daily update
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
bb6a587d
DD
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
e2eaf477
ILT
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
979c05d3
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
e2eaf477
ILT
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
5c82d20a
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
5f73c378
DD
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
bb6a587d
DD
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_STDINT_H
54#include <stdint.h>
55#endif
5f73c378 56
e2eaf477
ILT
57#include <stdio.h>
58
59#include "libiberty.h"
bb6a587d 60#include "ansidecl.h"
e2eaf477
ILT
61#include "hashtab.h"
62
bb6a587d
DD
63#ifndef CHAR_BIT
64#define CHAR_BIT 8
65#endif
66
49b1fae4
DD
67static unsigned int higher_prime_index (unsigned long);
68static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
69static hashval_t htab_mod (hashval_t, htab_t);
70static hashval_t htab_mod_m2 (hashval_t, htab_t);
71static hashval_t hash_pointer (const void *);
72static int eq_pointer (const void *, const void *);
73static int htab_expand (htab_t);
74static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
eb383413
L
75
76/* At some point, we could make these be NULL, and modify the
77 hash-table routines to handle NULL specially; that would avoid
78 function-call overhead for the common case of hashing pointers. */
79htab_hash htab_hash_pointer = hash_pointer;
80htab_eq htab_eq_pointer = eq_pointer;
81
bb6a587d
DD
82/* Table of primes and multiplicative inverses.
83
84 Note that these are not minimally reduced inverses. Unlike when generating
85 code to divide by a constant, we want to be able to use the same algorithm
86 all the time. All of these inverses (are implied to) have bit 32 set.
87
88 For the record, here's the function that computed the table; it's a
89 vastly simplified version of the function of the same name from gcc. */
90
91#if 0
92unsigned int
93ceil_log2 (unsigned int x)
94{
95 int i;
96 for (i = 31; i >= 0 ; --i)
97 if (x > (1u << i))
98 return i+1;
99 abort ();
100}
e2eaf477 101
bb6a587d
DD
102unsigned int
103choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
104{
105 unsigned long long mhigh;
106 double nx;
107 int lgup, post_shift;
108 int pow, pow2;
109 int n = 32, precision = 32;
110
111 lgup = ceil_log2 (d);
112 pow = n + lgup;
113 pow2 = n + lgup - precision;
114
115 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
116 mhigh = nx / d;
117
118 *shiftp = lgup - 1;
119 *mlp = mhigh;
120 return mhigh >> 32;
121}
122#endif
123
124struct prime_ent
125{
126 hashval_t prime;
127 hashval_t inv;
128 hashval_t inv_m2; /* inverse of prime-2 */
129 hashval_t shift;
130};
131
132static struct prime_ent const prime_tab[] = {
133 { 7, 0x24924925, 0x9999999b, 2 },
134 { 13, 0x3b13b13c, 0x745d1747, 3 },
135 { 31, 0x08421085, 0x1a7b9612, 4 },
136 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
137 { 127, 0x02040811, 0x0624dd30, 6 },
138 { 251, 0x05197f7e, 0x073260a5, 7 },
139 { 509, 0x01824366, 0x02864fc8, 8 },
140 { 1021, 0x00c0906d, 0x014191f7, 9 },
141 { 2039, 0x0121456f, 0x0161e69e, 10 },
142 { 4093, 0x00300902, 0x00501908, 11 },
143 { 8191, 0x00080041, 0x00180241, 12 },
144 { 16381, 0x000c0091, 0x00140191, 13 },
145 { 32749, 0x002605a5, 0x002a06e6, 14 },
146 { 65521, 0x000f00e2, 0x00110122, 15 },
147 { 131071, 0x00008001, 0x00018003, 16 },
148 { 262139, 0x00014002, 0x0001c004, 17 },
149 { 524287, 0x00002001, 0x00006001, 18 },
150 { 1048573, 0x00003001, 0x00005001, 19 },
151 { 2097143, 0x00004801, 0x00005801, 20 },
