bpf: convert stackmap to pre-allocation
[deliverable/linux.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
c8c06efa 65 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
c8c06efa 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
c8c06efa 74 * ->i_mmap_rwsem
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
c8c06efa 88 * ->i_mmap_rwsem
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
c4843a75 104 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
f758eeab 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
c8c06efa 109 * ->i_mmap_rwsem
9a3c531d 110 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
111 */
112
91b0abe3
JW
113static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115{
449dd698
JW
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
91b0abe3 121
449dd698
JW
122 VM_BUG_ON(!PageLocked(page));
123
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126 if (shadow) {
f9fe48be 127 mapping->nrexceptional++;
91b0abe3 128 /*
f9fe48be 129 * Make sure the nrexceptional update is committed before
91b0abe3
JW
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
133 */
134 smp_wmb();
449dd698 135 }
91b0abe3 136 mapping->nrpages--;
449dd698
JW
137
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
143 }
144
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 }
152
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
161
162 /*
163 * Track node that only contains shadow entries.
164 *
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
168 */
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 }
91b0abe3
JW
174}
175
1da177e4 176/*
e64a782f 177 * Delete a page from the page cache and free it. Caller has to make
1da177e4 178 * sure the page is locked and that nobody else uses it - or that usage
c4843a75
GT
179 * is safe. The caller must hold the mapping's tree_lock and
180 * mem_cgroup_begin_page_stat().
1da177e4 181 */
c4843a75
GT
182void __delete_from_page_cache(struct page *page, void *shadow,
183 struct mem_cgroup *memcg)
1da177e4
LT
184{
185 struct address_space *mapping = page->mapping;
186
fe0bfaaf 187 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
188 /*
189 * if we're uptodate, flush out into the cleancache, otherwise
190 * invalidate any existing cleancache entries. We can't leave
191 * stale data around in the cleancache once our page is gone
192 */
193 if (PageUptodate(page) && PageMappedToDisk(page))
194 cleancache_put_page(page);
195 else
3167760f 196 cleancache_invalidate_page(mapping, page);
c515e1fd 197
91b0abe3
JW
198 page_cache_tree_delete(mapping, page, shadow);
199
1da177e4 200 page->mapping = NULL;
b85e0eff 201 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 202
4165b9b4
MH
203 /* hugetlb pages do not participate in page cache accounting. */
204 if (!PageHuge(page))
205 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
206 if (PageSwapBacked(page))
207 __dec_zone_page_state(page, NR_SHMEM);
e1534ae9 208 VM_BUG_ON_PAGE(page_mapped(page), page);
3a692790
LT
209
210 /*
b9ea2515
KK
211 * At this point page must be either written or cleaned by truncate.
212 * Dirty page here signals a bug and loss of unwritten data.
3a692790 213 *
b9ea2515
KK
214 * This fixes dirty accounting after removing the page entirely but
215 * leaves PageDirty set: it has no effect for truncated page and
216 * anyway will be cleared before returning page into buddy allocator.
3a692790 217 */
b9ea2515 218 if (WARN_ON_ONCE(PageDirty(page)))
682aa8e1
TH
219 account_page_cleaned(page, mapping, memcg,
220 inode_to_wb(mapping->host));
1da177e4
LT
221}
222
702cfbf9
MK
223/**
224 * delete_from_page_cache - delete page from page cache
225 * @page: the page which the kernel is trying to remove from page cache
226 *
227 * This must be called only on pages that have been verified to be in the page
228 * cache and locked. It will never put the page into the free list, the caller
229 * has a reference on the page.
230 */
231void delete_from_page_cache(struct page *page)
1da177e4
LT
232{
233 struct address_space *mapping = page->mapping;
c4843a75
GT
234 struct mem_cgroup *memcg;
235 unsigned long flags;
236
6072d13c 237 void (*freepage)(struct page *);
1da177e4 238
cd7619d6 239 BUG_ON(!PageLocked(page));
1da177e4 240
6072d13c 241 freepage = mapping->a_ops->freepage;
c4843a75
GT
242
243 memcg = mem_cgroup_begin_page_stat(page);
244 spin_lock_irqsave(&mapping->tree_lock, flags);
245 __delete_from_page_cache(page, NULL, memcg);
246 spin_unlock_irqrestore(&mapping->tree_lock, flags);
247 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
248
249 if (freepage)
250 freepage(page);
97cecb5a
MK
251 page_cache_release(page);
252}
253EXPORT_SYMBOL(delete_from_page_cache);
254
865ffef3
DM
255static int filemap_check_errors(struct address_space *mapping)
256{
257 int ret = 0;
258 /* Check for outstanding write errors */
7fcbbaf1
JA
259 if (test_bit(AS_ENOSPC, &mapping->flags) &&
260 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 261 ret = -ENOSPC;
7fcbbaf1
JA
262 if (test_bit(AS_EIO, &mapping->flags) &&
263 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
264 ret = -EIO;
265 return ret;
266}
267
1da177e4 268/**
485bb99b 269 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
270 * @mapping: address space structure to write
271 * @start: offset in bytes where the range starts
469eb4d0 272 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 273 * @sync_mode: enable synchronous operation
1da177e4 274 *
485bb99b
RD
275 * Start writeback against all of a mapping's dirty pages that lie
276 * within the byte offsets <start, end> inclusive.
277 *
1da177e4 278 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 279 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
280 * these two operations is that if a dirty page/buffer is encountered, it must
281 * be waited upon, and not just skipped over.
282 */
ebcf28e1
AM
283int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
284 loff_t end, int sync_mode)
1da177e4
LT
285{
286 int ret;
287 struct writeback_control wbc = {
288 .sync_mode = sync_mode,
05fe478d 289 .nr_to_write = LONG_MAX,
111ebb6e
OH
290 .range_start = start,
291 .range_end = end,
1da177e4
LT
292 };
293
294 if (!mapping_cap_writeback_dirty(mapping))
295 return 0;
296
b16b1deb 297 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 298 ret = do_writepages(mapping, &wbc);
b16b1deb 299 wbc_detach_inode(&wbc);
1da177e4
LT
300 return ret;
301}
302
303static inline int __filemap_fdatawrite(struct address_space *mapping,
304 int sync_mode)
305{
111ebb6e 306 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
307}
308
309int filemap_fdatawrite(struct address_space *mapping)
310{
311 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
312}
313EXPORT_SYMBOL(filemap_fdatawrite);
314
f4c0a0fd 315int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 316 loff_t end)
1da177e4
LT
317{
318 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
319}
f4c0a0fd 320EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 321
485bb99b
RD
322/**
323 * filemap_flush - mostly a non-blocking flush
324 * @mapping: target address_space
325 *
1da177e4
LT
326 * This is a mostly non-blocking flush. Not suitable for data-integrity
327 * purposes - I/O may not be started against all dirty pages.
328 */
329int filemap_flush(struct address_space *mapping)
330{
331 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
332}
333EXPORT_SYMBOL(filemap_flush);
334
aa750fd7
JN
335static int __filemap_fdatawait_range(struct address_space *mapping,
336 loff_t start_byte, loff_t end_byte)
1da177e4 337{
94004ed7
CH
338 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
339 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
340 struct pagevec pvec;
341 int nr_pages;
aa750fd7 342 int ret = 0;
1da177e4 343
94004ed7 344 if (end_byte < start_byte)
865ffef3 345 goto out;
1da177e4
LT
346
347 pagevec_init(&pvec, 0);
1da177e4
LT
348 while ((index <= end) &&
349 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
350 PAGECACHE_TAG_WRITEBACK,
351 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
352 unsigned i;
353
354 for (i = 0; i < nr_pages; i++) {
355 struct page *page = pvec.pages[i];
356
357 /* until radix tree lookup accepts end_index */
358 if (page->index > end)
359 continue;
360
361 wait_on_page_writeback(page);
212260aa 362 if (TestClearPageError(page))
1da177e4
LT
363 ret = -EIO;
364 }
365 pagevec_release(&pvec);
366 cond_resched();
367 }
865ffef3 368out:
aa750fd7
JN
369 return ret;
370}
371
372/**
373 * filemap_fdatawait_range - wait for writeback to complete
374 * @mapping: address space structure to wait for
375 * @start_byte: offset in bytes where the range starts
376 * @end_byte: offset in bytes where the range ends (inclusive)
377 *
378 * Walk the list of under-writeback pages of the given address space
379 * in the given range and wait for all of them. Check error status of
380 * the address space and return it.
381 *
382 * Since the error status of the address space is cleared by this function,
383 * callers are responsible for checking the return value and handling and/or
384 * reporting the error.
385 */
386int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
387 loff_t end_byte)
388{
389 int ret, ret2;
390
391 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
392 ret2 = filemap_check_errors(mapping);
393 if (!ret)
394 ret = ret2;
1da177e4
LT
395
396 return ret;
397}
d3bccb6f
JK
398EXPORT_SYMBOL(filemap_fdatawait_range);
399
aa750fd7
JN
400/**
401 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
402 * @mapping: address space structure to wait for
403 *
404 * Walk the list of under-writeback pages of the given address space
405 * and wait for all of them. Unlike filemap_fdatawait(), this function
406 * does not clear error status of the address space.
407 *
408 * Use this function if callers don't handle errors themselves. Expected
409 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
410 * fsfreeze(8)
411 */
412void filemap_fdatawait_keep_errors(struct address_space *mapping)
413{
414 loff_t i_size = i_size_read(mapping->host);
415
416 if (i_size == 0)
417 return;
418
419 __filemap_fdatawait_range(mapping, 0, i_size - 1);
420}
421
1da177e4 422/**
485bb99b 423 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 424 * @mapping: address space structure to wait for
485bb99b
RD
425 *
426 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
427 * and wait for all of them. Check error status of the address space
428 * and return it.
429 *
430 * Since the error status of the address space is cleared by this function,
431 * callers are responsible for checking the return value and handling and/or
432 * reporting the error.
1da177e4
LT
433 */
434int filemap_fdatawait(struct address_space *mapping)
435{
436 loff_t i_size = i_size_read(mapping->host);
437
438 if (i_size == 0)
439 return 0;
440
94004ed7 441 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
442}
443EXPORT_SYMBOL(filemap_fdatawait);
444
445int filemap_write_and_wait(struct address_space *mapping)
446{
28fd1298 447 int err = 0;
1da177e4 448
7f6d5b52
RZ
449 if ((!dax_mapping(mapping) && mapping->nrpages) ||
450 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
451 err = filemap_fdatawrite(mapping);
452 /*
453 * Even if the above returned error, the pages may be
454 * written partially (e.g. -ENOSPC), so we wait for it.
455 * But the -EIO is special case, it may indicate the worst
456 * thing (e.g. bug) happened, so we avoid waiting for it.
457 */
458 if (err != -EIO) {
459 int err2 = filemap_fdatawait(mapping);
460 if (!err)
461 err = err2;
462 }
865ffef3
DM
463 } else {
464 err = filemap_check_errors(mapping);
1da177e4 465 }
28fd1298 466 return err;
1da177e4 467}
28fd1298 468EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 469
485bb99b
RD
470/**
471 * filemap_write_and_wait_range - write out & wait on a file range
472 * @mapping: the address_space for the pages
473 * @lstart: offset in bytes where the range starts
474 * @lend: offset in bytes where the range ends (inclusive)
475 *
469eb4d0
AM
476 * Write out and wait upon file offsets lstart->lend, inclusive.
