mm: more checks on free_pages_prepare() for tail pages
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
79dfdacc
MH
299
300 bool oom_lock;
301 atomic_t under_oom;
3812c8c8 302 atomic_t oom_wakeups;
79dfdacc 303
1f4c025b 304 int swappiness;
3c11ecf4
KH
305 /* OOM-Killer disable */
306 int oom_kill_disable;
a7885eb8 307
2e72b634
KS
308 /* protect arrays of thresholds */
309 struct mutex thresholds_lock;
310
311 /* thresholds for memory usage. RCU-protected */
2c488db2 312 struct mem_cgroup_thresholds thresholds;
907860ed 313
2e72b634 314 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 315 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 316
9490ff27
KH
317 /* For oom notifier event fd */
318 struct list_head oom_notify;
185efc0f 319
7dc74be0
DN
320 /*
321 * Should we move charges of a task when a task is moved into this
322 * mem_cgroup ? And what type of charges should we move ?
323 */
f894ffa8 324 unsigned long move_charge_at_immigrate;
619d094b
KH
325 /*
326 * set > 0 if pages under this cgroup are moving to other cgroup.
327 */
6de22619 328 atomic_t moving_account;
312734c0 329 /* taken only while moving_account > 0 */
6de22619
JW
330 spinlock_t move_lock;
331 struct task_struct *move_lock_task;
332 unsigned long move_lock_flags;
d52aa412 333 /*
c62b1a3b 334 * percpu counter.
d52aa412 335 */
3a7951b4 336 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
337 /*
338 * used when a cpu is offlined or other synchronizations
339 * See mem_cgroup_read_stat().
340 */
341 struct mem_cgroup_stat_cpu nocpu_base;
342 spinlock_t pcp_counter_lock;
d1a4c0b3 343
4bd2c1ee 344#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 345 struct cg_proto tcp_mem;
d1a4c0b3 346#endif
2633d7a0 347#if defined(CONFIG_MEMCG_KMEM)
2633d7a0
GC
348 /* Index in the kmem_cache->memcg_params->memcg_caches array */
349 int kmemcg_id;
350#endif
45cf7ebd
GC
351
352 int last_scanned_node;
353#if MAX_NUMNODES > 1
354 nodemask_t scan_nodes;
355 atomic_t numainfo_events;
356 atomic_t numainfo_updating;
357#endif
70ddf637 358
fba94807
TH
359 /* List of events which userspace want to receive */
360 struct list_head event_list;
361 spinlock_t event_list_lock;
362
54f72fe0
JW
363 struct mem_cgroup_per_node *nodeinfo[0];
364 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
365};
366
510fc4e1 367#ifdef CONFIG_MEMCG_KMEM
7de37682
GC
368static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
369{
900a38f0 370 return memcg->kmemcg_id >= 0;
7de37682 371}
510fc4e1
GC
372#endif
373
7dc74be0
DN
374/* Stuffs for move charges at task migration. */
375/*
ee5e8472
GC
376 * Types of charges to be moved. "move_charge_at_immitgrate" and
377 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
378 */
379enum move_type {
4ffef5fe 380 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 381 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
382 NR_MOVE_TYPE,
383};
384
4ffef5fe
DN
385/* "mc" and its members are protected by cgroup_mutex */
386static struct move_charge_struct {
b1dd693e 387 spinlock_t lock; /* for from, to */
4ffef5fe
DN
388 struct mem_cgroup *from;
389 struct mem_cgroup *to;
ee5e8472 390 unsigned long immigrate_flags;
4ffef5fe 391 unsigned long precharge;
854ffa8d 392 unsigned long moved_charge;
483c30b5 393 unsigned long moved_swap;
8033b97c
DN
394 struct task_struct *moving_task; /* a task moving charges */
395 wait_queue_head_t waitq; /* a waitq for other context */
396} mc = {
2bd9bb20 397 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
398 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
399};
4ffef5fe 400
90254a65
DN
401static bool move_anon(void)
402{
ee5e8472 403 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
404}
405
87946a72
DN
406static bool move_file(void)
407{
ee5e8472 408 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
409}
410
4e416953
BS
411/*
412 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
413 * limit reclaim to prevent infinite loops, if they ever occur.
414 */
a0db00fc 415#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 416#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 417
217bc319
KH
418enum charge_type {
419 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 420 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 421 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 422 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
423 NR_CHARGE_TYPE,
424};
425
8c7c6e34 426/* for encoding cft->private value on file */
86ae53e1
GC
427enum res_type {
428 _MEM,
429 _MEMSWAP,
430 _OOM_TYPE,
510fc4e1 431 _KMEM,
86ae53e1
GC
432};
433
a0db00fc
KS
434#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
435#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 436#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
437/* Used for OOM nofiier */
438#define OOM_CONTROL (0)
8c7c6e34 439
0999821b
GC
440/*
441 * The memcg_create_mutex will be held whenever a new cgroup is created.
442 * As a consequence, any change that needs to protect against new child cgroups
443 * appearing has to hold it as well.
444 */
445static DEFINE_MUTEX(memcg_create_mutex);
446
b2145145
WL
447struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
448{
a7c6d554 449 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
450}
451
70ddf637
AV
452/* Some nice accessors for the vmpressure. */
453struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
454{
455 if (!memcg)
456 memcg = root_mem_cgroup;
457 return &memcg->vmpressure;
458}
459
460struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
461{
462 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
463}
464
7ffc0edc
MH
465static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
466{
467 return (memcg == root_mem_cgroup);
468}
469
4219b2da
LZ
470/*
471 * We restrict the id in the range of [1, 65535], so it can fit into
472 * an unsigned short.
473 */
474#define MEM_CGROUP_ID_MAX USHRT_MAX
475
34c00c31
LZ
476static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
477{
15a4c835 478 return memcg->css.id;
34c00c31
LZ
479}
480
481static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
482{
483 struct cgroup_subsys_state *css;
484
7d699ddb 485 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
486 return mem_cgroup_from_css(css);
487}
488
e1aab161 489/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 490#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 491
e1aab161
GC
492void sock_update_memcg(struct sock *sk)
493{
376be5ff 494 if (mem_cgroup_sockets_enabled) {
e1aab161 495 struct mem_cgroup *memcg;
3f134619 496 struct cg_proto *cg_proto;
e1aab161
GC
497
498 BUG_ON(!sk->sk_prot->proto_cgroup);
499
f3f511e1
GC
500 /* Socket cloning can throw us here with sk_cgrp already
501 * filled. It won't however, necessarily happen from
502 * process context. So the test for root memcg given
503 * the current task's memcg won't help us in this case.
504 *
505 * Respecting the original socket's memcg is a better
506 * decision in this case.
507 */
508 if (sk->sk_cgrp) {
509 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 510 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
511 return;
512 }
513
e1aab161
GC
514 rcu_read_lock();
515 memcg = mem_cgroup_from_task(current);
3f134619 516 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 517 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
518 memcg_proto_active(cg_proto) &&
519 css_tryget_online(&memcg->css)) {
3f134619 520 sk->sk_cgrp = cg_proto;
e1aab161
GC
521 }
522 rcu_read_unlock();
523 }
524}
525EXPORT_SYMBOL(sock_update_memcg);
526
527void sock_release_memcg(struct sock *sk)
528{
376be5ff 529 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
530 struct mem_cgroup *memcg;
531 WARN_ON(!sk->sk_cgrp->memcg);
532 memcg = sk->sk_cgrp->memcg;
5347e5ae 533 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
534 }
535}
d1a4c0b3
GC
536
537struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
538{
539 if (!memcg || mem_cgroup_is_root(memcg))
540 return NULL;
541
2e685cad 542 return &memcg->tcp_mem;
d1a4c0b3
GC
543}
544EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 545
3f134619
GC
546static void disarm_sock_keys(struct mem_cgroup *memcg)
547{
2e685cad 548 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
549 return;
550 static_key_slow_dec(&memcg_socket_limit_enabled);
551}
552#else
553static void disarm_sock_keys(struct mem_cgroup *memcg)
554{
555}
556#endif
557
a8964b9b 558#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
559/*
560 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
561 * The main reason for not using cgroup id for this:
562 * this works better in sparse environments, where we have a lot of memcgs,
563 * but only a few kmem-limited. Or also, if we have, for instance, 200
564 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
565 * 200 entry array for that.
55007d84
GC
566 *
567 * The current size of the caches array is stored in
568 * memcg_limited_groups_array_size. It will double each time we have to
569 * increase it.
570 */
571static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
572int memcg_limited_groups_array_size;
573
55007d84
GC
574/*
575 * MIN_SIZE is different than 1, because we would like to avoid going through
576 * the alloc/free process all the time. In a small machine, 4 kmem-limited
577 * cgroups is a reasonable guess. In the future, it could be a parameter or
578 * tunable, but that is strictly not necessary.
579 *
b8627835 580 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
581 * this constant directly from cgroup, but it is understandable that this is
582 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 583 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
584 * increase ours as well if it increases.
