mm/ksm.c: use list_for_each_entry_safe
[deliverable/linux.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
4ca3a69b 36#include <linux/hashtable.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
90bd6fd3 39#include <linux/numa.h>
f8af4da3 40
31dbd01f 41#include <asm/tlbflush.h>
73848b46 42#include "internal.h"
31dbd01f 43
e850dcf5
HD
44#ifdef CONFIG_NUMA
45#define NUMA(x) (x)
46#define DO_NUMA(x) do { (x); } while (0)
47#else
48#define NUMA(x) (0)
49#define DO_NUMA(x) do { } while (0)
50#endif
51
31dbd01f
IE
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
6514d511 105 struct rmap_item *rmap_list;
31dbd01f
IE
106 struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
6514d511 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
6514d511 121 struct rmap_item **rmap_list;
31dbd01f
IE
122 unsigned long seqnr;
123};
124
7b6ba2c7
HD
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
4146d2d6
HD
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 130 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6
HD
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
133 */
134struct stable_node {
4146d2d6
HD
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
7b6ba2c7 142 struct hlist_head hlist;
62b61f61 143 unsigned long kpfn;
4146d2d6
HD
144#ifdef CONFIG_NUMA
145 int nid;
146#endif
7b6ba2c7
HD
147};
148
31dbd01f
IE
149/**
150 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
160 */
161struct rmap_item {
6514d511 162 struct rmap_item *rmap_list;
bc56620b
HD
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165#ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167#endif
168 };
31dbd01f
IE
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 171 unsigned int oldchecksum; /* when unstable */
31dbd01f 172 union {
7b6ba2c7
HD
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
31dbd01f
IE
178 };
179};
180
181#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
182#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
184
185/* The stable and unstable tree heads */
ef53d16c
HD
186static struct rb_root one_stable_tree[1] = { RB_ROOT };
187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188static struct rb_root *root_stable_tree = one_stable_tree;
189static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 190
4146d2d6
HD
191/* Recently migrated nodes of stable tree, pending proper placement */
192static LIST_HEAD(migrate_nodes);
193
4ca3a69b
SL
194#define MM_SLOTS_HASH_BITS 10
195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
196
197static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199};
200static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202};
203
204static struct kmem_cache *rmap_item_cache;
7b6ba2c7 205static struct kmem_cache *stable_node_cache;
31dbd01f
IE
206static struct kmem_cache *mm_slot_cache;
207
208/* The number of nodes in the stable tree */
b4028260 209static unsigned long ksm_pages_shared;
31dbd01f 210
e178dfde 211/* The number of page slots additionally sharing those nodes */
b4028260 212static unsigned long ksm_pages_sharing;
31dbd01f 213
473b0ce4
HD
214/* The number of nodes in the unstable tree */
215static unsigned long ksm_pages_unshared;
216
217/* The number of rmap_items in use: to calculate pages_volatile */
218static unsigned long ksm_rmap_items;
219
31dbd01f 220/* Number of pages ksmd should scan in one batch */
2c6854fd 221static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
222
223/* Milliseconds ksmd should sleep between batches */
2ffd8679 224static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 225
e850dcf5 226#ifdef CONFIG_NUMA
90bd6fd3
PH
227/* Zeroed when merging across nodes is not allowed */
228static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 229static int ksm_nr_node_ids = 1;
e850dcf5
HD
230#else
231#define ksm_merge_across_nodes 1U
ef53d16c 232#define ksm_nr_node_ids 1
e850dcf5 233#endif
90bd6fd3 234
31dbd01f
IE
235#define KSM_RUN_STOP 0
236#define KSM_RUN_MERGE 1
237#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
238#define KSM_RUN_OFFLINE 4
239static unsigned long ksm_run = KSM_RUN_STOP;
240static void wait_while_offlining(void);
31dbd01f
IE
241
242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243static DEFINE_MUTEX(ksm_thread_mutex);
244static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
249
250static int __init ksm_slab_init(void)
251{
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
255
7b6ba2c7
HD
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
259
31dbd01f
IE
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
7b6ba2c7 262 goto out_free2;
31dbd01f
IE
263
264 return 0;
265
7b6ba2c7
HD
266out_free2:
267 kmem_cache_destroy(stable_node_cache);
268out_free1:
31dbd01f
IE
269 kmem_cache_destroy(rmap_item_cache);
270out:
271 return -ENOMEM;
272}
273
274static void __init ksm_slab_free(void)
275{
276 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 277 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
280}
281
282static inline struct rmap_item *alloc_rmap_item(void)
283{
473b0ce4
HD
284 struct rmap_item *rmap_item;
285
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 if (rmap_item)
288 ksm_rmap_items++;
289 return rmap_item;
31dbd01f
IE
290}
291
292static inline void free_rmap_item(struct rmap_item *rmap_item)
293{
473b0ce4 294 ksm_rmap_items--;
31dbd01f
IE
295 rmap_item->mm = NULL; /* debug safety */
296 kmem_cache_free(rmap_item_cache, rmap_item);
297}
298
7b6ba2c7
HD
299static inline struct stable_node *alloc_stable_node(void)
300{
301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302}
303
304static inline void free_stable_node(struct stable_node *stable_node)
305{
306 kmem_cache_free(stable_node_cache, stable_node);
307}
308
31dbd01f
IE
309static inline struct mm_slot *alloc_mm_slot(void)
310{
311 if (!mm_slot_cache) /* initialization failed */
312 return NULL;
313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314}
315
316static inline void free_mm_slot(struct mm_slot *mm_slot)
317{
318 kmem_cache_free(mm_slot_cache, mm_slot);
319}
320
31dbd01f
IE
321static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322{
4ca3a69b
SL
323 struct mm_slot *slot;
324
b67bfe0d 325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
326 if (slot->mm == mm)
327 return slot;
31dbd01f 328
31dbd01f
IE
329 return NULL;
330}
331
332static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 struct mm_slot *mm_slot)
334{
31dbd01f 335 mm_slot->mm = mm;
4ca3a69b 336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
337}
338
a913e182
HD
339/*
340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341 * page tables after it has passed through ksm_exit() - which, if necessary,
342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
343 * a special flag: they can just back out as soon as mm_users goes to zero.
344 * ksm_test_exit() is used throughout to make this test for exit: in some
345 * places for correctness, in some places just to avoid unnecessary work.
346 */
347static inline bool ksm_test_exit(struct mm_struct *mm)
348{
349 return atomic_read(&mm->mm_users) == 0;
350}
351
31dbd01f
IE
352/*
353 * We use break_ksm to break COW on a ksm page: it's a stripped down
354 *
355 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356 * put_page(page);
357 *
358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359 * in case the application has unmapped and remapped mm,addr meanwhile.
360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362 */
d952b791 363static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
364{
365 struct page *page;
d952b791 366 int ret = 0;
31dbd01f
IE
367
368 do {
369 cond_resched();
5117b3b8 370 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
22eccdd7 371 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
372 break;
373 if (PageKsm(page))
374 ret = handle_mm_fault(vma->vm_mm, vma, addr,
375 FAULT_FLAG_WRITE);
376 else
377 ret = VM_FAULT_WRITE;
378 put_page(page);
33692f27 379 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
380 /*
381 * We must loop because handle_mm_fault() may back out if there's
382 * any difficulty e.g. if pte accessed bit gets updated concurrently.
383 *
384 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385 * COW has been broken, even if the vma does not permit VM_WRITE;
386 * but note that a concurrent fault might break PageKsm for us.
387 *
388 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389 * backing file, which also invalidates anonymous pages: that's
390 * okay, that truncation will have unmapped the PageKsm for us.
391 *
392 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394 * current task has TIF_MEMDIE set, and will be OOM killed on return
395 * to user; and ksmd, having no mm, would never be chosen for that.
396 *
397 * But if the mm is in a limited mem_cgroup, then the fault may fail
398 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399 * even ksmd can fail in this way - though it's usually breaking ksm
400 * just to undo a merge it made a moment before, so unlikely to oom.
401 *
402 * That's a pity: we might therefore have more kernel pages allocated
403 * than we're counting as nodes in the stable tree; but ksm_do_scan
404 * will retry to break_cow on each pass, so should recover the page
405 * in due course. The important thing is to not let VM_MERGEABLE
406 * be cleared while any such pages might remain in the area.
407 */
408 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
409}
410
ef694222
BL
411static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412 unsigned long addr)
413{
414 struct vm_area_struct *vma;
415 if (ksm_test_exit(mm))
416 return NULL;
417 vma = find_vma(mm, addr);
418 if (!vma || vma->vm_start > addr)
419 return NULL;
420 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421 return NULL;
422 return vma;
423}
424
8dd3557a 425static void break_cow(struct rmap_item *rmap_item)
31dbd01f 426{
8dd3557a
HD
427 struct mm_struct *mm = rmap_item->mm;
428 unsigned long addr = rmap_item->address;
31dbd01f
IE
429 struct vm_area_struct *vma;
430
4035c07a
HD
431 /*
432 * It is not an accident that whenever we want to break COW
433 * to undo, we also need to drop a reference to the anon_vma.
434 */
9e60109f 435 put_anon_vma(rmap_item->anon_vma);
4035c07a 436
81464e30 437 down_read(&mm->mmap_sem);
ef694222
BL
438 vma = find_mergeable_vma(mm, addr);
439 if (vma)
440 break_ksm(vma, addr);
31dbd01f
IE
441 up_read(&mm->mmap_sem);
442}
443
29ad768c
AA
444static struct page *page_trans_compound_anon(struct page *page)
445{
446 if (PageTransCompound(page)) {
668f9abb 447 struct page *head = compound_head(page);
29ad768c 448 /*
22e5c47e
AA
449 * head may actually be splitted and freed from under
450 * us but it's ok here.
