Commit | Line | Data |
---|---|---|
b68965a0 DD |
1 | /* sha1.c - Functions to compute SHA1 message digest of files or |
2 | memory blocks according to the NIST specification FIPS-180-1. | |
3 | ||
e495212d | 4 | Copyright (C) 2000-2017 Free Software Foundation, Inc. |
b68965a0 DD |
5 | |
6 | This program is free software; you can redistribute it and/or modify it | |
7 | under the terms of the GNU General Public License as published by the | |
8 | Free Software Foundation; either version 2, or (at your option) any | |
9 | later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software Foundation, | |
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | |
19 | ||
20 | /* Written by Scott G. Miller | |
21 | Credits: | |
22 | Robert Klep <robert@ilse.nl> -- Expansion function fix | |
23 | */ | |
24 | ||
25 | #include <config.h> | |
26 | ||
27 | #include "sha1.h" | |
28 | ||
29 | #include <stddef.h> | |
30 | #include <string.h> | |
31 | ||
32 | #if USE_UNLOCKED_IO | |
33 | # include "unlocked-io.h" | |
34 | #endif | |
35 | ||
36 | #ifdef WORDS_BIGENDIAN | |
37 | # define SWAP(n) (n) | |
38 | #else | |
39 | # define SWAP(n) \ | |
40 | (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) | |
41 | #endif | |
42 | ||
43 | #define BLOCKSIZE 4096 | |
44 | #if BLOCKSIZE % 64 != 0 | |
45 | # error "invalid BLOCKSIZE" | |
46 | #endif | |
47 | ||
48 | /* This array contains the bytes used to pad the buffer to the next | |
49 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ | |
50 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | |
51 | ||
52 | ||
53 | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and | |
54 | initialize it to the start constants of the SHA1 algorithm. This | |
55 | must be called before using hash in the call to sha1_hash. */ | |
56 | void | |
57 | sha1_init_ctx (struct sha1_ctx *ctx) | |
58 | { | |
59 | ctx->A = 0x67452301; | |
60 | ctx->B = 0xefcdab89; | |
61 | ctx->C = 0x98badcfe; | |
62 | ctx->D = 0x10325476; | |
63 | ctx->E = 0xc3d2e1f0; | |
64 | ||
65 | ctx->total[0] = ctx->total[1] = 0; | |
66 | ctx->buflen = 0; | |
67 | } | |
68 | ||
69 | /* Put result from CTX in first 20 bytes following RESBUF. The result | |
70 | must be in little endian byte order. | |
71 | ||
72 | IMPORTANT: On some systems it is required that RESBUF is correctly | |
73 | aligned for a 32-bit value. */ | |
74 | void * | |
75 | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) | |
76 | { | |
77 | ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A); | |
78 | ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B); | |
79 | ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C); | |
80 | ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D); | |
81 | ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E); | |
82 | ||
83 | return resbuf; | |
84 | } | |
85 | ||
86 | /* Process the remaining bytes in the internal buffer and the usual | |
87 | prolog according to the standard and write the result to RESBUF. | |
88 | ||
89 | IMPORTANT: On some systems it is required that RESBUF is correctly | |
90 | aligned for a 32-bit value. */ | |
91 | void * | |
92 | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) | |
93 | { | |
94 | /* Take yet unprocessed bytes into account. */ | |
95 | sha1_uint32 bytes = ctx->buflen; | |
96 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; | |
97 | ||
98 | /* Now count remaining bytes. */ | |
99 | ctx->total[0] += bytes; | |
100 | if (ctx->total[0] < bytes) | |
101 | ++ctx->total[1]; | |
102 | ||
103 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ | |
104 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); | |
105 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); | |
106 | ||
