Commit | Line | Data |
---|---|---|
e2eaf477 | 1 | /* An expandable hash tables datatype. |
483d7cf4 | 2 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009 |
bb6a587d | 3 | Free Software Foundation, Inc. |
e2eaf477 ILT |
4 | Contributed by Vladimir Makarov (vmakarov@cygnus.com). |
5 | ||
6 | This file is part of the libiberty library. | |
7 | Libiberty is free software; you can redistribute it and/or | |
8 | modify it under the terms of the GNU Library General Public | |
9 | License as published by the Free Software Foundation; either | |
10 | version 2 of the License, or (at your option) any later version. | |
11 | ||
12 | Libiberty is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 | Library General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU Library General Public | |
18 | License along with libiberty; see the file COPYING.LIB. If | |
979c05d3 NC |
19 | not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, |
20 | Boston, MA 02110-1301, USA. */ | |
e2eaf477 ILT |
21 | |
22 | /* This package implements basic hash table functionality. It is possible | |
23 | to search for an entry, create an entry and destroy an entry. | |
24 | ||
25 | Elements in the table are generic pointers. | |
26 | ||
27 | The size of the table is not fixed; if the occupancy of the table | |
28 | grows too high the hash table will be expanded. | |
29 | ||
30 | The abstract data implementation is based on generalized Algorithm D | |
31 | from Knuth's book "The art of computer programming". Hash table is | |
32 | expanded by creation of new hash table and transferring elements from | |
33 | the old table to the new table. */ | |
34 | ||
35 | #ifdef HAVE_CONFIG_H | |
36 | #include "config.h" | |
37 | #endif | |
38 | ||
39 | #include <sys/types.h> | |
40 | ||
41 | #ifdef HAVE_STDLIB_H | |
42 | #include <stdlib.h> | |
43 | #endif | |
5c82d20a ZW |
44 | #ifdef HAVE_STRING_H |
45 | #include <string.h> | |
46 | #endif | |
5f73c378 DD |
47 | #ifdef HAVE_MALLOC_H |
48 | #include <malloc.h> | |
49 | #endif | |
bb6a587d DD |
50 | #ifdef HAVE_LIMITS_H |
51 | #include <limits.h> | |
52 | #endif | |
a17fcd19 DD |
53 | #ifdef HAVE_INTTYPES_H |
54 | #include <inttypes.h> | |
55 | #endif | |
bb6a587d DD |
56 | #ifdef HAVE_STDINT_H |
57 | #include <stdint.h> | |
58 | #endif | |
5f73c378 | 59 | |
e2eaf477 ILT |
60 | #include <stdio.h> |
61 | ||
62 | #include "libiberty.h" | |
bb6a587d | 63 | #include "ansidecl.h" |
e2eaf477 ILT |
64 | #include "hashtab.h" |
65 | ||
bb6a587d DD |
66 | #ifndef CHAR_BIT |
67 | #define CHAR_BIT 8 | |
68 | #endif | |
69 | ||
49b1fae4 DD |
70 | static unsigned int higher_prime_index (unsigned long); |
71 | static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int); | |
72 | static hashval_t htab_mod (hashval_t, htab_t); | |
73 | static hashval_t htab_mod_m2 (hashval_t, htab_t); | |
74 | static hashval_t hash_pointer (const void *); | |
75 | static int eq_pointer (const void *, const void *); | |
76 | static int htab_expand (htab_t); | |
77 | static PTR *find_empty_slot_for_expand (htab_t, hashval_t); | |
eb383413 L |
78 | |
79 | /* At some point, we could make these be NULL, and modify the | |
80 | hash-table routines to handle NULL specially; that would avoid | |
81 | function-call overhead for the common case of hashing pointers. */ | |
82 | htab_hash htab_hash_pointer = hash_pointer; | |
83 | htab_eq htab_eq_pointer = eq_pointer; | |
84 | ||
bb6a587d DD |
85 | /* Table of primes and multiplicative inverses. |
86 | ||
87 | Note that these are not minimally reduced inverses. Unlike when generating | |
88 | code to divide by a constant, we want to be able to use the same algorithm | |
89 | all the time. All of these inverses (are implied to) have bit 32 set. | |
90 | ||
91 | For the record, here's the function that computed the table; it's a | |
92 | vastly simplified version of the function of the same name from gcc. */ | |
93 | ||
94 | #if 0 | |
95 | unsigned int | |
96 | ceil_log2 (unsigned int x) | |
97 | { | |
98 | int i; | |
99 | for (i = 31; i >= 0 ; --i) | |
100 | if (x > (1u << i)) | |
101 | return i+1; | |
102 | abort (); | |
103 | } | |
e2eaf477 | 104 | |
bb6a587d DD |
105 | unsigned int |
106 | choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp) | |
107 | { | |
108 | unsigned long long mhigh; | |
109 | double nx; | |
110 | int lgup, post_shift; | |
111 | int pow, pow2; | |
112 | int n = 32, precision = 32; | |
113 | ||
114 | lgup = ceil_log2 (d); | |
115 | pow = n + lgup; | |
116 | pow2 = n + lgup - precision; | |
117 | ||
118 | nx = ldexp (1.0, pow) + ldexp (1.0, pow2); | |
119 | mhigh = nx / d; | |
120 | ||
121 | *shiftp = lgup - 1; | |
122 | *mlp = mhigh; | |
123 | return mhigh >> 32; | |
124 | } | |
125 | #endif | |
126 | ||
