Commit | Line | Data |
---|---|---|
5586bca1 RM |
1 | /* sha1.c - Functions to compute SHA1 message digest of files or |
2 | memory blocks according to the NIST specification FIPS-180-1. | |
3 | ||
60b8eb31 NC |
4 | Copyright (C) 2007 Free Software Foundation, Inc. |
5 | ||
6 | This file is part of the GNU Binutils. | |
5586bca1 RM |
7 | |
8 | This program is free software; you can redistribute it and/or modify it | |
9 | under the terms of the GNU General Public License as published by the | |
60b8eb31 | 10 | Free Software Foundation; either version 3, or (at your option) any |
5586bca1 RM |
11 | later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software Foundation, | |
20 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | |
21 | ||
22 | /* Written by Scott G. Miller | |
23 | Credits: | |
60b8eb31 | 24 | Robert Klep <robert@ilse.nl> -- Expansion function fix */ |
5586bca1 RM |
25 | |
26 | #include <config.h> | |
5586bca1 | 27 | #include "sha1.h" |
5586bca1 RM |
28 | #include <stddef.h> |
29 | #include <string.h> | |
30 | ||
31 | #if USE_UNLOCKED_IO | |
32 | # include "unlocked-io.h" | |
33 | #endif | |
34 | ||
35 | #ifdef WORDS_BIGENDIAN | |
36 | # define SWAP(n) (n) | |
37 | #else | |
38 | # define SWAP(n) \ | |
39 | (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) | |
40 | #endif | |
41 | ||
42 | #define BLOCKSIZE 4096 | |
43 | #if BLOCKSIZE % 64 != 0 | |
44 | # error "invalid BLOCKSIZE" | |
45 | #endif | |
46 | ||
47 | /* This array contains the bytes used to pad the buffer to the next | |
48 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ | |
49 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | |
50 | ||
51 | ||
52 | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and | |
53 | initialize it to the start constants of the SHA1 algorithm. This | |
54 | must be called before using hash in the call to sha1_hash. */ | |
60b8eb31 | 55 | |
5586bca1 RM |
56 | void |
57 | sha1_init_ctx (struct sha1_ctx *ctx) | |
58 | { | |
59 | ctx->A = 0x67452301; | |
60 | ctx->B = 0xefcdab89; | |
61 | ctx->C = 0x98badcfe; | |
62 | ctx->D = 0x10325476; | |
63 | ctx->E = 0xc3d2e1f0; | |
64 | ||
65 | ctx->total[0] = ctx->total[1] = 0; | |
66 | ctx->buflen = 0; | |
67 | } | |
68 | ||
69 | /* Put result from CTX in first 20 bytes following RESBUF. The result | |
70 | must be in little endian byte order. | |
71 | ||
72 | IMPORTANT: On some systems it is required that RESBUF is correctly | |
73 | aligned for a 32-bit value. */ | |
60b8eb31 | 74 | |
5586bca1 RM |
75 | void * |
76 | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) | |
77 | { | |
78 | ((uint32_t *) resbuf)[0] = SWAP (ctx->A); | |
79 | ((uint32_t *) resbuf)[1] = SWAP (ctx->B); | |
80 | ((uint32_t *) resbuf)[2] = SWAP (ctx->C); | |
81 | ((uint32_t *) resbuf)[3] = SWAP (ctx->D); | |
82 | ((uint32_t *) resbuf)[4] = SWAP (ctx->E); | |
83 | ||
84 | return resbuf; | |
85 | } | |
86 | ||
87 | /* Process the remaining bytes in the internal buffer and the usual | |
