* tilegx-tdep.c (itilegx_gdbarch_init): char type should be signed.
[deliverable/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
219a461e 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
bb6a587d 3 Free Software Foundation, Inc.
e2eaf477
ILT
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
979c05d3
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
e2eaf477
ILT
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
5c82d20a
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
5f73c378
DD
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
bb6a587d
DD
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
a17fcd19
DD
53#ifdef HAVE_INTTYPES_H
54#include <inttypes.h>
55#endif
bb6a587d
DD
56#ifdef HAVE_STDINT_H
57#include <stdint.h>
58#endif
5f73c378 59
e2eaf477
ILT
60#include <stdio.h>
61
62#include "libiberty.h"
bb6a587d 63#include "ansidecl.h"
e2eaf477
ILT
64#include "hashtab.h"
65
bb6a587d
DD
66#ifndef CHAR_BIT
67#define CHAR_BIT 8
68#endif
69
49b1fae4
DD
70static unsigned int higher_prime_index (unsigned long);
71static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72static hashval_t htab_mod (hashval_t, htab_t);
73static hashval_t htab_mod_m2 (hashval_t, htab_t);
74static hashval_t hash_pointer (const void *);
75static int eq_pointer (const void *, const void *);
76static int htab_expand (htab_t);
77static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
eb383413
L
78
79/* At some point, we could make these be NULL, and modify the
80 hash-table routines to handle NULL specially; that would avoid
81 function-call overhead for the common case of hashing pointers. */
82htab_hash htab_hash_pointer = hash_pointer;
83htab_eq htab_eq_pointer = eq_pointer;
84
bb6a587d
DD
85/* Table of primes and multiplicative inverses.
86
87 Note that these are not minimally reduced inverses. Unlike when generating
88 code to divide by a constant, we want to be able to use the same algorithm
89 all the time. All of these inverses (are implied to) have bit 32 set.
90
91 For the record, here's the function that computed the table; it's a
92 vastly simplified version of the function of the same name from gcc. */
93
94#if 0
95unsigned int
96ceil_log2 (unsigned int x)
97{
98 int i;
99 for (i = 31; i >= 0 ; --i)
100 if (x > (1u << i))
101 return i+1;
102 abort ();
103}
e2eaf477 104
bb6a587d
DD
105unsigned int
106choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107{
108 unsigned long long mhigh;
109 double nx;
110 int lgup, post_shift;
111 int pow, pow2;
112 int n = 32, precision = 32;
113
114 lgup = ceil_log2 (d);
115 pow = n + lgup;
116 pow2 = n + lgup - precision;
117
118 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119 mhigh = nx / d;
120
121 *shiftp = lgup - 1;
122 *mlp = mhigh;
123 return mhigh >> 32;
124}
125#endif
126
127struct prime_ent
128{
129 hashval_t prime;
130 hashval_t inv;
131 hashval_t inv_m2; /* inverse of prime-2 */
132 hashval_t shift;
133};
134
135static struct prime_ent const prime_tab[] = {
136 { 7, 0x24924925, 0x9999999b, 2 },
137 { 13, 0x3b13b13c, 0x745d1747, 3 },
138 { 31, 0x08421085, 0x1a7b9612, 4 },
139 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
140 { 127, 0x02040811, 0x0624dd30, 6 },
141 { 251, 0x05197f7e, 0x073260a5, 7 },
142 { 509, 0x01824366, 0x02864fc8, 8 },
143 { 1021, 0x00c0906d, 0x014191f7, 9 },
144 { 2039, 0x0121456f, 0x0161e69e, 10 },
145 { 4093, 0x00300902, 0x00501908, 11 },
146 { 8191, 0x00080041, 0x00180241, 12 },
147 { 16381, 0x000c0091, 0x00140191, 13 },
148 { 32749, 0x002605a5, 0x002a06e6, 14 },
149 { 65521, 0x000f00e2, 0x00110122, 15 },
150 { 131071, 0x00008001, 0x00018003, 16 },
151 { 262139, 0x00014002, 0x0001c004, 17 },
152 { 524287, 0x00002001, 0x00006001, 18 },
153 { 1048573, 0x00003001, 0x00005001, 19 },
154 { 2097143, 0x00004801, 0x00005801, 20 },
155 { 4194301, 0x00000c01, 0x00001401, 21 },
156 { 8388593, 0x00001e01, 0x00002201, 22 },
157 { 16777213, 0x00000301, 0x00000501, 23 },
158 { 33554393, 0x00001381, 0x00001481, 24 },
159 { 67108859, 0x00000141, 0x000001c1, 25 },
