* config/tc-cris.h: Convert to ISO C90.
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
bb6a587d
DD
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
e2eaf477
ILT
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
19not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
5c82d20a
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
5f73c378
DD
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
bb6a587d
DD
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_STDINT_H
54#include <stdint.h>
55#endif
5f73c378 56
e2eaf477
ILT
57#include <stdio.h>
58
59#include "libiberty.h"
bb6a587d 60#include "ansidecl.h"
e2eaf477
ILT
61#include "hashtab.h"
62
bb6a587d
DD
63#ifndef CHAR_BIT
64#define CHAR_BIT 8
65#endif
66
e2eaf477
ILT
67/* This macro defines reserved value for empty table entry. */
68
e0f3df8f 69#define EMPTY_ENTRY ((PTR) 0)
e2eaf477
ILT
70
71/* This macro defines reserved value for table entry which contained
72 a deleted element. */
73
e0f3df8f 74#define DELETED_ENTRY ((PTR) 1)
e2eaf477 75
bb6a587d
DD
76static unsigned int higher_prime_index PARAMS ((unsigned long));
77static hashval_t htab_mod_1 PARAMS ((hashval_t, hashval_t, hashval_t, int));
78static hashval_t htab_mod PARAMS ((hashval_t, htab_t));
79static hashval_t htab_mod_m2 PARAMS ((hashval_t, htab_t));
eb383413
L
80static hashval_t hash_pointer PARAMS ((const void *));
81static int eq_pointer PARAMS ((const void *, const void *));
99a4c1bd 82static int htab_expand PARAMS ((htab_t));
e0f3df8f 83static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
eb383413
L
84
85/* At some point, we could make these be NULL, and modify the
86 hash-table routines to handle NULL specially; that would avoid
87 function-call overhead for the common case of hashing pointers. */
88htab_hash htab_hash_pointer = hash_pointer;
89htab_eq htab_eq_pointer = eq_pointer;
90
bb6a587d
DD
91/* Table of primes and multiplicative inverses.
92
93 Note that these are not minimally reduced inverses. Unlike when generating
94 code to divide by a constant, we want to be able to use the same algorithm
95 all the time. All of these inverses (are implied to) have bit 32 set.
96
97 For the record, here's the function that computed the table; it's a
98 vastly simplified version of the function of the same name from gcc. */
99
100#if 0
101unsigned int
102ceil_log2 (unsigned int x)
103{
104 int i;
105 for (i = 31; i >= 0 ; --i)
106 if (x > (1u << i))
107 return i+1;
108 abort ();
109}
e2eaf477 110
bb6a587d
DD
111unsigned int
112choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
113{
114 unsigned long long mhigh;
115 double nx;
116 int lgup, post_shift;
117 int pow, pow2;
118 int n = 32, precision = 32;
119
120 lgup = ceil_log2 (d);
121 pow = n + lgup;
122 pow2 = n + lgup - precision;
123
124 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
125 mhigh = nx / d;
126
127 *shiftp = lgup - 1;
128 *mlp = mhigh;
129 return mhigh >> 32;
130}
131#endif
132
133struct prime_ent
134{
135 hashval_t prime;
136 hashval_t inv;
137 hashval_t inv_m2; /* inverse of prime-2 */
138 hashval_t shift;
139};
140
141static struct prime_ent const prime_tab[] = {
142 { 7, 0x24924925, 0x9999999b, 2 },
143 { 13, 0x3b13b13c, 0x745d1747, 3 },
144 { 31, 0x08421085, 0x1a7b9612, 4 },
145 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
146 { 127, 0x02040811, 0x0624dd30, 6 },
147 { 251, 0x05197f7e, 0x073260a5, 7 },
148 { 509, 0x01824366, 0x02864fc8, 8 },
149 { 1021, 0x00c0906d, 0x014191f7, 9 },
150 { 2039, 0x0121456f, 0x0161e69e, 10 },
151 { 4093, 0x00300902, 0x00501908, 11 },
152 { 8191, 0x00080041, 0x00180241, 12 },
153 { 16381, 0x000c0091, 0x00140191, 13 },
154 { 32749, 0x002605a5, 0x002a06e6, 14 },
