 * associated CPU. Doing this in the same loop as
4486 * replacing UNBOUND with REBOUND is safe as no worker will
4487 * be bound before @pool->lock is released.
bd7c089e 4488 */
a9ab775b
TH
4489 if (worker_flags & WORKER_IDLE)
4490 wake_up_process(worker->task);
bd7c089e 4491
a9ab775b
TH
4492 /*
4493 * We want to clear UNBOUND but can't directly call
4494 * worker_clr_flags() or adjust nr_running. Atomically
4495 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4496 * @worker will clear REBOUND using worker_clr_flags() when
4497 * it initiates the next execution cycle thus restoring
4498 * concurrency management. Note that when or whether
4499 * @worker clears REBOUND doesn't affect correctness.
4500 *
4501 * ACCESS_ONCE() is necessary because @worker->flags may be
4502 * tested without holding any lock in
4503 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4504 * fail incorrectly leading to premature concurrency
4505 * management operations.
4506 */
4507 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4508 worker_flags |= WORKER_REBOUND;
4509 worker_flags &= ~WORKER_UNBOUND;
4510 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4511 }
a9ab775b
TH
4512
4513 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4514}
4515
7dbc725e
TH
4516/**
4517 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4518 * @pool: unbound pool of interest
4519 * @cpu: the CPU which is coming up
4520 *
4521 * An unbound pool may end up with a cpumask which doesn't have any online
4522 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4523 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4524 * online CPU before, cpus_allowed of all its workers should be restored.
4525 */
4526static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4527{
4528 static cpumask_t cpumask;
4529 struct worker *worker;
7dbc725e 4530
92f9c5c4 4531 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4532
4533 /* is @cpu allowed for @pool? */
4534 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4535 return;
4536
4537 /* is @cpu the only online CPU? */
4538 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4539 if (cpumask_weight(&cpumask) != 1)
4540 return;
4541
4542 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4543 for_each_pool_worker(worker, pool)
7dbc725e
TH
4544 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4545 pool->attrs->cpumask) < 0);
4546}
4547
8db25e78
TH
4548/*
4549 * Workqueues should be brought up before normal priority CPU notifiers.
4550 * This will be registered high priority CPU notifier.
4551 */
0db0628d 4552static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4553 unsigned long action,
4554 void *hcpu)
3af24433 4555{
d84ff051 4556 int cpu = (unsigned long)hcpu;
4ce62e9e 4557 struct worker_pool *pool;
4c16bd32 4558 struct workqueue_struct *wq;
7dbc725e 4559 int pi;
3ce63377 4560
8db25e78 4561 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4562 case CPU_UP_PREPARE:
f02ae73a 4563 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4564 if (pool->nr_workers)
4565 continue;
051e1850 4566 if (!create_worker(pool))
3ce63377 4567 return NOTIFY_BAD;
3af24433 4568 }
8db25e78 4569 break;
3af24433 4570
db7bccf4
TH
4571 case CPU_DOWN_FAILED:
4572 case CPU_ONLINE:
68e13a67 4573 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4574
4575 for_each_pool(pool, pi) {
92f9c5c4 4576 mutex_lock(&pool->attach_mutex);
94cf58bb 4577
f05b558d 4578 if (pool->cpu == cpu)
7dbc725e 4579 rebind_workers(pool);
f05b558d 4580 else if (pool->cpu < 0)
7dbc725e 4581 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4582
92f9c5c4 4583 mutex_unlock(&pool->attach_mutex);
94cf58bb 4584 }
7dbc725e 4585
4c16bd32
TH
4586 /* update NUMA affinity of unbound workqueues */
4587 list_for_each_entry(wq, &workqueues, list)
4588 wq_update_unbound_numa(wq, cpu, true);
4589
68e13a67 4590 mutex_unlock(&wq_pool_mutex);
db7bccf4 4591 break;
00dfcaf7 4592 }
65758202
TH
4593 return NOTIFY_OK;
4594}
4595
4596/*
4597 * Workqueues should be brought down after normal priority CPU notifiers.
4598 * This will be registered as low priority CPU notifier.