127 | struct prime_ent | |
128 | { | |
129 | hashval_t prime; | |
130 | hashval_t inv; | |
131 | hashval_t inv_m2; /* inverse of prime-2 */ | |
132 | hashval_t shift; | |
133 | }; | |
134 | ||
135 | static struct prime_ent const prime_tab[] = { | |
136 | { 7, 0x24924925, 0x9999999b, 2 }, | |
137 | { 13, 0x3b13b13c, 0x745d1747, 3 }, | |
138 | { 31, 0x08421085, 0x1a7b9612, 4 }, | |
139 | { 61, 0x0c9714fc, 0x15b1e5f8, 5 }, | |
140 | { 127, 0x02040811, 0x0624dd30, 6 }, | |
141 | { 251, 0x05197f7e, 0x073260a5, 7 }, | |
142 | { 509, 0x01824366, 0x02864fc8, 8 }, | |
143 | { 1021, 0x00c0906d, 0x014191f7, 9 }, | |
144 | { 2039, 0x0121456f, 0x0161e69e, 10 }, | |
145 | { 4093, 0x00300902, 0x00501908, 11 }, | |
146 | { 8191, 0x00080041, 0x00180241, 12 }, | |
147 | { 16381, 0x000c0091, 0x00140191, 13 }, | |
148 | { 32749, 0x002605a5, 0x002a06e6, 14 }, | |
149 | { 65521, 0x000f00e2, 0x00110122, 15 }, | |
150 | { 131071, 0x00008001, 0x00018003, 16 }, | |
151 | { 262139, 0x00014002, 0x0001c004, 17 }, | |
152 | { 524287, 0x00002001, 0x00006001, 18 }, | |
153 | { 1048573, 0x00003001, 0x00005001, 19 }, | |
154 | { 2097143, 0x00004801, 0x00005801, 20 }, | |
155 | { 4194301, 0x00000c01, 0x00001401, 21 }, | |
156 | { 8388593, 0x00001e01, 0x00002201, 22 }, | |
157 | { 16777213, 0x00000301, 0x00000501, 23 }, | |
158 | { 33554393, 0x00001381, 0x00001481, 24 }, | |
159 | { 67108859, 0x00000141, 0x000001c1, 25 }, | |
160 | { 134217689, 0x000004e1, 0x00000521, 26 }, | |
161 | { 268435399, 0x00000391, 0x000003b1, 27 }, | |
162 | { 536870909, 0x00000019, 0x00000029, 28 }, | |
163 | { 1073741789, 0x0000008d, 0x00000095, 29 }, | |
164 | { 2147483647, 0x00000003, 0x00000007, 30 }, | |
165 | /* Avoid "decimal constant so large it is unsigned" for 4294967291. */ | |
166 | { 0xfffffffb, 0x00000006, 0x00000008, 31 } | |
167 | }; | |
168 | ||
169 | /* The following function returns an index into the above table of the | |
170 | nearest prime number which is greater than N, and near a power of two. */ | |
171 | ||
172 | static unsigned int | |
49b1fae4 | 173 | higher_prime_index (unsigned long n) |
e2eaf477 | 174 | { |
bb6a587d DD |
175 | unsigned int low = 0; |
176 | unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]); | |
5ca0f83d DD |
177 | |
178 | while (low != high) | |
179 | { | |
bb6a587d DD |
180 | unsigned int mid = low + (high - low) / 2; |
181 | if (n > prime_tab[mid].prime) | |
5ca0f83d DD |
182 | low = mid + 1; |
183 | else | |
184 | high = mid; | |
185 | } | |
186 | ||
187 | /* If we've run out of primes, abort. */ | |
bb6a587d | 188 | if (n > prime_tab[low].prime) |
5ca0f83d DD |
189 | { |
190 | fprintf (stderr, "Cannot find prime bigger than %lu\n", n); | |
191 | abort (); | |
192 | } | |
193 | ||
bb6a587d | 194 | return low; |
e2eaf477 ILT |
195 | } |
196 | ||
eb383413 L |
197 | /* Returns a hash code for P. */ |
198 | ||
199 | static hashval_t | |
49b1fae4 | 200 | hash_pointer (const PTR p) |
eb383413 | 201 | { |
fca6a796 | 202 | return (hashval_t) ((intptr_t)p >> 3); |
eb383413 L |
203 | } |
204 | ||
205 | /* Returns non-zero if P1 and P2 are equal. */ | |
206 | ||
207 | static int | |
49b1fae4 | 208 | eq_pointer (const PTR p1, const PTR p2) |
eb383413 L |
209 | { |
210 | return p1 == p2; | |
211 | } | |
212 | ||
fe046a17 | 213 | |
abf6a75b DD |
214 | /* The parens around the function names in the next two definitions |
215 | are essential in order to prevent macro expansions of the name. | |
216 | The bodies, however, are expanded as expected, so they are not | |
217 | recursive definitions. */ | |
218 | ||
219 | /* Return the current size of given hash table. */ | |
220 | ||
221 | #define htab_size(htab) ((htab)->size) | |
222 | ||
223 | size_t | |
224 | (htab_size) (htab_t htab) | |
fe046a17 | 225 | { |
abf6a75b | 226 | return htab_size (htab); |
fe046a17 DD |
227 | } |
228 | ||
229 | /* Return the current number of elements in given hash table. */ | |
230 | ||
abf6a75b DD |
231 | #define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted) |
232 | ||
233 | size_t | |
234 | (htab_elements) (htab_t htab) | |
fe046a17 | 235 | { |
abf6a75b | 236 | return htab_elements (htab); |
fe046a17 DD |
237 | } |
238 | ||
bb6a587d DD |
239 | /* Return X % Y. */ |
240 | ||
241 | static inline hashval_t | |
49b1fae4 | 242 | htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift) |
bb6a587d DD |
243 | { |
244 | /* The multiplicative inverses computed above are for 32-bit types, and | |
245 | requires that we be able to compute a highpart multiply. */ | |
246 | #ifdef UNSIGNED_64BIT_TYPE | |
247 | __extension__ typedef UNSIGNED_64BIT_TYPE ull; | |
248 | if (sizeof (hashval_t) * CHAR_BIT <= 32) | |
249 | { | |
250 | hashval_t t1, t2, t3, t4, q, r; | |
251 | ||
252 | t1 = ((ull)x * inv) >> 32; | |