585 */
586#define MEMCG_CACHES_MIN_SIZE 4
b8627835 587#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 588
d7f25f8a
GC
589/*
590 * A lot of the calls to the cache allocation functions are expected to be
591 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
592 * conditional to this static branch, we'll have to allow modules that does
593 * kmem_cache_alloc and the such to see this symbol as well
594 */
a8964b9b 595struct static_key memcg_kmem_enabled_key;
d7f25f8a 596EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 597
f3bb3043
VD
598static void memcg_free_cache_id(int id);
599
a8964b9b
GC
600static void disarm_kmem_keys(struct mem_cgroup *memcg)
601{
55007d84 602 if (memcg_kmem_is_active(memcg)) {
a8964b9b 603 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 604 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 605 }
bea207c8
GC
606 /*
607 * This check can't live in kmem destruction function,
608 * since the charges will outlive the cgroup
609 */
3e32cb2e 610 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
611}
612#else
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
615}
616#endif /* CONFIG_MEMCG_KMEM */
617
618static void disarm_static_keys(struct mem_cgroup *memcg)
619{
620 disarm_sock_keys(memcg);
621 disarm_kmem_keys(memcg);
622}
623
f64c3f54 624static struct mem_cgroup_per_zone *
e231875b 625mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 626{
e231875b
JZ
627 int nid = zone_to_nid(zone);
628 int zid = zone_idx(zone);
629
54f72fe0 630 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
631}
632
c0ff4b85 633struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 634{
c0ff4b85 635 return &memcg->css;
d324236b
WF
636}
637
f64c3f54 638static struct mem_cgroup_per_zone *
e231875b 639mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 640{
97a6c37b
JW
641 int nid = page_to_nid(page);
642 int zid = page_zonenum(page);
f64c3f54 643
e231875b 644 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
645}
646
bb4cc1a8
AM
647static struct mem_cgroup_tree_per_zone *
648soft_limit_tree_node_zone(int nid, int zid)
649{
650 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
651}
652
653static struct mem_cgroup_tree_per_zone *
654soft_limit_tree_from_page(struct page *page)
655{
656 int nid = page_to_nid(page);
657 int zid = page_zonenum(page);
658
659 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
660}
661
cf2c8127
JW
662static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
663 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 664 unsigned long new_usage_in_excess)
bb4cc1a8
AM
665{
666 struct rb_node **p = &mctz->rb_root.rb_node;
667 struct rb_node *parent = NULL;
668 struct mem_cgroup_per_zone *mz_node;
669
670 if (mz->on_tree)
671 return;
672
673 mz->usage_in_excess = new_usage_in_excess;
674 if (!mz->usage_in_excess)
675 return;
676 while (*p) {
677 parent = *p;
678 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
679 tree_node);
680 if (mz->usage_in_excess < mz_node->usage_in_excess)
681 p = &(*p)->rb_left;
682 /*
683 * We can't avoid mem cgroups that are over their soft
684 * limit by the same amount
685 */
686 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
687 p = &(*p)->rb_right;
688 }
689 rb_link_node(&mz->tree_node, parent, p);
690 rb_insert_color(&mz->tree_node, &mctz->rb_root);
691 mz->on_tree = true;
692}
693
cf2c8127
JW
694static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
695 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
696{
697 if (!mz->on_tree)
698 return;
699 rb_erase(&mz->tree_node, &mctz->rb_root);
700 mz->on_tree = false;
701}
702
cf2c8127
JW
703static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
704 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 705{
0a31bc97
JW
706 unsigned long flags;
707
708 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 709 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 710 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
711}
712
3e32cb2e
JW
713static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
714{
715 unsigned long nr_pages = page_counter_read(&memcg->memory);
716 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
717 unsigned long excess = 0;
718
719 if (nr_pages > soft_limit)
720 excess = nr_pages - soft_limit;
721
722 return excess;
723}
bb4cc1a8
AM
724
725static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
726{
3e32cb2e 727 unsigned long excess;
bb4cc1a8
AM
728 struct mem_cgroup_per_zone *mz;
729 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 730
e231875b 731 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
732 /*
733 * Necessary to update all ancestors when hierarchy is used.
734 * because their event counter is not touched.
735 */
736 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 737 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 738 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
739 /*
740 * We have to update the tree if mz is on RB-tree or
741 * mem is over its softlimit.
742 */
743 if (excess || mz->on_tree) {
0a31bc97
JW
744 unsigned long flags;
745
746 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
747 /* if on-tree, remove it */
748 if (mz->on_tree)
cf2c8127 749 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
750 /*
751 * Insert again. mz->usage_in_excess will be updated.
752 * If excess is 0, no tree ops.
753 */
cf2c8127 754 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 755 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
756 }
757 }
758}
759
760static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
761{
bb4cc1a8 762 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
763 struct mem_cgroup_per_zone *mz;
764 int nid, zid;
bb4cc1a8 765
e231875b
JZ
766 for_each_node(nid) {
767 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
768 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
769 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 770 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
771 }
772 }
773}
774
775static struct mem_cgroup_per_zone *
776__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
777{
778 struct rb_node *rightmost = NULL;
779 struct mem_cgroup_per_zone *mz;
780
781retry:
782 mz = NULL;
783 rightmost = rb_last(&mctz->rb_root);
784 if (!rightmost)
785 goto done; /* Nothing to reclaim from */
786
787 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
788 /*
789 * Remove the node now but someone else can add it back,
790 * we will to add it back at the end of reclaim to its correct
791 * position in the tree.
792 */
cf2c8127 793 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 794 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 795 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
796 goto retry;
797done:
798 return mz;
799}
800
801static struct mem_cgroup_per_zone *
802mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
803{
804 struct mem_cgroup_per_zone *mz;
805
0a31bc97 806 spin_lock_irq(&mctz->lock);
bb4cc1a8 807 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 808 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
809 return mz;
810}
811
711d3d2c
KH
812/*
813 * Implementation Note: reading percpu statistics for memcg.
814 *
815 * Both of vmstat[] and percpu_counter has threshold and do periodic
816 * synchronization to implement "quick" read. There are trade-off between
817 * reading cost and precision of value. Then, we may have a chance to implement
818 * a periodic synchronizion of counter in memcg's counter.
819 *
820 * But this _read() function is used for user interface now. The user accounts
821 * memory usage by memory cgroup and he _always_ requires exact value because
822 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
823 * have to visit all online cpus and make sum. So, for now, unnecessary
824 * synchronization is not implemented. (just implemented for cpu hotplug)
825 *
826 * If there are kernel internal actions which can make use of some not-exact
827 * value, and reading all cpu value can be performance bottleneck in some
828 * common workload, threashold and synchonization as vmstat[] should be
829 * implemented.
830 */
c0ff4b85 831static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 832 enum mem_cgroup_stat_index idx)
c62b1a3b 833{
7a159cc9 834 long val = 0;
c62b1a3b 835 int cpu;
c62b1a3b 836
711d3d2c
KH
837 get_online_cpus();
838 for_each_online_cpu(cpu)
c0ff4b85 839 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 840#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
841 spin_lock(&memcg->pcp_counter_lock);
842 val += memcg->nocpu_base.count[idx];
843 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
844#endif
845 put_online_cpus();
c62b1a3b
KH
846 return val;
847}
848
c0ff4b85 849static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
850 enum mem_cgroup_events_index idx)
851{
852 unsigned long val = 0;
853 int cpu;
854
9c567512 855 get_online_cpus();
e9f8974f 856 for_each_online_cpu(cpu)
c0ff4b85 857 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 858#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
859 spin_lock(&memcg->pcp_counter_lock);
860 val += memcg->nocpu_base.events[idx];
861 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 862#endif
9c567512 863 put_online_cpus();
e9f8974f
JW
864 return val;
865}
866
c0ff4b85 867static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 868 struct page *page,
0a31bc97 869 int nr_pages)
d52aa412 870{
b2402857
KH
871 /*
872 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
873 * counted as CACHE even if it's on ANON LRU.
874 */
0a31bc97 875 if (PageAnon(page))
b2402857 876 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 877 nr_pages);
d52aa412 878 else
b2402857 879 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 880 nr_pages);
55e462b0 881
b070e65c
DR
882 if (PageTransHuge(page))
883 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
884 nr_pages);
885
e401f176
KH
886 /* pagein of a big page is an event. So, ignore page size */
887 if (nr_pages > 0)
c0ff4b85 888 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 889 else {
c0ff4b85 890 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
891 nr_pages = -nr_pages; /* for event */
892 }
e401f176 893
13114716 894 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
895}
896
e231875b 897unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
898{
899 struct mem_cgroup_per_zone *mz;
900
901 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
902 return mz->lru_size[lru];
903}
904
e231875b
JZ
905static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
906 int nid,
907 unsigned int lru_mask)
bb2a0de9 908{
e231875b 909 unsigned long nr = 0;
889976db
YH
910 int zid;
911
e231875b 912 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 913
e231875b
JZ
914 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
915 struct mem_cgroup_per_zone *mz;
916 enum lru_list lru;
917
918 for_each_lru(lru) {
919 if (!(BIT(lru) & lru_mask))
920 continue;
921 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
922 nr += mz->lru_size[lru];
923 }
924 }
925 return nr;
889976db 926}
bb2a0de9 927
c0ff4b85 928static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 929 unsigned int lru_mask)
6d12e2d8 930{
e231875b 931 unsigned long nr = 0;
889976db 932 int nid;
6d12e2d8 933
31aaea4a 934 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
935 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
936 return nr;
d52aa412
KH
937}
938
f53d7ce3
JW
939static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
940 enum mem_cgroup_events_target target)
7a159cc9
JW
941{
942 unsigned long val, next;
943
13114716 944 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 945 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 946 /* from time_after() in jiffies.h */
f53d7ce3
JW
947 if ((long)next - (long)val < 0) {
948 switch (target) {
949 case MEM_CGROUP_TARGET_THRESH:
950 next = val + THRESHOLDS_EVENTS_TARGET;
951 break;
bb4cc1a8
AM
952 case MEM_CGROUP_TARGET_SOFTLIMIT:
953 next = val + SOFTLIMIT_EVENTS_TARGET;
954 break;
f53d7ce3
JW
955 case MEM_CGROUP_TARGET_NUMAINFO:
956 next = val + NUMAINFO_EVENTS_TARGET;
957 break;
958 default:
959 break;
960 }
961 __this_cpu_write(memcg->stat->targets[target], next);
962 return true;
7a159cc9 963 }
f53d7ce3 964 return false;
d2265e6f
KH
965}
966
967/*
968 * Check events in order.
