Merge branch 'x86-bsp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3 53#include <net/sock.h>
4bd2c1ee 54#include <net/ip.h>
d1a4c0b3 55#include <net/tcp_memcontrol.h>
8cdea7c0 56
8697d331
BS
57#include <asm/uaccess.h>
58
cc8e970c
KM
59#include <trace/events/vmscan.h>
60
a181b0e8 61struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 62#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 63static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 64
c255a458 65#ifdef CONFIG_MEMCG_SWAP
338c8431 66/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 67int do_swap_account __read_mostly;
a42c390c
MH
68
69/* for remember boot option*/
c255a458 70#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
71static int really_do_swap_account __initdata = 1;
72#else
73static int really_do_swap_account __initdata = 0;
74#endif
75
c077719b 76#else
a0db00fc 77#define do_swap_account 0
c077719b
KH
78#endif
79
80
d52aa412
KH
81/*
82 * Statistics for memory cgroup.
83 */
84enum mem_cgroup_stat_index {
85 /*
86 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 */
88 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 89 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 90 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 91 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
af7c4b0e
JW
95static const char * const mem_cgroup_stat_names[] = {
96 "cache",
97 "rss",
98 "mapped_file",
99 "swap",
100};
101
e9f8974f
JW
102enum mem_cgroup_events_index {
103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
105 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
106 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
107 MEM_CGROUP_EVENTS_NSTATS,
108};
af7c4b0e
JW
109
110static const char * const mem_cgroup_events_names[] = {
111 "pgpgin",
112 "pgpgout",
113 "pgfault",
114 "pgmajfault",
115};
116
7a159cc9
JW
117/*
118 * Per memcg event counter is incremented at every pagein/pageout. With THP,
119 * it will be incremated by the number of pages. This counter is used for
120 * for trigger some periodic events. This is straightforward and better
121 * than using jiffies etc. to handle periodic memcg event.
122 */
123enum mem_cgroup_events_target {
124 MEM_CGROUP_TARGET_THRESH,
125 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 126 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
127 MEM_CGROUP_NTARGETS,
128};
a0db00fc
KS
129#define THRESHOLDS_EVENTS_TARGET 128
130#define SOFTLIMIT_EVENTS_TARGET 1024
131#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 132
d52aa412 133struct mem_cgroup_stat_cpu {
7a159cc9 134 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 135 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 136 unsigned long nr_page_events;
7a159cc9 137 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
138};
139
527a5ec9
JW
140struct mem_cgroup_reclaim_iter {
141 /* css_id of the last scanned hierarchy member */
142 int position;
143 /* scan generation, increased every round-trip */
144 unsigned int generation;
145};
146
6d12e2d8
KH
147/*
148 * per-zone information in memory controller.
149 */
6d12e2d8 150struct mem_cgroup_per_zone {
6290df54 151 struct lruvec lruvec;
1eb49272 152 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 153
527a5ec9
JW
154 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155
f64c3f54
BS
156 struct rb_node tree_node; /* RB tree node */
157 unsigned long long usage_in_excess;/* Set to the value by which */
158 /* the soft limit is exceeded*/
159 bool on_tree;
d79154bb 160 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 161 /* use container_of */
6d12e2d8 162};
6d12e2d8
KH
163
164struct mem_cgroup_per_node {
165 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
166};
167
168struct mem_cgroup_lru_info {
169 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
170};
171
f64c3f54
BS
172/*
173 * Cgroups above their limits are maintained in a RB-Tree, independent of
174 * their hierarchy representation
175 */
176
177struct mem_cgroup_tree_per_zone {
178 struct rb_root rb_root;
179 spinlock_t lock;
180};
181
182struct mem_cgroup_tree_per_node {
183 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
184};
185
186struct mem_cgroup_tree {
187 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
188};
189
190static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191
2e72b634
KS
192struct mem_cgroup_threshold {
193 struct eventfd_ctx *eventfd;
194 u64 threshold;
195};
196
9490ff27 197/* For threshold */
2e72b634 198struct mem_cgroup_threshold_ary {
748dad36 199 /* An array index points to threshold just below or equal to usage. */
5407a562 200 int current_threshold;
2e72b634
KS
201 /* Size of entries[] */
202 unsigned int size;
203 /* Array of thresholds */
204 struct mem_cgroup_threshold entries[0];
205};
2c488db2
KS
206
207struct mem_cgroup_thresholds {
208 /* Primary thresholds array */
209 struct mem_cgroup_threshold_ary *primary;
210 /*
211 * Spare threshold array.
212 * This is needed to make mem_cgroup_unregister_event() "never fail".
213 * It must be able to store at least primary->size - 1 entries.
214 */
215 struct mem_cgroup_threshold_ary *spare;
216};
217
9490ff27
KH
218/* for OOM */
219struct mem_cgroup_eventfd_list {
220 struct list_head list;
221 struct eventfd_ctx *eventfd;
222};
2e72b634 223
c0ff4b85
R
224static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 226
8cdea7c0
BS
227/*
228 * The memory controller data structure. The memory controller controls both
229 * page cache and RSS per cgroup. We would eventually like to provide
230 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231 * to help the administrator determine what knobs to tune.
232 *
233 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
234 * we hit the water mark. May be even add a low water mark, such that
235 * no reclaim occurs from a cgroup at it's low water mark, this is
236 * a feature that will be implemented much later in the future.
8cdea7c0
BS
237 */
238struct mem_cgroup {
239 struct cgroup_subsys_state css;
240 /*
241 * the counter to account for memory usage
242 */
243 struct res_counter res;
59927fb9
HD
244
245 union {
246 /*
247 * the counter to account for mem+swap usage.
248 */
249 struct res_counter memsw;
250
251 /*
252 * rcu_freeing is used only when freeing struct mem_cgroup,
253 * so put it into a union to avoid wasting more memory.
254 * It must be disjoint from the css field. It could be
255 * in a union with the res field, but res plays a much
256 * larger part in mem_cgroup life than memsw, and might
257 * be of interest, even at time of free, when debugging.
258 * So share rcu_head with the less interesting memsw.
259 */
260 struct rcu_head rcu_freeing;
261 /*
3afe36b1
GC
262 * We also need some space for a worker in deferred freeing.
263 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
264 */
265 struct work_struct work_freeing;
266 };
267
78fb7466
PE
268 /*
269 * Per cgroup active and inactive list, similar to the
270 * per zone LRU lists.
78fb7466 271 */
6d12e2d8 272 struct mem_cgroup_lru_info info;
889976db
YH
273 int last_scanned_node;
274#if MAX_NUMNODES > 1
275 nodemask_t scan_nodes;
453a9bf3
KH
276 atomic_t numainfo_events;
277 atomic_t numainfo_updating;
889976db 278#endif
18f59ea7
BS
279 /*
280 * Should the accounting and control be hierarchical, per subtree?
281 */
282 bool use_hierarchy;
79dfdacc
MH
283
284 bool oom_lock;
285 atomic_t under_oom;
286
8c7c6e34 287 atomic_t refcnt;
14797e23 288
1f4c025b 289 int swappiness;
3c11ecf4
KH
290 /* OOM-Killer disable */
291 int oom_kill_disable;
a7885eb8 292
22a668d7
KH
293 /* set when res.limit == memsw.limit */
294 bool memsw_is_minimum;
295
2e72b634
KS
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
2c488db2 300 struct mem_cgroup_thresholds thresholds;
907860ed 301
2e72b634 302 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 303 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 304
9490ff27
KH
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
185efc0f 307
7dc74be0
DN
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
312 unsigned long move_charge_at_immigrate;
619d094b
KH
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
316 atomic_t moving_account;
312734c0
KH
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
d52aa412 319 /*
c62b1a3b 320 * percpu counter.
d52aa412 321 */
3a7951b4 322 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
323 /*
324 * used when a cpu is offlined or other synchronizations
325 * See mem_cgroup_read_stat().
326 */
327 struct mem_cgroup_stat_cpu nocpu_base;
328 spinlock_t pcp_counter_lock;
d1a4c0b3 329
4bd2c1ee 330#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
331 struct tcp_memcontrol tcp_mem;
332#endif
8cdea7c0
BS
333};
334
7dc74be0
DN
335/* Stuffs for move charges at task migration. */
336/*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340enum move_type {
4ffef5fe 341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
343 NR_MOVE_TYPE,
344};
345
4ffef5fe
DN
346/* "mc" and its members are protected by cgroup_mutex */
347static struct move_charge_struct {
b1dd693e 348 spinlock_t lock; /* for from, to */
4ffef5fe
DN
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
854ffa8d 352 unsigned long moved_charge;
483c30b5 353 unsigned long moved_swap;
8033b97c
DN
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356} mc = {
2bd9bb20 357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359};
4ffef5fe 360
90254a65
DN
361static bool move_anon(void)
362{
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
365}
366
87946a72
DN
367static bool move_file(void)
368{
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
371}
372
4e416953
BS
373/*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
a0db00fc
KS
377#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
378#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 379
217bc319
KH
380enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 382 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
385 NR_CHARGE_TYPE,
386};
387
8c7c6e34 388/* for encoding cft->private value on file */
65c64ce8
GC
389#define _MEM (0)
390#define _MEMSWAP (1)
391#define _OOM_TYPE (2)
a0db00fc
KS
392#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 394#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
395/* Used for OOM nofiier */
396#define OOM_CONTROL (0)
8c7c6e34 397
75822b44
BS
398/*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
c0ff4b85
R
406static void mem_cgroup_get(struct mem_cgroup *memcg);
407static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 408
b2145145
WL
409static inline
410struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411{
412 return container_of(s, struct mem_cgroup, css);
413}
414
7ffc0edc
MH
415static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
416{
417 return (memcg == root_mem_cgroup);
418}
419
e1aab161 420/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 421#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 422
e1aab161
GC
423void sock_update_memcg(struct sock *sk)
424{
376be5ff 425 if (mem_cgroup_sockets_enabled) {
e1aab161 426 struct mem_cgroup *memcg;
3f134619 427 struct cg_proto *cg_proto;
e1aab161
GC
428
429 BUG_ON(!sk->sk_prot->proto_cgroup);
430
f3f511e1
GC
431 /* Socket cloning can throw us here with sk_cgrp already
432 * filled. It won't however, necessarily happen from
433 * process context. So the test for root memcg given
434 * the current task's memcg won't help us in this case.
435 *
436 * Respecting the original socket's memcg is a better
437 * decision in this case.
438 */
439 if (sk->sk_cgrp) {
440 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
441 mem_cgroup_get(sk->sk_cgrp->memcg);
442 return;
443 }
444
e1aab161
GC
445 rcu_read_lock();
446 memcg = mem_cgroup_from_task(current);
3f134619
GC
447 cg_proto = sk->sk_prot->proto_cgroup(memcg);
448 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 449 mem_cgroup_get(memcg);
3f134619 450 sk->sk_cgrp = cg_proto;
e1aab161
GC
451 }
452 rcu_read_unlock();
453 }
454}
455EXPORT_SYMBOL(sock_update_memcg);
456
457void sock_release_memcg(struct sock *sk)
458{
376be5ff 459 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
460 struct mem_cgroup *memcg;
461 WARN_ON(!sk->sk_cgrp->memcg);
462 memcg = sk->sk_cgrp->memcg;
463 mem_cgroup_put(memcg);
464 }
465}
d1a4c0b3
GC
466
467struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
468{
469 if (!memcg || mem_cgroup_is_root(memcg))
470 return NULL;
471
472 return &memcg->tcp_mem.cg_proto;
473}
474EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 475
3f134619
GC
476static void disarm_sock_keys(struct mem_cgroup *memcg)
477{
478 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
479 return;
480 static_key_slow_dec(&memcg_socket_limit_enabled);
481}
482#else
483static void disarm_sock_keys(struct mem_cgroup *memcg)
484{
485}
486#endif
487
c0ff4b85 488static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 489
f64c3f54 490static struct mem_cgroup_per_zone *
c0ff4b85 491mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 492{
c0ff4b85 493 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
494}
495
c0ff4b85 496struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 497{
c0ff4b85 498 return &memcg->css;
d324236b
WF
499}
500
f64c3f54 501static struct mem_cgroup_per_zone *
c0ff4b85 502page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 503{
97a6c37b
JW
504 int nid = page_to_nid(page);
505 int zid = page_zonenum(page);
f64c3f54 506
c0ff4b85 507 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
508}
509
510static struct mem_cgroup_tree_per_zone *
511soft_limit_tree_node_zone(int nid, int zid)
512{
513 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
514}
515
516static struct mem_cgroup_tree_per_zone *
517soft_limit_tree_from_page(struct page *page)
518{
519 int nid = page_to_nid(page);
520 int zid = page_zonenum(page);
521
522 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
523}
524
525static void
c0ff4b85 526__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 527 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
528 struct mem_cgroup_tree_per_zone *mctz,
529 unsigned long long new_usage_in_excess)
f64c3f54
BS
530{
531 struct rb_node **p = &mctz->rb_root.rb_node;
532 struct rb_node *parent = NULL;
533 struct mem_cgroup_per_zone *mz_node;
534
535 if (mz->on_tree)
536 return;
537
ef8745c1
KH
538 mz->usage_in_excess = new_usage_in_excess;
539 if (!mz->usage_in_excess)
540 return;
f64c3f54
BS
541 while (*p) {
542 parent = *p;
543 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
544 tree_node);
545 if (mz->usage_in_excess < mz_node->usage_in_excess)
546 p = &(*p)->rb_left;
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 mz->on_tree = true;
4e416953
BS
557}
558
559static void
c0ff4b85 560__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
561 struct mem_cgroup_per_zone *mz,
562 struct mem_cgroup_tree_per_zone *mctz)
563{
564 if (!mz->on_tree)
565 return;
566 rb_erase(&mz->tree_node, &mctz->rb_root);
567 mz->on_tree = false;
568}
569
f64c3f54 570static void
c0ff4b85 571mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
572 struct mem_cgroup_per_zone *mz,
573 struct mem_cgroup_tree_per_zone *mctz)
574{
575 spin_lock(&mctz->lock);
c0ff4b85 576 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
577 spin_unlock(&mctz->lock);
578}
579
f64c3f54 580
c0ff4b85 581static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 582{
ef8745c1 583 unsigned long long excess;
f64c3f54
BS
584 struct mem_cgroup_per_zone *mz;
585 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
586 int nid = page_to_nid(page);
587 int zid = page_zonenum(page);
f64c3f54
BS
588 mctz = soft_limit_tree_from_page(page);
589
590 /*
4e649152
KH
591 * Necessary to update all ancestors when hierarchy is used.
592 * because their event counter is not touched.
f64c3f54 593 */
c0ff4b85
R
594 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
595 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
597 /*
598 * We have to update the tree if mz is on RB-tree or
599 * mem is over its softlimit.
600 */
ef8745c1 601 if (excess || mz->on_tree) {
4e649152
KH
602 spin_lock(&mctz->lock);
603 /* if on-tree, remove it */
604 if (mz->on_tree)
c0ff4b85 605 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 606 /*
ef8745c1
KH
607 * Insert again. mz->usage_in_excess will be updated.
608 * If excess is 0, no tree ops.
4e649152 609 */
c0ff4b85 610 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
611 spin_unlock(&mctz->lock);
612 }
f64c3f54
BS
613 }
614}
615
c0ff4b85 616static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
617{
618 int node, zone;
619 struct mem_cgroup_per_zone *mz;
620 struct mem_cgroup_tree_per_zone *mctz;
621
3ed28fa1 622 for_each_node(node) {
f64c3f54 623 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 624 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 625 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 626 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
627 }
628 }
629}
630
4e416953
BS
631static struct mem_cgroup_per_zone *
632__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
633{
634 struct rb_node *rightmost = NULL;
26251eaf 635 struct mem_cgroup_per_zone *mz;
4e416953
BS
636
637retry:
26251eaf 638 mz = NULL;
4e416953
BS
639 rightmost = rb_last(&mctz->rb_root);
640 if (!rightmost)
641 goto done; /* Nothing to reclaim from */
642
643 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
644 /*
645 * Remove the node now but someone else can add it back,
646 * we will to add it back at the end of reclaim to its correct
647 * position in the tree.
648 */
d79154bb
HD
649 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
650 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
651 !css_tryget(&mz->memcg->css))
4e416953
BS
652 goto retry;
653done:
654 return mz;
655}
656
657static struct mem_cgroup_per_zone *
658mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
659{
660 struct mem_cgroup_per_zone *mz;
661
662 spin_lock(&mctz->lock);
663 mz = __mem_cgroup_largest_soft_limit_node(mctz);
664 spin_unlock(&mctz->lock);
665 return mz;
666}
667
711d3d2c
KH
668/*
669 * Implementation Note: reading percpu statistics for memcg.
670 *
671 * Both of vmstat[] and percpu_counter has threshold and do periodic
672 * synchronization to implement "quick" read. There are trade-off between
673 * reading cost and precision of value. Then, we may have a chance to implement
674 * a periodic synchronizion of counter in memcg's counter.
675 *
676 * But this _read() function is used for user interface now. The user accounts
677 * memory usage by memory cgroup and he _always_ requires exact value because
678 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
679 * have to visit all online cpus and make sum. So, for now, unnecessary
680 * synchronization is not implemented. (just implemented for cpu hotplug)
681 *
682 * If there are kernel internal actions which can make use of some not-exact
683 * value, and reading all cpu value can be performance bottleneck in some
684 * common workload, threashold and synchonization as vmstat[] should be
685 * implemented.
686 */
c0ff4b85 687static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 688 enum mem_cgroup_stat_index idx)
c62b1a3b 689{
7a159cc9 690 long val = 0;
c62b1a3b 691 int cpu;
c62b1a3b 692
711d3d2c
KH
693 get_online_cpus();
694 for_each_online_cpu(cpu)
c0ff4b85 695 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 696#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
697 spin_lock(&memcg->pcp_counter_lock);
698 val += memcg->nocpu_base.count[idx];
699 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
700#endif
701 put_online_cpus();
c62b1a3b
KH
702 return val;
703}
704
c0ff4b85 705static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
706 bool charge)
707{
708 int val = (charge) ? 1 : -1;
bff6bb83 709 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
710}
711
c0ff4b85 712static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
713 enum mem_cgroup_events_index idx)
714{
715 unsigned long val = 0;
716 int cpu;
717
718 for_each_online_cpu(cpu)
c0ff4b85 719 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 720#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
721 spin_lock(&memcg->pcp_counter_lock);
722 val += memcg->nocpu_base.events[idx];
723 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
724#endif
725 return val;
726}
727
c0ff4b85 728static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 729 bool anon, int nr_pages)
d52aa412 730{
c62b1a3b
KH
731 preempt_disable();
732
b2402857
KH
733 /*
734 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
735 * counted as CACHE even if it's on ANON LRU.
736 */
737 if (anon)
738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 739 nr_pages);
d52aa412 740 else
b2402857 741 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 742 nr_pages);
55e462b0 743
e401f176
KH
744 /* pagein of a big page is an event. So, ignore page size */
745 if (nr_pages > 0)
c0ff4b85 746 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 747 else {
c0ff4b85 748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
749 nr_pages = -nr_pages; /* for event */
750 }
e401f176 751
13114716 752 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 753
c62b1a3b 754 preempt_enable();
6d12e2d8
KH
755}
756
bb2a0de9 757unsigned long
4d7dcca2 758mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
759{
760 struct mem_cgroup_per_zone *mz;
761
762 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
763 return mz->lru_size[lru];
764}
765
766static unsigned long
c0ff4b85 767mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 768 unsigned int lru_mask)
889976db
YH
769{
770 struct mem_cgroup_per_zone *mz;
f156ab93 771 enum lru_list lru;
bb2a0de9
KH
772 unsigned long ret = 0;
773
c0ff4b85 774 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 775
f156ab93
HD
776 for_each_lru(lru) {
777 if (BIT(lru) & lru_mask)
778 ret += mz->lru_size[lru];
bb2a0de9
KH
779 }
780 return ret;
781}
782
783static unsigned long
c0ff4b85 784mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
785 int nid, unsigned int lru_mask)
786{
889976db
YH
787 u64 total = 0;
788 int zid;
789
bb2a0de9 790 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
791 total += mem_cgroup_zone_nr_lru_pages(memcg,
792 nid, zid, lru_mask);
bb2a0de9 793
889976db
YH
794 return total;
795}
bb2a0de9 796
c0ff4b85 797static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 798 unsigned int lru_mask)
6d12e2d8 799{
889976db 800 int nid;
6d12e2d8
KH
801 u64 total = 0;
802
bb2a0de9 803 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 804 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 805 return total;
d52aa412
KH
806}
807
f53d7ce3
JW
808static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
809 enum mem_cgroup_events_target target)
7a159cc9
JW
810{
811 unsigned long val, next;
812
13114716 813 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 814 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 815 /* from time_after() in jiffies.h */
f53d7ce3
JW
816 if ((long)next - (long)val < 0) {
817 switch (target) {
818 case MEM_CGROUP_TARGET_THRESH:
819 next = val + THRESHOLDS_EVENTS_TARGET;
820 break;
821 case MEM_CGROUP_TARGET_SOFTLIMIT:
822 next = val + SOFTLIMIT_EVENTS_TARGET;
823 break;
824 case MEM_CGROUP_TARGET_NUMAINFO:
825 next = val + NUMAINFO_EVENTS_TARGET;
826 break;
827 default:
828 break;
829 }
830 __this_cpu_write(memcg->stat->targets[target], next);
831 return true;
7a159cc9 832 }
f53d7ce3 833 return false;
d2265e6f
KH
834}
835
836/*
837 * Check events in order.