253 | t2 = x - t1; | |
254 | t3 = t2 >> 1; | |
255 | t4 = t1 + t3; | |
256 | q = t4 >> shift; | |
257 | r = x - (q * y); | |
258 | ||
259 | return r; | |
260 | } | |
261 | #endif | |
262 | ||
263 | /* Otherwise just use the native division routines. */ | |
264 | return x % y; | |
265 | } | |
266 | ||
fe046a17 DD |
267 | /* Compute the primary hash for HASH given HTAB's current size. */ |
268 | ||
269 | static inline hashval_t | |
49b1fae4 | 270 | htab_mod (hashval_t hash, htab_t htab) |
fe046a17 | 271 | { |
bb6a587d DD |
272 | const struct prime_ent *p = &prime_tab[htab->size_prime_index]; |
273 | return htab_mod_1 (hash, p->prime, p->inv, p->shift); | |
fe046a17 DD |
274 | } |
275 | ||
276 | /* Compute the secondary hash for HASH given HTAB's current size. */ | |
277 | ||
278 | static inline hashval_t | |
49b1fae4 | 279 | htab_mod_m2 (hashval_t hash, htab_t htab) |
fe046a17 | 280 | { |
bb6a587d DD |
281 | const struct prime_ent *p = &prime_tab[htab->size_prime_index]; |
282 | return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift); | |
fe046a17 DD |
283 | } |
284 | ||
e2eaf477 ILT |
285 | /* This function creates table with length slightly longer than given |
286 | source length. Created hash table is initiated as empty (all the | |
c3cca4c9 | 287 | hash table entries are HTAB_EMPTY_ENTRY). The function returns the |
18893690 | 288 | created hash table, or NULL if memory allocation fails. */ |
e2eaf477 | 289 | |
b4fe2683 | 290 | htab_t |
49b1fae4 DD |
291 | htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, |
292 | htab_del del_f, htab_alloc alloc_f, htab_free free_f) | |
e2eaf477 | 293 | { |
b4fe2683 | 294 | htab_t result; |
bb6a587d DD |
295 | unsigned int size_prime_index; |
296 | ||
297 | size_prime_index = higher_prime_index (size); | |
298 | size = prime_tab[size_prime_index].prime; | |
e2eaf477 | 299 | |
18893690 DD |
300 | result = (htab_t) (*alloc_f) (1, sizeof (struct htab)); |
301 | if (result == NULL) | |
302 | return NULL; | |
303 | result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR)); | |
304 | if (result->entries == NULL) | |
305 | { | |
306 | if (free_f != NULL) | |
307 | (*free_f) (result); | |
308 | return NULL; | |
309 | } | |
e2eaf477 | 310 | result->size = size; |
bb6a587d | 311 | result->size_prime_index = size_prime_index; |
b4fe2683 JM |
312 | result->hash_f = hash_f; |
313 | result->eq_f = eq_f; | |
314 | result->del_f = del_f; | |
18893690 DD |
315 | result->alloc_f = alloc_f; |
316 | result->free_f = free_f; | |
99a4c1bd HPN |
317 | return result; |
318 | } | |
319 | ||
5f9624e3 DJ |
320 | /* As above, but use the variants of alloc_f and free_f which accept |
321 | an extra argument. */ | |
322 | ||
323 | htab_t | |
abf6a75b DD |
324 | htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f, |
325 | htab_del del_f, void *alloc_arg, | |
326 | htab_alloc_with_arg alloc_f, | |
327 | htab_free_with_arg free_f) | |
5f9624e3 DJ |
328 | { |
329 | htab_t result; | |
bb6a587d DD |
330 | unsigned int size_prime_index; |
331 | ||
332 | size_prime_index = higher_prime_index (size); | |
333 | size = prime_tab[size_prime_index].prime; | |
5f9624e3 | 334 | |
5f9624e3 DJ |
335 | result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab)); |
336 | if (result == NULL) | |
337 | return NULL; | |
338 | result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR)); | |
339 | if (result->entries == NULL) | |
340 | { | |
341 | if (free_f != NULL) | |
342 | (*free_f) (alloc_arg, result); | |
343 | return NULL; | |
344 | } | |
345 | result->size = size; | |
bb6a587d | 346 | result->size_prime_index = size_prime_index; |
5f9624e3 DJ |
347 | result->hash_f = hash_f; |
348 | result->eq_f = eq_f; | |
349 | result->del_f = del_f; | |
350 | result->alloc_arg = alloc_arg; | |
351 | result->alloc_with_arg_f = alloc_f; | |
352 | result->free_with_arg_f = free_f; | |
353 | return result; | |
354 | } | |
355 | ||
356 | /* Update the function pointers and allocation parameter in the htab_t. */ | |
357 | ||
358 | void | |
49b1fae4 DD |
359 | htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f, |
360 | htab_del del_f, PTR alloc_arg, | |
361 | htab_alloc_with_arg alloc_f, htab_free_with_arg free_f) | |
5f9624e3 DJ |
362 | { |
363 | htab->hash_f = hash_f; | |
364 | htab->eq_f = eq_f; | |
365 | htab->del_f = del_f; | |
366 | htab->alloc_arg = alloc_arg; | |
367 | htab->alloc_with_arg_f = alloc_f; | |
368 | htab->free_with_arg_f = free_f; | |
369 | } | |
370 | ||
18893690 | 371 | /* These functions exist solely for backward compatibility. */ |
99a4c1bd | 372 | |
18893690 | 373 | #undef htab_create |
99a4c1bd | 374 | htab_t |
49b1fae4 | 375 | htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) |
99a4c1bd | 376 | { |
18893690 DD |
