daily update
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
483d7cf4 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009
bb6a587d 3 Free Software Foundation, Inc.
e2eaf477
ILT
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
979c05d3
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
e2eaf477
ILT
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
5c82d20a
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
5f73c378
DD
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
bb6a587d
DD
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
a17fcd19
DD
53#ifdef HAVE_INTTYPES_H
54#include <inttypes.h>
55#endif
bb6a587d
DD
56#ifdef HAVE_STDINT_H
57#include <stdint.h>
58#endif
5f73c378 59
e2eaf477
ILT
60#include <stdio.h>
61
62#include "libiberty.h"
bb6a587d 63#include "ansidecl.h"
e2eaf477
ILT
64#include "hashtab.h"
65
bb6a587d
DD
66#ifndef CHAR_BIT
67#define CHAR_BIT 8
68#endif
69
49b1fae4
DD
70static unsigned int higher_prime_index (unsigned long);
71static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72static hashval_t htab_mod (hashval_t, htab_t);
73static hashval_t htab_mod_m2 (hashval_t, htab_t);
74static hashval_t hash_pointer (const void *);
75static int eq_pointer (const void *, const void *);
76static int htab_expand (htab_t);
77static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
eb383413
L
78
79/* At some point, we could make these be NULL, and modify the
80 hash-table routines to handle NULL specially; that would avoid
81 function-call overhead for the common case of hashing pointers. */
82htab_hash htab_hash_pointer = hash_pointer;
83htab_eq htab_eq_pointer = eq_pointer;
84
bb6a587d
DD
85/* Table of primes and multiplicative inverses.
86
87 Note that these are not minimally reduced inverses. Unlike when generating
88 code to divide by a constant, we want to be able to use the same algorithm
89 all the time. All of these inverses (are implied to) have bit 32 set.
90
91 For the record, here's the function that computed the table; it's a
92 vastly simplified version of the function of the same name from gcc. */
93
94#if 0
95unsigned int
96ceil_log2 (unsigned int x)
97{
98 int i;
99 for (i = 31; i >= 0 ; --i)
100 if (x > (1u << i))
101 return i+1;
102 abort ();
103}
e2eaf477 104
bb6a587d
DD
105unsigned int
106choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107{
108 unsigned long long mhigh;
109 double nx;
110 int lgup, post_shift;
111 int pow, pow2;
112 int n = 32, precision = 32;
113
114 lgup = ceil_log2 (d);
115 pow = n + lgup;
116 pow2 = n + lgup - precision;
117
118 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119 mhigh = nx / d;
120
121 *shiftp = lgup - 1;
122 *mlp = mhigh;
123 return mhigh >> 32;
124}
125#endif
126
127struct prime_ent
128{
129 hashval_t prime;
130 hashval_t inv;
131 hashval_t inv_m2; /* inverse of prime-2 */
132 hashval_t shift;
133};
134
135static struct prime_ent const prime_tab[] = {
136 { 7, 0x24924925, 0x9999999b, 2 },
137 { 13, 0x3b13b13c, 0x745d1747, 3 },
138 { 31, 0x08421085, 0x1a7b9612, 4 },
139 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
140 { 127, 0x02040811, 0x0624dd30, 6 },
141 { 251, 0x05197f7e, 0x073260a5, 7 },
142 { 509, 0x01824366, 0x02864fc8, 8 },
143 { 1021, 0x00c0906d, 0x014191f7, 9 },
144 { 2039, 0x0121456f, 0x0161e69e, 10 },
145 { 4093, 0x00300902, 0x00501908, 11 },
146 { 8191, 0x00080041, 0x00180241, 12 },
147 { 16381, 0x000c0091, 0x00140191, 13 },
148 { 32749, 0x002605a5, 0x002a06e6, 14 },
149 { 65521, 0x000f00e2, 0x00110122, 15 },
150 { 131071, 0x00008001, 0x00018003, 16 },
151 { 262139, 0x00014002, 0x0001c004, 17 },
152 { 524287, 0x00002001, 0x00006001, 18 },