29ad768c 451 */
29ad768c
AA
452 if (PageAnon(head))
453 return head;
454 }
455 return NULL;
456}
457
31dbd01f
IE
458static struct page *get_mergeable_page(struct rmap_item *rmap_item)
459{
460 struct mm_struct *mm = rmap_item->mm;
461 unsigned long addr = rmap_item->address;
462 struct vm_area_struct *vma;
463 struct page *page;
464
465 down_read(&mm->mmap_sem);
ef694222
BL
466 vma = find_mergeable_vma(mm, addr);
467 if (!vma)
31dbd01f
IE
468 goto out;
469
470 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 471 if (IS_ERR_OR_NULL(page))
31dbd01f 472 goto out;
29ad768c 473 if (PageAnon(page) || page_trans_compound_anon(page)) {
31dbd01f
IE
474 flush_anon_page(vma, page, addr);
475 flush_dcache_page(page);
476 } else {
477 put_page(page);
c8f95ed1
AA
478out:
479 page = NULL;
31dbd01f
IE
480 }
481 up_read(&mm->mmap_sem);
482 return page;
483}
484
90bd6fd3
PH
485/*
486 * This helper is used for getting right index into array of tree roots.
487 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
488 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
489 * every node has its own stable and unstable tree.
490 */
491static inline int get_kpfn_nid(unsigned long kpfn)
492{
d8fc16a8 493 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
494}
495
4035c07a
HD
496static void remove_node_from_stable_tree(struct stable_node *stable_node)
497{
498 struct rmap_item *rmap_item;
4035c07a 499
b67bfe0d 500 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
501 if (rmap_item->hlist.next)
502 ksm_pages_sharing--;
503 else
504 ksm_pages_shared--;
9e60109f 505 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
506 rmap_item->address &= PAGE_MASK;
507 cond_resched();
508 }
509
4146d2d6
HD
510 if (stable_node->head == &migrate_nodes)
511 list_del(&stable_node->list);
512 else
513 rb_erase(&stable_node->node,
ef53d16c 514 root_stable_tree + NUMA(stable_node->nid));
4035c07a
HD
515 free_stable_node(stable_node);
516}
517
518/*
519 * get_ksm_page: checks if the page indicated by the stable node
520 * is still its ksm page, despite having held no reference to it.
521 * In which case we can trust the content of the page, and it
522 * returns the gotten page; but if the page has now been zapped,
523 * remove the stale node from the stable tree and return NULL.
c8d6553b 524 * But beware, the stable node's page might be being migrated.
4035c07a
HD
525 *
526 * You would expect the stable_node to hold a reference to the ksm page.
527 * But if it increments the page's count, swapping out has to wait for
528 * ksmd to come around again before it can free the page, which may take
529 * seconds or even minutes: much too unresponsive. So instead we use a
530 * "keyhole reference": access to the ksm page from the stable node peeps
531 * out through its keyhole to see if that page still holds the right key,
532 * pointing back to this stable node. This relies on freeing a PageAnon
533 * page to reset its page->mapping to NULL, and relies on no other use of
534 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
535 * is on its way to being freed; but it is an anomaly to bear in mind.
536 */
8fdb3dbf 537static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
538{
539 struct page *page;
540 void *expected_mapping;
c8d6553b 541 unsigned long kpfn;
4035c07a 542
4035c07a
HD
543 expected_mapping = (void *)stable_node +
544 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
c8d6553b 545again:
4db0c3c2 546 kpfn = READ_ONCE(stable_node->kpfn);
c8d6553b
HD
547 page = pfn_to_page(kpfn);
548
549 /*
550 * page is computed from kpfn, so on most architectures reading
551 * page->mapping is naturally ordered after reading node->kpfn,
552 * but on Alpha we need to be more careful.
553 */
554 smp_read_barrier_depends();
4db0c3c2 555 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 556 goto stale;
c8d6553b
HD
557
558 /*
559 * We cannot do anything with the page while its refcount is 0.
560 * Usually 0 means free, or tail of a higher-order page: in which
561 * case this node is no longer referenced, and should be freed;
562 * however, it might mean that the page is under page_freeze_refs().
563 * The __remove_mapping() case is easy, again the node is now stale;
564 * but if page is swapcache in migrate_page_move_mapping(), it might
565 * still be our page, in which case it's essential to keep the node.
566 */
567 while (!get_page_unless_zero(page)) {
568 /*
569 * Another check for page->mapping != expected_mapping would
570 * work here too. We have chosen the !PageSwapCache test to
571 * optimize the common case, when the page is or is about to
572 * be freed: PageSwapCache is cleared (under spin_lock_irq)
573 * in the freeze_refs section of __remove_mapping(); but Anon
574 * page->mapping reset to NULL later, in free_pages_prepare().
575 */
576 if (!PageSwapCache(page))
577 goto stale;
578 cpu_relax();
579 }
580
4db0c3c2 581 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
582 put_page(page);
583 goto stale;
584 }
c8d6553b 585
8fdb3dbf 586 if (lock_it) {
8aafa6a4 587 lock_page(page);
4db0c3c2 588 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
589 unlock_page(page);
590 put_page(page);
591 goto stale;
592 }
593 }
4035c07a 594 return page;
c8d6553b 595
4035c07a 596stale:
c8d6553b
HD
597 /*
598 * We come here from above when page->mapping or !PageSwapCache
599 * suggests that the node is stale; but it might be under migration.
600 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
601 * before checking whether node->kpfn has been changed.
602 */
603 smp_rmb();
4db0c3c2 604 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 605 goto again;
4035c07a
HD
606 remove_node_from_stable_tree(stable_node);
607 return NULL;
608}
609
31dbd01f
IE
610/*
611 * Removing rmap_item from stable or unstable tree.
612 * This function will clean the information from the stable/unstable tree.
613 */
614static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
615{
7b6ba2c7
HD
616 if (rmap_item->address & STABLE_FLAG) {
617 struct stable_node *stable_node;
5ad64688 618 struct page *page;
31dbd01f 619
7b6ba2c7 620 stable_node = rmap_item->head;
8aafa6a4 621 page = get_ksm_page(stable_node, true);
4035c07a
HD
622 if (!page)
623 goto out;
5ad64688 624
7b6ba2c7 625 hlist_del(&rmap_item->hlist);
4035c07a
HD
626 unlock_page(page);
627 put_page(page);
08beca44 628
98666f8a 629 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
630 ksm_pages_sharing--;
631 else
7b6ba2c7 632 ksm_pages_shared--;
31dbd01f 633
9e60109f 634 put_anon_vma(rmap_item->anon_vma);
93d17715 635 rmap_item->address &= PAGE_MASK;
31dbd01f 636
7b6ba2c7 637 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
638 unsigned char age;
639 /*
9ba69294 640 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 641 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
642 * But be careful when an mm is exiting: do the rb_erase
643 * if this rmap_item was inserted by this scan, rather
644 * than left over from before.
31dbd01f
IE
645 */
646 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 647 BUG_ON(age > 1);
31dbd01f 648 if (!age)
90bd6fd3 649 rb_erase(&rmap_item->node,
ef53d16c 650 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 651 ksm_pages_unshared--;
93d17715 652 rmap_item->address &= PAGE_MASK;
31dbd01f 653 }
4035c07a 654out:
31dbd01f
IE
655 cond_resched(); /* we're called from many long loops */
656}
657
31dbd01f 658static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 659 struct rmap_item **rmap_list)
31dbd01f 660{
6514d511
HD
661 while (*rmap_list) {
662 struct rmap_item *rmap_item = *rmap_list;
663 *rmap_list = rmap_item->rmap_list;
31dbd01f 664 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
665 free_rmap_item(rmap_item);
666 }
667}
668
669/*
e850dcf5 670 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
671 * than check every pte of a given vma, the locking doesn't quite work for
672 * that - an rmap_item is assigned to the stable tree after inserting ksm
673 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
674 * rmap_items from parent to child at fork time (so as not to waste time
675 * if exit comes before the next scan reaches it).
81464e30
HD
676 *
677 * Similarly, although we'd like to remove rmap_items (so updating counts
678 * and freeing memory) when unmerging an area, it's easier to leave that
679 * to the next pass of ksmd - consider, for example, how ksmd might be
680 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 681 */
d952b791
HD
682static int unmerge_ksm_pages(struct vm_area_struct *vma,
683 unsigned long start, unsigned long end)
31dbd01f
IE
684{
685 unsigned long addr;
d952b791 686 int err = 0;
31dbd01f 687
d952b791 688 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
689 if (ksm_test_exit(vma->vm_mm))
690 break;
d952b791
HD
691 if (signal_pending(current))
692 err = -ERESTARTSYS;
693 else
694 err = break_ksm(vma, addr);
695 }
696 return err;
31dbd01f
IE
697}
698
2ffd8679
HD
699#ifdef CONFIG_SYSFS
700/*
701 * Only called through the sysfs control interface:
702 */
cbf86cfe
HD
703static int remove_stable_node(struct stable_node *stable_node)
704{
705 struct page *page;
706 int err;
707
708 page = get_ksm_page(stable_node, true);
709 if (!page) {
710 /*
711 * get_ksm_page did remove_node_from_stable_tree itself.