160 { 134217689, 0x000004e1, 0x00000521, 26 },
161 { 268435399, 0x00000391, 0x000003b1, 27 },
162 { 536870909, 0x00000019, 0x00000029, 28 },
163 { 1073741789, 0x0000008d, 0x00000095, 29 },
164 { 2147483647, 0x00000003, 0x00000007, 30 },
165 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
166 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167};
168
169/* The following function returns an index into the above table of the
170 nearest prime number which is greater than N, and near a power of two. */
171
172static unsigned int
49b1fae4 173higher_prime_index (unsigned long n)
e2eaf477 174{
bb6a587d
DD
175 unsigned int low = 0;
176 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
5ca0f83d
DD
177
178 while (low != high)
179 {
bb6a587d
DD
180 unsigned int mid = low + (high - low) / 2;
181 if (n > prime_tab[mid].prime)
5ca0f83d
DD
182 low = mid + 1;
183 else
184 high = mid;
185 }
186
187 /* If we've run out of primes, abort. */
bb6a587d 188 if (n > prime_tab[low].prime)
5ca0f83d
DD
189 {
190 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191 abort ();
192 }
193
bb6a587d 194 return low;
e2eaf477
ILT
195}
196
eb383413
L
197/* Returns a hash code for P. */
198
199static hashval_t
49b1fae4 200hash_pointer (const PTR p)
eb383413 201{
fca6a796 202 return (hashval_t) ((intptr_t)p >> 3);
eb383413
L
203}
204
205/* Returns non-zero if P1 and P2 are equal. */
206
207static int
49b1fae4 208eq_pointer (const PTR p1, const PTR p2)
eb383413
L
209{
210 return p1 == p2;
211}
212
fe046a17 213
abf6a75b
DD
214/* The parens around the function names in the next two definitions
215 are essential in order to prevent macro expansions of the name.
216 The bodies, however, are expanded as expected, so they are not
217 recursive definitions. */
218
219/* Return the current size of given hash table. */
220
221#define htab_size(htab) ((htab)->size)
222
223size_t
224(htab_size) (htab_t htab)
fe046a17 225{
abf6a75b 226 return htab_size (htab);
fe046a17
DD
227}
228
229/* Return the current number of elements in given hash table. */
230
abf6a75b
DD
231#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
232
233size_t
234(htab_elements) (htab_t htab)
fe046a17 235{
abf6a75b 236 return htab_elements (htab);
fe046a17
DD
237}
238
bb6a587d
DD
239/* Return X % Y. */
240
241static inline hashval_t
49b1fae4 242htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
bb6a587d
DD
243{
244 /* The multiplicative inverses computed above are for 32-bit types, and
245 requires that we be able to compute a highpart multiply. */
246#ifdef UNSIGNED_64BIT_TYPE
247 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
248 if (sizeof (hashval_t) * CHAR_BIT <= 32)
249 {
250 hashval_t t1, t2, t3, t4, q, r;
251
252 t1 = ((ull)x * inv) >> 32;
253 t2 = x - t1;
254 t3 = t2 >> 1;
255 t4 = t1 + t3;
256 q = t4 >> shift;
257 r = x - (q * y);
258
259 return r;
260 }
261#endif
262
263 /* Otherwise just use the native division routines. */
264 return x % y;
265}
266
fe046a17
DD
267/* Compute the primary hash for HASH given HTAB's current size. */
268
269static inline hashval_t
49b1fae4 270htab_mod (hashval_t hash, htab_t htab)
fe046a17 271{
bb6a587d
DD
272 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
fe046a17
DD
274}
275
276/* Compute the secondary hash for HASH given HTAB's current size. */
277
278static inline hashval_t
49b1fae4 279htab_mod_m2 (hashval_t hash, htab_t htab)
fe046a17 280{
bb6a587d
DD
281 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
282 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
fe046a17
DD
283}
284
e2eaf477
ILT
285/* This function creates table with length slightly longer than given
286 source length. Created hash table is initiated as empty (all the
c3cca4c9 287 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
18893690 288 created hash table, or NULL if memory allocation fails. */
e2eaf477 289
b4fe2683 290htab_t
49b1fae4
DD
291htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
292 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
219a461e
DD
293{
294 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