153 { 1048573, 0x00003001, 0x00005001, 19 },
154 { 2097143, 0x00004801, 0x00005801, 20 },
155 { 4194301, 0x00000c01, 0x00001401, 21 },
156 { 8388593, 0x00001e01, 0x00002201, 22 },
157 { 16777213, 0x00000301, 0x00000501, 23 },
158 { 33554393, 0x00001381, 0x00001481, 24 },
159 { 67108859, 0x00000141, 0x000001c1, 25 },
160 { 134217689, 0x000004e1, 0x00000521, 26 },
161 { 268435399, 0x00000391, 0x000003b1, 27 },
162 { 536870909, 0x00000019, 0x00000029, 28 },
163 { 1073741789, 0x0000008d, 0x00000095, 29 },
164 { 2147483647, 0x00000003, 0x00000007, 30 },
165 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
166 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167};
168
169/* The following function returns an index into the above table of the
170 nearest prime number which is greater than N, and near a power of two. */
171
172static unsigned int
49b1fae4 173higher_prime_index (unsigned long n)
e2eaf477 174{
bb6a587d
DD
175 unsigned int low = 0;
176 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
5ca0f83d
DD
177
178 while (low != high)
179 {
bb6a587d
DD
180 unsigned int mid = low + (high - low) / 2;
181 if (n > prime_tab[mid].prime)
5ca0f83d
DD
182 low = mid + 1;
183 else
184 high = mid;
185 }
186
187 /* If we've run out of primes, abort. */
bb6a587d 188 if (n > prime_tab[low].prime)
5ca0f83d
DD
189 {
190 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191 abort ();
192 }
193
bb6a587d 194 return low;
e2eaf477
ILT
195}
196
eb383413
L
197/* Returns a hash code for P. */
198
199static hashval_t
49b1fae4 200hash_pointer (const PTR p)
eb383413 201{
fca6a796 202 return (hashval_t) ((intptr_t)p >> 3);
eb383413
L
203}
204
205/* Returns non-zero if P1 and P2 are equal. */
206
207static int
49b1fae4 208eq_pointer (const PTR p1, const PTR p2)
eb383413
L
209{
210 return p1 == p2;
211}
212
fe046a17 213
abf6a75b
DD
214/* The parens around the function names in the next two definitions
215 are essential in order to prevent macro expansions of the name.
216 The bodies, however, are expanded as expected, so they are not
217 recursive definitions. */
218
219/* Return the current size of given hash table. */
220
221#define htab_size(htab) ((htab)->size)
222
223size_t
224(htab_size) (htab_t htab)
fe046a17 225{
abf6a75b 226 return htab_size (htab);
fe046a17
DD
227}
228
229/* Return the current number of elements in given hash table. */
230
abf6a75b
DD
231#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
232
233size_t
234(htab_elements) (htab_t htab)
fe046a17 235{
abf6a75b 236 return htab_elements (htab);
fe046a17
DD
237}
238
bb6a587d
DD
239/* Return X % Y. */
240
241static inline hashval_t
49b1fae4 242htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
bb6a587d
DD
243{
244 /* The multiplicative inverses computed above are for 32-bit types, and
245 requires that we be able to compute a highpart multiply. */
246#ifdef UNSIGNED_64BIT_TYPE
247 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
248 if (sizeof (hashval_t) * CHAR_BIT <= 32)
249 {
250 hashval_t t1, t2, t3, t4, q, r;
251
252 t1 = ((ull)x * inv) >> 32;
253 t2 = x - t1;
254 t3 = t2 >> 1;
255 t4 = t1 + t3;
256 q = t4 >> shift;
257 r = x - (q * y);
258
259 return r;
260 }
261#endif
262
263 /* Otherwise just use the native division routines. */
264 return x % y;
265}
266
fe046a17
DD
267/* Compute the primary hash for HASH given HTAB's current size. */
268
269static inline hashval_t
49b1fae4 270htab_mod (hashval_t hash, htab_t htab)
fe046a17 271{
bb6a587d
DD
272 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
fe046a17
DD
274}
275
276/* Compute the secondary hash for HASH given HTAB's current size. */
