Commit | Line | Data |
---|---|---|
b68965a0 DD |
1 | /* sha1.c - Functions to compute SHA1 message digest of files or |
2 | memory blocks according to the NIST specification FIPS-180-1. | |
3 | ||
4 | Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008 Free Software | |
5 | Foundation, Inc. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify it | |
8 | under the terms of the GNU General Public License as published by the | |
9 | Free Software Foundation; either version 2, or (at your option) any | |
10 | later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software Foundation, | |
19 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | |
20 | ||
21 | /* Written by Scott G. Miller | |
22 | Credits: | |
23 | Robert Klep <robert@ilse.nl> -- Expansion function fix | |
24 | */ | |
25 | ||
26 | #include <config.h> | |
27 | ||
28 | #include "sha1.h" | |
29 | ||
30 | #include <stddef.h> | |
31 | #include <string.h> | |
32 | ||
33 | #if USE_UNLOCKED_IO | |
34 | # include "unlocked-io.h" | |
35 | #endif | |
36 | ||
37 | #ifdef WORDS_BIGENDIAN | |
38 | # define SWAP(n) (n) | |
39 | #else | |
40 | # define SWAP(n) \ | |
41 | (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) | |
42 | #endif | |
43 | ||
44 | #define BLOCKSIZE 4096 | |
45 | #if BLOCKSIZE % 64 != 0 | |
46 | # error "invalid BLOCKSIZE" | |
47 | #endif | |
48 | ||
49 | /* This array contains the bytes used to pad the buffer to the next | |
50 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ | |
51 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | |
52 | ||
53 | ||
54 | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and | |
55 | initialize it to the start constants of the SHA1 algorithm. This | |
56 | must be called before using hash in the call to sha1_hash. */ | |
57 | void | |
58 | sha1_init_ctx (struct sha1_ctx *ctx) | |
59 | { | |
60 | ctx->A = 0x67452301; | |
61 | ctx->B = 0xefcdab89; | |
62 | ctx->C = 0x98badcfe; | |
63 | ctx->D = 0x10325476; | |
64 | ctx->E = 0xc3d2e1f0; | |
65 | ||
66 | ctx->total[0] = ctx->total[1] = 0; | |
67 | ctx->buflen = 0; | |
68 | } | |
69 | ||
70 | /* Put result from CTX in first 20 bytes following RESBUF. The result | |
71 | must be in little endian byte order. | |
72 | ||
73 | IMPORTANT: On some systems it is required that RESBUF is correctly | |
74 | aligned for a 32-bit value. */ | |
75 | void * | |
76 | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) | |
77 | { | |
78 | ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A); | |
79 | ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B); | |
80 | ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C); | |
81 | ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D); | |
82 | ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E); | |
83 | ||
84 | return resbuf; | |
85 | } | |
86 | ||
87 | /* Process the remaining bytes in the internal buffer and the usual | |
88 | prolog according to the standard and write the result to RESBUF. | |
89 | ||
90 | IMPORTANT: On some systems it is required that RESBUF is correctly | |
91 | aligned for a 32-bit value. */ | |
92 | void * | |
93 | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) | |
94 | { | |
95 | /* Take yet unprocessed bytes into account. */ | |
96 | sha1_uint32 bytes = ctx->buflen; | |
97 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; | |
98 | ||
99 | /* Now count remaining bytes. */ | |
100 | ctx->total[0] += bytes; | |
101 | if (ctx->total[0] < bytes) | |
102 | ++ctx->total[1]; | |
103 | ||
104 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ | |
105 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); | |
106 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); | |
107 | ||