295 free_f);
296}
297
298/* As above, but uses the variants of ALLOC_F and FREE_F which accept
299 an extra argument. */
300
301htab_t
302htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
303 htab_del del_f, void *alloc_arg,
304 htab_alloc_with_arg alloc_f,
305 htab_free_with_arg free_f)
e2eaf477 306{
b4fe2683 307 htab_t result;
bb6a587d
DD
308 unsigned int size_prime_index;
309
310 size_prime_index = higher_prime_index (size);
311 size = prime_tab[size_prime_index].prime;
e2eaf477 312
219a461e 313 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
18893690
DD
314 if (result == NULL)
315 return NULL;
219a461e 316 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
18893690
DD
317 if (result->entries == NULL)
318 {
319 if (free_f != NULL)
219a461e 320 (*free_f) (alloc_arg, result);
18893690
DD
321 return NULL;
322 }
e2eaf477 323 result->size = size;
bb6a587d 324 result->size_prime_index = size_prime_index;
b4fe2683
JM
325 result->hash_f = hash_f;
326 result->eq_f = eq_f;
327 result->del_f = del_f;
219a461e
DD
328 result->alloc_arg = alloc_arg;
329 result->alloc_with_arg_f = alloc_f;
330 result->free_with_arg_f = free_f;
99a4c1bd
HPN
331 return result;
332}
333
219a461e
DD
334/*
335
d4d868a2
RW
336@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
337htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
338htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
219a461e
DD
339htab_free @var{free_f})
340
341This function creates a hash table that uses two different allocators
342@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
343and its entries respectively. This is useful when variables of different
344types need to be allocated with different allocators.
345
346The created hash table is slightly larger than @var{size} and it is
347initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
348The function returns the created hash table, or @code{NULL} if memory
349allocation fails.
350
351@end deftypefn
352
353*/
5f9624e3
DJ
354
355htab_t
219a461e
DD
356htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
357 htab_del del_f, htab_alloc alloc_tab_f,
358 htab_alloc alloc_f, htab_free free_f)
5f9624e3
DJ
359{
360 htab_t result;
bb6a587d
DD
361 unsigned int size_prime_index;
362
363 size_prime_index = higher_prime_index (size);
364 size = prime_tab[size_prime_index].prime;
5f9624e3 365
219a461e 366 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
5f9624e3
DJ
367 if (result == NULL)
368 return NULL;
219a461e 369 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
5f9624e3
DJ
370 if (result->entries == NULL)
371 {
372 if (free_f != NULL)
219a461e 373 (*free_f) (result);
5f9624e3
DJ
374 return NULL;
375 }
376 result->size = size;
bb6a587d 377 result->size_prime_index = size_prime_index;
5f9624e3
DJ
378 result->hash_f = hash_f;
379 result->eq_f = eq_f;
380 result->del_f = del_f;
219a461e
DD
381 result->alloc_f = alloc_f;
382 result->free_f = free_f;
5f9624e3
DJ
383 return result;
384}
385
219a461e 386
5f9624e3
DJ
387/* Update the function pointers and allocation parameter in the htab_t. */
388
389void
49b1fae4
DD
390htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
391 htab_del del_f, PTR alloc_arg,
392 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
5f9624e3
DJ
393{
394 htab->hash_f = hash_f;
395 htab->eq_f = eq_f;
396 htab->del_f = del_f;
397 htab->alloc_arg = alloc_arg;
398 htab->alloc_with_arg_f = alloc_f;
399 htab->free_with_arg_f = free_f;
400}
401
18893690 402/* These functions exist solely for backward compatibility. */
99a4c1bd 403
18893690 404#undef htab_create
99a4c1bd 405htab_t
49b1fae4 406htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
99a4c1bd 407{
18893690
DD
408 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
409}
99a4c1bd 410
18893690 411htab_t
49b1fae4 412htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
18893690
DD
413{
414 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
e2eaf477
ILT
415}
416
417/* This function frees all memory allocated for given hash table.