155 { 65521, 0x000f00e2, 0x00110122, 15 },
156 { 131071, 0x00008001, 0x00018003, 16 },
157 { 262139, 0x00014002, 0x0001c004, 17 },
158 { 524287, 0x00002001, 0x00006001, 18 },
159 { 1048573, 0x00003001, 0x00005001, 19 },
160 { 2097143, 0x00004801, 0x00005801, 20 },
161 { 4194301, 0x00000c01, 0x00001401, 21 },
162 { 8388593, 0x00001e01, 0x00002201, 22 },
163 { 16777213, 0x00000301, 0x00000501, 23 },
164 { 33554393, 0x00001381, 0x00001481, 24 },
165 { 67108859, 0x00000141, 0x000001c1, 25 },
166 { 134217689, 0x000004e1, 0x00000521, 26 },
167 { 268435399, 0x00000391, 0x000003b1, 27 },
168 { 536870909, 0x00000019, 0x00000029, 28 },
169 { 1073741789, 0x0000008d, 0x00000095, 29 },
170 { 2147483647, 0x00000003, 0x00000007, 30 },
171 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
172 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
173};
174
175/* The following function returns an index into the above table of the
176 nearest prime number which is greater than N, and near a power of two. */
177
178static unsigned int
179higher_prime_index (n)
b4fe2683 180 unsigned long n;
e2eaf477 181{
bb6a587d
DD
182 unsigned int low = 0;
183 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
5ca0f83d
DD
184
185 while (low != high)
186 {
bb6a587d
DD
187 unsigned int mid = low + (high - low) / 2;
188 if (n > prime_tab[mid].prime)
5ca0f83d
DD
189 low = mid + 1;
190 else
191 high = mid;
192 }
193
194 /* If we've run out of primes, abort. */
bb6a587d 195 if (n > prime_tab[low].prime)
5ca0f83d
DD
196 {
197 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
198 abort ();
199 }
200
bb6a587d 201 return low;
e2eaf477
ILT
202}
203
eb383413
L
204/* Returns a hash code for P. */
205
206static hashval_t
207hash_pointer (p)
e0f3df8f 208 const PTR p;
eb383413
L
209{
210 return (hashval_t) ((long)p >> 3);
211}
212
213/* Returns non-zero if P1 and P2 are equal. */
214
215static int
216eq_pointer (p1, p2)
e0f3df8f
HPN
217 const PTR p1;
218 const PTR p2;
eb383413
L
219{
220 return p1 == p2;
221}
222
fe046a17
DD
223/* Return the current size of given hash table. */
224
225inline size_t
226htab_size (htab)
227 htab_t htab;
228{
229 return htab->size;
230}
231
232/* Return the current number of elements in given hash table. */
233
234inline size_t
235htab_elements (htab)
236 htab_t htab;
237{
238 return htab->n_elements - htab->n_deleted;
239}
240
bb6a587d
DD
241/* Return X % Y. */
242
243static inline hashval_t
244htab_mod_1 (x, y, inv, shift)
245 hashval_t x, y, inv;
246 int shift;
247{
248 /* The multiplicative inverses computed above are for 32-bit types, and
249 requires that we be able to compute a highpart multiply. */
250#ifdef UNSIGNED_64BIT_TYPE
251 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
252 if (sizeof (hashval_t) * CHAR_BIT <= 32)
253 {
254 hashval_t t1, t2, t3, t4, q, r;
255
256 t1 = ((ull)x * inv) >> 32;
257 t2 = x - t1;
258 t3 = t2 >> 1;
259 t4 = t1 + t3;
260 q = t4 >> shift;
261 r = x - (q * y);
262
263 return r;
264 }
265#endif
266
267 /* Otherwise just use the native division routines. */
268 return x % y;
269}
270
fe046a17
DD
271/* Compute the primary hash for HASH given HTAB's current size. */
272
273static inline hashval_t
274htab_mod (hash, htab)
275 hashval_t hash;
276 htab_t htab;
277{
bb6a587d
DD
278 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
fe046a17
DD
280}
281
282/* Compute the secondary hash for HASH given HTAB's current size. */
283
284static inline hashval_t
285htab_mod_m2 (hash, htab)
286 hashval_t hash;
287 htab_t htab;
288{
bb6a587d
DD
289 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
290 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
fe046a17
DD
291}
292
e2eaf477
ILT