152 { 4194301, 0x00000c01, 0x00001401, 21 },
153 { 8388593, 0x00001e01, 0x00002201, 22 },
154 { 16777213, 0x00000301, 0x00000501, 23 },
155 { 33554393, 0x00001381, 0x00001481, 24 },
156 { 67108859, 0x00000141, 0x000001c1, 25 },
157 { 134217689, 0x000004e1, 0x00000521, 26 },
158 { 268435399, 0x00000391, 0x000003b1, 27 },
159 { 536870909, 0x00000019, 0x00000029, 28 },
160 { 1073741789, 0x0000008d, 0x00000095, 29 },
161 { 2147483647, 0x00000003, 0x00000007, 30 },
162 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
163 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
164};
165
166/* The following function returns an index into the above table of the
167 nearest prime number which is greater than N, and near a power of two. */
168
169static unsigned int
49b1fae4 170higher_prime_index (unsigned long n)
e2eaf477 171{
bb6a587d
DD
172 unsigned int low = 0;
173 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
5ca0f83d
DD
174
175 while (low != high)
176 {
bb6a587d
DD
177 unsigned int mid = low + (high - low) / 2;
178 if (n > prime_tab[mid].prime)
5ca0f83d
DD
179 low = mid + 1;
180 else
181 high = mid;
182 }
183
184 /* If we've run out of primes, abort. */
bb6a587d 185 if (n > prime_tab[low].prime)
5ca0f83d
DD
186 {
187 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
188 abort ();
189 }
190
bb6a587d 191 return low;
e2eaf477
ILT
192}
193
eb383413
L
194/* Returns a hash code for P. */
195
196static hashval_t
49b1fae4 197hash_pointer (const PTR p)
eb383413
L
198{
199 return (hashval_t) ((long)p >> 3);
200}
201
202/* Returns non-zero if P1 and P2 are equal. */
203
204static int
49b1fae4 205eq_pointer (const PTR p1, const PTR p2)
eb383413
L
206{
207 return p1 == p2;
208}
209
fe046a17 210
abf6a75b
DD
211/* The parens around the function names in the next two definitions
212 are essential in order to prevent macro expansions of the name.
213 The bodies, however, are expanded as expected, so they are not
214 recursive definitions. */
215
216/* Return the current size of given hash table. */
217
218#define htab_size(htab) ((htab)->size)
219
220size_t
221(htab_size) (htab_t htab)
fe046a17 222{
abf6a75b 223 return htab_size (htab);
fe046a17
DD
224}
225
226/* Return the current number of elements in given hash table. */
227
abf6a75b
DD
228#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
229
230size_t
231(htab_elements) (htab_t htab)
fe046a17 232{
abf6a75b 233 return htab_elements (htab);
fe046a17
DD
234}
235
bb6a587d
DD
236/* Return X % Y. */
237
238static inline hashval_t
49b1fae4 239htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
bb6a587d
DD
240{
241 /* The multiplicative inverses computed above are for 32-bit types, and
242 requires that we be able to compute a highpart multiply. */
243#ifdef UNSIGNED_64BIT_TYPE
244 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
245 if (sizeof (hashval_t) * CHAR_BIT <= 32)
246 {
247 hashval_t t1, t2, t3, t4, q, r;
248
249 t1 = ((ull)x * inv) >> 32;
250 t2 = x - t1;
251 t3 = t2 >> 1;
252 t4 = t1 + t3;
253 q = t4 >> shift;
254 r = x - (q * y);
255
256 return r;
257 }
258#endif
259
260 /* Otherwise just use the native division routines. */
261 return x % y;
262}
263
fe046a17
DD
264/* Compute the primary hash for HASH given HTAB's current size. */
265
266static inline hashval_t
49b1fae4 267htab_mod (hashval_t hash, htab_t htab)
fe046a17 268{
bb6a587d
DD
269 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
270 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
fe046a17
DD
271}
272
273/* Compute the secondary hash for HASH given HTAB's current size. */