277
278static inline hashval_t
49b1fae4 279htab_mod_m2 (hashval_t hash, htab_t htab)
fe046a17 280{
bb6a587d
DD
281 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
282 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
fe046a17
DD
283}
284
e2eaf477
ILT
285/* This function creates table with length slightly longer than given
286 source length. Created hash table is initiated as empty (all the
c3cca4c9 287 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
18893690 288 created hash table, or NULL if memory allocation fails. */
e2eaf477 289
b4fe2683 290htab_t
49b1fae4
DD
291htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
292 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
e2eaf477 293{
b4fe2683 294 htab_t result;
bb6a587d
DD
295 unsigned int size_prime_index;
296
297 size_prime_index = higher_prime_index (size);
298 size = prime_tab[size_prime_index].prime;
e2eaf477 299
18893690
DD
300 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
301 if (result == NULL)
302 return NULL;
303 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
304 if (result->entries == NULL)
305 {
306 if (free_f != NULL)
307 (*free_f) (result);
308 return NULL;
309 }
e2eaf477 310 result->size = size;
bb6a587d 311 result->size_prime_index = size_prime_index;
b4fe2683
JM
312 result->hash_f = hash_f;
313 result->eq_f = eq_f;
314 result->del_f = del_f;
18893690
DD
315 result->alloc_f = alloc_f;
316 result->free_f = free_f;
99a4c1bd
HPN
317 return result;
318}
319
5f9624e3
DJ
320/* As above, but use the variants of alloc_f and free_f which accept
321 an extra argument. */
322
323htab_t
abf6a75b
DD
324htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
325 htab_del del_f, void *alloc_arg,
326 htab_alloc_with_arg alloc_f,
327 htab_free_with_arg free_f)
5f9624e3
DJ
328{
329 htab_t result;
bb6a587d
DD
330 unsigned int size_prime_index;
331
332 size_prime_index = higher_prime_index (size);
333 size = prime_tab[size_prime_index].prime;
5f9624e3 334
5f9624e3
DJ
335 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
336 if (result == NULL)
337 return NULL;
338 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
339 if (result->entries == NULL)
340 {
341 if (free_f != NULL)
342 (*free_f) (alloc_arg, result);
343 return NULL;
344 }
345 result->size = size;
bb6a587d 346 result->size_prime_index = size_prime_index;
5f9624e3
DJ
347 result->hash_f = hash_f;
348 result->eq_f = eq_f;
349 result->del_f = del_f;
350 result->alloc_arg = alloc_arg;
351 result->alloc_with_arg_f = alloc_f;
352 result->free_with_arg_f = free_f;
353 return result;
354}
355
356/* Update the function pointers and allocation parameter in the htab_t. */
357
358void
49b1fae4
DD
359htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
360 htab_del del_f, PTR alloc_arg,
361 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
5f9624e3
DJ
362{
363 htab->hash_f = hash_f;
364 htab->eq_f = eq_f;
365 htab->del_f = del_f;
366 htab->alloc_arg = alloc_arg;
367 htab->alloc_with_arg_f = alloc_f;
368 htab->free_with_arg_f = free_f;
369}
370
18893690 371/* These functions exist solely for backward compatibility. */
99a4c1bd 372
18893690 373#undef htab_create
99a4c1bd 374htab_t
49b1fae4 375htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
99a4c1bd 376{
18893690
DD
377 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
378}
99a4c1bd 379
18893690 380htab_t
49b1fae4 381htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
18893690
DD
382{
383 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
e2eaf477
ILT
384}
385
386/* This function frees all memory allocated for given hash table.