969 *
970 */
c0ff4b85 971static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
972{
973 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
974 if (unlikely(mem_cgroup_event_ratelimit(memcg,
975 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 976 bool do_softlimit;
82b3f2a7 977 bool do_numainfo __maybe_unused;
f53d7ce3 978
bb4cc1a8
AM
979 do_softlimit = mem_cgroup_event_ratelimit(memcg,
980 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
981#if MAX_NUMNODES > 1
982 do_numainfo = mem_cgroup_event_ratelimit(memcg,
983 MEM_CGROUP_TARGET_NUMAINFO);
984#endif
c0ff4b85 985 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
986 if (unlikely(do_softlimit))
987 mem_cgroup_update_tree(memcg, page);
453a9bf3 988#if MAX_NUMNODES > 1
f53d7ce3 989 if (unlikely(do_numainfo))
c0ff4b85 990 atomic_inc(&memcg->numainfo_events);
453a9bf3 991#endif
0a31bc97 992 }
d2265e6f
KH
993}
994
cf475ad2 995struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 996{
31a78f23
BS
997 /*
998 * mm_update_next_owner() may clear mm->owner to NULL
999 * if it races with swapoff, page migration, etc.
1000 * So this can be called with p == NULL.
1001 */
1002 if (unlikely(!p))
1003 return NULL;
1004
073219e9 1005 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1006}
1007
df381975 1008static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1009{
c0ff4b85 1010 struct mem_cgroup *memcg = NULL;
0b7f569e 1011
54595fe2
KH
1012 rcu_read_lock();
1013 do {
6f6acb00
MH
1014 /*
1015 * Page cache insertions can happen withou an
1016 * actual mm context, e.g. during disk probing
1017 * on boot, loopback IO, acct() writes etc.
1018 */
1019 if (unlikely(!mm))
df381975 1020 memcg = root_mem_cgroup;
6f6acb00
MH
1021 else {
1022 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1023 if (unlikely(!memcg))
1024 memcg = root_mem_cgroup;
1025 }
ec903c0c 1026 } while (!css_tryget_online(&memcg->css));
54595fe2 1027 rcu_read_unlock();
c0ff4b85 1028 return memcg;
54595fe2
KH
1029}
1030
5660048c
JW
1031/**
1032 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1033 * @root: hierarchy root
1034 * @prev: previously returned memcg, NULL on first invocation
1035 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1036 *
1037 * Returns references to children of the hierarchy below @root, or
1038 * @root itself, or %NULL after a full round-trip.
1039 *
1040 * Caller must pass the return value in @prev on subsequent
1041 * invocations for reference counting, or use mem_cgroup_iter_break()
1042 * to cancel a hierarchy walk before the round-trip is complete.
1043 *
1044 * Reclaimers can specify a zone and a priority level in @reclaim to
1045 * divide up the memcgs in the hierarchy among all concurrent
1046 * reclaimers operating on the same zone and priority.
1047 */
694fbc0f 1048struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1049 struct mem_cgroup *prev,
694fbc0f 1050 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1051{
5ac8fb31
JW
1052 struct reclaim_iter *uninitialized_var(iter);
1053 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1054 struct mem_cgroup *memcg = NULL;
5ac8fb31 1055 struct mem_cgroup *pos = NULL;
711d3d2c 1056
694fbc0f
AM
1057 if (mem_cgroup_disabled())
1058 return NULL;
5660048c 1059
9f3a0d09
JW
1060 if (!root)
1061 root = root_mem_cgroup;
7d74b06f 1062
9f3a0d09 1063 if (prev && !reclaim)
5ac8fb31 1064 pos = prev;
14067bb3 1065
9f3a0d09
JW
1066 if (!root->use_hierarchy && root != root_mem_cgroup) {
1067 if (prev)
5ac8fb31 1068 goto out;
694fbc0f 1069 return root;
9f3a0d09 1070 }
14067bb3 1071
542f85f9 1072 rcu_read_lock();
5f578161 1073
5ac8fb31
JW
1074 if (reclaim) {
1075 struct mem_cgroup_per_zone *mz;
1076
1077 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1078 iter = &mz->iter[reclaim->priority];
1079
1080 if (prev && reclaim->generation != iter->generation)
1081 goto out_unlock;
1082
1083 do {
1084 pos = ACCESS_ONCE(iter->position);
1085 /*
1086 * A racing update may change the position and
1087 * put the last reference, hence css_tryget(),
1088 * or retry to see the updated position.
1089 */
1090 } while (pos && !css_tryget(&pos->css));
1091 }
1092
1093 if (pos)
1094 css = &pos->css;
1095
1096 for (;;) {
1097 css = css_next_descendant_pre(css, &root->css);
1098 if (!css) {
1099 /*
1100 * Reclaimers share the hierarchy walk, and a
1101 * new one might jump in right at the end of
1102 * the hierarchy - make sure they see at least
1103 * one group and restart from the beginning.
1104 */
1105 if (!prev)
1106 continue;
1107 break;
527a5ec9 1108 }
7d74b06f 1109
5ac8fb31
JW
1110 /*
1111 * Verify the css and acquire a reference. The root
1112 * is provided by the caller, so we know it's alive
1113 * and kicking, and don't take an extra reference.
1114 */
1115 memcg = mem_cgroup_from_css(css);
14067bb3 1116
5ac8fb31
JW
1117 if (css == &root->css)
1118 break;
14067bb3 1119
b2052564 1120 if (css_tryget(css)) {
5ac8fb31
JW
1121 /*
1122 * Make sure the memcg is initialized:
1123 * mem_cgroup_css_online() orders the the
1124 * initialization against setting the flag.
1125 */
1126 if (smp_load_acquire(&memcg->initialized))
1127 break;
542f85f9 1128
5ac8fb31 1129 css_put(css);
527a5ec9 1130 }
9f3a0d09 1131
5ac8fb31 1132 memcg = NULL;
9f3a0d09 1133 }
5ac8fb31
JW
1134
1135 if (reclaim) {
1136 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1137 if (memcg)
1138 css_get(&memcg->css);
1139 if (pos)
1140 css_put(&pos->css);
1141 }
1142
1143 /*
1144 * pairs with css_tryget when dereferencing iter->position
1145 * above.
1146 */
1147 if (pos)
1148 css_put(&pos->css);
1149
1150 if (!memcg)
1151 iter->generation++;
1152 else if (!prev)
1153 reclaim->generation = iter->generation;
9f3a0d09 1154 }
5ac8fb31 1155
542f85f9
MH
1156out_unlock:
1157 rcu_read_unlock();
5ac8fb31 1158out:
c40046f3
MH
1159 if (prev && prev != root)
1160 css_put(&prev->css);
1161
9f3a0d09 1162 return memcg;
14067bb3 1163}
7d74b06f 1164
5660048c
JW
1165/**
1166 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1167 * @root: hierarchy root
1168 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1169 */
1170void mem_cgroup_iter_break(struct mem_cgroup *root,
1171 struct mem_cgroup *prev)
9f3a0d09
JW
1172{
1173 if (!root)
1174 root = root_mem_cgroup;
1175 if (prev && prev != root)
1176 css_put(&prev->css);
1177}
7d74b06f 1178
9f3a0d09
JW
1179/*
1180 * Iteration constructs for visiting all cgroups (under a tree). If
1181 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1182 * be used for reference counting.
1183 */
1184#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1185 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1186 iter != NULL; \
527a5ec9 1187 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1188
9f3a0d09 1189#define for_each_mem_cgroup(iter) \
527a5ec9 1190 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1191 iter != NULL; \
527a5ec9 1192 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1193
68ae564b 1194void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1195{
c0ff4b85 1196 struct mem_cgroup *memcg;
456f998e 1197
456f998e 1198 rcu_read_lock();
c0ff4b85
R
1199 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1200 if (unlikely(!memcg))
456f998e
YH
1201 goto out;
1202
1203 switch (idx) {
456f998e 1204 case PGFAULT:
0e574a93
JW
1205 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1206 break;
1207 case PGMAJFAULT:
1208 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1209 break;
1210 default:
1211 BUG();
1212 }
1213out:
1214 rcu_read_unlock();
1215}
68ae564b 1216EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1217
925b7673
JW
1218/**
1219 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1220 * @zone: zone of the wanted lruvec
fa9add64 1221 * @memcg: memcg of the wanted lruvec
925b7673
JW
1222 *
1223 * Returns the lru list vector holding pages for the given @zone and
1224 * @mem. This can be the global zone lruvec, if the memory controller
1225 * is disabled.