274
275static inline hashval_t
49b1fae4 276htab_mod_m2 (hashval_t hash, htab_t htab)
fe046a17 277{
bb6a587d
DD
278 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
fe046a17
DD
280}
281
e2eaf477
ILT
282/* This function creates table with length slightly longer than given
283 source length. Created hash table is initiated as empty (all the
c3cca4c9 284 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
18893690 285 created hash table, or NULL if memory allocation fails. */
e2eaf477 286
b4fe2683 287htab_t
49b1fae4
DD
288htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
289 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
e2eaf477 290{
b4fe2683 291 htab_t result;
bb6a587d
DD
292 unsigned int size_prime_index;
293
294 size_prime_index = higher_prime_index (size);
295 size = prime_tab[size_prime_index].prime;
e2eaf477 296
18893690
DD
297 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
298 if (result == NULL)
299 return NULL;
300 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
301 if (result->entries == NULL)
302 {
303 if (free_f != NULL)
304 (*free_f) (result);
305 return NULL;
306 }
e2eaf477 307 result->size = size;
bb6a587d 308 result->size_prime_index = size_prime_index;
b4fe2683
JM
309 result->hash_f = hash_f;
310 result->eq_f = eq_f;
311 result->del_f = del_f;
18893690
DD
312 result->alloc_f = alloc_f;
313 result->free_f = free_f;
99a4c1bd
HPN
314 return result;
315}
316
5f9624e3
DJ
317/* As above, but use the variants of alloc_f and free_f which accept
318 an extra argument. */
319
320htab_t
abf6a75b
DD
321htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
322 htab_del del_f, void *alloc_arg,
323 htab_alloc_with_arg alloc_f,
324 htab_free_with_arg free_f)
5f9624e3
DJ
325{
326 htab_t result;
bb6a587d
DD
327 unsigned int size_prime_index;
328
329 size_prime_index = higher_prime_index (size);
330 size = prime_tab[size_prime_index].prime;
5f9624e3 331
5f9624e3
DJ
332 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
333 if (result == NULL)
334 return NULL;
335 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
336 if (result->entries == NULL)
337 {
338 if (free_f != NULL)
339 (*free_f) (alloc_arg, result);
340 return NULL;
341 }
342 result->size = size;
bb6a587d 343 result->size_prime_index = size_prime_index;
5f9624e3
DJ
344 result->hash_f = hash_f;
345 result->eq_f = eq_f;
346 result->del_f = del_f;
347 result->alloc_arg = alloc_arg;
348 result->alloc_with_arg_f = alloc_f;
349 result->free_with_arg_f = free_f;
350 return result;
351}
352
353/* Update the function pointers and allocation parameter in the htab_t. */
354
355void
49b1fae4
DD
356htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
357 htab_del del_f, PTR alloc_arg,
358 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
5f9624e3
DJ
359{
360 htab->hash_f = hash_f;
361 htab->eq_f = eq_f;
362 htab->del_f = del_f;
363 htab->alloc_arg = alloc_arg;
364 htab->alloc_with_arg_f = alloc_f;
365 htab->free_with_arg_f = free_f;
366}
367
18893690 368/* These functions exist solely for backward compatibility. */
99a4c1bd 369
18893690 370#undef htab_create
99a4c1bd 371htab_t
49b1fae4 372htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
99a4c1bd 373{
18893690
DD
374 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
375}
99a4c1bd 376
18893690 377htab_t
49b1fae4 378htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
18893690
DD
379{
380 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
e2eaf477
ILT
381}
382
383/* This function frees all memory allocated for given hash table.