477 *
478 * Note that `lend' is inclusive (describes the last byte to be written) so
479 * that this function can be used to write to the very end-of-file (end = -1).
480 */
1da177e4
LT
481int filemap_write_and_wait_range(struct address_space *mapping,
482 loff_t lstart, loff_t lend)
483{
28fd1298 484 int err = 0;
1da177e4 485
7f6d5b52
RZ
486 if ((!dax_mapping(mapping) && mapping->nrpages) ||
487 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
488 err = __filemap_fdatawrite_range(mapping, lstart, lend,
489 WB_SYNC_ALL);
490 /* See comment of filemap_write_and_wait() */
491 if (err != -EIO) {
94004ed7
CH
492 int err2 = filemap_fdatawait_range(mapping,
493 lstart, lend);
28fd1298
OH
494 if (!err)
495 err = err2;
496 }
865ffef3
DM
497 } else {
498 err = filemap_check_errors(mapping);
1da177e4 499 }
28fd1298 500 return err;
1da177e4 501}
f6995585 502EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 503
ef6a3c63
MS
504/**
505 * replace_page_cache_page - replace a pagecache page with a new one
506 * @old: page to be replaced
507 * @new: page to replace with
508 * @gfp_mask: allocation mode
509 *
510 * This function replaces a page in the pagecache with a new one. On
511 * success it acquires the pagecache reference for the new page and
512 * drops it for the old page. Both the old and new pages must be
513 * locked. This function does not add the new page to the LRU, the
514 * caller must do that.
515 *
516 * The remove + add is atomic. The only way this function can fail is
517 * memory allocation failure.
518 */
519int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
520{
521 int error;
ef6a3c63 522
309381fe
SL
523 VM_BUG_ON_PAGE(!PageLocked(old), old);
524 VM_BUG_ON_PAGE(!PageLocked(new), new);
525 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 526
ef6a3c63
MS
527 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
528 if (!error) {
529 struct address_space *mapping = old->mapping;
530 void (*freepage)(struct page *);
c4843a75
GT
531 struct mem_cgroup *memcg;
532 unsigned long flags;
ef6a3c63
MS
533
534 pgoff_t offset = old->index;
535 freepage = mapping->a_ops->freepage;
536
537 page_cache_get(new);
538 new->mapping = mapping;
539 new->index = offset;
540
c4843a75
GT
541 memcg = mem_cgroup_begin_page_stat(old);
542 spin_lock_irqsave(&mapping->tree_lock, flags);
543 __delete_from_page_cache(old, NULL, memcg);
ef6a3c63
MS
544 error = radix_tree_insert(&mapping->page_tree, offset, new);
545 BUG_ON(error);
546 mapping->nrpages++;
4165b9b4
MH
547
548 /*
549 * hugetlb pages do not participate in page cache accounting.
550 */
551 if (!PageHuge(new))
552 __inc_zone_page_state(new, NR_FILE_PAGES);
ef6a3c63
MS
553 if (PageSwapBacked(new))
554 __inc_zone_page_state(new, NR_SHMEM);
c4843a75
GT
555 spin_unlock_irqrestore(&mapping->tree_lock, flags);
556 mem_cgroup_end_page_stat(memcg);
45637bab 557 mem_cgroup_replace_page(old, new);
ef6a3c63
MS
558 radix_tree_preload_end();
559 if (freepage)
560 freepage(old);
561 page_cache_release(old);
ef6a3c63
MS
562 }
563
564 return error;
565}
566EXPORT_SYMBOL_GPL(replace_page_cache_page);
567
0cd6144a 568static int page_cache_tree_insert(struct address_space *mapping,
a528910e 569 struct page *page, void **shadowp)
0cd6144a 570{
449dd698 571 struct radix_tree_node *node;
0cd6144a
JW
572 void **slot;
573 int error;
574
449dd698
JW
575 error = __radix_tree_create(&mapping->page_tree, page->index,
576 &node, &slot);
577 if (error)
578 return error;
579 if (*slot) {
0cd6144a
JW
580 void *p;
581
582 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
583 if (!radix_tree_exceptional_entry(p))
584 return -EEXIST;
f9fe48be
RZ
585
586 if (WARN_ON(dax_mapping(mapping)))
587 return -EINVAL;
588
a528910e
JW
589 if (shadowp)
590 *shadowp = p;
f9fe48be 591 mapping->nrexceptional--;
449dd698
JW
592 if (node)
593 workingset_node_shadows_dec(node);
0cd6144a 594 }
449dd698
JW
595 radix_tree_replace_slot(slot, page);
596 mapping->nrpages++;
597 if (node) {
598 workingset_node_pages_inc(node);
599 /*
600 * Don't track node that contains actual pages.
601 *
602 * Avoid acquiring the list_lru lock if already
603 * untracked. The list_empty() test is safe as
604 * node->private_list is protected by
605 * mapping->tree_lock.
606 */
607 if (!list_empty(&node->private_list))
608 list_lru_del(&workingset_shadow_nodes,
609 &node->private_list);
610 }
611 return 0;
0cd6144a
JW
612}
613
a528910e
JW
614static int __add_to_page_cache_locked(struct page *page,
615 struct address_space *mapping,
616 pgoff_t offset, gfp_t gfp_mask,
617 void **shadowp)
1da177e4 618{
00501b53
JW
619 int huge = PageHuge(page);
620 struct mem_cgroup *memcg;
e286781d
NP
621 int error;
622
309381fe
SL
623 VM_BUG_ON_PAGE(!PageLocked(page), page);
624 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 625
00501b53
JW
626 if (!huge) {
627 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 628 gfp_mask, &memcg, false);
00501b53
JW
629 if (error)
630 return error;
631 }
1da177e4 632
5e4c0d97 633 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 634 if (error) {
00501b53 635 if (!huge)
f627c2f5 636 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
637 return error;
638 }
639
640 page_cache_get(page);
641 page->mapping = mapping;
642 page->index = offset;
643
644 spin_lock_irq(&mapping->tree_lock);
a528910e 645 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
646 radix_tree_preload_end();
647 if (unlikely(error))
648 goto err_insert;
4165b9b4
MH
649
650 /* hugetlb pages do not participate in page cache accounting. */
651 if (!huge)
652 __inc_zone_page_state(page, NR_FILE_PAGES);
66a0c8ee 653 spin_unlock_irq(&mapping->tree_lock);
00501b53 654 if (!huge)
f627c2f5 655 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
656 trace_mm_filemap_add_to_page_cache(page);
657 return 0;
658err_insert:
659 page->mapping = NULL;
660 /* Leave page->index set: truncation relies upon it */
661 spin_unlock_irq(&mapping->tree_lock);
00501b53 662 if (!huge)
f627c2f5 663 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee 664 page_cache_release(page);
1da177e4
LT
665 return error;
666}
a528910e
JW
667
668/**
669 * add_to_page_cache_locked - add a locked page to the pagecache
670 * @page: page to add
671 * @mapping: the page's address_space
672 * @offset: page index
673 * @gfp_mask: page allocation mode
674 *
675 * This function is used to add a page to the pagecache. It must be locked.
676 * This function does not add the page to the LRU. The caller must do that.
677 */
678int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
679 pgoff_t offset, gfp_t gfp_mask)
680{
681 return __add_to_page_cache_locked(page, mapping, offset,
682 gfp_mask, NULL);
683}
e286781d 684EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
685
686int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 687 pgoff_t offset, gfp_t gfp_mask)
1da177e4 688{
a528910e 689 void *shadow = NULL;
4f98a2fe
RR
690 int ret;
691
48c935ad 692 __SetPageLocked(page);
a528910e
JW
693 ret = __add_to_page_cache_locked(page, mapping, offset,
694 gfp_mask, &shadow);
695 if (unlikely(ret))
48c935ad 696 __ClearPageLocked(page);
a528910e
JW
697 else {
698 /*
699 * The page might have been evicted from cache only
700 * recently, in which case it should be activated like
701 * any other repeatedly accessed page.
702 */
703 if (shadow && workingset_refault(shadow)) {
704 SetPageActive(page);
705 workingset_activation(page);
706 } else
707 ClearPageActive(page);
708 lru_cache_add(page);
709 }
1da177e4
LT
710 return ret;
711}
18bc0bbd 712EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 713
44110fe3 714#ifdef CONFIG_NUMA
2ae88149 715struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 716{
c0ff7453
MX
717 int n;
718 struct page *page;
719
44110fe3 720 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
721 unsigned int cpuset_mems_cookie;
722 do {
d26914d1 723 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 724 n = cpuset_mem_spread_node();
96db800f 725 page = __alloc_pages_node(n, gfp, 0);
d26914d1 726 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 727
c0ff7453 728 return page;
44110fe3 729 }
2ae88149 730 return alloc_pages(gfp, 0);
44110fe3 731}
2ae88149 732EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
733#endif
734
1da177e4
LT
735/*
736 * In order to wait for pages to become available there must be
737 * waitqueues associated with pages. By using a hash table of
738 * waitqueues where the bucket discipline is to maintain all
739 * waiters on the same queue and wake all when any of the pages
740 * become available, and for the woken contexts to check to be
741 * sure the appropriate page became available, this saves space
742 * at a cost of "thundering herd" phenomena during rare hash
743 * collisions.
744 */
a4796e37 745wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
746{
747 const struct zone *zone = page_zone(page);
748
749 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
750}
a4796e37 751EXPORT_SYMBOL(page_waitqueue);
1da177e4 752
920c7a5d 753void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
754{
755 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
756
757 if (test_bit(bit_nr, &page->flags))
74316201 758 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
759 TASK_UNINTERRUPTIBLE);
760}
761EXPORT_SYMBOL(wait_on_page_bit);
762
f62e00cc
KM
763int wait_on_page_bit_killable(struct page *page, int bit_nr)
764{
765 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
766
767 if (!test_bit(bit_nr, &page->flags))
768 return 0;
769
770 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 771 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
772}
773
cbbce822
N
774int wait_on_page_bit_killable_timeout(struct page *page,
775 int bit_nr, unsigned long timeout)
776{
777 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
778
779 wait.key.timeout = jiffies + timeout;
780 if (!test_bit(bit_nr, &page->flags))
781 return 0;
782 return __wait_on_bit(page_waitqueue(page), &wait,
783 bit_wait_io_timeout, TASK_KILLABLE);
784}
785EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
786
385e1ca5
DH
787/**
788 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
789 * @page: Page defining the wait queue of interest
790 * @waiter: Waiter to add to the queue
385e1ca5
DH
791 *
792 * Add an arbitrary @waiter to the wait queue for the nominated @page.