1226 */
1227struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1228 struct mem_cgroup *memcg)
1229{
1230 struct mem_cgroup_per_zone *mz;
bea8c150 1231 struct lruvec *lruvec;
925b7673 1232
bea8c150
HD
1233 if (mem_cgroup_disabled()) {
1234 lruvec = &zone->lruvec;
1235 goto out;
1236 }
925b7673 1237
e231875b 1238 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1239 lruvec = &mz->lruvec;
1240out:
1241 /*
1242 * Since a node can be onlined after the mem_cgroup was created,
1243 * we have to be prepared to initialize lruvec->zone here;
1244 * and if offlined then reonlined, we need to reinitialize it.
1245 */
1246 if (unlikely(lruvec->zone != zone))
1247 lruvec->zone = zone;
1248 return lruvec;
925b7673
JW
1249}
1250
925b7673 1251/**
dfe0e773 1252 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1253 * @page: the page
fa9add64 1254 * @zone: zone of the page
dfe0e773
JW
1255 *
1256 * This function is only safe when following the LRU page isolation
1257 * and putback protocol: the LRU lock must be held, and the page must
1258 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1259 */
fa9add64 1260struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1261{
08e552c6 1262 struct mem_cgroup_per_zone *mz;
925b7673 1263 struct mem_cgroup *memcg;
bea8c150 1264 struct lruvec *lruvec;
6d12e2d8 1265
bea8c150
HD
1266 if (mem_cgroup_disabled()) {
1267 lruvec = &zone->lruvec;
1268 goto out;
1269 }
925b7673 1270
1306a85a 1271 memcg = page->mem_cgroup;
7512102c 1272 /*
dfe0e773 1273 * Swapcache readahead pages are added to the LRU - and
29833315 1274 * possibly migrated - before they are charged.
7512102c 1275 */
29833315
JW
1276 if (!memcg)
1277 memcg = root_mem_cgroup;
7512102c 1278
e231875b 1279 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1280 lruvec = &mz->lruvec;
1281out:
1282 /*
1283 * Since a node can be onlined after the mem_cgroup was created,
1284 * we have to be prepared to initialize lruvec->zone here;
1285 * and if offlined then reonlined, we need to reinitialize it.
1286 */
1287 if (unlikely(lruvec->zone != zone))
1288 lruvec->zone = zone;
1289 return lruvec;
08e552c6 1290}
b69408e8 1291
925b7673 1292/**
fa9add64
HD
1293 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1294 * @lruvec: mem_cgroup per zone lru vector
1295 * @lru: index of lru list the page is sitting on
1296 * @nr_pages: positive when adding or negative when removing
925b7673 1297 *
fa9add64
HD
1298 * This function must be called when a page is added to or removed from an
1299 * lru list.
3f58a829 1300 */
fa9add64
HD
1301void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1302 int nr_pages)
3f58a829
MK
1303{
1304 struct mem_cgroup_per_zone *mz;
fa9add64 1305 unsigned long *lru_size;
3f58a829
MK
1306
1307 if (mem_cgroup_disabled())
1308 return;
1309
fa9add64
HD
1310 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1311 lru_size = mz->lru_size + lru;
1312 *lru_size += nr_pages;
1313 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1314}
544122e5 1315
2314b42d 1316bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1317{
2314b42d 1318 if (root == memcg)
91c63734 1319 return true;
2314b42d 1320 if (!root->use_hierarchy)
91c63734 1321 return false;
2314b42d 1322 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1323}
1324
2314b42d 1325bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1326{
2314b42d 1327 struct mem_cgroup *task_memcg;
158e0a2d 1328 struct task_struct *p;
ffbdccf5 1329 bool ret;
4c4a2214 1330
158e0a2d 1331 p = find_lock_task_mm(task);
de077d22 1332 if (p) {
2314b42d 1333 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1334 task_unlock(p);
1335 } else {
1336 /*
1337 * All threads may have already detached their mm's, but the oom
1338 * killer still needs to detect if they have already been oom
1339 * killed to prevent needlessly killing additional tasks.
1340 */
ffbdccf5 1341 rcu_read_lock();
2314b42d
JW
1342 task_memcg = mem_cgroup_from_task(task);
1343 css_get(&task_memcg->css);
ffbdccf5 1344 rcu_read_unlock();
de077d22 1345 }
2314b42d
JW
1346 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1347 css_put(&task_memcg->css);
4c4a2214
DR
1348 return ret;
1349}
1350
c56d5c7d 1351int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1352{
9b272977 1353 unsigned long inactive_ratio;
14797e23 1354 unsigned long inactive;
9b272977 1355 unsigned long active;
c772be93 1356 unsigned long gb;
14797e23 1357
4d7dcca2
HD
1358 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1359 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1360
c772be93
KM
1361 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1362 if (gb)
1363 inactive_ratio = int_sqrt(10 * gb);
1364 else
1365 inactive_ratio = 1;
1366
9b272977 1367 return inactive * inactive_ratio < active;
14797e23
KM
1368}
1369
3e32cb2e 1370#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1371 container_of(counter, struct mem_cgroup, member)
1372
19942822 1373/**
9d11ea9f 1374 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1375 * @memcg: the memory cgroup
19942822 1376 *
9d11ea9f 1377 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1378 * pages.
19942822 1379 */
c0ff4b85 1380static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1381{
3e32cb2e
JW
1382 unsigned long margin = 0;
1383 unsigned long count;
1384 unsigned long limit;
9d11ea9f 1385
3e32cb2e
JW
1386 count = page_counter_read(&memcg->memory);
1387 limit = ACCESS_ONCE(memcg->memory.limit);
1388 if (count < limit)
1389 margin = limit - count;
1390
1391 if (do_swap_account) {
1392 count = page_counter_read(&memcg->memsw);
1393 limit = ACCESS_ONCE(memcg->memsw.limit);
1394 if (count <= limit)
1395 margin = min(margin, limit - count);
1396 }
1397
1398 return margin;
19942822
JW
1399}
1400
1f4c025b 1401int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1402{
a7885eb8 1403 /* root ? */
14208b0e 1404 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1405 return vm_swappiness;
1406
bf1ff263 1407 return memcg->swappiness;
a7885eb8
KM
1408}
1409
32047e2a 1410/*
bdcbb659 1411 * A routine for checking "mem" is under move_account() or not.
32047e2a 1412 *
bdcbb659
QH
1413 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1414 * moving cgroups. This is for waiting at high-memory pressure
1415 * caused by "move".
32047e2a 1416 */
c0ff4b85 1417static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1418{
2bd9bb20
KH
1419 struct mem_cgroup *from;
1420 struct mem_cgroup *to;
4b534334 1421 bool ret = false;
2bd9bb20
KH
1422 /*
1423 * Unlike task_move routines, we access mc.to, mc.from not under
1424 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1425 */
1426 spin_lock(&mc.lock);
1427 from = mc.from;
1428 to = mc.to;
1429 if (!from)
1430 goto unlock;
3e92041d 1431
2314b42d
JW
1432 ret = mem_cgroup_is_descendant(from, memcg) ||
1433 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1434unlock:
1435 spin_unlock(&mc.lock);
4b534334
KH
1436 return ret;
1437}
1438
c0ff4b85 1439static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1440{
1441 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1442 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1443 DEFINE_WAIT(wait);
1444 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1445 /* moving charge context might have finished. */
1446 if (mc.moving_task)
1447 schedule();
1448 finish_wait(&mc.waitq, &wait);
1449 return true;
1450 }
1451 }
1452 return false;
1453}
1454
58cf188e 1455#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1456/**
58cf188e 1457 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1458 * @memcg: The memory cgroup that went over limit
1459 * @p: Task that is going to be killed
1460 *
1461 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1462 * enabled
1463 */
1464void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1465{
e61734c5 1466 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1467 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1468 struct mem_cgroup *iter;
1469 unsigned int i;
e222432b 1470
58cf188e 1471 if (!p)
e222432b
BS
1472 return;
1473
08088cb9 1474 mutex_lock(&oom_info_lock);
e222432b
BS
1475 rcu_read_lock();
1476
e61734c5
TH
1477 pr_info("Task in ");
1478 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
0346dadb 1479 pr_cont(" killed as a result of limit of ");
e61734c5 1480 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1481 pr_cont("\n");
e222432b 1482
e222432b
BS
1483 rcu_read_unlock();
1484
3e32cb2e
JW
1485 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1486 K((u64)page_counter_read(&memcg->memory)),
1487 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1488 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1489 K((u64)page_counter_read(&memcg->memsw)),
1490 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1491 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1492 K((u64)page_counter_read(&memcg->kmem)),
1493 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1494
1495 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1496 pr_info("Memory cgroup stats for ");
1497 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1498 pr_cont(":");
1499
1500 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1501 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1502 continue;
1503 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1504 K(mem_cgroup_read_stat(iter, i)));
1505 }
1506
1507 for (i = 0; i < NR_LRU_LISTS; i++)
1508 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1509 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1510
1511 pr_cont("\n");
1512 }
08088cb9 1513 mutex_unlock(&oom_info_lock);
e222432b
BS
1514}
1515
81d39c20
KH
1516/*
1517 * This function returns the number of memcg under hierarchy tree. Returns
1518 * 1(self count) if no children.
1519 */
c0ff4b85 1520static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1521{
1522 int num = 0;
7d74b06f
KH
1523 struct mem_cgroup *iter;
1524
c0ff4b85 1525 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1526 num++;
81d39c20
KH
1527 return num;
1528}
1529
a63d83f4
DR
1530/*
1531 * Return the memory (and swap, if configured) limit for a memcg.