384 Naturally the hash table must already exist. */
385
386void
49b1fae4 387htab_delete (htab_t htab)
e2eaf477 388{
fe046a17
DD
389 size_t size = htab_size (htab);
390 PTR *entries = htab->entries;
b4fe2683 391 int i;
eb383413 392
b4fe2683 393 if (htab->del_f)
fe046a17 394 for (i = size - 1; i >= 0; i--)
c3cca4c9 395 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 396 (*htab->del_f) (entries[i]);
b4fe2683 397
18893690
DD
398 if (htab->free_f != NULL)
399 {
fe046a17 400 (*htab->free_f) (entries);
18893690
DD
401 (*htab->free_f) (htab);
402 }
5f9624e3
DJ
403 else if (htab->free_with_arg_f != NULL)
404 {
fe046a17 405 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
5f9624e3
DJ
406 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
407 }
e2eaf477
ILT
408}
409
410/* This function clears all entries in the given hash table. */
411
412void
49b1fae4 413htab_empty (htab_t htab)
b4fe2683 414{
fe046a17
DD
415 size_t size = htab_size (htab);
416 PTR *entries = htab->entries;
b4fe2683 417 int i;
eb383413 418
b4fe2683 419 if (htab->del_f)
fe046a17 420 for (i = size - 1; i >= 0; i--)
c3cca4c9 421 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 422 (*htab->del_f) (entries[i]);
b4fe2683 423
a7d421b8
DD
424 /* Instead of clearing megabyte, downsize the table. */
425 if (size > 1024*1024 / sizeof (PTR))
426 {
427 int nindex = higher_prime_index (1024 / sizeof (PTR));
428 int nsize = prime_tab[nindex].prime;
429
430 if (htab->free_f != NULL)
431 (*htab->free_f) (htab->entries);
432 else if (htab->free_with_arg_f != NULL)
433 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
434 if (htab->alloc_with_arg_f != NULL)
435 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
436 sizeof (PTR *));
437 else
438 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
439 htab->size = nsize;
440 htab->size_prime_index = nindex;
441 }
442 else
443 memset (entries, 0, size * sizeof (PTR));
444 htab->n_deleted = 0;
445 htab->n_elements = 0;
b4fe2683
JM
446}
447
448/* Similar to htab_find_slot, but without several unwanted side effects:
449 - Does not call htab->eq_f when it finds an existing entry.
450 - Does not change the count of elements/searches/collisions in the
451 hash table.
452 This function also assumes there are no deleted entries in the table.
453 HASH is the hash value for the element to be inserted. */
eb383413 454
e0f3df8f 455static PTR *
49b1fae4 456find_empty_slot_for_expand (htab_t htab, hashval_t hash)
e2eaf477 457{
fe046a17
DD
458 hashval_t index = htab_mod (hash, htab);
459 size_t size = htab_size (htab);
b1c933fc
RH
460 PTR *slot = htab->entries + index;
461 hashval_t hash2;
462
c3cca4c9 463 if (*slot == HTAB_EMPTY_ENTRY)
b1c933fc 464 return slot;
c3cca4c9 465 else if (*slot == HTAB_DELETED_ENTRY)
b1c933fc 466 abort ();
b4fe2683 467
fe046a17 468 hash2 = htab_mod_m2 (hash, htab);
b4fe2683
JM
469 for (;;)
470 {
b1c933fc
RH
471 index += hash2;
472 if (index >= size)
473 index -= size;
eb383413 474
b1c933fc 475 slot = htab->entries + index;
c3cca4c9 476 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683 477 return slot;
c3cca4c9 478 else if (*slot == HTAB_DELETED_ENTRY)
b4fe2683 479 abort ();
b4fe2683 480 }
e2eaf477
ILT
481}
482
483/* The following function changes size of memory allocated for the
484 entries and repeatedly inserts the table elements. The occupancy
485 of the table after the call will be about 50%. Naturally the hash
486 table must already exist. Remember also that the place of the
99a4c1bd
HPN
487 table entries is changed. If memory allocation failures are allowed,
488 this function will return zero, indicating that the table could not be
489 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 490
99a4c1bd 491static int
49b1fae4 492htab_expand (htab_t htab)
e2eaf477 493{
e0f3df8f
HPN
494 PTR *oentries;