293/* This function creates table with length slightly longer than given
294 source length. Created hash table is initiated as empty (all the
295 hash table entries are EMPTY_ENTRY). The function returns the
18893690 296 created hash table, or NULL if memory allocation fails. */
e2eaf477 297
b4fe2683 298htab_t
18893690 299htab_create_alloc (size, hash_f, eq_f, del_f, alloc_f, free_f)
e2eaf477 300 size_t size;
b4fe2683
JM
301 htab_hash hash_f;
302 htab_eq eq_f;
303 htab_del del_f;
18893690
DD
304 htab_alloc alloc_f;
305 htab_free free_f;
e2eaf477 306{
b4fe2683 307 htab_t result;
bb6a587d
DD
308 unsigned int size_prime_index;
309
310 size_prime_index = higher_prime_index (size);
311 size = prime_tab[size_prime_index].prime;
e2eaf477 312
18893690
DD
313 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
314 if (result == NULL)
315 return NULL;
316 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
317 if (result->entries == NULL)
318 {
319 if (free_f != NULL)
320 (*free_f) (result);
321 return NULL;
322 }
e2eaf477 323 result->size = size;
bb6a587d 324 result->size_prime_index = size_prime_index;
b4fe2683
JM
325 result->hash_f = hash_f;
326 result->eq_f = eq_f;
327 result->del_f = del_f;
18893690
DD
328 result->alloc_f = alloc_f;
329 result->free_f = free_f;
99a4c1bd
HPN
330 return result;
331}
332
5f9624e3
DJ
333/* As above, but use the variants of alloc_f and free_f which accept
334 an extra argument. */
335
336htab_t
337htab_create_alloc_ex (size, hash_f, eq_f, del_f, alloc_arg, alloc_f,
338 free_f)
339 size_t size;
340 htab_hash hash_f;
341 htab_eq eq_f;
342 htab_del del_f;
343 PTR alloc_arg;
344 htab_alloc_with_arg alloc_f;
345 htab_free_with_arg free_f;
346{
347 htab_t result;
bb6a587d
DD
348 unsigned int size_prime_index;
349
350 size_prime_index = higher_prime_index (size);
351 size = prime_tab[size_prime_index].prime;
5f9624e3 352
5f9624e3
DJ
353 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
354 if (result == NULL)
355 return NULL;
356 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
357 if (result->entries == NULL)
358 {
359 if (free_f != NULL)
360 (*free_f) (alloc_arg, result);
361 return NULL;
362 }
363 result->size = size;
bb6a587d 364 result->size_prime_index = size_prime_index;
5f9624e3
DJ
365 result->hash_f = hash_f;
366 result->eq_f = eq_f;
367 result->del_f = del_f;
368 result->alloc_arg = alloc_arg;
369 result->alloc_with_arg_f = alloc_f;
370 result->free_with_arg_f = free_f;
371 return result;
372}
373
374/* Update the function pointers and allocation parameter in the htab_t. */
375
376void
377htab_set_functions_ex (htab, hash_f, eq_f, del_f, alloc_arg, alloc_f, free_f)
378 htab_t htab;
379 htab_hash hash_f;
380 htab_eq eq_f;
381 htab_del del_f;
382 PTR alloc_arg;
383 htab_alloc_with_arg alloc_f;
384 htab_free_with_arg free_f;
385{
386 htab->hash_f = hash_f;
387 htab->eq_f = eq_f;
388 htab->del_f = del_f;
389 htab->alloc_arg = alloc_arg;
390 htab->alloc_with_arg_f = alloc_f;
391 htab->free_with_arg_f = free_f;
392}
393
18893690 394/* These functions exist solely for backward compatibility. */
99a4c1bd 395
18893690 396#undef htab_create
99a4c1bd 397htab_t
18893690 398htab_create (size, hash_f, eq_f, del_f)
99a4c1bd
HPN
399 size_t size;
400 htab_hash hash_f;
401 htab_eq eq_f;
402 htab_del del_f;
403{
18893690
DD
404 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
405}
99a4c1bd 406
18893690
DD
407htab_t
408htab_try_create (size, hash_f, eq_f, del_f)
409 size_t size;
410 htab_hash hash_f;
411 htab_eq eq_f;
412 htab_del del_f;
413{
414 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
e2eaf477
ILT
415}
416
417/* This function frees all memory allocated for given hash table.