377 | return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free); |
378 | } | |
99a4c1bd | 379 | |
18893690 | 380 | htab_t |
49b1fae4 | 381 | htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) |
18893690 DD |
382 | { |
383 | return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free); | |
e2eaf477 ILT |
384 | } |
385 | ||
386 | /* This function frees all memory allocated for given hash table. | |
387 | Naturally the hash table must already exist. */ | |
388 | ||
389 | void | |
49b1fae4 | 390 | htab_delete (htab_t htab) |
e2eaf477 | 391 | { |
fe046a17 DD |
392 | size_t size = htab_size (htab); |
393 | PTR *entries = htab->entries; | |
b4fe2683 | 394 | int i; |
eb383413 | 395 | |
b4fe2683 | 396 | if (htab->del_f) |
fe046a17 | 397 | for (i = size - 1; i >= 0; i--) |
c3cca4c9 | 398 | if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) |
fe046a17 | 399 | (*htab->del_f) (entries[i]); |
b4fe2683 | 400 | |
18893690 DD |
401 | if (htab->free_f != NULL) |
402 | { | |
fe046a17 | 403 | (*htab->free_f) (entries); |
18893690 DD |
404 | (*htab->free_f) (htab); |
405 | } | |
5f9624e3 DJ |
406 | else if (htab->free_with_arg_f != NULL) |
407 | { | |
fe046a17 | 408 | (*htab->free_with_arg_f) (htab->alloc_arg, entries); |
5f9624e3 DJ |
409 | (*htab->free_with_arg_f) (htab->alloc_arg, htab); |
410 | } | |
e2eaf477 ILT |
411 | } |
412 | ||
413 | /* This function clears all entries in the given hash table. */ | |
414 | ||
415 | void | |
49b1fae4 | 416 | htab_empty (htab_t htab) |
b4fe2683 | 417 | { |
fe046a17 DD |
418 | size_t size = htab_size (htab); |
419 | PTR *entries = htab->entries; | |
b4fe2683 | 420 | int i; |
eb383413 | 421 | |
b4fe2683 | 422 | if (htab->del_f) |
fe046a17 | 423 | for (i = size - 1; i >= 0; i--) |
c3cca4c9 | 424 | if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) |
fe046a17 | 425 | (*htab->del_f) (entries[i]); |
b4fe2683 | 426 | |
a7d421b8 DD |
427 | /* Instead of clearing megabyte, downsize the table. */ |
428 | if (size > 1024*1024 / sizeof (PTR)) | |
429 | { | |
430 | int nindex = higher_prime_index (1024 / sizeof (PTR)); | |
431 | int nsize = prime_tab[nindex].prime; | |
432 | ||
433 | if (htab->free_f != NULL) | |
434 | (*htab->free_f) (htab->entries); | |
435 | else if (htab->free_with_arg_f != NULL) | |
436 | (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries); | |
437 | if (htab->alloc_with_arg_f != NULL) | |
438 | htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, | |
439 | sizeof (PTR *)); | |
440 | else | |
441 | htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *)); | |
442 | htab->size = nsize; | |
443 | htab->size_prime_index = nindex; | |
444 | } | |
445 | else | |
446 | memset (entries, 0, size * sizeof (PTR)); | |
447 | htab->n_deleted = 0; | |
448 | htab->n_elements = 0; | |
b4fe2683 JM |
449 | } |
450 | ||
451 | /* Similar to htab_find_slot, but without several unwanted side effects: | |
452 | - Does not call htab->eq_f when it finds an existing entry. | |
453 | - Does not change the count of elements/searches/collisions in the | |
454 | hash table. | |
455 | This function also assumes there are no deleted entries in the table. | |
456 | HASH is the hash value for the element to be inserted. */ | |
eb383413 | 457 | |
e0f3df8f | 458 | static PTR * |
49b1fae4 | 459 | find_empty_slot_for_expand (htab_t htab, hashval_t hash) |
e2eaf477 | 460 | { |
fe046a17 DD |
461 | hashval_t index = htab_mod (hash, htab); |
462 | size_t size = htab_size (htab); | |
b1c933fc RH |
463 | PTR *slot = htab->entries + index; |
464 | hashval_t hash2; | |
465 | ||
c3cca4c9 | 466 | if (*slot == HTAB_EMPTY_ENTRY) |
b1c933fc | 467 | return slot; |
c3cca4c9 | 468 | else if (*slot == HTAB_DELETED_ENTRY) |
b1c933fc | 469 | abort (); |
b4fe2683 | 470 | |
fe046a17 | 471 | hash2 = htab_mod_m2 (hash, htab); |
b4fe2683 JM |
472 | for (;;) |
473 | { | |
b1c933fc RH |
474 | index += hash2; |
475 | if (index >= size) | |
476 | index -= size; | |
eb383413 | 477 | |
b1c933fc | 478 | slot = htab->entries + index; |
c3cca4c9 | 479 | if (*slot == HTAB_EMPTY_ENTRY) |
b4fe2683 | 480 | return slot; |
c3cca4c9 | 481 | else if (*slot == HTAB_DELETED_ENTRY) |
b4fe2683 | 482 | abort (); |
b4fe2683 | 483 | } |
e2eaf477 ILT |
484 | } |
485 | ||
486 | /* The following function changes size of memory allocated for the | |
487 | entries and repeatedly inserts the table elements. The occupancy | |
488 | of the table after the call will be about 50%. Naturally the hash | |
489 | table must already exist. Remember also that the place of the | |
99a4c1bd HPN |
490 | table entries is changed. If memory allocation failures are allowed, |
491 | this function will return zero, indicating that the table could not be | |
492 | expanded. If all goes well, it will return a non-zero value. */ | |