838 *
839 */
c0ff4b85 840static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 841{
4799401f 842 preempt_disable();
d2265e6f 843 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
844 if (unlikely(mem_cgroup_event_ratelimit(memcg,
845 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
846 bool do_softlimit;
847 bool do_numainfo __maybe_unused;
f53d7ce3
JW
848
849 do_softlimit = mem_cgroup_event_ratelimit(memcg,
850 MEM_CGROUP_TARGET_SOFTLIMIT);
851#if MAX_NUMNODES > 1
852 do_numainfo = mem_cgroup_event_ratelimit(memcg,
853 MEM_CGROUP_TARGET_NUMAINFO);
854#endif
855 preempt_enable();
856
c0ff4b85 857 mem_cgroup_threshold(memcg);
f53d7ce3 858 if (unlikely(do_softlimit))
c0ff4b85 859 mem_cgroup_update_tree(memcg, page);
453a9bf3 860#if MAX_NUMNODES > 1
f53d7ce3 861 if (unlikely(do_numainfo))
c0ff4b85 862 atomic_inc(&memcg->numainfo_events);
453a9bf3 863#endif
f53d7ce3
JW
864 } else
865 preempt_enable();
d2265e6f
KH
866}
867
d1a4c0b3 868struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 869{
b2145145
WL
870 return mem_cgroup_from_css(
871 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
872}
873
cf475ad2 874struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 875{
31a78f23
BS
876 /*
877 * mm_update_next_owner() may clear mm->owner to NULL
878 * if it races with swapoff, page migration, etc.
879 * So this can be called with p == NULL.
880 */
881 if (unlikely(!p))
882 return NULL;
883
b2145145 884 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
885}
886
a433658c 887struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 888{
c0ff4b85 889 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
890
891 if (!mm)
892 return NULL;
54595fe2
KH
893 /*
894 * Because we have no locks, mm->owner's may be being moved to other
895 * cgroup. We use css_tryget() here even if this looks
896 * pessimistic (rather than adding locks here).
897 */
898 rcu_read_lock();
899 do {
c0ff4b85
R
900 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 if (unlikely(!memcg))
54595fe2 902 break;
c0ff4b85 903 } while (!css_tryget(&memcg->css));
54595fe2 904 rcu_read_unlock();
c0ff4b85 905 return memcg;
54595fe2
KH
906}
907
5660048c
JW
908/**
909 * mem_cgroup_iter - iterate over memory cgroup hierarchy
910 * @root: hierarchy root
911 * @prev: previously returned memcg, NULL on first invocation
912 * @reclaim: cookie for shared reclaim walks, NULL for full walks
913 *
914 * Returns references to children of the hierarchy below @root, or
915 * @root itself, or %NULL after a full round-trip.
916 *
917 * Caller must pass the return value in @prev on subsequent
918 * invocations for reference counting, or use mem_cgroup_iter_break()
919 * to cancel a hierarchy walk before the round-trip is complete.
920 *
921 * Reclaimers can specify a zone and a priority level in @reclaim to
922 * divide up the memcgs in the hierarchy among all concurrent
923 * reclaimers operating on the same zone and priority.
924 */
925struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
926 struct mem_cgroup *prev,
927 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 928{
9f3a0d09
JW
929 struct mem_cgroup *memcg = NULL;
930 int id = 0;
711d3d2c 931
5660048c
JW
932 if (mem_cgroup_disabled())
933 return NULL;
934
9f3a0d09
JW
935 if (!root)
936 root = root_mem_cgroup;
7d74b06f 937
9f3a0d09
JW
938 if (prev && !reclaim)
939 id = css_id(&prev->css);
14067bb3 940
9f3a0d09
JW
941 if (prev && prev != root)
942 css_put(&prev->css);
14067bb3 943
9f3a0d09
JW
944 if (!root->use_hierarchy && root != root_mem_cgroup) {
945 if (prev)
946 return NULL;
947 return root;
948 }
14067bb3 949
9f3a0d09 950 while (!memcg) {
527a5ec9 951 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 952 struct cgroup_subsys_state *css;
711d3d2c 953
527a5ec9
JW
954 if (reclaim) {
955 int nid = zone_to_nid(reclaim->zone);
956 int zid = zone_idx(reclaim->zone);
957 struct mem_cgroup_per_zone *mz;
958
959 mz = mem_cgroup_zoneinfo(root, nid, zid);
960 iter = &mz->reclaim_iter[reclaim->priority];
961 if (prev && reclaim->generation != iter->generation)
962 return NULL;
963 id = iter->position;
964 }
7d74b06f 965
9f3a0d09
JW
966 rcu_read_lock();
967 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
968 if (css) {
969 if (css == &root->css || css_tryget(css))
b2145145 970 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
971 } else
972 id = 0;
14067bb3 973 rcu_read_unlock();
14067bb3 974
527a5ec9
JW
975 if (reclaim) {
976 iter->position = id;
977 if (!css)
978 iter->generation++;
979 else if (!prev && memcg)
980 reclaim->generation = iter->generation;
981 }
9f3a0d09
JW
982
983 if (prev && !css)
984 return NULL;
985 }
986 return memcg;
14067bb3 987}
7d74b06f 988
5660048c
JW
989/**
990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991 * @root: hierarchy root
992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993 */
994void mem_cgroup_iter_break(struct mem_cgroup *root,
995 struct mem_cgroup *prev)
9f3a0d09
JW
996{
997 if (!root)
998 root = root_mem_cgroup;
999 if (prev && prev != root)
1000 css_put(&prev->css);
1001}
7d74b06f 1002
9f3a0d09
JW
1003/*
1004 * Iteration constructs for visiting all cgroups (under a tree). If
1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006 * be used for reference counting.
1007 */
1008#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1010 iter != NULL; \
527a5ec9 1011 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1012
9f3a0d09 1013#define for_each_mem_cgroup(iter) \
527a5ec9 1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1015 iter != NULL; \
527a5ec9 1016 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1017
456f998e
YH
1018void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1019{
c0ff4b85 1020 struct mem_cgroup *memcg;
456f998e
YH
1021
1022 if (!mm)
1023 return;
1024
1025 rcu_read_lock();
c0ff4b85
R
1026 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1027 if (unlikely(!memcg))
456f998e
YH
1028 goto out;
1029
1030 switch (idx) {
456f998e 1031 case PGFAULT:
0e574a93
JW
1032 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1033 break;
1034 case PGMAJFAULT:
1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1036 break;
1037 default:
1038 BUG();
1039 }
1040out:
1041 rcu_read_unlock();
1042}
1043EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1044
925b7673
JW
1045/**
1046 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1047 * @zone: zone of the wanted lruvec
fa9add64 1048 * @memcg: memcg of the wanted lruvec
925b7673
JW
1049 *
1050 * Returns the lru list vector holding pages for the given @zone and
1051 * @mem. This can be the global zone lruvec, if the memory controller
1052 * is disabled.
1053 */
1054struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1055 struct mem_cgroup *memcg)
1056{
1057 struct mem_cgroup_per_zone *mz;
bea8c150 1058 struct lruvec *lruvec;
925b7673 1059
bea8c150
HD
1060 if (mem_cgroup_disabled()) {
1061 lruvec = &zone->lruvec;
1062 goto out;
1063 }
925b7673
JW
1064
1065 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1066 lruvec = &mz->lruvec;
1067out:
1068 /*
1069 * Since a node can be onlined after the mem_cgroup was created,
1070 * we have to be prepared to initialize lruvec->zone here;
1071 * and if offlined then reonlined, we need to reinitialize it.
1072 */
1073 if (unlikely(lruvec->zone != zone))
1074 lruvec->zone = zone;
1075 return lruvec;
925b7673
JW
1076}
1077
08e552c6
KH
1078/*
1079 * Following LRU functions are allowed to be used without PCG_LOCK.
1080 * Operations are called by routine of global LRU independently from memcg.
1081 * What we have to take care of here is validness of pc->mem_cgroup.
1082 *
1083 * Changes to pc->mem_cgroup happens when
1084 * 1. charge
1085 * 2. moving account
1086 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1087 * It is added to LRU before charge.
1088 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1089 * When moving account, the page is not on LRU. It's isolated.
1090 */
4f98a2fe 1091
925b7673 1092/**
fa9add64 1093 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1094 * @page: the page
fa9add64 1095 * @zone: zone of the page
925b7673 1096 */
fa9add64 1097struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1098{
08e552c6 1099 struct mem_cgroup_per_zone *mz;
925b7673
JW
1100 struct mem_cgroup *memcg;
1101 struct page_cgroup *pc;
bea8c150 1102 struct lruvec *lruvec;
6d12e2d8 1103
bea8c150
HD
1104 if (mem_cgroup_disabled()) {
1105 lruvec = &zone->lruvec;
1106 goto out;
1107 }
925b7673 1108
08e552c6 1109 pc = lookup_page_cgroup(page);
38c5d72f 1110 memcg = pc->mem_cgroup;
7512102c
HD
1111
1112 /*
fa9add64 1113 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1114 * an uncharged page off lru does nothing to secure
1115 * its former mem_cgroup from sudden removal.
1116 *
1117 * Our caller holds lru_lock, and PageCgroupUsed is updated
1118 * under page_cgroup lock: between them, they make all uses
1119 * of pc->mem_cgroup safe.
1120 */
fa9add64 1121 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1122 pc->mem_cgroup = memcg = root_mem_cgroup;
1123
925b7673 1124 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1125 lruvec = &mz->lruvec;
1126out:
1127 /*
1128 * Since a node can be onlined after the mem_cgroup was created,
1129 * we have to be prepared to initialize lruvec->zone here;
1130 * and if offlined then reonlined, we need to reinitialize it.
1131 */
1132 if (unlikely(lruvec->zone != zone))
1133 lruvec->zone = zone;
1134 return lruvec;
08e552c6 1135}
b69408e8 1136
925b7673 1137/**
fa9add64
HD
1138 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1139 * @lruvec: mem_cgroup per zone lru vector
1140 * @lru: index of lru list the page is sitting on
1141 * @nr_pages: positive when adding or negative when removing
925b7673 1142 *
fa9add64
HD
1143 * This function must be called when a page is added to or removed from an
1144 * lru list.
3f58a829 1145 */
fa9add64
HD
1146void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1147 int nr_pages)
3f58a829
MK
1148{
1149 struct mem_cgroup_per_zone *mz;
fa9add64 1150 unsigned long *lru_size;
3f58a829
MK
1151
1152 if (mem_cgroup_disabled())
1153 return;
1154
fa9add64
HD
1155 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1156 lru_size = mz->lru_size + lru;
1157 *lru_size += nr_pages;
1158 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1159}
544122e5 1160
3e92041d 1161/*
c0ff4b85 1162 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1163 * hierarchy subtree
1164 */
c3ac9a8a
JW
1165bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1166 struct mem_cgroup *memcg)
3e92041d 1167{
91c63734
JW
1168 if (root_memcg == memcg)
1169 return true;
3a981f48 1170 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1171 return false;
c3ac9a8a
JW
1172 return css_is_ancestor(&memcg->css, &root_memcg->css);
1173}
1174
1175static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1176 struct mem_cgroup *memcg)
1177{
1178 bool ret;
1179
91c63734 1180 rcu_read_lock();
c3ac9a8a 1181 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1182 rcu_read_unlock();
1183 return ret;
3e92041d
MH
1184}
1185
c0ff4b85 1186int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1187{
1188 int ret;
0b7f569e 1189 struct mem_cgroup *curr = NULL;
158e0a2d 1190 struct task_struct *p;
4c4a2214 1191
158e0a2d 1192 p = find_lock_task_mm(task);
de077d22
DR
1193 if (p) {
1194 curr = try_get_mem_cgroup_from_mm(p->mm);
1195 task_unlock(p);
1196 } else {
1197 /*
1198 * All threads may have already detached their mm's, but the oom
1199 * killer still needs to detect if they have already been oom
1200 * killed to prevent needlessly killing additional tasks.
1201 */
1202 task_lock(task);
1203 curr = mem_cgroup_from_task(task);
1204 if (curr)
1205 css_get(&curr->css);
1206 task_unlock(task);
1207 }
0b7f569e
KH
1208 if (!curr)
1209 return 0;
d31f56db 1210 /*
c0ff4b85 1211 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1212 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1213 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1214 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1215 */
c0ff4b85 1216 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1217 css_put(&curr->css);
4c4a2214
DR
1218 return ret;
1219}
1220
c56d5c7d 1221int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1222{
9b272977 1223 unsigned long inactive_ratio;
14797e23 1224 unsigned long inactive;
9b272977 1225 unsigned long active;
c772be93 1226 unsigned long gb;
14797e23 1227
4d7dcca2
HD
1228 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1229 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1230
c772be93
KM
1231 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1232 if (gb)
1233 inactive_ratio = int_sqrt(10 * gb);
1234 else
1235 inactive_ratio = 1;
1236
9b272977 1237 return inactive * inactive_ratio < active;
14797e23
KM
1238}
1239
c56d5c7d 1240int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1241{
1242 unsigned long active;
1243 unsigned long inactive;
1244
4d7dcca2
HD
1245 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1246 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1247
1248 return (active > inactive);
1249}
1250
6d61ef40
BS
1251#define mem_cgroup_from_res_counter(counter, member) \
1252 container_of(counter, struct mem_cgroup, member)
1253
19942822 1254/**
9d11ea9f 1255 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1256 * @memcg: the memory cgroup
19942822 1257 *
9d11ea9f 1258 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1259 * pages.
19942822 1260 */
c0ff4b85 1261static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1262{
9d11ea9f
JW
1263 unsigned long long margin;
1264
c0ff4b85 1265 margin = res_counter_margin(&memcg->res);
9d11ea9f 1266 if (do_swap_account)
c0ff4b85 1267 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1268 return margin >> PAGE_SHIFT;
19942822
JW
1269}
1270
1f4c025b 1271int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1272{
1273 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1274
1275 /* root ? */
1276 if (cgrp->parent == NULL)
1277 return vm_swappiness;
1278
bf1ff263 1279 return memcg->swappiness;
a7885eb8
KM
1280}
1281
619d094b
KH
1282/*
1283 * memcg->moving_account is used for checking possibility that some thread is
1284 * calling move_account(). When a thread on CPU-A starts moving pages under
1285 * a memcg, other threads should check memcg->moving_account under
1286 * rcu_read_lock(), like this:
1287 *
1288 * CPU-A CPU-B
1289 * rcu_read_lock()
1290 * memcg->moving_account+1 if (memcg->mocing_account)
1291 * take heavy locks.
1292 * synchronize_rcu() update something.
1293 * rcu_read_unlock()
1294 * start move here.
1295 */
4331f7d3
KH
1296
1297/* for quick checking without looking up memcg */
1298atomic_t memcg_moving __read_mostly;
1299
c0ff4b85 1300static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1301{
4331f7d3 1302 atomic_inc(&memcg_moving);
619d094b 1303 atomic_inc(&memcg->moving_account);
32047e2a
KH
1304 synchronize_rcu();
1305}
1306
c0ff4b85 1307static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1308{
619d094b
KH
1309 /*
1310 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1311 * We check NULL in callee rather than caller.
1312 */
4331f7d3
KH
1313 if (memcg) {
1314 atomic_dec(&memcg_moving);
619d094b 1315 atomic_dec(&memcg->moving_account);
4331f7d3 1316 }
32047e2a 1317}
619d094b 1318
32047e2a
KH
1319/*
1320 * 2 routines for checking "mem" is under move_account() or not.
1321 *
13fd1dd9
AM
1322 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1323 * is used for avoiding races in accounting. If true,
32047e2a
KH
1324 * pc->mem_cgroup may be overwritten.
1325 *
1326 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1327 * under hierarchy of moving cgroups. This is for
1328 * waiting at hith-memory prressure caused by "move".
1329 */
1330
13fd1dd9 1331static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1332{
1333 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1334 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1335}
4b534334 1336
c0ff4b85 1337static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1338{
2bd9bb20
KH
1339 struct mem_cgroup *from;
1340 struct mem_cgroup *to;
4b534334 1341 bool ret = false;
2bd9bb20
KH
1342 /*
1343 * Unlike task_move routines, we access mc.to, mc.from not under
1344 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1345 */
1346 spin_lock(&mc.lock);
1347 from = mc.from;
1348 to = mc.to;
1349 if (!from)
1350 goto unlock;
3e92041d 1351
c0ff4b85
R
1352 ret = mem_cgroup_same_or_subtree(memcg, from)
1353 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1354unlock:
1355 spin_unlock(&mc.lock);
4b534334
KH
1356 return ret;
1357}
1358
c0ff4b85 1359static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1360{
1361 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1362 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1363 DEFINE_WAIT(wait);
1364 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1365 /* moving charge context might have finished. */
1366 if (mc.moving_task)
1367 schedule();
1368 finish_wait(&mc.waitq, &wait);
1369 return true;
1370 }
1371 }
1372 return false;
1373}
1374
312734c0
KH
1375/*
1376 * Take this lock when
1377 * - a code tries to modify page's memcg while it's USED.
1378 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1379 * see mem_cgroup_stolen(), too.
312734c0
KH
1380 */
1381static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1382 unsigned long *flags)
1383{
1384 spin_lock_irqsave(&memcg->move_lock, *flags);
1385}
1386
1387static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1388 unsigned long *flags)
1389{
1390 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1391}
1392
e222432b 1393/**
6a6135b6 1394 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1395 * @memcg: The memory cgroup that went over limit
1396 * @p: Task that is going to be killed
1397 *
1398 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1399 * enabled
1400 */
1401void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1402{
1403 struct cgroup *task_cgrp;
1404 struct cgroup *mem_cgrp;
1405 /*
1406 * Need a buffer in BSS, can't rely on allocations. The code relies
1407 * on the assumption that OOM is serialized for memory controller.
1408 * If this assumption is broken, revisit this code.
1409 */
1410 static char memcg_name[PATH_MAX];
1411 int ret;
1412
d31f56db 1413 if (!memcg || !p)
e222432b
BS
1414 return;
1415
e222432b
BS
1416 rcu_read_lock();
1417
1418 mem_cgrp = memcg->css.cgroup;
1419 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1420
1421 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1422 if (ret < 0) {
1423 /*
1424 * Unfortunately, we are unable to convert to a useful name
1425 * But we'll still print out the usage information
1426 */
1427 rcu_read_unlock();
1428 goto done;
1429 }
1430 rcu_read_unlock();
1431
1432 printk(KERN_INFO "Task in %s killed", memcg_name);
1433
1434 rcu_read_lock();
1435 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1436 if (ret < 0) {
1437 rcu_read_unlock();
1438 goto done;
1439 }
1440 rcu_read_unlock();
1441
1442 /*
1443 * Continues from above, so we don't need an KERN_ level
1444 */
1445 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1446done:
1447
1448 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1449 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1450 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1451 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1452 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1453 "failcnt %llu\n",
1454 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1455 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1456 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1457}
1458
81d39c20
KH
1459/*
1460 * This function returns the number of memcg under hierarchy tree. Returns
1461 * 1(self count) if no children.
1462 */
c0ff4b85 1463static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1464{
1465 int num = 0;
7d74b06f
KH
1466 struct mem_cgroup *iter;
1467
c0ff4b85 1468 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1469 num++;
81d39c20
KH
1470 return num;
1471}
1472
a63d83f4
DR
1473/*
1474 * Return the memory (and swap, if configured) limit for a memcg.
1475 */
9cbb78bb 1476static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1477{
1478 u64 limit;
a63d83f4 1479
f3e8eb70 1480 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1481
a63d83f4 1482 /*
9a5a8f19 1483 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1484 */
9a5a8f19
MH
1485 if (mem_cgroup_swappiness(memcg)) {
1486 u64 memsw;
1487
1488 limit += total_swap_pages << PAGE_SHIFT;
1489 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1490
1491 /*
1492 * If memsw is finite and limits the amount of swap space
1493 * available to this memcg, return that limit.
1494 */
1495 limit = min(limit, memsw);
1496 }
1497
1498 return limit;
a63d83f4
DR
1499}
1500
19965460
DR
1501static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1502 int order)
9cbb78bb
DR
1503{
1504 struct mem_cgroup *iter;
1505 unsigned long chosen_points = 0;
1506 unsigned long totalpages;
1507 unsigned int points = 0;
1508 struct task_struct *chosen = NULL;
1509
876aafbf
DR
1510 /*
1511 * If current has a pending SIGKILL, then automatically select it. The
1512 * goal is to allow it to allocate so that it may quickly exit and free
1513 * its memory.
1514 */
1515 if (fatal_signal_pending(current)) {
1516 set_thread_flag(TIF_MEMDIE);
1517 return;
1518 }
1519
1520 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1521 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1522 for_each_mem_cgroup_tree(iter, memcg) {
1523 struct cgroup *cgroup = iter->css.cgroup;
1524 struct cgroup_iter it;
1525 struct task_struct *task;
1526
1527 cgroup_iter_start(cgroup, &it);
1528 while ((task = cgroup_iter_next(cgroup, &it))) {
1529 switch (oom_scan_process_thread(task, totalpages, NULL,
1530 false)) {
1531 case OOM_SCAN_SELECT:
1532 if (chosen)
1533 put_task_struct(chosen);
1534 chosen = task;
1535 chosen_points = ULONG_MAX;
1536 get_task_struct(chosen);
1537 /* fall through */
1538 case OOM_SCAN_CONTINUE:
1539 continue;
1540 case OOM_SCAN_ABORT:
1541 cgroup_iter_end(cgroup, &it);
1542 mem_cgroup_iter_break(memcg, iter);
1543 if (chosen)
1544 put_task_struct(chosen);
1545 return;
1546 case OOM_SCAN_OK:
1547 break;
1548 };
1549 points = oom_badness(task, memcg, NULL, totalpages);
1550 if (points > chosen_points) {
1551 if (chosen)
1552 put_task_struct(chosen);
1553 chosen = task;
1554 chosen_points = points;
1555 get_task_struct(chosen);
1556 }
1557 }
1558 cgroup_iter_end(cgroup, &it);
1559 }
1560
1561 if (!chosen)
1562 return;
1563 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1564 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1565 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1566}
1567
5660048c
JW
1568static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1569 gfp_t gfp_mask,
1570 unsigned long flags)
1571{
1572 unsigned long total = 0;
1573 bool noswap = false;
1574 int loop;
1575
1576 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1577 noswap = true;
1578 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1579 noswap = true;
1580
1581 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1582 if (loop)
1583 drain_all_stock_async(memcg);
1584 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1585 /*
1586 * Allow limit shrinkers, which are triggered directly
1587 * by userspace, to catch signals and stop reclaim
1588 * after minimal progress, regardless of the margin.