387 Naturally the hash table must already exist. */
388
389void
49b1fae4 390htab_delete (htab_t htab)
e2eaf477 391{
fe046a17
DD
392 size_t size = htab_size (htab);
393 PTR *entries = htab->entries;
b4fe2683 394 int i;
eb383413 395
b4fe2683 396 if (htab->del_f)
fe046a17 397 for (i = size - 1; i >= 0; i--)
c3cca4c9 398 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 399 (*htab->del_f) (entries[i]);
b4fe2683 400
18893690
DD
401 if (htab->free_f != NULL)
402 {
fe046a17 403 (*htab->free_f) (entries);
18893690
DD
404 (*htab->free_f) (htab);
405 }
5f9624e3
DJ
406 else if (htab->free_with_arg_f != NULL)
407 {
fe046a17 408 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
5f9624e3
DJ
409 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
410 }
e2eaf477
ILT
411}
412
413/* This function clears all entries in the given hash table. */
414
415void
49b1fae4 416htab_empty (htab_t htab)
b4fe2683 417{
fe046a17
DD
418 size_t size = htab_size (htab);
419 PTR *entries = htab->entries;
b4fe2683 420 int i;
eb383413 421
b4fe2683 422 if (htab->del_f)
fe046a17 423 for (i = size - 1; i >= 0; i--)
c3cca4c9 424 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 425 (*htab->del_f) (entries[i]);
b4fe2683 426
a7d421b8
DD
427 /* Instead of clearing megabyte, downsize the table. */
428 if (size > 1024*1024 / sizeof (PTR))
429 {
430 int nindex = higher_prime_index (1024 / sizeof (PTR));
431 int nsize = prime_tab[nindex].prime;
432
433 if (htab->free_f != NULL)
434 (*htab->free_f) (htab->entries);
435 else if (htab->free_with_arg_f != NULL)
436 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
437 if (htab->alloc_with_arg_f != NULL)
438 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
439 sizeof (PTR *));
440 else
441 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
442 htab->size = nsize;
443 htab->size_prime_index = nindex;
444 }
445 else
446 memset (entries, 0, size * sizeof (PTR));
447 htab->n_deleted = 0;
448 htab->n_elements = 0;
b4fe2683
JM
449}
450
451/* Similar to htab_find_slot, but without several unwanted side effects:
452 - Does not call htab->eq_f when it finds an existing entry.
453 - Does not change the count of elements/searches/collisions in the
454 hash table.
455 This function also assumes there are no deleted entries in the table.
456 HASH is the hash value for the element to be inserted. */
eb383413 457
e0f3df8f 458static PTR *
49b1fae4 459find_empty_slot_for_expand (htab_t htab, hashval_t hash)
e2eaf477 460{
fe046a17
DD
461 hashval_t index = htab_mod (hash, htab);
462 size_t size = htab_size (htab);
b1c933fc
RH
463 PTR *slot = htab->entries + index;
464 hashval_t hash2;
465
c3cca4c9 466 if (*slot == HTAB_EMPTY_ENTRY)
b1c933fc 467 return slot;
c3cca4c9 468 else if (*slot == HTAB_DELETED_ENTRY)
b1c933fc 469 abort ();
b4fe2683 470
fe046a17 471 hash2 = htab_mod_m2 (hash, htab);
b4fe2683
JM
472 for (;;)
473 {
b1c933fc
RH
474 index += hash2;
475 if (index >= size)
476 index -= size;
eb383413 477
b1c933fc 478 slot = htab->entries + index;
c3cca4c9 479 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683 480 return slot;
c3cca4c9 481 else if (*slot == HTAB_DELETED_ENTRY)
b4fe2683 482 abort ();
b4fe2683 483 }
e2eaf477
ILT
484}
485
486/* The following function changes size of memory allocated for the
487 entries and repeatedly inserts the table elements. The occupancy
488 of the table after the call will be about 50%. Naturally the hash
489 table must already exist. Remember also that the place of the
99a4c1bd
HPN
490 table entries is changed. If memory allocation failures are allowed,
491 this function will return zero, indicating that the table could not be
492 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 493
99a4c1bd 494static int
49b1fae4 495htab_expand (htab_t htab)
e2eaf477 496{
e0f3df8f
HPN
497 PTR *oentries;
498 PTR *olimit;
