Drop -Wuninitialized until GDB compiles with it.
[deliverable/binutils-gdb.git] / libiberty / sort.c
CommitLineData
5c82d20a
ZW
1/* Sorting algorithms.
2 Copyright (C) 2000 Free Software Foundation, Inc.
3 Contributed by Mark Mitchell <mark@codesourcery.com>.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful, but
13WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22#ifdef HAVE_CONFIG_H
23#include "config.h"
24#endif
25#include "libiberty.h"
26#include "sort.h"
62df2065 27#ifdef HAVE_LIMITS_H
5c82d20a 28#include <limits.h>
62df2065
JL
29#endif
30#ifdef HAVE_SYS_PARAM_H
31#include <sys/param.h>
32#endif
5c82d20a
ZW
33#ifdef HAVE_STDLIB_H
34#include <stdlib.h>
35#endif
36#ifdef HAVE_STRING_H
37#include <string.h>
38#endif
39
40#ifndef UCHAR_MAX
41#define UCHAR_MAX ((unsigned char)(-1))
42#endif
43
44/* POINTERS and WORK are both arrays of N pointers. When this
45 function returns POINTERS will be sorted in ascending order. */
46
47void sort_pointers (n, pointers, work)
48 size_t n;
49 void **pointers;
50 void **work;
51{
52 /* The type of a single digit. This can be any unsigned integral
53 type. When changing this, DIGIT_MAX should be changed as
54 well. */
55 typedef unsigned char digit_t;
56
57 /* The maximum value a single digit can have. */
58#define DIGIT_MAX (UCHAR_MAX + 1)
59
60 /* The Ith entry is the number of elements in *POINTERSP that have I
61 in the digit on which we are currently sorting. */
62 unsigned int count[DIGIT_MAX];
63 /* Nonzero if we are running on a big-endian machine. */
64 int big_endian_p;
65 size_t i;
66 size_t j;
67
68 /* The algorithm used here is radix sort which takes time linear in
69 the number of elements in the array. */
70
71 /* The algorithm here depends on being able to swap the two arrays
72 an even number of times. */
73 if ((sizeof (void *) / sizeof (digit_t)) % 2 != 0)
74 abort ();
75
76 /* Figure out the endianness of the machine. */
77 for (i = 0, j = 0; i < sizeof (size_t); ++i)
78 {
79 j *= (UCHAR_MAX + 1);
80 j += i;
81 }
82 big_endian_p = (((char *)&j)[0] == 0);
83
84 /* Move through the pointer values from least significant to most
85 significant digits. */
86 for (i = 0; i < sizeof (void *) / sizeof (digit_t); ++i)
87 {
88 digit_t *digit;
89 digit_t *bias;
90 digit_t *top;
91 unsigned int *countp;
92 void **pointerp;
93
94 /* The offset from the start of the pointer will depend on the
95 endianness of the machine. */
96 if (big_endian_p)
97 j = sizeof (void *) / sizeof (digit_t) - i;
98 else
99 j = i;
100
101 /* Now, perform a stable sort on this digit. We use counting
102 sort. */
103 memset (count, 0, DIGIT_MAX * sizeof (unsigned int));
104
105 /* Compute the address of the appropriate digit in the first and
106 one-past-the-end elements of the array. On a little-endian
107 machine, the least-significant digit is closest to the front. */
108 bias = ((digit_t *) pointers) + j;
109 top = ((digit_t *) (pointers + n)) + j;
110
111 /* Count how many there are of each value. At the end of this
112 loop, COUNT[K] will contain the number of pointers whose Ith
113 digit is K. */
114 for (digit = bias;
115 digit < top;
116 digit += sizeof (void *) / sizeof (digit_t))
117 ++count[*digit];
118
119 /* Now, make COUNT[K] contain the number of pointers whose Ith
120 digit is less than or equal to K. */
121 for (countp = count + 1; countp < count + DIGIT_MAX; ++countp)
122 *countp += countp[-1];
123
124 /* Now, drop the pointers into their correct locations. */
125 for (pointerp = pointers + n - 1; pointerp >= pointers; --pointerp)
126 work[--count[((digit_t *) pointerp)[j]]] = *pointerp;
127
128 /* Swap WORK and POINTERS so that POINTERS contains the sorted
129 array. */
130 pointerp = pointers;
131 pointers = work;
132 work = pointerp;
133 }
134}
135
136/* Everything below here is a unit test for the routines in this
137 file. */
138
139#ifdef UNIT_TEST
140
141#include <stdio.h>
142
143void *xmalloc (n)
144 size_t n;
145{
146 return malloc (n);
147}
148
149int main (int argc, char **argv)
150{
151 int k;
152 int result;
153 size_t i;
154 void **pointers;
155 void **work;
156
157 if (argc > 1)
158 k = atoi (argv[1]);
159 else
160 k = 10;
161
162 pointers = xmalloc (k * sizeof (void *));
163 work = xmalloc (k * sizeof (void *));
164
165 for (i = 0; i < k; ++i)
166 {
167 pointers[i] = (void *) random ();
168 printf ("%x\n", pointers[i]);
169 }
170
171 sort_pointers (k, pointers, work);
172
173 printf ("\nSorted\n\n");
174
175 result = 0;
176
177 for (i = 0; i < k; ++i)
178 {
179 printf ("%x\n", pointers[i]);
180 if (i > 0 && (char*) pointers[i] < (char*) pointers[i - 1])
181 result = 1;
182 }
183
184 free (pointers);
185 free (work);
186
187 return result;
188}
189
190#endif
This page took 0.046309 seconds and 4 git commands to generate.