712 */
713 return 0;
714 }
715
8fdb3dbf
HD
716 if (WARN_ON_ONCE(page_mapped(page))) {
717 /*
718 * This should not happen: but if it does, just refuse to let
719 * merge_across_nodes be switched - there is no need to panic.
720 */
cbf86cfe 721 err = -EBUSY;
8fdb3dbf 722 } else {
cbf86cfe 723 /*
8fdb3dbf
HD
724 * The stable node did not yet appear stale to get_ksm_page(),
725 * since that allows for an unmapped ksm page to be recognized
726 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
727 * This page might be in a pagevec waiting to be freed,
728 * or it might be PageSwapCache (perhaps under writeback),
729 * or it might have been removed from swapcache a moment ago.
730 */
731 set_page_stable_node(page, NULL);
732 remove_node_from_stable_tree(stable_node);
733 err = 0;
734 }
735
736 unlock_page(page);
737 put_page(page);
738 return err;
739}
740
741static int remove_all_stable_nodes(void)
742{
03640418 743 struct stable_node *stable_node, *next;
cbf86cfe
HD
744 int nid;
745 int err = 0;
746
ef53d16c 747 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
748 while (root_stable_tree[nid].rb_node) {
749 stable_node = rb_entry(root_stable_tree[nid].rb_node,
750 struct stable_node, node);
751 if (remove_stable_node(stable_node)) {
752 err = -EBUSY;
753 break; /* proceed to next nid */
754 }
755 cond_resched();
756 }
757 }
03640418 758 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
759 if (remove_stable_node(stable_node))
760 err = -EBUSY;
761 cond_resched();
762 }
cbf86cfe
HD
763 return err;
764}
765
d952b791 766static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
767{
768 struct mm_slot *mm_slot;
769 struct mm_struct *mm;
770 struct vm_area_struct *vma;
d952b791
HD
771 int err = 0;
772
773 spin_lock(&ksm_mmlist_lock);
9ba69294 774 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
775 struct mm_slot, mm_list);
776 spin_unlock(&ksm_mmlist_lock);
31dbd01f 777
9ba69294
HD
778 for (mm_slot = ksm_scan.mm_slot;
779 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
780 mm = mm_slot->mm;
781 down_read(&mm->mmap_sem);
782 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
783 if (ksm_test_exit(mm))
784 break;
31dbd01f
IE
785 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
786 continue;
d952b791
HD
787 err = unmerge_ksm_pages(vma,
788 vma->vm_start, vma->vm_end);
9ba69294
HD
789 if (err)
790 goto error;
31dbd01f 791 }
9ba69294 792
6514d511 793 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
794
795 spin_lock(&ksm_mmlist_lock);
9ba69294 796 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 797 struct mm_slot, mm_list);
9ba69294 798 if (ksm_test_exit(mm)) {
4ca3a69b 799 hash_del(&mm_slot->link);
9ba69294
HD
800 list_del(&mm_slot->mm_list);
801 spin_unlock(&ksm_mmlist_lock);
802
803 free_mm_slot(mm_slot);
804 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
805 up_read(&mm->mmap_sem);
806 mmdrop(mm);
807 } else {
808 spin_unlock(&ksm_mmlist_lock);
809 up_read(&mm->mmap_sem);
810 }
31dbd01f
IE
811 }
812
cbf86cfe
HD
813 /* Clean up stable nodes, but don't worry if some are still busy */
814 remove_all_stable_nodes();
d952b791 815 ksm_scan.seqnr = 0;
9ba69294
HD
816 return 0;
817
818error:
819 up_read(&mm->mmap_sem);
31dbd01f 820 spin_lock(&ksm_mmlist_lock);
d952b791 821 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 822 spin_unlock(&ksm_mmlist_lock);
d952b791 823 return err;
31dbd01f 824}
2ffd8679 825#endif /* CONFIG_SYSFS */
31dbd01f 826
31dbd01f
IE
827static u32 calc_checksum(struct page *page)
828{
829 u32 checksum;
9b04c5fe 830 void *addr = kmap_atomic(page);
31dbd01f 831 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 832 kunmap_atomic(addr);
31dbd01f
IE
833 return checksum;
834}
835
836static int memcmp_pages(struct page *page1, struct page *page2)
837{
838 char *addr1, *addr2;
839 int ret;
840
9b04c5fe
CW
841 addr1 = kmap_atomic(page1);
842 addr2 = kmap_atomic(page2);
31dbd01f 843 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
844 kunmap_atomic(addr2);
845 kunmap_atomic(addr1);
31dbd01f
IE
846 return ret;
847}
848
849static inline int pages_identical(struct page *page1, struct page *page2)
850{
851 return !memcmp_pages(page1, page2);
852}
853
854static int write_protect_page(struct vm_area_struct *vma, struct page *page,
855 pte_t *orig_pte)
856{
857 struct mm_struct *mm = vma->vm_mm;
858 unsigned long addr;
859 pte_t *ptep;
860 spinlock_t *ptl;
861 int swapped;
862 int err = -EFAULT;
6bdb913f
HE
863 unsigned long mmun_start; /* For mmu_notifiers */
864 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f
IE
865
866 addr = page_address_in_vma(page, vma);
867 if (addr == -EFAULT)
868 goto out;
869
29ad768c 870 BUG_ON(PageTransCompound(page));
6bdb913f
HE
871
872 mmun_start = addr;
873 mmun_end = addr + PAGE_SIZE;
874 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
875
31dbd01f
IE
876 ptep = page_check_address(page, mm, addr, &ptl, 0);
877 if (!ptep)
6bdb913f 878 goto out_mn;
31dbd01f 879
4e31635c 880 if (pte_write(*ptep) || pte_dirty(*ptep)) {
31dbd01f
IE
881 pte_t entry;
882
883 swapped = PageSwapCache(page);
884 flush_cache_page(vma, addr, page_to_pfn(page));
885 /*
25985edc 886 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
887 * take any lock, therefore the check that we are going to make
888 * with the pagecount against the mapcount is racey and
889 * O_DIRECT can happen right after the check.
890 * So we clear the pte and flush the tlb before the check
891 * this assure us that no O_DIRECT can happen after the check
892 * or in the middle of the check.
893 */
34ee645e 894 entry = ptep_clear_flush_notify(vma, addr, ptep);
31dbd01f
IE
895 /*
896 * Check that no O_DIRECT or similar I/O is in progress on the
897 * page
898 */
31e855ea 899 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
cb532375 900 set_pte_at(mm, addr, ptep, entry);
31dbd01f
IE
901 goto out_unlock;
902 }
4e31635c
HD
903 if (pte_dirty(entry))
904 set_page_dirty(page);
905 entry = pte_mkclean(pte_wrprotect(entry));
31dbd01f
IE
906 set_pte_at_notify(mm, addr, ptep, entry);
907 }
908 *orig_pte = *ptep;
909 err = 0;
910
911out_unlock:
912 pte_unmap_unlock(ptep, ptl);
6bdb913f
HE
913out_mn:
914 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
915out:
916 return err;
917}
918
919/**
920 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
921 * @vma: vma that holds the pte pointing to page
922 * @page: the page we are replacing by kpage
923 * @kpage: the ksm page we replace page by
31dbd01f
IE
924 * @orig_pte: the original value of the pte
925 *
926 * Returns 0 on success, -EFAULT on failure.
927 */
8dd3557a
HD
928static int replace_page(struct vm_area_struct *vma, struct page *page,
929 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
930{
931 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
932 pmd_t *pmd;
933 pte_t *ptep;
934 spinlock_t *ptl;
935 unsigned long addr;
31dbd01f 936 int err = -EFAULT;
6bdb913f
HE
937 unsigned long mmun_start; /* For mmu_notifiers */
938 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 939
8dd3557a 940 addr = page_address_in_vma(page, vma);
31dbd01f
IE
941 if (addr == -EFAULT)
942 goto out;
943
6219049a
BL
944 pmd = mm_find_pmd(mm, addr);
945 if (!pmd)
31dbd01f 946 goto out;
31dbd01f 947
6bdb913f
HE
948 mmun_start = addr;
949 mmun_end = addr + PAGE_SIZE;
950 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
951
31dbd01f
IE
952 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
953 if (!pte_same(*ptep, orig_pte)) {
954 pte_unmap_unlock(ptep, ptl);
6bdb913f 955 goto out_mn;
31dbd01f
IE
956 }
957
8dd3557a 958 get_page(kpage);
5ad64688 959 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
960
961 flush_cache_page(vma, addr, pte_pfn(*ptep));
34ee645e 962 ptep_clear_flush_notify(vma, addr, ptep);
8dd3557a 963 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 964
8dd3557a 965 page_remove_rmap(page);
ae52a2ad
HD
966 if (!page_mapped(page))
967 try_to_free_swap(page);
8dd3557a 968 put_page(page);
31dbd01f
IE
969
970 pte_unmap_unlock(ptep, ptl);
971 err = 0;
6bdb913f
HE
972out_mn:
973 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
974out:
975 return err;
976}
977
29ad768c
AA
978static int page_trans_compound_anon_split(struct page *page)
979{
980 int ret = 0;
981 struct page *transhuge_head = page_trans_compound_anon(page);
982 if (transhuge_head) {
983 /* Get the reference on the head to split it. */
984 if (get_page_unless_zero(transhuge_head)) {
985 /*
986 * Recheck we got the reference while the head
987 * was still anonymous.
988 */
989 if (PageAnon(transhuge_head))
990 ret = split_huge_page(transhuge_head);
991 else
992 /*
993 * Retry later if split_huge_page run
994 * from under us.