418 Naturally the hash table must already exist. */
419
420void
b4fe2683
JM
421htab_delete (htab)
422 htab_t htab;
e2eaf477 423{
fe046a17
DD
424 size_t size = htab_size (htab);
425 PTR *entries = htab->entries;
b4fe2683 426 int i;
eb383413 427
b4fe2683 428 if (htab->del_f)
fe046a17
DD
429 for (i = size - 1; i >= 0; i--)
430 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
431 (*htab->del_f) (entries[i]);
b4fe2683 432
18893690
DD
433 if (htab->free_f != NULL)
434 {
fe046a17 435 (*htab->free_f) (entries);
18893690
DD
436 (*htab->free_f) (htab);
437 }
5f9624e3
DJ
438 else if (htab->free_with_arg_f != NULL)
439 {
fe046a17 440 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
5f9624e3
DJ
441 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
442 }
e2eaf477
ILT
443}
444
445/* This function clears all entries in the given hash table. */
446
447void
b4fe2683
JM
448htab_empty (htab)
449 htab_t htab;
450{
fe046a17
DD
451 size_t size = htab_size (htab);
452 PTR *entries = htab->entries;
b4fe2683 453 int i;
eb383413 454
b4fe2683 455 if (htab->del_f)
fe046a17
DD
456 for (i = size - 1; i >= 0; i--)
457 if (entries[i] != EMPTY_ENTRY && entries[i] != DELETED_ENTRY)
458 (*htab->del_f) (entries[i]);
b4fe2683 459
fe046a17 460 memset (entries, 0, size * sizeof (PTR));
b4fe2683
JM
461}
462
463/* Similar to htab_find_slot, but without several unwanted side effects:
464 - Does not call htab->eq_f when it finds an existing entry.
465 - Does not change the count of elements/searches/collisions in the
466 hash table.
467 This function also assumes there are no deleted entries in the table.
468 HASH is the hash value for the element to be inserted. */
eb383413 469
e0f3df8f 470static PTR *
b4fe2683
JM
471find_empty_slot_for_expand (htab, hash)
472 htab_t htab;
eb383413 473 hashval_t hash;
e2eaf477 474{
fe046a17
DD
475 hashval_t index = htab_mod (hash, htab);
476 size_t size = htab_size (htab);
b1c933fc
RH
477 PTR *slot = htab->entries + index;
478 hashval_t hash2;
479
480 if (*slot == EMPTY_ENTRY)
481 return slot;
482 else if (*slot == DELETED_ENTRY)
483 abort ();
b4fe2683 484
fe046a17 485 hash2 = htab_mod_m2 (hash, htab);
b4fe2683
JM
486 for (;;)
487 {
b1c933fc
RH
488 index += hash2;
489 if (index >= size)
490 index -= size;
eb383413 491
b1c933fc 492 slot = htab->entries + index;
b4fe2683
JM
493 if (*slot == EMPTY_ENTRY)
494 return slot;
eb383413 495 else if (*slot == DELETED_ENTRY)
b4fe2683 496 abort ();
b4fe2683 497 }
e2eaf477
ILT
498}
499
500/* The following function changes size of memory allocated for the
501 entries and repeatedly inserts the table elements. The occupancy
502 of the table after the call will be about 50%. Naturally the hash
503 table must already exist. Remember also that the place of the
99a4c1bd
HPN
504 table entries is changed. If memory allocation failures are allowed,
505 this function will return zero, indicating that the table could not be
506 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 507
99a4c1bd 508static int
b4fe2683
JM
509htab_expand (htab)
510 htab_t htab;
e2eaf477 511{
e0f3df8f
HPN
512 PTR *oentries;
513 PTR *olimit;
514 PTR *p;
18893690 515 PTR *nentries;
bb6a587d
DD
516 size_t nsize, osize, elts;
517 unsigned int oindex, nindex;
b4fe2683
JM
518
519 oentries = htab->entries;
bb6a587d
DD
520 oindex = htab->size_prime_index;
521 osize = htab->size;
522 olimit = oentries + osize;
523 elts = htab_elements (htab);
b4fe2683 524
c4d8feb2
DD
525 /* Resize only when table after removal of unused elements is either
526 too full or too empty. */
bb6a587d
DD
527 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