793 */
794void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
795{
796 wait_queue_head_t *q = page_waitqueue(page);
797 unsigned long flags;
798
799 spin_lock_irqsave(&q->lock, flags);
800 __add_wait_queue(q, waiter);
801 spin_unlock_irqrestore(&q->lock, flags);
802}
803EXPORT_SYMBOL_GPL(add_page_wait_queue);
804
1da177e4 805/**
485bb99b 806 * unlock_page - unlock a locked page
1da177e4
LT
807 * @page: the page
808 *
809 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
810 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 811 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
812 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
813 *
8413ac9d
NP
814 * The mb is necessary to enforce ordering between the clear_bit and the read
815 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 816 */
920c7a5d 817void unlock_page(struct page *page)
1da177e4 818{
48c935ad 819 page = compound_head(page);
309381fe 820 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 821 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 822 smp_mb__after_atomic();
1da177e4
LT
823 wake_up_page(page, PG_locked);
824}
825EXPORT_SYMBOL(unlock_page);
826
485bb99b
RD
827/**
828 * end_page_writeback - end writeback against a page
829 * @page: the page
1da177e4
LT
830 */
831void end_page_writeback(struct page *page)
832{
888cf2db
MG
833 /*
834 * TestClearPageReclaim could be used here but it is an atomic
835 * operation and overkill in this particular case. Failing to
836 * shuffle a page marked for immediate reclaim is too mild to
837 * justify taking an atomic operation penalty at the end of
838 * ever page writeback.
839 */
840 if (PageReclaim(page)) {
841 ClearPageReclaim(page);
ac6aadb2 842 rotate_reclaimable_page(page);
888cf2db 843 }
ac6aadb2
MS
844
845 if (!test_clear_page_writeback(page))
846 BUG();
847
4e857c58 848 smp_mb__after_atomic();
1da177e4
LT
849 wake_up_page(page, PG_writeback);
850}
851EXPORT_SYMBOL(end_page_writeback);
852
57d99845
MW
853/*
854 * After completing I/O on a page, call this routine to update the page
855 * flags appropriately
856 */
857void page_endio(struct page *page, int rw, int err)
858{
859 if (rw == READ) {
860 if (!err) {
861 SetPageUptodate(page);
862 } else {
863 ClearPageUptodate(page);
864 SetPageError(page);
865 }
866 unlock_page(page);
867 } else { /* rw == WRITE */
868 if (err) {
869 SetPageError(page);
870 if (page->mapping)
871 mapping_set_error(page->mapping, err);
872 }
873 end_page_writeback(page);
874 }
875}
876EXPORT_SYMBOL_GPL(page_endio);
877
485bb99b
RD
878/**
879 * __lock_page - get a lock on the page, assuming we need to sleep to get it
880 * @page: the page to lock
1da177e4 881 */
920c7a5d 882void __lock_page(struct page *page)
1da177e4 883{
48c935ad
KS
884 struct page *page_head = compound_head(page);
885 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
1da177e4 886
48c935ad 887 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
1da177e4
LT
888 TASK_UNINTERRUPTIBLE);
889}
890EXPORT_SYMBOL(__lock_page);
891
b5606c2d 892int __lock_page_killable(struct page *page)
2687a356 893{
48c935ad
KS
894 struct page *page_head = compound_head(page);
895 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
2687a356 896
48c935ad 897 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
74316201 898 bit_wait_io, TASK_KILLABLE);
2687a356 899}
18bc0bbd 900EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 901
9a95f3cf
PC
902/*
903 * Return values:
904 * 1 - page is locked; mmap_sem is still held.
905 * 0 - page is not locked.
906 * mmap_sem has been released (up_read()), unless flags had both
907 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
908 * which case mmap_sem is still held.
909 *
910 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
911 * with the page locked and the mmap_sem unperturbed.
912 */
d065bd81
ML
913int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
914 unsigned int flags)
915{
37b23e05
KM
916 if (flags & FAULT_FLAG_ALLOW_RETRY) {
917 /*
918 * CAUTION! In this case, mmap_sem is not released
919 * even though return 0.
920 */
921 if (flags & FAULT_FLAG_RETRY_NOWAIT)
922 return 0;
923
924 up_read(&mm->mmap_sem);
925 if (flags & FAULT_FLAG_KILLABLE)
926 wait_on_page_locked_killable(page);
927 else
318b275f 928 wait_on_page_locked(page);
d065bd81 929 return 0;
37b23e05
KM
930 } else {
931 if (flags & FAULT_FLAG_KILLABLE) {
932 int ret;
933
934 ret = __lock_page_killable(page);
935 if (ret) {
936 up_read(&mm->mmap_sem);
937 return 0;
938 }
939 } else
940 __lock_page(page);
941 return 1;
d065bd81
ML
942 }
943}
944
e7b563bb
JW
945/**
946 * page_cache_next_hole - find the next hole (not-present entry)
947 * @mapping: mapping
948 * @index: index
949 * @max_scan: maximum range to search
950 *
951 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
952 * lowest indexed hole.
953 *
954 * Returns: the index of the hole if found, otherwise returns an index
955 * outside of the set specified (in which case 'return - index >=
956 * max_scan' will be true). In rare cases of index wrap-around, 0 will
957 * be returned.
958 *
959 * page_cache_next_hole may be called under rcu_read_lock. However,
960 * like radix_tree_gang_lookup, this will not atomically search a
961 * snapshot of the tree at a single point in time. For example, if a
962 * hole is created at index 5, then subsequently a hole is created at
963 * index 10, page_cache_next_hole covering both indexes may return 10
964 * if called under rcu_read_lock.
965 */
966pgoff_t page_cache_next_hole(struct address_space *mapping,
967 pgoff_t index, unsigned long max_scan)
968{
969 unsigned long i;
970
971 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
972 struct page *page;
973
974 page = radix_tree_lookup(&mapping->page_tree, index);
975 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
976 break;
977 index++;
978 if (index == 0)
979 break;
980 }
981
982 return index;
983}
984EXPORT_SYMBOL(page_cache_next_hole);
985
986/**
987 * page_cache_prev_hole - find the prev hole (not-present entry)
988 * @mapping: mapping
989 * @index: index
990 * @max_scan: maximum range to search
991 *
992 * Search backwards in the range [max(index-max_scan+1, 0), index] for
993 * the first hole.
994 *
995 * Returns: the index of the hole if found, otherwise returns an index
996 * outside of the set specified (in which case 'index - return >=
997 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
998 * will be returned.
999 *
1000 * page_cache_prev_hole may be called under rcu_read_lock. However,
1001 * like radix_tree_gang_lookup, this will not atomically search a
1002 * snapshot of the tree at a single point in time. For example, if a
1003 * hole is created at index 10, then subsequently a hole is created at
1004 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1005 * called under rcu_read_lock.
1006 */
1007pgoff_t page_cache_prev_hole(struct address_space *mapping,
1008 pgoff_t index, unsigned long max_scan)
1009{
1010 unsigned long i;
1011
1012 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1013 struct page *page;
1014
1015 page = radix_tree_lookup(&mapping->page_tree, index);
1016 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1017 break;
1018 index--;
1019 if (index == ULONG_MAX)
1020 break;
1021 }
1022
1023 return index;
1024}
1025EXPORT_SYMBOL(page_cache_prev_hole);
1026
485bb99b 1027/**
0cd6144a 1028 * find_get_entry - find and get a page cache entry
485bb99b 1029 * @mapping: the address_space to search
0cd6144a
JW
1030 * @offset: the page cache index
1031 *
1032 * Looks up the page cache slot at @mapping & @offset. If there is a
1033 * page cache page, it is returned with an increased refcount.
485bb99b 1034 *
139b6a6f
JW
1035 * If the slot holds a shadow entry of a previously evicted page, or a
1036 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1037 *
1038 * Otherwise, %NULL is returned.
1da177e4 1039 */
0cd6144a 1040struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1041{
a60637c8 1042 void **pagep;
1da177e4
LT
1043 struct page *page;
1044
a60637c8
NP
1045 rcu_read_lock();
1046repeat:
1047 page = NULL;
1048 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1049 if (pagep) {
1050 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1051 if (unlikely(!page))
1052 goto out;
a2c16d6c 1053 if (radix_tree_exception(page)) {
8079b1c8
HD
1054 if (radix_tree_deref_retry(page))
1055 goto repeat;
1056 /*
139b6a6f
JW
1057 * A shadow entry of a recently evicted page,
1058 * or a swap entry from shmem/tmpfs. Return
1059 * it without attempting to raise page count.
8079b1c8
HD
1060 */
1061 goto out;
a2c16d6c 1062 }
a60637c8
NP
1063 if (!page_cache_get_speculative(page))
1064 goto repeat;
1065
1066 /*
1067 * Has the page moved?
1068 * This is part of the lockless pagecache protocol. See
1069 * include/linux/pagemap.h for details.
1070 */
1071 if (unlikely(page != *pagep)) {
1072 page_cache_release(page);
1073 goto repeat;
1074 }
1075 }
27d20fdd 1076out:
a60637c8
NP
1077 rcu_read_unlock();
1078
1da177e4
LT
1079 return page;
1080}
0cd6144a 1081EXPORT_SYMBOL(find_get_entry);
1da177e4 1082
0cd6144a
JW
1083/**
1084 * find_lock_entry - locate, pin and lock a page cache entry
1085 * @mapping: the address_space to search
1086 * @offset: the page cache index
1087 *
1088 * Looks up the page cache slot at @mapping & @offset. If there is a
1089 * page cache page, it is returned locked and with an increased
1090 * refcount.
1091 *
139b6a6f
JW
1092 * If the slot holds a shadow entry of a previously evicted page, or a
1093 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1094 *
1095 * Otherwise, %NULL is returned.
1096 *
1097 * find_lock_entry() may sleep.
1098 */
1099struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1100{
1101 struct page *page;
1102
1da177e4 1103repeat:
0cd6144a 1104 page = find_get_entry(mapping, offset);
a2c16d6c 1105 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1106 lock_page(page);
1107 /* Has the page been truncated? */
1108 if (unlikely(page->mapping != mapping)) {
1109 unlock_page(page);
1110 page_cache_release(page);
1111 goto repeat;
1da177e4 1112 }
309381fe 1113 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1114 }
1da177e4
LT
1115 return page;
1116}
0cd6144a
JW
1117EXPORT_SYMBOL(find_lock_entry);
1118
1119/**
2457aec6 1120 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1121 * @mapping: the address_space to search
1122 * @offset: the page index
2457aec6 1123 * @fgp_flags: PCG flags
45f87de5 1124 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1125 *
2457aec6 1126 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1127 *
75325189 1128 * PCG flags modify how the page is returned.
0cd6144a 1129 *
2457aec6
MG
1130 * FGP_ACCESSED: the page will be marked accessed
1131 * FGP_LOCK: Page is return locked
1132 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1133 * @gfp_mask and added to the page cache and the VM's LRU
1134 * list. The page is returned locked and with an increased
1135 * refcount. Otherwise, %NULL is returned.