107 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); | |
108 | ||
109 | /* Process last bytes. */ | |
110 | sha1_process_block (ctx->buffer, size * 4, ctx); | |
111 | ||
112 | return sha1_read_ctx (ctx, resbuf); | |
113 | } | |
114 | ||
115 | /* Compute SHA1 message digest for bytes read from STREAM. The | |
116 | resulting message digest number will be written into the 16 bytes | |
117 | beginning at RESBLOCK. */ | |
118 | int | |
119 | sha1_stream (FILE *stream, void *resblock) | |
120 | { | |
121 | struct sha1_ctx ctx; | |
122 | char buffer[BLOCKSIZE + 72]; | |
123 | size_t sum; | |
124 | ||
125 | /* Initialize the computation context. */ | |
126 | sha1_init_ctx (&ctx); | |
127 | ||
128 | /* Iterate over full file contents. */ | |
129 | while (1) | |
130 | { | |
131 | /* We read the file in blocks of BLOCKSIZE bytes. One call of the | |
132 | computation function processes the whole buffer so that with the | |
133 | next round of the loop another block can be read. */ | |
134 | size_t n; | |
135 | sum = 0; | |
136 | ||
137 | /* Read block. Take care for partial reads. */ | |
138 | while (1) | |
139 | { | |
140 | n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); | |
141 | ||
142 | sum += n; | |
143 | ||
144 | if (sum == BLOCKSIZE) | |
145 | break; | |
146 | ||
147 | if (n == 0) | |
148 | { | |
149 | /* Check for the error flag IFF N == 0, so that we don't | |
150 | exit the loop after a partial read due to e.g., EAGAIN | |
151 | or EWOULDBLOCK. */ | |
152 | if (ferror (stream)) | |
153 | return 1; | |
154 | goto process_partial_block; | |
155 | } | |
156 | ||
157 | /* We've read at least one byte, so ignore errors. But always | |
158 | check for EOF, since feof may be true even though N > 0. | |
159 | Otherwise, we could end up calling fread after EOF. */ | |
160 | if (feof (stream)) | |
161 | goto process_partial_block; | |
162 | } | |
163 | ||
164 | /* Process buffer with BLOCKSIZE bytes. Note that | |
165 | BLOCKSIZE % 64 == 0 | |
166 | */ | |
167 | sha1_process_block (buffer, BLOCKSIZE, &ctx); | |
168 | } | |
169 | ||
170 | process_partial_block:; | |
171 | ||
172 | /* Process any remaining bytes. */ | |
173 | if (sum > 0) | |
174 | sha1_process_bytes (buffer, sum, &ctx); | |
175 | ||
176 | /* Construct result in desired memory. */ | |
177 | sha1_finish_ctx (&ctx, resblock); | |
178 | return 0; | |
179 | } | |
180 | ||
181 | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The | |
182 | result is always in little endian byte order, so that a byte-wise | |
183 | output yields to the wanted ASCII representation of the message | |
184 | digest. */ | |
185 | void * | |
186 | sha1_buffer (const char *buffer, size_t len, void *resblock) | |
187 | { | |
188 | struct sha1_ctx ctx; | |
189 | ||
190 | /* Initialize the computation context. */ | |
191 | sha1_init_ctx (&ctx); | |
192 | ||
193 | /* Process whole buffer but last len % 64 bytes. */ | |
194 | sha1_process_bytes (buffer, len, &ctx); | |
195 | ||
196 | /* Put result in desired memory area. */ | |
197 | return sha1_finish_ctx (&ctx, resblock); | |
198 | } | |
199 | ||
200 | void | |
201 | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) | |
202 | { | |
203 | /* When we already have some bits in our internal buffer concatenate | |
204 | both inputs first. */ | |
205 | if (ctx->buflen != 0) | |
206 | { | |
207 | size_t left_over = ctx->buflen; | |
208 | size_t add = 128 - left_over > len ? len : 128 - left_over; | |
209 | ||
210 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); | |
211 | ctx->buflen += add; | |
212 | ||
213 | if (ctx->buflen > 64) | |
214 | { | |
215 | sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx); | |
216 | ||
217 | ctx->buflen &= 63; | |