499 PTR *p;
18893690 500 PTR *nentries;
bb6a587d
DD
501 size_t nsize, osize, elts;
502 unsigned int oindex, nindex;
b4fe2683
JM
503
504 oentries = htab->entries;
bb6a587d
DD
505 oindex = htab->size_prime_index;
506 osize = htab->size;
507 olimit = oentries + osize;
508 elts = htab_elements (htab);
b4fe2683 509
c4d8feb2
DD
510 /* Resize only when table after removal of unused elements is either
511 too full or too empty. */
bb6a587d
DD
512 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
513 {
514 nindex = higher_prime_index (elts * 2);
515 nsize = prime_tab[nindex].prime;
516 }
c4d8feb2 517 else
bb6a587d
DD
518 {
519 nindex = oindex;
520 nsize = osize;
521 }
99a4c1bd 522
5f9624e3
DJ
523 if (htab->alloc_with_arg_f != NULL)
524 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
525 sizeof (PTR *));
526 else
527 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
18893690
DD
528 if (nentries == NULL)
529 return 0;
530 htab->entries = nentries;
eed2b28c 531 htab->size = nsize;
bb6a587d 532 htab->size_prime_index = nindex;
b4fe2683
JM
533 htab->n_elements -= htab->n_deleted;
534 htab->n_deleted = 0;
535
536 p = oentries;
537 do
538 {
e0f3df8f 539 PTR x = *p;
eb383413 540
c3cca4c9 541 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683 542 {
e0f3df8f 543 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 544
b4fe2683
JM
545 *q = x;
546 }
eb383413 547
b4fe2683
JM
548 p++;
549 }
550 while (p < olimit);
eb383413 551
18893690
DD
552 if (htab->free_f != NULL)
553 (*htab->free_f) (oentries);
5f9624e3
DJ
554 else if (htab->free_with_arg_f != NULL)
555 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
99a4c1bd 556 return 1;
e2eaf477
ILT
557}
558
b4fe2683
JM
559/* This function searches for a hash table entry equal to the given
560 element. It cannot be used to insert or delete an element. */
561
e0f3df8f 562PTR
49b1fae4 563htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
e2eaf477 564{
fe046a17 565 hashval_t index, hash2;
b4fe2683 566 size_t size;
e0f3df8f 567 PTR entry;
e2eaf477 568
b4fe2683 569 htab->searches++;
fe046a17
DD
570 size = htab_size (htab);
571 index = htab_mod (hash, htab);
b4fe2683 572
eb383413 573 entry = htab->entries[index];
c3cca4c9
DD
574 if (entry == HTAB_EMPTY_ENTRY
575 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413
L
576 return entry;
577
fe046a17 578 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 579 for (;;)
e2eaf477 580 {
b4fe2683
JM
581 htab->collisions++;
582 index += hash2;
583 if (index >= size)
584 index -= size;
eb383413
L
585
586 entry = htab->entries[index];
c3cca4c9
DD
587 if (entry == HTAB_EMPTY_ENTRY
588 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413 589 return entry;
e2eaf477 590 }
b4fe2683
JM
591}
592
593/* Like htab_find_slot_with_hash, but compute the hash value from the
594 element. */
eb383413 595
e0f3df8f 596PTR
49b1fae4 597htab_find (htab_t htab, const PTR element)
b4fe2683
JM
598{
599 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
600}
601
602/* This function searches for a hash table slot containing an entry
603 equal to the given element. To delete an entry, call this with
bac7199c
DD
604 insert=NO_INSERT, then call htab_clear_slot on the slot returned
605 (possibly after doing some checks). To insert an entry, call this
606 with insert=INSERT, then write the value you want into the returned
607 slot. When inserting an entry, NULL may be returned if memory
608 allocation fails. */
b4fe2683 609
e0f3df8f 610PTR *
49b1fae4
DD
611htab_find_slot_with_hash (htab_t htab, const PTR element,
612 hashval_t hash, enum insert_option insert)
b4fe2683 613{
e0f3df8f 614 PTR *first_deleted_slot;
fe046a17 615 hashval_t index, hash2;
b4fe2683 616 size_t size;
b1c933fc 617 PTR entry;
b4fe2683 618
fe046a17
DD
619 size = htab_size (htab);
620 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