995 */
996 ret = 1;
997 put_page(transhuge_head);
998 } else
999 /* Retry later if split_huge_page run from under us. */
1000 ret = 1;
1001 }
1002 return ret;
1003}
1004
31dbd01f
IE
1005/*
1006 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1007 * @vma: the vma that holds the pte pointing to page
1008 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1009 * @kpage: the PageKsm page that we want to map instead of page,
1010 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1011 *
1012 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1013 */
1014static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1015 struct page *page, struct page *kpage)
31dbd01f
IE
1016{
1017 pte_t orig_pte = __pte(0);
1018 int err = -EFAULT;
1019
db114b83
HD
1020 if (page == kpage) /* ksm page forked */
1021 return 0;
1022
29ad768c
AA
1023 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1024 goto out;
1025 BUG_ON(PageTransCompound(page));
8dd3557a 1026 if (!PageAnon(page))
31dbd01f
IE
1027 goto out;
1028
31dbd01f
IE
1029 /*
1030 * We need the page lock to read a stable PageSwapCache in
1031 * write_protect_page(). We use trylock_page() instead of
1032 * lock_page() because we don't want to wait here - we
1033 * prefer to continue scanning and merging different pages,
1034 * then come back to this page when it is unlocked.
1035 */
8dd3557a 1036 if (!trylock_page(page))
31e855ea 1037 goto out;
31dbd01f
IE
1038 /*
1039 * If this anonymous page is mapped only here, its pte may need
1040 * to be write-protected. If it's mapped elsewhere, all of its
1041 * ptes are necessarily already write-protected. But in either
1042 * case, we need to lock and check page_count is not raised.
1043 */
80e14822
HD
1044 if (write_protect_page(vma, page, &orig_pte) == 0) {
1045 if (!kpage) {
1046 /*
1047 * While we hold page lock, upgrade page from
1048 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1049 * stable_tree_insert() will update stable_node.
1050 */
1051 set_page_stable_node(page, NULL);
1052 mark_page_accessed(page);
1053 err = 0;
1054 } else if (pages_identical(page, kpage))
1055 err = replace_page(vma, page, kpage, orig_pte);
1056 }
31dbd01f 1057
80e14822 1058 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1059 munlock_vma_page(page);
5ad64688
HD
1060 if (!PageMlocked(kpage)) {
1061 unlock_page(page);
5ad64688
HD
1062 lock_page(kpage);
1063 mlock_vma_page(kpage);
1064 page = kpage; /* for final unlock */
1065 }
1066 }
73848b46 1067
8dd3557a 1068 unlock_page(page);
31dbd01f
IE
1069out:
1070 return err;
1071}
1072
81464e30
HD
1073/*
1074 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1075 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1076 *
1077 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1078 */
8dd3557a
HD
1079static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1080 struct page *page, struct page *kpage)
81464e30 1081{
8dd3557a 1082 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1083 struct vm_area_struct *vma;
1084 int err = -EFAULT;
1085
8dd3557a 1086 down_read(&mm->mmap_sem);
85c6e8dd
AA
1087 vma = find_mergeable_vma(mm, rmap_item->address);
1088 if (!vma)
81464e30
HD
1089 goto out;
1090
8dd3557a 1091 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1092 if (err)
1093 goto out;
1094
bc56620b
HD
1095 /* Unstable nid is in union with stable anon_vma: remove first */
1096 remove_rmap_item_from_tree(rmap_item);
1097
db114b83 1098 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1099 rmap_item->anon_vma = vma->anon_vma;
1100 get_anon_vma(vma->anon_vma);
81464e30 1101out:
8dd3557a 1102 up_read(&mm->mmap_sem);
81464e30
HD
1103 return err;
1104}
1105
31dbd01f
IE
1106/*
1107 * try_to_merge_two_pages - take two identical pages and prepare them
1108 * to be merged into one page.
1109 *
8dd3557a
HD
1110 * This function returns the kpage if we successfully merged two identical
1111 * pages into one ksm page, NULL otherwise.
31dbd01f 1112 *
80e14822 1113 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1114 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1115 */
8dd3557a
HD
1116static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1117 struct page *page,
1118 struct rmap_item *tree_rmap_item,
1119 struct page *tree_page)
31dbd01f 1120{
80e14822 1121 int err;
31dbd01f 1122
80e14822 1123 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1124 if (!err) {
8dd3557a 1125 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1126 tree_page, page);
31dbd01f 1127 /*
81464e30
HD
1128 * If that fails, we have a ksm page with only one pte
1129 * pointing to it: so break it.
31dbd01f 1130 */
4035c07a 1131 if (err)
8dd3557a 1132 break_cow(rmap_item);
31dbd01f 1133 }
80e14822 1134 return err ? NULL : page;
31dbd01f
IE
1135}
1136
31dbd01f 1137/*
8dd3557a 1138 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1139 *
1140 * This function checks if there is a page inside the stable tree
1141 * with identical content to the page that we are scanning right now.
1142 *
7b6ba2c7 1143 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1144 * NULL otherwise.
1145 */
62b61f61 1146static struct page *stable_tree_search(struct page *page)
31dbd01f 1147{
90bd6fd3 1148 int nid;
ef53d16c 1149 struct rb_root *root;
4146d2d6
HD
1150 struct rb_node **new;
1151 struct rb_node *parent;
1152 struct stable_node *stable_node;
1153 struct stable_node *page_node;
31dbd01f 1154
4146d2d6
HD
1155 page_node = page_stable_node(page);
1156 if (page_node && page_node->head != &migrate_nodes) {
1157 /* ksm page forked */
08beca44 1158 get_page(page);
62b61f61 1159 return page;
08beca44
HD
1160 }
1161
90bd6fd3 1162 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1163 root = root_stable_tree + nid;
4146d2d6 1164again:
ef53d16c 1165 new = &root->rb_node;
4146d2d6 1166 parent = NULL;
90bd6fd3 1167
4146d2d6 1168 while (*new) {
4035c07a 1169 struct page *tree_page;
31dbd01f
IE
1170 int ret;
1171
08beca44 1172 cond_resched();
4146d2d6 1173 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1174 tree_page = get_ksm_page(stable_node, false);
f2e5ff85
AA
1175 if (!tree_page) {
1176 /*
1177 * If we walked over a stale stable_node,
1178 * get_ksm_page() will call rb_erase() and it
1179 * may rebalance the tree from under us. So
1180 * restart the search from scratch. Returning
1181 * NULL would be safe too, but we'd generate
1182 * false negative insertions just because some
1183 * stable_node was stale.
1184 */
1185 goto again;
1186 }
31dbd01f 1187
4035c07a 1188 ret = memcmp_pages(page, tree_page);
c8d6553b 1189 put_page(tree_page);
31dbd01f 1190
4146d2d6 1191 parent = *new;
c8d6553b 1192 if (ret < 0)
4146d2d6 1193 new = &parent->rb_left;
c8d6553b 1194 else if (ret > 0)
4146d2d6 1195 new = &parent->rb_right;
c8d6553b
HD
1196 else {
1197 /*
1198 * Lock and unlock the stable_node's page (which
1199 * might already have been migrated) so that page
1200 * migration is sure to notice its raised count.
1201 * It would be more elegant to return stable_node
1202 * than kpage, but that involves more changes.
1203 */
1204 tree_page = get_ksm_page(stable_node, true);
4146d2d6 1205 if (tree_page) {
c8d6553b 1206 unlock_page(tree_page);
4146d2d6
HD
1207 if (get_kpfn_nid(stable_node->kpfn) !=
1208 NUMA(stable_node->nid)) {
1209 put_page(tree_page);
1210 goto replace;
1211 }
1212 return tree_page;
1213 }
1214 /*
1215 * There is now a place for page_node, but the tree may
1216 * have been rebalanced, so re-evaluate parent and new.
1217 */
1218 if (page_node)
1219 goto again;
1220 return NULL;
c8d6553b 1221 }
31dbd01f
IE
1222 }
1223
4146d2d6
HD
1224 if (!page_node)
1225 return NULL;
1226
1227 list_del(&page_node->list);
1228 DO_NUMA(page_node->nid = nid);
1229 rb_link_node(&page_node->node, parent, new);
ef53d16c 1230 rb_insert_color(&page_node->node, root);
4146d2d6
HD
1231 get_page(page);
1232 return page;
1233
1234replace:
1235 if (page_node) {
1236 list_del(&page_node->list);
1237 DO_NUMA(page_node->nid = nid);
ef53d16c 1238 rb_replace_node(&stable_node->node, &page_node->node, root);
4146d2d6
HD
1239 get_page(page);
1240 } else {
ef53d16c 1241 rb_erase(&stable_node->node, root);
4146d2d6
HD
1242 page = NULL;
1243 }
1244 stable_node->head = &migrate_nodes;
1245 list_add(&stable_node->list, stable_node->head);
1246 return page;
31dbd01f
IE
1247}
1248
1249/*
e850dcf5 1250 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1251 * into the stable tree.
1252 *
7b6ba2c7
HD
1253 * This function returns the stable tree node just allocated on success,
1254 * NULL otherwise.
