Drop -Wuninitialized until GDB compiles with it.
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
eb383413 2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
e2eaf477
ILT
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libiberty; see the file COPYING.LIB. If
18not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
20
21/* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34#ifdef HAVE_CONFIG_H
35#include "config.h"
36#endif
37
38#include <sys/types.h>
39
40#ifdef HAVE_STDLIB_H
41#include <stdlib.h>
42#endif
43
5c82d20a
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
47
e2eaf477
ILT
48#include <stdio.h>
49
50#include "libiberty.h"
51#include "hashtab.h"
52
e2eaf477
ILT
53/* This macro defines reserved value for empty table entry. */
54
e0f3df8f 55#define EMPTY_ENTRY ((PTR) 0)
e2eaf477
ILT
56
57/* This macro defines reserved value for table entry which contained
58 a deleted element. */
59
e0f3df8f 60#define DELETED_ENTRY ((PTR) 1)
e2eaf477 61
eb383413
L
62static unsigned long higher_prime_number PARAMS ((unsigned long));
63static hashval_t hash_pointer PARAMS ((const void *));
64static int eq_pointer PARAMS ((const void *, const void *));
99a4c1bd 65static int htab_expand PARAMS ((htab_t));
e0f3df8f 66static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
eb383413
L
67
68/* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71htab_hash htab_hash_pointer = hash_pointer;
72htab_eq htab_eq_pointer = eq_pointer;
73
5ca0f83d
DD
74/* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
e2eaf477
ILT
76
77static unsigned long
b4fe2683
JM
78higher_prime_number (n)
79 unsigned long n;
e2eaf477 80{
5ca0f83d
DD
81 /* These are primes that are near, but slightly smaller than, a
82 power of two. */
83 static unsigned long primes[] = {
84 2,
85 7,
86 13,
87 31,
88 61,
89 127,
90 251,
91 509,
92 1021,
93 2039,
94 4093,
95 8191,
96 16381,
97 32749,
98 65521,
99 131071,
100 262139,
101 524287,
102 1048573,
103 2097143,
104 4194301,
105 8388593,
106 16777213,
107 33554393,
108 67108859,
109 134217689,
110 268435399,
111 536870909,
112 1073741789,
113 2147483647,
114 4294967291
115 };
116
117 unsigned long* low = &primes[0];
118 unsigned long* high = &primes[sizeof(primes) / sizeof(primes[0])];
119
120 while (low != high)
121 {
122 unsigned long* mid = low + (high - low) / 2;
123 if (n > *mid)
124 low = mid + 1;
125 else
126 high = mid;
127 }
128
129 /* If we've run out of primes, abort. */
130 if (n > *low)
131 {
132 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
133 abort ();
134 }
135
136 return *low;
e2eaf477
ILT
137}
138
eb383413
L
139/* Returns a hash code for P. */
140
141static hashval_t
142hash_pointer (p)
e0f3df8f 143 const PTR p;
eb383413
L
144{
145 return (hashval_t) ((long)p >> 3);
146}
147
148/* Returns non-zero if P1 and P2 are equal. */
149
150static int
151eq_pointer (p1, p2)
e0f3df8f
HPN
152 const PTR p1;
153 const PTR p2;
eb383413
L
154{
155 return p1 == p2;
156}
157
e2eaf477
ILT
158/* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
99a4c1bd 161 created hash table. Memory allocation must not fail. */
e2eaf477 162
b4fe2683
JM
163htab_t
164htab_create (size, hash_f, eq_f, del_f)
e2eaf477 165 size_t size;
b4fe2683
JM
166 htab_hash hash_f;
167 htab_eq eq_f;
168 htab_del del_f;
e2eaf477 169{
b4fe2683 170 htab_t result;
e2eaf477
ILT
171
172 size = higher_prime_number (size);
b4fe2683 173 result = (htab_t) xcalloc (1, sizeof (struct htab));
e0f3df8f 174 result->entries = (PTR *) xcalloc (size, sizeof (PTR));
e2eaf477 175 result->size = size;
b4fe2683
JM
176 result->hash_f = hash_f;
177 result->eq_f = eq_f;
178 result->del_f = del_f;
99a4c1bd
HPN
179 result->return_allocation_failure = 0;
180 return result;
181}
182
183/* This function creates table with length slightly longer than given
184 source length. The created hash table is initiated as empty (all the
185 hash table entries are EMPTY_ENTRY). The function returns the created
186 hash table. Memory allocation may fail; it may return NULL. */
187
188htab_t
189htab_try_create (size, hash_f, eq_f, del_f)
190 size_t size;
191 htab_hash hash_f;
192 htab_eq eq_f;
193 htab_del del_f;
194{
195 htab_t result;
196
197 size = higher_prime_number (size);
198 result = (htab_t) calloc (1, sizeof (struct htab));
199 if (result == NULL)
200 return NULL;
201
202 result->entries = (PTR *) calloc (size, sizeof (PTR));
203 if (result->entries == NULL)
204 {
205 free (result);
206 return NULL;
207 }
208
209 result->size = size;
210 result->hash_f = hash_f;
211 result->eq_f = eq_f;
212 result->del_f = del_f;
213 result->return_allocation_failure = 1;
e2eaf477
ILT
214 return result;
215}
216
217/* This function frees all memory allocated for given hash table.