88 | prolog according to the standard and write the result to RESBUF. | |
89 | ||
90 | IMPORTANT: On some systems it is required that RESBUF is correctly | |
91 | aligned for a 32-bit value. */ | |
60b8eb31 | 92 | |
5586bca1 RM |
93 | void * |
94 | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) | |
95 | { | |
96 | /* Take yet unprocessed bytes into account. */ | |
97 | uint32_t bytes = ctx->buflen; | |
98 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; | |
99 | ||
100 | /* Now count remaining bytes. */ | |
101 | ctx->total[0] += bytes; | |
102 | if (ctx->total[0] < bytes) | |
103 | ++ctx->total[1]; | |
104 | ||
105 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ | |
106 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); | |
107 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); | |
108 | ||
109 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); | |
110 | ||
111 | /* Process last bytes. */ | |
112 | sha1_process_block (ctx->buffer, size * 4, ctx); | |
113 | ||
114 | return sha1_read_ctx (ctx, resbuf); | |
115 | } | |
116 | ||
117 | /* Compute SHA1 message digest for bytes read from STREAM. The | |
118 | resulting message digest number will be written into the 16 bytes | |
119 | beginning at RESBLOCK. */ | |
60b8eb31 | 120 | |
5586bca1 RM |
121 | int |
122 | sha1_stream (FILE *stream, void *resblock) | |
123 | { | |
124 | struct sha1_ctx ctx; | |
125 | char buffer[BLOCKSIZE + 72]; | |
126 | size_t sum; | |
127 | ||
128 | /* Initialize the computation context. */ | |
129 | sha1_init_ctx (&ctx); | |
130 | ||
131 | /* Iterate over full file contents. */ | |
132 | while (1) | |
133 | { | |
134 | /* We read the file in blocks of BLOCKSIZE bytes. One call of the | |
135 | computation function processes the whole buffer so that with the | |
136 | next round of the loop another block can be read. */ | |
137 | size_t n; | |
138 | sum = 0; | |
139 | ||
140 | /* Read block. Take care for partial reads. */ | |
141 | while (1) | |
142 | { | |
143 | n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); | |
144 | ||
145 | sum += n; | |
146 | ||
147 | if (sum == BLOCKSIZE) | |
148 | break; | |
149 | ||
150 | if (n == 0) | |
151 | { | |
152 | /* Check for the error flag IFF N == 0, so that we don't | |
153 | exit the loop after a partial read due to e.g., EAGAIN | |
154 | or EWOULDBLOCK. */ | |
155 | if (ferror (stream)) | |
156 | return 1; | |
157 | goto process_partial_block; | |
158 | } | |
159 | ||
160 | /* We've read at least one byte, so ignore errors. But always | |
161 | check for EOF, since feof may be true even though N > 0. | |
162 | Otherwise, we could end up calling fread after EOF. */ | |
163 | if (feof (stream)) | |
164 | goto process_partial_block; | |
165 | } | |
166 | ||
167 | /* Process buffer with BLOCKSIZE bytes. Note that | |
60b8eb31 | 168 | BLOCKSIZE % 64 == 0. */ |
5586bca1 RM |
169 | sha1_process_block (buffer, BLOCKSIZE, &ctx); |
170 | } | |
171 | ||
172 | process_partial_block:; | |
173 | ||
174 | /* Process any remaining bytes. */ | |