1589 */
1590 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1591 break;
1592 if (mem_cgroup_margin(memcg))
1593 break;
1594 /*
1595 * If nothing was reclaimed after two attempts, there
1596 * may be no reclaimable pages in this hierarchy.
1597 */
1598 if (loop && !total)
1599 break;
1600 }
1601 return total;
1602}
1603
4d0c066d
KH
1604/**
1605 * test_mem_cgroup_node_reclaimable
dad7557e 1606 * @memcg: the target memcg
4d0c066d
KH
1607 * @nid: the node ID to be checked.
1608 * @noswap : specify true here if the user wants flle only information.
1609 *
1610 * This function returns whether the specified memcg contains any
1611 * reclaimable pages on a node. Returns true if there are any reclaimable
1612 * pages in the node.
1613 */
c0ff4b85 1614static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1615 int nid, bool noswap)
1616{
c0ff4b85 1617 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1618 return true;
1619 if (noswap || !total_swap_pages)
1620 return false;
c0ff4b85 1621 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1622 return true;
1623 return false;
1624
1625}
889976db
YH
1626#if MAX_NUMNODES > 1
1627
1628/*
1629 * Always updating the nodemask is not very good - even if we have an empty
1630 * list or the wrong list here, we can start from some node and traverse all
1631 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1632 *
1633 */
c0ff4b85 1634static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1635{
1636 int nid;
453a9bf3
KH
1637 /*
1638 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1639 * pagein/pageout changes since the last update.
1640 */
c0ff4b85 1641 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1642 return;
c0ff4b85 1643 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1644 return;
1645
889976db 1646 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1647 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1648
1649 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1650
c0ff4b85
R
1651 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1652 node_clear(nid, memcg->scan_nodes);
889976db 1653 }
453a9bf3 1654
c0ff4b85
R
1655 atomic_set(&memcg->numainfo_events, 0);
1656 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1657}
1658
1659/*
1660 * Selecting a node where we start reclaim from. Because what we need is just
1661 * reducing usage counter, start from anywhere is O,K. Considering
1662 * memory reclaim from current node, there are pros. and cons.
1663 *
1664 * Freeing memory from current node means freeing memory from a node which
1665 * we'll use or we've used. So, it may make LRU bad. And if several threads
1666 * hit limits, it will see a contention on a node. But freeing from remote
1667 * node means more costs for memory reclaim because of memory latency.
1668 *
1669 * Now, we use round-robin. Better algorithm is welcomed.
1670 */
c0ff4b85 1671int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1672{
1673 int node;
1674
c0ff4b85
R
1675 mem_cgroup_may_update_nodemask(memcg);
1676 node = memcg->last_scanned_node;
889976db 1677
c0ff4b85 1678 node = next_node(node, memcg->scan_nodes);
889976db 1679 if (node == MAX_NUMNODES)
c0ff4b85 1680 node = first_node(memcg->scan_nodes);
889976db
YH
1681 /*
1682 * We call this when we hit limit, not when pages are added to LRU.
1683 * No LRU may hold pages because all pages are UNEVICTABLE or
1684 * memcg is too small and all pages are not on LRU. In that case,
1685 * we use curret node.
1686 */
1687 if (unlikely(node == MAX_NUMNODES))
1688 node = numa_node_id();
1689
c0ff4b85 1690 memcg->last_scanned_node = node;
889976db
YH
1691 return node;
1692}
1693
4d0c066d
KH
1694/*
1695 * Check all nodes whether it contains reclaimable pages or not.
1696 * For quick scan, we make use of scan_nodes. This will allow us to skip
1697 * unused nodes. But scan_nodes is lazily updated and may not cotain
1698 * enough new information. We need to do double check.
1699 */
6bbda35c 1700static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1701{
1702 int nid;
1703
1704 /*
1705 * quick check...making use of scan_node.
1706 * We can skip unused nodes.
1707 */
c0ff4b85
R
1708 if (!nodes_empty(memcg->scan_nodes)) {
1709 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1710 nid < MAX_NUMNODES;
c0ff4b85 1711 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1712
c0ff4b85 1713 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1714 return true;
1715 }
1716 }
1717 /*
1718 * Check rest of nodes.
1719 */
1720 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1721 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1722 continue;
c0ff4b85 1723 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1724 return true;
1725 }
1726 return false;
1727}
1728
889976db 1729#else
c0ff4b85 1730int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1731{
1732 return 0;
1733}
4d0c066d 1734
6bbda35c 1735static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1736{
c0ff4b85 1737 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1738}
889976db
YH
1739#endif
1740
5660048c
JW
1741static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1742 struct zone *zone,
1743 gfp_t gfp_mask,
1744 unsigned long *total_scanned)
6d61ef40 1745{
9f3a0d09 1746 struct mem_cgroup *victim = NULL;
5660048c 1747 int total = 0;
04046e1a 1748 int loop = 0;
9d11ea9f 1749 unsigned long excess;
185efc0f 1750 unsigned long nr_scanned;
527a5ec9
JW
1751 struct mem_cgroup_reclaim_cookie reclaim = {
1752 .zone = zone,
1753 .priority = 0,
1754 };
9d11ea9f 1755
c0ff4b85 1756 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1757
4e416953 1758 while (1) {
527a5ec9 1759 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1760 if (!victim) {
04046e1a 1761 loop++;
4e416953
BS
1762 if (loop >= 2) {
1763 /*
1764 * If we have not been able to reclaim
1765 * anything, it might because there are
1766 * no reclaimable pages under this hierarchy
1767 */
5660048c 1768 if (!total)
4e416953 1769 break;
4e416953 1770 /*
25985edc 1771 * We want to do more targeted reclaim.
4e416953
BS
1772 * excess >> 2 is not to excessive so as to
1773 * reclaim too much, nor too less that we keep
1774 * coming back to reclaim from this cgroup
1775 */
1776 if (total >= (excess >> 2) ||
9f3a0d09 1777 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1778 break;
4e416953 1779 }
9f3a0d09 1780 continue;
4e416953 1781 }
5660048c 1782 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1783 continue;
5660048c
JW
1784 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1785 zone, &nr_scanned);
1786 *total_scanned += nr_scanned;
1787 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1788 break;
6d61ef40 1789 }
9f3a0d09 1790 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1791 return total;
6d61ef40
BS
1792}
1793
867578cb
KH
1794/*
1795 * Check OOM-Killer is already running under our hierarchy.
1796 * If someone is running, return false.
1af8efe9 1797 * Has to be called with memcg_oom_lock
867578cb 1798 */
c0ff4b85 1799static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1800{
79dfdacc 1801 struct mem_cgroup *iter, *failed = NULL;
a636b327 1802
9f3a0d09 1803 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1804 if (iter->oom_lock) {
79dfdacc
MH
1805 /*
1806 * this subtree of our hierarchy is already locked
1807 * so we cannot give a lock.
1808 */
79dfdacc 1809 failed = iter;
9f3a0d09
JW
1810 mem_cgroup_iter_break(memcg, iter);
1811 break;
23751be0
JW
1812 } else
1813 iter->oom_lock = true;
7d74b06f 1814 }
867578cb 1815
79dfdacc 1816 if (!failed)
23751be0 1817 return true;
79dfdacc
MH
1818
1819 /*
1820 * OK, we failed to lock the whole subtree so we have to clean up
1821 * what we set up to the failing subtree
1822 */
9f3a0d09 1823 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1824 if (iter == failed) {
9f3a0d09
JW
1825 mem_cgroup_iter_break(memcg, iter);
1826 break;
79dfdacc
MH
1827 }
1828 iter->oom_lock = false;
1829 }
23751be0 1830 return false;
a636b327 1831}
0b7f569e 1832
79dfdacc 1833/*
1af8efe9 1834 * Has to be called with memcg_oom_lock
79dfdacc 1835 */
c0ff4b85 1836static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1837{
7d74b06f
KH
1838 struct mem_cgroup *iter;
1839
c0ff4b85 1840 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1841 iter->oom_lock = false;
1842 return 0;
1843}
1844
c0ff4b85 1845static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1846{
1847 struct mem_cgroup *iter;
1848
c0ff4b85 1849 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1850 atomic_inc(&iter->under_oom);
1851}
1852
c0ff4b85 1853static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1854{
1855 struct mem_cgroup *iter;
1856
867578cb
KH
1857 /*
1858 * When a new child is created while the hierarchy is under oom,
1859 * mem_cgroup_oom_lock() may not be called. We have to use
1860 * atomic_add_unless() here.
1861 */
c0ff4b85 1862 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1863 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1864}
1865
1af8efe9 1866static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1867static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1868
dc98df5a 1869struct oom_wait_info {
d79154bb 1870 struct mem_cgroup *memcg;
dc98df5a
KH
1871 wait_queue_t wait;
1872};
1873
1874static int memcg_oom_wake_function(wait_queue_t *wait,
1875 unsigned mode, int sync, void *arg)
1876{
d79154bb
HD
1877 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1878 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1879 struct oom_wait_info *oom_wait_info;
1880
1881 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1882 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1883
dc98df5a 1884 /*
d79154bb 1885 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1886 * Then we can use css_is_ancestor without taking care of RCU.
1887 */
c0ff4b85
R
1888 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1889 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1890 return 0;
dc98df5a
KH
1891 return autoremove_wake_function(wait, mode, sync, arg);
1892}
1893
c0ff4b85 1894static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1895{
c0ff4b85
R
1896 /* for filtering, pass "memcg" as argument. */
1897 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1898}
1899
c0ff4b85 1900static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1901{
c0ff4b85
R
1902 if (memcg && atomic_read(&memcg->under_oom))
1903 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1904}
1905
867578cb
KH
1906/*
1907 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1908 */
6bbda35c
KS
1909static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1910 int order)
0b7f569e 1911{
dc98df5a 1912 struct oom_wait_info owait;
3c11ecf4 1913 bool locked, need_to_kill;
867578cb 1914
d79154bb 1915 owait.memcg = memcg;
dc98df5a
KH
1916 owait.wait.flags = 0;
1917 owait.wait.func = memcg_oom_wake_function;
1918 owait.wait.private = current;
1919 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1920 need_to_kill = true;
c0ff4b85 1921 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1922
c0ff4b85 1923 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1924 spin_lock(&memcg_oom_lock);
c0ff4b85 1925 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1926 /*
1927 * Even if signal_pending(), we can't quit charge() loop without
1928 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1929 * under OOM is always welcomed, use TASK_KILLABLE here.
1930 */
3c11ecf4 1931 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1932 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1933 need_to_kill = false;
1934 if (locked)
c0ff4b85 1935 mem_cgroup_oom_notify(memcg);
1af8efe9 1936 spin_unlock(&memcg_oom_lock);
867578cb 1937
3c11ecf4
KH
1938 if (need_to_kill) {
1939 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1940 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1941 } else {
867578cb 1942 schedule();
dc98df5a 1943 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1944 }
1af8efe9 1945 spin_lock(&memcg_oom_lock);
79dfdacc 1946 if (locked)
c0ff4b85
R
1947 mem_cgroup_oom_unlock(memcg);
1948 memcg_wakeup_oom(memcg);
1af8efe9 1949 spin_unlock(&memcg_oom_lock);
867578cb 1950
c0ff4b85 1951 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1952
867578cb
KH
1953 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1954 return false;
1955 /* Give chance to dying process */
715a5ee8 1956 schedule_timeout_uninterruptible(1);
867578cb 1957 return true;
0b7f569e
KH
1958}
1959
d69b042f
BS
1960/*
1961 * Currently used to update mapped file statistics, but the routine can be
1962 * generalized to update other statistics as well.
32047e2a
KH
1963 *
1964 * Notes: Race condition
1965 *
1966 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1967 * it tends to be costly. But considering some conditions, we doesn't need
1968 * to do so _always_.
1969 *
1970 * Considering "charge", lock_page_cgroup() is not required because all
1971 * file-stat operations happen after a page is attached to radix-tree. There
1972 * are no race with "charge".
1973 *
1974 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1975 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1976 * if there are race with "uncharge". Statistics itself is properly handled
1977 * by flags.
1978 *
1979 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1980 * small, we check mm->moving_account and detect there are possibility of race
1981 * If there is, we take a lock.
d69b042f 1982 */
26174efd 1983
89c06bd5
KH
1984void __mem_cgroup_begin_update_page_stat(struct page *page,
1985 bool *locked, unsigned long *flags)
1986{
1987 struct mem_cgroup *memcg;
1988 struct page_cgroup *pc;
1989
1990 pc = lookup_page_cgroup(page);
1991again:
1992 memcg = pc->mem_cgroup;
1993 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1994 return;
1995 /*
1996 * If this memory cgroup is not under account moving, we don't
da92c47d 1997 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 1998 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1999 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2000 */
13fd1dd9 2001 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2002 return;
2003
2004 move_lock_mem_cgroup(memcg, flags);
2005 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2006 move_unlock_mem_cgroup(memcg, flags);
2007 goto again;
2008 }
2009 *locked = true;
2010}
2011
2012void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2013{
2014 struct page_cgroup *pc = lookup_page_cgroup(page);
2015
2016 /*
2017 * It's guaranteed that pc->mem_cgroup never changes while
2018 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2019 * should take move_lock_mem_cgroup().
89c06bd5
KH
2020 */
2021 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2022}
2023
2a7106f2
GT
2024void mem_cgroup_update_page_stat(struct page *page,
2025 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2026{
c0ff4b85 2027 struct mem_cgroup *memcg;
32047e2a 2028 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2029 unsigned long uninitialized_var(flags);
d69b042f 2030
cfa44946 2031 if (mem_cgroup_disabled())
d69b042f 2032 return;
89c06bd5 2033
c0ff4b85
R
2034 memcg = pc->mem_cgroup;
2035 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2036 return;
26174efd 2037
26174efd 2038 switch (idx) {
2a7106f2 2039 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2040 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2041 break;
2042 default:
2043 BUG();
8725d541 2044 }
d69b042f 2045
c0ff4b85 2046 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2047}
26174efd 2048
cdec2e42
KH
2049/*
2050 * size of first charge trial. "32" comes from vmscan.c's magic value.
2051 * TODO: maybe necessary to use big numbers in big irons.
2052 */
7ec99d62 2053#define CHARGE_BATCH 32U
cdec2e42
KH
2054struct memcg_stock_pcp {
2055 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2056 unsigned int nr_pages;
cdec2e42 2057 struct work_struct work;
26fe6168 2058 unsigned long flags;
a0db00fc 2059#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2060};
2061static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2062static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2063
2064/*
11c9ea4e 2065 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2066 * from local stock and true is returned. If the stock is 0 or charges from a
2067 * cgroup which is not current target, returns false. This stock will be
2068 * refilled.
2069 */
c0ff4b85 2070static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2071{
2072 struct memcg_stock_pcp *stock;
2073 bool ret = true;
2074
2075 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2076 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2077 stock->nr_pages--;
cdec2e42
KH
2078 else /* need to call res_counter_charge */
2079 ret = false;
2080 put_cpu_var(memcg_stock);
2081 return ret;
2082}
2083
2084/*
2085 * Returns stocks cached in percpu to res_counter and reset cached information.
2086 */
2087static void drain_stock(struct memcg_stock_pcp *stock)
2088{
2089 struct mem_cgroup *old = stock->cached;
2090
11c9ea4e
JW
2091 if (stock->nr_pages) {
2092 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2093
2094 res_counter_uncharge(&old->res, bytes);
cdec2e42 2095 if (do_swap_account)
11c9ea4e
JW
2096 res_counter_uncharge(&old->memsw, bytes);
2097 stock->nr_pages = 0;
cdec2e42
KH
2098 }
2099 stock->cached = NULL;
cdec2e42
KH
2100}
2101
2102/*
2103 * This must be called under preempt disabled or must be called by
2104 * a thread which is pinned to local cpu.
2105 */
2106static void drain_local_stock(struct work_struct *dummy)
2107{
2108 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2109 drain_stock(stock);
26fe6168 2110 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2111}
2112
2113/*
2114 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2115 * This will be consumed by consume_stock() function, later.
cdec2e42 2116 */
c0ff4b85 2117static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2118{
2119 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2120
c0ff4b85 2121 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2122 drain_stock(stock);
c0ff4b85 2123 stock->cached = memcg;
cdec2e42 2124 }
11c9ea4e 2125 stock->nr_pages += nr_pages;
cdec2e42
KH
2126 put_cpu_var(memcg_stock);
2127}
2128
2129/*
c0ff4b85 2130 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2131 * of the hierarchy under it. sync flag says whether we should block
2132 * until the work is done.
cdec2e42 2133 */
c0ff4b85 2134static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2135{
26fe6168 2136 int cpu, curcpu;
d38144b7 2137
cdec2e42 2138 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2139 get_online_cpus();
5af12d0e 2140 curcpu = get_cpu();
cdec2e42
KH
2141 for_each_online_cpu(cpu) {
2142 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2143 struct mem_cgroup *memcg;
26fe6168 2144
c0ff4b85
R
2145 memcg = stock->cached;
2146 if (!memcg || !stock->nr_pages)
26fe6168 2147 continue;
c0ff4b85 2148 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2149 continue;
d1a05b69
MH
2150 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2151 if (cpu == curcpu)
2152 drain_local_stock(&stock->work);
2153 else
2154 schedule_work_on(cpu, &stock->work);
2155 }
cdec2e42 2156 }
5af12d0e 2157 put_cpu();
d38144b7
MH
2158
2159 if (!sync)
2160 goto out;
2161
2162 for_each_online_cpu(cpu) {
2163 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2164 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2165 flush_work(&stock->work);
2166 }
2167out:
cdec2e42 2168 put_online_cpus();
d38144b7
MH
2169}
2170
2171/*
2172 * Tries to drain stocked charges in other cpus. This function is asynchronous
2173 * and just put a work per cpu for draining localy on each cpu. Caller can
2174 * expects some charges will be back to res_counter later but cannot wait for
2175 * it.
2176 */
c0ff4b85 2177static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2178{
9f50fad6
MH
2179 /*
2180 * If someone calls draining, avoid adding more kworker runs.
2181 */
2182 if (!mutex_trylock(&percpu_charge_mutex))
2183 return;
c0ff4b85 2184 drain_all_stock(root_memcg, false);
9f50fad6 2185 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2186}
2187
2188/* This is a synchronous drain interface. */
c0ff4b85 2189static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2190{
2191 /* called when force_empty is called */
9f50fad6 2192 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2193 drain_all_stock(root_memcg, true);
9f50fad6 2194 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2195}
2196
711d3d2c
KH
2197/*
2198 * This function drains percpu counter value from DEAD cpu and
2199 * move it to local cpu. Note that this function can be preempted.
2200 */
c0ff4b85 2201static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2202{
2203 int i;
2204
c0ff4b85 2205 spin_lock(&memcg->pcp_counter_lock);
6104621d 2206 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2207 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2208
c0ff4b85
R
2209 per_cpu(memcg->stat->count[i], cpu) = 0;
2210 memcg->nocpu_base.count[i] += x;
711d3d2c 2211 }
e9f8974f 2212 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2213 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2214
c0ff4b85
R
2215 per_cpu(memcg->stat->events[i], cpu) = 0;
2216 memcg->nocpu_base.events[i] += x;
e9f8974f 2217 }
c0ff4b85 2218 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2219}
2220
2221static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2222 unsigned long action,
2223 void *hcpu)
2224{
2225 int cpu = (unsigned long)hcpu;
2226 struct memcg_stock_pcp *stock;
711d3d2c 2227 struct mem_cgroup *iter;
cdec2e42 2228
619d094b 2229 if (action == CPU_ONLINE)
1489ebad 2230 return NOTIFY_OK;
1489ebad 2231
d833049b 2232 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2233 return NOTIFY_OK;
711d3d2c 2234
9f3a0d09 2235 for_each_mem_cgroup(iter)
711d3d2c
KH
2236 mem_cgroup_drain_pcp_counter(iter, cpu);
2237
cdec2e42
KH
2238 stock = &per_cpu(memcg_stock, cpu);
2239 drain_stock(stock);
2240 return NOTIFY_OK;
2241}
2242
4b534334
KH
2243
2244/* See __mem_cgroup_try_charge() for details */
2245enum {
2246 CHARGE_OK, /* success */
2247 CHARGE_RETRY, /* need to retry but retry is not bad */
2248 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2249 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2250 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2251};
2252
c0ff4b85 2253static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2254 unsigned int nr_pages, bool oom_check)
4b534334 2255{
7ec99d62 2256 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2257 struct mem_cgroup *mem_over_limit;
2258 struct res_counter *fail_res;
2259 unsigned long flags = 0;
2260 int ret;
2261
c0ff4b85 2262 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2263
2264 if (likely(!ret)) {
2265 if (!do_swap_account)
2266 return CHARGE_OK;
c0ff4b85 2267 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2268 if (likely(!ret))
2269 return CHARGE_OK;
2270
c0ff4b85 2271 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2272 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2273 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2274 } else
2275 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2276 /*
7ec99d62
JW
2277 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2278 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2279 *
2280 * Never reclaim on behalf of optional batching, retry with a
2281 * single page instead.
2282 */
7ec99d62 2283 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2284 return CHARGE_RETRY;
2285
2286 if (!(gfp_mask & __GFP_WAIT))
2287 return CHARGE_WOULDBLOCK;
2288
5660048c 2289 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2290 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2291 return CHARGE_RETRY;
4b534334 2292 /*
19942822
JW
2293 * Even though the limit is exceeded at this point, reclaim
2294 * may have been able to free some pages. Retry the charge
2295 * before killing the task.
2296 *
2297 * Only for regular pages, though: huge pages are rather
2298 * unlikely to succeed so close to the limit, and we fall back
2299 * to regular pages anyway in case of failure.