1532 */
3e32cb2e 1533static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1534{
3e32cb2e 1535 unsigned long limit;
f3e8eb70 1536
3e32cb2e 1537 limit = memcg->memory.limit;
9a5a8f19 1538 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1539 unsigned long memsw_limit;
9a5a8f19 1540
3e32cb2e
JW
1541 memsw_limit = memcg->memsw.limit;
1542 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1543 }
9a5a8f19 1544 return limit;
a63d83f4
DR
1545}
1546
19965460
DR
1547static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1548 int order)
9cbb78bb
DR
1549{
1550 struct mem_cgroup *iter;
1551 unsigned long chosen_points = 0;
1552 unsigned long totalpages;
1553 unsigned int points = 0;
1554 struct task_struct *chosen = NULL;
1555
876aafbf 1556 /*
465adcf1
DR
1557 * If current has a pending SIGKILL or is exiting, then automatically
1558 * select it. The goal is to allow it to allocate so that it may
1559 * quickly exit and free its memory.
876aafbf 1560 */
d003f371 1561 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
876aafbf
DR
1562 set_thread_flag(TIF_MEMDIE);
1563 return;
1564 }
1565
1566 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1567 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1568 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1569 struct css_task_iter it;
9cbb78bb
DR
1570 struct task_struct *task;
1571
72ec7029
TH
1572 css_task_iter_start(&iter->css, &it);
1573 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1574 switch (oom_scan_process_thread(task, totalpages, NULL,
1575 false)) {
1576 case OOM_SCAN_SELECT:
1577 if (chosen)
1578 put_task_struct(chosen);
1579 chosen = task;
1580 chosen_points = ULONG_MAX;
1581 get_task_struct(chosen);
1582 /* fall through */
1583 case OOM_SCAN_CONTINUE:
1584 continue;
1585 case OOM_SCAN_ABORT:
72ec7029 1586 css_task_iter_end(&it);
9cbb78bb
DR
1587 mem_cgroup_iter_break(memcg, iter);
1588 if (chosen)
1589 put_task_struct(chosen);
1590 return;
1591 case OOM_SCAN_OK:
1592 break;
1593 };
1594 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1595 if (!points || points < chosen_points)
1596 continue;
1597 /* Prefer thread group leaders for display purposes */
1598 if (points == chosen_points &&
1599 thread_group_leader(chosen))
1600 continue;
1601
1602 if (chosen)
1603 put_task_struct(chosen);
1604 chosen = task;
1605 chosen_points = points;
1606 get_task_struct(chosen);
9cbb78bb 1607 }
72ec7029 1608 css_task_iter_end(&it);
9cbb78bb
DR
1609 }
1610
1611 if (!chosen)
1612 return;
1613 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1614 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1615 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1616}
1617
ae6e71d3
MC
1618#if MAX_NUMNODES > 1
1619
4d0c066d
KH
1620/**
1621 * test_mem_cgroup_node_reclaimable
dad7557e 1622 * @memcg: the target memcg
4d0c066d
KH
1623 * @nid: the node ID to be checked.
1624 * @noswap : specify true here if the user wants flle only information.
1625 *
1626 * This function returns whether the specified memcg contains any
1627 * reclaimable pages on a node. Returns true if there are any reclaimable
1628 * pages in the node.
1629 */
c0ff4b85 1630static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1631 int nid, bool noswap)
1632{
c0ff4b85 1633 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1634 return true;
1635 if (noswap || !total_swap_pages)
1636 return false;
c0ff4b85 1637 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1638 return true;
1639 return false;
1640
1641}
889976db
YH
1642
1643/*
1644 * Always updating the nodemask is not very good - even if we have an empty
1645 * list or the wrong list here, we can start from some node and traverse all
1646 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1647 *
1648 */
c0ff4b85 1649static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1650{
1651 int nid;
453a9bf3
KH
1652 /*
1653 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1654 * pagein/pageout changes since the last update.
1655 */
c0ff4b85 1656 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1657 return;
c0ff4b85 1658 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1659 return;
1660
889976db 1661 /* make a nodemask where this memcg uses memory from */
31aaea4a 1662 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1663
31aaea4a 1664 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1665
c0ff4b85
R
1666 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1667 node_clear(nid, memcg->scan_nodes);
889976db 1668 }
453a9bf3 1669
c0ff4b85
R
1670 atomic_set(&memcg->numainfo_events, 0);
1671 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1672}
1673
1674/*
1675 * Selecting a node where we start reclaim from. Because what we need is just
1676 * reducing usage counter, start from anywhere is O,K. Considering
1677 * memory reclaim from current node, there are pros. and cons.
1678 *
1679 * Freeing memory from current node means freeing memory from a node which
1680 * we'll use or we've used. So, it may make LRU bad. And if several threads
1681 * hit limits, it will see a contention on a node. But freeing from remote
1682 * node means more costs for memory reclaim because of memory latency.
1683 *
1684 * Now, we use round-robin. Better algorithm is welcomed.
1685 */
c0ff4b85 1686int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1687{
1688 int node;
1689
c0ff4b85
R
1690 mem_cgroup_may_update_nodemask(memcg);
1691 node = memcg->last_scanned_node;
889976db 1692
c0ff4b85 1693 node = next_node(node, memcg->scan_nodes);
889976db 1694 if (node == MAX_NUMNODES)
c0ff4b85 1695 node = first_node(memcg->scan_nodes);
889976db
YH
1696 /*
1697 * We call this when we hit limit, not when pages are added to LRU.
1698 * No LRU may hold pages because all pages are UNEVICTABLE or
1699 * memcg is too small and all pages are not on LRU. In that case,
1700 * we use curret node.
1701 */
1702 if (unlikely(node == MAX_NUMNODES))
1703 node = numa_node_id();
1704
c0ff4b85 1705 memcg->last_scanned_node = node;
889976db
YH
1706 return node;
1707}
889976db 1708#else
c0ff4b85 1709int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1710{
1711 return 0;
1712}
1713#endif
1714
0608f43d
AM
1715static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1716 struct zone *zone,
1717 gfp_t gfp_mask,
1718 unsigned long *total_scanned)
1719{
1720 struct mem_cgroup *victim = NULL;
1721 int total = 0;
1722 int loop = 0;
1723 unsigned long excess;
1724 unsigned long nr_scanned;
1725 struct mem_cgroup_reclaim_cookie reclaim = {
1726 .zone = zone,
1727 .priority = 0,
1728 };
1729
3e32cb2e 1730 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1731
1732 while (1) {
1733 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1734 if (!victim) {
1735 loop++;
1736 if (loop >= 2) {
1737 /*
1738 * If we have not been able to reclaim
1739 * anything, it might because there are
1740 * no reclaimable pages under this hierarchy
1741 */
1742 if (!total)
1743 break;
1744 /*
1745 * We want to do more targeted reclaim.
1746 * excess >> 2 is not to excessive so as to
1747 * reclaim too much, nor too less that we keep
1748 * coming back to reclaim from this cgroup
1749 */
1750 if (total >= (excess >> 2) ||
1751 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1752 break;
1753 }
1754 continue;
1755 }
0608f43d
AM
1756 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1757 zone, &nr_scanned);
1758 *total_scanned += nr_scanned;
3e32cb2e 1759 if (!soft_limit_excess(root_memcg))
0608f43d 1760 break;
6d61ef40 1761 }
0608f43d
AM
1762 mem_cgroup_iter_break(root_memcg, victim);
1763 return total;
6d61ef40
BS
1764}
1765
0056f4e6
JW
1766#ifdef CONFIG_LOCKDEP
1767static struct lockdep_map memcg_oom_lock_dep_map = {
1768 .name = "memcg_oom_lock",
1769};
1770#endif
1771
fb2a6fc5
JW
1772static DEFINE_SPINLOCK(memcg_oom_lock);
1773
867578cb
KH
1774/*
1775 * Check OOM-Killer is already running under our hierarchy.
1776 * If someone is running, return false.
1777 */
fb2a6fc5 1778static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1779{
79dfdacc 1780 struct mem_cgroup *iter, *failed = NULL;
a636b327 1781
fb2a6fc5
JW
1782 spin_lock(&memcg_oom_lock);
1783
9f3a0d09 1784 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1785 if (iter->oom_lock) {
79dfdacc
MH
1786 /*
1787 * this subtree of our hierarchy is already locked
1788 * so we cannot give a lock.
1789 */
79dfdacc 1790 failed = iter;
9f3a0d09
JW
1791 mem_cgroup_iter_break(memcg, iter);
1792 break;
23751be0
JW
1793 } else
1794 iter->oom_lock = true;
7d74b06f 1795 }
867578cb 1796
fb2a6fc5
JW
1797 if (failed) {
1798 /*
1799 * OK, we failed to lock the whole subtree so we have
1800 * to clean up what we set up to the failing subtree
1801 */
1802 for_each_mem_cgroup_tree(iter, memcg) {
1803 if (iter == failed) {
1804 mem_cgroup_iter_break(memcg, iter);
1805 break;
1806 }
1807 iter->oom_lock = false;
79dfdacc 1808 }
0056f4e6
JW
1809 } else
1810 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1811
1812 spin_unlock(&memcg_oom_lock);
1813
1814 return !failed;
a636b327 1815}
0b7f569e 1816
fb2a6fc5 1817static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1818{
7d74b06f
KH
1819 struct mem_cgroup *iter;
1820
fb2a6fc5 1821 spin_lock(&memcg_oom_lock);
0056f4e6 1822 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1823 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1824 iter->oom_lock = false;
fb2a6fc5 1825 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1826}
1827
c0ff4b85 1828static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1829{
1830 struct mem_cgroup *iter;
1831
c0ff4b85 1832 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1833 atomic_inc(&iter->under_oom);
1834}
1835
c0ff4b85 1836static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1837{
1838 struct mem_cgroup *iter;
1839
867578cb
KH
1840 /*
1841 * When a new child is created while the hierarchy is under oom,
1842 * mem_cgroup_oom_lock() may not be called. We have to use
1843 * atomic_add_unless() here.