495 PTR *olimit;
496 PTR *p;
18893690 497 PTR *nentries;
bb6a587d
DD
498 size_t nsize, osize, elts;
499 unsigned int oindex, nindex;
b4fe2683
JM
500
501 oentries = htab->entries;
bb6a587d
DD
502 oindex = htab->size_prime_index;
503 osize = htab->size;
504 olimit = oentries + osize;
505 elts = htab_elements (htab);
b4fe2683 506
c4d8feb2
DD
507 /* Resize only when table after removal of unused elements is either
508 too full or too empty. */
bb6a587d
DD
509 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
510 {
511 nindex = higher_prime_index (elts * 2);
512 nsize = prime_tab[nindex].prime;
513 }
c4d8feb2 514 else
bb6a587d
DD
515 {
516 nindex = oindex;
517 nsize = osize;
518 }
99a4c1bd 519
5f9624e3
DJ
520 if (htab->alloc_with_arg_f != NULL)
521 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
522 sizeof (PTR *));
523 else
524 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
18893690
DD
525 if (nentries == NULL)
526 return 0;
527 htab->entries = nentries;
eed2b28c 528 htab->size = nsize;
bb6a587d 529 htab->size_prime_index = nindex;
b4fe2683
JM
530 htab->n_elements -= htab->n_deleted;
531 htab->n_deleted = 0;
532
533 p = oentries;
534 do
535 {
e0f3df8f 536 PTR x = *p;
eb383413 537
c3cca4c9 538 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683 539 {
e0f3df8f 540 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 541
b4fe2683
JM
542 *q = x;
543 }
eb383413 544
b4fe2683
JM
545 p++;
546 }
547 while (p < olimit);
eb383413 548
18893690
DD
549 if (htab->free_f != NULL)
550 (*htab->free_f) (oentries);
5f9624e3
DJ
551 else if (htab->free_with_arg_f != NULL)
552 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
99a4c1bd 553 return 1;
e2eaf477
ILT
554}
555
b4fe2683
JM
556/* This function searches for a hash table entry equal to the given
557 element. It cannot be used to insert or delete an element. */
558
e0f3df8f 559PTR
49b1fae4 560htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
e2eaf477 561{
fe046a17 562 hashval_t index, hash2;
b4fe2683 563 size_t size;
e0f3df8f 564 PTR entry;
e2eaf477 565
b4fe2683 566 htab->searches++;
fe046a17
DD
567 size = htab_size (htab);
568 index = htab_mod (hash, htab);
b4fe2683 569
eb383413 570 entry = htab->entries[index];
c3cca4c9
DD
571 if (entry == HTAB_EMPTY_ENTRY
572 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413
L
573 return entry;
574
fe046a17 575 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 576 for (;;)
e2eaf477 577 {
b4fe2683
JM
578 htab->collisions++;
579 index += hash2;
580 if (index >= size)
581 index -= size;
eb383413
L
582
583 entry = htab->entries[index];
c3cca4c9
DD
584 if (entry == HTAB_EMPTY_ENTRY
585 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413 586 return entry;
e2eaf477 587 }
b4fe2683
JM
588}
589
590/* Like htab_find_slot_with_hash, but compute the hash value from the
591 element. */
eb383413 592
e0f3df8f 593PTR
49b1fae4 594htab_find (htab_t htab, const PTR element)
b4fe2683
JM
595{
596 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
597}
598
599/* This function searches for a hash table slot containing an entry
600 equal to the given element. To delete an entry, call this with
bac7199c
DD
601 insert=NO_INSERT, then call htab_clear_slot on the slot returned
602 (possibly after doing some checks). To insert an entry, call this
603 with insert=INSERT, then write the value you want into the returned
604 slot. When inserting an entry, NULL may be returned if memory
605 allocation fails. */
b4fe2683 606
e0f3df8f 607PTR *
49b1fae4
DD
608htab_find_slot_with_hash (htab_t htab, const PTR element,
609 hashval_t hash, enum insert_option insert)
b4fe2683 610{
e0f3df8f 611 PTR *first_deleted_slot;
fe046a17 612 hashval_t index, hash2;
b4fe2683 613 size_t size;
b1c933fc 614 PTR entry;
b4fe2683 615
fe046a17
DD
616 size = htab_size (htab);