31dbd01f 1255 */
7b6ba2c7 1256static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1257{
90bd6fd3
PH
1258 int nid;
1259 unsigned long kpfn;
ef53d16c 1260 struct rb_root *root;
90bd6fd3 1261 struct rb_node **new;
f2e5ff85 1262 struct rb_node *parent;
7b6ba2c7 1263 struct stable_node *stable_node;
31dbd01f 1264
90bd6fd3
PH
1265 kpfn = page_to_pfn(kpage);
1266 nid = get_kpfn_nid(kpfn);
ef53d16c 1267 root = root_stable_tree + nid;
f2e5ff85
AA
1268again:
1269 parent = NULL;
ef53d16c 1270 new = &root->rb_node;
90bd6fd3 1271
31dbd01f 1272 while (*new) {
4035c07a 1273 struct page *tree_page;
31dbd01f
IE
1274 int ret;
1275
08beca44 1276 cond_resched();
7b6ba2c7 1277 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1278 tree_page = get_ksm_page(stable_node, false);
f2e5ff85
AA
1279 if (!tree_page) {
1280 /*
1281 * If we walked over a stale stable_node,
1282 * get_ksm_page() will call rb_erase() and it
1283 * may rebalance the tree from under us. So
1284 * restart the search from scratch. Returning
1285 * NULL would be safe too, but we'd generate
1286 * false negative insertions just because some
1287 * stable_node was stale.
1288 */
1289 goto again;
1290 }
31dbd01f 1291
4035c07a
HD
1292 ret = memcmp_pages(kpage, tree_page);
1293 put_page(tree_page);
31dbd01f
IE
1294
1295 parent = *new;
1296 if (ret < 0)
1297 new = &parent->rb_left;
1298 else if (ret > 0)
1299 new = &parent->rb_right;
1300 else {
1301 /*
1302 * It is not a bug that stable_tree_search() didn't
1303 * find this node: because at that time our page was
1304 * not yet write-protected, so may have changed since.
1305 */
1306 return NULL;
1307 }
1308 }
1309
7b6ba2c7
HD
1310 stable_node = alloc_stable_node();
1311 if (!stable_node)
1312 return NULL;
31dbd01f 1313
7b6ba2c7 1314 INIT_HLIST_HEAD(&stable_node->hlist);
90bd6fd3 1315 stable_node->kpfn = kpfn;
08beca44 1316 set_page_stable_node(kpage, stable_node);
4146d2d6 1317 DO_NUMA(stable_node->nid = nid);
e850dcf5 1318 rb_link_node(&stable_node->node, parent, new);
ef53d16c 1319 rb_insert_color(&stable_node->node, root);
08beca44 1320
7b6ba2c7 1321 return stable_node;
31dbd01f
IE
1322}
1323
1324/*
8dd3557a
HD
1325 * unstable_tree_search_insert - search for identical page,
1326 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1327 *
1328 * This function searches for a page in the unstable tree identical to the
1329 * page currently being scanned; and if no identical page is found in the
1330 * tree, we insert rmap_item as a new object into the unstable tree.
1331 *
1332 * This function returns pointer to rmap_item found to be identical
1333 * to the currently scanned page, NULL otherwise.
1334 *
1335 * This function does both searching and inserting, because they share
1336 * the same walking algorithm in an rbtree.
1337 */
8dd3557a
HD
1338static
1339struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1340 struct page *page,
1341 struct page **tree_pagep)
31dbd01f 1342{
90bd6fd3
PH
1343 struct rb_node **new;
1344 struct rb_root *root;
31dbd01f 1345 struct rb_node *parent = NULL;
90bd6fd3
PH
1346 int nid;
1347
1348 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1349 root = root_unstable_tree + nid;
90bd6fd3 1350 new = &root->rb_node;
31dbd01f
IE
1351
1352 while (*new) {
1353 struct rmap_item *tree_rmap_item;
8dd3557a 1354 struct page *tree_page;
31dbd01f
IE
1355 int ret;
1356
d178f27f 1357 cond_resched();
31dbd01f 1358 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1359 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1360 if (!tree_page)
31dbd01f
IE
1361 return NULL;
1362
1363 /*
8dd3557a 1364 * Don't substitute a ksm page for a forked page.
31dbd01f 1365 */
8dd3557a
HD
1366 if (page == tree_page) {
1367 put_page(tree_page);
31dbd01f
IE
1368 return NULL;
1369 }
1370
8dd3557a 1371 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1372
1373 parent = *new;
1374 if (ret < 0) {
8dd3557a 1375 put_page(tree_page);
31dbd01f
IE
1376 new = &parent->rb_left;
1377 } else if (ret > 0) {
8dd3557a 1378 put_page(tree_page);
31dbd01f 1379 new = &parent->rb_right;
b599cbdf
HD
1380 } else if (!ksm_merge_across_nodes &&
1381 page_to_nid(tree_page) != nid) {
1382 /*
1383 * If tree_page has been migrated to another NUMA node,
1384 * it will be flushed out and put in the right unstable
1385 * tree next time: only merge with it when across_nodes.
1386 */
1387 put_page(tree_page);
1388 return NULL;
31dbd01f 1389 } else {
8dd3557a 1390 *tree_pagep = tree_page;
31dbd01f
IE
1391 return tree_rmap_item;
1392 }
1393 }
1394
7b6ba2c7 1395 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1396 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1397 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1398 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1399 rb_insert_color(&rmap_item->node, root);
31dbd01f 1400
473b0ce4 1401 ksm_pages_unshared++;
31dbd01f
IE
1402 return NULL;
1403}
1404
1405/*
1406 * stable_tree_append - add another rmap_item to the linked list of
1407 * rmap_items hanging off a given node of the stable tree, all sharing
1408 * the same ksm page.
1409 */
1410static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1411 struct stable_node *stable_node)
31dbd01f 1412{
7b6ba2c7 1413 rmap_item->head = stable_node;
31dbd01f 1414 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1415 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1416
7b6ba2c7
HD
1417 if (rmap_item->hlist.next)
1418 ksm_pages_sharing++;
1419 else
1420 ksm_pages_shared++;
31dbd01f
IE
1421}
1422
1423/*
81464e30
HD
1424 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1425 * if not, compare checksum to previous and if it's the same, see if page can
1426 * be inserted into the unstable tree, or merged with a page already there and
1427 * both transferred to the stable tree.
31dbd01f
IE
1428 *
1429 * @page: the page that we are searching identical page to.
1430 * @rmap_item: the reverse mapping into the virtual address of this page
1431 */
1432static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1433{
31dbd01f 1434 struct rmap_item *tree_rmap_item;
8dd3557a 1435 struct page *tree_page = NULL;
7b6ba2c7 1436 struct stable_node *stable_node;
8dd3557a 1437 struct page *kpage;
31dbd01f
IE
1438 unsigned int checksum;
1439 int err;
1440
4146d2d6
HD
1441 stable_node = page_stable_node(page);
1442 if (stable_node) {
1443 if (stable_node->head != &migrate_nodes &&
1444 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1445 rb_erase(&stable_node->node,
ef53d16c 1446 root_stable_tree + NUMA(stable_node->nid));
4146d2d6
HD
1447 stable_node->head = &migrate_nodes;
1448 list_add(&stable_node->list, stable_node->head);
1449 }
1450 if (stable_node->head != &migrate_nodes &&
1451 rmap_item->head == stable_node)
1452 return;
1453 }
31dbd01f
IE
1454
1455 /* We first start with searching the page inside the stable tree */
62b61f61 1456 kpage = stable_tree_search(page);
4146d2d6
HD
1457 if (kpage == page && rmap_item->head == stable_node) {
1458 put_page(kpage);
1459 return;
1460 }
1461
1462 remove_rmap_item_from_tree(rmap_item);
1463
62b61f61 1464 if (kpage) {
08beca44 1465 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1466 if (!err) {
1467 /*
1468 * The page was successfully merged:
1469 * add its rmap_item to the stable tree.
1470 */
5ad64688 1471 lock_page(kpage);
62b61f61 1472 stable_tree_append(rmap_item, page_stable_node(kpage));
5ad64688 1473 unlock_page(kpage);
31dbd01f 1474 }
8dd3557a 1475 put_page(kpage);
31dbd01f
IE
1476 return;
1477 }
1478
1479 /*
4035c07a
HD
1480 * If the hash value of the page has changed from the last time
1481 * we calculated it, this page is changing frequently: therefore we
1482 * don't want to insert it in the unstable tree, and we don't want
1483 * to waste our time searching for something identical to it there.
31dbd01f
IE
1484 */
1485 checksum = calc_checksum(page);
1486 if (rmap_item->oldchecksum != checksum) {
1487 rmap_item->oldchecksum = checksum;
1488 return;
1489 }
1490
8dd3557a
HD
1491 tree_rmap_item =
1492 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1493 if (tree_rmap_item) {
8dd3557a
HD
1494 kpage = try_to_merge_two_pages(rmap_item, page,
1495 tree_rmap_item, tree_page);
1496 put_page(tree_page);
8dd3557a 1497 if (kpage) {
bc56620b
HD
1498 /*
1499 * The pages were successfully merged: insert new
1500 * node in the stable tree and add both rmap_items.
1501 */
5ad64688 1502 lock_page(kpage);
7b6ba2c7
HD
1503 stable_node = stable_tree_insert(kpage);
1504 if (stable_node) {
1505 stable_tree_append(tree_rmap_item, stable_node);
1506 stable_tree_append(rmap_item, stable_node);
1507 }
5ad64688 1508 unlock_page(kpage);
7b6ba2c7 1509
31dbd01f
IE
1510 /*
1511 * If we fail to insert the page into the stable tree,
1512 * we will have 2 virtual addresses that are pointing
1513 * to a ksm page left outside the stable tree,
1514 * in which case we need to break_cow on both.