4b534334 2300 */
7ec99d62 2301 if (nr_pages == 1 && ret)
4b534334
KH
2302 return CHARGE_RETRY;
2303
2304 /*
2305 * At task move, charge accounts can be doubly counted. So, it's
2306 * better to wait until the end of task_move if something is going on.
2307 */
2308 if (mem_cgroup_wait_acct_move(mem_over_limit))
2309 return CHARGE_RETRY;
2310
2311 /* If we don't need to call oom-killer at el, return immediately */
2312 if (!oom_check)
2313 return CHARGE_NOMEM;
2314 /* check OOM */
e845e199 2315 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2316 return CHARGE_OOM_DIE;
2317
2318 return CHARGE_RETRY;
2319}
2320
f817ed48 2321/*
38c5d72f
KH
2322 * __mem_cgroup_try_charge() does
2323 * 1. detect memcg to be charged against from passed *mm and *ptr,
2324 * 2. update res_counter
2325 * 3. call memory reclaim if necessary.
2326 *
2327 * In some special case, if the task is fatal, fatal_signal_pending() or
2328 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2329 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2330 * as possible without any hazards. 2: all pages should have a valid
2331 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2332 * pointer, that is treated as a charge to root_mem_cgroup.
2333 *
2334 * So __mem_cgroup_try_charge() will return
2335 * 0 ... on success, filling *ptr with a valid memcg pointer.
2336 * -ENOMEM ... charge failure because of resource limits.
2337 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2338 *
2339 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2340 * the oom-killer can be invoked.
8a9f3ccd 2341 */
f817ed48 2342static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2343 gfp_t gfp_mask,
7ec99d62 2344 unsigned int nr_pages,
c0ff4b85 2345 struct mem_cgroup **ptr,
7ec99d62 2346 bool oom)
8a9f3ccd 2347{
7ec99d62 2348 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2349 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2350 struct mem_cgroup *memcg = NULL;
4b534334 2351 int ret;
a636b327 2352
867578cb
KH
2353 /*
2354 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2355 * in system level. So, allow to go ahead dying process in addition to
2356 * MEMDIE process.
2357 */
2358 if (unlikely(test_thread_flag(TIF_MEMDIE)
2359 || fatal_signal_pending(current)))
2360 goto bypass;
a636b327 2361
8a9f3ccd 2362 /*
3be91277
HD
2363 * We always charge the cgroup the mm_struct belongs to.
2364 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2365 * thread group leader migrates. It's possible that mm is not
24467cac 2366 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2367 */
c0ff4b85 2368 if (!*ptr && !mm)
38c5d72f 2369 *ptr = root_mem_cgroup;
f75ca962 2370again:
c0ff4b85
R
2371 if (*ptr) { /* css should be a valid one */
2372 memcg = *ptr;
2373 VM_BUG_ON(css_is_removed(&memcg->css));
2374 if (mem_cgroup_is_root(memcg))
f75ca962 2375 goto done;
c0ff4b85 2376 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2377 goto done;
c0ff4b85 2378 css_get(&memcg->css);
4b534334 2379 } else {
f75ca962 2380 struct task_struct *p;
54595fe2 2381
f75ca962
KH
2382 rcu_read_lock();
2383 p = rcu_dereference(mm->owner);
f75ca962 2384 /*
ebb76ce1 2385 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2386 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2387 * race with swapoff. Then, we have small risk of mis-accouning.
2388 * But such kind of mis-account by race always happens because
2389 * we don't have cgroup_mutex(). It's overkill and we allo that
2390 * small race, here.
2391 * (*) swapoff at el will charge against mm-struct not against
2392 * task-struct. So, mm->owner can be NULL.
f75ca962 2393 */
c0ff4b85 2394 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2395 if (!memcg)
2396 memcg = root_mem_cgroup;
2397 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2398 rcu_read_unlock();
2399 goto done;
2400 }
c0ff4b85 2401 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2402 /*
2403 * It seems dagerous to access memcg without css_get().
2404 * But considering how consume_stok works, it's not
2405 * necessary. If consume_stock success, some charges
2406 * from this memcg are cached on this cpu. So, we
2407 * don't need to call css_get()/css_tryget() before
2408 * calling consume_stock().
2409 */
2410 rcu_read_unlock();
2411 goto done;
2412 }
2413 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2414 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2415 rcu_read_unlock();
2416 goto again;
2417 }
2418 rcu_read_unlock();
2419 }
8a9f3ccd 2420
4b534334
KH
2421 do {
2422 bool oom_check;
7a81b88c 2423
4b534334 2424 /* If killed, bypass charge */
f75ca962 2425 if (fatal_signal_pending(current)) {
c0ff4b85 2426 css_put(&memcg->css);
4b534334 2427 goto bypass;
f75ca962 2428 }
6d61ef40 2429
4b534334
KH
2430 oom_check = false;
2431 if (oom && !nr_oom_retries) {
2432 oom_check = true;
2433 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2434 }
66e1707b 2435
c0ff4b85 2436 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2437 switch (ret) {
2438 case CHARGE_OK:
2439 break;
2440 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2441 batch = nr_pages;
c0ff4b85
R
2442 css_put(&memcg->css);
2443 memcg = NULL;
f75ca962 2444 goto again;
4b534334 2445 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2446 css_put(&memcg->css);
4b534334
KH
2447 goto nomem;
2448 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2449 if (!oom) {
c0ff4b85 2450 css_put(&memcg->css);
867578cb 2451 goto nomem;
f75ca962 2452 }
4b534334
KH
2453 /* If oom, we never return -ENOMEM */
2454 nr_oom_retries--;
2455 break;
2456 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2457 css_put(&memcg->css);
867578cb 2458 goto bypass;
66e1707b 2459 }
4b534334
KH
2460 } while (ret != CHARGE_OK);
2461
7ec99d62 2462 if (batch > nr_pages)
c0ff4b85
R
2463 refill_stock(memcg, batch - nr_pages);
2464 css_put(&memcg->css);
0c3e73e8 2465done:
c0ff4b85 2466 *ptr = memcg;
7a81b88c
KH
2467 return 0;
2468nomem:
c0ff4b85 2469 *ptr = NULL;
7a81b88c 2470 return -ENOMEM;
867578cb 2471bypass:
38c5d72f
KH
2472 *ptr = root_mem_cgroup;
2473 return -EINTR;
7a81b88c 2474}
8a9f3ccd 2475
a3032a2c
DN
2476/*
2477 * Somemtimes we have to undo a charge we got by try_charge().
2478 * This function is for that and do uncharge, put css's refcnt.
2479 * gotten by try_charge().
2480 */
c0ff4b85 2481static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2482 unsigned int nr_pages)
a3032a2c 2483{
c0ff4b85 2484 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2485 unsigned long bytes = nr_pages * PAGE_SIZE;
2486
c0ff4b85 2487 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2488 if (do_swap_account)
c0ff4b85 2489 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2490 }
854ffa8d
DN
2491}
2492
d01dd17f
KH
2493/*
2494 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2495 * This is useful when moving usage to parent cgroup.
2496 */
2497static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2498 unsigned int nr_pages)
2499{
2500 unsigned long bytes = nr_pages * PAGE_SIZE;
2501
2502 if (mem_cgroup_is_root(memcg))
2503 return;
2504
2505 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2506 if (do_swap_account)
2507 res_counter_uncharge_until(&memcg->memsw,
2508 memcg->memsw.parent, bytes);
2509}
2510
a3b2d692
KH
2511/*
2512 * A helper function to get mem_cgroup from ID. must be called under
2513 * rcu_read_lock(). The caller must check css_is_removed() or some if
2514 * it's concern. (dropping refcnt from swap can be called against removed
2515 * memcg.)
2516 */
2517static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2518{
2519 struct cgroup_subsys_state *css;
2520
2521 /* ID 0 is unused ID */
2522 if (!id)
2523 return NULL;
2524 css = css_lookup(&mem_cgroup_subsys, id);
2525 if (!css)
2526 return NULL;
b2145145 2527 return mem_cgroup_from_css(css);
a3b2d692
KH
2528}
2529
e42d9d5d 2530struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2531{
c0ff4b85 2532 struct mem_cgroup *memcg = NULL;
3c776e64 2533 struct page_cgroup *pc;
a3b2d692 2534 unsigned short id;
b5a84319
KH
2535 swp_entry_t ent;
2536
3c776e64
DN
2537 VM_BUG_ON(!PageLocked(page));
2538
3c776e64 2539 pc = lookup_page_cgroup(page);
c0bd3f63 2540 lock_page_cgroup(pc);
a3b2d692 2541 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2542 memcg = pc->mem_cgroup;
2543 if (memcg && !css_tryget(&memcg->css))
2544 memcg = NULL;
e42d9d5d 2545 } else if (PageSwapCache(page)) {
3c776e64 2546 ent.val = page_private(page);
9fb4b7cc 2547 id = lookup_swap_cgroup_id(ent);
a3b2d692 2548 rcu_read_lock();
c0ff4b85
R
2549 memcg = mem_cgroup_lookup(id);
2550 if (memcg && !css_tryget(&memcg->css))
2551 memcg = NULL;
a3b2d692 2552 rcu_read_unlock();
3c776e64 2553 }
c0bd3f63 2554 unlock_page_cgroup(pc);
c0ff4b85 2555 return memcg;
b5a84319
KH
2556}
2557
c0ff4b85 2558static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2559 struct page *page,
7ec99d62 2560 unsigned int nr_pages,
9ce70c02
HD
2561 enum charge_type ctype,
2562 bool lrucare)
7a81b88c 2563{
ce587e65 2564 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2565 struct zone *uninitialized_var(zone);
fa9add64 2566 struct lruvec *lruvec;
9ce70c02 2567 bool was_on_lru = false;
b2402857 2568 bool anon;
9ce70c02 2569
ca3e0214 2570 lock_page_cgroup(pc);
90deb788 2571 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2572 /*
2573 * we don't need page_cgroup_lock about tail pages, becase they are not
2574 * accessed by any other context at this point.
2575 */
9ce70c02
HD
2576
2577 /*
2578 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2579 * may already be on some other mem_cgroup's LRU. Take care of it.
2580 */
2581 if (lrucare) {
2582 zone = page_zone(page);
2583 spin_lock_irq(&zone->lru_lock);
2584 if (PageLRU(page)) {
fa9add64 2585 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2586 ClearPageLRU(page);
fa9add64 2587 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2588 was_on_lru = true;
2589 }
2590 }
2591
c0ff4b85 2592 pc->mem_cgroup = memcg;
261fb61a
KH
2593 /*
2594 * We access a page_cgroup asynchronously without lock_page_cgroup().
2595 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2596 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2597 * before USED bit, we need memory barrier here.
2598 * See mem_cgroup_add_lru_list(), etc.
2599 */
08e552c6 2600 smp_wmb();
b2402857 2601 SetPageCgroupUsed(pc);
3be91277 2602
9ce70c02
HD
2603 if (lrucare) {
2604 if (was_on_lru) {
fa9add64 2605 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2606 VM_BUG_ON(PageLRU(page));
2607 SetPageLRU(page);
fa9add64 2608 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2609 }
2610 spin_unlock_irq(&zone->lru_lock);
2611 }
2612
41326c17 2613 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2614 anon = true;
2615 else
2616 anon = false;
2617
2618 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2619 unlock_page_cgroup(pc);
9ce70c02 2620
430e4863
KH
2621 /*
2622 * "charge_statistics" updated event counter. Then, check it.
2623 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2624 * if they exceeds softlimit.
2625 */
c0ff4b85 2626 memcg_check_events(memcg, page);
7a81b88c 2627}
66e1707b 2628
ca3e0214
KH
2629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2630
a0db00fc 2631#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2632/*
2633 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2634 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2635 * charge/uncharge will be never happen and move_account() is done under
2636 * compound_lock(), so we don't have to take care of races.
ca3e0214 2637 */
e94c8a9c 2638void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2639{
2640 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2641 struct page_cgroup *pc;
2642 int i;
ca3e0214 2643
3d37c4a9
KH
2644 if (mem_cgroup_disabled())
2645 return;
e94c8a9c
KH
2646 for (i = 1; i < HPAGE_PMD_NR; i++) {
2647 pc = head_pc + i;
2648 pc->mem_cgroup = head_pc->mem_cgroup;
2649 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2650 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2651 }
ca3e0214 2652}
12d27107 2653#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2654
f817ed48 2655/**
de3638d9 2656 * mem_cgroup_move_account - move account of the page
5564e88b 2657 * @page: the page
7ec99d62 2658 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2659 * @pc: page_cgroup of the page.
2660 * @from: mem_cgroup which the page is moved from.
2661 * @to: mem_cgroup which the page is moved to. @from != @to.
2662 *
2663 * The caller must confirm following.
08e552c6 2664 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2665 * - compound_lock is held when nr_pages > 1
f817ed48 2666 *
2f3479b1
KH
2667 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2668 * from old cgroup.
f817ed48 2669 */
7ec99d62
JW
2670static int mem_cgroup_move_account(struct page *page,
2671 unsigned int nr_pages,
2672 struct page_cgroup *pc,
2673 struct mem_cgroup *from,
2f3479b1 2674 struct mem_cgroup *to)
f817ed48 2675{
de3638d9
JW
2676 unsigned long flags;
2677 int ret;
b2402857 2678 bool anon = PageAnon(page);
987eba66 2679
f817ed48 2680 VM_BUG_ON(from == to);
5564e88b 2681 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2682 /*
2683 * The page is isolated from LRU. So, collapse function
2684 * will not handle this page. But page splitting can happen.
2685 * Do this check under compound_page_lock(). The caller should
2686 * hold it.
2687 */
2688 ret = -EBUSY;
7ec99d62 2689 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2690 goto out;
2691
2692 lock_page_cgroup(pc);
2693
2694 ret = -EINVAL;
2695 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2696 goto unlock;
2697
312734c0 2698 move_lock_mem_cgroup(from, &flags);
f817ed48 2699
2ff76f11 2700 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2701 /* Update mapped_file data for mem_cgroup */
2702 preempt_disable();
2703 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2704 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2705 preempt_enable();
d69b042f 2706 }
b2402857 2707 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2708
854ffa8d 2709 /* caller should have done css_get */
08e552c6 2710 pc->mem_cgroup = to;
b2402857 2711 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2712 /*
2713 * We charges against "to" which may not have any tasks. Then, "to"
2714 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2715 * this function is just force_empty() and move charge, so it's
25985edc 2716 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2717 * status here.
88703267 2718 */
312734c0 2719 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2720 ret = 0;
2721unlock:
57f9fd7d 2722 unlock_page_cgroup(pc);
d2265e6f
KH
2723 /*
2724 * check events
2725 */
5564e88b
JW
2726 memcg_check_events(to, page);
2727 memcg_check_events(from, page);
de3638d9 2728out:
f817ed48
KH
2729 return ret;
2730}
2731
2732/*
2733 * move charges to its parent.
2734 */
2735
5564e88b
JW
2736static int mem_cgroup_move_parent(struct page *page,
2737 struct page_cgroup *pc,
6068bf01 2738 struct mem_cgroup *child)
f817ed48 2739{
f817ed48 2740 struct mem_cgroup *parent;
7ec99d62 2741 unsigned int nr_pages;
4be4489f 2742 unsigned long uninitialized_var(flags);
f817ed48
KH
2743 int ret;
2744
2745 /* Is ROOT ? */
cc926f78 2746 if (mem_cgroup_is_root(child))
f817ed48
KH
2747 return -EINVAL;
2748
57f9fd7d
DN
2749 ret = -EBUSY;
2750 if (!get_page_unless_zero(page))
2751 goto out;
2752 if (isolate_lru_page(page))
2753 goto put;
52dbb905 2754
7ec99d62 2755 nr_pages = hpage_nr_pages(page);
08e552c6 2756
cc926f78
KH
2757 parent = parent_mem_cgroup(child);
2758 /*
2759 * If no parent, move charges to root cgroup.
2760 */
2761 if (!parent)
2762 parent = root_mem_cgroup;
f817ed48 2763
7ec99d62 2764 if (nr_pages > 1)
987eba66
KH
2765 flags = compound_lock_irqsave(page);
2766
cc926f78 2767 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2768 pc, child, parent);
cc926f78
KH
2769 if (!ret)
2770 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2771
7ec99d62 2772 if (nr_pages > 1)
987eba66 2773 compound_unlock_irqrestore(page, flags);
08e552c6 2774 putback_lru_page(page);
57f9fd7d 2775put:
40d58138 2776 put_page(page);
57f9fd7d 2777out:
f817ed48
KH
2778 return ret;
2779}
2780
7a81b88c
KH
2781/*
2782 * Charge the memory controller for page usage.
2783 * Return
2784 * 0 if the charge was successful
2785 * < 0 if the cgroup is over its limit
2786 */
2787static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2788 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2789{
c0ff4b85 2790 struct mem_cgroup *memcg = NULL;
7ec99d62 2791 unsigned int nr_pages = 1;
8493ae43 2792 bool oom = true;
7a81b88c 2793 int ret;
ec168510 2794
37c2ac78 2795 if (PageTransHuge(page)) {
7ec99d62 2796 nr_pages <<= compound_order(page);
37c2ac78 2797 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2798 /*
2799 * Never OOM-kill a process for a huge page. The
2800 * fault handler will fall back to regular pages.
2801 */
2802 oom = false;
37c2ac78 2803 }
7a81b88c 2804
c0ff4b85 2805 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2806 if (ret == -ENOMEM)
7a81b88c 2807 return ret;
ce587e65 2808 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2809 return 0;
8a9f3ccd
BS
2810}
2811
7a81b88c
KH
2812int mem_cgroup_newpage_charge(struct page *page,
2813 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2814{
f8d66542 2815 if (mem_cgroup_disabled())
cede86ac 2816 return 0;
7a0524cf
JW
2817 VM_BUG_ON(page_mapped(page));
2818 VM_BUG_ON(page->mapping && !PageAnon(page));
2819 VM_BUG_ON(!mm);
217bc319 2820 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2821 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2822}
2823
54595fe2
KH
2824/*
2825 * While swap-in, try_charge -> commit or cancel, the page is locked.
2826 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2827 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2828 * "commit()" or removed by "cancel()"
2829 */
0435a2fd
JW
2830static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2831 struct page *page,
2832 gfp_t mask,
2833 struct mem_cgroup **memcgp)
8c7c6e34 2834{
c0ff4b85 2835 struct mem_cgroup *memcg;
90deb788 2836 struct page_cgroup *pc;
54595fe2 2837 int ret;
8c7c6e34 2838
90deb788
JW
2839 pc = lookup_page_cgroup(page);
2840 /*
2841 * Every swap fault against a single page tries to charge the
2842 * page, bail as early as possible. shmem_unuse() encounters
2843 * already charged pages, too. The USED bit is protected by
2844 * the page lock, which serializes swap cache removal, which
2845 * in turn serializes uncharging.
2846 */
2847 if (PageCgroupUsed(pc))
2848 return 0;
8c7c6e34
KH
2849 if (!do_swap_account)
2850 goto charge_cur_mm;
c0ff4b85
R
2851 memcg = try_get_mem_cgroup_from_page(page);
2852 if (!memcg)
54595fe2 2853 goto charge_cur_mm;
72835c86
JW
2854 *memcgp = memcg;
2855 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2856 css_put(&memcg->css);
38c5d72f
KH
2857 if (ret == -EINTR)
2858 ret = 0;
54595fe2 2859 return ret;
8c7c6e34 2860charge_cur_mm:
38c5d72f
KH
2861 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2862 if (ret == -EINTR)
2863 ret = 0;
2864 return ret;
8c7c6e34
KH
2865}
2866
0435a2fd
JW
2867int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2868 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2869{
2870 *memcgp = NULL;
2871 if (mem_cgroup_disabled())
2872 return 0;
bdf4f4d2
JW
2873 /*
2874 * A racing thread's fault, or swapoff, may have already
2875 * updated the pte, and even removed page from swap cache: in
2876 * those cases unuse_pte()'s pte_same() test will fail; but
2877 * there's also a KSM case which does need to charge the page.
2878 */
2879 if (!PageSwapCache(page)) {
2880 int ret;
2881
2882 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2883 if (ret == -EINTR)
2884 ret = 0;
2885 return ret;
2886 }
0435a2fd
JW
2887 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2888}
2889
827a03d2
JW
2890void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2891{
2892 if (mem_cgroup_disabled())
2893 return;
2894 if (!memcg)
2895 return;
2896 __mem_cgroup_cancel_charge(memcg, 1);
2897}
2898
83aae4c7 2899static void
72835c86 2900__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2901 enum charge_type ctype)
7a81b88c 2902{
f8d66542 2903 if (mem_cgroup_disabled())
7a81b88c 2904 return;
72835c86 2905 if (!memcg)
7a81b88c 2906 return;
72835c86 2907 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2908
ce587e65 2909 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2910 /*
2911 * Now swap is on-memory. This means this page may be
2912 * counted both as mem and swap....double count.
03f3c433
KH
2913 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2914 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2915 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2916 */
03f3c433 2917 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2918 swp_entry_t ent = {.val = page_private(page)};
86493009 2919 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2920 }
88703267
KH
2921 /*
2922 * At swapin, we may charge account against cgroup which has no tasks.
2923 * So, rmdir()->pre_destroy() can be called while we do this charge.
2924 * In that case, we need to call pre_destroy() again. check it here.
2925 */
72835c86 2926 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2927}
2928
72835c86
JW
2929void mem_cgroup_commit_charge_swapin(struct page *page,
2930 struct mem_cgroup *memcg)
83aae4c7 2931{
72835c86 2932 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2933 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2934}
2935
827a03d2
JW
2936int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2937 gfp_t gfp_mask)
7a81b88c 2938{
827a03d2
JW
2939 struct mem_cgroup *memcg = NULL;
2940 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2941 int ret;
2942
f8d66542 2943 if (mem_cgroup_disabled())
827a03d2
JW
2944 return 0;
2945 if (PageCompound(page))
2946 return 0;
2947
827a03d2
JW
2948 if (!PageSwapCache(page))
2949 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2950 else { /* page is swapcache/shmem */
0435a2fd
JW
2951 ret = __mem_cgroup_try_charge_swapin(mm, page,
2952 gfp_mask, &memcg);
827a03d2
JW
2953 if (!ret)
2954 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2955 }
2956 return ret;
7a81b88c
KH
2957}
2958
c0ff4b85 2959static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2960 unsigned int nr_pages,
2961 const enum charge_type ctype)
569b846d
KH
2962{
2963 struct memcg_batch_info *batch = NULL;
2964 bool uncharge_memsw = true;
7ec99d62 2965
569b846d
KH
2966 /* If swapout, usage of swap doesn't decrease */
2967 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2968 uncharge_memsw = false;
569b846d
KH
2969
2970 batch = &current->memcg_batch;
2971 /*
2972 * In usual, we do css_get() when we remember memcg pointer.
