Don't print 0x for core_addr_to_string_nz
[deliverable/binutils-gdb.git] / libiberty / splay-tree.c
CommitLineData
252b5132 1/* A splay-tree datatype.
219a461e 2 Copyright (C) 1998, 1999, 2000, 2001, 2009,
d4d868a2 3 2010, 2011 Free Software Foundation, Inc.
252b5132
RH
4 Contributed by Mark Mitchell (mark@markmitchell.com).
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify it
9under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful, but
14WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
979c05d3
NC
20the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21Boston, MA 02110-1301, USA. */
252b5132
RH
22
23/* For an easily readable description of splay-trees, see:
24
25 Lewis, Harry R. and Denenberg, Larry. Data Structures and Their
26 Algorithms. Harper-Collins, Inc. 1991. */
27
28#ifdef HAVE_CONFIG_H
29#include "config.h"
30#endif
31
32#ifdef HAVE_STDLIB_H
33#include <stdlib.h>
34#endif
35
60c64519
DD
36#include <stdio.h>
37
252b5132
RH
38#include "libiberty.h"
39#include "splay-tree.h"
40
1e45deed 41static void splay_tree_delete_helper (splay_tree, splay_tree_node);
718c0ded
DD
42static inline void rotate_left (splay_tree_node *,
43 splay_tree_node, splay_tree_node);
44static inline void rotate_right (splay_tree_node *,
45 splay_tree_node, splay_tree_node);
1e45deed 46static void splay_tree_splay (splay_tree, splay_tree_key);
98f0b5d4 47static int splay_tree_foreach_helper (splay_tree_node,
1e45deed 48 splay_tree_foreach_fn, void*);
252b5132
RH
49
50/* Deallocate NODE (a member of SP), and all its sub-trees. */
51
52static void
1e45deed 53splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
252b5132 54{
9923bc33
DD
55 splay_tree_node pending = 0;
56 splay_tree_node active = 0;
57
252b5132
RH
58 if (!node)
59 return;
60
9923bc33
DD
61#define KDEL(x) if (sp->delete_key) (*sp->delete_key)(x);
62#define VDEL(x) if (sp->delete_value) (*sp->delete_value)(x);
63
64 KDEL (node->key);
65 VDEL (node->value);
252b5132 66
9923bc33
DD
67 /* We use the "key" field to hold the "next" pointer. */
68 node->key = (splay_tree_key)pending;
69 pending = (splay_tree_node)node;
252b5132 70
9923bc33
DD
71 /* Now, keep processing the pending list until there aren't any
72 more. This is a little more complicated than just recursing, but
73 it doesn't toast the stack for large trees. */
74
75 while (pending)
76 {
77 active = pending;
78 pending = 0;
79 while (active)
80 {
81 splay_tree_node temp;
82
83 /* active points to a node which has its key and value
84 deallocated, we just need to process left and right. */
85
86 if (active->left)
87 {
88 KDEL (active->left->key);
89 VDEL (active->left->value);
90 active->left->key = (splay_tree_key)pending;
91 pending = (splay_tree_node)(active->left);
92 }
93 if (active->right)
94 {
95 KDEL (active->right->key);
96 VDEL (active->right->value);
97 active->right->key = (splay_tree_key)pending;
98 pending = (splay_tree_node)(active->right);
99 }
100
101 temp = active;
102 active = (splay_tree_node)(temp->key);
103 (*sp->deallocate) ((char*) temp, sp->allocate_data);
104 }
105 }
106#undef KDEL
107#undef VDEL
252b5132
RH
108}
109
718c0ded 110/* Rotate the edge joining the left child N with its parent P. PP is the
145f4ab5 111 grandparents' pointer to P. */
252b5132 112
718c0ded
DD
113static inline void
114rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
252b5132 115{
718c0ded
DD
116 splay_tree_node tmp;
117 tmp = n->right;
118 n->right = p;
119 p->left = tmp;
120 *pp = n;
121}
252b5132 122
718c0ded 123/* Rotate the edge joining the right child N with its parent P. PP is the
145f4ab5 124 grandparents' pointer to P. */
252b5132 125
718c0ded
DD
126static inline void
127rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
128{
129 splay_tree_node tmp;
130 tmp = n->left;
131 n->left = p;
132 p->right = tmp;
133 *pp = n;
252b5132
RH
134}
135
718c0ded 136/* Bottom up splay of key. */
252b5132
RH
137
138static void
1e45deed 139splay_tree_splay (splay_tree sp, splay_tree_key key)
252b5132
RH
140{
141 if (sp->root == 0)
142 return;
143
718c0ded
DD
144 do {
145 int cmp1, cmp2;
146 splay_tree_node n, c;
147
148 n = sp->root;
149 cmp1 = (*sp->comp) (key, n->key);
150
151 /* Found. */
152 if (cmp1 == 0)
153 return;
154
155 /* Left or right? If no child, then we're done. */
156 if (cmp1 < 0)
157 c = n->left;
158 else
159 c = n->right;
160 if (!c)
161 return;
162
163 /* Next one left or right? If found or no child, we're done
164 after one rotation. */
165 cmp2 = (*sp->comp) (key, c->key);
166 if (cmp2 == 0