528 {
529 nindex = higher_prime_index (elts * 2);
530 nsize = prime_tab[nindex].prime;
531 }
c4d8feb2 532 else
bb6a587d
DD
533 {
534 nindex = oindex;
535 nsize = osize;
536 }
99a4c1bd 537
5f9624e3
DJ
538 if (htab->alloc_with_arg_f != NULL)
539 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
540 sizeof (PTR *));
541 else
542 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
18893690
DD
543 if (nentries == NULL)
544 return 0;
545 htab->entries = nentries;
eed2b28c 546 htab->size = nsize;
bb6a587d 547 htab->size_prime_index = nindex;
b4fe2683
JM
548 htab->n_elements -= htab->n_deleted;
549 htab->n_deleted = 0;
550
551 p = oentries;
552 do
553 {
e0f3df8f 554 PTR x = *p;
eb383413 555
b4fe2683
JM
556 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
557 {
e0f3df8f 558 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 559
b4fe2683
JM
560 *q = x;
561 }
eb383413 562
b4fe2683
JM
563 p++;
564 }
565 while (p < olimit);
eb383413 566
18893690
DD
567 if (htab->free_f != NULL)
568 (*htab->free_f) (oentries);
5f9624e3
DJ
569 else if (htab->free_with_arg_f != NULL)
570 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
99a4c1bd 571 return 1;
e2eaf477
ILT
572}
573
b4fe2683
JM
574/* This function searches for a hash table entry equal to the given
575 element. It cannot be used to insert or delete an element. */
576
e0f3df8f 577PTR
b4fe2683
JM
578htab_find_with_hash (htab, element, hash)
579 htab_t htab;
e0f3df8f 580 const PTR element;
eb383413 581 hashval_t hash;
e2eaf477 582{
fe046a17 583 hashval_t index, hash2;
b4fe2683 584 size_t size;
e0f3df8f 585 PTR entry;
e2eaf477 586
b4fe2683 587 htab->searches++;
fe046a17
DD
588 size = htab_size (htab);
589 index = htab_mod (hash, htab);
b4fe2683 590
eb383413
L
591 entry = htab->entries[index];
592 if (entry == EMPTY_ENTRY
593 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
594 return entry;
595
fe046a17 596 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 597 for (;;)
e2eaf477 598 {
b4fe2683
JM
599 htab->collisions++;
600 index += hash2;
601 if (index >= size)
602 index -= size;
eb383413
L
603
604 entry = htab->entries[index];
605 if (entry == EMPTY_ENTRY
606 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
607 return entry;
e2eaf477 608 }
b4fe2683
JM
609}
610
611/* Like htab_find_slot_with_hash, but compute the hash value from the
612 element. */
eb383413 613
e0f3df8f 614PTR
b4fe2683
JM
615htab_find (htab, element)
616 htab_t htab;
e0f3df8f 617 const PTR element;
b4fe2683
JM
618{
619 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
620}
621
622/* This function searches for a hash table slot containing an entry
623 equal to the given element. To delete an entry, call this with
bac7199c
DD
624 insert=NO_INSERT, then call htab_clear_slot on the slot returned
625 (possibly after doing some checks). To insert an entry, call this
626 with insert=INSERT, then write the value you want into the returned
627 slot. When inserting an entry, NULL may be returned if memory
628 allocation fails. */
b4fe2683 629
e0f3df8f 630PTR *
b4fe2683
JM
631htab_find_slot_with_hash (htab, element, hash, insert)
632 htab_t htab;
e0f3df8f 633 const PTR element;
eb383413
L
634 hashval_t hash;
635 enum insert_option insert;
b4fe2683 636{
e0f3df8f 637 PTR *first_deleted_slot;
fe046a17 638 hashval_t index, hash2;
b4fe2683 639 size_t size;
b1c933fc 640 PTR entry;
b4fe2683 641
fe046a17
DD
642 size = htab_size (htab);
643 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
644 {
645 if (htab_expand (htab) == 0)
646 return NULL;
647 size = htab_size (htab);
648 }
b4fe2683 649