418 Naturally the hash table must already exist. */
419
420void
49b1fae4 421htab_delete (htab_t htab)
e2eaf477 422{
fe046a17
DD
423 size_t size = htab_size (htab);
424 PTR *entries = htab->entries;
b4fe2683 425 int i;
eb383413 426
b4fe2683 427 if (htab->del_f)
fe046a17 428 for (i = size - 1; i >= 0; i--)
c3cca4c9 429 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 430 (*htab->del_f) (entries[i]);
b4fe2683 431
18893690
DD
432 if (htab->free_f != NULL)
433 {
fe046a17 434 (*htab->free_f) (entries);
18893690
DD
435 (*htab->free_f) (htab);
436 }
5f9624e3
DJ
437 else if (htab->free_with_arg_f != NULL)
438 {
fe046a17 439 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
5f9624e3
DJ
440 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
441 }
e2eaf477
ILT
442}
443
444/* This function clears all entries in the given hash table. */
445
446void
49b1fae4 447htab_empty (htab_t htab)
b4fe2683 448{
fe046a17
DD
449 size_t size = htab_size (htab);
450 PTR *entries = htab->entries;
b4fe2683 451 int i;
eb383413 452
b4fe2683 453 if (htab->del_f)
fe046a17 454 for (i = size - 1; i >= 0; i--)
c3cca4c9 455 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 456 (*htab->del_f) (entries[i]);
b4fe2683 457
a7d421b8
DD
458 /* Instead of clearing megabyte, downsize the table. */
459 if (size > 1024*1024 / sizeof (PTR))
460 {
461 int nindex = higher_prime_index (1024 / sizeof (PTR));
462 int nsize = prime_tab[nindex].prime;
463
464 if (htab->free_f != NULL)
465 (*htab->free_f) (htab->entries);
466 else if (htab->free_with_arg_f != NULL)
467 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
468 if (htab->alloc_with_arg_f != NULL)
469 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
470 sizeof (PTR *));
471 else
472 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
473 htab->size = nsize;
474 htab->size_prime_index = nindex;
475 }
476 else
477 memset (entries, 0, size * sizeof (PTR));
478 htab->n_deleted = 0;
479 htab->n_elements = 0;
b4fe2683
JM
480}
481
482/* Similar to htab_find_slot, but without several unwanted side effects:
483 - Does not call htab->eq_f when it finds an existing entry.
484 - Does not change the count of elements/searches/collisions in the
485 hash table.
486 This function also assumes there are no deleted entries in the table.
487 HASH is the hash value for the element to be inserted. */
eb383413 488
e0f3df8f 489static PTR *
49b1fae4 490find_empty_slot_for_expand (htab_t htab, hashval_t hash)
e2eaf477 491{
fe046a17
DD
492 hashval_t index = htab_mod (hash, htab);
493 size_t size = htab_size (htab);
b1c933fc
RH
494 PTR *slot = htab->entries + index;
495 hashval_t hash2;
496
c3cca4c9 497 if (*slot == HTAB_EMPTY_ENTRY)
b1c933fc 498 return slot;
c3cca4c9 499 else if (*slot == HTAB_DELETED_ENTRY)
b1c933fc 500 abort ();
b4fe2683 501
fe046a17 502 hash2 = htab_mod_m2 (hash, htab);
b4fe2683
JM
503 for (;;)
504 {
b1c933fc
RH
505 index += hash2;
506 if (index >= size)
507 index -= size;
eb383413 508
b1c933fc 509 slot = htab->entries + index;
c3cca4c9 510 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683 511 return slot;
c3cca4c9 512 else if (*slot == HTAB_DELETED_ENTRY)
b4fe2683 513 abort ();
b4fe2683 514 }
e2eaf477
ILT
515}
516
517/* The following function changes size of memory allocated for the
518 entries and repeatedly inserts the table elements. The occupancy
519 of the table after the call will be about 50%. Naturally the hash
520 table must already exist. Remember also that the place of the
99a4c1bd
HPN
521 table entries is changed. If memory allocation failures are allowed,
522 this function will return zero, indicating that the table could not be
523 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 524
99a4c1bd 525static int