108 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); | |
109 | ||
110 | /* Process last bytes. */ | |
111 | sha1_process_block (ctx->buffer, size * 4, ctx); | |
112 | ||
113 | return sha1_read_ctx (ctx, resbuf); | |
114 | } | |
115 | ||
116 | /* Compute SHA1 message digest for bytes read from STREAM. The | |
117 | resulting message digest number will be written into the 16 bytes | |
118 | beginning at RESBLOCK. */ | |
119 | int | |
120 | sha1_stream (FILE *stream, void *resblock) | |
121 | { | |
122 | struct sha1_ctx ctx; | |
123 | char buffer[BLOCKSIZE + 72]; | |
124 | size_t sum; | |
125 | ||
126 | /* Initialize the computation context. */ | |
127 | sha1_init_ctx (&ctx); | |
128 | ||
129 | /* Iterate over full file contents. */ | |
130 | while (1) | |
131 | { | |
132 | /* We read the file in blocks of BLOCKSIZE bytes. One call of the | |
133 | computation function processes the whole buffer so that with the | |
134 | next round of the loop another block can be read. */ | |
135 | size_t n; | |
136 | sum = 0; | |
137 | ||
138 | /* Read block. Take care for partial reads. */ | |
139 | while (1) | |
140 | { | |
141 | n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); | |
142 | ||
143 | sum += n; | |
144 | ||
145 | if (sum == BLOCKSIZE) | |
146 | break; | |
147 | ||
148 | if (n == 0) | |
149 | { | |
150 | /* Check for the error flag IFF N == 0, so that we don't | |
151 | exit the loop after a partial read due to e.g., EAGAIN | |
152 | or EWOULDBLOCK. */ | |
153 | if (ferror (stream)) | |
154 | return 1; | |
155 | goto process_partial_block; | |
156 | } | |
157 | ||
158 | /* We've read at least one byte, so ignore errors. But always | |
159 | check for EOF, since feof may be true even though N > 0. | |
160 | Otherwise, we could end up calling fread after EOF. */ | |
161 | if (feof (stream)) | |
162 | goto process_partial_block; | |
163 | } | |
164 | ||
165 | /* Process buffer with BLOCKSIZE bytes. Note that | |
166 | BLOCKSIZE % 64 == 0 | |
167 | */ | |
168 | sha1_process_block (buffer, BLOCKSIZE, &ctx); | |
169 | } | |
170 | ||
171 | process_partial_block:; | |
172 | ||
173 | /* Process any remaining bytes. */ | |
174 | if (sum > 0) | |
175 | sha1_process_bytes (buffer, sum, &ctx); | |
176 | ||
177 | /* Construct result in desired memory. */ | |
178 | sha1_finish_ctx (&ctx, resblock); | |
179 | return 0; | |
180 | } | |
181 | ||
182 | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The | |
183 | result is always in little endian byte order, so that a byte-wise | |
184 | output yields to the wanted ASCII representation of the message | |
185 | digest. */ | |
186 | void * | |
187 | sha1_buffer (const char *buffer, size_t len, void *resblock) | |
188 | { | |
189 | struct sha1_ctx ctx; | |
190 | ||
191 | /* Initialize the computation context. */ | |
192 | sha1_init_ctx (&ctx); | |
193 | ||
194 | /* Process whole buffer but last len % 64 bytes. */ | |
195 | sha1_process_bytes (buffer, len, &ctx); | |
196 | ||
197 | /* Put result in desired memory area. */ | |
198 | return sha1_finish_ctx (&ctx, resblock); | |
199 | } | |
200 | ||
201 | void | |
202 | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) | |
203 | { | |
204 | /* When we already have some bits in our internal buffer concatenate | |
205 | both inputs first. */ | |
206 | if (ctx->buflen != 0) | |
207 | { | |
208 | size_t left_over = ctx->buflen; | |
209 | size_t add = 128 - left_over > len ? len : 128 - left_over; | |
210 | ||
211 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); | |
212 | ctx->buflen += add; | |
213 | ||
214 | if (ctx->buflen > 64) | |
215 | { | |
216 | sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx); | |
217 | ||
218 | ctx->buflen &= 63; | |