218 Naturally the hash table must already exist. */
219
220void
b4fe2683
JM
221htab_delete (htab)
222 htab_t htab;
e2eaf477 223{
b4fe2683 224 int i;
eb383413 225
b4fe2683
JM
226 if (htab->del_f)
227 for (i = htab->size - 1; i >= 0; i--)
eb383413
L
228 if (htab->entries[i] != EMPTY_ENTRY
229 && htab->entries[i] != DELETED_ENTRY)
230 (*htab->del_f) (htab->entries[i]);
b4fe2683 231
e2eaf477
ILT
232 free (htab->entries);
233 free (htab);
234}
235
236/* This function clears all entries in the given hash table. */
237
238void
b4fe2683
JM
239htab_empty (htab)
240 htab_t htab;
241{
242 int i;
eb383413 243
b4fe2683
JM
244 if (htab->del_f)
245 for (i = htab->size - 1; i >= 0; i--)
eb383413
L
246 if (htab->entries[i] != EMPTY_ENTRY
247 && htab->entries[i] != DELETED_ENTRY)
248 (*htab->del_f) (htab->entries[i]);
b4fe2683 249
e0f3df8f 250 memset (htab->entries, 0, htab->size * sizeof (PTR));
b4fe2683
JM
251}
252
253/* Similar to htab_find_slot, but without several unwanted side effects:
254 - Does not call htab->eq_f when it finds an existing entry.
255 - Does not change the count of elements/searches/collisions in the
256 hash table.
257 This function also assumes there are no deleted entries in the table.
258 HASH is the hash value for the element to be inserted. */
eb383413 259
e0f3df8f 260static PTR *
b4fe2683
JM
261find_empty_slot_for_expand (htab, hash)
262 htab_t htab;
eb383413 263 hashval_t hash;
e2eaf477 264{
b4fe2683 265 size_t size = htab->size;
eb383413 266 hashval_t hash2 = 1 + hash % (size - 2);
b4fe2683
JM
267 unsigned int index = hash % size;
268
269 for (;;)
270 {
e0f3df8f 271 PTR *slot = htab->entries + index;
eb383413 272
b4fe2683
JM
273 if (*slot == EMPTY_ENTRY)
274 return slot;
eb383413 275 else if (*slot == DELETED_ENTRY)
b4fe2683
JM
276 abort ();
277
278 index += hash2;
279 if (index >= size)
280 index -= size;
281 }
e2eaf477
ILT
282}
283
284/* The following function changes size of memory allocated for the
285 entries and repeatedly inserts the table elements. The occupancy
286 of the table after the call will be about 50%. Naturally the hash
287 table must already exist. Remember also that the place of the
99a4c1bd
HPN
288 table entries is changed. If memory allocation failures are allowed,
289 this function will return zero, indicating that the table could not be
290 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 291
99a4c1bd 292static int
b4fe2683
JM
293htab_expand (htab)
294 htab_t htab;
e2eaf477 295{
e0f3df8f
HPN
296 PTR *oentries;
297 PTR *olimit;
298 PTR *p;
b4fe2683
JM
299
300 oentries = htab->entries;
301 olimit = oentries + htab->size;
302
303 htab->size = higher_prime_number (htab->size * 2);
99a4c1bd
HPN
304
305 if (htab->return_allocation_failure)
306 {
307 PTR *nentries = (PTR *) calloc (htab->size, sizeof (PTR *));
308 if (nentries == NULL)
309 return 0;
310 htab->entries = nentries;
311 }
312 else
313 htab->entries = (PTR *) xcalloc (htab->size, sizeof (PTR *));
b4fe2683
JM
314
315 htab->n_elements -= htab->n_deleted;
316 htab->n_deleted = 0;
317
318 p = oentries;
319 do
320 {
e0f3df8f 321 PTR x = *p;
eb383413 322
b4fe2683
JM
323 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
324 {
e0f3df8f 325 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 326