4599 */
0db0628d 4600static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4601 unsigned long action,
4602 void *hcpu)
4603{
d84ff051 4604 int cpu = (unsigned long)hcpu;
8db25e78 4605 struct work_struct unbind_work;
4c16bd32 4606 struct workqueue_struct *wq;
8db25e78 4607
65758202
TH
4608 switch (action & ~CPU_TASKS_FROZEN) {
4609 case CPU_DOWN_PREPARE:
4c16bd32 4610 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4611 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4612 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4613
4614 /* update NUMA affinity of unbound workqueues */
4615 mutex_lock(&wq_pool_mutex);
4616 list_for_each_entry(wq, &workqueues, list)
4617 wq_update_unbound_numa(wq, cpu, false);
4618 mutex_unlock(&wq_pool_mutex);
4619
4620 /* wait for per-cpu unbinding to finish */
8db25e78 4621 flush_work(&unbind_work);
440a1136 4622 destroy_work_on_stack(&unbind_work);
8db25e78 4623 break;
65758202
TH
4624 }
4625 return NOTIFY_OK;
4626}
4627
2d3854a3 4628#ifdef CONFIG_SMP
8ccad40d 4629
2d3854a3 4630struct work_for_cpu {
ed48ece2 4631 struct work_struct work;
2d3854a3
RR
4632 long (*fn)(void *);
4633 void *arg;
4634 long ret;
4635};
4636
ed48ece2 4637static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4638{
ed48ece2
TH
4639 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4640
2d3854a3
RR
4641 wfc->ret = wfc->fn(wfc->arg);
4642}
4643
4644/**
4645 * work_on_cpu - run a function in user context on a particular cpu
4646 * @cpu: the cpu to run on
4647 * @fn: the function to run
4648 * @arg: the function arg
4649 *
31ad9081 4650 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4651 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4652 *
4653 * Return: The value @fn returns.
2d3854a3 4654 */
d84ff051 4655long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4656{
ed48ece2 4657 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4658
ed48ece2
TH
4659 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4660 schedule_work_on(cpu, &wfc.work);
12997d1a 4661 flush_work(&wfc.work);
440a1136 4662 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4663 return wfc.ret;
4664}
4665EXPORT_SYMBOL_GPL(work_on_cpu);
4666#endif /* CONFIG_SMP */
4667
a0a1a5fd
TH
4668#ifdef CONFIG_FREEZER
4669
4670/**
4671 * freeze_workqueues_begin - begin freezing workqueues
4672 *
58a69cb4 4673 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4674 * workqueues will queue new works to their delayed_works list instead of
706026c2 4675 * pool->worklist.
a0a1a5fd
TH
4676 *
4677 * CONTEXT:
a357fc03 4678 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4679 */
4680void freeze_workqueues_begin(void)
4681{
24b8a847
TH
4682 struct workqueue_struct *wq;
4683 struct pool_workqueue *pwq;
a0a1a5fd 4684
68e13a67 4685 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4686
6183c009 4687 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4688 workqueue_freezing = true;
4689
24b8a847 4690 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4691 mutex_lock(&wq->mutex);
699ce097
TH
4692 for_each_pwq(pwq, wq)
4693 pwq_adjust_max_active(pwq);
a357fc03 4694 mutex_unlock(&wq->mutex);
a0a1a5fd 4695 }
5bcab335 4696
68e13a67 4697 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4698}
4699
4700/**
58a69cb4 4701 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4702 *
4703 * Check whether freezing is complete. This function must be called
4704 * between freeze_workqueues_begin() and thaw_workqueues().
4705 *
4706 * CONTEXT:
68e13a67 4707 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4708 *
d185af30 4709 * Return:
58a69cb4
TH
4710 * %true if some freezable workqueues are still busy. %false if freezing
4711 * is complete.
a0a1a5fd
TH
4712 */
4713bool freeze_workqueues_busy(void)
4714{
a0a1a5fd 4715 bool busy = false;
24b8a847
TH
4716 struct workqueue_struct *wq;
4717 struct pool_workqueue *pwq;
a0a1a5fd 4718
68e13a67 4719 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4720
6183c009 4721 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4722
24b8a847
TH
4723 list_for_each_entry(wq, &workqueues, list) {
4724 if (!(wq->flags & WQ_FREEZABLE))
4725 continue;
a0a1a5fd
TH
4726 /*
4727 * nr_active is monotonically decreasing. It's safe
4728 * to peek without lock.