1da177e4 1136 *
2457aec6
MG
1137 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1138 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1139 *
2457aec6 1140 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1141 */
2457aec6 1142struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1143 int fgp_flags, gfp_t gfp_mask)
1da177e4 1144{
eb2be189 1145 struct page *page;
2457aec6 1146
1da177e4 1147repeat:
2457aec6
MG
1148 page = find_get_entry(mapping, offset);
1149 if (radix_tree_exceptional_entry(page))
1150 page = NULL;
1151 if (!page)
1152 goto no_page;
1153
1154 if (fgp_flags & FGP_LOCK) {
1155 if (fgp_flags & FGP_NOWAIT) {
1156 if (!trylock_page(page)) {
1157 page_cache_release(page);
1158 return NULL;
1159 }
1160 } else {
1161 lock_page(page);
1162 }
1163
1164 /* Has the page been truncated? */
1165 if (unlikely(page->mapping != mapping)) {
1166 unlock_page(page);
1167 page_cache_release(page);
1168 goto repeat;
1169 }
1170 VM_BUG_ON_PAGE(page->index != offset, page);
1171 }
1172
1173 if (page && (fgp_flags & FGP_ACCESSED))
1174 mark_page_accessed(page);
1175
1176no_page:
1177 if (!page && (fgp_flags & FGP_CREAT)) {
1178 int err;
1179 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1180 gfp_mask |= __GFP_WRITE;
1181 if (fgp_flags & FGP_NOFS)
1182 gfp_mask &= ~__GFP_FS;
2457aec6 1183
45f87de5 1184 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1185 if (!page)
1186 return NULL;
2457aec6
MG
1187
1188 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1189 fgp_flags |= FGP_LOCK;
1190
eb39d618 1191 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1192 if (fgp_flags & FGP_ACCESSED)
eb39d618 1193 __SetPageReferenced(page);
2457aec6 1194
45f87de5
MH
1195 err = add_to_page_cache_lru(page, mapping, offset,
1196 gfp_mask & GFP_RECLAIM_MASK);
eb2be189
NP
1197 if (unlikely(err)) {
1198 page_cache_release(page);
1199 page = NULL;
1200 if (err == -EEXIST)
1201 goto repeat;
1da177e4 1202 }
1da177e4 1203 }
2457aec6 1204
1da177e4
LT
1205 return page;
1206}
2457aec6 1207EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1208
0cd6144a
JW
1209/**
1210 * find_get_entries - gang pagecache lookup
1211 * @mapping: The address_space to search
1212 * @start: The starting page cache index
1213 * @nr_entries: The maximum number of entries
1214 * @entries: Where the resulting entries are placed
1215 * @indices: The cache indices corresponding to the entries in @entries
1216 *
1217 * find_get_entries() will search for and return a group of up to
1218 * @nr_entries entries in the mapping. The entries are placed at
1219 * @entries. find_get_entries() takes a reference against any actual
1220 * pages it returns.
1221 *
1222 * The search returns a group of mapping-contiguous page cache entries
1223 * with ascending indexes. There may be holes in the indices due to
1224 * not-present pages.
1225 *
139b6a6f
JW
1226 * Any shadow entries of evicted pages, or swap entries from
1227 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1228 *
1229 * find_get_entries() returns the number of pages and shadow entries
1230 * which were found.
1231 */
1232unsigned find_get_entries(struct address_space *mapping,
1233 pgoff_t start, unsigned int nr_entries,
1234 struct page **entries, pgoff_t *indices)
1235{
1236 void **slot;
1237 unsigned int ret = 0;
1238 struct radix_tree_iter iter;
1239
1240 if (!nr_entries)
1241 return 0;
1242
1243 rcu_read_lock();
1244restart:
1245 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1246 struct page *page;
1247repeat:
1248 page = radix_tree_deref_slot(slot);
1249 if (unlikely(!page))
1250 continue;
1251 if (radix_tree_exception(page)) {
1252 if (radix_tree_deref_retry(page))
1253 goto restart;
1254 /*
f9fe48be
RZ
1255 * A shadow entry of a recently evicted page, a swap
1256 * entry from shmem/tmpfs or a DAX entry. Return it
1257 * without attempting to raise page count.
0cd6144a
JW
1258 */
1259 goto export;
1260 }
1261 if (!page_cache_get_speculative(page))
1262 goto repeat;
1263
1264 /* Has the page moved? */
1265 if (unlikely(page != *slot)) {
1266 page_cache_release(page);
1267 goto repeat;
1268 }
1269export:
1270 indices[ret] = iter.index;
1271 entries[ret] = page;
1272 if (++ret == nr_entries)
1273 break;
1274 }
1275 rcu_read_unlock();
1276 return ret;
1277}
1278
1da177e4
LT
1279/**
1280 * find_get_pages - gang pagecache lookup
1281 * @mapping: The address_space to search
1282 * @start: The starting page index
1283 * @nr_pages: The maximum number of pages
1284 * @pages: Where the resulting pages are placed
1285 *
1286 * find_get_pages() will search for and return a group of up to
1287 * @nr_pages pages in the mapping. The pages are placed at @pages.
1288 * find_get_pages() takes a reference against the returned pages.
1289 *
1290 * The search returns a group of mapping-contiguous pages with ascending
1291 * indexes. There may be holes in the indices due to not-present pages.
1292 *
1293 * find_get_pages() returns the number of pages which were found.
1294 */
1295unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1296 unsigned int nr_pages, struct page **pages)
1297{
0fc9d104
KK
1298 struct radix_tree_iter iter;
1299 void **slot;
1300 unsigned ret = 0;
1301
1302 if (unlikely(!nr_pages))
1303 return 0;
a60637c8
NP
1304
1305 rcu_read_lock();
1306restart:
0fc9d104 1307 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1308 struct page *page;
1309repeat:
0fc9d104 1310 page = radix_tree_deref_slot(slot);
a60637c8
NP
1311 if (unlikely(!page))
1312 continue;
9d8aa4ea 1313
a2c16d6c 1314 if (radix_tree_exception(page)) {
8079b1c8
HD
1315 if (radix_tree_deref_retry(page)) {
1316 /*
1317 * Transient condition which can only trigger
1318 * when entry at index 0 moves out of or back
1319 * to root: none yet gotten, safe to restart.
1320 */
0fc9d104 1321 WARN_ON(iter.index);
8079b1c8
HD
1322 goto restart;
1323 }
a2c16d6c 1324 /*
139b6a6f
JW
1325 * A shadow entry of a recently evicted page,
1326 * or a swap entry from shmem/tmpfs. Skip
1327 * over it.
a2c16d6c 1328 */
8079b1c8 1329 continue;
27d20fdd 1330 }
a60637c8
NP
1331
1332 if (!page_cache_get_speculative(page))
1333 goto repeat;
1334
1335 /* Has the page moved? */
0fc9d104 1336 if (unlikely(page != *slot)) {
a60637c8
NP
1337 page_cache_release(page);
1338 goto repeat;
1339 }
1da177e4 1340
a60637c8 1341 pages[ret] = page;
0fc9d104
KK
1342 if (++ret == nr_pages)
1343 break;
a60637c8 1344 }
5b280c0c 1345
a60637c8 1346 rcu_read_unlock();
1da177e4
LT
1347 return ret;
1348}
1349
ebf43500
JA
1350/**
1351 * find_get_pages_contig - gang contiguous pagecache lookup
1352 * @mapping: The address_space to search
1353 * @index: The starting page index
1354 * @nr_pages: The maximum number of pages
1355 * @pages: Where the resulting pages are placed
1356 *
1357 * find_get_pages_contig() works exactly like find_get_pages(), except
1358 * that the returned number of pages are guaranteed to be contiguous.
1359 *
1360 * find_get_pages_contig() returns the number of pages which were found.
1361 */
1362unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1363 unsigned int nr_pages, struct page **pages)
1364{
0fc9d104
KK
1365 struct radix_tree_iter iter;
1366 void **slot;
1367 unsigned int ret = 0;
1368
1369 if (unlikely(!nr_pages))
1370 return 0;
a60637c8
NP
1371
1372 rcu_read_lock();
1373restart:
0fc9d104 1374 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1375 struct page *page;
1376repeat:
0fc9d104
KK
1377 page = radix_tree_deref_slot(slot);
1378 /* The hole, there no reason to continue */
a60637c8 1379 if (unlikely(!page))
0fc9d104 1380 break;
9d8aa4ea 1381
a2c16d6c 1382 if (radix_tree_exception(page)) {
8079b1c8
HD
1383 if (radix_tree_deref_retry(page)) {
1384 /*
1385 * Transient condition which can only trigger
1386 * when entry at index 0 moves out of or back
1387 * to root: none yet gotten, safe to restart.
1388 */
1389 goto restart;
1390 }
a2c16d6c 1391 /*
139b6a6f
JW
1392 * A shadow entry of a recently evicted page,
1393 * or a swap entry from shmem/tmpfs. Stop
1394 * looking for contiguous pages.
a2c16d6c 1395 */
8079b1c8 1396 break;
a2c16d6c 1397 }
ebf43500 1398
a60637c8
NP
1399 if (!page_cache_get_speculative(page))
1400 goto repeat;
1401
1402 /* Has the page moved? */
0fc9d104 1403 if (unlikely(page != *slot)) {
a60637c8
NP
1404 page_cache_release(page);
1405 goto repeat;
1406 }
1407
9cbb4cb2
NP
1408 /*
1409 * must check mapping and index after taking the ref.
1410 * otherwise we can get both false positives and false
1411 * negatives, which is just confusing to the caller.
1412 */
0fc9d104 1413 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1414 page_cache_release(page);
1415 break;
1416 }
1417
a60637c8 1418 pages[ret] = page;
0fc9d104
KK
1419 if (++ret == nr_pages)
1420 break;
ebf43500 1421 }
a60637c8
NP
1422 rcu_read_unlock();
1423 return ret;
ebf43500 1424}
ef71c15c 1425EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1426
485bb99b
RD
1427/**
1428 * find_get_pages_tag - find and return pages that match @tag
1429 * @mapping: the address_space to search
1430 * @index: the starting page index
1431 * @tag: the tag index
1432 * @nr_pages: the maximum number of pages
1433 * @pages: where the resulting pages are placed
1434 *
1da177e4 1435 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1436 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1437 */
1438unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1439 int tag, unsigned int nr_pages, struct page **pages)
1440{
0fc9d104
KK
1441 struct radix_tree_iter iter;
1442 void **slot;
1443 unsigned ret = 0;
1444
1445 if (unlikely(!nr_pages))
1446 return 0;
a60637c8
NP
1447
1448 rcu_read_lock();
1449restart:
0fc9d104
KK
1450 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1451 &iter, *index, tag) {
a60637c8
NP
1452 struct page *page;
1453repeat:
0fc9d104 1454 page = radix_tree_deref_slot(slot);
a60637c8
NP
1455 if (unlikely(!page))
1456 continue;
9d8aa4ea 1457
a2c16d6c 1458 if (radix_tree_exception(page)) {
8079b1c8
HD
1459 if (radix_tree_deref_retry(page)) {
1460 /*
1461 * Transient condition which can only trigger
1462 * when entry at index 0 moves out of or back
1463 * to root: none yet gotten, safe to restart.
1464 */
1465 goto restart;
1466 }
a2c16d6c 1467 /*
139b6a6f
JW
1468 * A shadow entry of a recently evicted page.