2973 * But in this case, we keep res->usage until end of a series of
2974 * uncharges. Then, it's ok to ignore memcg's refcnt.
2975 */
2976 if (!batch->memcg)
c0ff4b85 2977 batch->memcg = memcg;
3c11ecf4
KH
2978 /*
2979 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2980 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2981 * the same cgroup and we have chance to coalesce uncharges.
2982 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2983 * because we want to do uncharge as soon as possible.
2984 */
2985
2986 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2987 goto direct_uncharge;
2988
7ec99d62 2989 if (nr_pages > 1)
ec168510
AA
2990 goto direct_uncharge;
2991
569b846d
KH
2992 /*
2993 * In typical case, batch->memcg == mem. This means we can
2994 * merge a series of uncharges to an uncharge of res_counter.
2995 * If not, we uncharge res_counter ony by one.
2996 */
c0ff4b85 2997 if (batch->memcg != memcg)
569b846d
KH
2998 goto direct_uncharge;
2999 /* remember freed charge and uncharge it later */
7ffd4ca7 3000 batch->nr_pages++;
569b846d 3001 if (uncharge_memsw)
7ffd4ca7 3002 batch->memsw_nr_pages++;
569b846d
KH
3003 return;
3004direct_uncharge:
c0ff4b85 3005 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3006 if (uncharge_memsw)
c0ff4b85
R
3007 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3008 if (unlikely(batch->memcg != memcg))
3009 memcg_oom_recover(memcg);
569b846d 3010}
7a81b88c 3011
8a9f3ccd 3012/*
69029cd5 3013 * uncharge if !page_mapped(page)
8a9f3ccd 3014 */
8c7c6e34 3015static struct mem_cgroup *
0030f535
JW
3016__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3017 bool end_migration)
8a9f3ccd 3018{
c0ff4b85 3019 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3020 unsigned int nr_pages = 1;
3021 struct page_cgroup *pc;
b2402857 3022 bool anon;
8a9f3ccd 3023
f8d66542 3024 if (mem_cgroup_disabled())
8c7c6e34 3025 return NULL;
4077960e 3026
0c59b89c 3027 VM_BUG_ON(PageSwapCache(page));
d13d1443 3028
37c2ac78 3029 if (PageTransHuge(page)) {
7ec99d62 3030 nr_pages <<= compound_order(page);
37c2ac78
AA
3031 VM_BUG_ON(!PageTransHuge(page));
3032 }
8697d331 3033 /*
3c541e14 3034 * Check if our page_cgroup is valid
8697d331 3035 */
52d4b9ac 3036 pc = lookup_page_cgroup(page);
cfa44946 3037 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3038 return NULL;
b9c565d5 3039
52d4b9ac 3040 lock_page_cgroup(pc);
d13d1443 3041
c0ff4b85 3042 memcg = pc->mem_cgroup;
8c7c6e34 3043
d13d1443
KH
3044 if (!PageCgroupUsed(pc))
3045 goto unlock_out;
3046
b2402857
KH
3047 anon = PageAnon(page);
3048
d13d1443 3049 switch (ctype) {
41326c17 3050 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3051 /*
3052 * Generally PageAnon tells if it's the anon statistics to be
3053 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3054 * used before page reached the stage of being marked PageAnon.
3055 */
b2402857
KH
3056 anon = true;
3057 /* fallthrough */
8a9478ca 3058 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3059 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3060 if (page_mapped(page))
3061 goto unlock_out;
3062 /*
3063 * Pages under migration may not be uncharged. But
3064 * end_migration() /must/ be the one uncharging the
3065 * unused post-migration page and so it has to call
3066 * here with the migration bit still set. See the
3067 * res_counter handling below.
3068 */
3069 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3070 goto unlock_out;
3071 break;
3072 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3073 if (!PageAnon(page)) { /* Shared memory */
3074 if (page->mapping && !page_is_file_cache(page))
3075 goto unlock_out;
3076 } else if (page_mapped(page)) /* Anon */
3077 goto unlock_out;
3078 break;
3079 default:
3080 break;
52d4b9ac 3081 }
d13d1443 3082
b2402857 3083 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3084
52d4b9ac 3085 ClearPageCgroupUsed(pc);
544122e5
KH
3086 /*
3087 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3088 * freed from LRU. This is safe because uncharged page is expected not
3089 * to be reused (freed soon). Exception is SwapCache, it's handled by
3090 * special functions.
3091 */
b9c565d5 3092
52d4b9ac 3093 unlock_page_cgroup(pc);
f75ca962 3094 /*
c0ff4b85 3095 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3096 * will never be freed.
3097 */
c0ff4b85 3098 memcg_check_events(memcg, page);
f75ca962 3099 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3100 mem_cgroup_swap_statistics(memcg, true);
3101 mem_cgroup_get(memcg);
f75ca962 3102 }
0030f535
JW
3103 /*
3104 * Migration does not charge the res_counter for the
3105 * replacement page, so leave it alone when phasing out the
3106 * page that is unused after the migration.
3107 */
3108 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3109 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3110
c0ff4b85 3111 return memcg;
d13d1443
KH
3112
3113unlock_out:
3114 unlock_page_cgroup(pc);
8c7c6e34 3115 return NULL;
3c541e14
BS
3116}
3117
69029cd5
KH
3118void mem_cgroup_uncharge_page(struct page *page)
3119{
52d4b9ac
KH
3120 /* early check. */
3121 if (page_mapped(page))
3122 return;
40f23a21 3123 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3124 if (PageSwapCache(page))
3125 return;
0030f535 3126 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3127}
3128
3129void mem_cgroup_uncharge_cache_page(struct page *page)
3130{
3131 VM_BUG_ON(page_mapped(page));
b7abea96 3132 VM_BUG_ON(page->mapping);
0030f535 3133 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3134}
3135
569b846d
KH
3136/*
3137 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3138 * In that cases, pages are freed continuously and we can expect pages
3139 * are in the same memcg. All these calls itself limits the number of
3140 * pages freed at once, then uncharge_start/end() is called properly.
3141 * This may be called prural(2) times in a context,
3142 */
3143
3144void mem_cgroup_uncharge_start(void)
3145{
3146 current->memcg_batch.do_batch++;
3147 /* We can do nest. */
3148 if (current->memcg_batch.do_batch == 1) {
3149 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3150 current->memcg_batch.nr_pages = 0;
3151 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3152 }
3153}
3154
3155void mem_cgroup_uncharge_end(void)
3156{
3157 struct memcg_batch_info *batch = &current->memcg_batch;
3158
3159 if (!batch->do_batch)
3160 return;
3161
3162 batch->do_batch--;
3163 if (batch->do_batch) /* If stacked, do nothing. */
3164 return;
3165
3166 if (!batch->memcg)
3167 return;
3168 /*
3169 * This "batch->memcg" is valid without any css_get/put etc...
3170 * bacause we hide charges behind us.
3171 */
7ffd4ca7
JW
3172 if (batch->nr_pages)
3173 res_counter_uncharge(&batch->memcg->res,
3174 batch->nr_pages * PAGE_SIZE);
3175 if (batch->memsw_nr_pages)
3176 res_counter_uncharge(&batch->memcg->memsw,
3177 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3178 memcg_oom_recover(batch->memcg);
569b846d
KH
3179 /* forget this pointer (for sanity check) */
3180 batch->memcg = NULL;
3181}
3182
e767e056 3183#ifdef CONFIG_SWAP
8c7c6e34 3184/*
e767e056 3185 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3186 * memcg information is recorded to swap_cgroup of "ent"
3187 */
8a9478ca
KH
3188void
3189mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3190{
3191 struct mem_cgroup *memcg;
8a9478ca
KH
3192 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3193
3194 if (!swapout) /* this was a swap cache but the swap is unused ! */
3195 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3196
0030f535 3197 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3198
f75ca962
KH
3199 /*
3200 * record memcg information, if swapout && memcg != NULL,
3201 * mem_cgroup_get() was called in uncharge().
3202 */
3203 if (do_swap_account && swapout && memcg)
a3b2d692 3204 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3205}
e767e056 3206#endif
8c7c6e34 3207
c255a458 3208#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3209/*
3210 * called from swap_entry_free(). remove record in swap_cgroup and
3211 * uncharge "memsw" account.
3212 */
3213void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3214{
8c7c6e34 3215 struct mem_cgroup *memcg;
a3b2d692 3216 unsigned short id;
8c7c6e34
KH
3217
3218 if (!do_swap_account)
3219 return;
3220
a3b2d692
KH
3221 id = swap_cgroup_record(ent, 0);
3222 rcu_read_lock();
3223 memcg = mem_cgroup_lookup(id);
8c7c6e34 3224 if (memcg) {
a3b2d692
KH
3225 /*
3226 * We uncharge this because swap is freed.
3227 * This memcg can be obsolete one. We avoid calling css_tryget
3228 */
0c3e73e8 3229 if (!mem_cgroup_is_root(memcg))
4e649152 3230 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3231 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3232 mem_cgroup_put(memcg);
3233 }
a3b2d692 3234 rcu_read_unlock();
d13d1443 3235}
02491447
DN
3236
3237/**
3238 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3239 * @entry: swap entry to be moved
3240 * @from: mem_cgroup which the entry is moved from
3241 * @to: mem_cgroup which the entry is moved to
3242 *
3243 * It succeeds only when the swap_cgroup's record for this entry is the same
3244 * as the mem_cgroup's id of @from.
3245 *
3246 * Returns 0 on success, -EINVAL on failure.
3247 *
3248 * The caller must have charged to @to, IOW, called res_counter_charge() about
3249 * both res and memsw, and called css_get().
3250 */
3251static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3252 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3253{
3254 unsigned short old_id, new_id;
3255
3256 old_id = css_id(&from->css);
3257 new_id = css_id(&to->css);
3258
3259 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3260 mem_cgroup_swap_statistics(from, false);
483c30b5 3261 mem_cgroup_swap_statistics(to, true);
02491447 3262 /*
483c30b5
DN
3263 * This function is only called from task migration context now.
3264 * It postpones res_counter and refcount handling till the end
3265 * of task migration(mem_cgroup_clear_mc()) for performance
3266 * improvement. But we cannot postpone mem_cgroup_get(to)
3267 * because if the process that has been moved to @to does
3268 * swap-in, the refcount of @to might be decreased to 0.
02491447 3269 */
02491447 3270 mem_cgroup_get(to);
02491447
DN
3271 return 0;
3272 }
3273 return -EINVAL;
3274}
3275#else
3276static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3277 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3278{
3279 return -EINVAL;
3280}
8c7c6e34 3281#endif
d13d1443 3282
ae41be37 3283/*
01b1ae63
KH
3284 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3285 * page belongs to.
ae41be37 3286 */
0030f535
JW
3287void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3288 struct mem_cgroup **memcgp)
ae41be37 3289{
c0ff4b85 3290 struct mem_cgroup *memcg = NULL;
7ec99d62 3291 struct page_cgroup *pc;
ac39cf8c 3292 enum charge_type ctype;
8869b8f6 3293
72835c86 3294 *memcgp = NULL;
56039efa 3295
ec168510 3296 VM_BUG_ON(PageTransHuge(page));
f8d66542 3297 if (mem_cgroup_disabled())
0030f535 3298 return;
4077960e 3299
52d4b9ac
KH
3300 pc = lookup_page_cgroup(page);
3301 lock_page_cgroup(pc);
3302 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3303 memcg = pc->mem_cgroup;
3304 css_get(&memcg->css);
ac39cf8c 3305 /*
3306 * At migrating an anonymous page, its mapcount goes down
3307 * to 0 and uncharge() will be called. But, even if it's fully
3308 * unmapped, migration may fail and this page has to be
3309 * charged again. We set MIGRATION flag here and delay uncharge
3310 * until end_migration() is called
3311 *
3312 * Corner Case Thinking
3313 * A)
3314 * When the old page was mapped as Anon and it's unmap-and-freed
3315 * while migration was ongoing.
3316 * If unmap finds the old page, uncharge() of it will be delayed
3317 * until end_migration(). If unmap finds a new page, it's
3318 * uncharged when it make mapcount to be 1->0. If unmap code
3319 * finds swap_migration_entry, the new page will not be mapped
3320 * and end_migration() will find it(mapcount==0).
3321 *
3322 * B)
3323 * When the old page was mapped but migraion fails, the kernel
3324 * remaps it. A charge for it is kept by MIGRATION flag even
3325 * if mapcount goes down to 0. We can do remap successfully
3326 * without charging it again.
3327 *
3328 * C)
3329 * The "old" page is under lock_page() until the end of
3330 * migration, so, the old page itself will not be swapped-out.
3331 * If the new page is swapped out before end_migraton, our
3332 * hook to usual swap-out path will catch the event.
3333 */
3334 if (PageAnon(page))
3335 SetPageCgroupMigration(pc);
e8589cc1 3336 }
52d4b9ac 3337 unlock_page_cgroup(pc);
ac39cf8c 3338 /*
3339 * If the page is not charged at this point,
3340 * we return here.
3341 */
c0ff4b85 3342 if (!memcg)
0030f535 3343 return;
01b1ae63 3344
72835c86 3345 *memcgp = memcg;
ac39cf8c 3346 /*
3347 * We charge new page before it's used/mapped. So, even if unlock_page()
3348 * is called before end_migration, we can catch all events on this new
3349 * page. In the case new page is migrated but not remapped, new page's
3350 * mapcount will be finally 0 and we call uncharge in end_migration().
3351 */
ac39cf8c 3352 if (PageAnon(page))
41326c17 3353 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3354 else
62ba7442 3355 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
3356 /*
3357 * The page is committed to the memcg, but it's not actually
3358 * charged to the res_counter since we plan on replacing the
3359 * old one and only one page is going to be left afterwards.
3360 */
ce587e65 3361 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
ae41be37 3362}
8869b8f6 3363
69029cd5 3364/* remove redundant charge if migration failed*/
c0ff4b85 3365void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3366 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3367{
ac39cf8c 3368 struct page *used, *unused;
01b1ae63 3369 struct page_cgroup *pc;
b2402857 3370 bool anon;
01b1ae63 3371
c0ff4b85 3372 if (!memcg)
01b1ae63 3373 return;
ac39cf8c 3374 /* blocks rmdir() */
c0ff4b85 3375 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3376 if (!migration_ok) {
ac39cf8c 3377 used = oldpage;
3378 unused = newpage;
01b1ae63 3379 } else {
ac39cf8c 3380 used = newpage;
01b1ae63
KH
3381 unused = oldpage;
3382 }
0030f535 3383 anon = PageAnon(used);
7d188958
JW
3384 __mem_cgroup_uncharge_common(unused,
3385 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3386 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3387 true);
0030f535 3388 css_put(&memcg->css);
69029cd5 3389 /*
ac39cf8c 3390 * We disallowed uncharge of pages under migration because mapcount
3391 * of the page goes down to zero, temporarly.
3392 * Clear the flag and check the page should be charged.
01b1ae63 3393 */
ac39cf8c 3394 pc = lookup_page_cgroup(oldpage);
3395 lock_page_cgroup(pc);
3396 ClearPageCgroupMigration(pc);
3397 unlock_page_cgroup(pc);
ac39cf8c 3398
01b1ae63 3399 /*
ac39cf8c 3400 * If a page is a file cache, radix-tree replacement is very atomic
3401 * and we can skip this check. When it was an Anon page, its mapcount
3402 * goes down to 0. But because we added MIGRATION flage, it's not
3403 * uncharged yet. There are several case but page->mapcount check
3404 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3405 * check. (see prepare_charge() also)
69029cd5 3406 */
b2402857 3407 if (anon)
ac39cf8c 3408 mem_cgroup_uncharge_page(used);
88703267 3409 /*
ac39cf8c 3410 * At migration, we may charge account against cgroup which has no
3411 * tasks.
88703267
KH
3412 * So, rmdir()->pre_destroy() can be called while we do this charge.
3413 * In that case, we need to call pre_destroy() again. check it here.
3414 */
c0ff4b85 3415 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3416}
78fb7466 3417
ab936cbc
KH
3418/*
3419 * At replace page cache, newpage is not under any memcg but it's on
3420 * LRU. So, this function doesn't touch res_counter but handles LRU
3421 * in correct way. Both pages are locked so we cannot race with uncharge.
3422 */
3423void mem_cgroup_replace_page_cache(struct page *oldpage,
3424 struct page *newpage)
3425{
bde05d1c 3426 struct mem_cgroup *memcg = NULL;
ab936cbc 3427 struct page_cgroup *pc;
ab936cbc 3428 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3429
3430 if (mem_cgroup_disabled())
3431 return;
3432
3433 pc = lookup_page_cgroup(oldpage);
3434 /* fix accounting on old pages */
3435 lock_page_cgroup(pc);
bde05d1c
HD
3436 if (PageCgroupUsed(pc)) {
3437 memcg = pc->mem_cgroup;
3438 mem_cgroup_charge_statistics(memcg, false, -1);
3439 ClearPageCgroupUsed(pc);
3440 }
ab936cbc
KH
3441 unlock_page_cgroup(pc);
3442
bde05d1c
HD
3443 /*
3444 * When called from shmem_replace_page(), in some cases the
3445 * oldpage has already been charged, and in some cases not.
3446 */
3447 if (!memcg)
3448 return;
ab936cbc
KH
3449 /*
3450 * Even if newpage->mapping was NULL before starting replacement,
3451 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3452 * LRU while we overwrite pc->mem_cgroup.
3453 */
ce587e65 3454 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3455}
3456
f212ad7c
DN
3457#ifdef CONFIG_DEBUG_VM
3458static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3459{
3460 struct page_cgroup *pc;
3461
3462 pc = lookup_page_cgroup(page);
cfa44946
JW
3463 /*
3464 * Can be NULL while feeding pages into the page allocator for
3465 * the first time, i.e. during boot or memory hotplug;
3466 * or when mem_cgroup_disabled().
3467 */
f212ad7c
DN
3468 if (likely(pc) && PageCgroupUsed(pc))
3469 return pc;
3470 return NULL;
3471}
3472
3473bool mem_cgroup_bad_page_check(struct page *page)
3474{
3475 if (mem_cgroup_disabled())
3476 return false;
3477
3478 return lookup_page_cgroup_used(page) != NULL;
3479}
3480
3481void mem_cgroup_print_bad_page(struct page *page)
3482{
3483 struct page_cgroup *pc;
3484
3485 pc = lookup_page_cgroup_used(page);
3486 if (pc) {
90b3feae 3487 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3488 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3489 }
3490}
3491#endif
3492
8c7c6e34
KH
3493static DEFINE_MUTEX(set_limit_mutex);
3494
d38d2a75 3495static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3496 unsigned long long val)
628f4235 3497{
81d39c20 3498 int retry_count;
3c11ecf4 3499 u64 memswlimit, memlimit;
628f4235 3500 int ret = 0;
81d39c20
KH
3501 int children = mem_cgroup_count_children(memcg);
3502 u64 curusage, oldusage;
3c11ecf4 3503 int enlarge;
81d39c20
KH
3504
3505 /*
3506 * For keeping hierarchical_reclaim simple, how long we should retry
3507 * is depends on callers. We set our retry-count to be function
3508 * of # of children which we should visit in this loop.