fe046a17 650 index = htab_mod (hash, htab);
b4fe2683 651
e2eaf477 652 htab->searches++;
b4fe2683
JM
653 first_deleted_slot = NULL;
654
b1c933fc
RH
655 entry = htab->entries[index];
656 if (entry == EMPTY_ENTRY)
657 goto empty_entry;
658 else if (entry == DELETED_ENTRY)
659 first_deleted_slot = &htab->entries[index];
660 else if ((*htab->eq_f) (entry, element))
661 return &htab->entries[index];
662
fe046a17 663 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 664 for (;;)
e2eaf477 665 {
b1c933fc
RH
666 htab->collisions++;
667 index += hash2;
668 if (index >= size)
669 index -= size;
670
671 entry = htab->entries[index];
b4fe2683 672 if (entry == EMPTY_ENTRY)
b1c933fc
RH
673 goto empty_entry;
674 else if (entry == DELETED_ENTRY)
b4fe2683
JM
675 {
676 if (!first_deleted_slot)
677 first_deleted_slot = &htab->entries[index];
678 }
b1c933fc 679 else if ((*htab->eq_f) (entry, element))
eb383413 680 return &htab->entries[index];
e2eaf477 681 }
b1c933fc
RH
682
683 empty_entry:
684 if (insert == NO_INSERT)
685 return NULL;
686
b1c933fc
RH
687 if (first_deleted_slot)
688 {
686e72d7 689 htab->n_deleted--;
b1c933fc
RH
690 *first_deleted_slot = EMPTY_ENTRY;
691 return first_deleted_slot;
692 }
693
686e72d7 694 htab->n_elements++;
b1c933fc 695 return &htab->entries[index];
e2eaf477
ILT
696}
697
b4fe2683
JM
698/* Like htab_find_slot_with_hash, but compute the hash value from the
699 element. */
eb383413 700
e0f3df8f 701PTR *
b4fe2683
JM
702htab_find_slot (htab, element, insert)
703 htab_t htab;
e0f3df8f 704 const PTR element;
eb383413 705 enum insert_option insert;
b4fe2683
JM
706{
707 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
708 insert);
709}
710
d6ea4e80
DD
711/* This function deletes an element with the given value from hash
712 table (the hash is computed from the element). If there is no matching
713 element in the hash table, this function does nothing. */
714
715void
716htab_remove_elt (htab, element)
717 htab_t htab;
718 PTR element;
719{
720 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
721}
722
723
b4fe2683
JM
724/* This function deletes an element with the given value from hash
725 table. If there is no matching element in the hash table, this
726 function does nothing. */
e2eaf477
ILT
727
728void
d6ea4e80 729htab_remove_elt_with_hash (htab, element, hash)
b4fe2683 730 htab_t htab;
e0f3df8f 731 PTR element;
d6ea4e80 732 hashval_t hash;
e2eaf477 733{
e0f3df8f 734 PTR *slot;
b4fe2683 735
d6ea4e80 736 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
b4fe2683
JM
737 if (*slot == EMPTY_ENTRY)
738 return;
739
740 if (htab->del_f)
741 (*htab->del_f) (*slot);
e2eaf477 742
b4fe2683
JM
743 *slot = DELETED_ENTRY;
744 htab->n_deleted++;
e2eaf477
ILT
745}
746
b4fe2683
JM
747/* This function clears a specified slot in a hash table. It is
748 useful when you've already done the lookup and don't want to do it
749 again. */
e2eaf477
ILT
750
751void
b4fe2683
JM
752htab_clear_slot (htab, slot)
753 htab_t htab;
e0f3df8f 754 PTR *slot;
e2eaf477 755{
fe046a17 756 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
e2eaf477
ILT
757 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
758 abort ();
eb383413 759
b4fe2683
JM
760 if (htab->del_f)
761 (*htab->del_f) (*slot);
eb383413 762
e2eaf477 763 *slot = DELETED_ENTRY;
b4fe2683 764 htab->n_deleted++;
e2eaf477
ILT
765}
766
767/* This function scans over the entire hash table calling
768 CALLBACK for each live entry. If CALLBACK returns false,
769 the iteration stops. INFO is passed as CALLBACK's second
770 argument. */
771
772void
f77ed96c 773htab_traverse_noresize (htab, callback, info)