1469 *
1470 * Those entries should never be tagged, but
1471 * this tree walk is lockless and the tags are
1472 * looked up in bulk, one radix tree node at a
1473 * time, so there is a sizable window for page
1474 * reclaim to evict a page we saw tagged.
1475 *
1476 * Skip over it.
a2c16d6c 1477 */
139b6a6f 1478 continue;
a2c16d6c 1479 }
a60637c8
NP
1480
1481 if (!page_cache_get_speculative(page))
1482 goto repeat;
1483
1484 /* Has the page moved? */
0fc9d104 1485 if (unlikely(page != *slot)) {
a60637c8
NP
1486 page_cache_release(page);
1487 goto repeat;
1488 }
1489
1490 pages[ret] = page;
0fc9d104
KK
1491 if (++ret == nr_pages)
1492 break;
a60637c8 1493 }
5b280c0c 1494
a60637c8 1495 rcu_read_unlock();
1da177e4 1496
1da177e4
LT
1497 if (ret)
1498 *index = pages[ret - 1]->index + 1;
a60637c8 1499
1da177e4
LT
1500 return ret;
1501}
ef71c15c 1502EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1503
7e7f7749
RZ
1504/**
1505 * find_get_entries_tag - find and return entries that match @tag
1506 * @mapping: the address_space to search
1507 * @start: the starting page cache index
1508 * @tag: the tag index
1509 * @nr_entries: the maximum number of entries
1510 * @entries: where the resulting entries are placed
1511 * @indices: the cache indices corresponding to the entries in @entries
1512 *
1513 * Like find_get_entries, except we only return entries which are tagged with
1514 * @tag.
1515 */
1516unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1517 int tag, unsigned int nr_entries,
1518 struct page **entries, pgoff_t *indices)
1519{
1520 void **slot;
1521 unsigned int ret = 0;
1522 struct radix_tree_iter iter;
1523
1524 if (!nr_entries)
1525 return 0;
1526
1527 rcu_read_lock();
1528restart:
1529 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1530 &iter, start, tag) {
1531 struct page *page;
1532repeat:
1533 page = radix_tree_deref_slot(slot);
1534 if (unlikely(!page))
1535 continue;
1536 if (radix_tree_exception(page)) {
1537 if (radix_tree_deref_retry(page)) {
1538 /*
1539 * Transient condition which can only trigger
1540 * when entry at index 0 moves out of or back
1541 * to root: none yet gotten, safe to restart.
1542 */
1543 goto restart;
1544 }
1545
1546 /*
1547 * A shadow entry of a recently evicted page, a swap
1548 * entry from shmem/tmpfs or a DAX entry. Return it
1549 * without attempting to raise page count.
1550 */
1551 goto export;
1552 }
1553 if (!page_cache_get_speculative(page))
1554 goto repeat;
1555
1556 /* Has the page moved? */
1557 if (unlikely(page != *slot)) {
1558 page_cache_release(page);
1559 goto repeat;
1560 }
1561export:
1562 indices[ret] = iter.index;
1563 entries[ret] = page;
1564 if (++ret == nr_entries)
1565 break;
1566 }
1567 rcu_read_unlock();
1568 return ret;
1569}
1570EXPORT_SYMBOL(find_get_entries_tag);
1571
76d42bd9
WF
1572/*
1573 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1574 * a _large_ part of the i/o request. Imagine the worst scenario:
1575 *
1576 * ---R__________________________________________B__________
1577 * ^ reading here ^ bad block(assume 4k)
1578 *
1579 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1580 * => failing the whole request => read(R) => read(R+1) =>
1581 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1582 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1583 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1584 *
1585 * It is going insane. Fix it by quickly scaling down the readahead size.
1586 */
1587static void shrink_readahead_size_eio(struct file *filp,
1588 struct file_ra_state *ra)
1589{
76d42bd9 1590 ra->ra_pages /= 4;
76d42bd9
WF
1591}
1592
485bb99b 1593/**
36e78914 1594 * do_generic_file_read - generic file read routine
485bb99b
RD
1595 * @filp: the file to read
1596 * @ppos: current file position
6e58e79d
AV
1597 * @iter: data destination
1598 * @written: already copied
485bb99b 1599 *
1da177e4 1600 * This is a generic file read routine, and uses the
485bb99b 1601 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1602 *
1603 * This is really ugly. But the goto's actually try to clarify some
1604 * of the logic when it comes to error handling etc.
1da177e4 1605 */
6e58e79d
AV
1606static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1607 struct iov_iter *iter, ssize_t written)
1da177e4 1608{
36e78914 1609 struct address_space *mapping = filp->f_mapping;
1da177e4 1610 struct inode *inode = mapping->host;
36e78914 1611 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1612 pgoff_t index;
1613 pgoff_t last_index;
1614 pgoff_t prev_index;
1615 unsigned long offset; /* offset into pagecache page */
ec0f1637 1616 unsigned int prev_offset;
6e58e79d 1617 int error = 0;
1da177e4 1618
1da177e4 1619 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1620 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1621 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1622 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1623 offset = *ppos & ~PAGE_CACHE_MASK;
1624
1da177e4
LT
1625 for (;;) {
1626 struct page *page;
57f6b96c 1627 pgoff_t end_index;
a32ea1e1 1628 loff_t isize;
1da177e4
LT
1629 unsigned long nr, ret;
1630
1da177e4 1631 cond_resched();
1da177e4
LT
1632find_page:
1633 page = find_get_page(mapping, index);
3ea89ee8 1634 if (!page) {
cf914a7d 1635 page_cache_sync_readahead(mapping,
7ff81078 1636 ra, filp,
3ea89ee8
FW
1637 index, last_index - index);
1638 page = find_get_page(mapping, index);
1639 if (unlikely(page == NULL))
1640 goto no_cached_page;
1641 }
1642 if (PageReadahead(page)) {
cf914a7d 1643 page_cache_async_readahead(mapping,
7ff81078 1644 ra, filp, page,
3ea89ee8 1645 index, last_index - index);
1da177e4 1646 }
8ab22b9a
HH
1647 if (!PageUptodate(page)) {
1648 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1649 !mapping->a_ops->is_partially_uptodate)
1650 goto page_not_up_to_date;
529ae9aa 1651 if (!trylock_page(page))
8ab22b9a 1652 goto page_not_up_to_date;
8d056cb9
DH
1653 /* Did it get truncated before we got the lock? */
1654 if (!page->mapping)
1655 goto page_not_up_to_date_locked;
8ab22b9a 1656 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1657 offset, iter->count))
8ab22b9a
HH
1658 goto page_not_up_to_date_locked;
1659 unlock_page(page);
1660 }
1da177e4 1661page_ok:
a32ea1e1
N
1662 /*
1663 * i_size must be checked after we know the page is Uptodate.
1664 *
1665 * Checking i_size after the check allows us to calculate
1666 * the correct value for "nr", which means the zero-filled
1667 * part of the page is not copied back to userspace (unless
1668 * another truncate extends the file - this is desired though).
1669 */
1670
1671 isize = i_size_read(inode);
1672 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1673 if (unlikely(!isize || index > end_index)) {
1674 page_cache_release(page);
1675 goto out;
1676 }
1677
1678 /* nr is the maximum number of bytes to copy from this page */
1679 nr = PAGE_CACHE_SIZE;
1680 if (index == end_index) {
1681 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1682 if (nr <= offset) {
1683 page_cache_release(page);
1684 goto out;
1685 }
1686 }
1687 nr = nr - offset;
1da177e4
LT
1688
1689 /* If users can be writing to this page using arbitrary
1690 * virtual addresses, take care about potential aliasing
1691 * before reading the page on the kernel side.
1692 */
1693 if (mapping_writably_mapped(mapping))
1694 flush_dcache_page(page);
1695
1696 /*
ec0f1637
JK
1697 * When a sequential read accesses a page several times,
1698 * only mark it as accessed the first time.
1da177e4 1699 */
ec0f1637 1700 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1701 mark_page_accessed(page);
1702 prev_index = index;
1703
1704 /*
1705 * Ok, we have the page, and it's up-to-date, so
1706 * now we can copy it to user space...
1da177e4 1707 */
6e58e79d
AV
1708
1709 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1710 offset += ret;
1711 index += offset >> PAGE_CACHE_SHIFT;
1712 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1713 prev_offset = offset;
1da177e4
LT
1714
1715 page_cache_release(page);
6e58e79d
AV
1716 written += ret;
1717 if (!iov_iter_count(iter))
1718 goto out;
1719 if (ret < nr) {
1720 error = -EFAULT;
1721 goto out;
1722 }
1723 continue;
1da177e4
LT
1724
1725page_not_up_to_date:
1726 /* Get exclusive access to the page ... */
85462323
ON
1727 error = lock_page_killable(page);
1728 if (unlikely(error))
1729 goto readpage_error;
1da177e4 1730
8ab22b9a 1731page_not_up_to_date_locked:
da6052f7 1732 /* Did it get truncated before we got the lock? */
1da177e4
LT
1733 if (!page->mapping) {
1734 unlock_page(page);
1735 page_cache_release(page);
1736 continue;
1737 }
1738
1739 /* Did somebody else fill it already? */
1740 if (PageUptodate(page)) {
1741 unlock_page(page);
1742 goto page_ok;
1743 }
1744
1745readpage:
91803b49
JM
1746 /*
1747 * A previous I/O error may have been due to temporary
1748 * failures, eg. multipath errors.
1749 * PG_error will be set again if readpage fails.
1750 */
1751 ClearPageError(page);
1da177e4
LT
1752 /* Start the actual read. The read will unlock the page. */
1753 error = mapping->a_ops->readpage(filp, page);
1754
994fc28c
ZB
1755 if (unlikely(error)) {
1756 if (error == AOP_TRUNCATED_PAGE) {
1757 page_cache_release(page);
6e58e79d 1758 error = 0;
994fc28c
ZB
1759 goto find_page;
1760 }
1da177e4 1761 goto readpage_error;
994fc28c 1762 }
1da177e4
LT
1763
1764 if (!PageUptodate(page)) {
85462323
ON
1765 error = lock_page_killable(page);
1766 if (unlikely(error))
1767 goto readpage_error;
1da177e4
LT
1768 if (!PageUptodate(page)) {
1769 if (page->mapping == NULL) {
1770 /*
2ecdc82e 1771 * invalidate_mapping_pages got it
1da177e4
LT
1772 */
1773 unlock_page(page);
1774 page_cache_release(page);
1775 goto find_page;
1776 }
1777 unlock_page(page);
7ff81078 1778 shrink_readahead_size_eio(filp, ra);
85462323
ON
1779 error = -EIO;
1780 goto readpage_error;
1da177e4
LT
1781 }
1782 unlock_page(page);
1783 }
1784
1da177e4
LT
1785 goto page_ok;
1786
1787readpage_error:
1788 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1789 page_cache_release(page);
1790 goto out;
1791
1792no_cached_page:
1793 /*
1794 * Ok, it wasn't cached, so we need to create a new
1795 * page..