621 {
622 if (htab_expand (htab) == 0)
623 return NULL;
624 size = htab_size (htab);
625 }
b4fe2683 626
fe046a17 627 index = htab_mod (hash, htab);
b4fe2683 628
e2eaf477 629 htab->searches++;
b4fe2683
JM
630 first_deleted_slot = NULL;
631
b1c933fc 632 entry = htab->entries[index];
c3cca4c9 633 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 634 goto empty_entry;
c3cca4c9 635 else if (entry == HTAB_DELETED_ENTRY)
b1c933fc
RH
636 first_deleted_slot = &htab->entries[index];
637 else if ((*htab->eq_f) (entry, element))
638 return &htab->entries[index];
639
fe046a17 640 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 641 for (;;)
e2eaf477 642 {
b1c933fc
RH
643 htab->collisions++;
644 index += hash2;
645 if (index >= size)
646 index -= size;
647
648 entry = htab->entries[index];
c3cca4c9 649 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 650 goto empty_entry;
c3cca4c9 651 else if (entry == HTAB_DELETED_ENTRY)
b4fe2683
JM
652 {
653 if (!first_deleted_slot)
654 first_deleted_slot = &htab->entries[index];
655 }
b1c933fc 656 else if ((*htab->eq_f) (entry, element))
eb383413 657 return &htab->entries[index];
e2eaf477 658 }
b1c933fc
RH
659
660 empty_entry:
661 if (insert == NO_INSERT)
662 return NULL;
663
b1c933fc
RH
664 if (first_deleted_slot)
665 {
686e72d7 666 htab->n_deleted--;
c3cca4c9 667 *first_deleted_slot = HTAB_EMPTY_ENTRY;
b1c933fc
RH
668 return first_deleted_slot;
669 }
670
686e72d7 671 htab->n_elements++;
b1c933fc 672 return &htab->entries[index];
e2eaf477
ILT
673}
674
b4fe2683
JM
675/* Like htab_find_slot_with_hash, but compute the hash value from the
676 element. */
eb383413 677
e0f3df8f 678PTR *
49b1fae4 679htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
b4fe2683
JM
680{
681 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
682 insert);
683}
684
d6ea4e80
DD
685/* This function deletes an element with the given value from hash
686 table (the hash is computed from the element). If there is no matching
687 element in the hash table, this function does nothing. */
688
689void
49b1fae4 690htab_remove_elt (htab_t htab, PTR element)
d6ea4e80
DD
691{
692 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
693}
694
695
b4fe2683
JM
696/* This function deletes an element with the given value from hash
697 table. If there is no matching element in the hash table, this
698 function does nothing. */
e2eaf477
ILT
699
700void
49b1fae4 701htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
e2eaf477 702{
e0f3df8f 703 PTR *slot;
b4fe2683 704
d6ea4e80 705 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
c3cca4c9 706 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683
JM
707 return;
708
709 if (htab->del_f)
710 (*htab->del_f) (*slot);
e2eaf477 711
c3cca4c9 712 *slot = HTAB_DELETED_ENTRY;
b4fe2683 713 htab->n_deleted++;
e2eaf477
ILT
714}
715
b4fe2683
JM
716/* This function clears a specified slot in a hash table. It is
717 useful when you've already done the lookup and don't want to do it
718 again. */
e2eaf477
ILT
719
720void
49b1fae4 721htab_clear_slot (htab_t htab, PTR *slot)
e2eaf477 722{
fe046a17 723 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
c3cca4c9 724 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
e2eaf477 725 abort ();
eb383413 726
b4fe2683
JM
727 if (htab->del_f)
728 (*htab->del_f) (*slot);
eb383413 729
c3cca4c9 730 *slot = HTAB_DELETED_ENTRY;
b4fe2683 731 htab->n_deleted++;
e2eaf477
ILT
732}
733
734/* This function scans over the entire hash table calling
735 CALLBACK for each live entry. If CALLBACK returns false,
736 the iteration stops. INFO is passed as CALLBACK's second
737 argument. */
738
739void
49b1fae4 740htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
e2eaf477 741{
c4d8feb2
DD
742 PTR *slot;
743 PTR *limit;
c3cca4c9 744
c4d8feb2 745 slot = htab->entries;