167 || (cmp2 < 0 && !c->left)
168 || (cmp2 > 0 && !c->right))
169 {
170 if (cmp1 < 0)
171 rotate_left (&sp->root, n, c);
172 else
173 rotate_right (&sp->root, n, c);
174 return;
175 }
176
177 /* Now we have the four cases of double-rotation. */
178 if (cmp1 < 0 && cmp2 < 0)
179 {
180 rotate_left (&n->left, c, c->left);
181 rotate_left (&sp->root, n, n->left);
182 }
183 else if (cmp1 > 0 && cmp2 > 0)
184 {
185 rotate_right (&n->right, c, c->right);
186 rotate_right (&sp->root, n, n->right);
187 }
188 else if (cmp1 < 0 && cmp2 > 0)
189 {
190 rotate_right (&n->left, c, c->right);
191 rotate_left (&sp->root, n, n->left);
192 }
193 else if (cmp1 > 0 && cmp2 < 0)
194 {
195 rotate_left (&n->right, c, c->left);
196 rotate_right (&sp->root, n, n->right);
197 }
198 } while (1);
252b5132
RH
199}
200
201/* Call FN, passing it the DATA, for every node below NODE, all of
202 which are from SP, following an in-order traversal. If FN every
203 returns a non-zero value, the iteration ceases immediately, and the
204 value is returned. Otherwise, this function returns 0. */
205
206static int
98f0b5d4 207splay_tree_foreach_helper (splay_tree_node node,
1e45deed 208 splay_tree_foreach_fn fn, void *data)
252b5132
RH
209{
210 int val;
98f0b5d4
DD
211 splay_tree_node *stack;
212 int stack_ptr, stack_size;
252b5132 213
98f0b5d4
DD
214 /* A non-recursive implementation is used to avoid filling the stack
215 for large trees. Splay trees are worst case O(n) in the depth of
216 the tree. */
217
218#define INITIAL_STACK_SIZE 100
219 stack_size = INITIAL_STACK_SIZE;
220 stack_ptr = 0;
221 stack = XNEWVEC (splay_tree_node, stack_size);
222 val = 0;
223
224 for (;;)
225 {
226 while (node != NULL)
227 {
228 if (stack_ptr == stack_size)
229 {
230 stack_size *= 2;
231 stack = XRESIZEVEC (splay_tree_node, stack, stack_size);
232 }
233 stack[stack_ptr++] = node;
234 node = node->left;
235 }
252b5132 236
98f0b5d4
DD
237 if (stack_ptr == 0)
238 break;
252b5132 239
98f0b5d4 240 node = stack[--stack_ptr];
252b5132 241
98f0b5d4
DD
242 val = (*fn) (node, data);
243 if (val)
244 break;
252b5132 245
98f0b5d4
DD
246 node = node->right;
247 }
248
249 XDELETEVEC (stack);
250 return val;
251}
2bbcdae9
JB
252
253/* An allocator and deallocator based on xmalloc. */
254static void *
1e45deed 255splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
2bbcdae9 256{
585cc78f 257 return (void *) xmalloc (size);
2bbcdae9
JB
258}
259
260static void
1e45deed 261splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
2bbcdae9
JB
262{
263 free (object);
264}
265
266
252b5132
RH
267/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
268 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
2bbcdae9
JB
269 values. Use xmalloc to allocate the splay tree structure, and any
270 nodes added. */
252b5132
RH
271
272splay_tree
1e45deed
DD
273splay_tree_new (splay_tree_compare_fn compare_fn,
274 splay_tree_delete_key_fn delete_key_fn,
275 splay_tree_delete_value_fn delete_value_fn)
252b5132 276{
2bbcdae9
JB
277 return (splay_tree_new_with_allocator
278 (compare_fn, delete_key_fn, delete_value_fn,
279 splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
280}
281
282
283/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
284 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
285 values. */
286
287splay_tree
1e45deed
DD
288splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
289 splay_tree_delete_key_fn delete_key_fn,
290 splay_tree_delete_value_fn delete_value_fn,
291 splay_tree_allocate_fn allocate_fn,
292 splay_tree_deallocate_fn deallocate_fn,
293 void *allocate_data)
2bbcdae9 294{
219a461e
DD
295 return
296 splay_tree_new_typed_alloc (compare_fn, delete_key_fn, delete_value_fn,
297 allocate_fn, allocate_fn, deallocate_fn,
298 allocate_data);
299}
300
301/*
302
d4d868a2
RW
303@deftypefn Supplemental splay_tree splay_tree_new_with_typed_alloc @
304(splay_tree_compare_fn @var{compare_fn}, @
305splay_tree_delete_key_fn @var{delete_key_fn}, @
306splay_tree_delete_value_fn @var{delete_value_fn}, @
307splay_tree_allocate_fn @var{tree_allocate_fn}, @
308splay_tree_allocate_fn @var{node_allocate_fn}, @
309splay_tree_deallocate_fn @var{deallocate_fn}, @
219a461e
DD
310void * @var{allocate_data})
311
312This function creates a splay tree that uses two different allocators
313@var{tree_allocate_fn} and @var{node_allocate_fn} to use for allocating the
314tree itself and its nodes respectively. This is useful when variables of
315different types need to be allocated with different allocators.