219 | /* The regions in the following copy operation cannot overlap. */ | |
220 | memcpy (ctx->buffer, | |
221 | &((char *) ctx->buffer)[(left_over + add) & ~63], | |
222 | ctx->buflen); | |
223 | } | |
224 | ||
225 | buffer = (const char *) buffer + add; | |
226 | len -= add; | |
227 | } | |
228 | ||
229 | /* Process available complete blocks. */ | |
230 | if (len >= 64) | |
231 | { | |
232 | #if !_STRING_ARCH_unaligned | |
233 | # define alignof(type) offsetof (struct { char c; type x; }, x) | |
234 | # define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0) | |
235 | if (UNALIGNED_P (buffer)) | |
236 | while (len > 64) | |
237 | { | |
238 | sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | |
239 | buffer = (const char *) buffer + 64; | |
240 | len -= 64; | |
241 | } | |
242 | else | |
243 | #endif | |
244 | { | |
245 | sha1_process_block (buffer, len & ~63, ctx); | |
246 | buffer = (const char *) buffer + (len & ~63); | |
247 | len &= 63; | |
248 | } | |
249 | } | |
250 | ||
251 | /* Move remaining bytes in internal buffer. */ | |
252 | if (len > 0) | |
253 | { | |
254 | size_t left_over = ctx->buflen; | |
255 | ||
256 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); | |
257 | left_over += len; | |
258 | if (left_over >= 64) | |
259 | { | |
260 | sha1_process_block (ctx->buffer, 64, ctx); | |
261 | left_over -= 64; | |
262 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); | |
263 | } | |
264 | ctx->buflen = left_over; | |
265 | } | |
266 | } | |
267 | ||
268 | /* --- Code below is the primary difference between md5.c and sha1.c --- */ | |
269 | ||
270 | /* SHA1 round constants */ | |
271 | #define K1 0x5a827999 | |
272 | #define K2 0x6ed9eba1 | |
273 | #define K3 0x8f1bbcdc | |
274 | #define K4 0xca62c1d6 | |
275 | ||
276 | /* Round functions. Note that F2 is the same as F4. */ | |
277 | #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) | |
278 | #define F2(B,C,D) (B ^ C ^ D) | |
279 | #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) | |
280 | #define F4(B,C,D) (B ^ C ^ D) | |
281 | ||
282 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | |
283 | It is assumed that LEN % 64 == 0. | |
284 | Most of this code comes from GnuPG's cipher/sha1.c. */ | |
285 | ||
286 | void | |
287 | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) | |
288 | { | |
289 | const sha1_uint32 *words = (const sha1_uint32*) buffer; | |
290 | size_t nwords = len / sizeof (sha1_uint32); | |
291 | const sha1_uint32 *endp = words + nwords; | |
292 | sha1_uint32 x[16]; | |
293 | sha1_uint32 a = ctx->A; | |
294 | sha1_uint32 b = ctx->B; | |
295 | sha1_uint32 c = ctx->C; | |
296 | sha1_uint32 d = ctx->D; | |
297 | sha1_uint32 e = ctx->E; | |
298 | ||
299 | /* First increment the byte count. RFC 1321 specifies the possible | |
300 | length of the file up to 2^64 bits. Here we only compute the | |
301 | number of bytes. Do a double word increment. */ | |
302 | ctx->total[0] += len; | |
0f5f799a | 303 | ctx->total[1] += ((len >> 31) >> 1) + (ctx->total[0] < len); |
b68965a0 DD |
304 | |
305 | #define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n)))) | |
306 | ||
307 | #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ | |
308 | ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ | |
309 | , (x[I&0x0f] = rol(tm, 1)) ) | |
310 | ||
311 | #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ | |
312 | + F( B, C, D ) \ | |
313 | + K \ | |
314 | + M; \ | |
315 | B = rol( B, 30 ); \ | |
316 | } while(0) | |
317 | ||
318 | while (words < endp) | |
319 | { | |
320 | sha1_uint32 tm; | |
321 | int t; | |
322 | for (t = 0; t < 16; t++) | |
323 | { | |
324 | x[t] = SWAP (*words); | |
325 | words++; | |
326 | } | |
327 | ||
328 | R( a, b, c, d, e, F1, K1, x[ 0] ); | |