3509 */
3510 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3511
3512 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3513
3c11ecf4 3514 enlarge = 0;
8c7c6e34 3515 while (retry_count) {
628f4235
KH
3516 if (signal_pending(current)) {
3517 ret = -EINTR;
3518 break;
3519 }
8c7c6e34
KH
3520 /*
3521 * Rather than hide all in some function, I do this in
3522 * open coded manner. You see what this really does.
aaad153e 3523 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3524 */
3525 mutex_lock(&set_limit_mutex);
3526 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3527 if (memswlimit < val) {
3528 ret = -EINVAL;
3529 mutex_unlock(&set_limit_mutex);
628f4235
KH
3530 break;
3531 }
3c11ecf4
KH
3532
3533 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3534 if (memlimit < val)
3535 enlarge = 1;
3536
8c7c6e34 3537 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3538 if (!ret) {
3539 if (memswlimit == val)
3540 memcg->memsw_is_minimum = true;
3541 else
3542 memcg->memsw_is_minimum = false;
3543 }
8c7c6e34
KH
3544 mutex_unlock(&set_limit_mutex);
3545
3546 if (!ret)
3547 break;
3548
5660048c
JW
3549 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3550 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3551 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3552 /* Usage is reduced ? */
3553 if (curusage >= oldusage)
3554 retry_count--;
3555 else
3556 oldusage = curusage;
8c7c6e34 3557 }
3c11ecf4
KH
3558 if (!ret && enlarge)
3559 memcg_oom_recover(memcg);
14797e23 3560
8c7c6e34
KH
3561 return ret;
3562}
3563
338c8431
LZ
3564static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3565 unsigned long long val)
8c7c6e34 3566{
81d39c20 3567 int retry_count;
3c11ecf4 3568 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3569 int children = mem_cgroup_count_children(memcg);
3570 int ret = -EBUSY;
3c11ecf4 3571 int enlarge = 0;
8c7c6e34 3572
81d39c20
KH
3573 /* see mem_cgroup_resize_res_limit */
3574 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3575 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3576 while (retry_count) {
3577 if (signal_pending(current)) {
3578 ret = -EINTR;
3579 break;
3580 }
3581 /*
3582 * Rather than hide all in some function, I do this in
3583 * open coded manner. You see what this really does.
aaad153e 3584 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3585 */
3586 mutex_lock(&set_limit_mutex);
3587 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3588 if (memlimit > val) {
3589 ret = -EINVAL;
3590 mutex_unlock(&set_limit_mutex);
3591 break;
3592 }
3c11ecf4
KH
3593 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3594 if (memswlimit < val)
3595 enlarge = 1;
8c7c6e34 3596 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3597 if (!ret) {
3598 if (memlimit == val)
3599 memcg->memsw_is_minimum = true;
3600 else
3601 memcg->memsw_is_minimum = false;
3602 }
8c7c6e34
KH
3603 mutex_unlock(&set_limit_mutex);
3604
3605 if (!ret)
3606 break;
3607
5660048c
JW
3608 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3609 MEM_CGROUP_RECLAIM_NOSWAP |
3610 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3611 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3612 /* Usage is reduced ? */
8c7c6e34 3613 if (curusage >= oldusage)
628f4235 3614 retry_count--;
81d39c20
KH
3615 else
3616 oldusage = curusage;
628f4235 3617 }
3c11ecf4
KH
3618 if (!ret && enlarge)
3619 memcg_oom_recover(memcg);
628f4235
KH
3620 return ret;
3621}
3622
4e416953 3623unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3624 gfp_t gfp_mask,
3625 unsigned long *total_scanned)
4e416953
BS
3626{
3627 unsigned long nr_reclaimed = 0;
3628 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3629 unsigned long reclaimed;
3630 int loop = 0;
3631 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3632 unsigned long long excess;
0ae5e89c 3633 unsigned long nr_scanned;
4e416953
BS
3634
3635 if (order > 0)
3636 return 0;
3637
00918b6a 3638 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3639 /*
3640 * This loop can run a while, specially if mem_cgroup's continuously
3641 * keep exceeding their soft limit and putting the system under
3642 * pressure
3643 */
3644 do {
3645 if (next_mz)
3646 mz = next_mz;
3647 else
3648 mz = mem_cgroup_largest_soft_limit_node(mctz);
3649 if (!mz)
3650 break;
3651
0ae5e89c 3652 nr_scanned = 0;
d79154bb 3653 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3654 gfp_mask, &nr_scanned);
4e416953 3655 nr_reclaimed += reclaimed;
0ae5e89c 3656 *total_scanned += nr_scanned;
4e416953
BS
3657 spin_lock(&mctz->lock);
3658
3659 /*
3660 * If we failed to reclaim anything from this memory cgroup
3661 * it is time to move on to the next cgroup
3662 */
3663 next_mz = NULL;
3664 if (!reclaimed) {
3665 do {
3666 /*
3667 * Loop until we find yet another one.
3668 *
3669 * By the time we get the soft_limit lock
3670 * again, someone might have aded the
3671 * group back on the RB tree. Iterate to
3672 * make sure we get a different mem.
3673 * mem_cgroup_largest_soft_limit_node returns
3674 * NULL if no other cgroup is present on
3675 * the tree
3676 */
3677 next_mz =
3678 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3679 if (next_mz == mz)
d79154bb 3680 css_put(&next_mz->memcg->css);
39cc98f1 3681 else /* next_mz == NULL or other memcg */
4e416953
BS
3682 break;
3683 } while (1);
3684 }
d79154bb
HD
3685 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3686 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3687 /*
3688 * One school of thought says that we should not add
3689 * back the node to the tree if reclaim returns 0.
3690 * But our reclaim could return 0, simply because due
3691 * to priority we are exposing a smaller subset of
3692 * memory to reclaim from. Consider this as a longer
3693 * term TODO.
3694 */
ef8745c1 3695 /* If excess == 0, no tree ops */
d79154bb 3696 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3697 spin_unlock(&mctz->lock);
d79154bb 3698 css_put(&mz->memcg->css);
4e416953
BS
3699 loop++;
3700 /*
3701 * Could not reclaim anything and there are no more
3702 * mem cgroups to try or we seem to be looping without
3703 * reclaiming anything.
3704 */
3705 if (!nr_reclaimed &&
3706 (next_mz == NULL ||
3707 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3708 break;
3709 } while (!nr_reclaimed);
3710 if (next_mz)
d79154bb 3711 css_put(&next_mz->memcg->css);
4e416953
BS
3712 return nr_reclaimed;
3713}
3714
cc847582 3715/*
3c935d18
KH
3716 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3717 * reclaim the pages page themselves - it just removes the page_cgroups.
3718 * Returns true if some page_cgroups were not freed, indicating that the caller
3719 * must retry this operation.
cc847582 3720 */
3c935d18 3721static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3722 int node, int zid, enum lru_list lru)
cc847582 3723{
bea8c150 3724 struct lruvec *lruvec;
08e552c6 3725 unsigned long flags, loop;
072c56c1 3726 struct list_head *list;
925b7673
JW
3727 struct page *busy;
3728 struct zone *zone;
072c56c1 3729
08e552c6 3730 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3731 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3732 list = &lruvec->lists[lru];
cc847582 3733
bea8c150 3734 loop = mem_cgroup_get_lru_size(lruvec, lru);
f817ed48
KH
3735 /* give some margin against EBUSY etc...*/
3736 loop += 256;
3737 busy = NULL;
3738 while (loop--) {
925b7673 3739 struct page_cgroup *pc;
5564e88b
JW
3740 struct page *page;
3741
08e552c6 3742 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3743 if (list_empty(list)) {
08e552c6 3744 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3745 break;
f817ed48 3746 }
925b7673
JW
3747 page = list_entry(list->prev, struct page, lru);
3748 if (busy == page) {
3749 list_move(&page->lru, list);
648bcc77 3750 busy = NULL;
08e552c6 3751 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3752 continue;
3753 }
08e552c6 3754 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3755
925b7673 3756 pc = lookup_page_cgroup(page);
5564e88b 3757
3c935d18 3758 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3759 /* found lock contention or "pc" is obsolete. */
925b7673 3760 busy = page;
f817ed48
KH
3761 cond_resched();
3762 } else
3763 busy = NULL;
cc847582 3764 }
3c935d18 3765 return !list_empty(list);
cc847582
KH
3766}
3767
3768/*
3769 * make mem_cgroup's charge to be 0 if there is no task.
3770 * This enables deleting this mem_cgroup.
3771 */
c0ff4b85 3772static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3773{
f817ed48
KH
3774 int ret;
3775 int node, zid, shrink;
3776 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3777 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3778
c0ff4b85 3779 css_get(&memcg->css);
f817ed48
KH
3780
3781 shrink = 0;
c1e862c1
KH
3782 /* should free all ? */
3783 if (free_all)
3784 goto try_to_free;
f817ed48 3785move_account:
fce66477 3786 do {
f817ed48 3787 ret = -EBUSY;
c1e862c1
KH
3788 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3789 goto out;
52d4b9ac
KH
3790 /* This is for making all *used* pages to be on LRU. */
3791 lru_add_drain_all();
c0ff4b85 3792 drain_all_stock_sync(memcg);
f817ed48 3793 ret = 0;
c0ff4b85 3794 mem_cgroup_start_move(memcg);
299b4eaa 3795 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3796 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3797 enum lru_list lru;
3798 for_each_lru(lru) {
c0ff4b85 3799 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3800 node, zid, lru);
f817ed48
KH
3801 if (ret)
3802 break;
3803 }
1ecaab2b 3804 }
f817ed48
KH
3805 if (ret)
3806 break;
3807 }
c0ff4b85
R
3808 mem_cgroup_end_move(memcg);
3809 memcg_oom_recover(memcg);
52d4b9ac 3810 cond_resched();
fce66477 3811 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3812 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3813out:
c0ff4b85 3814 css_put(&memcg->css);
cc847582 3815 return ret;
f817ed48
KH
3816
3817try_to_free:
c1e862c1
KH
3818 /* returns EBUSY if there is a task or if we come here twice. */
3819 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3820 ret = -EBUSY;
3821 goto out;
3822 }
c1e862c1
KH
3823 /* we call try-to-free pages for make this cgroup empty */
3824 lru_add_drain_all();
f817ed48
KH
3825 /* try to free all pages in this cgroup */
3826 shrink = 1;
569530fb 3827 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3828 int progress;
c1e862c1
KH
3829
3830 if (signal_pending(current)) {
3831 ret = -EINTR;
3832 goto out;
3833 }
c0ff4b85 3834 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3835 false);
c1e862c1 3836 if (!progress) {
f817ed48 3837 nr_retries--;
c1e862c1 3838 /* maybe some writeback is necessary */
8aa7e847 3839 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3840 }
f817ed48
KH
3841
3842 }
08e552c6 3843 lru_add_drain();
f817ed48 3844 /* try move_account...there may be some *locked* pages. */
fce66477 3845 goto move_account;
cc847582
KH
3846}
3847
6bbda35c 3848static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3849{
3850 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3851}
3852
3853
18f59ea7
BS
3854static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3855{
3856 return mem_cgroup_from_cont(cont)->use_hierarchy;
3857}
3858
3859static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3860 u64 val)
3861{
3862 int retval = 0;
c0ff4b85 3863 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3864 struct cgroup *parent = cont->parent;
c0ff4b85 3865 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3866
3867 if (parent)
c0ff4b85 3868 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3869
3870 cgroup_lock();
567fb435
GC
3871
3872 if (memcg->use_hierarchy == val)
3873 goto out;
3874
18f59ea7 3875 /*
af901ca1 3876 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3877 * in the child subtrees. If it is unset, then the change can
3878 * occur, provided the current cgroup has no children.
3879 *
3880 * For the root cgroup, parent_mem is NULL, we allow value to be
3881 * set if there are no children.
3882 */
c0ff4b85 3883 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3884 (val == 1 || val == 0)) {
3885 if (list_empty(&cont->children))
c0ff4b85 3886 memcg->use_hierarchy = val;
18f59ea7
BS
3887 else
3888 retval = -EBUSY;
3889 } else
3890 retval = -EINVAL;
567fb435
GC
3891
3892out:
18f59ea7
BS
3893 cgroup_unlock();
3894
3895 return retval;
3896}
3897
0c3e73e8 3898
c0ff4b85 3899static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3900 enum mem_cgroup_stat_index idx)
0c3e73e8 3901{
7d74b06f 3902 struct mem_cgroup *iter;
7a159cc9 3903 long val = 0;
0c3e73e8 3904
7a159cc9 3905 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3906 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3907 val += mem_cgroup_read_stat(iter, idx);
3908
3909 if (val < 0) /* race ? */
3910 val = 0;
3911 return val;
0c3e73e8
BS
3912}
3913
c0ff4b85 3914static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3915{
7d74b06f 3916 u64 val;
104f3928 3917
c0ff4b85 3918 if (!mem_cgroup_is_root(memcg)) {
104f3928 3919 if (!swap)
65c64ce8 3920 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3921 else
65c64ce8 3922 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3923 }
3924
c0ff4b85
R
3925 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3926 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3927
7d74b06f 3928 if (swap)
bff6bb83 3929 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3930
3931 return val << PAGE_SHIFT;
3932}
3933
af36f906
TH
3934static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3935 struct file *file, char __user *buf,
3936 size_t nbytes, loff_t *ppos)
8cdea7c0 3937{
c0ff4b85 3938 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3939 char str[64];
104f3928 3940 u64 val;
af36f906 3941 int type, name, len;
8c7c6e34
KH
3942
3943 type = MEMFILE_TYPE(cft->private);
3944 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3945
3946 if (!do_swap_account && type == _MEMSWAP)
3947 return -EOPNOTSUPP;
3948
8c7c6e34
KH
3949 switch (type) {
3950 case _MEM:
104f3928 3951 if (name == RES_USAGE)
c0ff4b85 3952 val = mem_cgroup_usage(memcg, false);
104f3928 3953 else
c0ff4b85 3954 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3955 break;
3956 case _MEMSWAP:
104f3928 3957 if (name == RES_USAGE)
c0ff4b85 3958 val = mem_cgroup_usage(memcg, true);
104f3928 3959 else
c0ff4b85 3960 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3961 break;
3962 default:
3963 BUG();
8c7c6e34 3964 }
af36f906
TH
3965
3966 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3967 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3968}
628f4235
KH
3969/*
3970 * The user of this function is...
3971 * RES_LIMIT.
3972 */
856c13aa
PM
3973static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3974 const char *buffer)
8cdea7c0 3975{
628f4235 3976 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3977 int type, name;
628f4235
KH
3978 unsigned long long val;
3979 int ret;
3980
8c7c6e34
KH
3981 type = MEMFILE_TYPE(cft->private);
3982 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3983
3984 if (!do_swap_account && type == _MEMSWAP)
3985 return -EOPNOTSUPP;
3986
8c7c6e34 3987 switch (name) {
628f4235 3988 case RES_LIMIT:
4b3bde4c
BS
3989 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3990 ret = -EINVAL;
3991 break;
3992 }
628f4235
KH
3993 /* This function does all necessary parse...reuse it */
3994 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3995 if (ret)
3996 break;
3997 if (type == _MEM)
628f4235 3998 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3999 else
4000 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 4001 break;
296c81d8
BS
4002 case RES_SOFT_LIMIT:
4003 ret = res_counter_memparse_write_strategy(buffer, &val);
4004 if (ret)
4005 break;
4006 /*
4007 * For memsw, soft limits are hard to implement in terms
4008 * of semantics, for now, we support soft limits for
4009 * control without swap
4010 */
4011 if (type == _MEM)
4012 ret = res_counter_set_soft_limit(&memcg->res, val);
4013 else
4014 ret = -EINVAL;
4015 break;
628f4235
KH
4016 default:
4017 ret = -EINVAL; /* should be BUG() ? */
4018 break;
4019 }
4020 return ret;
8cdea7c0
BS
4021}
4022
fee7b548
KH
4023static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4024 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4025{
4026 struct cgroup *cgroup;
4027 unsigned long long min_limit, min_memsw_limit, tmp;
4028
4029 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4030 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4031 cgroup = memcg->css.cgroup;
4032 if (!memcg->use_hierarchy)
4033 goto out;
4034
4035 while (cgroup->parent) {
4036 cgroup = cgroup->parent;
4037 memcg = mem_cgroup_from_cont(cgroup);
4038 if (!memcg->use_hierarchy)
4039 break;
4040 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4041 min_limit = min(min_limit, tmp);
4042 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4043 min_memsw_limit = min(min_memsw_limit, tmp);
4044 }
4045out:
4046 *mem_limit = min_limit;
4047 *memsw_limit = min_memsw_limit;
fee7b548
KH
4048}
4049
29f2a4da 4050static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4051{
af36f906 4052 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4053 int type, name;
c84872e1 4054
8c7c6e34
KH
4055 type = MEMFILE_TYPE(event);
4056 name = MEMFILE_ATTR(event);
af36f906
TH
4057
4058 if (!do_swap_account && type == _MEMSWAP)
4059 return -EOPNOTSUPP;
4060
8c7c6e34 4061 switch (name) {
29f2a4da 4062 case RES_MAX_USAGE:
8c7c6e34 4063 if (type == _MEM)
c0ff4b85 4064 res_counter_reset_max(&memcg->res);
8c7c6e34 4065 else
c0ff4b85 4066 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4067 break;
4068 case RES_FAILCNT:
8c7c6e34 4069 if (type == _MEM)
c0ff4b85 4070 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4071 else
c0ff4b85 4072 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4073 break;
4074 }
f64c3f54 4075
85cc59db 4076 return 0;
c84872e1
PE
4077}
4078
7dc74be0
DN
4079static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4080 struct cftype *cft)
4081{
4082 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4083}
4084
02491447 4085#ifdef CONFIG_MMU
7dc74be0
DN
4086static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4087 struct cftype *cft, u64 val)
4088{
c0ff4b85 4089 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4090
4091 if (val >= (1 << NR_MOVE_TYPE))
4092 return -EINVAL;
4093 /*
4094 * We check this value several times in both in can_attach() and
4095 * attach(), so we need cgroup lock to prevent this value from being
4096 * inconsistent.
4097 */
4098 cgroup_lock();
c0ff4b85 4099 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4100 cgroup_unlock();
4101
4102 return 0;
4103}
02491447
DN
4104#else
4105static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4106 struct cftype *cft, u64 val)
4107{
4108 return -ENOSYS;
4109}
4110#endif
7dc74be0 4111
406eb0c9 4112#ifdef CONFIG_NUMA
ab215884 4113static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4114 struct seq_file *m)
406eb0c9
YH
4115{
4116 int nid;
4117 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4118 unsigned long node_nr;
d79154bb 4119 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4120
d79154bb 4121 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4122 seq_printf(m, "total=%lu", total_nr);
4123 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4124 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4125 seq_printf(m, " N%d=%lu", nid, node_nr);
4126 }
4127 seq_putc(m, '\n');
4128
d79154bb 4129 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4130 seq_printf(m, "file=%lu", file_nr);
4131 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4132 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4133 LRU_ALL_FILE);
406eb0c9
YH
4134 seq_printf(m, " N%d=%lu", nid, node_nr);
4135 }
4136 seq_putc(m, '\n');
4137
d79154bb 4138 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4139 seq_printf(m, "anon=%lu", anon_nr);
4140 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4141 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4142 LRU_ALL_ANON);
406eb0c9
YH
4143 seq_printf(m, " N%d=%lu", nid, node_nr);
4144 }
4145 seq_putc(m, '\n');
4146
d79154bb 4147 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4148 seq_printf(m, "unevictable=%lu", unevictable_nr);
4149 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4150 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4151 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4152 seq_printf(m, " N%d=%lu", nid, node_nr);
4153 }
4154 seq_putc(m, '\n');
4155 return 0;
4156}
4157#endif /* CONFIG_NUMA */
4158
af7c4b0e
JW
4159static const char * const mem_cgroup_lru_names[] = {
4160 "inactive_anon",
4161 "active_anon",
4162 "inactive_file",
4163 "active_file",
4164 "unevictable",
4165};
4166
4167static inline void mem_cgroup_lru_names_not_uptodate(void)
4168{
4169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4170}
4171
ab215884 4172static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4173 struct seq_file *m)
d2ceb9b7 4174{
d79154bb 4175 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4176 struct mem_cgroup *mi;
4177 unsigned int i;
406eb0c9 4178
af7c4b0e 4179 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4180 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4181 continue;
af7c4b0e
JW
4182 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4183 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4184 }
7b854121 4185
af7c4b0e
JW
4186 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4187 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4188 mem_cgroup_read_events(memcg, i));
4189
4190 for (i = 0; i < NR_LRU_LISTS; i++)
4191 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4192 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4193
14067bb3 4194 /* Hierarchical information */
fee7b548
KH
4195 {
4196 unsigned long long limit, memsw_limit;
d79154bb 4197 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4198 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4199 if (do_swap_account)
78ccf5b5
JW
4200 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4201 memsw_limit);
fee7b548 4202 }
7f016ee8 4203
af7c4b0e
JW
4204 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4205 long long val = 0;
4206
bff6bb83 4207 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4208 continue;
af7c4b0e
JW
4209 for_each_mem_cgroup_tree(mi, memcg)
4210 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4211 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4212 }
4213
4214 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4215 unsigned long long val = 0;
4216
4217 for_each_mem_cgroup_tree(mi, memcg)
4218 val += mem_cgroup_read_events(mi, i);
4219 seq_printf(m, "total_%s %llu\n",
4220 mem_cgroup_events_names[i], val);
4221 }
4222
4223 for (i = 0; i < NR_LRU_LISTS; i++) {
4224 unsigned long long val = 0;
4225
4226 for_each_mem_cgroup_tree(mi, memcg)
4227 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4228 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4229 }
14067bb3 4230
7f016ee8 4231#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4232 {
4233 int nid, zid;
4234 struct mem_cgroup_per_zone *mz;
89abfab1 4235 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4236 unsigned long recent_rotated[2] = {0, 0};
4237 unsigned long recent_scanned[2] = {0, 0};
4238
4239 for_each_online_node(nid)
4240 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4241 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4242 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4243
89abfab1
HD
4244 recent_rotated[0] += rstat->recent_rotated[0];
4245 recent_rotated[1] += rstat->recent_rotated[1];
4246 recent_scanned[0] += rstat->recent_scanned[0];
4247 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4248 }
78ccf5b5
JW
4249 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4250 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4251 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4252 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4253 }
4254#endif
4255
d2ceb9b7
KH
4256 return 0;
4257}
4258
a7885eb8
KM
4259static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4260{
4261 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4262
1f4c025b 4263 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4264}
4265
4266static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4267 u64 val)
4268{
4269 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4270 struct mem_cgroup *parent;
068b38c1 4271
a7885eb8
KM
4272 if (val > 100)
4273 return -EINVAL;
4274
4275 if (cgrp->parent == NULL)
4276 return -EINVAL;
4277
4278 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4279
4280 cgroup_lock();
4281
a7885eb8
KM
4282 /* If under hierarchy, only empty-root can set this value */
4283 if ((parent->use_hierarchy) ||
068b38c1
LZ
4284 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4285 cgroup_unlock();
a7885eb8 4286 return -EINVAL;
068b38c1 4287 }
a7885eb8 4288
a7885eb8 4289 memcg->swappiness = val;
a7885eb8 4290
068b38c1
LZ
4291 cgroup_unlock();
4292
a7885eb8
KM
4293 return 0;
4294}
4295
2e72b634
KS
4296static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4297{
4298 struct mem_cgroup_threshold_ary *t;
4299 u64 usage;
4300 int i;
4301
4302 rcu_read_lock();
4303 if (!swap)
2c488db2 4304 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4305 else
2c488db2 4306 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4307
4308 if (!t)
4309 goto unlock;
4310
4311 usage = mem_cgroup_usage(memcg, swap);
4312
4313 /*
748dad36 4314 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4315 * If it's not true, a threshold was crossed after last
4316 * call of __mem_cgroup_threshold().
4317 */
5407a562 4318 i = t->current_threshold;
2e72b634
KS
4319
4320 /*
4321 * Iterate backward over array of thresholds starting from
4322 * current_threshold and check if a threshold is crossed.