49b1fae4 526htab_expand (htab_t htab)
e2eaf477 527{
e0f3df8f
HPN
528 PTR *oentries;
529 PTR *olimit;
530 PTR *p;
18893690 531 PTR *nentries;
bb6a587d
DD
532 size_t nsize, osize, elts;
533 unsigned int oindex, nindex;
b4fe2683
JM
534
535 oentries = htab->entries;
bb6a587d
DD
536 oindex = htab->size_prime_index;
537 osize = htab->size;
538 olimit = oentries + osize;
539 elts = htab_elements (htab);
b4fe2683 540
c4d8feb2
DD
541 /* Resize only when table after removal of unused elements is either
542 too full or too empty. */
bb6a587d
DD
543 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
544 {
545 nindex = higher_prime_index (elts * 2);
546 nsize = prime_tab[nindex].prime;
547 }
c4d8feb2 548 else
bb6a587d
DD
549 {
550 nindex = oindex;
551 nsize = osize;
552 }
99a4c1bd 553
5f9624e3
DJ
554 if (htab->alloc_with_arg_f != NULL)
555 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
556 sizeof (PTR *));
557 else
558 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
18893690
DD
559 if (nentries == NULL)
560 return 0;
561 htab->entries = nentries;
eed2b28c 562 htab->size = nsize;
bb6a587d 563 htab->size_prime_index = nindex;
b4fe2683
JM
564 htab->n_elements -= htab->n_deleted;
565 htab->n_deleted = 0;
566
567 p = oentries;
568 do
569 {
e0f3df8f 570 PTR x = *p;
eb383413 571
c3cca4c9 572 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683 573 {
e0f3df8f 574 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 575
b4fe2683
JM
576 *q = x;
577 }
eb383413 578
b4fe2683
JM
579 p++;
580 }
581 while (p < olimit);
eb383413 582
18893690
DD
583 if (htab->free_f != NULL)
584 (*htab->free_f) (oentries);
5f9624e3
DJ
585 else if (htab->free_with_arg_f != NULL)
586 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
99a4c1bd 587 return 1;
e2eaf477
ILT
588}
589
b4fe2683
JM
590/* This function searches for a hash table entry equal to the given
591 element. It cannot be used to insert or delete an element. */
592
e0f3df8f 593PTR
49b1fae4 594htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
e2eaf477 595{
fe046a17 596 hashval_t index, hash2;
b4fe2683 597 size_t size;
e0f3df8f 598 PTR entry;
e2eaf477 599
b4fe2683 600 htab->searches++;
fe046a17
DD
601 size = htab_size (htab);
602 index = htab_mod (hash, htab);
b4fe2683 603
eb383413 604 entry = htab->entries[index];
c3cca4c9
DD
605 if (entry == HTAB_EMPTY_ENTRY
606 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413
L
607 return entry;
608
fe046a17 609 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 610 for (;;)
e2eaf477 611 {
b4fe2683
JM
612 htab->collisions++;
613 index += hash2;
614 if (index >= size)
615 index -= size;
eb383413
L
616
617 entry = htab->entries[index];
c3cca4c9
DD
618 if (entry == HTAB_EMPTY_ENTRY
619 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413 620 return entry;
e2eaf477 621 }
b4fe2683
JM
622}
623
624/* Like htab_find_slot_with_hash, but compute the hash value from the
625 element. */
eb383413 626
e0f3df8f 627PTR
49b1fae4 628htab_find (htab_t htab, const PTR element)
b4fe2683
JM
629{
630 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
631}
632
633/* This function searches for a hash table slot containing an entry
634 equal to the given element. To delete an entry, call this with
bac7199c
DD
635 insert=NO_INSERT, then call htab_clear_slot on the slot returned
636 (possibly after doing some checks). To insert an entry, call this
637 with insert=INSERT, then write the value you want into the returned
638 slot. When inserting an entry, NULL may be returned if memory
639 allocation fails. */
b4fe2683 640
e0f3df8f 641PTR *
49b1fae4
DD
642htab_find_slot_with_hash (htab_t htab, const PTR element,
643 hashval_t hash, enum insert_option insert)
b4fe2683 644{
e0f3df8f 645 PTR *first_deleted_slot;