e2eaf477 | 493 | |
99a4c1bd | 494 | static int |
49b1fae4 | 495 | htab_expand (htab_t htab) |
e2eaf477 | 496 | { |
e0f3df8f HPN |
497 | PTR *oentries; |
498 | PTR *olimit; | |
499 | PTR *p; | |
18893690 | 500 | PTR *nentries; |
bb6a587d DD |
501 | size_t nsize, osize, elts; |
502 | unsigned int oindex, nindex; | |
b4fe2683 JM |
503 | |
504 | oentries = htab->entries; | |
bb6a587d DD |
505 | oindex = htab->size_prime_index; |
506 | osize = htab->size; | |
507 | olimit = oentries + osize; | |
508 | elts = htab_elements (htab); | |
b4fe2683 | 509 | |
c4d8feb2 DD |
510 | /* Resize only when table after removal of unused elements is either |
511 | too full or too empty. */ | |
bb6a587d DD |
512 | if (elts * 2 > osize || (elts * 8 < osize && osize > 32)) |
513 | { | |
514 | nindex = higher_prime_index (elts * 2); | |
515 | nsize = prime_tab[nindex].prime; | |
516 | } | |
c4d8feb2 | 517 | else |
bb6a587d DD |
518 | { |
519 | nindex = oindex; | |
520 | nsize = osize; | |
521 | } | |
99a4c1bd | 522 | |
5f9624e3 DJ |
523 | if (htab->alloc_with_arg_f != NULL) |
524 | nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, | |
525 | sizeof (PTR *)); | |
526 | else | |
527 | nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *)); | |
18893690 DD |
528 | if (nentries == NULL) |
529 | return 0; | |
530 | htab->entries = nentries; | |
eed2b28c | 531 | htab->size = nsize; |
bb6a587d | 532 | htab->size_prime_index = nindex; |
b4fe2683 JM |
533 | htab->n_elements -= htab->n_deleted; |
534 | htab->n_deleted = 0; | |
535 | ||
536 | p = oentries; | |
537 | do | |
538 | { | |
e0f3df8f | 539 | PTR x = *p; |
eb383413 | 540 | |
c3cca4c9 | 541 | if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
b4fe2683 | 542 | { |
e0f3df8f | 543 | PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x)); |
eb383413 | 544 | |
b4fe2683 JM |
545 | *q = x; |
546 | } | |
eb383413 | 547 | |
b4fe2683 JM |
548 | p++; |
549 | } | |
550 | while (p < olimit); | |
eb383413 | 551 | |
18893690 DD |
552 | if (htab->free_f != NULL) |
553 | (*htab->free_f) (oentries); | |
5f9624e3 DJ |
554 | else if (htab->free_with_arg_f != NULL) |
555 | (*htab->free_with_arg_f) (htab->alloc_arg, oentries); | |
99a4c1bd | 556 | return 1; |
e2eaf477 ILT |
557 | } |
558 | ||
b4fe2683 JM |
559 | /* This function searches for a hash table entry equal to the given |
560 | element. It cannot be used to insert or delete an element. */ | |
561 | ||
e0f3df8f | 562 | PTR |
49b1fae4 | 563 | htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash) |
e2eaf477 | 564 | { |
fe046a17 | 565 | hashval_t index, hash2; |
b4fe2683 | 566 | size_t size; |
e0f3df8f | 567 | PTR entry; |
e2eaf477 | 568 | |
b4fe2683 | 569 | htab->searches++; |
fe046a17 DD |
570 | size = htab_size (htab); |
571 | index = htab_mod (hash, htab); | |
b4fe2683 | 572 | |
eb383413 | 573 | entry = htab->entries[index]; |
c3cca4c9 DD |
574 | if (entry == HTAB_EMPTY_ENTRY |
575 | || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) | |
eb383413 L |
576 | return entry; |
577 | ||
fe046a17 | 578 | hash2 = htab_mod_m2 (hash, htab); |
b4fe2683 | 579 | for (;;) |
e2eaf477 | 580 | { |
b4fe2683 JM |
581 | htab->collisions++; |
582 | index += hash2; | |
583 | if (index >= size) | |
584 | index -= size; | |
eb383413 L |
585 | |
586 | entry = htab->entries[index]; | |
c3cca4c9 DD |
587 | if (entry == HTAB_EMPTY_ENTRY |
588 | || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) | |
eb383413 | 589 | return entry; |
e2eaf477 | 590 | } |
b4fe2683 JM |
591 | } |
592 | ||
593 | /* Like htab_find_slot_with_hash, but compute the hash value from the | |
594 | element. */ | |
eb383413 | 595 | |
e0f3df8f | 596 | PTR |
49b1fae4 | 597 | htab_find (htab_t htab, const PTR element) |
b4fe2683 JM |
598 | { |
599 | return htab_find_with_hash (htab, element, (*htab->hash_f) (element)); | |
600 | } | |
601 | ||
602 | /* This function searches for a hash table slot containing an entry | |
603 | equal to the given element. To delete an entry, call this with | |
bac7199c DD |
604 | insert=NO_INSERT, then call htab_clear_slot on the slot returned |
605 | (possibly after doing some checks). To insert an entry, call this | |
606 | with insert=INSERT, then write the value you want into the returned | |
607 | slot. When inserting an entry, NULL may be returned if memory | |
608 | allocation fails. */ | |
b4fe2683 | 609 | |
e0f3df8f | 610 | PTR * |
49b1fae4 DD |
611 | htab_find_slot_with_hash (htab_t htab, const PTR element, |
612 | hashval_t hash, enum insert_option insert) | |
b4fe2683 | 613 | { |
e0f3df8f | 614 | PTR *first_deleted_slot; |
fe046a17 | 615 | hashval_t index, hash2; |
b4fe2683 | 616 | size_t size; |
b1c933fc | 617 | PTR entry; |
b4fe2683 | 618 | |
fe046a17 DD |