175 | if (sum > 0) | |
176 | sha1_process_bytes (buffer, sum, &ctx); | |
177 | ||
178 | /* Construct result in desired memory. */ | |
179 | sha1_finish_ctx (&ctx, resblock); | |
180 | return 0; | |
181 | } | |
182 | ||
183 | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The | |
184 | result is always in little endian byte order, so that a byte-wise | |
185 | output yields to the wanted ASCII representation of the message | |
186 | digest. */ | |
60b8eb31 | 187 | |
5586bca1 RM |
188 | void * |
189 | sha1_buffer (const char *buffer, size_t len, void *resblock) | |
190 | { | |
191 | struct sha1_ctx ctx; | |
192 | ||
193 | /* Initialize the computation context. */ | |
194 | sha1_init_ctx (&ctx); | |
195 | ||
196 | /* Process whole buffer but last len % 64 bytes. */ | |
197 | sha1_process_bytes (buffer, len, &ctx); | |
198 | ||
199 | /* Put result in desired memory area. */ | |
200 | return sha1_finish_ctx (&ctx, resblock); | |
201 | } | |
202 | ||
203 | void | |
204 | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) | |
205 | { | |
206 | /* When we already have some bits in our internal buffer concatenate | |
207 | both inputs first. */ | |
208 | if (ctx->buflen != 0) | |
209 | { | |
210 | size_t left_over = ctx->buflen; | |
211 | size_t add = 128 - left_over > len ? len : 128 - left_over; | |
212 | ||
213 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); | |
214 | ctx->buflen += add; | |
215 | ||
216 | if (ctx->buflen > 64) | |
217 | { | |
218 | sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx); | |
219 | ||
220 | ctx->buflen &= 63; | |
221 | /* The regions in the following copy operation cannot overlap. */ | |
222 | memcpy (ctx->buffer, | |
223 | &((char *) ctx->buffer)[(left_over + add) & ~63], | |
224 | ctx->buflen); | |
225 | } | |
226 | ||
227 | buffer = (const char *) buffer + add; | |
228 | len -= add; | |
229 | } | |
230 | ||
231 | /* Process available complete blocks. */ | |
232 | if (len >= 64) | |
233 | { | |
234 | #if !_STRING_ARCH_unaligned | |
60b8eb31 | 235 | # define alignof(type) offsetof (struct { char c; type x; }, x) |
5586bca1 RM |
236 | # define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0) |
237 | if (UNALIGNED_P (buffer)) | |
238 | while (len > 64) | |
239 | { | |
240 | sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | |
241 | buffer = (const char *) buffer + 64; | |
242 | len -= 64; | |
243 | } | |
244 | else | |
245 | #endif | |
246 | { | |
247 | sha1_process_block (buffer, len & ~63, ctx); | |
248 | buffer = (const char *) buffer + (len & ~63); | |
249 | len &= 63; | |
250 | } | |
251 | } | |
252 | ||
253 | /* Move remaining bytes in internal buffer. */ | |
254 | if (len > 0) | |
255 | { | |
256 | size_t left_over = ctx->buflen; | |
257 | ||
258 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); | |
259 | left_over += len; | |
260 | if (left_over >= 64) | |
261 | { | |
262 | sha1_process_block (ctx->buffer, 64, ctx); | |
263 | left_over -= 64; | |
264 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); | |