316
317The splay tree will use @var{compare_fn} to compare nodes,
318@var{delete_key_fn} to deallocate keys, and @var{delete_value_fn} to
319deallocate values.
320
321@end deftypefn
322
323*/
324
325splay_tree
326splay_tree_new_typed_alloc (splay_tree_compare_fn compare_fn,
327 splay_tree_delete_key_fn delete_key_fn,
328 splay_tree_delete_value_fn delete_value_fn,
329 splay_tree_allocate_fn tree_allocate_fn,
330 splay_tree_allocate_fn node_allocate_fn,
331 splay_tree_deallocate_fn deallocate_fn,
332 void * allocate_data)
333{
334 splay_tree sp = (splay_tree) (*tree_allocate_fn)
335 (sizeof (struct splay_tree_s), allocate_data);
336
252b5132
RH
337 sp->root = 0;
338 sp->comp = compare_fn;
339 sp->delete_key = delete_key_fn;
340 sp->delete_value = delete_value_fn;
219a461e 341 sp->allocate = node_allocate_fn;
2bbcdae9
JB
342 sp->deallocate = deallocate_fn;
343 sp->allocate_data = allocate_data;
252b5132
RH
344
345 return sp;
346}
347
348/* Deallocate SP. */
349
350void
1e45deed 351splay_tree_delete (splay_tree sp)
252b5132
RH
352{
353 splay_tree_delete_helper (sp, sp->root);
2bbcdae9 354 (*sp->deallocate) ((char*) sp, sp->allocate_data);
252b5132
RH
355}
356
357/* Insert a new node (associating KEY with DATA) into SP. If a
358 previous node with the indicated KEY exists, its data is replaced
0c0a36a4 359 with the new value. Returns the new node. */
252b5132 360
0c0a36a4 361splay_tree_node
1e45deed 362splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
252b5132 363{
af32ff69 364 int comparison = 0;
252b5132
RH
365
366 splay_tree_splay (sp, key);
367
368 if (sp->root)
369 comparison = (*sp->comp)(sp->root->key, key);
370
371 if (sp->root && comparison == 0)
372 {
373 /* If the root of the tree already has the indicated KEY, just
374 replace the value with VALUE. */
375 if (sp->delete_value)
376 (*sp->delete_value)(sp->root->value);
377 sp->root->value = value;
378 }
379 else
380 {
381 /* Create a new node, and insert it at the root. */
382 splay_tree_node node;
219a461e 383
2bbcdae9 384 node = ((splay_tree_node)
219a461e
DD
385 (*sp->allocate) (sizeof (struct splay_tree_node_s),
386 sp->allocate_data));
252b5132
RH
387 node->key = key;
388 node->value = value;
389
390 if (!sp->root)
391 node->left = node->right = 0;
392 else if (comparison < 0)
393 {
394 node->left = sp->root;
395 node->right = node->left->right;
396 node->left->right = 0;
397 }
398 else
399 {
400 node->right = sp->root;
401 node->left = node->right->left;
402 node->right->left = 0;
403 }
404
74bcd529
DD
405 sp->root = node;
406 }
0c0a36a4
ILT
407
408 return sp->root;
252b5132
RH
409}
410
afe36a78
RH
411/* Remove KEY from SP. It is not an error if it did not exist. */
412
413void
1e45deed 414splay_tree_remove (splay_tree sp, splay_tree_key key)
afe36a78
RH
415{
416 splay_tree_splay (sp, key);
417
418 if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
419 {
420 splay_tree_node left, right;
421
422 left = sp->root->left;
423 right = sp->root->right;
424
425 /* Delete the root node itself. */
426 if (sp->delete_value)
427 (*sp->delete_value) (sp->root->value);
2bbcdae9 428 (*sp->deallocate) (sp->root, sp->allocate_data);
afe36a78
RH
429
430 /* One of the children is now the root. Doesn't matter much
431 which, so long as we preserve the properties of the tree. */
432 if (left)
433 {
434 sp->root = left;
435
436 /* If there was a right child as well, hang it off the
437 right-most leaf of the left child. */
438 if (right)
439 {
440 while (left->right)
441 left = left->right;
442 left->right = right;
443 }
444 }
445 else
446 sp->root = right;
447 }
448}
449
252b5132
RH
450/* Lookup KEY in SP, returning VALUE if present, and NULL
451 otherwise. */
452
453splay_tree_node