4729 */
88109453 4730 rcu_read_lock_sched();
24b8a847 4731 for_each_pwq(pwq, wq) {
6183c009 4732 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4733 if (pwq->nr_active) {
a0a1a5fd 4734 busy = true;
88109453 4735 rcu_read_unlock_sched();
a0a1a5fd
TH
4736 goto out_unlock;
4737 }
4738 }
88109453 4739 rcu_read_unlock_sched();
a0a1a5fd
TH
4740 }
4741out_unlock:
68e13a67 4742 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4743 return busy;
4744}
4745
4746/**
4747 * thaw_workqueues - thaw workqueues
4748 *
4749 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4750 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4751 *
4752 * CONTEXT:
a357fc03 4753 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4754 */
4755void thaw_workqueues(void)
4756{
24b8a847
TH
4757 struct workqueue_struct *wq;
4758 struct pool_workqueue *pwq;
a0a1a5fd 4759
68e13a67 4760 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4761
4762 if (!workqueue_freezing)
4763 goto out_unlock;
4764
74b414ea 4765 workqueue_freezing = false;
8b03ae3c 4766
24b8a847
TH
4767 /* restore max_active and repopulate worklist */
4768 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4769 mutex_lock(&wq->mutex);
699ce097
TH
4770 for_each_pwq(pwq, wq)
4771 pwq_adjust_max_active(pwq);
a357fc03 4772 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4773 }
4774
a0a1a5fd 4775out_unlock:
68e13a67 4776 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4777}
4778#endif /* CONFIG_FREEZER */
4779
bce90380
TH
4780static void __init wq_numa_init(void)
4781{
4782 cpumask_var_t *tbl;
4783 int node, cpu;
4784
bce90380
TH
4785 if (num_possible_nodes() <= 1)
4786 return;
4787
d55262c4
TH
4788 if (wq_disable_numa) {
4789 pr_info("workqueue: NUMA affinity support disabled\n");
4790 return;
4791 }
4792
4c16bd32
TH
4793 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4794 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4795
bce90380
TH
4796 /*
4797 * We want masks of possible CPUs of each node which isn't readily
4798 * available. Build one from cpu_to_node() which should have been
4799 * fully initialized by now.
4800 */
ddcb57e2 4801 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
4802 BUG_ON(!tbl);
4803
4804 for_each_node(node)
5a6024f1 4805 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 4806 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4807
4808 for_each_possible_cpu(cpu) {
4809 node = cpu_to_node(cpu);
4810 if (WARN_ON(node == NUMA_NO_NODE)) {
4811 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4812 /* happens iff arch is bonkers, let's just proceed */
4813 return;
4814 }
4815 cpumask_set_cpu(cpu, tbl[node]);
4816 }
4817
4818 wq_numa_possible_cpumask = tbl;
4819 wq_numa_enabled = true;
4820}
4821
6ee0578b 4822static int __init init_workqueues(void)
1da177e4 4823{
7a4e344c
TH
4824 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4825 int i, cpu;
c34056a3 4826
e904e6c2
TH
4827 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4828
4829 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4830
65758202 4831 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4832 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4833
bce90380
TH
4834 wq_numa_init();
4835
706026c2 4836 /* initialize CPU pools */
29c91e99 4837 for_each_possible_cpu(cpu) {
4ce62e9e 4838 struct worker_pool *pool;
8b03ae3c 4839
7a4e344c 4840 i = 0;
f02ae73a 4841 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4842 BUG_ON(init_worker_pool(pool));
ec22ca5e 4843 pool->cpu = cpu;
29c91e99 4844 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4845 pool->attrs->nice = std_nice[i++];
f3f90ad4 4846 pool->node = cpu_to_node(cpu);
7a4e344c 4847
9daf9e67 4848 /* alloc pool ID */
68e13a67 4849 mutex_lock(&wq_pool_mutex);
9daf9e67 4850 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4851 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4852 }
8b03ae3c
TH
4853 }
4854
e22bee78 4855 /* create the initial worker */
29c91e99 4856 for_each_online_cpu(cpu) {
4ce62e9e 4857 struct worker_pool *pool;
e22bee78 4858
f02ae73a 4859 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4860 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 4861 BUG_ON(!create_worker(pool));
4ce62e9e 4862 }
e22bee78
TH
4863 }
4864
8a2b7538 4865 /* create default unbound and ordered wq attrs */
29c91e99
TH
4866 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4867 struct workqueue_attrs *attrs;
4868
4869 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4870 attrs->nice = std_nice[i];
29c91e99 4871 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
4872
4873 /*
4874 * An ordered wq should have only one pwq as ordering is
4875 * guaranteed by max_active which is enforced by pwqs.
4876 * Turn off NUMA so that dfl_pwq is used for all nodes.
4877 */
4878 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4879 attrs->nice = std_nice[i];
4880 attrs->no_numa = true;
4881 ordered_wq_attrs[i] = attrs;
29c91e99
TH
4882 }
4883
d320c038 4884 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4885 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4886 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4887 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4888 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4889 system_freezable_wq = alloc_workqueue("events_freezable",
4890 WQ_FREEZABLE, 0);
0668106c
VK
4891 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4892 WQ_POWER_EFFICIENT, 0);
4893 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4894 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4895 0);
1aabe902 4896 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
4897 !system_unbound_wq || !system_freezable_wq ||
4898 !system_power_efficient_wq ||
4899 !system_freezable_power_efficient_wq);
6ee0578b 4900 return 0;
1da177e4 4901}
6ee0578b 4902early_initcall(init_workqueues);
This page took 1.335608 seconds and 5 git commands to generate.