1796 */
eb2be189
NP
1797 page = page_cache_alloc_cold(mapping);
1798 if (!page) {
6e58e79d 1799 error = -ENOMEM;
eb2be189 1800 goto out;
1da177e4 1801 }
6afdb859 1802 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1803 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1804 if (error) {
eb2be189 1805 page_cache_release(page);
6e58e79d
AV
1806 if (error == -EEXIST) {
1807 error = 0;
1da177e4 1808 goto find_page;
6e58e79d 1809 }
1da177e4
LT
1810 goto out;
1811 }
1da177e4
LT
1812 goto readpage;
1813 }
1814
1815out:
7ff81078
FW
1816 ra->prev_pos = prev_index;
1817 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1818 ra->prev_pos |= prev_offset;
1da177e4 1819
f4e6b498 1820 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1821 file_accessed(filp);
6e58e79d 1822 return written ? written : error;
1da177e4
LT
1823}
1824
485bb99b 1825/**
6abd2322 1826 * generic_file_read_iter - generic filesystem read routine
485bb99b 1827 * @iocb: kernel I/O control block
6abd2322 1828 * @iter: destination for the data read
485bb99b 1829 *
6abd2322 1830 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1831 * that can use the page cache directly.
1832 */
1833ssize_t
ed978a81 1834generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1835{
ed978a81 1836 struct file *file = iocb->ki_filp;
cb66a7a1 1837 ssize_t retval = 0;
543ade1f 1838 loff_t *ppos = &iocb->ki_pos;
ed978a81 1839 loff_t pos = *ppos;
1da177e4 1840
2ba48ce5 1841 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1842 struct address_space *mapping = file->f_mapping;
1843 struct inode *inode = mapping->host;
1844 size_t count = iov_iter_count(iter);
543ade1f 1845 loff_t size;
1da177e4 1846
1da177e4
LT
1847 if (!count)
1848 goto out; /* skip atime */
1849 size = i_size_read(inode);
9fe55eea 1850 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1851 pos + count - 1);
9fe55eea 1852 if (!retval) {
ed978a81 1853 struct iov_iter data = *iter;
22c6186e 1854 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
9fe55eea 1855 }
d8d3d94b 1856
9fe55eea
SW
1857 if (retval > 0) {
1858 *ppos = pos + retval;
ed978a81 1859 iov_iter_advance(iter, retval);
9fe55eea 1860 }
66f998f6 1861
9fe55eea
SW
1862 /*
1863 * Btrfs can have a short DIO read if we encounter
1864 * compressed extents, so if there was an error, or if
1865 * we've already read everything we wanted to, or if
1866 * there was a short read because we hit EOF, go ahead
1867 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1868 * the rest of the read. Buffered reads will not work for
1869 * DAX files, so don't bother trying.
9fe55eea 1870 */
fbbbad4b
MW
1871 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1872 IS_DAX(inode)) {
ed978a81 1873 file_accessed(file);
9fe55eea 1874 goto out;
0e0bcae3 1875 }
1da177e4
LT
1876 }
1877
ed978a81 1878 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1879out:
1880 return retval;
1881}
ed978a81 1882EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1883
1da177e4 1884#ifdef CONFIG_MMU
485bb99b
RD
1885/**
1886 * page_cache_read - adds requested page to the page cache if not already there
1887 * @file: file to read
1888 * @offset: page index
62eb320a 1889 * @gfp_mask: memory allocation flags
485bb99b 1890 *
1da177e4
LT
1891 * This adds the requested page to the page cache if it isn't already there,
1892 * and schedules an I/O to read in its contents from disk.
1893 */
c20cd45e 1894static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
1895{
1896 struct address_space *mapping = file->f_mapping;
99dadfdd 1897 struct page *page;
994fc28c 1898 int ret;
1da177e4 1899
994fc28c 1900 do {
c20cd45e 1901 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
1902 if (!page)
1903 return -ENOMEM;
1904
c20cd45e 1905 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
1906 if (ret == 0)
1907 ret = mapping->a_ops->readpage(file, page);
1908 else if (ret == -EEXIST)
1909 ret = 0; /* losing race to add is OK */
1da177e4 1910
1da177e4 1911 page_cache_release(page);
1da177e4 1912
994fc28c 1913 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1914
994fc28c 1915 return ret;
1da177e4
LT
1916}
1917
1918#define MMAP_LOTSAMISS (100)
1919
ef00e08e
LT
1920/*
1921 * Synchronous readahead happens when we don't even find
1922 * a page in the page cache at all.
1923 */
1924static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1925 struct file_ra_state *ra,
1926 struct file *file,
1927 pgoff_t offset)
1928{
ef00e08e
LT
1929 struct address_space *mapping = file->f_mapping;
1930
1931 /* If we don't want any read-ahead, don't bother */
64363aad 1932 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1933 return;
275b12bf
WF
1934 if (!ra->ra_pages)
1935 return;
ef00e08e 1936
64363aad 1937 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1938 page_cache_sync_readahead(mapping, ra, file, offset,
1939 ra->ra_pages);
ef00e08e
LT
1940 return;
1941 }
1942
207d04ba
AK
1943 /* Avoid banging the cache line if not needed */
1944 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1945 ra->mmap_miss++;
1946
1947 /*
1948 * Do we miss much more than hit in this file? If so,
1949 * stop bothering with read-ahead. It will only hurt.
1950 */
1951 if (ra->mmap_miss > MMAP_LOTSAMISS)
1952 return;
1953
d30a1100
WF
1954 /*
1955 * mmap read-around
1956 */
600e19af
RG
1957 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1958 ra->size = ra->ra_pages;
1959 ra->async_size = ra->ra_pages / 4;
275b12bf 1960 ra_submit(ra, mapping, file);
ef00e08e
LT
1961}
1962
1963/*
1964 * Asynchronous readahead happens when we find the page and PG_readahead,
1965 * so we want to possibly extend the readahead further..
1966 */
1967static void do_async_mmap_readahead(struct vm_area_struct *vma,
1968 struct file_ra_state *ra,
1969 struct file *file,
1970 struct page *page,
1971 pgoff_t offset)
1972{
1973 struct address_space *mapping = file->f_mapping;
1974
1975 /* If we don't want any read-ahead, don't bother */
64363aad 1976 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1977 return;
1978 if (ra->mmap_miss > 0)
1979 ra->mmap_miss--;
1980 if (PageReadahead(page))
2fad6f5d
WF
1981 page_cache_async_readahead(mapping, ra, file,
1982 page, offset, ra->ra_pages);
ef00e08e
LT
1983}
1984
485bb99b 1985/**
54cb8821 1986 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1987 * @vma: vma in which the fault was taken
1988 * @vmf: struct vm_fault containing details of the fault
485bb99b 1989 *
54cb8821 1990 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1991 * mapped memory region to read in file data during a page fault.
1992 *
1993 * The goto's are kind of ugly, but this streamlines the normal case of having
1994 * it in the page cache, and handles the special cases reasonably without
1995 * having a lot of duplicated code.
9a95f3cf
PC
1996 *
1997 * vma->vm_mm->mmap_sem must be held on entry.
1998 *
1999 * If our return value has VM_FAULT_RETRY set, it's because
2000 * lock_page_or_retry() returned 0.
2001 * The mmap_sem has usually been released in this case.
2002 * See __lock_page_or_retry() for the exception.
2003 *
2004 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2005 * has not been released.
2006 *
2007 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2008 */
d0217ac0 2009int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2010{
2011 int error;
54cb8821 2012 struct file *file = vma->vm_file;
1da177e4
LT
2013 struct address_space *mapping = file->f_mapping;
2014 struct file_ra_state *ra = &file->f_ra;
2015 struct inode *inode = mapping->host;
ef00e08e 2016 pgoff_t offset = vmf->pgoff;
1da177e4 2017 struct page *page;
99e3e53f 2018 loff_t size;
83c54070 2019 int ret = 0;
1da177e4 2020
99e3e53f
KS
2021 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2022 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 2023 return VM_FAULT_SIGBUS;
1da177e4 2024
1da177e4 2025 /*
49426420 2026 * Do we have something in the page cache already?
1da177e4 2027 */
ef00e08e 2028 page = find_get_page(mapping, offset);
45cac65b 2029 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2030 /*
ef00e08e
LT
2031 * We found the page, so try async readahead before
2032 * waiting for the lock.
1da177e4 2033 */
ef00e08e 2034 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 2035 } else if (!page) {
ef00e08e
LT
2036 /* No page in the page cache at all */
2037 do_sync_mmap_readahead(vma, ra, file, offset);
2038 count_vm_event(PGMAJFAULT);
456f998e 2039 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2040 ret = VM_FAULT_MAJOR;
2041retry_find:
b522c94d 2042 page = find_get_page(mapping, offset);
1da177e4
LT
2043 if (!page)
2044 goto no_cached_page;
2045 }
2046
d88c0922
ML
2047 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2048 page_cache_release(page);
d065bd81 2049 return ret | VM_FAULT_RETRY;
d88c0922 2050 }
b522c94d
ML
2051
2052 /* Did it get truncated? */
2053 if (unlikely(page->mapping != mapping)) {
2054 unlock_page(page);
2055 put_page(page);
2056 goto retry_find;
2057 }
309381fe 2058 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2059
1da177e4 2060 /*
d00806b1
NP
2061 * We have a locked page in the page cache, now we need to check
2062 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2063 */
d00806b1 2064 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2065 goto page_not_uptodate;
2066
ef00e08e
LT
2067 /*
2068 * Found the page and have a reference on it.
2069 * We must recheck i_size under page lock.
2070 */
99e3e53f
KS
2071 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2072 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 2073 unlock_page(page);
745ad48e 2074 page_cache_release(page);
5307cc1a 2075 return VM_FAULT_SIGBUS;
d00806b1
NP
2076 }
2077
d0217ac0 2078 vmf->page = page;
83c54070 2079 return ret | VM_FAULT_LOCKED;
1da177e4 2080
1da177e4
LT
2081no_cached_page:
2082 /*
2083 * We're only likely to ever get here if MADV_RANDOM is in
2084 * effect.
2085 */
c20cd45e 2086 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2087
2088 /*
2089 * The page we want has now been added to the page cache.
2090 * In the unlikely event that someone removed it in the
2091 * meantime, we'll just come back here and read it again.
2092 */
2093 if (error >= 0)
2094 goto retry_find;
2095
2096 /*
2097 * An error return from page_cache_read can result if the
2098 * system is low on memory, or a problem occurs while trying
2099 * to schedule I/O.
2100 */
2101 if (error == -ENOMEM)
d0217ac0
NP
2102 return VM_FAULT_OOM;
2103 return VM_FAULT_SIGBUS;
1da177e4
LT
2104
2105page_not_uptodate:
1da177e4
LT
2106 /*
2107 * Umm, take care of errors if the page isn't up-to-date.
2108 * Try to re-read it _once_. We do this synchronously,
2109 * because there really aren't any performance issues here
2110 * and we need to check for errors.