619 | size = htab_size (htab); |
620 | if (insert == INSERT && size * 3 <= htab->n_elements * 4) | |
621 | { | |
622 | if (htab_expand (htab) == 0) | |
623 | return NULL; | |
624 | size = htab_size (htab); | |
625 | } | |
b4fe2683 | 626 | |
fe046a17 | 627 | index = htab_mod (hash, htab); |
b4fe2683 | 628 | |
e2eaf477 | 629 | htab->searches++; |
b4fe2683 JM |
630 | first_deleted_slot = NULL; |
631 | ||
b1c933fc | 632 | entry = htab->entries[index]; |
c3cca4c9 | 633 | if (entry == HTAB_EMPTY_ENTRY) |
b1c933fc | 634 | goto empty_entry; |
c3cca4c9 | 635 | else if (entry == HTAB_DELETED_ENTRY) |
b1c933fc RH |
636 | first_deleted_slot = &htab->entries[index]; |
637 | else if ((*htab->eq_f) (entry, element)) | |
638 | return &htab->entries[index]; | |
639 | ||
fe046a17 | 640 | hash2 = htab_mod_m2 (hash, htab); |
b4fe2683 | 641 | for (;;) |
e2eaf477 | 642 | { |
b1c933fc RH |
643 | htab->collisions++; |
644 | index += hash2; | |
645 | if (index >= size) | |
646 | index -= size; | |
647 | ||
648 | entry = htab->entries[index]; | |
c3cca4c9 | 649 | if (entry == HTAB_EMPTY_ENTRY) |
b1c933fc | 650 | goto empty_entry; |
c3cca4c9 | 651 | else if (entry == HTAB_DELETED_ENTRY) |
b4fe2683 JM |
652 | { |
653 | if (!first_deleted_slot) | |
654 | first_deleted_slot = &htab->entries[index]; | |
655 | } | |
b1c933fc | 656 | else if ((*htab->eq_f) (entry, element)) |
eb383413 | 657 | return &htab->entries[index]; |
e2eaf477 | 658 | } |
b1c933fc RH |
659 | |
660 | empty_entry: | |
661 | if (insert == NO_INSERT) | |
662 | return NULL; | |
663 | ||
b1c933fc RH |
664 | if (first_deleted_slot) |
665 | { | |
686e72d7 | 666 | htab->n_deleted--; |
c3cca4c9 | 667 | *first_deleted_slot = HTAB_EMPTY_ENTRY; |
b1c933fc RH |
668 | return first_deleted_slot; |
669 | } | |
670 | ||
686e72d7 | 671 | htab->n_elements++; |
b1c933fc | 672 | return &htab->entries[index]; |
e2eaf477 ILT |
673 | } |
674 | ||
b4fe2683 JM |
675 | /* Like htab_find_slot_with_hash, but compute the hash value from the |
676 | element. */ | |
eb383413 | 677 | |
e0f3df8f | 678 | PTR * |
49b1fae4 | 679 | htab_find_slot (htab_t htab, const PTR element, enum insert_option insert) |
b4fe2683 JM |
680 | { |
681 | return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element), | |
682 | insert); | |
683 | } | |
684 | ||
d6ea4e80 DD |
685 | /* This function deletes an element with the given value from hash |
686 | table (the hash is computed from the element). If there is no matching | |
687 | element in the hash table, this function does nothing. */ | |
688 | ||
689 | void | |
49b1fae4 | 690 | htab_remove_elt (htab_t htab, PTR element) |
d6ea4e80 DD |
691 | { |
692 | htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element)); | |
693 | } | |
694 | ||
695 | ||
b4fe2683 JM |
696 | /* This function deletes an element with the given value from hash |
697 | table. If there is no matching element in the hash table, this | |
698 | function does nothing. */ | |
e2eaf477 ILT |
699 | |
700 | void | |
49b1fae4 | 701 | htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash) |
e2eaf477 | 702 | { |
e0f3df8f | 703 | PTR *slot; |
b4fe2683 | 704 | |
d6ea4e80 | 705 | slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT); |
c3cca4c9 | 706 | if (*slot == HTAB_EMPTY_ENTRY) |
b4fe2683 JM |
707 | return; |
708 | ||
709 | if (htab->del_f) | |
710 | (*htab->del_f) (*slot); | |
e2eaf477 | 711 | |
c3cca4c9 | 712 | *slot = HTAB_DELETED_ENTRY; |
b4fe2683 | 713 | htab->n_deleted++; |
e2eaf477 ILT |
714 | } |
715 | ||
b4fe2683 JM |
716 | /* This function clears a specified slot in a hash table. It is |
717 | useful when you've already done the lookup and don't want to do it | |
718 | again. */ | |
e2eaf477 ILT |
719 | |
720 | void | |
49b1fae4 | 721 | htab_clear_slot (htab_t htab, PTR *slot) |
e2eaf477 | 722 | { |
fe046a17 | 723 | if (slot < htab->entries || slot >= htab->entries + htab_size (htab) |
c3cca4c9 | 724 | || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY) |
e2eaf477 | 725 | abort (); |
eb383413 | 726 | |
b4fe2683 JM |
727 | if (htab->del_f) |
728 | (*htab->del_f) (*slot); | |
eb383413 | 729 | |
c3cca4c9 | 730 | *slot = HTAB_DELETED_ENTRY; |
b4fe2683 | 731 | htab->n_deleted++; |
e2eaf477 ILT |
732 | } |
733 | ||
734 | /* This function scans over the entire hash table calling | |
735 | CALLBACK for each live entry. If CALLBACK returns false, | |
736 | the iteration stops. INFO is passed as CALLBACK's second | |
737 | argument. */ | |
738 | ||
739 | void | |
49b1fae4 | 740 | htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info) |
e2eaf477 | 741 | { |
c4d8feb2 DD |
742 | PTR *slot; |
743 | PTR *limit; | |
c3cca4c9 | 744 | |
c4d8feb2 | 745 | slot = htab->entries; |
fe046a17 | 746 | limit = slot + htab_size (htab); |
eb383413 | 747 | |