329 | R( e, a, b, c, d, F1, K1, x[ 1] ); | |
330 | R( d, e, a, b, c, F1, K1, x[ 2] ); | |
331 | R( c, d, e, a, b, F1, K1, x[ 3] ); | |
332 | R( b, c, d, e, a, F1, K1, x[ 4] ); | |
333 | R( a, b, c, d, e, F1, K1, x[ 5] ); | |
334 | R( e, a, b, c, d, F1, K1, x[ 6] ); | |
335 | R( d, e, a, b, c, F1, K1, x[ 7] ); | |
336 | R( c, d, e, a, b, F1, K1, x[ 8] ); | |
337 | R( b, c, d, e, a, F1, K1, x[ 9] ); | |
338 | R( a, b, c, d, e, F1, K1, x[10] ); | |
339 | R( e, a, b, c, d, F1, K1, x[11] ); | |
340 | R( d, e, a, b, c, F1, K1, x[12] ); | |
341 | R( c, d, e, a, b, F1, K1, x[13] ); | |
342 | R( b, c, d, e, a, F1, K1, x[14] ); | |
343 | R( a, b, c, d, e, F1, K1, x[15] ); | |
344 | R( e, a, b, c, d, F1, K1, M(16) ); | |
345 | R( d, e, a, b, c, F1, K1, M(17) ); | |
346 | R( c, d, e, a, b, F1, K1, M(18) ); | |
347 | R( b, c, d, e, a, F1, K1, M(19) ); | |
348 | R( a, b, c, d, e, F2, K2, M(20) ); | |
349 | R( e, a, b, c, d, F2, K2, M(21) ); | |
350 | R( d, e, a, b, c, F2, K2, M(22) ); | |
351 | R( c, d, e, a, b, F2, K2, M(23) ); | |
352 | R( b, c, d, e, a, F2, K2, M(24) ); | |
353 | R( a, b, c, d, e, F2, K2, M(25) ); | |
354 | R( e, a, b, c, d, F2, K2, M(26) ); | |
355 | R( d, e, a, b, c, F2, K2, M(27) ); | |
356 | R( c, d, e, a, b, F2, K2, M(28) ); | |
357 | R( b, c, d, e, a, F2, K2, M(29) ); | |
358 | R( a, b, c, d, e, F2, K2, M(30) ); | |
359 | R( e, a, b, c, d, F2, K2, M(31) ); | |
360 | R( d, e, a, b, c, F2, K2, M(32) ); | |
361 | R( c, d, e, a, b, F2, K2, M(33) ); | |
362 | R( b, c, d, e, a, F2, K2, M(34) ); | |
363 | R( a, b, c, d, e, F2, K2, M(35) ); | |
364 | R( e, a, b, c, d, F2, K2, M(36) ); | |
365 | R( d, e, a, b, c, F2, K2, M(37) ); | |
366 | R( c, d, e, a, b, F2, K2, M(38) ); | |
367 | R( b, c, d, e, a, F2, K2, M(39) ); | |
368 | R( a, b, c, d, e, F3, K3, M(40) ); | |
369 | R( e, a, b, c, d, F3, K3, M(41) ); | |
370 | R( d, e, a, b, c, F3, K3, M(42) ); | |
371 | R( c, d, e, a, b, F3, K3, M(43) ); | |
372 | R( b, c, d, e, a, F3, K3, M(44) ); | |
373 | R( a, b, c, d, e, F3, K3, M(45) ); | |
374 | R( e, a, b, c, d, F3, K3, M(46) ); | |
375 | R( d, e, a, b, c, F3, K3, M(47) ); | |
376 | R( c, d, e, a, b, F3, K3, M(48) ); | |
377 | R( b, c, d, e, a, F3, K3, M(49) ); | |
378 | R( a, b, c, d, e, F3, K3, M(50) ); | |
379 | R( e, a, b, c, d, F3, K3, M(51) ); | |
380 | R( d, e, a, b, c, F3, K3, M(52) ); | |
381 | R( c, d, e, a, b, F3, K3, M(53) ); | |
382 | R( b, c, d, e, a, F3, K3, M(54) ); | |
383 | R( a, b, c, d, e, F3, K3, M(55) ); | |
384 | R( e, a, b, c, d, F3, K3, M(56) ); | |
385 | R( d, e, a, b, c, F3, K3, M(57) ); | |
386 | R( c, d, e, a, b, F3, K3, M(58) ); | |
387 | R( b, c, d, e, a, F3, K3, M(59) ); | |
388 | R( a, b, c, d, e, F4, K4, M(60) ); | |
389 | R( e, a, b, c, d, F4, K4, M(61) ); | |
390 | R( d, e, a, b, c, F4, K4, M(62) ); | |
391 | R( c, d, e, a, b, F4, K4, M(63) ); | |
392 | R( b, c, d, e, a, F4, K4, M(64) ); | |
393 | R( a, b, c, d, e, F4, K4, M(65) ); | |
394 | R( e, a, b, c, d, F4, K4, M(66) ); | |
395 | R( d, e, a, b, c, F4, K4, M(67) ); | |
396 | R( c, d, e, a, b, F4, K4, M(68) ); | |
397 | R( b, c, d, e, a, F4, K4, M(69) ); | |
398 | R( a, b, c, d, e, F4, K4, M(70) ); | |
399 | R( e, a, b, c, d, F4, K4, M(71) ); | |
400 | R( d, e, a, b, c, F4, K4, M(72) ); | |
401 | R( c, d, e, a, b, F4, K4, M(73) ); | |
402 | R( b, c, d, e, a, F4, K4, M(74) ); | |
403 | R( a, b, c, d, e, F4, K4, M(75) ); | |
404 | R( e, a, b, c, d, F4, K4, M(76) ); | |
405 | R( d, e, a, b, c, F4, K4, M(77) ); | |
406 | R( c, d, e, a, b, F4, K4, M(78) ); | |
407 | R( b, c, d, e, a, F4, K4, M(79) ); | |
408 | ||
409 | a = ctx->A += a; | |
410 | b = ctx->B += b; | |
411 | c = ctx->C += c; | |
412 | d = ctx->D += d; | |
413 | e = ctx->E += e; | |
414 | } | |
415 | } |