b4fe2683
JM
327 *q = x;
328 }
eb383413 329
b4fe2683
JM
330 p++;
331 }
332 while (p < olimit);
eb383413 333
b4fe2683 334 free (oentries);
99a4c1bd 335 return 1;
e2eaf477
ILT
336}
337
b4fe2683
JM
338/* This function searches for a hash table entry equal to the given
339 element. It cannot be used to insert or delete an element. */
340
e0f3df8f 341PTR
b4fe2683
JM
342htab_find_with_hash (htab, element, hash)
343 htab_t htab;
e0f3df8f 344 const PTR element;
eb383413 345 hashval_t hash;
e2eaf477 346{
eb383413
L
347 unsigned int index;
348 hashval_t hash2;
b4fe2683 349 size_t size;
e0f3df8f 350 PTR entry;
e2eaf477 351
b4fe2683
JM
352 htab->searches++;
353 size = htab->size;
b4fe2683
JM
354 index = hash % size;
355
eb383413
L
356 entry = htab->entries[index];
357 if (entry == EMPTY_ENTRY
358 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
359 return entry;
360
361 hash2 = 1 + hash % (size - 2);
362
b4fe2683 363 for (;;)
e2eaf477 364 {
b4fe2683
JM
365 htab->collisions++;
366 index += hash2;
367 if (index >= size)
368 index -= size;
eb383413
L
369
370 entry = htab->entries[index];
371 if (entry == EMPTY_ENTRY
372 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
373 return entry;
e2eaf477 374 }
b4fe2683
JM
375}
376
377/* Like htab_find_slot_with_hash, but compute the hash value from the
378 element. */
eb383413 379
e0f3df8f 380PTR
b4fe2683
JM
381htab_find (htab, element)
382 htab_t htab;
e0f3df8f 383 const PTR element;
b4fe2683
JM
384{
385 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
386}
387
388/* This function searches for a hash table slot containing an entry
389 equal to the given element. To delete an entry, call this with
390 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
391 after doing some checks). To insert an entry, call this with
99a4c1bd
HPN
392 INSERT = 1, then write the value you want into the returned slot.
393 When inserting an entry, NULL may be returned if memory allocation
394 fails. */
b4fe2683 395
e0f3df8f 396PTR *
b4fe2683
JM
397htab_find_slot_with_hash (htab, element, hash, insert)
398 htab_t htab;
e0f3df8f 399 const PTR element;
eb383413
L
400 hashval_t hash;
401 enum insert_option insert;
b4fe2683 402{
e0f3df8f 403 PTR *first_deleted_slot;
eb383413
L
404 unsigned int index;
405 hashval_t hash2;
b4fe2683
JM
406 size_t size;
407
99a4c1bd
HPN
408 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
409 && htab_expand (htab) == 0)
410 return NULL;
b4fe2683
JM
411
412 size = htab->size;
413 hash2 = 1 + hash % (size - 2);
414 index = hash % size;
415
e2eaf477 416 htab->searches++;
b4fe2683
JM
417 first_deleted_slot = NULL;
418
419 for (;;)
e2eaf477 420 {
e0f3df8f 421 PTR entry = htab->entries[index];
b4fe2683
JM
422 if (entry == EMPTY_ENTRY)
423 {
eb383413 424 if (insert == NO_INSERT)
b4fe2683
JM
425 return NULL;
426
427 htab->n_elements++;
428
429 if (first_deleted_slot)
e2eaf477 430 {
b4fe2683
JM
431 *first_deleted_slot = EMPTY_ENTRY;
432 return first_deleted_slot;
e2eaf477 433 }
b4fe2683
JM
434
435 return &htab->entries[index];
436 }
437
438 if (entry == DELETED_ENTRY)
439 {
440 if (!first_deleted_slot)
441 first_deleted_slot = &htab->entries[index];
442 }
eb383413
L
443 else if ((*htab->eq_f) (entry, element))
444 return &htab->entries[index];