fe046a17 646 hashval_t index, hash2;
b4fe2683 647 size_t size;
b1c933fc 648 PTR entry;
b4fe2683 649
fe046a17
DD
650 size = htab_size (htab);
651 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
652 {
653 if (htab_expand (htab) == 0)
654 return NULL;
655 size = htab_size (htab);
656 }
b4fe2683 657
fe046a17 658 index = htab_mod (hash, htab);
b4fe2683 659
e2eaf477 660 htab->searches++;
b4fe2683
JM
661 first_deleted_slot = NULL;
662
b1c933fc 663 entry = htab->entries[index];
c3cca4c9 664 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 665 goto empty_entry;
c3cca4c9 666 else if (entry == HTAB_DELETED_ENTRY)
b1c933fc
RH
667 first_deleted_slot = &htab->entries[index];
668 else if ((*htab->eq_f) (entry, element))
669 return &htab->entries[index];
670
fe046a17 671 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 672 for (;;)
e2eaf477 673 {
b1c933fc
RH
674 htab->collisions++;
675 index += hash2;
676 if (index >= size)
677 index -= size;
678
679 entry = htab->entries[index];
c3cca4c9 680 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 681 goto empty_entry;
c3cca4c9 682 else if (entry == HTAB_DELETED_ENTRY)
b4fe2683
JM
683 {
684 if (!first_deleted_slot)
685 first_deleted_slot = &htab->entries[index];
686 }
b1c933fc 687 else if ((*htab->eq_f) (entry, element))
eb383413 688 return &htab->entries[index];
e2eaf477 689 }
b1c933fc
RH
690
691 empty_entry:
692 if (insert == NO_INSERT)
693 return NULL;
694
b1c933fc
RH
695 if (first_deleted_slot)
696 {
686e72d7 697 htab->n_deleted--;
c3cca4c9 698 *first_deleted_slot = HTAB_EMPTY_ENTRY;
b1c933fc
RH
699 return first_deleted_slot;
700 }
701
686e72d7 702 htab->n_elements++;
b1c933fc 703 return &htab->entries[index];
e2eaf477
ILT
704}
705
b4fe2683
JM
706/* Like htab_find_slot_with_hash, but compute the hash value from the
707 element. */
eb383413 708
e0f3df8f 709PTR *
49b1fae4 710htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
b4fe2683
JM
711{
712 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
713 insert);
714}
715
d6ea4e80
DD
716/* This function deletes an element with the given value from hash
717 table (the hash is computed from the element). If there is no matching
718 element in the hash table, this function does nothing. */
719
720void
49b1fae4 721htab_remove_elt (htab_t htab, PTR element)
d6ea4e80
DD
722{
723 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
724}
725
726
b4fe2683
JM
727/* This function deletes an element with the given value from hash
728 table. If there is no matching element in the hash table, this
729 function does nothing. */
e2eaf477
ILT
730
731void
49b1fae4 732htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
e2eaf477 733{
e0f3df8f 734 PTR *slot;
b4fe2683 735
d6ea4e80 736 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
c3cca4c9 737 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683
JM
738 return;
739
740 if (htab->del_f)
741 (*htab->del_f) (*slot);
e2eaf477 742
c3cca4c9 743 *slot = HTAB_DELETED_ENTRY;
b4fe2683 744 htab->n_deleted++;
e2eaf477
ILT
745}
746
b4fe2683
JM
747/* This function clears a specified slot in a hash table. It is
748 useful when you've already done the lookup and don't want to do it
749 again. */
e2eaf477
ILT
750
751void
49b1fae4 752htab_clear_slot (htab_t htab, PTR *slot)
e2eaf477 753{
fe046a17 754 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
c3cca4c9 755 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
e2eaf477 756 abort ();
eb383413 757
b4fe2683
JM
758 if (htab->del_f)
759 (*htab->del_f) (*slot);
eb383413 760
c3cca4c9 761 *slot = HTAB_DELETED_ENTRY;
b4fe2683 762 htab->n_deleted++;
e2eaf477
ILT
763}
764
765/* This function scans over the entire hash table calling
766 CALLBACK for each live entry. If CALLBACK returns false,