4323 * If none of thresholds below usage is crossed, we read
4324 * only one element of the array here.
4325 */
4326 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4327 eventfd_signal(t->entries[i].eventfd, 1);
4328
4329 /* i = current_threshold + 1 */
4330 i++;
4331
4332 /*
4333 * Iterate forward over array of thresholds starting from
4334 * current_threshold+1 and check if a threshold is crossed.
4335 * If none of thresholds above usage is crossed, we read
4336 * only one element of the array here.
4337 */
4338 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4339 eventfd_signal(t->entries[i].eventfd, 1);
4340
4341 /* Update current_threshold */
5407a562 4342 t->current_threshold = i - 1;
2e72b634
KS
4343unlock:
4344 rcu_read_unlock();
4345}
4346
4347static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4348{
ad4ca5f4
KS
4349 while (memcg) {
4350 __mem_cgroup_threshold(memcg, false);
4351 if (do_swap_account)
4352 __mem_cgroup_threshold(memcg, true);
4353
4354 memcg = parent_mem_cgroup(memcg);
4355 }
2e72b634
KS
4356}
4357
4358static int compare_thresholds(const void *a, const void *b)
4359{
4360 const struct mem_cgroup_threshold *_a = a;
4361 const struct mem_cgroup_threshold *_b = b;
4362
4363 return _a->threshold - _b->threshold;
4364}
4365
c0ff4b85 4366static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4367{
4368 struct mem_cgroup_eventfd_list *ev;
4369
c0ff4b85 4370 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4371 eventfd_signal(ev->eventfd, 1);
4372 return 0;
4373}
4374
c0ff4b85 4375static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4376{
7d74b06f
KH
4377 struct mem_cgroup *iter;
4378
c0ff4b85 4379 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4380 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4381}
4382
4383static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4384 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4385{
4386 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4387 struct mem_cgroup_thresholds *thresholds;
4388 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4389 int type = MEMFILE_TYPE(cft->private);
4390 u64 threshold, usage;
2c488db2 4391 int i, size, ret;
2e72b634
KS
4392
4393 ret = res_counter_memparse_write_strategy(args, &threshold);
4394 if (ret)
4395 return ret;
4396
4397 mutex_lock(&memcg->thresholds_lock);
2c488db2 4398
2e72b634 4399 if (type == _MEM)
2c488db2 4400 thresholds = &memcg->thresholds;
2e72b634 4401 else if (type == _MEMSWAP)
2c488db2 4402 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4403 else
4404 BUG();
4405
4406 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4407
4408 /* Check if a threshold crossed before adding a new one */
2c488db2 4409 if (thresholds->primary)
2e72b634
KS
4410 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4411
2c488db2 4412 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4413
4414 /* Allocate memory for new array of thresholds */
2c488db2 4415 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4416 GFP_KERNEL);
2c488db2 4417 if (!new) {
2e72b634
KS
4418 ret = -ENOMEM;
4419 goto unlock;
4420 }
2c488db2 4421 new->size = size;
2e72b634
KS
4422
4423 /* Copy thresholds (if any) to new array */
2c488db2
KS
4424 if (thresholds->primary) {
4425 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4426 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4427 }
4428
2e72b634 4429 /* Add new threshold */
2c488db2
KS
4430 new->entries[size - 1].eventfd = eventfd;
4431 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4432
4433 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4434 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4435 compare_thresholds, NULL);
4436
4437 /* Find current threshold */
2c488db2 4438 new->current_threshold = -1;
2e72b634 4439 for (i = 0; i < size; i++) {
748dad36 4440 if (new->entries[i].threshold <= usage) {
2e72b634 4441 /*
2c488db2
KS
4442 * new->current_threshold will not be used until
4443 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4444 * it here.
4445 */
2c488db2 4446 ++new->current_threshold;
748dad36
SZ
4447 } else
4448 break;
2e72b634
KS
4449 }
4450
2c488db2
KS
4451 /* Free old spare buffer and save old primary buffer as spare */
4452 kfree(thresholds->spare);
4453 thresholds->spare = thresholds->primary;
4454
4455 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4456
907860ed 4457 /* To be sure that nobody uses thresholds */
2e72b634
KS
4458 synchronize_rcu();
4459
2e72b634
KS
4460unlock:
4461 mutex_unlock(&memcg->thresholds_lock);
4462
4463 return ret;
4464}
4465
907860ed 4466static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4467 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4468{
4469 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4470 struct mem_cgroup_thresholds *thresholds;
4471 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4472 int type = MEMFILE_TYPE(cft->private);
4473 u64 usage;
2c488db2 4474 int i, j, size;
2e72b634
KS
4475
4476 mutex_lock(&memcg->thresholds_lock);
4477 if (type == _MEM)
2c488db2 4478 thresholds = &memcg->thresholds;
2e72b634 4479 else if (type == _MEMSWAP)
2c488db2 4480 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4481 else
4482 BUG();
4483
371528ca
AV
4484 if (!thresholds->primary)
4485 goto unlock;
4486
2e72b634
KS
4487 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4488
4489 /* Check if a threshold crossed before removing */
4490 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4491
4492 /* Calculate new number of threshold */
2c488db2
KS
4493 size = 0;
4494 for (i = 0; i < thresholds->primary->size; i++) {
4495 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4496 size++;
4497 }
4498
2c488db2 4499 new = thresholds->spare;
907860ed 4500
2e72b634
KS
4501 /* Set thresholds array to NULL if we don't have thresholds */
4502 if (!size) {
2c488db2
KS
4503 kfree(new);
4504 new = NULL;
907860ed 4505 goto swap_buffers;
2e72b634
KS
4506 }
4507
2c488db2 4508 new->size = size;
2e72b634
KS
4509
4510 /* Copy thresholds and find current threshold */
2c488db2
KS
4511 new->current_threshold = -1;
4512 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4513 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4514 continue;
4515
2c488db2 4516 new->entries[j] = thresholds->primary->entries[i];
748dad36 4517 if (new->entries[j].threshold <= usage) {
2e72b634 4518 /*
2c488db2 4519 * new->current_threshold will not be used
2e72b634
KS
4520 * until rcu_assign_pointer(), so it's safe to increment
4521 * it here.
4522 */
2c488db2 4523 ++new->current_threshold;
2e72b634
KS
4524 }
4525 j++;
4526 }
4527
907860ed 4528swap_buffers:
2c488db2
KS
4529 /* Swap primary and spare array */
4530 thresholds->spare = thresholds->primary;
8c757763
SZ
4531 /* If all events are unregistered, free the spare array */
4532 if (!new) {
4533 kfree(thresholds->spare);
4534 thresholds->spare = NULL;
4535 }
4536
2c488db2 4537 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4538
907860ed 4539 /* To be sure that nobody uses thresholds */
2e72b634 4540 synchronize_rcu();
371528ca 4541unlock:
2e72b634 4542 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4543}
c1e862c1 4544
9490ff27
KH
4545static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4546 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4547{
4548 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4549 struct mem_cgroup_eventfd_list *event;
4550 int type = MEMFILE_TYPE(cft->private);
4551
4552 BUG_ON(type != _OOM_TYPE);
4553 event = kmalloc(sizeof(*event), GFP_KERNEL);
4554 if (!event)
4555 return -ENOMEM;
4556
1af8efe9 4557 spin_lock(&memcg_oom_lock);
9490ff27
KH
4558
4559 event->eventfd = eventfd;
4560 list_add(&event->list, &memcg->oom_notify);
4561
4562 /* already in OOM ? */
79dfdacc 4563 if (atomic_read(&memcg->under_oom))
9490ff27 4564 eventfd_signal(eventfd, 1);
1af8efe9 4565 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4566
4567 return 0;
4568}
4569
907860ed 4570static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4571 struct cftype *cft, struct eventfd_ctx *eventfd)
4572{
c0ff4b85 4573 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4574 struct mem_cgroup_eventfd_list *ev, *tmp;
4575 int type = MEMFILE_TYPE(cft->private);
4576
4577 BUG_ON(type != _OOM_TYPE);
4578
1af8efe9 4579 spin_lock(&memcg_oom_lock);
9490ff27 4580
c0ff4b85 4581 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4582 if (ev->eventfd == eventfd) {
4583 list_del(&ev->list);
4584 kfree(ev);
4585 }
4586 }
4587
1af8efe9 4588 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4589}
4590
3c11ecf4
KH
4591static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4592 struct cftype *cft, struct cgroup_map_cb *cb)
4593{
c0ff4b85 4594 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4595
c0ff4b85 4596 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4597
c0ff4b85 4598 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4599 cb->fill(cb, "under_oom", 1);
4600 else
4601 cb->fill(cb, "under_oom", 0);
4602 return 0;
4603}
4604
3c11ecf4
KH
4605static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4606 struct cftype *cft, u64 val)
4607{
c0ff4b85 4608 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4609 struct mem_cgroup *parent;
4610
4611 /* cannot set to root cgroup and only 0 and 1 are allowed */
4612 if (!cgrp->parent || !((val == 0) || (val == 1)))
4613 return -EINVAL;
4614
4615 parent = mem_cgroup_from_cont(cgrp->parent);
4616
4617 cgroup_lock();
4618 /* oom-kill-disable is a flag for subhierarchy. */
4619 if ((parent->use_hierarchy) ||
c0ff4b85 4620 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4621 cgroup_unlock();
4622 return -EINVAL;
4623 }
c0ff4b85 4624 memcg->oom_kill_disable = val;
4d845ebf 4625 if (!val)
c0ff4b85 4626 memcg_oom_recover(memcg);
3c11ecf4
KH
4627 cgroup_unlock();
4628 return 0;
4629}
4630
c255a458 4631#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4632static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4633{
1d62e436 4634 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4635};
4636
1d62e436 4637static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4638{
1d62e436 4639 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4640}
e5671dfa 4641#else
cbe128e3 4642static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4643{
4644 return 0;
4645}
d1a4c0b3 4646
1d62e436 4647static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4648{
4649}
e5671dfa
GC
4650#endif
4651
8cdea7c0
BS
4652static struct cftype mem_cgroup_files[] = {
4653 {
0eea1030 4654 .name = "usage_in_bytes",
8c7c6e34 4655 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4656 .read = mem_cgroup_read,
9490ff27
KH
4657 .register_event = mem_cgroup_usage_register_event,
4658 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4659 },
c84872e1
PE
4660 {
4661 .name = "max_usage_in_bytes",
8c7c6e34 4662 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4663 .trigger = mem_cgroup_reset,
af36f906 4664 .read = mem_cgroup_read,
c84872e1 4665 },
8cdea7c0 4666 {
0eea1030 4667 .name = "limit_in_bytes",
8c7c6e34 4668 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4669 .write_string = mem_cgroup_write,
af36f906 4670 .read = mem_cgroup_read,
8cdea7c0 4671 },
296c81d8
BS
4672 {
4673 .name = "soft_limit_in_bytes",
4674 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4675 .write_string = mem_cgroup_write,
af36f906 4676 .read = mem_cgroup_read,
296c81d8 4677 },
8cdea7c0
BS
4678 {
4679 .name = "failcnt",
8c7c6e34 4680 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4681 .trigger = mem_cgroup_reset,
af36f906 4682 .read = mem_cgroup_read,
8cdea7c0 4683 },
d2ceb9b7
KH
4684 {
4685 .name = "stat",
ab215884 4686 .read_seq_string = memcg_stat_show,
d2ceb9b7 4687 },
c1e862c1
KH
4688 {
4689 .name = "force_empty",
4690 .trigger = mem_cgroup_force_empty_write,
4691 },
18f59ea7
BS
4692 {
4693 .name = "use_hierarchy",
4694 .write_u64 = mem_cgroup_hierarchy_write,
4695 .read_u64 = mem_cgroup_hierarchy_read,
4696 },
a7885eb8
KM
4697 {
4698 .name = "swappiness",
4699 .read_u64 = mem_cgroup_swappiness_read,
4700 .write_u64 = mem_cgroup_swappiness_write,
4701 },
7dc74be0
DN
4702 {
4703 .name = "move_charge_at_immigrate",
4704 .read_u64 = mem_cgroup_move_charge_read,
4705 .write_u64 = mem_cgroup_move_charge_write,
4706 },
9490ff27
KH
4707 {
4708 .name = "oom_control",
3c11ecf4
KH
4709 .read_map = mem_cgroup_oom_control_read,
4710 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4711 .register_event = mem_cgroup_oom_register_event,
4712 .unregister_event = mem_cgroup_oom_unregister_event,
4713 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4714 },
406eb0c9
YH
4715#ifdef CONFIG_NUMA
4716 {
4717 .name = "numa_stat",
ab215884 4718 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
4719 },
4720#endif
c255a458 4721#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4722 {
4723 .name = "memsw.usage_in_bytes",
4724 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4725 .read = mem_cgroup_read,
9490ff27
KH
4726 .register_event = mem_cgroup_usage_register_event,
4727 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4728 },
4729 {
4730 .name = "memsw.max_usage_in_bytes",
4731 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4732 .trigger = mem_cgroup_reset,
af36f906 4733 .read = mem_cgroup_read,
8c7c6e34
KH
4734 },
4735 {
4736 .name = "memsw.limit_in_bytes",
4737 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4738 .write_string = mem_cgroup_write,
af36f906 4739 .read = mem_cgroup_read,
8c7c6e34
KH
4740 },
4741 {
4742 .name = "memsw.failcnt",
4743 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4744 .trigger = mem_cgroup_reset,
af36f906 4745 .read = mem_cgroup_read,
8c7c6e34 4746 },
8c7c6e34 4747#endif
6bc10349 4748 { }, /* terminate */
af36f906 4749};
8c7c6e34 4750
c0ff4b85 4751static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4752{
4753 struct mem_cgroup_per_node *pn;
1ecaab2b 4754 struct mem_cgroup_per_zone *mz;
41e3355d 4755 int zone, tmp = node;
1ecaab2b
KH
4756 /*
4757 * This routine is called against possible nodes.
4758 * But it's BUG to call kmalloc() against offline node.
4759 *
4760 * TODO: this routine can waste much memory for nodes which will
4761 * never be onlined. It's better to use memory hotplug callback
4762 * function.
4763 */
41e3355d
KH
4764 if (!node_state(node, N_NORMAL_MEMORY))
4765 tmp = -1;
17295c88 4766 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4767 if (!pn)
4768 return 1;
1ecaab2b 4769
1ecaab2b
KH
4770 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4771 mz = &pn->zoneinfo[zone];
bea8c150 4772 lruvec_init(&mz->lruvec);
f64c3f54 4773 mz->usage_in_excess = 0;
4e416953 4774 mz->on_tree = false;
d79154bb 4775 mz->memcg = memcg;
1ecaab2b 4776 }
0a619e58 4777 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4778 return 0;
4779}
4780
c0ff4b85 4781static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4782{
c0ff4b85 4783 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4784}
4785
33327948
KH
4786static struct mem_cgroup *mem_cgroup_alloc(void)
4787{
d79154bb 4788 struct mem_cgroup *memcg;
c62b1a3b 4789 int size = sizeof(struct mem_cgroup);
33327948 4790
c62b1a3b 4791 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4792 if (size < PAGE_SIZE)
d79154bb 4793 memcg = kzalloc(size, GFP_KERNEL);
33327948 4794 else
d79154bb 4795 memcg = vzalloc(size);
33327948 4796
d79154bb 4797 if (!memcg)
e7bbcdf3
DC
4798 return NULL;
4799
d79154bb
HD
4800 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4801 if (!memcg->stat)
d2e61b8d 4802 goto out_free;
d79154bb
HD
4803 spin_lock_init(&memcg->pcp_counter_lock);
4804 return memcg;
d2e61b8d
DC
4805
4806out_free:
4807 if (size < PAGE_SIZE)
d79154bb 4808 kfree(memcg);
d2e61b8d 4809 else
d79154bb 4810 vfree(memcg);
d2e61b8d 4811 return NULL;
33327948
KH
4812}
4813
59927fb9 4814/*
3afe36b1 4815 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4816 * but in process context. The work_freeing structure is overlaid
4817 * on the rcu_freeing structure, which itself is overlaid on memsw.
4818 */
3afe36b1 4819static void free_work(struct work_struct *work)
59927fb9
HD
4820{
4821 struct mem_cgroup *memcg;
3afe36b1 4822 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4823
4824 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4825 /*
4826 * We need to make sure that (at least for now), the jump label
4827 * destruction code runs outside of the cgroup lock. This is because
4828 * get_online_cpus(), which is called from the static_branch update,
4829 * can't be called inside the cgroup_lock. cpusets are the ones
4830 * enforcing this dependency, so if they ever change, we might as well.
4831 *
4832 * schedule_work() will guarantee this happens. Be careful if you need
4833 * to move this code around, and make sure it is outside
4834 * the cgroup_lock.
4835 */
4836 disarm_sock_keys(memcg);
3afe36b1
GC
4837 if (size < PAGE_SIZE)
4838 kfree(memcg);
4839 else
4840 vfree(memcg);
59927fb9 4841}
3afe36b1
GC
4842
4843static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4844{
4845 struct mem_cgroup *memcg;
4846
4847 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4848 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4849 schedule_work(&memcg->work_freeing);
4850}
4851
8c7c6e34
KH
4852/*
4853 * At destroying mem_cgroup, references from swap_cgroup can remain.
4854 * (scanning all at force_empty is too costly...)
4855 *
4856 * Instead of clearing all references at force_empty, we remember
4857 * the number of reference from swap_cgroup and free mem_cgroup when
4858 * it goes down to 0.
4859 *
8c7c6e34
KH
4860 * Removal of cgroup itself succeeds regardless of refs from swap.
4861 */
4862
c0ff4b85 4863static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4864{
08e552c6
KH
4865 int node;
4866
c0ff4b85
R
4867 mem_cgroup_remove_from_trees(memcg);
4868 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4869
3ed28fa1 4870 for_each_node(node)
c0ff4b85 4871 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4872
c0ff4b85 4873 free_percpu(memcg->stat);
3afe36b1 4874 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4875}
4876
c0ff4b85 4877static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4878{
c0ff4b85 4879 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4880}
4881
c0ff4b85 4882static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4883{
c0ff4b85
R
4884 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4885 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4886 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4887 if (parent)
4888 mem_cgroup_put(parent);
4889 }
8c7c6e34
KH
4890}
4891
c0ff4b85 4892static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4893{
c0ff4b85 4894 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4895}
4896
7bcc1bb1
DN
4897/*
4898 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4899 */
e1aab161 4900struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4901{
c0ff4b85 4902 if (!memcg->res.parent)
7bcc1bb1 4903 return NULL;
c0ff4b85 4904 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4905}
e1aab161 4906EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4907
c255a458 4908#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
4909static void __init enable_swap_cgroup(void)
4910{
f8d66542 4911 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4912 do_swap_account = 1;
4913}
4914#else
4915static void __init enable_swap_cgroup(void)
4916{
4917}
4918#endif
4919
f64c3f54
BS
4920static int mem_cgroup_soft_limit_tree_init(void)
4921{
4922 struct mem_cgroup_tree_per_node *rtpn;
4923 struct mem_cgroup_tree_per_zone *rtpz;
4924 int tmp, node, zone;
4925
3ed28fa1 4926 for_each_node(node) {
f64c3f54
BS
4927 tmp = node;
4928 if (!node_state(node, N_NORMAL_MEMORY))
4929 tmp = -1;
4930 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4931 if (!rtpn)
c3cecc68 4932 goto err_cleanup;
f64c3f54
BS
4933
4934 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4935
4936 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4937 rtpz = &rtpn->rb_tree_per_zone[zone];
4938 rtpz->rb_root = RB_ROOT;
4939 spin_lock_init(&rtpz->lock);
4940 }
4941 }
4942 return 0;
c3cecc68
MH
4943
4944err_cleanup:
3ed28fa1 4945 for_each_node(node) {
c3cecc68
MH
4946 if (!soft_limit_tree.rb_tree_per_node[node])
4947 break;
4948 kfree(soft_limit_tree.rb_tree_per_node[node]);
4949 soft_limit_tree.rb_tree_per_node[node] = NULL;
4950 }
4951 return 1;
4952
f64c3f54
BS
4953}
4954
0eb253e2 4955static struct cgroup_subsys_state * __ref
761b3ef5 4956mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4957{
c0ff4b85 4958 struct mem_cgroup *memcg, *parent;
04046e1a 4959 long error = -ENOMEM;
6d12e2d8 4960 int node;
8cdea7c0 4961
c0ff4b85
R
4962 memcg = mem_cgroup_alloc();
4963 if (!memcg)
04046e1a 4964 return ERR_PTR(error);
78fb7466 4965
3ed28fa1 4966 for_each_node(node)
c0ff4b85 4967 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4968 goto free_out;
f64c3f54 4969
c077719b 4970 /* root ? */
28dbc4b6 4971 if (cont->parent == NULL) {
cdec2e42 4972 int cpu;
c077719b 4973 enable_swap_cgroup();
28dbc4b6 4974 parent = NULL;
f64c3f54
BS
4975 if (mem_cgroup_soft_limit_tree_init())
4976 goto free_out;
a41c58a6 4977 root_mem_cgroup = memcg;
cdec2e42
KH
4978 for_each_possible_cpu(cpu) {
4979 struct memcg_stock_pcp *stock =
4980 &per_cpu(memcg_stock, cpu);
4981 INIT_WORK(&stock->work, drain_local_stock);
4982 }
711d3d2c 4983 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4984 } else {
28dbc4b6 4985 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4986 memcg->use_hierarchy = parent->use_hierarchy;
4987 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4988 }
28dbc4b6 4989
18f59ea7 4990 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4991 res_counter_init(&memcg->res, &parent->res);
4992 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4993 /*
4994 * We increment refcnt of the parent to ensure that we can
4995 * safely access it on res_counter_charge/uncharge.
4996 * This refcnt will be decremented when freeing this
4997 * mem_cgroup(see mem_cgroup_put).