2111 */
1da177e4 2112 ClearPageError(page);
994fc28c 2113 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2114 if (!error) {
2115 wait_on_page_locked(page);
2116 if (!PageUptodate(page))
2117 error = -EIO;
2118 }
d00806b1
NP
2119 page_cache_release(page);
2120
2121 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2122 goto retry_find;
1da177e4 2123
d00806b1 2124 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2125 shrink_readahead_size_eio(file, ra);
d0217ac0 2126 return VM_FAULT_SIGBUS;
54cb8821
NP
2127}
2128EXPORT_SYMBOL(filemap_fault);
2129
f1820361
KS
2130void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2131{
2132 struct radix_tree_iter iter;
2133 void **slot;
2134 struct file *file = vma->vm_file;
2135 struct address_space *mapping = file->f_mapping;
2136 loff_t size;
2137 struct page *page;
2138 unsigned long address = (unsigned long) vmf->virtual_address;
2139 unsigned long addr;
2140 pte_t *pte;
2141
2142 rcu_read_lock();
2143 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2144 if (iter.index > vmf->max_pgoff)
2145 break;
2146repeat:
2147 page = radix_tree_deref_slot(slot);
2148 if (unlikely(!page))
2149 goto next;
2150 if (radix_tree_exception(page)) {
2151 if (radix_tree_deref_retry(page))
2152 break;
2153 else
2154 goto next;
2155 }
2156
2157 if (!page_cache_get_speculative(page))
2158 goto repeat;
2159
2160 /* Has the page moved? */
2161 if (unlikely(page != *slot)) {
2162 page_cache_release(page);
2163 goto repeat;
2164 }
2165
2166 if (!PageUptodate(page) ||
2167 PageReadahead(page) ||
2168 PageHWPoison(page))
2169 goto skip;
2170 if (!trylock_page(page))
2171 goto skip;
2172
2173 if (page->mapping != mapping || !PageUptodate(page))
2174 goto unlock;
2175
99e3e53f
KS
2176 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2177 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2178 goto unlock;
2179
2180 pte = vmf->pte + page->index - vmf->pgoff;
2181 if (!pte_none(*pte))
2182 goto unlock;
2183
2184 if (file->f_ra.mmap_miss > 0)
2185 file->f_ra.mmap_miss--;
2186 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2187 do_set_pte(vma, addr, page, pte, false, false);
2188 unlock_page(page);
2189 goto next;
2190unlock:
2191 unlock_page(page);
2192skip:
2193 page_cache_release(page);
2194next:
2195 if (iter.index == vmf->max_pgoff)
2196 break;
2197 }
2198 rcu_read_unlock();
2199}
2200EXPORT_SYMBOL(filemap_map_pages);
2201
4fcf1c62
JK
2202int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2203{
2204 struct page *page = vmf->page;
496ad9aa 2205 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2206 int ret = VM_FAULT_LOCKED;
2207
14da9200 2208 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2209 file_update_time(vma->vm_file);
2210 lock_page(page);
2211 if (page->mapping != inode->i_mapping) {
2212 unlock_page(page);
2213 ret = VM_FAULT_NOPAGE;
2214 goto out;
2215 }
14da9200
JK
2216 /*
2217 * We mark the page dirty already here so that when freeze is in
2218 * progress, we are guaranteed that writeback during freezing will
2219 * see the dirty page and writeprotect it again.
2220 */
2221 set_page_dirty(page);
1d1d1a76 2222 wait_for_stable_page(page);
4fcf1c62 2223out:
14da9200 2224 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2225 return ret;
2226}
2227EXPORT_SYMBOL(filemap_page_mkwrite);
2228
f0f37e2f 2229const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2230 .fault = filemap_fault,
f1820361 2231 .map_pages = filemap_map_pages,
4fcf1c62 2232 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2233};
2234
2235/* This is used for a general mmap of a disk file */
2236
2237int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2238{
2239 struct address_space *mapping = file->f_mapping;
2240
2241 if (!mapping->a_ops->readpage)
2242 return -ENOEXEC;
2243 file_accessed(file);
2244 vma->vm_ops = &generic_file_vm_ops;
2245 return 0;
2246}
1da177e4
LT
2247
2248/*
2249 * This is for filesystems which do not implement ->writepage.
2250 */
2251int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2252{
2253 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2254 return -EINVAL;
2255 return generic_file_mmap(file, vma);
2256}
2257#else
2258int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2259{
2260 return -ENOSYS;
2261}
2262int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2263{
2264 return -ENOSYS;
2265}
2266#endif /* CONFIG_MMU */
2267
2268EXPORT_SYMBOL(generic_file_mmap);
2269EXPORT_SYMBOL(generic_file_readonly_mmap);
2270
67f9fd91
SL
2271static struct page *wait_on_page_read(struct page *page)
2272{
2273 if (!IS_ERR(page)) {
2274 wait_on_page_locked(page);
2275 if (!PageUptodate(page)) {
2276 page_cache_release(page);
2277 page = ERR_PTR(-EIO);
2278 }
2279 }
2280 return page;
2281}
2282
6fe6900e 2283static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2284 pgoff_t index,
5e5358e7 2285 int (*filler)(void *, struct page *),
0531b2aa
LT
2286 void *data,
2287 gfp_t gfp)
1da177e4 2288{
eb2be189 2289 struct page *page;
1da177e4
LT
2290 int err;
2291repeat:
2292 page = find_get_page(mapping, index);
2293 if (!page) {
0531b2aa 2294 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2295 if (!page)
2296 return ERR_PTR(-ENOMEM);
e6f67b8c 2297 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2298 if (unlikely(err)) {
2299 page_cache_release(page);
2300 if (err == -EEXIST)
2301 goto repeat;
1da177e4 2302 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2303 return ERR_PTR(err);
2304 }
1da177e4
LT
2305 err = filler(data, page);
2306 if (err < 0) {
2307 page_cache_release(page);
2308 page = ERR_PTR(err);
67f9fd91
SL
2309 } else {
2310 page = wait_on_page_read(page);
1da177e4
LT
2311 }
2312 }
1da177e4
LT
2313 return page;
2314}
2315
0531b2aa 2316static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2317 pgoff_t index,
5e5358e7 2318 int (*filler)(void *, struct page *),
0531b2aa
LT
2319 void *data,
2320 gfp_t gfp)
2321
1da177e4
LT
2322{
2323 struct page *page;
2324 int err;
2325
2326retry:
0531b2aa 2327 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2328 if (IS_ERR(page))
c855ff37 2329 return page;
1da177e4
LT
2330 if (PageUptodate(page))
2331 goto out;
2332
2333 lock_page(page);
2334 if (!page->mapping) {
2335 unlock_page(page);
2336 page_cache_release(page);
2337 goto retry;
2338 }
2339 if (PageUptodate(page)) {
2340 unlock_page(page);
2341 goto out;
2342 }
2343 err = filler(data, page);
2344 if (err < 0) {
2345 page_cache_release(page);
c855ff37 2346 return ERR_PTR(err);
67f9fd91
SL
2347 } else {
2348 page = wait_on_page_read(page);
2349 if (IS_ERR(page))
2350 return page;
1da177e4 2351 }
c855ff37 2352out:
6fe6900e
NP
2353 mark_page_accessed(page);
2354 return page;
2355}
0531b2aa
LT
2356
2357/**
67f9fd91 2358 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2359 * @mapping: the page's address_space
2360 * @index: the page index
2361 * @filler: function to perform the read
5e5358e7 2362 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2363 *
0531b2aa 2364 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2365 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2366 *
2367 * If the page does not get brought uptodate, return -EIO.
2368 */
67f9fd91 2369struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2370 pgoff_t index,
5e5358e7 2371 int (*filler)(void *, struct page *),
0531b2aa
LT
2372 void *data)
2373{
2374 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2375}
67f9fd91 2376EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2377
2378/**
2379 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2380 * @mapping: the page's address_space
2381 * @index: the page index
2382 * @gfp: the page allocator flags to use if allocating
2383 *
2384 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2385 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2386 *
2387 * If the page does not get brought uptodate, return -EIO.
2388 */
2389struct page *read_cache_page_gfp(struct address_space *mapping,
2390 pgoff_t index,
2391 gfp_t gfp)
2392{
2393 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2394
67f9fd91 2395 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2396}
2397EXPORT_SYMBOL(read_cache_page_gfp);
2398
1da177e4
LT
2399/*
2400 * Performs necessary checks before doing a write
2401 *
485bb99b 2402 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2403 * Returns appropriate error code that caller should return or
2404 * zero in case that write should be allowed.
2405 */
3309dd04 2406inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2407{
3309dd04 2408 struct file *file = iocb->ki_filp;
1da177e4 2409 struct inode *inode = file->f_mapping->host;
59e99e5b 2410 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2411 loff_t pos;
1da177e4 2412
3309dd04
AV
2413 if (!iov_iter_count(from))
2414 return 0;
1da177e4 2415
0fa6b005 2416 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2417 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2418 iocb->ki_pos = i_size_read(inode);
1da177e4 2419
3309dd04 2420 pos = iocb->ki_pos;
1da177e4 2421
0fa6b005 2422 if (limit != RLIM_INFINITY) {
3309dd04 2423 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2424 send_sig(SIGXFSZ, current, 0);
2425 return -EFBIG;
1da177e4 2426 }
3309dd04 2427 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2428 }
2429
2430 /*
2431 * LFS rule
2432 */
3309dd04 2433 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2434 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2435 if (pos >= MAX_NON_LFS)
1da177e4 2436 return -EFBIG;
3309dd04 2437 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2438 }
2439
2440 /*
2441 * Are we about to exceed the fs block limit ?
2442 *
2443 * If we have written data it becomes a short write. If we have
2444 * exceeded without writing data we send a signal and return EFBIG.
2445 * Linus frestrict idea will clean these up nicely..
2446 */
3309dd04
AV
2447 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2448 return -EFBIG;
1da177e4 2449
3309dd04
AV
2450 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2451 return iov_iter_count(from);
1da177e4
LT
2452}
2453EXPORT_SYMBOL(generic_write_checks);
2454
afddba49
NP
2455int pagecache_write_begin(struct file *file, struct address_space *mapping,
2456 loff_t pos, unsigned len, unsigned flags,
2457 struct page **pagep, void **fsdata)
2458{
2459 const struct address_space_operations *aops = mapping->a_ops;
2460
4e02ed4b 2461 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2462 pagep, fsdata);
afddba49
NP
2463}
2464EXPORT_SYMBOL(pagecache_write_begin);
2465
2466int pagecache_write_end(struct file *file, struct address_space *mapping,
2467 loff_t pos, unsigned len, unsigned copied,
2468 struct page *page, void *fsdata)
2469{
2470 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2471
4e02ed4b 2472 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2473}
2474EXPORT_SYMBOL(pagecache_write_end);
2475
1da177e4 2476ssize_t
0c949334 2477generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2478{
2479 struct file *file = iocb->ki_filp;
2480 struct address_space *mapping = file->f_mapping;
2481 struct inode *inode = mapping->host;
2482 ssize_t written;
a969e903
CH
2483 size_t write_len;
2484 pgoff_t end;
26978b8b 2485 struct iov_iter data;
1da177e4 2486
0c949334 2487 write_len = iov_iter_count(from);
a969e903 2488 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2489
48b47c56 2490 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2491 if (written)
2492 goto out;
2493
2494 /*
2495 * After a write we want buffered reads to be sure to go to disk to get
2496 * the new data. We invalidate clean cached page from the region we're
2497 * about to write. We do this *before* the write so that we can return
6ccfa806 2498 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2499 */
2500 if (mapping->nrpages) {
2501 written = invalidate_inode_pages2_range(mapping,
2502 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2503 /*
2504 * If a page can not be invalidated, return 0 to fall back
2505 * to buffered write.