265 | } | |
266 | ctx->buflen = left_over; | |
267 | } | |
268 | } | |
269 | ||
270 | /* --- Code below is the primary difference between md5.c and sha1.c --- */ | |
271 | ||
60b8eb31 | 272 | /* SHA1 round constants. */ |
5586bca1 RM |
273 | #define K1 0x5a827999 |
274 | #define K2 0x6ed9eba1 | |
275 | #define K3 0x8f1bbcdc | |
276 | #define K4 0xca62c1d6 | |
277 | ||
278 | /* Round functions. Note that F2 is the same as F4. */ | |
60b8eb31 | 279 | #define F1(B,C,D) (D ^ (B & (C ^ D))) |
5586bca1 | 280 | #define F2(B,C,D) (B ^ C ^ D) |
60b8eb31 | 281 | #define F3(B,C,D) ((B & C) | (D & (B | C))) |
5586bca1 RM |
282 | #define F4(B,C,D) (B ^ C ^ D) |
283 | ||
284 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | |
285 | It is assumed that LEN % 64 == 0. | |
286 | Most of this code comes from GnuPG's cipher/sha1.c. */ | |
287 | ||
288 | void | |
289 | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) | |
290 | { | |
291 | const uint32_t *words = buffer; | |
292 | size_t nwords = len / sizeof (uint32_t); | |
293 | const uint32_t *endp = words + nwords; | |
294 | uint32_t x[16]; | |
295 | uint32_t a = ctx->A; | |
296 | uint32_t b = ctx->B; | |
297 | uint32_t c = ctx->C; | |
298 | uint32_t d = ctx->D; | |
299 | uint32_t e = ctx->E; | |
300 | ||
301 | /* First increment the byte count. RFC 1321 specifies the possible | |
302 | length of the file up to 2^64 bits. Here we only compute the | |
303 | number of bytes. Do a double word increment. */ | |
304 | ctx->total[0] += len; | |
305 | if (ctx->total[0] < len) | |
306 | ++ctx->total[1]; | |
307 | ||
308 | #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n)))) | |
309 | ||
60b8eb31 NC |
310 | #define M(I) (tm = x[I & 0x0f] ^ x[(I - 14) & 0x0f] \ |
311 | ^ x[(I - 8) & 0x0f] ^ x[(I - 3) & 0x0f] \ | |
312 | , (x[I & 0x0f] = rol (tm, 1))) | |
313 | ||
314 | #define R(A,B,C,D,E,F,K,M) \ | |
315 | do \ | |
316 | { \ | |
317 | E += rol (A, 5) \ | |
318 | + F (B, C, D) \ | |
319 | + K \ | |
320 | + M; \ | |
321 | B = rol (B, 30); \ | |
322 | } \ | |
323 | while (0) | |
5586bca1 RM |
324 | |
325 | while (words < endp) | |
326 | { | |
327 | uint32_t tm; | |
328 | int t; | |
60b8eb31 | 329 | |
5586bca1 RM |
330 | for (t = 0; t < 16; t++) |
331 | { | |
332 | x[t] = SWAP (*words); | |
333 | words++; | |
334 | } | |
335 | ||
60b8eb31 NC |
336 | R (a, b, c, d, e, F1, K1, x[ 0]); |
337 | R (e, a, b, c, d, F1, K1, x[ 1]); | |
338 | R (d, e, a, b, c, F1, K1, x[ 2]); | |
339 | R (c, d, e, a, b, F1, K1, x[ 3]); | |
340 | R (b, c, d, e, a, F1, K1, x[ 4]); | |
341 | R (a, b, c, d, e, F1, K1, x[ 5]); | |
342 | R (e, a, b, c, d, F1, K1, x[ 6]); | |
343 | R (d, e, a, b, c, F1, K1, x[ 7]); | |
344 | R (c, d, e, a, b, F1, K1, x[ 8]); | |
345 | R (b, c, d, e, a, F1, K1, x[ 9]); | |
346 | R (a, b, c, d, e, F1, K1, x[10]); | |
347 | R (e, a, b, c, d, F1, K1, x[11]); | |
348 | R (d, e, a, b, c, F1, K1, x[12]); | |
349 | R (c, d, e, a, b, F1, K1, x[13]); | |
350 | R (b, c, d, e, a, F1, K1, x[14]); | |
351 | R (a, b, c, d, e, F1, K1, x[15]); | |