fe046a17 746 limit = slot + htab_size (htab);
eb383413 747
b4fe2683
JM
748 do
749 {
e0f3df8f 750 PTR x = *slot;
eb383413 751
c3cca4c9 752 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683
JM
753 if (!(*callback) (slot, info))
754 break;
755 }
756 while (++slot < limit);
e2eaf477
ILT
757}
758
f77ed96c
DD
759/* Like htab_traverse_noresize, but does resize the table when it is
760 too empty to improve effectivity of subsequent calls. */
761
762void
49b1fae4 763htab_traverse (htab_t htab, htab_trav callback, PTR info)
f77ed96c 764{
483d7cf4
DD
765 size_t size = htab_size (htab);
766 if (htab_elements (htab) * 8 < size && size > 32)
f77ed96c
DD
767 htab_expand (htab);
768
769 htab_traverse_noresize (htab, callback, info);
770}
771
eb383413
L
772/* Return the fraction of fixed collisions during all work with given
773 hash table. */
e2eaf477 774
b4fe2683 775double
49b1fae4 776htab_collisions (htab_t htab)
e2eaf477 777{
eb383413 778 if (htab->searches == 0)
b4fe2683 779 return 0.0;
eb383413
L
780
781 return (double) htab->collisions / (double) htab->searches;
e2eaf477 782}
8fc34799 783
68a41de7
DD
784/* Hash P as a null-terminated string.
785
786 Copied from gcc/hashtable.c. Zack had the following to say with respect
787 to applicability, though note that unlike hashtable.c, this hash table
788 implementation re-hashes rather than chain buckets.
789
790 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
791 From: Zack Weinberg <zackw@panix.com>
792 Date: Fri, 17 Aug 2001 02:15:56 -0400
793
794 I got it by extracting all the identifiers from all the source code
795 I had lying around in mid-1999, and testing many recurrences of
796 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
797 prime numbers or the appropriate identity. This was the best one.
798 I don't remember exactly what constituted "best", except I was
799 looking at bucket-length distributions mostly.
800
801 So it should be very good at hashing identifiers, but might not be
802 as good at arbitrary strings.
803
804 I'll add that it thoroughly trounces the hash functions recommended
805 for this use at http://burtleburtle.net/bob/hash/index.html, both
806 on speed and bucket distribution. I haven't tried it against the
807 function they just started using for Perl's hashes. */
8fc34799
DD
808
809hashval_t
49b1fae4 810htab_hash_string (const PTR p)
8fc34799
DD
811{
812 const unsigned char *str = (const unsigned char *) p;
813 hashval_t r = 0;
814 unsigned char c;
815
816 while ((c = *str++) != 0)
817 r = r * 67 + c - 113;
818
819 return r;
820}
7108c5dc
JM
821
822/* DERIVED FROM:
823--------------------------------------------------------------------
824lookup2.c, by Bob Jenkins, December 1996, Public Domain.
825hash(), hash2(), hash3, and mix() are externally useful functions.
826Routines to test the hash are included if SELF_TEST is defined.
827You can use this free for any purpose. It has no warranty.
828--------------------------------------------------------------------
829*/
830
831/*
832--------------------------------------------------------------------
833mix -- mix 3 32-bit values reversibly.
834For every delta with one or two bit set, and the deltas of all three
835 high bits or all three low bits, whether the original value of a,b,c
836 is almost all zero or is uniformly distributed,
837* If mix() is run forward or backward, at least 32 bits in a,b,c
838 have at least 1/4 probability of changing.
839* If mix() is run forward, every bit of c will change between 1/3 and
840 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
841mix() was built out of 36 single-cycle latency instructions in a
842 structure that could supported 2x parallelism, like so:
843 a -= b;
844 a -= c; x = (c>>13);
845 b -= c; a ^= x;
846 b -= a; x = (a<<8);
847 c -= a; b ^= x;
848 c -= b; x = (b>>13);
849 ...