b4fe2683
JM
774 htab_t htab;
775 htab_trav callback;
e0f3df8f 776 PTR info;
e2eaf477 777{
c4d8feb2
DD
778 PTR *slot;
779 PTR *limit;
780
c4d8feb2 781 slot = htab->entries;
fe046a17 782 limit = slot + htab_size (htab);
eb383413 783
b4fe2683
JM
784 do
785 {
e0f3df8f 786 PTR x = *slot;
eb383413 787
b4fe2683
JM
788 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
789 if (!(*callback) (slot, info))
790 break;
791 }
792 while (++slot < limit);
e2eaf477
ILT
793}
794
f77ed96c
DD
795/* Like htab_traverse_noresize, but does resize the table when it is
796 too empty to improve effectivity of subsequent calls. */
797
798void
799htab_traverse (htab, callback, info)
800 htab_t htab;
801 htab_trav callback;
802 PTR info;
803{
fe046a17 804 if (htab_elements (htab) * 8 < htab_size (htab))
f77ed96c
DD
805 htab_expand (htab);
806
807 htab_traverse_noresize (htab, callback, info);
808}
809
eb383413
L
810/* Return the fraction of fixed collisions during all work with given
811 hash table. */
e2eaf477 812
b4fe2683
JM
813double
814htab_collisions (htab)
815 htab_t htab;
e2eaf477 816{
eb383413 817 if (htab->searches == 0)
b4fe2683 818 return 0.0;
eb383413
L
819
820 return (double) htab->collisions / (double) htab->searches;
e2eaf477 821}
8fc34799 822
68a41de7
DD
823/* Hash P as a null-terminated string.
824
825 Copied from gcc/hashtable.c. Zack had the following to say with respect
826 to applicability, though note that unlike hashtable.c, this hash table
827 implementation re-hashes rather than chain buckets.
828
829 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
830 From: Zack Weinberg <zackw@panix.com>
831 Date: Fri, 17 Aug 2001 02:15:56 -0400
832
833 I got it by extracting all the identifiers from all the source code
834 I had lying around in mid-1999, and testing many recurrences of
835 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
836 prime numbers or the appropriate identity. This was the best one.
837 I don't remember exactly what constituted "best", except I was
838 looking at bucket-length distributions mostly.
839
840 So it should be very good at hashing identifiers, but might not be
841 as good at arbitrary strings.
842
843 I'll add that it thoroughly trounces the hash functions recommended
844 for this use at http://burtleburtle.net/bob/hash/index.html, both
845 on speed and bucket distribution. I haven't tried it against the
846 function they just started using for Perl's hashes. */
8fc34799
DD
847
848hashval_t
849htab_hash_string (p)
850 const PTR p;
851{
852 const unsigned char *str = (const unsigned char *) p;
853 hashval_t r = 0;
854 unsigned char c;
855
856 while ((c = *str++) != 0)
857 r = r * 67 + c - 113;
858
859 return r;
860}
7108c5dc
JM
861
862/* DERIVED FROM:
863--------------------------------------------------------------------
864lookup2.c, by Bob Jenkins, December 1996, Public Domain.
865hash(), hash2(), hash3, and mix() are externally useful functions.
866Routines to test the hash are included if SELF_TEST is defined.
867You can use this free for any purpose. It has no warranty.
868--------------------------------------------------------------------
869*/
870
871/*
872--------------------------------------------------------------------
873mix -- mix 3 32-bit values reversibly.
874For every delta with one or two bit set, and the deltas of all three
875 high bits or all three low bits, whether the original value of a,b,c
876 is almost all zero or is uniformly distributed,
877* If mix() is run forward or backward, at least 32 bits in a,b,c
878 have at least 1/4 probability of changing.