1e45deed 454splay_tree_lookup (splay_tree sp, splay_tree_key key)
252b5132
RH
455{
456 splay_tree_splay (sp, key);
457
458 if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
459 return sp->root;
460 else
461 return 0;
462}
463
e00bc6a7
DD
464/* Return the node in SP with the greatest key. */
465
466splay_tree_node
1e45deed 467splay_tree_max (splay_tree sp)
e00bc6a7
DD
468{
469 splay_tree_node n = sp->root;
470
471 if (!n)
472 return NULL;
473
474 while (n->right)
475 n = n->right;
476
477 return n;
478}
479
480/* Return the node in SP with the smallest key. */
481
482splay_tree_node
1e45deed 483splay_tree_min (splay_tree sp)
e00bc6a7
DD
484{
485 splay_tree_node n = sp->root;
486
487 if (!n)
488 return NULL;
489
490 while (n->left)
491 n = n->left;
492
493 return n;
494}
495
74bcd529
DD
496/* Return the immediate predecessor KEY, or NULL if there is no
497 predecessor. KEY need not be present in the tree. */
498
499splay_tree_node
1e45deed 500splay_tree_predecessor (splay_tree sp, splay_tree_key key)
74bcd529
DD
501{
502 int comparison;
503 splay_tree_node node;
504
505 /* If the tree is empty, there is certainly no predecessor. */
506 if (!sp->root)
507 return NULL;
508
509 /* Splay the tree around KEY. That will leave either the KEY
510 itself, its predecessor, or its successor at the root. */
511 splay_tree_splay (sp, key);
512 comparison = (*sp->comp)(sp->root->key, key);
513
514 /* If the predecessor is at the root, just return it. */
515 if (comparison < 0)
516 return sp->root;
517
0f3538e7 518 /* Otherwise, find the rightmost element of the left subtree. */
74bcd529
DD
519 node = sp->root->left;
520 if (node)
521 while (node->right)
522 node = node->right;
523
524 return node;
525}
526
527/* Return the immediate successor KEY, or NULL if there is no
a54ba43f 528 successor. KEY need not be present in the tree. */
74bcd529
DD
529
530splay_tree_node
1e45deed 531splay_tree_successor (splay_tree sp, splay_tree_key key)
74bcd529
DD
532{
533 int comparison;
534 splay_tree_node node;
535
a54ba43f 536 /* If the tree is empty, there is certainly no successor. */
74bcd529
DD
537 if (!sp->root)
538 return NULL;
539
540 /* Splay the tree around KEY. That will leave either the KEY
541 itself, its predecessor, or its successor at the root. */
542 splay_tree_splay (sp, key);
543 comparison = (*sp->comp)(sp->root->key, key);
544
545 /* If the successor is at the root, just return it. */
546 if (comparison > 0)
547 return sp->root;
548
0f3538e7 549 /* Otherwise, find the leftmost element of the right subtree. */
74bcd529
DD
550 node = sp->root->right;
551 if (node)
552 while (node->left)
553 node = node->left;
554
555 return node;
556}
557
252b5132
RH
558/* Call FN, passing it the DATA, for every node in SP, following an
559 in-order traversal. If FN every returns a non-zero value, the
560 iteration ceases immediately, and the value is returned.
561 Otherwise, this function returns 0. */
562
563int
1e45deed 564splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
252b5132 565{
98f0b5d4 566 return splay_tree_foreach_helper (sp->root, fn, data);
252b5132
RH
567}
568
569/* Splay-tree comparison function, treating the keys as ints. */
570
571int
1e45deed 572splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
252b5132
RH
573{
574 if ((int) k1 < (int) k2)
575 return -1;
576 else if ((int) k1 > (int) k2)
577 return 1;
578 else
579 return 0;
580}
581
582/* Splay-tree comparison function, treating the keys as pointers. */
583
584int
1e45deed 585splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
252b5132
RH
586{
587 if ((char*) k1 < (char*) k2)
588 return -1;
589 else if ((char*) k1 > (char*) k2)
590 return 1;
591 else
592 return 0;
593}
This page took 0.71725 seconds and 4 git commands to generate.