218 | /* The regions in the following copy operation cannot overlap. */ | |
219 | memcpy (ctx->buffer, | |
220 | &((char *) ctx->buffer)[(left_over + add) & ~63], | |
221 | ctx->buflen); | |
222 | } | |
223 | ||
224 | buffer = (const char *) buffer + add; | |
225 | len -= add; | |
226 | } | |
227 | ||
228 | /* Process available complete blocks. */ | |
229 | if (len >= 64) | |
230 | { | |
231 | #if !_STRING_ARCH_unaligned | |
232 | # define alignof(type) offsetof (struct { char c; type x; }, x) | |
233 | # define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0) | |
234 | if (UNALIGNED_P (buffer)) | |
235 | while (len > 64) | |
236 | { | |
237 | sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | |
238 | buffer = (const char *) buffer + 64; | |
239 | len -= 64; | |
240 | } | |
241 | else | |
242 | #endif | |
243 | { | |
244 | sha1_process_block (buffer, len & ~63, ctx); | |
245 | buffer = (const char *) buffer + (len & ~63); | |
246 | len &= 63; | |
247 | } | |
248 | } | |
249 | ||
250 | /* Move remaining bytes in internal buffer. */ | |
251 | if (len > 0) | |
252 | { | |
253 | size_t left_over = ctx->buflen; | |
254 | ||
255 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); | |
256 | left_over += len; | |
257 | if (left_over >= 64) | |
258 | { | |
259 | sha1_process_block (ctx->buffer, 64, ctx); | |
260 | left_over -= 64; | |
261 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); | |
262 | } | |
263 | ctx->buflen = left_over; | |
264 | } | |
265 | } | |
266 | ||
267 | /* --- Code below is the primary difference between md5.c and sha1.c --- */ | |
268 | ||
269 | /* SHA1 round constants */ | |
270 | #define K1 0x5a827999 | |
271 | #define K2 0x6ed9eba1 | |
272 | #define K3 0x8f1bbcdc | |
273 | #define K4 0xca62c1d6 | |
274 | ||
275 | /* Round functions. Note that F2 is the same as F4. */ | |
276 | #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) | |
277 | #define F2(B,C,D) (B ^ C ^ D) | |
278 | #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) | |
279 | #define F4(B,C,D) (B ^ C ^ D) | |
280 | ||
281 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | |
282 | It is assumed that LEN % 64 == 0. | |
283 | Most of this code comes from GnuPG's cipher/sha1.c. */ | |
284 | ||
285 | void | |
286 | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) | |
287 | { | |
288 | const sha1_uint32 *words = (const sha1_uint32*) buffer; | |
289 | size_t nwords = len / sizeof (sha1_uint32); | |
290 | const sha1_uint32 *endp = words + nwords; | |
291 | sha1_uint32 x[16]; | |
292 | sha1_uint32 a = ctx->A; | |
293 | sha1_uint32 b = ctx->B; | |
294 | sha1_uint32 c = ctx->C; | |
295 | sha1_uint32 d = ctx->D; | |
296 | sha1_uint32 e = ctx->E; | |
297 | ||
298 | /* First increment the byte count. RFC 1321 specifies the possible | |
299 | length of the file up to 2^64 bits. Here we only compute the | |
300 | number of bytes. Do a double word increment. */ | |
301 | ctx->total[0] += len; | |
0f5f799a | 302 | ctx->total[1] += ((len >> 31) >> 1) + (ctx->total[0] < len); |
b68965a0 DD |
303 | |
304 | #define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n)))) | |
305 | ||
306 | #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ | |
307 | ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ | |
308 | , (x[I&0x0f] = rol(tm, 1)) ) | |
309 | ||
310 | #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ | |
311 | + F( B, C, D ) \ | |
312 | + K \ | |
313 | + M; \ | |
314 | B = rol( B, 30 ); \ | |
315 | } while(0) | |
316 | ||
317 | while (words < endp) | |
318 | { | |
319 | sha1_uint32 tm; | |
320 | int t; | |
321 | for (t = 0; t < 16; t++) | |
322 | { | |
323 | x[t] = SWAP (*words); | |
324 | words++; | |
325 | } | |
326 | ||
327 | R( a, b, c, d, e, F1, K1, x[ 0] ); | |