1844 */
c0ff4b85 1845 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1846 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1847}
1848
867578cb
KH
1849static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1850
dc98df5a 1851struct oom_wait_info {
d79154bb 1852 struct mem_cgroup *memcg;
dc98df5a
KH
1853 wait_queue_t wait;
1854};
1855
1856static int memcg_oom_wake_function(wait_queue_t *wait,
1857 unsigned mode, int sync, void *arg)
1858{
d79154bb
HD
1859 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1860 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1861 struct oom_wait_info *oom_wait_info;
1862
1863 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1864 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1865
2314b42d
JW
1866 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1867 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1868 return 0;
dc98df5a
KH
1869 return autoremove_wake_function(wait, mode, sync, arg);
1870}
1871
c0ff4b85 1872static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1873{
3812c8c8 1874 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1875 /* for filtering, pass "memcg" as argument. */
1876 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1877}
1878
c0ff4b85 1879static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1880{
c0ff4b85
R
1881 if (memcg && atomic_read(&memcg->under_oom))
1882 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1883}
1884
3812c8c8 1885static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1886{
3812c8c8
JW
1887 if (!current->memcg_oom.may_oom)
1888 return;
867578cb 1889 /*
49426420
JW
1890 * We are in the middle of the charge context here, so we
1891 * don't want to block when potentially sitting on a callstack
1892 * that holds all kinds of filesystem and mm locks.
1893 *
1894 * Also, the caller may handle a failed allocation gracefully
1895 * (like optional page cache readahead) and so an OOM killer
1896 * invocation might not even be necessary.
1897 *
1898 * That's why we don't do anything here except remember the
1899 * OOM context and then deal with it at the end of the page
1900 * fault when the stack is unwound, the locks are released,
1901 * and when we know whether the fault was overall successful.
867578cb 1902 */
49426420
JW
1903 css_get(&memcg->css);
1904 current->memcg_oom.memcg = memcg;
1905 current->memcg_oom.gfp_mask = mask;
1906 current->memcg_oom.order = order;
3812c8c8
JW
1907}
1908
1909/**
1910 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1911 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1912 *
49426420
JW
1913 * This has to be called at the end of a page fault if the memcg OOM
1914 * handler was enabled.
3812c8c8 1915 *
49426420 1916 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1917 * sleep on a waitqueue until the userspace task resolves the
1918 * situation. Sleeping directly in the charge context with all kinds
1919 * of locks held is not a good idea, instead we remember an OOM state
1920 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1921 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1922 *
1923 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1924 * completed, %false otherwise.
3812c8c8 1925 */
49426420 1926bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1927{
49426420 1928 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1929 struct oom_wait_info owait;
49426420 1930 bool locked;
3812c8c8
JW
1931
1932 /* OOM is global, do not handle */
3812c8c8 1933 if (!memcg)
49426420 1934 return false;
3812c8c8 1935
49426420
JW
1936 if (!handle)
1937 goto cleanup;
3812c8c8
JW
1938
1939 owait.memcg = memcg;
1940 owait.wait.flags = 0;
1941 owait.wait.func = memcg_oom_wake_function;
1942 owait.wait.private = current;
1943 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1944
3812c8c8 1945 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1946 mem_cgroup_mark_under_oom(memcg);
1947
1948 locked = mem_cgroup_oom_trylock(memcg);
1949
1950 if (locked)
1951 mem_cgroup_oom_notify(memcg);
1952
1953 if (locked && !memcg->oom_kill_disable) {
1954 mem_cgroup_unmark_under_oom(memcg);
1955 finish_wait(&memcg_oom_waitq, &owait.wait);
1956 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1957 current->memcg_oom.order);
1958 } else {
3812c8c8 1959 schedule();
49426420
JW
1960 mem_cgroup_unmark_under_oom(memcg);
1961 finish_wait(&memcg_oom_waitq, &owait.wait);
1962 }
1963
1964 if (locked) {
fb2a6fc5
JW
1965 mem_cgroup_oom_unlock(memcg);
1966 /*
1967 * There is no guarantee that an OOM-lock contender
1968 * sees the wakeups triggered by the OOM kill
1969 * uncharges. Wake any sleepers explicitely.
1970 */
1971 memcg_oom_recover(memcg);
1972 }
49426420
JW
1973cleanup:
1974 current->memcg_oom.memcg = NULL;
3812c8c8 1975 css_put(&memcg->css);
867578cb 1976 return true;
0b7f569e
KH
1977}
1978
d7365e78
JW
1979/**
1980 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1981 * @page: page that is going to change accounted state
32047e2a 1982 *
d7365e78
JW
1983 * This function must mark the beginning of an accounted page state
1984 * change to prevent double accounting when the page is concurrently
1985 * being moved to another memcg:
32047e2a 1986 *
6de22619 1987 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1988 * if (TestClearPageState(page))
1989 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1990 * mem_cgroup_end_page_stat(memcg);
d69b042f 1991 */
6de22619 1992struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1993{
1994 struct mem_cgroup *memcg;
6de22619 1995 unsigned long flags;
89c06bd5 1996
6de22619
JW
1997 /*
1998 * The RCU lock is held throughout the transaction. The fast
1999 * path can get away without acquiring the memcg->move_lock
2000 * because page moving starts with an RCU grace period.
2001 *
2002 * The RCU lock also protects the memcg from being freed when
2003 * the page state that is going to change is the only thing
2004 * preventing the page from being uncharged.
2005 * E.g. end-writeback clearing PageWriteback(), which allows
2006 * migration to go ahead and uncharge the page before the
2007 * account transaction might be complete.
2008 */
d7365e78
JW
2009 rcu_read_lock();
2010
2011 if (mem_cgroup_disabled())
2012 return NULL;
89c06bd5 2013again:
1306a85a 2014 memcg = page->mem_cgroup;
29833315 2015 if (unlikely(!memcg))
d7365e78
JW
2016 return NULL;
2017
bdcbb659 2018 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2019 return memcg;
89c06bd5 2020
6de22619 2021 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2022 if (memcg != page->mem_cgroup) {
6de22619 2023 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2024 goto again;
2025 }
6de22619
JW
2026
2027 /*
2028 * When charge migration first begins, we can have locked and
2029 * unlocked page stat updates happening concurrently. Track
2030 * the task who has the lock for mem_cgroup_end_page_stat().
2031 */
2032 memcg->move_lock_task = current;
2033 memcg->move_lock_flags = flags;
d7365e78
JW
2034
2035 return memcg;
89c06bd5
KH
2036}
2037
d7365e78
JW
2038/**
2039 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2040 * @memcg: the memcg that was accounted against
d7365e78 2041 */
6de22619 2042void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2043{
6de22619
JW
2044 if (memcg && memcg->move_lock_task == current) {
2045 unsigned long flags = memcg->move_lock_flags;
2046
2047 memcg->move_lock_task = NULL;
2048 memcg->move_lock_flags = 0;
2049
2050 spin_unlock_irqrestore(&memcg->move_lock, flags);
2051 }
89c06bd5 2052
d7365e78 2053 rcu_read_unlock();
89c06bd5
KH
2054}
2055
d7365e78
JW
2056/**
2057 * mem_cgroup_update_page_stat - update page state statistics
2058 * @memcg: memcg to account against
2059 * @idx: page state item to account
2060 * @val: number of pages (positive or negative)
2061 *
2062 * See mem_cgroup_begin_page_stat() for locking requirements.
2063 */
2064void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2065 enum mem_cgroup_stat_index idx, int val)
d69b042f 2066{
658b72c5 2067 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2068
d7365e78
JW
2069 if (memcg)
2070 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2071}
26174efd 2072
cdec2e42
KH
2073/*
2074 * size of first charge trial. "32" comes from vmscan.c's magic value.
2075 * TODO: maybe necessary to use big numbers in big irons.
2076 */
7ec99d62 2077#define CHARGE_BATCH 32U
cdec2e42
KH
2078struct memcg_stock_pcp {
2079 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2080 unsigned int nr_pages;
cdec2e42 2081 struct work_struct work;
26fe6168 2082 unsigned long flags;
a0db00fc 2083#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2084};
2085static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2086static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2087
a0956d54
SS
2088/**
2089 * consume_stock: Try to consume stocked charge on this cpu.
2090 * @memcg: memcg to consume from.
2091 * @nr_pages: how many pages to charge.
2092 *
2093 * The charges will only happen if @memcg matches the current cpu's memcg
2094 * stock, and at least @nr_pages are available in that stock. Failure to
2095 * service an allocation will refill the stock.