352 | R (e, a, b, c, d, F1, K1, M(16)); | |
353 | R (d, e, a, b, c, F1, K1, M(17)); | |
354 | R (c, d, e, a, b, F1, K1, M(18)); | |
355 | R (b, c, d, e, a, F1, K1, M(19)); | |
356 | R (a, b, c, d, e, F2, K2, M(20)); | |
357 | R (e, a, b, c, d, F2, K2, M(21)); | |
358 | R (d, e, a, b, c, F2, K2, M(22)); | |
359 | R (c, d, e, a, b, F2, K2, M(23)); | |
360 | R (b, c, d, e, a, F2, K2, M(24)); | |
361 | R (a, b, c, d, e, F2, K2, M(25)); | |
362 | R (e, a, b, c, d, F2, K2, M(26)); | |
363 | R (d, e, a, b, c, F2, K2, M(27)); | |
364 | R (c, d, e, a, b, F2, K2, M(28)); | |
365 | R (b, c, d, e, a, F2, K2, M(29)); | |
366 | R (a, b, c, d, e, F2, K2, M(30)); | |
367 | R (e, a, b, c, d, F2, K2, M(31)); | |
368 | R (d, e, a, b, c, F2, K2, M(32)); | |
369 | R (c, d, e, a, b, F2, K2, M(33)); | |
370 | R (b, c, d, e, a, F2, K2, M(34)); | |
371 | R (a, b, c, d, e, F2, K2, M(35)); | |
372 | R (e, a, b, c, d, F2, K2, M(36)); | |
373 | R (d, e, a, b, c, F2, K2, M(37)); | |
374 | R (c, d, e, a, b, F2, K2, M(38)); | |
375 | R (b, c, d, e, a, F2, K2, M(39)); | |
376 | R (a, b, c, d, e, F3, K3, M(40)); | |
377 | R (e, a, b, c, d, F3, K3, M(41)); | |
378 | R (d, e, a, b, c, F3, K3, M(42)); | |
379 | R (c, d, e, a, b, F3, K3, M(43)); | |
380 | R (b, c, d, e, a, F3, K3, M(44)); | |
381 | R (a, b, c, d, e, F3, K3, M(45)); | |
382 | R (e, a, b, c, d, F3, K3, M(46)); | |
383 | R (d, e, a, b, c, F3, K3, M(47)); | |
384 | R (c, d, e, a, b, F3, K3, M(48)); | |
385 | R (b, c, d, e, a, F3, K3, M(49)); | |
386 | R (a, b, c, d, e, F3, K3, M(50)); | |
387 | R (e, a, b, c, d, F3, K3, M(51)); | |
388 | R (d, e, a, b, c, F3, K3, M(52)); | |
389 | R (c, d, e, a, b, F3, K3, M(53)); | |
390 | R (b, c, d, e, a, F3, K3, M(54)); | |
391 | R (a, b, c, d, e, F3, K3, M(55)); | |
392 | R (e, a, b, c, d, F3, K3, M(56)); | |
393 | R (d, e, a, b, c, F3, K3, M(57)); | |
394 | R (c, d, e, a, b, F3, K3, M(58)); | |
395 | R (b, c, d, e, a, F3, K3, M(59)); | |
396 | R (a, b, c, d, e, F4, K4, M(60)); | |
397 | R (e, a, b, c, d, F4, K4, M(61)); | |
398 | R (d, e, a, b, c, F4, K4, M(62)); | |
399 | R (c, d, e, a, b, F4, K4, M(63)); | |
400 | R (b, c, d, e, a, F4, K4, M(64)); | |
401 | R (a, b, c, d, e, F4, K4, M(65)); | |
402 | R (e, a, b, c, d, F4, K4, M(66)); | |
403 | R (d, e, a, b, c, F4, K4, M(67)); | |
404 | R (c, d, e, a, b, F4, K4, M(68)); | |
405 | R (b, c, d, e, a, F4, K4, M(69)); | |
406 | R (a, b, c, d, e, F4, K4, M(70)); | |
407 | R (e, a, b, c, d, F4, K4, M(71)); | |
408 | R (d, e, a, b, c, F4, K4, M(72)); | |
409 | R (c, d, e, a, b, F4, K4, M(73)); | |
410 | R (b, c, d, e, a, F4, K4, M(74)); | |
411 | R (a, b, c, d, e, F4, K4, M(75)); | |
412 | R (e, a, b, c, d, F4, K4, M(76)); | |
413 | R (d, e, a, b, c, F4, K4, M(77)); | |
414 | R (c, d, e, a, b, F4, K4, M(78)); | |
415 | R (b, c, d, e, a, F4, K4, M(79)); | |
5586bca1 RM |
416 | |
417 | a = ctx->A += a; | |
418 | b = ctx->B += b; | |
419 | c = ctx->C += c; | |
420 | d = ctx->D += d; | |
421 | e = ctx->E += e; | |
422 | } | |
423 | } |