328 | R( e, a, b, c, d, F1, K1, x[ 1] ); | |
329 | R( d, e, a, b, c, F1, K1, x[ 2] ); | |
330 | R( c, d, e, a, b, F1, K1, x[ 3] ); | |
331 | R( b, c, d, e, a, F1, K1, x[ 4] ); | |
332 | R( a, b, c, d, e, F1, K1, x[ 5] ); | |
333 | R( e, a, b, c, d, F1, K1, x[ 6] ); | |
334 | R( d, e, a, b, c, F1, K1, x[ 7] ); | |
335 | R( c, d, e, a, b, F1, K1, x[ 8] ); | |
336 | R( b, c, d, e, a, F1, K1, x[ 9] ); | |
337 | R( a, b, c, d, e, F1, K1, x[10] ); | |
338 | R( e, a, b, c, d, F1, K1, x[11] ); | |
339 | R( d, e, a, b, c, F1, K1, x[12] ); | |
340 | R( c, d, e, a, b, F1, K1, x[13] ); | |
341 | R( b, c, d, e, a, F1, K1, x[14] ); | |
342 | R( a, b, c, d, e, F1, K1, x[15] ); | |
343 | R( e, a, b, c, d, F1, K1, M(16) ); | |
344 | R( d, e, a, b, c, F1, K1, M(17) ); | |
345 | R( c, d, e, a, b, F1, K1, M(18) ); | |
346 | R( b, c, d, e, a, F1, K1, M(19) ); | |
347 | R( a, b, c, d, e, F2, K2, M(20) ); | |
348 | R( e, a, b, c, d, F2, K2, M(21) ); | |
349 | R( d, e, a, b, c, F2, K2, M(22) ); | |
350 | R( c, d, e, a, b, F2, K2, M(23) ); | |
351 | R( b, c, d, e, a, F2, K2, M(24) ); | |
352 | R( a, b, c, d, e, F2, K2, M(25) ); | |
353 | R( e, a, b, c, d, F2, K2, M(26) ); | |
354 | R( d, e, a, b, c, F2, K2, M(27) ); | |
355 | R( c, d, e, a, b, F2, K2, M(28) ); | |
356 | R( b, c, d, e, a, F2, K2, M(29) ); | |
357 | R( a, b, c, d, e, F2, K2, M(30) ); | |
358 | R( e, a, b, c, d, F2, K2, M(31) ); | |
359 | R( d, e, a, b, c, F2, K2, M(32) ); | |
360 | R( c, d, e, a, b, F2, K2, M(33) ); | |
361 | R( b, c, d, e, a, F2, K2, M(34) ); | |
362 | R( a, b, c, d, e, F2, K2, M(35) ); | |
363 | R( e, a, b, c, d, F2, K2, M(36) ); | |
364 | R( d, e, a, b, c, F2, K2, M(37) ); | |
365 | R( c, d, e, a, b, F2, K2, M(38) ); | |
366 | R( b, c, d, e, a, F2, K2, M(39) ); | |
367 | R( a, b, c, d, e, F3, K3, M(40) ); | |
368 | R( e, a, b, c, d, F3, K3, M(41) ); | |
369 | R( d, e, a, b, c, F3, K3, M(42) ); | |
370 | R( c, d, e, a, b, F3, K3, M(43) ); | |
371 | R( b, c, d, e, a, F3, K3, M(44) ); | |
372 | R( a, b, c, d, e, F3, K3, M(45) ); | |
373 | R( e, a, b, c, d, F3, K3, M(46) ); | |
374 | R( d, e, a, b, c, F3, K3, M(47) ); | |
375 | R( c, d, e, a, b, F3, K3, M(48) ); | |
376 | R( b, c, d, e, a, F3, K3, M(49) ); | |
377 | R( a, b, c, d, e, F3, K3, M(50) ); | |
378 | R( e, a, b, c, d, F3, K3, M(51) ); | |
379 | R( d, e, a, b, c, F3, K3, M(52) ); | |
380 | R( c, d, e, a, b, F3, K3, M(53) ); | |
381 | R( b, c, d, e, a, F3, K3, M(54) ); | |
382 | R( a, b, c, d, e, F3, K3, M(55) ); | |
383 | R( e, a, b, c, d, F3, K3, M(56) ); | |
384 | R( d, e, a, b, c, F3, K3, M(57) ); | |
385 | R( c, d, e, a, b, F3, K3, M(58) ); | |
386 | R( b, c, d, e, a, F3, K3, M(59) ); | |
387 | R( a, b, c, d, e, F4, K4, M(60) ); | |
388 | R( e, a, b, c, d, F4, K4, M(61) ); | |
389 | R( d, e, a, b, c, F4, K4, M(62) ); | |
390 | R( c, d, e, a, b, F4, K4, M(63) ); | |
391 | R( b, c, d, e, a, F4, K4, M(64) ); | |
392 | R( a, b, c, d, e, F4, K4, M(65) ); | |
393 | R( e, a, b, c, d, F4, K4, M(66) ); | |
394 | R( d, e, a, b, c, F4, K4, M(67) ); | |
395 | R( c, d, e, a, b, F4, K4, M(68) ); | |
396 | R( b, c, d, e, a, F4, K4, M(69) ); | |
397 | R( a, b, c, d, e, F4, K4, M(70) ); | |
398 | R( e, a, b, c, d, F4, K4, M(71) ); | |
399 | R( d, e, a, b, c, F4, K4, M(72) ); | |
400 | R( c, d, e, a, b, F4, K4, M(73) ); | |
401 | R( b, c, d, e, a, F4, K4, M(74) ); | |
402 | R( a, b, c, d, e, F4, K4, M(75) ); | |
403 | R( e, a, b, c, d, F4, K4, M(76) ); | |
404 | R( d, e, a, b, c, F4, K4, M(77) ); | |
405 | R( c, d, e, a, b, F4, K4, M(78) ); | |
406 | R( b, c, d, e, a, F4, K4, M(79) ); | |
407 | ||
408 | a = ctx->A += a; | |
409 | b = ctx->B += b; | |
410 | c = ctx->C += c; | |
411 | d = ctx->D += d; | |
412 | e = ctx->E += e; | |
413 | } | |
414 | } |