b4fe2683 JM |
748 | do |
749 | { | |
e0f3df8f | 750 | PTR x = *slot; |
eb383413 | 751 | |
c3cca4c9 | 752 | if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
b4fe2683 JM |
753 | if (!(*callback) (slot, info)) |
754 | break; | |
755 | } | |
756 | while (++slot < limit); | |
e2eaf477 ILT |
757 | } |
758 | ||
f77ed96c DD |
759 | /* Like htab_traverse_noresize, but does resize the table when it is |
760 | too empty to improve effectivity of subsequent calls. */ | |
761 | ||
762 | void | |
49b1fae4 | 763 | htab_traverse (htab_t htab, htab_trav callback, PTR info) |
f77ed96c | 764 | { |
483d7cf4 DD |
765 | size_t size = htab_size (htab); |
766 | if (htab_elements (htab) * 8 < size && size > 32) | |
f77ed96c DD |
767 | htab_expand (htab); |
768 | ||
769 | htab_traverse_noresize (htab, callback, info); | |
770 | } | |
771 | ||
eb383413 L |
772 | /* Return the fraction of fixed collisions during all work with given |
773 | hash table. */ | |
e2eaf477 | 774 | |
b4fe2683 | 775 | double |
49b1fae4 | 776 | htab_collisions (htab_t htab) |
e2eaf477 | 777 | { |
eb383413 | 778 | if (htab->searches == 0) |
b4fe2683 | 779 | return 0.0; |
eb383413 L |
780 | |
781 | return (double) htab->collisions / (double) htab->searches; | |
e2eaf477 | 782 | } |
8fc34799 | 783 | |
68a41de7 DD |
784 | /* Hash P as a null-terminated string. |
785 | ||
786 | Copied from gcc/hashtable.c. Zack had the following to say with respect | |
787 | to applicability, though note that unlike hashtable.c, this hash table | |
788 | implementation re-hashes rather than chain buckets. | |
789 | ||
790 | http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html | |
791 | From: Zack Weinberg <zackw@panix.com> | |
792 | Date: Fri, 17 Aug 2001 02:15:56 -0400 | |
793 | ||
794 | I got it by extracting all the identifiers from all the source code | |
795 | I had lying around in mid-1999, and testing many recurrences of | |
796 | the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either | |
797 | prime numbers or the appropriate identity. This was the best one. | |
798 | I don't remember exactly what constituted "best", except I was | |
799 | looking at bucket-length distributions mostly. | |
800 | ||
801 | So it should be very good at hashing identifiers, but might not be | |
802 | as good at arbitrary strings. | |
803 | ||
804 | I'll add that it thoroughly trounces the hash functions recommended | |
805 | for this use at http://burtleburtle.net/bob/hash/index.html, both | |
806 | on speed and bucket distribution. I haven't tried it against the | |
807 | function they just started using for Perl's hashes. */ | |
8fc34799 DD |
808 | |
809 | hashval_t | |
49b1fae4 | 810 | htab_hash_string (const PTR p) |
8fc34799 DD |
811 | { |
812 | const unsigned char *str = (const unsigned char *) p; | |
813 | hashval_t r = 0; | |
814 | unsigned char c; | |
815 | ||
816 | while ((c = *str++) != 0) | |
817 | r = r * 67 + c - 113; | |
818 | ||
819 | return r; | |
820 | } | |
7108c5dc JM |
821 | |
822 | /* DERIVED FROM: | |
823 | -------------------------------------------------------------------- | |
824 | lookup2.c, by Bob Jenkins, December 1996, Public Domain. | |
825 | hash(), hash2(), hash3, and mix() are externally useful functions. | |
826 | Routines to test the hash are included if SELF_TEST is defined. | |
827 | You can use this free for any purpose. It has no warranty. | |
828 | -------------------------------------------------------------------- | |
829 | */ | |
830 | ||
831 | /* | |
832 | -------------------------------------------------------------------- | |
833 | mix -- mix 3 32-bit values reversibly. | |
834 | For every delta with one or two bit set, and the deltas of all three | |
835 | high bits or all three low bits, whether the original value of a,b,c | |
836 | is almost all zero or is uniformly distributed, | |
837 | * If mix() is run forward or backward, at least 32 bits in a,b,c | |
838 | have at least 1/4 probability of changing. | |
839 | * If mix() is run forward, every bit of c will change between 1/3 and | |
840 | 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.) | |
841 | mix() was built out of 36 single-cycle latency instructions in a | |
842 | structure that could supported 2x parallelism, like so: | |
843 | a -= b; | |
844 | a -= c; x = (c>>13); | |
845 | b -= c; a ^= x; | |
846 | b -= a; x = (a<<8); | |
847 | c -= a; b ^= x; | |
848 | c -= b; x = (b>>13); | |
849 | ... | |
850 | Unfortunately, superscalar Pentiums and Sparcs can't take advantage | |
851 | of that parallelism. They've also turned some of those single-cycle | |
852 | latency instructions into multi-cycle latency instructions. Still, | |
853 | this is the fastest good hash I could find. There were about 2^^68 | |