1515 */
7b6ba2c7 1516 if (!stable_node) {
8dd3557a
HD
1517 break_cow(tree_rmap_item);
1518 break_cow(rmap_item);
31dbd01f
IE
1519 }
1520 }
31dbd01f
IE
1521 }
1522}
1523
1524static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1525 struct rmap_item **rmap_list,
31dbd01f
IE
1526 unsigned long addr)
1527{
1528 struct rmap_item *rmap_item;
1529
6514d511
HD
1530 while (*rmap_list) {
1531 rmap_item = *rmap_list;
93d17715 1532 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1533 return rmap_item;
31dbd01f
IE
1534 if (rmap_item->address > addr)
1535 break;
6514d511 1536 *rmap_list = rmap_item->rmap_list;
31dbd01f 1537 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1538 free_rmap_item(rmap_item);
1539 }
1540
1541 rmap_item = alloc_rmap_item();
1542 if (rmap_item) {
1543 /* It has already been zeroed */
1544 rmap_item->mm = mm_slot->mm;
1545 rmap_item->address = addr;
6514d511
HD
1546 rmap_item->rmap_list = *rmap_list;
1547 *rmap_list = rmap_item;
31dbd01f
IE
1548 }
1549 return rmap_item;
1550}
1551
1552static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1553{
1554 struct mm_struct *mm;
1555 struct mm_slot *slot;
1556 struct vm_area_struct *vma;
1557 struct rmap_item *rmap_item;
90bd6fd3 1558 int nid;
31dbd01f
IE
1559
1560 if (list_empty(&ksm_mm_head.mm_list))
1561 return NULL;
1562
1563 slot = ksm_scan.mm_slot;
1564 if (slot == &ksm_mm_head) {
2919bfd0
HD
1565 /*
1566 * A number of pages can hang around indefinitely on per-cpu
1567 * pagevecs, raised page count preventing write_protect_page
1568 * from merging them. Though it doesn't really matter much,
1569 * it is puzzling to see some stuck in pages_volatile until
1570 * other activity jostles them out, and they also prevented
1571 * LTP's KSM test from succeeding deterministically; so drain
1572 * them here (here rather than on entry to ksm_do_scan(),
1573 * so we don't IPI too often when pages_to_scan is set low).
1574 */
1575 lru_add_drain_all();
1576
4146d2d6
HD
1577 /*
1578 * Whereas stale stable_nodes on the stable_tree itself
1579 * get pruned in the regular course of stable_tree_search(),
1580 * those moved out to the migrate_nodes list can accumulate:
1581 * so prune them once before each full scan.
1582 */
1583 if (!ksm_merge_across_nodes) {
03640418 1584 struct stable_node *stable_node, *next;
4146d2d6
HD
1585 struct page *page;
1586
03640418
GT
1587 list_for_each_entry_safe(stable_node, next,
1588 &migrate_nodes, list) {
4146d2d6
HD
1589 page = get_ksm_page(stable_node, false);
1590 if (page)
1591 put_page(page);
1592 cond_resched();
1593 }
1594 }
1595
ef53d16c 1596 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 1597 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
1598
1599 spin_lock(&ksm_mmlist_lock);
1600 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1601 ksm_scan.mm_slot = slot;
1602 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
1603 /*
1604 * Although we tested list_empty() above, a racing __ksm_exit
1605 * of the last mm on the list may have removed it since then.
1606 */
1607 if (slot == &ksm_mm_head)
1608 return NULL;
31dbd01f
IE
1609next_mm:
1610 ksm_scan.address = 0;
6514d511 1611 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1612 }
1613
1614 mm = slot->mm;
1615 down_read(&mm->mmap_sem);
9ba69294
HD
1616 if (ksm_test_exit(mm))
1617 vma = NULL;
1618 else
1619 vma = find_vma(mm, ksm_scan.address);
1620
1621 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1622 if (!(vma->vm_flags & VM_MERGEABLE))
1623 continue;
1624 if (ksm_scan.address < vma->vm_start)
1625 ksm_scan.address = vma->vm_start;
1626 if (!vma->anon_vma)
1627 ksm_scan.address = vma->vm_end;
1628
1629 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1630 if (ksm_test_exit(mm))
1631 break;
31dbd01f 1632 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
1633 if (IS_ERR_OR_NULL(*page)) {
1634 ksm_scan.address += PAGE_SIZE;
1635 cond_resched();
1636 continue;
1637 }
29ad768c
AA
1638 if (PageAnon(*page) ||
1639 page_trans_compound_anon(*page)) {
31dbd01f
IE
1640 flush_anon_page(vma, *page, ksm_scan.address);
1641 flush_dcache_page(*page);
1642 rmap_item = get_next_rmap_item(slot,
6514d511 1643 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1644 if (rmap_item) {
6514d511
HD
1645 ksm_scan.rmap_list =
1646 &rmap_item->rmap_list;
31dbd01f
IE
1647 ksm_scan.address += PAGE_SIZE;
1648 } else
1649 put_page(*page);
1650 up_read(&mm->mmap_sem);
1651 return rmap_item;
1652 }
21ae5b01 1653 put_page(*page);
31dbd01f
IE
1654 ksm_scan.address += PAGE_SIZE;
1655 cond_resched();
1656 }
1657 }
1658
9ba69294
HD
1659 if (ksm_test_exit(mm)) {
1660 ksm_scan.address = 0;
6514d511 1661 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1662 }
31dbd01f
IE
1663 /*
1664 * Nuke all the rmap_items that are above this current rmap:
1665 * because there were no VM_MERGEABLE vmas with such addresses.
1666 */
6514d511 1667 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1668
1669 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1670 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1671 struct mm_slot, mm_list);
1672 if (ksm_scan.address == 0) {
1673 /*
1674 * We've completed a full scan of all vmas, holding mmap_sem
1675 * throughout, and found no VM_MERGEABLE: so do the same as
1676 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1677 * This applies either when cleaning up after __ksm_exit
1678 * (but beware: we can reach here even before __ksm_exit),
1679 * or when all VM_MERGEABLE areas have been unmapped (and
1680 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 1681 */
4ca3a69b 1682 hash_del(&slot->link);
cd551f97 1683 list_del(&slot->mm_list);
9ba69294
HD
1684 spin_unlock(&ksm_mmlist_lock);
1685
cd551f97
HD
1686 free_mm_slot(slot);
1687 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1688 up_read(&mm->mmap_sem);
1689 mmdrop(mm);
1690 } else {
1691 spin_unlock(&ksm_mmlist_lock);
1692 up_read(&mm->mmap_sem);
cd551f97 1693 }
31dbd01f
IE
1694
1695 /* Repeat until we've completed scanning the whole list */
cd551f97 1696 slot = ksm_scan.mm_slot;
31dbd01f
IE
1697 if (slot != &ksm_mm_head)
1698 goto next_mm;
1699
31dbd01f
IE
1700 ksm_scan.seqnr++;
1701 return NULL;
1702}
1703
1704/**
1705 * ksm_do_scan - the ksm scanner main worker function.
1706 * @scan_npages - number of pages we want to scan before we return.
1707 */
1708static void ksm_do_scan(unsigned int scan_npages)
1709{
1710 struct rmap_item *rmap_item;
22eccdd7 1711 struct page *uninitialized_var(page);
31dbd01f 1712
878aee7d 1713 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
1714 cond_resched();
1715 rmap_item = scan_get_next_rmap_item(&page);
1716 if (!rmap_item)
1717 return;
4146d2d6 1718 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
1719 put_page(page);
1720 }
1721}
1722
6e158384
HD
1723static int ksmd_should_run(void)
1724{
1725 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1726}
1727
31dbd01f
IE
1728static int ksm_scan_thread(void *nothing)
1729{
878aee7d 1730 set_freezable();
339aa624 1731 set_user_nice(current, 5);
31dbd01f
IE
1732
1733 while (!kthread_should_stop()) {
6e158384 1734 mutex_lock(&ksm_thread_mutex);
ef4d43a8 1735 wait_while_offlining();
6e158384 1736 if (ksmd_should_run())
31dbd01f 1737 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1738 mutex_unlock(&ksm_thread_mutex);
1739
878aee7d
AA
1740 try_to_freeze();
1741
6e158384 1742 if (ksmd_should_run()) {
31dbd01f
IE
1743 schedule_timeout_interruptible(
1744 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1745 } else {
878aee7d 1746 wait_event_freezable(ksm_thread_wait,
6e158384 1747 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1748 }
1749 }
1750 return 0;
1751}
1752
f8af4da3
HD
1753int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1754 unsigned long end, int advice, unsigned long *vm_flags)
1755{
1756 struct mm_struct *mm = vma->vm_mm;
d952b791 1757 int err;
f8af4da3
HD
1758
1759 switch (advice) {
1760 case MADV_MERGEABLE:
1761 /*
1762 * Be somewhat over-protective for now!