617 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
618 {
619 if (htab_expand (htab) == 0)
620 return NULL;
621 size = htab_size (htab);
622 }
b4fe2683 623
fe046a17 624 index = htab_mod (hash, htab);
b4fe2683 625
e2eaf477 626 htab->searches++;
b4fe2683
JM
627 first_deleted_slot = NULL;
628
b1c933fc 629 entry = htab->entries[index];
c3cca4c9 630 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 631 goto empty_entry;
c3cca4c9 632 else if (entry == HTAB_DELETED_ENTRY)
b1c933fc
RH
633 first_deleted_slot = &htab->entries[index];
634 else if ((*htab->eq_f) (entry, element))
635 return &htab->entries[index];
636
fe046a17 637 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 638 for (;;)
e2eaf477 639 {
b1c933fc
RH
640 htab->collisions++;
641 index += hash2;
642 if (index >= size)
643 index -= size;
644
645 entry = htab->entries[index];
c3cca4c9 646 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 647 goto empty_entry;
c3cca4c9 648 else if (entry == HTAB_DELETED_ENTRY)
b4fe2683
JM
649 {
650 if (!first_deleted_slot)
651 first_deleted_slot = &htab->entries[index];
652 }
b1c933fc 653 else if ((*htab->eq_f) (entry, element))
eb383413 654 return &htab->entries[index];
e2eaf477 655 }
b1c933fc
RH
656
657 empty_entry:
658 if (insert == NO_INSERT)
659 return NULL;
660
b1c933fc
RH
661 if (first_deleted_slot)
662 {
686e72d7 663 htab->n_deleted--;
c3cca4c9 664 *first_deleted_slot = HTAB_EMPTY_ENTRY;
b1c933fc
RH
665 return first_deleted_slot;
666 }
667
686e72d7 668 htab->n_elements++;
b1c933fc 669 return &htab->entries[index];
e2eaf477
ILT
670}
671
b4fe2683
JM
672/* Like htab_find_slot_with_hash, but compute the hash value from the
673 element. */
eb383413 674
e0f3df8f 675PTR *
49b1fae4 676htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
b4fe2683
JM
677{
678 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
679 insert);
680}
681
d6ea4e80
DD
682/* This function deletes an element with the given value from hash
683 table (the hash is computed from the element). If there is no matching
684 element in the hash table, this function does nothing. */
685
686void
49b1fae4 687htab_remove_elt (htab_t htab, PTR element)
d6ea4e80
DD
688{
689 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
690}
691
692
b4fe2683
JM
693/* This function deletes an element with the given value from hash
694 table. If there is no matching element in the hash table, this
695 function does nothing. */
e2eaf477
ILT
696
697void
49b1fae4 698htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
e2eaf477 699{
e0f3df8f 700 PTR *slot;
b4fe2683 701
d6ea4e80 702 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
c3cca4c9 703 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683
JM
704 return;
705
706 if (htab->del_f)
707 (*htab->del_f) (*slot);
e2eaf477 708
c3cca4c9 709 *slot = HTAB_DELETED_ENTRY;
b4fe2683 710 htab->n_deleted++;
e2eaf477
ILT
711}
712
b4fe2683
JM
713/* This function clears a specified slot in a hash table. It is
714 useful when you've already done the lookup and don't want to do it
715 again. */
e2eaf477
ILT
716
717void
49b1fae4 718htab_clear_slot (htab_t htab, PTR *slot)
e2eaf477 719{
fe046a17 720 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
c3cca4c9 721 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
e2eaf477 722 abort ();
eb383413 723
b4fe2683
JM
724 if (htab->del_f)
725 (*htab->del_f) (*slot);
eb383413 726
c3cca4c9 727 *slot = HTAB_DELETED_ENTRY;
b4fe2683 728 htab->n_deleted++;
e2eaf477
ILT
729}
730
731/* This function scans over the entire hash table calling
732 CALLBACK for each live entry. If CALLBACK returns false,
733 the iteration stops. INFO is passed as CALLBACK's second
734 argument. */
735
736void
49b1fae4 737htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
e2eaf477 738{
c4d8feb2
DD
739 PTR *slot;
740 PTR *limit;
c3cca4c9 741