767 the iteration stops. INFO is passed as CALLBACK's second
768 argument. */
769
770void
49b1fae4 771htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
e2eaf477 772{
c4d8feb2
DD
773 PTR *slot;
774 PTR *limit;
c3cca4c9 775
c4d8feb2 776 slot = htab->entries;
fe046a17 777 limit = slot + htab_size (htab);
eb383413 778
b4fe2683
JM
779 do
780 {
e0f3df8f 781 PTR x = *slot;
eb383413 782
c3cca4c9 783 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683
JM
784 if (!(*callback) (slot, info))
785 break;
786 }
787 while (++slot < limit);
e2eaf477
ILT
788}
789
f77ed96c
DD
790/* Like htab_traverse_noresize, but does resize the table when it is
791 too empty to improve effectivity of subsequent calls. */
792
793void
49b1fae4 794htab_traverse (htab_t htab, htab_trav callback, PTR info)
f77ed96c 795{
483d7cf4
DD
796 size_t size = htab_size (htab);
797 if (htab_elements (htab) * 8 < size && size > 32)
f77ed96c
DD
798 htab_expand (htab);
799
800 htab_traverse_noresize (htab, callback, info);
801}
802
eb383413
L
803/* Return the fraction of fixed collisions during all work with given
804 hash table. */
e2eaf477 805
b4fe2683 806double
49b1fae4 807htab_collisions (htab_t htab)
e2eaf477 808{
eb383413 809 if (htab->searches == 0)
b4fe2683 810 return 0.0;
eb383413
L
811
812 return (double) htab->collisions / (double) htab->searches;
e2eaf477 813}
8fc34799 814
68a41de7
DD
815/* Hash P as a null-terminated string.
816
817 Copied from gcc/hashtable.c. Zack had the following to say with respect
818 to applicability, though note that unlike hashtable.c, this hash table
819 implementation re-hashes rather than chain buckets.
820
821 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
822 From: Zack Weinberg <zackw@panix.com>
823 Date: Fri, 17 Aug 2001 02:15:56 -0400
824
825 I got it by extracting all the identifiers from all the source code
826 I had lying around in mid-1999, and testing many recurrences of
827 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
828 prime numbers or the appropriate identity. This was the best one.
829 I don't remember exactly what constituted "best", except I was
830 looking at bucket-length distributions mostly.
831
832 So it should be very good at hashing identifiers, but might not be
833 as good at arbitrary strings.
834
835 I'll add that it thoroughly trounces the hash functions recommended
836 for this use at http://burtleburtle.net/bob/hash/index.html, both
837 on speed and bucket distribution. I haven't tried it against the
838 function they just started using for Perl's hashes. */
8fc34799
DD
839
840hashval_t
49b1fae4 841htab_hash_string (const PTR p)
8fc34799
DD
842{
843 const unsigned char *str = (const unsigned char *) p;
844 hashval_t r = 0;
845 unsigned char c;
846
847 while ((c = *str++) != 0)
848 r = r * 67 + c - 113;
849
850 return r;
851}
7108c5dc
JM
852
853/* DERIVED FROM:
854--------------------------------------------------------------------
855lookup2.c, by Bob Jenkins, December 1996, Public Domain.
856hash(), hash2(), hash3, and mix() are externally useful functions.
857Routines to test the hash are included if SELF_TEST is defined.
858You can use this free for any purpose. It has no warranty.
859--------------------------------------------------------------------
860*/
861
862/*
863--------------------------------------------------------------------
864mix -- mix 3 32-bit values reversibly.
865For every delta with one or two bit set, and the deltas of all three
866 high bits or all three low bits, whether the original value of a,b,c
867 is almost all zero or is uniformly distributed,
868* If mix() is run forward or backward, at least 32 bits in a,b,c
869 have at least 1/4 probability of changing.