2096 *
2097 * returns true if successful, false otherwise.
cdec2e42 2098 */
a0956d54 2099static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2100{
2101 struct memcg_stock_pcp *stock;
3e32cb2e 2102 bool ret = false;
cdec2e42 2103
a0956d54 2104 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2105 return ret;
a0956d54 2106
cdec2e42 2107 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2108 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2109 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2110 ret = true;
2111 }
cdec2e42
KH
2112 put_cpu_var(memcg_stock);
2113 return ret;
2114}
2115
2116/*
3e32cb2e 2117 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2118 */
2119static void drain_stock(struct memcg_stock_pcp *stock)
2120{
2121 struct mem_cgroup *old = stock->cached;
2122
11c9ea4e 2123 if (stock->nr_pages) {
3e32cb2e 2124 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2125 if (do_swap_account)
3e32cb2e 2126 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2127 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2128 stock->nr_pages = 0;
cdec2e42
KH
2129 }
2130 stock->cached = NULL;
cdec2e42
KH
2131}
2132
2133/*
2134 * This must be called under preempt disabled or must be called by
2135 * a thread which is pinned to local cpu.
2136 */
2137static void drain_local_stock(struct work_struct *dummy)
2138{
7c8e0181 2139 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2140 drain_stock(stock);
26fe6168 2141 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2142}
2143
e4777496
MH
2144static void __init memcg_stock_init(void)
2145{
2146 int cpu;
2147
2148 for_each_possible_cpu(cpu) {
2149 struct memcg_stock_pcp *stock =
2150 &per_cpu(memcg_stock, cpu);
2151 INIT_WORK(&stock->work, drain_local_stock);
2152 }
2153}
2154
cdec2e42 2155/*
3e32cb2e 2156 * Cache charges(val) to local per_cpu area.
320cc51d 2157 * This will be consumed by consume_stock() function, later.
cdec2e42 2158 */
c0ff4b85 2159static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2160{
2161 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2162
c0ff4b85 2163 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2164 drain_stock(stock);
c0ff4b85 2165 stock->cached = memcg;
cdec2e42 2166 }
11c9ea4e 2167 stock->nr_pages += nr_pages;
cdec2e42
KH
2168 put_cpu_var(memcg_stock);
2169}
2170
2171/*
c0ff4b85 2172 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2173 * of the hierarchy under it.
cdec2e42 2174 */
6d3d6aa2 2175static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2176{
26fe6168 2177 int cpu, curcpu;
d38144b7 2178
6d3d6aa2
JW
2179 /* If someone's already draining, avoid adding running more workers. */
2180 if (!mutex_trylock(&percpu_charge_mutex))
2181 return;
cdec2e42 2182 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2183 get_online_cpus();
5af12d0e 2184 curcpu = get_cpu();
cdec2e42
KH
2185 for_each_online_cpu(cpu) {
2186 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2187 struct mem_cgroup *memcg;
26fe6168 2188
c0ff4b85
R
2189 memcg = stock->cached;
2190 if (!memcg || !stock->nr_pages)
26fe6168 2191 continue;
2314b42d 2192 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2193 continue;
d1a05b69
MH
2194 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2195 if (cpu == curcpu)
2196 drain_local_stock(&stock->work);
2197 else
2198 schedule_work_on(cpu, &stock->work);
2199 }
cdec2e42 2200 }
5af12d0e 2201 put_cpu();
f894ffa8 2202 put_online_cpus();
9f50fad6 2203 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2204}
2205
711d3d2c
KH
2206/*
2207 * This function drains percpu counter value from DEAD cpu and
2208 * move it to local cpu. Note that this function can be preempted.
2209 */
c0ff4b85 2210static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2211{
2212 int i;
2213
c0ff4b85 2214 spin_lock(&memcg->pcp_counter_lock);
6104621d 2215 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2216 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2217
c0ff4b85
R
2218 per_cpu(memcg->stat->count[i], cpu) = 0;
2219 memcg->nocpu_base.count[i] += x;
711d3d2c 2220 }
e9f8974f 2221 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2222 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2223
c0ff4b85
R
2224 per_cpu(memcg->stat->events[i], cpu) = 0;
2225 memcg->nocpu_base.events[i] += x;
e9f8974f 2226 }
c0ff4b85 2227 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2228}
2229
0db0628d 2230static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2231 unsigned long action,
2232 void *hcpu)
2233{
2234 int cpu = (unsigned long)hcpu;
2235 struct memcg_stock_pcp *stock;
711d3d2c 2236 struct mem_cgroup *iter;
cdec2e42 2237
619d094b 2238 if (action == CPU_ONLINE)
1489ebad 2239 return NOTIFY_OK;
1489ebad 2240
d833049b 2241 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2242 return NOTIFY_OK;
711d3d2c 2243
9f3a0d09 2244 for_each_mem_cgroup(iter)
711d3d2c
KH
2245 mem_cgroup_drain_pcp_counter(iter, cpu);
2246
cdec2e42
KH
2247 stock = &per_cpu(memcg_stock, cpu);
2248 drain_stock(stock);
2249 return NOTIFY_OK;
2250}
2251
00501b53
JW
2252static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2253 unsigned int nr_pages)
8a9f3ccd 2254{
7ec99d62 2255 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2256 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2257 struct mem_cgroup *mem_over_limit;
3e32cb2e 2258 struct page_counter *counter;
6539cc05 2259 unsigned long nr_reclaimed;
b70a2a21
JW
2260 bool may_swap = true;
2261 bool drained = false;
05b84301 2262 int ret = 0;
a636b327 2263
ce00a967
JW
2264 if (mem_cgroup_is_root(memcg))
2265 goto done;
6539cc05 2266retry:
b6b6cc72
MH
2267 if (consume_stock(memcg, nr_pages))
2268 goto done;
8a9f3ccd 2269
3fbe7244 2270 if (!do_swap_account ||
3e32cb2e
JW
2271 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2272 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2273 goto done_restock;
3fbe7244 2274 if (do_swap_account)
3e32cb2e
JW
2275 page_counter_uncharge(&memcg->memsw, batch);
2276 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2277 } else {
3e32cb2e 2278 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2279 may_swap = false;
3fbe7244 2280 }
7a81b88c 2281
6539cc05
JW
2282 if (batch > nr_pages) {
2283 batch = nr_pages;
2284 goto retry;
2285 }
6d61ef40 2286
06b078fc
JW
2287 /*
2288 * Unlike in global OOM situations, memcg is not in a physical
2289 * memory shortage. Allow dying and OOM-killed tasks to
2290 * bypass the last charges so that they can exit quickly and
2291 * free their memory.
2292 */
2293 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2294 fatal_signal_pending(current) ||
2295 current->flags & PF_EXITING))
2296 goto bypass;
2297
2298 if (unlikely(task_in_memcg_oom(current)))
2299 goto nomem;
2300
6539cc05
JW
2301 if (!(gfp_mask & __GFP_WAIT))
2302 goto nomem;
4b534334 2303
b70a2a21
JW
2304 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2305 gfp_mask, may_swap);
6539cc05 2306
61e02c74 2307 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2308 goto retry;
28c34c29 2309
b70a2a21 2310 if (!drained) {
6d3d6aa2 2311 drain_all_stock(mem_over_limit);
b70a2a21
JW
2312 drained = true;
2313 goto retry;
2314 }
2315
28c34c29
JW
2316 if (gfp_mask & __GFP_NORETRY)
2317 goto nomem;
6539cc05
JW
2318 /*
2319 * Even though the limit is exceeded at this point, reclaim
2320 * may have been able to free some pages. Retry the charge
2321 * before killing the task.
2322 *
2323 * Only for regular pages, though: huge pages are rather
2324 * unlikely to succeed so close to the limit, and we fall back
2325 * to regular pages anyway in case of failure.
2326 */
61e02c74 2327 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2328 goto retry;
2329 /*
2330 * At task move, charge accounts can be doubly counted. So, it's
2331 * better to wait until the end of task_move if something is going on.
2332 */
2333 if (mem_cgroup_wait_acct_move(mem_over_limit))
2334 goto retry;
2335
9b130619
JW
2336 if (nr_retries--)
2337 goto retry;
2338
06b078fc
JW
2339 if (gfp_mask & __GFP_NOFAIL)
2340 goto bypass;
2341
6539cc05
JW
2342 if (fatal_signal_pending(current))
2343 goto bypass;
2344
61e02c74 2345 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2346nomem:
6d1fdc48 2347 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2348 return -ENOMEM;
867578cb 2349bypass:
ce00a967 2350 return -EINTR;
6539cc05
JW
2351
2352done_restock:
e8ea14cc 2353 css_get_many(&memcg->css, batch);
6539cc05
JW
2354 if (batch > nr_pages)
2355 refill_stock(memcg, batch - nr_pages);
2356done:
05b84301 2357 return ret;
7a81b88c 2358}
8a9f3ccd 2359
00501b53 2360static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2361{
ce00a967
JW
2362 if (mem_cgroup_is_root(memcg))
2363 return;
2364
3e32cb2e 2365 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2366 if (do_swap_account)
3e32cb2e 2367 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2368
e8ea14cc 2369 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2370}
2371
a3b2d692
KH
2372/*
2373 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2374 * rcu_read_lock(). The caller is responsible for calling
2375 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2376 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2377 */
2378static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2379{
a3b2d692
KH
2380 /* ID 0 is unused ID */
2381 if (!id)
2382 return NULL;
34c00c31 2383 return mem_cgroup_from_id(id);
a3b2d692
KH
2384}
2385
0a31bc97
JW
2386/*
2387 * try_get_mem_cgroup_from_page - look up page's memcg association
2388 * @page: the page
2389 *
2390 * Look up, get a css reference, and return the memcg that owns @page.