1763 */
1764 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1765 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 1766 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
1767 return 0; /* just ignore the advice */
1768
cc2383ec
KK
1769#ifdef VM_SAO
1770 if (*vm_flags & VM_SAO)
1771 return 0;
1772#endif
1773
d952b791
HD
1774 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1775 err = __ksm_enter(mm);
1776 if (err)
1777 return err;
1778 }
f8af4da3
HD
1779
1780 *vm_flags |= VM_MERGEABLE;
1781 break;
1782
1783 case MADV_UNMERGEABLE:
1784 if (!(*vm_flags & VM_MERGEABLE))
1785 return 0; /* just ignore the advice */
1786
d952b791
HD
1787 if (vma->anon_vma) {
1788 err = unmerge_ksm_pages(vma, start, end);
1789 if (err)
1790 return err;
1791 }
f8af4da3
HD
1792
1793 *vm_flags &= ~VM_MERGEABLE;
1794 break;
1795 }
1796
1797 return 0;
1798}
1799
1800int __ksm_enter(struct mm_struct *mm)
1801{
6e158384
HD
1802 struct mm_slot *mm_slot;
1803 int needs_wakeup;
1804
1805 mm_slot = alloc_mm_slot();
31dbd01f
IE
1806 if (!mm_slot)
1807 return -ENOMEM;
1808
6e158384
HD
1809 /* Check ksm_run too? Would need tighter locking */
1810 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1811
31dbd01f
IE
1812 spin_lock(&ksm_mmlist_lock);
1813 insert_to_mm_slots_hash(mm, mm_slot);
1814 /*
cbf86cfe
HD
1815 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1816 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
1817 * down a little; when fork is followed by immediate exec, we don't
1818 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
1819 *
1820 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1821 * scanning cursor, otherwise KSM pages in newly forked mms will be
1822 * missed: then we might as well insert at the end of the list.
31dbd01f 1823 */
cbf86cfe
HD
1824 if (ksm_run & KSM_RUN_UNMERGE)
1825 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1826 else
1827 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
1828 spin_unlock(&ksm_mmlist_lock);
1829
f8af4da3 1830 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1831 atomic_inc(&mm->mm_count);
6e158384
HD
1832
1833 if (needs_wakeup)
1834 wake_up_interruptible(&ksm_thread_wait);
1835
f8af4da3
HD
1836 return 0;
1837}
1838
1c2fb7a4 1839void __ksm_exit(struct mm_struct *mm)
f8af4da3 1840{
cd551f97 1841 struct mm_slot *mm_slot;
9ba69294 1842 int easy_to_free = 0;
cd551f97 1843
31dbd01f 1844 /*
9ba69294
HD
1845 * This process is exiting: if it's straightforward (as is the
1846 * case when ksmd was never running), free mm_slot immediately.
1847 * But if it's at the cursor or has rmap_items linked to it, use
1848 * mmap_sem to synchronize with any break_cows before pagetables
1849 * are freed, and leave the mm_slot on the list for ksmd to free.
1850 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1851 */
9ba69294 1852
cd551f97
HD
1853 spin_lock(&ksm_mmlist_lock);
1854 mm_slot = get_mm_slot(mm);
9ba69294 1855 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1856 if (!mm_slot->rmap_list) {
4ca3a69b 1857 hash_del(&mm_slot->link);
9ba69294
HD
1858 list_del(&mm_slot->mm_list);
1859 easy_to_free = 1;
1860 } else {
1861 list_move(&mm_slot->mm_list,
1862 &ksm_scan.mm_slot->mm_list);
1863 }
cd551f97 1864 }
cd551f97
HD
1865 spin_unlock(&ksm_mmlist_lock);
1866
9ba69294
HD
1867 if (easy_to_free) {
1868 free_mm_slot(mm_slot);
1869 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1870 mmdrop(mm);
1871 } else if (mm_slot) {
9ba69294
HD
1872 down_write(&mm->mmap_sem);
1873 up_write(&mm->mmap_sem);
9ba69294 1874 }
31dbd01f
IE
1875}
1876
cbf86cfe 1877struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
1878 struct vm_area_struct *vma, unsigned long address)
1879{
cbf86cfe 1880 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
1881 struct page *new_page;
1882
cbf86cfe
HD
1883 if (PageKsm(page)) {
1884 if (page_stable_node(page) &&
1885 !(ksm_run & KSM_RUN_UNMERGE))
1886 return page; /* no need to copy it */
1887 } else if (!anon_vma) {
1888 return page; /* no need to copy it */
1889 } else if (anon_vma->root == vma->anon_vma->root &&
1890 page->index == linear_page_index(vma, address)) {
1891 return page; /* still no need to copy it */
1892 }
1893 if (!PageUptodate(page))
1894 return page; /* let do_swap_page report the error */
1895
5ad64688
HD
1896 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1897 if (new_page) {
1898 copy_user_highpage(new_page, page, address, vma);
1899
1900 SetPageDirty(new_page);
1901 __SetPageUptodate(new_page);
5ad64688 1902 __set_page_locked(new_page);
5ad64688
HD
1903 }
1904
5ad64688
HD
1905 return new_page;
1906}
1907
051ac83a 1908int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1909{
1910 struct stable_node *stable_node;
e9995ef9
HD
1911 struct rmap_item *rmap_item;
1912 int ret = SWAP_AGAIN;
1913 int search_new_forks = 0;
1914
309381fe 1915 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
1916
1917 /*
1918 * Rely on the page lock to protect against concurrent modifications
1919 * to that page's node of the stable tree.
1920 */
309381fe 1921 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
1922
1923 stable_node = page_stable_node(page);
1924 if (!stable_node)
1925 return ret;
1926again:
b67bfe0d 1927 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 1928 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1929 struct anon_vma_chain *vmac;
e9995ef9
HD
1930 struct vm_area_struct *vma;
1931
ad12695f 1932 cond_resched();
b6b19f25 1933 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1934 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1935 0, ULONG_MAX) {
ad12695f 1936 cond_resched();
5beb4930 1937 vma = vmac->vma;
e9995ef9
HD
1938 if (rmap_item->address < vma->vm_start ||
1939 rmap_item->address >= vma->vm_end)
1940 continue;
1941 /*
1942 * Initially we examine only the vma which covers this
1943 * rmap_item; but later, if there is still work to do,
1944 * we examine covering vmas in other mms: in case they
1945 * were forked from the original since ksmd passed.
1946 */
1947 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1948 continue;
1949
0dd1c7bb
JK
1950 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1951 continue;
1952
051ac83a
JK
1953 ret = rwc->rmap_one(page, vma,
1954 rmap_item->address, rwc->arg);
e9995ef9 1955 if (ret != SWAP_AGAIN) {
b6b19f25 1956 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1957 goto out;
1958 }
0dd1c7bb
JK
1959 if (rwc->done && rwc->done(page)) {
1960 anon_vma_unlock_read(anon_vma);
1961 goto out;
1962 }
e9995ef9 1963 }
b6b19f25 1964 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1965 }
1966 if (!search_new_forks++)
1967 goto again;
1968out:
1969 return ret;
1970}
1971
52629506 1972#ifdef CONFIG_MIGRATION
e9995ef9
HD
1973void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1974{
1975 struct stable_node *stable_node;
1976
309381fe
SL
1977 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1978 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1979 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
1980
1981 stable_node = page_stable_node(newpage);
1982 if (stable_node) {
309381fe 1983 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 1984 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
1985 /*
1986 * newpage->mapping was set in advance; now we need smp_wmb()
1987 * to make sure that the new stable_node->kpfn is visible
1988 * to get_ksm_page() before it can see that oldpage->mapping
1989 * has gone stale (or that PageSwapCache has been cleared).
1990 */
1991 smp_wmb();
1992 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
1993 }
1994}
1995#endif /* CONFIG_MIGRATION */
1996
62b61f61 1997#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
1998static void wait_while_offlining(void)
1999{
2000 while (ksm_run & KSM_RUN_OFFLINE) {
2001 mutex_unlock(&ksm_thread_mutex);
2002 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2003 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2004 mutex_lock(&ksm_thread_mutex);
2005 }
2006}
2007
ee0ea59c
HD
2008static void ksm_check_stable_tree(unsigned long start_pfn,
2009 unsigned long end_pfn)
62b61f61 2010{
03640418 2011 struct stable_node *stable_node, *next;
62b61f61 2012 struct rb_node *node;
90bd6fd3 2013 int nid;
62b61f61 2014
ef53d16c
HD
2015 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2016 node = rb_first(root_stable_tree + nid);
ee0ea59c 2017 while (node) {
90bd6fd3
PH
2018 stable_node = rb_entry(node, struct stable_node, node);
2019 if (stable_node->kpfn >= start_pfn &&
ee0ea59c
HD
2020 stable_node->kpfn < end_pfn) {
2021 /*
2022 * Don't get_ksm_page, page has already gone:
2023 * which is why we keep kpfn instead of page*
2024 */
2025 remove_node_from_stable_tree(stable_node);
ef53d16c 2026 node = rb_first(root_stable_tree + nid);
ee0ea59c
HD
2027 } else
2028 node = rb_next(node);
2029 cond_resched();
90bd6fd3 2030 }
ee0ea59c 2031 }
03640418 2032 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2033 if (stable_node->kpfn >= start_pfn &&
2034 stable_node->kpfn < end_pfn)
2035 remove_node_from_stable_tree(stable_node);
2036 cond_resched();
2037 }
62b61f61
HD
2038}
2039
2040static int ksm_memory_callback(struct notifier_block *self,
2041 unsigned long action, void *arg)
2042{
2043 struct memory_notify *mn = arg;
62b61f61
HD
2044
2045 switch (action) {
2046 case MEM_GOING_OFFLINE:
2047 /*
ef4d43a8
HD
2048 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2049 * and remove_all_stable_nodes() while memory is going offline:
2050 * it is unsafe for them to touch the stable tree at this time.
2051 * But unmerge_ksm_pages(), rmap lookups and other entry points
2052 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2053 */
ef4d43a8
HD
2054 mutex_lock(&ksm_thread_mutex);
2055 ksm_run |= KSM_RUN_OFFLINE;
2056 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2057 break;
2058
2059 case MEM_OFFLINE:
2060 /*
2061 * Most of the work is done by page migration; but there might
2062 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2063 * pages which have been offlined: prune those from the tree,
2064 * otherwise get_ksm_page() might later try to access a
2065 * non-existent struct page.