879* If mix() is run forward, every bit of c will change between 1/3 and
880 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
881mix() was built out of 36 single-cycle latency instructions in a
882 structure that could supported 2x parallelism, like so:
883 a -= b;
884 a -= c; x = (c>>13);
885 b -= c; a ^= x;
886 b -= a; x = (a<<8);
887 c -= a; b ^= x;
888 c -= b; x = (b>>13);
889 ...
890 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
891 of that parallelism. They've also turned some of those single-cycle
892 latency instructions into multi-cycle latency instructions. Still,
893 this is the fastest good hash I could find. There were about 2^^68
894 to choose from. I only looked at a billion or so.
895--------------------------------------------------------------------
896*/
897/* same, but slower, works on systems that might have 8 byte hashval_t's */
898#define mix(a,b,c) \
899{ \
900 a -= b; a -= c; a ^= (c>>13); \
901 b -= c; b -= a; b ^= (a<< 8); \
902 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
903 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
904 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
905 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
906 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
907 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
908 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
909}
910
911/*
912--------------------------------------------------------------------
913hash() -- hash a variable-length key into a 32-bit value
914 k : the key (the unaligned variable-length array of bytes)
915 len : the length of the key, counting by bytes
916 level : can be any 4-byte value
917Returns a 32-bit value. Every bit of the key affects every bit of
918the return value. Every 1-bit and 2-bit delta achieves avalanche.
919About 36+6len instructions.
920
921The best hash table sizes are powers of 2. There is no need to do
922mod a prime (mod is sooo slow!). If you need less than 32 bits,
923use a bitmask. For example, if you need only 10 bits, do
924 h = (h & hashmask(10));
925In which case, the hash table should have hashsize(10) elements.
926
927If you are hashing n strings (ub1 **)k, do it like this:
928 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
929
930By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
931code any way you wish, private, educational, or commercial. It's free.
932
933See http://burtleburtle.net/bob/hash/evahash.html
934Use for hash table lookup, or anything where one collision in 2^32 is
935acceptable. Do NOT use for cryptographic purposes.
936--------------------------------------------------------------------
937*/
938
eafaf5eb 939hashval_t iterative_hash (k_in, length, initval)
7108c5dc
JM
940 const PTR k_in; /* the key */
941 register size_t length; /* the length of the key */
942 register hashval_t initval; /* the previous hash, or an arbitrary value */
943{
944 register const unsigned char *k = (const unsigned char *)k_in;
945 register hashval_t a,b,c,len;
946
947 /* Set up the internal state */
948 len = length;
949 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
950 c = initval; /* the previous hash value */
951
952 /*---------------------------------------- handle most of the key */
953#ifndef WORDS_BIGENDIAN
954 /* On a little-endian machine, if the data is 4-byte aligned we can hash
955 by word for better speed. This gives nondeterministic results on
956 big-endian machines. */
957 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
958 while (len >= 12) /* aligned */
959 {
960 a += *(hashval_t *)(k+0);
961 b += *(hashval_t *)(k+4);
962 c += *(hashval_t *)(k+8);
963 mix(a,b,c);
964 k += 12; len -= 12;
965 }
966 else /* unaligned */
967#endif
968 while (len >= 12)
969 {
970 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
971 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
972 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
973 mix(a,b,c);
974 k += 12; len -= 12;
975 }
976
977 /*------------------------------------- handle the last 11 bytes */
978 c += length;
979 switch(len) /* all the case statements fall through */
980 {
981 case 11: c+=((hashval_t)k[10]<<24);
982 case 10: c+=((hashval_t)k[9]<<16);
983 case 9 : c+=((hashval_t)k[8]<<8);
984 /* the first byte of c is reserved for the length */
985 case 8 : b+=((hashval_t)k[7]<<24);
986 case 7 : b+=((hashval_t)k[6]<<16);
987 case 6 : b+=((hashval_t)k[5]<<8);
988 case 5 : b+=k[4];
989 case 4 : a+=((hashval_t)k[3]<<24);
990 case 3 : a+=((hashval_t)k[2]<<16);
991 case 2 : a+=((hashval_t)k[1]<<8);
992 case 1 : a+=k[0];
993 /* case 0: nothing left to add */
994 }
995 mix(a,b,c);
996 /*-------------------------------------------- report the result */
997 return c;
998}
This page took 0.301586 seconds and 4 git commands to generate.