4998 */
4999 mem_cgroup_get(parent);
18f59ea7 5000 } else {
c0ff4b85
R
5001 res_counter_init(&memcg->res, NULL);
5002 res_counter_init(&memcg->memsw, NULL);
8c7f6edb
TH
5003 /*
5004 * Deeper hierachy with use_hierarchy == false doesn't make
5005 * much sense so let cgroup subsystem know about this
5006 * unfortunate state in our controller.
5007 */
5008 if (parent && parent != root_mem_cgroup)
5009 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 5010 }
c0ff4b85
R
5011 memcg->last_scanned_node = MAX_NUMNODES;
5012 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5013
a7885eb8 5014 if (parent)
c0ff4b85
R
5015 memcg->swappiness = mem_cgroup_swappiness(parent);
5016 atomic_set(&memcg->refcnt, 1);
5017 memcg->move_charge_at_immigrate = 0;
5018 mutex_init(&memcg->thresholds_lock);
312734c0 5019 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
5020
5021 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5022 if (error) {
5023 /*
5024 * We call put now because our (and parent's) refcnts
5025 * are already in place. mem_cgroup_put() will internally
5026 * call __mem_cgroup_free, so return directly
5027 */
5028 mem_cgroup_put(memcg);
5029 return ERR_PTR(error);
5030 }
c0ff4b85 5031 return &memcg->css;
6d12e2d8 5032free_out:
c0ff4b85 5033 __mem_cgroup_free(memcg);
04046e1a 5034 return ERR_PTR(error);
8cdea7c0
BS
5035}
5036
761b3ef5 5037static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5038{
c0ff4b85 5039 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5040
c0ff4b85 5041 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5042}
5043
761b3ef5 5044static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5045{
c0ff4b85 5046 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5047
1d62e436 5048 kmem_cgroup_destroy(memcg);
d1a4c0b3 5049
c0ff4b85 5050 mem_cgroup_put(memcg);
8cdea7c0
BS
5051}
5052
02491447 5053#ifdef CONFIG_MMU
7dc74be0 5054/* Handlers for move charge at task migration. */
854ffa8d
DN
5055#define PRECHARGE_COUNT_AT_ONCE 256
5056static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5057{
854ffa8d
DN
5058 int ret = 0;
5059 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5060 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5061
c0ff4b85 5062 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5063 mc.precharge += count;
5064 /* we don't need css_get for root */
5065 return ret;
5066 }
5067 /* try to charge at once */
5068 if (count > 1) {
5069 struct res_counter *dummy;
5070 /*
c0ff4b85 5071 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5072 * by cgroup_lock_live_cgroup() that it is not removed and we
5073 * are still under the same cgroup_mutex. So we can postpone
5074 * css_get().
5075 */
c0ff4b85 5076 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5077 goto one_by_one;
c0ff4b85 5078 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5079 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5080 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5081 goto one_by_one;
5082 }
5083 mc.precharge += count;
854ffa8d
DN
5084 return ret;
5085 }
5086one_by_one:
5087 /* fall back to one by one charge */
5088 while (count--) {
5089 if (signal_pending(current)) {
5090 ret = -EINTR;
5091 break;
5092 }
5093 if (!batch_count--) {
5094 batch_count = PRECHARGE_COUNT_AT_ONCE;
5095 cond_resched();
5096 }
c0ff4b85
R
5097 ret = __mem_cgroup_try_charge(NULL,
5098 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5099 if (ret)
854ffa8d 5100 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5101 return ret;
854ffa8d
DN
5102 mc.precharge++;
5103 }
4ffef5fe
DN
5104 return ret;
5105}
5106
5107/**
8d32ff84 5108 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5109 * @vma: the vma the pte to be checked belongs
5110 * @addr: the address corresponding to the pte to be checked
5111 * @ptent: the pte to be checked
02491447 5112 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5113 *
5114 * Returns
5115 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5116 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5117 * move charge. if @target is not NULL, the page is stored in target->page
5118 * with extra refcnt got(Callers should handle it).
02491447
DN
5119 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5120 * target for charge migration. if @target is not NULL, the entry is stored
5121 * in target->ent.
4ffef5fe
DN
5122 *
5123 * Called with pte lock held.
5124 */
4ffef5fe
DN
5125union mc_target {
5126 struct page *page;
02491447 5127 swp_entry_t ent;
4ffef5fe
DN
5128};
5129
4ffef5fe 5130enum mc_target_type {
8d32ff84 5131 MC_TARGET_NONE = 0,
4ffef5fe 5132 MC_TARGET_PAGE,
02491447 5133 MC_TARGET_SWAP,
4ffef5fe
DN
5134};
5135
90254a65
DN
5136static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5137 unsigned long addr, pte_t ptent)
4ffef5fe 5138{
90254a65 5139 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5140
90254a65
DN
5141 if (!page || !page_mapped(page))
5142 return NULL;
5143 if (PageAnon(page)) {
5144 /* we don't move shared anon */
4b91355e 5145 if (!move_anon())
90254a65 5146 return NULL;
87946a72
DN
5147 } else if (!move_file())
5148 /* we ignore mapcount for file pages */
90254a65
DN
5149 return NULL;
5150 if (!get_page_unless_zero(page))
5151 return NULL;
5152
5153 return page;
5154}
5155
4b91355e 5156#ifdef CONFIG_SWAP
90254a65
DN
5157static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5158 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5159{
90254a65
DN
5160 struct page *page = NULL;
5161 swp_entry_t ent = pte_to_swp_entry(ptent);
5162
5163 if (!move_anon() || non_swap_entry(ent))
5164 return NULL;
4b91355e
KH
5165 /*
5166 * Because lookup_swap_cache() updates some statistics counter,
5167 * we call find_get_page() with swapper_space directly.
5168 */
5169 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5170 if (do_swap_account)
5171 entry->val = ent.val;
5172
5173 return page;
5174}
4b91355e
KH
5175#else
5176static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5177 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5178{
5179 return NULL;
5180}
5181#endif
90254a65 5182
87946a72
DN
5183static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5184 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5185{
5186 struct page *page = NULL;
87946a72
DN
5187 struct address_space *mapping;
5188 pgoff_t pgoff;
5189
5190 if (!vma->vm_file) /* anonymous vma */
5191 return NULL;
5192 if (!move_file())
5193 return NULL;
5194
87946a72
DN
5195 mapping = vma->vm_file->f_mapping;
5196 if (pte_none(ptent))
5197 pgoff = linear_page_index(vma, addr);
5198 else /* pte_file(ptent) is true */
5199 pgoff = pte_to_pgoff(ptent);
5200
5201 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5202 page = find_get_page(mapping, pgoff);
5203
5204#ifdef CONFIG_SWAP
5205 /* shmem/tmpfs may report page out on swap: account for that too. */
5206 if (radix_tree_exceptional_entry(page)) {
5207 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5208 if (do_swap_account)
aa3b1895
HD
5209 *entry = swap;
5210 page = find_get_page(&swapper_space, swap.val);
87946a72 5211 }
aa3b1895 5212#endif
87946a72
DN
5213 return page;
5214}
5215
8d32ff84 5216static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5217 unsigned long addr, pte_t ptent, union mc_target *target)
5218{
5219 struct page *page = NULL;
5220 struct page_cgroup *pc;
8d32ff84 5221 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5222 swp_entry_t ent = { .val = 0 };
5223
5224 if (pte_present(ptent))
5225 page = mc_handle_present_pte(vma, addr, ptent);
5226 else if (is_swap_pte(ptent))
5227 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5228 else if (pte_none(ptent) || pte_file(ptent))
5229 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5230
5231 if (!page && !ent.val)
8d32ff84 5232 return ret;
02491447
DN
5233 if (page) {
5234 pc = lookup_page_cgroup(page);
5235 /*
5236 * Do only loose check w/o page_cgroup lock.
5237 * mem_cgroup_move_account() checks the pc is valid or not under
5238 * the lock.
5239 */
5240 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5241 ret = MC_TARGET_PAGE;
5242 if (target)
5243 target->page = page;
5244 }
5245 if (!ret || !target)
5246 put_page(page);
5247 }
90254a65
DN
5248 /* There is a swap entry and a page doesn't exist or isn't charged */
5249 if (ent.val && !ret &&
9fb4b7cc 5250 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5251 ret = MC_TARGET_SWAP;
5252 if (target)
5253 target->ent = ent;
4ffef5fe 5254 }
4ffef5fe
DN
5255 return ret;
5256}
5257
12724850
NH
5258#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5259/*
5260 * We don't consider swapping or file mapped pages because THP does not
5261 * support them for now.
5262 * Caller should make sure that pmd_trans_huge(pmd) is true.
5263 */
5264static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5265 unsigned long addr, pmd_t pmd, union mc_target *target)
5266{
5267 struct page *page = NULL;
5268 struct page_cgroup *pc;
5269 enum mc_target_type ret = MC_TARGET_NONE;
5270
5271 page = pmd_page(pmd);
5272 VM_BUG_ON(!page || !PageHead(page));
5273 if (!move_anon())
5274 return ret;
5275 pc = lookup_page_cgroup(page);
5276 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5277 ret = MC_TARGET_PAGE;
5278 if (target) {
5279 get_page(page);
5280 target->page = page;
5281 }
5282 }
5283 return ret;
5284}
5285#else
5286static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5287 unsigned long addr, pmd_t pmd, union mc_target *target)
5288{
5289 return MC_TARGET_NONE;
5290}
5291#endif
5292
4ffef5fe
DN
5293static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5294 unsigned long addr, unsigned long end,
5295 struct mm_walk *walk)
5296{
5297 struct vm_area_struct *vma = walk->private;
5298 pte_t *pte;
5299 spinlock_t *ptl;
5300
12724850
NH
5301 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5302 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5303 mc.precharge += HPAGE_PMD_NR;
5304 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5305 return 0;
12724850 5306 }
03319327 5307
45f83cef
AA
5308 if (pmd_trans_unstable(pmd))
5309 return 0;
4ffef5fe
DN
5310 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5311 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5312 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5313 mc.precharge++; /* increment precharge temporarily */
5314 pte_unmap_unlock(pte - 1, ptl);
5315 cond_resched();
5316
7dc74be0
DN
5317 return 0;
5318}
5319
4ffef5fe
DN
5320static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5321{
5322 unsigned long precharge;
5323 struct vm_area_struct *vma;
5324
dfe076b0 5325 down_read(&mm->mmap_sem);
4ffef5fe
DN
5326 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5327 struct mm_walk mem_cgroup_count_precharge_walk = {
5328 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5329 .mm = mm,
5330 .private = vma,
5331 };
5332 if (is_vm_hugetlb_page(vma))
5333 continue;
4ffef5fe
DN
5334 walk_page_range(vma->vm_start, vma->vm_end,
5335 &mem_cgroup_count_precharge_walk);
5336 }
dfe076b0 5337 up_read(&mm->mmap_sem);
4ffef5fe
DN
5338
5339 precharge = mc.precharge;
5340 mc.precharge = 0;
5341
5342 return precharge;
5343}
5344
4ffef5fe
DN
5345static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5346{
dfe076b0
DN
5347 unsigned long precharge = mem_cgroup_count_precharge(mm);
5348
5349 VM_BUG_ON(mc.moving_task);
5350 mc.moving_task = current;
5351 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5352}
5353
dfe076b0
DN
5354/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5355static void __mem_cgroup_clear_mc(void)
4ffef5fe 5356{
2bd9bb20
KH
5357 struct mem_cgroup *from = mc.from;
5358 struct mem_cgroup *to = mc.to;
5359
4ffef5fe 5360 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5361 if (mc.precharge) {
5362 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5363 mc.precharge = 0;
5364 }
5365 /*
5366 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5367 * we must uncharge here.
5368 */
5369 if (mc.moved_charge) {
5370 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5371 mc.moved_charge = 0;
4ffef5fe 5372 }
483c30b5
DN
5373 /* we must fixup refcnts and charges */
5374 if (mc.moved_swap) {
483c30b5
DN
5375 /* uncharge swap account from the old cgroup */
5376 if (!mem_cgroup_is_root(mc.from))
5377 res_counter_uncharge(&mc.from->memsw,
5378 PAGE_SIZE * mc.moved_swap);
5379 __mem_cgroup_put(mc.from, mc.moved_swap);
5380
5381 if (!mem_cgroup_is_root(mc.to)) {
5382 /*
5383 * we charged both to->res and to->memsw, so we should
5384 * uncharge to->res.
5385 */
5386 res_counter_uncharge(&mc.to->res,
5387 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5388 }
5389 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5390 mc.moved_swap = 0;
5391 }
dfe076b0
DN
5392 memcg_oom_recover(from);
5393 memcg_oom_recover(to);
5394 wake_up_all(&mc.waitq);
5395}
5396
5397static void mem_cgroup_clear_mc(void)
5398{
5399 struct mem_cgroup *from = mc.from;
5400
5401 /*
5402 * we must clear moving_task before waking up waiters at the end of
5403 * task migration.
5404 */
5405 mc.moving_task = NULL;
5406 __mem_cgroup_clear_mc();
2bd9bb20 5407 spin_lock(&mc.lock);
4ffef5fe
DN
5408 mc.from = NULL;
5409 mc.to = NULL;
2bd9bb20 5410 spin_unlock(&mc.lock);
32047e2a 5411 mem_cgroup_end_move(from);
4ffef5fe
DN
5412}
5413
761b3ef5
LZ
5414static int mem_cgroup_can_attach(struct cgroup *cgroup,
5415 struct cgroup_taskset *tset)
7dc74be0 5416{
2f7ee569 5417 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5418 int ret = 0;
c0ff4b85 5419 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5420
c0ff4b85 5421 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5422 struct mm_struct *mm;
5423 struct mem_cgroup *from = mem_cgroup_from_task(p);
5424
c0ff4b85 5425 VM_BUG_ON(from == memcg);
7dc74be0
DN
5426
5427 mm = get_task_mm(p);
5428 if (!mm)
5429 return 0;
7dc74be0 5430 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5431 if (mm->owner == p) {
5432 VM_BUG_ON(mc.from);
5433 VM_BUG_ON(mc.to);
5434 VM_BUG_ON(mc.precharge);
854ffa8d 5435 VM_BUG_ON(mc.moved_charge);
483c30b5 5436 VM_BUG_ON(mc.moved_swap);
32047e2a 5437 mem_cgroup_start_move(from);
2bd9bb20 5438 spin_lock(&mc.lock);
4ffef5fe 5439 mc.from = from;
c0ff4b85 5440 mc.to = memcg;
2bd9bb20 5441 spin_unlock(&mc.lock);
dfe076b0 5442 /* We set mc.moving_task later */
4ffef5fe
DN
5443
5444 ret = mem_cgroup_precharge_mc(mm);
5445 if (ret)
5446 mem_cgroup_clear_mc();
dfe076b0
DN
5447 }
5448 mmput(mm);
7dc74be0
DN
5449 }
5450 return ret;
5451}
5452
761b3ef5
LZ
5453static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5454 struct cgroup_taskset *tset)
7dc74be0 5455{
4ffef5fe 5456 mem_cgroup_clear_mc();
7dc74be0
DN
5457}
5458
4ffef5fe
DN
5459static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5460 unsigned long addr, unsigned long end,
5461 struct mm_walk *walk)
7dc74be0 5462{
4ffef5fe
DN
5463 int ret = 0;
5464 struct vm_area_struct *vma = walk->private;
5465 pte_t *pte;
5466 spinlock_t *ptl;
12724850
NH
5467 enum mc_target_type target_type;
5468 union mc_target target;
5469 struct page *page;
5470 struct page_cgroup *pc;
4ffef5fe 5471
12724850
NH
5472 /*
5473 * We don't take compound_lock() here but no race with splitting thp
5474 * happens because:
5475 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5476 * under splitting, which means there's no concurrent thp split,
5477 * - if another thread runs into split_huge_page() just after we
5478 * entered this if-block, the thread must wait for page table lock
5479 * to be unlocked in __split_huge_page_splitting(), where the main
5480 * part of thp split is not executed yet.
5481 */
5482 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5483 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5484 spin_unlock(&vma->vm_mm->page_table_lock);
5485 return 0;
5486 }
5487 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5488 if (target_type == MC_TARGET_PAGE) {
5489 page = target.page;
5490 if (!isolate_lru_page(page)) {
5491 pc = lookup_page_cgroup(page);
5492 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5493 pc, mc.from, mc.to)) {
12724850
NH
5494 mc.precharge -= HPAGE_PMD_NR;
5495 mc.moved_charge += HPAGE_PMD_NR;
5496 }
5497 putback_lru_page(page);
5498 }
5499 put_page(page);
5500 }
5501 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5502 return 0;
12724850
NH
5503 }
5504
45f83cef
AA
5505 if (pmd_trans_unstable(pmd))
5506 return 0;
4ffef5fe
DN
5507retry:
5508 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5509 for (; addr != end; addr += PAGE_SIZE) {
5510 pte_t ptent = *(pte++);
02491447 5511 swp_entry_t ent;
4ffef5fe
DN
5512
5513 if (!mc.precharge)
5514 break;
5515
8d32ff84 5516 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5517 case MC_TARGET_PAGE:
5518 page = target.page;
5519 if (isolate_lru_page(page))
5520 goto put;
5521 pc = lookup_page_cgroup(page);
7ec99d62 5522 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5523 mc.from, mc.to)) {
4ffef5fe 5524 mc.precharge--;
854ffa8d
DN
5525 /* we uncharge from mc.from later. */
5526 mc.moved_charge++;
4ffef5fe
DN
5527 }
5528 putback_lru_page(page);
8d32ff84 5529put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5530 put_page(page);
5531 break;
02491447
DN
5532 case MC_TARGET_SWAP:
5533 ent = target.ent;
e91cbb42 5534 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5535 mc.precharge--;
483c30b5
DN
5536 /* we fixup refcnts and charges later. */
5537 mc.moved_swap++;
5538 }
02491447 5539 break;
4ffef5fe
DN
5540 default:
5541 break;
5542 }
5543 }
5544 pte_unmap_unlock(pte - 1, ptl);
5545 cond_resched();
5546
5547 if (addr != end) {
5548 /*
5549 * We have consumed all precharges we got in can_attach().
5550 * We try charge one by one, but don't do any additional
5551 * charges to mc.to if we have failed in charge once in attach()
5552 * phase.
5553 */
854ffa8d 5554 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5555 if (!ret)
5556 goto retry;
5557 }
5558
5559 return ret;
5560}
5561
5562static void mem_cgroup_move_charge(struct mm_struct *mm)
5563{
5564 struct vm_area_struct *vma;
5565
5566 lru_add_drain_all();
dfe076b0
DN
5567retry:
5568 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5569 /*
5570 * Someone who are holding the mmap_sem might be waiting in
5571 * waitq. So we cancel all extra charges, wake up all waiters,
5572 * and retry. Because we cancel precharges, we might not be able
5573 * to move enough charges, but moving charge is a best-effort
5574 * feature anyway, so it wouldn't be a big problem.
5575 */
5576 __mem_cgroup_clear_mc();
5577 cond_resched();
5578 goto retry;
5579 }
4ffef5fe
DN
5580 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5581 int ret;
5582 struct mm_walk mem_cgroup_move_charge_walk = {
5583 .pmd_entry = mem_cgroup_move_charge_pte_range,
5584 .mm = mm,
5585 .private = vma,
5586 };
5587 if (is_vm_hugetlb_page(vma))
5588 continue;
4ffef5fe
DN
5589 ret = walk_page_range(vma->vm_start, vma->vm_end,
5590 &mem_cgroup_move_charge_walk);
5591 if (ret)
5592 /*
5593 * means we have consumed all precharges and failed in
5594 * doing additional charge. Just abandon here.
5595 */
5596 break;
5597 }
dfe076b0 5598 up_read(&mm->mmap_sem);
7dc74be0
DN
5599}
5600
761b3ef5
LZ
5601static void mem_cgroup_move_task(struct cgroup *cont,
5602 struct cgroup_taskset *tset)
67e465a7 5603{
2f7ee569 5604 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5605 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5606
dfe076b0 5607 if (mm) {
a433658c
KM
5608 if (mc.to)
5609 mem_cgroup_move_charge(mm);
dfe076b0
DN
5610 mmput(mm);
5611 }
a433658c
KM
5612 if (mc.to)
5613 mem_cgroup_clear_mc();
67e465a7 5614}
5cfb80a7 5615#else /* !CONFIG_MMU */
761b3ef5
LZ
5616static int mem_cgroup_can_attach(struct cgroup *cgroup,
5617 struct cgroup_taskset *tset)
5cfb80a7
DN
5618{
5619 return 0;
5620}
761b3ef5
LZ
5621static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5622 struct cgroup_taskset *tset)
5cfb80a7
DN
5623{
5624}
761b3ef5
LZ
5625static void mem_cgroup_move_task(struct cgroup *cont,
5626 struct cgroup_taskset *tset)
5cfb80a7
DN
5627{
5628}
5629#endif
67e465a7 5630
8cdea7c0
BS
5631struct cgroup_subsys mem_cgroup_subsys = {
5632 .name = "memory",
5633 .subsys_id = mem_cgroup_subsys_id,
5634 .create = mem_cgroup_create,
df878fb0 5635 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5636 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5637 .can_attach = mem_cgroup_can_attach,
5638 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5639 .attach = mem_cgroup_move_task,
6bc10349 5640 .base_cftypes = mem_cgroup_files,
6d12e2d8 5641 .early_init = 0,
04046e1a 5642 .use_id = 1,
48ddbe19 5643 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5644};
c077719b 5645
c255a458 5646#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5647static int __init enable_swap_account(char *s)
5648{
5649 /* consider enabled if no parameter or 1 is given */
a2c8990a 5650 if (!strcmp(s, "1"))
a42c390c 5651 really_do_swap_account = 1;
a2c8990a 5652 else if (!strcmp(s, "0"))
a42c390c
MH
5653 really_do_swap_account = 0;
5654 return 1;
5655}
a2c8990a 5656__setup("swapaccount=", enable_swap_account);
c077719b 5657
c077719b 5658#endif
This page took 0.800437 seconds and 5 git commands to generate.