2506 */
2507 if (written) {
2508 if (written == -EBUSY)
2509 return 0;
a969e903 2510 goto out;
6ccfa806 2511 }
a969e903
CH
2512 }
2513
26978b8b 2514 data = *from;
22c6186e 2515 written = mapping->a_ops->direct_IO(iocb, &data, pos);
a969e903
CH
2516
2517 /*
2518 * Finally, try again to invalidate clean pages which might have been
2519 * cached by non-direct readahead, or faulted in by get_user_pages()
2520 * if the source of the write was an mmap'ed region of the file
2521 * we're writing. Either one is a pretty crazy thing to do,
2522 * so we don't support it 100%. If this invalidation
2523 * fails, tough, the write still worked...
2524 */
2525 if (mapping->nrpages) {
2526 invalidate_inode_pages2_range(mapping,
2527 pos >> PAGE_CACHE_SHIFT, end);
2528 }
2529
1da177e4 2530 if (written > 0) {
0116651c 2531 pos += written;
f8579f86 2532 iov_iter_advance(from, written);
0116651c
NK
2533 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2534 i_size_write(inode, pos);
1da177e4
LT
2535 mark_inode_dirty(inode);
2536 }
5cb6c6c7 2537 iocb->ki_pos = pos;
1da177e4 2538 }
a969e903 2539out:
1da177e4
LT
2540 return written;
2541}
2542EXPORT_SYMBOL(generic_file_direct_write);
2543
eb2be189
NP
2544/*
2545 * Find or create a page at the given pagecache position. Return the locked
2546 * page. This function is specifically for buffered writes.
2547 */
54566b2c
NP
2548struct page *grab_cache_page_write_begin(struct address_space *mapping,
2549 pgoff_t index, unsigned flags)
eb2be189 2550{
eb2be189 2551 struct page *page;
2457aec6 2552 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2553
54566b2c 2554 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2555 fgp_flags |= FGP_NOFS;
2556
2557 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2558 mapping_gfp_mask(mapping));
c585a267 2559 if (page)
2457aec6 2560 wait_for_stable_page(page);
eb2be189 2561
eb2be189
NP
2562 return page;
2563}
54566b2c 2564EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2565
3b93f911 2566ssize_t generic_perform_write(struct file *file,
afddba49
NP
2567 struct iov_iter *i, loff_t pos)
2568{
2569 struct address_space *mapping = file->f_mapping;
2570 const struct address_space_operations *a_ops = mapping->a_ops;
2571 long status = 0;
2572 ssize_t written = 0;
674b892e
NP
2573 unsigned int flags = 0;
2574
2575 /*
2576 * Copies from kernel address space cannot fail (NFSD is a big user).
2577 */
777eda2c 2578 if (!iter_is_iovec(i))
674b892e 2579 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2580
2581 do {
2582 struct page *page;
afddba49
NP
2583 unsigned long offset; /* Offset into pagecache page */
2584 unsigned long bytes; /* Bytes to write to page */
2585 size_t copied; /* Bytes copied from user */
2586 void *fsdata;
2587
2588 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2589 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2590 iov_iter_count(i));
2591
2592again:
00a3d660
LT
2593 /*
2594 * Bring in the user page that we will copy from _first_.
2595 * Otherwise there's a nasty deadlock on copying from the
2596 * same page as we're writing to, without it being marked
2597 * up-to-date.
2598 *
2599 * Not only is this an optimisation, but it is also required
2600 * to check that the address is actually valid, when atomic
2601 * usercopies are used, below.
2602 */
2603 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2604 status = -EFAULT;
2605 break;
2606 }
2607
296291cd
JK
2608 if (fatal_signal_pending(current)) {
2609 status = -EINTR;
2610 break;
2611 }
2612
674b892e 2613 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2614 &page, &fsdata);
2457aec6 2615 if (unlikely(status < 0))
afddba49
NP
2616 break;
2617
931e80e4 2618 if (mapping_writably_mapped(mapping))
2619 flush_dcache_page(page);
00a3d660 2620
afddba49 2621 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2622 flush_dcache_page(page);
2623
2624 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2625 page, fsdata);
2626 if (unlikely(status < 0))
2627 break;
2628 copied = status;
2629
2630 cond_resched();
2631
124d3b70 2632 iov_iter_advance(i, copied);
afddba49
NP
2633 if (unlikely(copied == 0)) {
2634 /*
2635 * If we were unable to copy any data at all, we must
2636 * fall back to a single segment length write.
2637 *
2638 * If we didn't fallback here, we could livelock
2639 * because not all segments in the iov can be copied at
2640 * once without a pagefault.
2641 */
2642 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2643 iov_iter_single_seg_count(i));
2644 goto again;
2645 }
afddba49
NP
2646 pos += copied;
2647 written += copied;
2648
2649 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2650 } while (iov_iter_count(i));
2651
2652 return written ? written : status;
2653}
3b93f911 2654EXPORT_SYMBOL(generic_perform_write);
1da177e4 2655
e4dd9de3 2656/**
8174202b 2657 * __generic_file_write_iter - write data to a file
e4dd9de3 2658 * @iocb: IO state structure (file, offset, etc.)
8174202b 2659 * @from: iov_iter with data to write
e4dd9de3
JK
2660 *
2661 * This function does all the work needed for actually writing data to a
2662 * file. It does all basic checks, removes SUID from the file, updates
2663 * modification times and calls proper subroutines depending on whether we
2664 * do direct IO or a standard buffered write.
2665 *
2666 * It expects i_mutex to be grabbed unless we work on a block device or similar
2667 * object which does not need locking at all.
2668 *
2669 * This function does *not* take care of syncing data in case of O_SYNC write.
2670 * A caller has to handle it. This is mainly due to the fact that we want to
2671 * avoid syncing under i_mutex.
2672 */
8174202b 2673ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2674{
2675 struct file *file = iocb->ki_filp;
fb5527e6 2676 struct address_space * mapping = file->f_mapping;
1da177e4 2677 struct inode *inode = mapping->host;
3b93f911 2678 ssize_t written = 0;
1da177e4 2679 ssize_t err;
3b93f911 2680 ssize_t status;
1da177e4 2681
1da177e4 2682 /* We can write back this queue in page reclaim */
de1414a6 2683 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2684 err = file_remove_privs(file);
1da177e4
LT
2685 if (err)
2686 goto out;
2687
c3b2da31
JB
2688 err = file_update_time(file);
2689 if (err)
2690 goto out;
1da177e4 2691
2ba48ce5 2692 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2693 loff_t pos, endbyte;
fb5527e6 2694
0b8def9d 2695 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
1da177e4 2696 /*
fbbbad4b
MW
2697 * If the write stopped short of completing, fall back to
2698 * buffered writes. Some filesystems do this for writes to
2699 * holes, for example. For DAX files, a buffered write will
2700 * not succeed (even if it did, DAX does not handle dirty
2701 * page-cache pages correctly).
1da177e4 2702 */
0b8def9d 2703 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2704 goto out;
2705
0b8def9d 2706 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2707 /*
3b93f911 2708 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2709 * then we want to return the number of bytes which were
2710 * direct-written, or the error code if that was zero. Note
2711 * that this differs from normal direct-io semantics, which
2712 * will return -EFOO even if some bytes were written.
2713 */
60bb4529 2714 if (unlikely(status < 0)) {
3b93f911 2715 err = status;
fb5527e6
JM
2716 goto out;
2717 }
fb5527e6
JM
2718 /*
2719 * We need to ensure that the page cache pages are written to
2720 * disk and invalidated to preserve the expected O_DIRECT
2721 * semantics.
2722 */
3b93f911 2723 endbyte = pos + status - 1;
0b8def9d 2724 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2725 if (err == 0) {
0b8def9d 2726 iocb->ki_pos = endbyte + 1;
3b93f911 2727 written += status;
fb5527e6
JM
2728 invalidate_mapping_pages(mapping,
2729 pos >> PAGE_CACHE_SHIFT,
2730 endbyte >> PAGE_CACHE_SHIFT);
2731 } else {
2732 /*
2733 * We don't know how much we wrote, so just return
2734 * the number of bytes which were direct-written
2735 */
2736 }
2737 } else {
0b8def9d
AV
2738 written = generic_perform_write(file, from, iocb->ki_pos);
2739 if (likely(written > 0))
2740 iocb->ki_pos += written;
fb5527e6 2741 }
1da177e4
LT
2742out:
2743 current->backing_dev_info = NULL;
2744 return written ? written : err;
2745}
8174202b 2746EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2747
e4dd9de3 2748/**
8174202b 2749 * generic_file_write_iter - write data to a file
e4dd9de3 2750 * @iocb: IO state structure
8174202b 2751 * @from: iov_iter with data to write
e4dd9de3 2752 *
8174202b 2753 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2754 * filesystems. It takes care of syncing the file in case of O_SYNC file
2755 * and acquires i_mutex as needed.
2756 */
8174202b 2757ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2758{
2759 struct file *file = iocb->ki_filp;
148f948b 2760 struct inode *inode = file->f_mapping->host;
1da177e4 2761 ssize_t ret;
1da177e4 2762
5955102c 2763 inode_lock(inode);
3309dd04
AV
2764 ret = generic_write_checks(iocb, from);
2765 if (ret > 0)
5f380c7f 2766 ret = __generic_file_write_iter(iocb, from);
5955102c 2767 inode_unlock(inode);
1da177e4 2768
02afc27f 2769 if (ret > 0) {
1da177e4
LT
2770 ssize_t err;
2771
d311d79d
AV
2772 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2773 if (err < 0)
1da177e4
LT
2774 ret = err;
2775 }
2776 return ret;
2777}
8174202b 2778EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2779
cf9a2ae8
DH
2780/**
2781 * try_to_release_page() - release old fs-specific metadata on a page
2782 *
2783 * @page: the page which the kernel is trying to free
2784 * @gfp_mask: memory allocation flags (and I/O mode)
2785 *
2786 * The address_space is to try to release any data against the page
2787 * (presumably at page->private). If the release was successful, return `1'.
2788 * Otherwise return zero.
2789 *
266cf658
DH
2790 * This may also be called if PG_fscache is set on a page, indicating that the
2791 * page is known to the local caching routines.
2792 *
cf9a2ae8 2793 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 2794 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 2795 *
cf9a2ae8
DH
2796 */
2797int try_to_release_page(struct page *page, gfp_t gfp_mask)
2798{
2799 struct address_space * const mapping = page->mapping;
2800
2801 BUG_ON(!PageLocked(page));
2802 if (PageWriteback(page))
2803 return 0;
2804
2805 if (mapping && mapping->a_ops->releasepage)
2806 return mapping->a_ops->releasepage(page, gfp_mask);
2807 return try_to_free_buffers(page);
2808}
2809
2810EXPORT_SYMBOL(try_to_release_page);
This page took 1.435466 seconds and 5 git commands to generate.