854 | to choose from. I only looked at a billion or so. | |
855 | -------------------------------------------------------------------- | |
856 | */ | |
857 | /* same, but slower, works on systems that might have 8 byte hashval_t's */ | |
858 | #define mix(a,b,c) \ | |
859 | { \ | |
860 | a -= b; a -= c; a ^= (c>>13); \ | |
861 | b -= c; b -= a; b ^= (a<< 8); \ | |
862 | c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \ | |
863 | a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \ | |
864 | b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \ | |
865 | c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \ | |
866 | a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \ | |
867 | b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \ | |
868 | c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \ | |
869 | } | |
870 | ||
871 | /* | |
872 | -------------------------------------------------------------------- | |
873 | hash() -- hash a variable-length key into a 32-bit value | |
874 | k : the key (the unaligned variable-length array of bytes) | |
875 | len : the length of the key, counting by bytes | |
876 | level : can be any 4-byte value | |
877 | Returns a 32-bit value. Every bit of the key affects every bit of | |
878 | the return value. Every 1-bit and 2-bit delta achieves avalanche. | |
879 | About 36+6len instructions. | |
880 | ||
881 | The best hash table sizes are powers of 2. There is no need to do | |
882 | mod a prime (mod is sooo slow!). If you need less than 32 bits, | |
883 | use a bitmask. For example, if you need only 10 bits, do | |
884 | h = (h & hashmask(10)); | |
885 | In which case, the hash table should have hashsize(10) elements. | |
886 | ||
887 | If you are hashing n strings (ub1 **)k, do it like this: | |
888 | for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h); | |
889 | ||
890 | By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this | |
891 | code any way you wish, private, educational, or commercial. It's free. | |
892 | ||
893 | See http://burtleburtle.net/bob/hash/evahash.html | |
894 | Use for hash table lookup, or anything where one collision in 2^32 is | |
895 | acceptable. Do NOT use for cryptographic purposes. | |
896 | -------------------------------------------------------------------- | |
897 | */ | |
898 | ||
49b1fae4 DD |
899 | hashval_t |
900 | iterative_hash (const PTR k_in /* the key */, | |
901 | register size_t length /* the length of the key */, | |
902 | register hashval_t initval /* the previous hash, or | |
903 | an arbitrary value */) | |
7108c5dc JM |
904 | { |
905 | register const unsigned char *k = (const unsigned char *)k_in; | |
906 | register hashval_t a,b,c,len; | |
907 | ||
908 | /* Set up the internal state */ | |
909 | len = length; | |
910 | a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */ | |
911 | c = initval; /* the previous hash value */ | |
912 | ||
913 | /*---------------------------------------- handle most of the key */ | |
914 | #ifndef WORDS_BIGENDIAN | |
915 | /* On a little-endian machine, if the data is 4-byte aligned we can hash | |
916 | by word for better speed. This gives nondeterministic results on | |
917 | big-endian machines. */ | |
918 | if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0) | |
919 | while (len >= 12) /* aligned */ | |
920 | { | |
921 | a += *(hashval_t *)(k+0); | |
922 | b += *(hashval_t *)(k+4); | |
923 | c += *(hashval_t *)(k+8); | |
924 | mix(a,b,c); | |
925 | k += 12; len -= 12; | |
926 | } | |
927 | else /* unaligned */ | |
928 | #endif | |
929 | while (len >= 12) | |
930 | { | |
931 | a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24)); | |
932 | b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24)); | |
933 | c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24)); | |
934 | mix(a,b,c); | |
935 | k += 12; len -= 12; | |
936 | } | |
937 | ||
938 | /*------------------------------------- handle the last 11 bytes */ | |
939 | c += length; | |
940 | switch(len) /* all the case statements fall through */ | |
941 | { | |
942 | case 11: c+=((hashval_t)k[10]<<24); | |
943 | case 10: c+=((hashval_t)k[9]<<16); | |
944 | case 9 : c+=((hashval_t)k[8]<<8); | |
945 | /* the first byte of c is reserved for the length */ | |
946 | case 8 : b+=((hashval_t)k[7]<<24); | |
947 | case 7 : b+=((hashval_t)k[6]<<16); | |
948 | case 6 : b+=((hashval_t)k[5]<<8); | |
949 | case 5 : b+=k[4]; | |
950 | case 4 : a+=((hashval_t)k[3]<<24); | |
951 | case 3 : a+=((hashval_t)k[2]<<16); | |
952 | case 2 : a+=((hashval_t)k[1]<<8); | |
953 | case 1 : a+=k[0]; | |
954 | /* case 0: nothing left to add */ | |
955 | } | |
956 | mix(a,b,c); | |
957 | /*-------------------------------------------- report the result */ | |
958 | return c; | |
959 | } |