870* If mix() is run forward, every bit of c will change between 1/3 and
871 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
872mix() was built out of 36 single-cycle latency instructions in a
873 structure that could supported 2x parallelism, like so:
874 a -= b;
875 a -= c; x = (c>>13);
876 b -= c; a ^= x;
877 b -= a; x = (a<<8);
878 c -= a; b ^= x;
879 c -= b; x = (b>>13);
880 ...
881 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
882 of that parallelism. They've also turned some of those single-cycle
883 latency instructions into multi-cycle latency instructions. Still,
884 this is the fastest good hash I could find. There were about 2^^68
885 to choose from. I only looked at a billion or so.
886--------------------------------------------------------------------
887*/
888/* same, but slower, works on systems that might have 8 byte hashval_t's */
889#define mix(a,b,c) \
890{ \
891 a -= b; a -= c; a ^= (c>>13); \
892 b -= c; b -= a; b ^= (a<< 8); \
893 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
894 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
895 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
896 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
897 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
898 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
899 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
900}
901
902/*
903--------------------------------------------------------------------
904hash() -- hash a variable-length key into a 32-bit value
905 k : the key (the unaligned variable-length array of bytes)
906 len : the length of the key, counting by bytes
907 level : can be any 4-byte value
908Returns a 32-bit value. Every bit of the key affects every bit of
909the return value. Every 1-bit and 2-bit delta achieves avalanche.
910About 36+6len instructions.
911
912The best hash table sizes are powers of 2. There is no need to do
913mod a prime (mod is sooo slow!). If you need less than 32 bits,
914use a bitmask. For example, if you need only 10 bits, do
915 h = (h & hashmask(10));
916In which case, the hash table should have hashsize(10) elements.
917
918If you are hashing n strings (ub1 **)k, do it like this:
919 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
920
921By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
922code any way you wish, private, educational, or commercial. It's free.
923
924See http://burtleburtle.net/bob/hash/evahash.html
925Use for hash table lookup, or anything where one collision in 2^32 is
926acceptable. Do NOT use for cryptographic purposes.
927--------------------------------------------------------------------
928*/
929
49b1fae4
DD
930hashval_t
931iterative_hash (const PTR k_in /* the key */,
932 register size_t length /* the length of the key */,
933 register hashval_t initval /* the previous hash, or
934 an arbitrary value */)
7108c5dc
JM
935{
936 register const unsigned char *k = (const unsigned char *)k_in;
937 register hashval_t a,b,c,len;
938
939 /* Set up the internal state */
940 len = length;
941 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
942 c = initval; /* the previous hash value */
943
944 /*---------------------------------------- handle most of the key */
945#ifndef WORDS_BIGENDIAN
946 /* On a little-endian machine, if the data is 4-byte aligned we can hash
947 by word for better speed. This gives nondeterministic results on
948 big-endian machines. */
949 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
950 while (len >= 12) /* aligned */
951 {
952 a += *(hashval_t *)(k+0);
953 b += *(hashval_t *)(k+4);
954 c += *(hashval_t *)(k+8);
955 mix(a,b,c);
956 k += 12; len -= 12;
957 }
958 else /* unaligned */
959#endif
960 while (len >= 12)
961 {
962 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
963 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
964 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
965 mix(a,b,c);
966 k += 12; len -= 12;
967 }
968
969 /*------------------------------------- handle the last 11 bytes */
970 c += length;
971 switch(len) /* all the case statements fall through */
972 {
973 case 11: c+=((hashval_t)k[10]<<24);
974 case 10: c+=((hashval_t)k[9]<<16);
975 case 9 : c+=((hashval_t)k[8]<<8);
976 /* the first byte of c is reserved for the length */
977 case 8 : b+=((hashval_t)k[7]<<24);
978 case 7 : b+=((hashval_t)k[6]<<16);
979 case 6 : b+=((hashval_t)k[5]<<8);
980 case 5 : b+=k[4];
981 case 4 : a+=((hashval_t)k[3]<<24);
982 case 3 : a+=((hashval_t)k[2]<<16);
983 case 2 : a+=((hashval_t)k[1]<<8);
984 case 1 : a+=k[0];
985 /* case 0: nothing left to add */
986 }
987 mix(a,b,c);
988 /*-------------------------------------------- report the result */
989 return c;
990}
This page took 0.573175 seconds and 4 git commands to generate.