62b61f61 2066 */
ee0ea59c
HD
2067 ksm_check_stable_tree(mn->start_pfn,
2068 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2069 /* fallthrough */
2070
2071 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2072 mutex_lock(&ksm_thread_mutex);
2073 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2074 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2075
2076 smp_mb(); /* wake_up_bit advises this */
2077 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2078 break;
2079 }
2080 return NOTIFY_OK;
2081}
ef4d43a8
HD
2082#else
2083static void wait_while_offlining(void)
2084{
2085}
62b61f61
HD
2086#endif /* CONFIG_MEMORY_HOTREMOVE */
2087
2ffd8679
HD
2088#ifdef CONFIG_SYSFS
2089/*
2090 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2091 */
2092
31dbd01f
IE
2093#define KSM_ATTR_RO(_name) \
2094 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2095#define KSM_ATTR(_name) \
2096 static struct kobj_attribute _name##_attr = \
2097 __ATTR(_name, 0644, _name##_show, _name##_store)
2098
2099static ssize_t sleep_millisecs_show(struct kobject *kobj,
2100 struct kobj_attribute *attr, char *buf)
2101{
2102 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2103}
2104
2105static ssize_t sleep_millisecs_store(struct kobject *kobj,
2106 struct kobj_attribute *attr,
2107 const char *buf, size_t count)
2108{
2109 unsigned long msecs;
2110 int err;
2111
3dbb95f7 2112 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2113 if (err || msecs > UINT_MAX)
2114 return -EINVAL;
2115
2116 ksm_thread_sleep_millisecs = msecs;
2117
2118 return count;
2119}
2120KSM_ATTR(sleep_millisecs);
2121
2122static ssize_t pages_to_scan_show(struct kobject *kobj,
2123 struct kobj_attribute *attr, char *buf)
2124{
2125 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2126}
2127
2128static ssize_t pages_to_scan_store(struct kobject *kobj,
2129 struct kobj_attribute *attr,
2130 const char *buf, size_t count)
2131{
2132 int err;
2133 unsigned long nr_pages;
2134
3dbb95f7 2135 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2136 if (err || nr_pages > UINT_MAX)
2137 return -EINVAL;
2138
2139 ksm_thread_pages_to_scan = nr_pages;
2140
2141 return count;
2142}
2143KSM_ATTR(pages_to_scan);
2144
2145static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2146 char *buf)
2147{
ef4d43a8 2148 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2149}
2150
2151static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2152 const char *buf, size_t count)
2153{
2154 int err;
2155 unsigned long flags;
2156
3dbb95f7 2157 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2158 if (err || flags > UINT_MAX)
2159 return -EINVAL;
2160 if (flags > KSM_RUN_UNMERGE)
2161 return -EINVAL;
2162
2163 /*
2164 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2165 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2166 * breaking COW to free the pages_shared (but leaves mm_slots
2167 * on the list for when ksmd may be set running again).
31dbd01f
IE
2168 */
2169
2170 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2171 wait_while_offlining();
31dbd01f
IE
2172 if (ksm_run != flags) {
2173 ksm_run = flags;
d952b791 2174 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2175 set_current_oom_origin();
d952b791 2176 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2177 clear_current_oom_origin();
d952b791
HD
2178 if (err) {
2179 ksm_run = KSM_RUN_STOP;
2180 count = err;
2181 }
2182 }
31dbd01f
IE
2183 }
2184 mutex_unlock(&ksm_thread_mutex);
2185
2186 if (flags & KSM_RUN_MERGE)
2187 wake_up_interruptible(&ksm_thread_wait);
2188
2189 return count;
2190}
2191KSM_ATTR(run);
2192
90bd6fd3
PH
2193#ifdef CONFIG_NUMA
2194static ssize_t merge_across_nodes_show(struct kobject *kobj,
2195 struct kobj_attribute *attr, char *buf)
2196{
2197 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2198}
2199
2200static ssize_t merge_across_nodes_store(struct kobject *kobj,
2201 struct kobj_attribute *attr,
2202 const char *buf, size_t count)
2203{
2204 int err;
2205 unsigned long knob;
2206
2207 err = kstrtoul(buf, 10, &knob);
2208 if (err)
2209 return err;
2210 if (knob > 1)
2211 return -EINVAL;
2212
2213 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2214 wait_while_offlining();
90bd6fd3 2215 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2216 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2217 err = -EBUSY;
ef53d16c
HD
2218 else if (root_stable_tree == one_stable_tree) {
2219 struct rb_root *buf;
2220 /*
2221 * This is the first time that we switch away from the
2222 * default of merging across nodes: must now allocate
2223 * a buffer to hold as many roots as may be needed.
2224 * Allocate stable and unstable together:
2225 * MAXSMP NODES_SHIFT 10 will use 16kB.
2226 */
bafe1e14
JP
2227 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2228 GFP_KERNEL);
ef53d16c
HD
2229 /* Let us assume that RB_ROOT is NULL is zero */
2230 if (!buf)
2231 err = -ENOMEM;
2232 else {
2233 root_stable_tree = buf;
2234 root_unstable_tree = buf + nr_node_ids;
2235 /* Stable tree is empty but not the unstable */
2236 root_unstable_tree[0] = one_unstable_tree[0];
2237 }
2238 }
2239 if (!err) {
90bd6fd3 2240 ksm_merge_across_nodes = knob;
ef53d16c
HD
2241 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2242 }
90bd6fd3
PH
2243 }
2244 mutex_unlock(&ksm_thread_mutex);
2245
2246 return err ? err : count;
2247}
2248KSM_ATTR(merge_across_nodes);
2249#endif
2250
b4028260
HD
2251static ssize_t pages_shared_show(struct kobject *kobj,
2252 struct kobj_attribute *attr, char *buf)
2253{
2254 return sprintf(buf, "%lu\n", ksm_pages_shared);
2255}
2256KSM_ATTR_RO(pages_shared);
2257
2258static ssize_t pages_sharing_show(struct kobject *kobj,
2259 struct kobj_attribute *attr, char *buf)
2260{
e178dfde 2261 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2262}
2263KSM_ATTR_RO(pages_sharing);
2264
473b0ce4
HD
2265static ssize_t pages_unshared_show(struct kobject *kobj,
2266 struct kobj_attribute *attr, char *buf)
2267{
2268 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2269}
2270KSM_ATTR_RO(pages_unshared);
2271
2272static ssize_t pages_volatile_show(struct kobject *kobj,
2273 struct kobj_attribute *attr, char *buf)
2274{
2275 long ksm_pages_volatile;
2276
2277 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2278 - ksm_pages_sharing - ksm_pages_unshared;
2279 /*
2280 * It was not worth any locking to calculate that statistic,
2281 * but it might therefore sometimes be negative: conceal that.
2282 */
2283 if (ksm_pages_volatile < 0)
2284 ksm_pages_volatile = 0;
2285 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2286}
2287KSM_ATTR_RO(pages_volatile);
2288
2289static ssize_t full_scans_show(struct kobject *kobj,
2290 struct kobj_attribute *attr, char *buf)
2291{
2292 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2293}
2294KSM_ATTR_RO(full_scans);
2295
31dbd01f
IE
2296static struct attribute *ksm_attrs[] = {
2297 &sleep_millisecs_attr.attr,
2298 &pages_to_scan_attr.attr,
2299 &run_attr.attr,
b4028260
HD
2300 &pages_shared_attr.attr,
2301 &pages_sharing_attr.attr,
473b0ce4
HD
2302 &pages_unshared_attr.attr,
2303 &pages_volatile_attr.attr,
2304 &full_scans_attr.attr,
90bd6fd3
PH
2305#ifdef CONFIG_NUMA
2306 &merge_across_nodes_attr.attr,
2307#endif
31dbd01f
IE
2308 NULL,
2309};
2310
2311static struct attribute_group ksm_attr_group = {
2312 .attrs = ksm_attrs,
2313 .name = "ksm",
2314};
2ffd8679 2315#endif /* CONFIG_SYSFS */
31dbd01f
IE
2316
2317static int __init ksm_init(void)
2318{
2319 struct task_struct *ksm_thread;
2320 int err;
2321
2322 err = ksm_slab_init();
2323 if (err)
2324 goto out;
2325
31dbd01f
IE
2326 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2327 if (IS_ERR(ksm_thread)) {
25acde31 2328 pr_err("ksm: creating kthread failed\n");
31dbd01f 2329 err = PTR_ERR(ksm_thread);
d9f8984c 2330 goto out_free;
31dbd01f
IE
2331 }
2332
2ffd8679 2333#ifdef CONFIG_SYSFS
31dbd01f
IE
2334 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2335 if (err) {
25acde31 2336 pr_err("ksm: register sysfs failed\n");
2ffd8679 2337 kthread_stop(ksm_thread);
d9f8984c 2338 goto out_free;
31dbd01f 2339 }
c73602ad
HD
2340#else
2341 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2342
2ffd8679 2343#endif /* CONFIG_SYSFS */
31dbd01f 2344
62b61f61 2345#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 2346 /* There is no significance to this priority 100 */
62b61f61
HD
2347 hotplug_memory_notifier(ksm_memory_callback, 100);
2348#endif
31dbd01f
IE
2349 return 0;
2350
d9f8984c 2351out_free:
31dbd01f
IE
2352 ksm_slab_free();
2353out:
2354 return err;
f8af4da3 2355}
a64fb3cd 2356subsys_initcall(ksm_init);
This page took 0.476728 seconds and 5 git commands to generate.