850 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
851 of that parallelism. They've also turned some of those single-cycle
852 latency instructions into multi-cycle latency instructions. Still,
853 this is the fastest good hash I could find. There were about 2^^68
854 to choose from. I only looked at a billion or so.
855--------------------------------------------------------------------
856*/
857/* same, but slower, works on systems that might have 8 byte hashval_t's */
858#define mix(a,b,c) \
859{ \
860 a -= b; a -= c; a ^= (c>>13); \
861 b -= c; b -= a; b ^= (a<< 8); \
862 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
863 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
864 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
865 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
866 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
867 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
868 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
869}
870
871/*
872--------------------------------------------------------------------
873hash() -- hash a variable-length key into a 32-bit value
874 k : the key (the unaligned variable-length array of bytes)
875 len : the length of the key, counting by bytes
876 level : can be any 4-byte value
877Returns a 32-bit value. Every bit of the key affects every bit of
878the return value. Every 1-bit and 2-bit delta achieves avalanche.
879About 36+6len instructions.
880
881The best hash table sizes are powers of 2. There is no need to do
882mod a prime (mod is sooo slow!). If you need less than 32 bits,
883use a bitmask. For example, if you need only 10 bits, do
884 h = (h & hashmask(10));
885In which case, the hash table should have hashsize(10) elements.
886
887If you are hashing n strings (ub1 **)k, do it like this:
888 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
889
890By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
891code any way you wish, private, educational, or commercial. It's free.
892
893See http://burtleburtle.net/bob/hash/evahash.html
894Use for hash table lookup, or anything where one collision in 2^32 is
895acceptable. Do NOT use for cryptographic purposes.
896--------------------------------------------------------------------
897*/
898
49b1fae4
DD
899hashval_t
900iterative_hash (const PTR k_in /* the key */,
901 register size_t length /* the length of the key */,
902 register hashval_t initval /* the previous hash, or
903 an arbitrary value */)
7108c5dc
JM
904{
905 register const unsigned char *k = (const unsigned char *)k_in;
906 register hashval_t a,b,c,len;
907
908 /* Set up the internal state */
909 len = length;
910 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
911 c = initval; /* the previous hash value */
912
913 /*---------------------------------------- handle most of the key */
914#ifndef WORDS_BIGENDIAN
915 /* On a little-endian machine, if the data is 4-byte aligned we can hash
916 by word for better speed. This gives nondeterministic results on
917 big-endian machines. */
918 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
919 while (len >= 12) /* aligned */
920 {
921 a += *(hashval_t *)(k+0);
922 b += *(hashval_t *)(k+4);
923 c += *(hashval_t *)(k+8);
924 mix(a,b,c);
925 k += 12; len -= 12;
926 }
927 else /* unaligned */
928#endif
929 while (len >= 12)
930 {
931 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
932 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
933 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
934 mix(a,b,c);
935 k += 12; len -= 12;
936 }
937
938 /*------------------------------------- handle the last 11 bytes */
939 c += length;
940 switch(len) /* all the case statements fall through */
941 {
942 case 11: c+=((hashval_t)k[10]<<24);
943 case 10: c+=((hashval_t)k[9]<<16);
944 case 9 : c+=((hashval_t)k[8]<<8);
945 /* the first byte of c is reserved for the length */
946 case 8 : b+=((hashval_t)k[7]<<24);
947 case 7 : b+=((hashval_t)k[6]<<16);
948 case 6 : b+=((hashval_t)k[5]<<8);
949 case 5 : b+=k[4];
950 case 4 : a+=((hashval_t)k[3]<<24);
951 case 3 : a+=((hashval_t)k[2]<<16);
952 case 2 : a+=((hashval_t)k[1]<<8);
953 case 1 : a+=k[0];
954 /* case 0: nothing left to add */
955 }
956 mix(a,b,c);
957 /*-------------------------------------------- report the result */
958 return c;
959}
This page took 0.790849 seconds and 4 git commands to generate.