b4fe2683
JM
445
446 htab->collisions++;
447 index += hash2;
448 if (index >= size)
449 index -= size;
e2eaf477 450 }
e2eaf477
ILT
451}
452
b4fe2683
JM
453/* Like htab_find_slot_with_hash, but compute the hash value from the
454 element. */
eb383413 455
e0f3df8f 456PTR *
b4fe2683
JM
457htab_find_slot (htab, element, insert)
458 htab_t htab;
e0f3df8f 459 const PTR element;
eb383413 460 enum insert_option insert;
b4fe2683
JM
461{
462 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
463 insert);
464}
465
466/* This function deletes an element with the given value from hash
467 table. If there is no matching element in the hash table, this
468 function does nothing. */
e2eaf477
ILT
469
470void
b4fe2683
JM
471htab_remove_elt (htab, element)
472 htab_t htab;
e0f3df8f 473 PTR element;
e2eaf477 474{
e0f3df8f 475 PTR *slot;
b4fe2683 476
eb383413 477 slot = htab_find_slot (htab, element, NO_INSERT);
b4fe2683
JM
478 if (*slot == EMPTY_ENTRY)
479 return;
480
481 if (htab->del_f)
482 (*htab->del_f) (*slot);
e2eaf477 483
b4fe2683
JM
484 *slot = DELETED_ENTRY;
485 htab->n_deleted++;
e2eaf477
ILT
486}
487
b4fe2683
JM
488/* This function clears a specified slot in a hash table. It is
489 useful when you've already done the lookup and don't want to do it
490 again. */
e2eaf477
ILT
491
492void
b4fe2683
JM
493htab_clear_slot (htab, slot)
494 htab_t htab;
e0f3df8f 495 PTR *slot;
e2eaf477
ILT
496{
497 if (slot < htab->entries || slot >= htab->entries + htab->size
498 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
499 abort ();
eb383413 500
b4fe2683
JM
501 if (htab->del_f)
502 (*htab->del_f) (*slot);
eb383413 503
e2eaf477 504 *slot = DELETED_ENTRY;
b4fe2683 505 htab->n_deleted++;
e2eaf477
ILT
506}
507
508/* This function scans over the entire hash table calling
509 CALLBACK for each live entry. If CALLBACK returns false,
510 the iteration stops. INFO is passed as CALLBACK's second
511 argument. */
512
513void
b4fe2683
JM
514htab_traverse (htab, callback, info)
515 htab_t htab;
516 htab_trav callback;
e0f3df8f 517 PTR info;
e2eaf477 518{
e0f3df8f
HPN
519 PTR *slot = htab->entries;
520 PTR *limit = slot + htab->size;
eb383413 521
b4fe2683
JM
522 do
523 {
e0f3df8f 524 PTR x = *slot;
eb383413 525
b4fe2683
JM
526 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
527 if (!(*callback) (slot, info))
528 break;
529 }
530 while (++slot < limit);
e2eaf477
ILT
531}
532
eb383413 533/* Return the current size of given hash table. */
e2eaf477
ILT
534
535size_t
b4fe2683
JM
536htab_size (htab)
537 htab_t htab;
e2eaf477
ILT
538{
539 return htab->size;
540}
541
eb383413 542/* Return the current number of elements in given hash table. */
e2eaf477
ILT
543
544size_t
b4fe2683
JM
545htab_elements (htab)
546 htab_t htab;
e2eaf477 547{
b4fe2683 548 return htab->n_elements - htab->n_deleted;
e2eaf477
ILT
549}
550
eb383413
L
551/* Return the fraction of fixed collisions during all work with given
552 hash table. */
e2eaf477 553
b4fe2683
JM
554double
555htab_collisions (htab)
556 htab_t htab;
e2eaf477 557{
eb383413 558 if (htab->searches == 0)
b4fe2683 559 return 0.0;
eb383413
L
560
561 return (double) htab->collisions / (double) htab->searches;
e2eaf477 562}
This page took 0.073264 seconds and 4 git commands to generate.