c4d8feb2 742 slot = htab->entries;
fe046a17 743 limit = slot + htab_size (htab);
eb383413 744
b4fe2683
JM
745 do
746 {
e0f3df8f 747 PTR x = *slot;
eb383413 748
c3cca4c9 749 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683
JM
750 if (!(*callback) (slot, info))
751 break;
752 }
753 while (++slot < limit);
e2eaf477
ILT
754}
755
f77ed96c
DD
756/* Like htab_traverse_noresize, but does resize the table when it is
757 too empty to improve effectivity of subsequent calls. */
758
759void
49b1fae4 760htab_traverse (htab_t htab, htab_trav callback, PTR info)
f77ed96c 761{
fe046a17 762 if (htab_elements (htab) * 8 < htab_size (htab))
f77ed96c
DD
763 htab_expand (htab);
764
765 htab_traverse_noresize (htab, callback, info);
766}
767
eb383413
L
768/* Return the fraction of fixed collisions during all work with given
769 hash table. */
e2eaf477 770
b4fe2683 771double
49b1fae4 772htab_collisions (htab_t htab)
e2eaf477 773{
eb383413 774 if (htab->searches == 0)
b4fe2683 775 return 0.0;
eb383413
L
776
777 return (double) htab->collisions / (double) htab->searches;
e2eaf477 778}
8fc34799 779
68a41de7
DD
780/* Hash P as a null-terminated string.
781
782 Copied from gcc/hashtable.c. Zack had the following to say with respect
783 to applicability, though note that unlike hashtable.c, this hash table
784 implementation re-hashes rather than chain buckets.
785
786 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
787 From: Zack Weinberg <zackw@panix.com>
788 Date: Fri, 17 Aug 2001 02:15:56 -0400
789
790 I got it by extracting all the identifiers from all the source code
791 I had lying around in mid-1999, and testing many recurrences of
792 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
793 prime numbers or the appropriate identity. This was the best one.
794 I don't remember exactly what constituted "best", except I was
795 looking at bucket-length distributions mostly.
796
797 So it should be very good at hashing identifiers, but might not be
798 as good at arbitrary strings.
799
800 I'll add that it thoroughly trounces the hash functions recommended
801 for this use at http://burtleburtle.net/bob/hash/index.html, both
802 on speed and bucket distribution. I haven't tried it against the
803 function they just started using for Perl's hashes. */
8fc34799
DD
804
805hashval_t
49b1fae4 806htab_hash_string (const PTR p)
8fc34799
DD
807{
808 const unsigned char *str = (const unsigned char *) p;
809 hashval_t r = 0;
810 unsigned char c;
811
812 while ((c = *str++) != 0)
813 r = r * 67 + c - 113;
814
815 return r;
816}
7108c5dc
JM
817
818/* DERIVED FROM:
819--------------------------------------------------------------------
820lookup2.c, by Bob Jenkins, December 1996, Public Domain.
821hash(), hash2(), hash3, and mix() are externally useful functions.
822Routines to test the hash are included if SELF_TEST is defined.
823You can use this free for any purpose. It has no warranty.
824--------------------------------------------------------------------
825*/
826
827/*
828--------------------------------------------------------------------
829mix -- mix 3 32-bit values reversibly.
830For every delta with one or two bit set, and the deltas of all three
831 high bits or all three low bits, whether the original value of a,b,c
832 is almost all zero or is uniformly distributed,
833* If mix() is run forward or backward, at least 32 bits in a,b,c
834 have at least 1/4 probability of changing.
835* If mix() is run forward, every bit of c will change between 1/3 and
836 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
837mix() was built out of 36 single-cycle latency instructions in a
838 structure that could supported 2x parallelism, like so:
839 a -= b;
840 a -= c; x = (c>>13);
841 b -= c; a ^= x;
842 b -= a; x = (a<<8);
843 c -= a; b ^= x;
844 c -= b; x = (b>>13);
845 ...
846 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
847 of that parallelism. They've also turned some of those single-cycle
848 latency instructions into multi-cycle latency instructions. Still,
849 this is the fastest good hash I could find. There were about 2^^68
850 to choose from. I only looked at a billion or so.
851--------------------------------------------------------------------
852*/
853/* same, but slower, works on systems that might have 8 byte hashval_t's */
854#define mix(a,b,c) \
855{ \
856 a -= b; a -= c; a ^= (c>>13); \
857 b -= c; b -= a; b ^= (a<< 8); \
858 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
859 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
860 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
861 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
862 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
863 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
864 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
865}
866
867/*
868--------------------------------------------------------------------
869hash() -- hash a variable-length key into a 32-bit value
870 k : the key (the unaligned variable-length array of bytes)
871 len : the length of the key, counting by bytes
872 level : can be any 4-byte value
873Returns a 32-bit value. Every bit of the key affects every bit of
874the return value. Every 1-bit and 2-bit delta achieves avalanche.
875About 36+6len instructions.
876
877The best hash table sizes are powers of 2. There is no need to do
878mod a prime (mod is sooo slow!). If you need less than 32 bits,
879use a bitmask. For example, if you need only 10 bits, do
880 h = (h & hashmask(10));
881In which case, the hash table should have hashsize(10) elements.
882
883If you are hashing n strings (ub1 **)k, do it like this:
884 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
885
886By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
887code any way you wish, private, educational, or commercial. It's free.
888
889See http://burtleburtle.net/bob/hash/evahash.html
890Use for hash table lookup, or anything where one collision in 2^32 is
891acceptable. Do NOT use for cryptographic purposes.
892--------------------------------------------------------------------
893*/
894
49b1fae4
DD
895hashval_t
896iterative_hash (const PTR k_in /* the key */,
897 register size_t length /* the length of the key */,
898 register hashval_t initval /* the previous hash, or
899 an arbitrary value */)
7108c5dc
JM
900{
901 register const unsigned char *k = (const unsigned char *)k_in;
902 register hashval_t a,b,c,len;
903
904 /* Set up the internal state */
905 len = length;
906 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
907 c = initval; /* the previous hash value */
908
909 /*---------------------------------------- handle most of the key */
910#ifndef WORDS_BIGENDIAN
911 /* On a little-endian machine, if the data is 4-byte aligned we can hash
912 by word for better speed. This gives nondeterministic results on
913 big-endian machines. */
914 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
915 while (len >= 12) /* aligned */
916 {
917 a += *(hashval_t *)(k+0);
918 b += *(hashval_t *)(k+4);
919 c += *(hashval_t *)(k+8);
920 mix(a,b,c);
921 k += 12; len -= 12;
922 }
923 else /* unaligned */
924#endif
925 while (len >= 12)
926 {
927 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
928 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
929 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
930 mix(a,b,c);
931 k += 12; len -= 12;
932 }
933
934 /*------------------------------------- handle the last 11 bytes */
935 c += length;
936 switch(len) /* all the case statements fall through */
937 {
938 case 11: c+=((hashval_t)k[10]<<24);
939 case 10: c+=((hashval_t)k[9]<<16);
940 case 9 : c+=((hashval_t)k[8]<<8);
941 /* the first byte of c is reserved for the length */
942 case 8 : b+=((hashval_t)k[7]<<24);
943 case 7 : b+=((hashval_t)k[6]<<16);
944 case 6 : b+=((hashval_t)k[5]<<8);
945 case 5 : b+=k[4];
946 case 4 : a+=((hashval_t)k[3]<<24);
947 case 3 : a+=((hashval_t)k[2]<<16);
948 case 2 : a+=((hashval_t)k[1]<<8);
949 case 1 : a+=k[0];
950 /* case 0: nothing left to add */
951 }
952 mix(a,b,c);
953 /*-------------------------------------------- report the result */
954 return c;
955}
This page took 0.309915 seconds and 4 git commands to generate.