2391 *
2392 * The page must be locked to prevent racing with swap-in and page
2393 * cache charges. If coming from an unlocked page table, the caller
2394 * must ensure the page is on the LRU or this can race with charging.
2395 */
e42d9d5d 2396struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2397{
29833315 2398 struct mem_cgroup *memcg;
a3b2d692 2399 unsigned short id;
b5a84319
KH
2400 swp_entry_t ent;
2401
309381fe 2402 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2403
1306a85a 2404 memcg = page->mem_cgroup;
29833315
JW
2405 if (memcg) {
2406 if (!css_tryget_online(&memcg->css))
c0ff4b85 2407 memcg = NULL;
e42d9d5d 2408 } else if (PageSwapCache(page)) {
3c776e64 2409 ent.val = page_private(page);
9fb4b7cc 2410 id = lookup_swap_cgroup_id(ent);
a3b2d692 2411 rcu_read_lock();
c0ff4b85 2412 memcg = mem_cgroup_lookup(id);
ec903c0c 2413 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2414 memcg = NULL;
a3b2d692 2415 rcu_read_unlock();
3c776e64 2416 }
c0ff4b85 2417 return memcg;
b5a84319
KH
2418}
2419
0a31bc97
JW
2420static void lock_page_lru(struct page *page, int *isolated)
2421{
2422 struct zone *zone = page_zone(page);
2423
2424 spin_lock_irq(&zone->lru_lock);
2425 if (PageLRU(page)) {
2426 struct lruvec *lruvec;
2427
2428 lruvec = mem_cgroup_page_lruvec(page, zone);
2429 ClearPageLRU(page);
2430 del_page_from_lru_list(page, lruvec, page_lru(page));
2431 *isolated = 1;
2432 } else
2433 *isolated = 0;
2434}
2435
2436static void unlock_page_lru(struct page *page, int isolated)
2437{
2438 struct zone *zone = page_zone(page);
2439
2440 if (isolated) {
2441 struct lruvec *lruvec;
2442
2443 lruvec = mem_cgroup_page_lruvec(page, zone);
2444 VM_BUG_ON_PAGE(PageLRU(page), page);
2445 SetPageLRU(page);
2446 add_page_to_lru_list(page, lruvec, page_lru(page));
2447 }
2448 spin_unlock_irq(&zone->lru_lock);
2449}
2450
00501b53 2451static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2452 bool lrucare)
7a81b88c 2453{
0a31bc97 2454 int isolated;
9ce70c02 2455
1306a85a 2456 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2457
2458 /*
2459 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2460 * may already be on some other mem_cgroup's LRU. Take care of it.
2461 */
0a31bc97
JW
2462 if (lrucare)
2463 lock_page_lru(page, &isolated);
9ce70c02 2464
0a31bc97
JW
2465 /*
2466 * Nobody should be changing or seriously looking at
1306a85a 2467 * page->mem_cgroup at this point:
0a31bc97
JW
2468 *
2469 * - the page is uncharged
2470 *
2471 * - the page is off-LRU
2472 *
2473 * - an anonymous fault has exclusive page access, except for
2474 * a locked page table
2475 *
2476 * - a page cache insertion, a swapin fault, or a migration
2477 * have the page locked
2478 */
1306a85a 2479 page->mem_cgroup = memcg;
9ce70c02 2480
0a31bc97
JW
2481 if (lrucare)
2482 unlock_page_lru(page, isolated);
7a81b88c 2483}
66e1707b 2484
7ae1e1d0 2485#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2486int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2487 unsigned long nr_pages)
7ae1e1d0 2488{
3e32cb2e 2489 struct page_counter *counter;
7ae1e1d0 2490 int ret = 0;
7ae1e1d0 2491
3e32cb2e
JW
2492 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2493 if (ret < 0)
7ae1e1d0
GC
2494 return ret;
2495
3e32cb2e 2496 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2497 if (ret == -EINTR) {
2498 /*
00501b53
JW
2499 * try_charge() chose to bypass to root due to OOM kill or
2500 * fatal signal. Since our only options are to either fail
2501 * the allocation or charge it to this cgroup, do it as a
2502 * temporary condition. But we can't fail. From a kmem/slab
2503 * perspective, the cache has already been selected, by
2504 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2505 * our minds.
2506 *
2507 * This condition will only trigger if the task entered
00501b53
JW
2508 * memcg_charge_kmem in a sane state, but was OOM-killed
2509 * during try_charge() above. Tasks that were already dying
2510 * when the allocation triggers should have been already
7ae1e1d0
GC
2511 * directed to the root cgroup in memcontrol.h
2512 */
3e32cb2e 2513 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2514 if (do_swap_account)
3e32cb2e 2515 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2516 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2517 ret = 0;
2518 } else if (ret)
3e32cb2e 2519 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2520
2521 return ret;
2522}
2523
dbf22eb6 2524void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2525{
3e32cb2e 2526 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2527 if (do_swap_account)
3e32cb2e 2528 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2529
64f21993 2530 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2531
e8ea14cc 2532 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2533}
2534
2633d7a0
GC
2535/*
2536 * helper for acessing a memcg's index. It will be used as an index in the
2537 * child cache array in kmem_cache, and also to derive its name. This function
2538 * will return -1 when this is not a kmem-limited memcg.
2539 */
2540int memcg_cache_id(struct mem_cgroup *memcg)
2541{
2542 return memcg ? memcg->kmemcg_id : -1;
2543}
2544
f3bb3043 2545static int memcg_alloc_cache_id(void)
55007d84 2546{
f3bb3043
VD
2547 int id, size;
2548 int err;
2549
2550 id = ida_simple_get(&kmem_limited_groups,
2551 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2552 if (id < 0)
2553 return id;
55007d84 2554
f3bb3043
VD
2555 if (id < memcg_limited_groups_array_size)
2556 return id;
2557
2558 /*
2559 * There's no space for the new id in memcg_caches arrays,
2560 * so we have to grow them.
2561 */
2562
2563 size = 2 * (id + 1);
55007d84
GC
2564 if (size < MEMCG_CACHES_MIN_SIZE)
2565 size = MEMCG_CACHES_MIN_SIZE;
2566 else if (size > MEMCG_CACHES_MAX_SIZE)
2567 size = MEMCG_CACHES_MAX_SIZE;
2568
f3bb3043 2569 err = memcg_update_all_caches(size);
f3bb3043
VD
2570 if (err) {
2571 ida_simple_remove(&kmem_limited_groups, id);
2572 return err;
2573 }
2574 return id;
2575}
2576
2577static void memcg_free_cache_id(int id)
2578{
2579 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2580}
2581
2582/*
2583 * We should update the current array size iff all caches updates succeed. This
2584 * can only be done from the slab side. The slab mutex needs to be held when
2585 * calling this.
2586 */
2587void memcg_update_array_size(int num)
2588{
f3bb3043 2589 memcg_limited_groups_array_size = num;
55007d84
GC
2590}
2591
d5b3cf71 2592struct memcg_kmem_cache_create_work {
5722d094
VD
2593 struct mem_cgroup *memcg;
2594 struct kmem_cache *cachep;
2595 struct work_struct work;
2596};
2597
d5b3cf71 2598static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2599{
d5b3cf71
VD
2600 struct memcg_kmem_cache_create_work *cw =
2601 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2602 struct mem_cgroup *memcg = cw->memcg;
2603 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2604
d5b3cf71 2605 memcg_create_kmem_cache(memcg, cachep);
bd673145 2606
5722d094 2607 css_put(&memcg->css);
d7f25f8a
GC
2608 kfree(cw);
2609}
2610
2611/*
2612 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2613 */
d5b3cf71
VD
2614static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2615 struct kmem_cache *cachep)
d7f25f8a 2616{
d5b3cf71 2617 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2618
776ed0f0 2619 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2620 if (!cw)
d7f25f8a 2621 return;
8135be5a
VD
2622
2623 css_get(&memcg->css);
d7f25f8a
GC
2624
2625 cw->memcg = memcg;
2626 cw->cachep = cachep;
d5b3cf71 2627 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2628
d7f25f8a
GC
2629 schedule_work(&cw->work);
2630}
2631
d5b3cf71
VD
2632static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2633 struct kmem_cache *cachep)
0e9d92f2
GC
2634{
2635 /*
2636 * We need to stop accounting when we kmalloc, because if the
2637 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2638 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2639 *
2640 * However, it is better to enclose the whole function. Depending on
2641 * the debugging options enabled, INIT_WORK(), for instance, can
2642 * trigger an allocation. This too, will make us recurse. Because at
2643 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2644 * the safest choice is to do it like this, wrapping the whole function.
2645 */
6f185c29 2646 current->memcg_kmem_skip_account = 1;
d5b3cf71 2647 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2648 current->memcg_kmem_skip_account = 0;
0e9d92f2 2649}
c67a8a68 2650
d7f25f8a
GC
2651/*
2652 * Return the kmem_cache we're supposed to use for a slab allocation.
2653 * We try to use the current memcg's version of the cache.
2654 *
2655 * If the cache does not exist yet, if we are the first user of it,
2656 * we either create it immediately, if possible, or create it asynchronously
2657 * in a workqueue.
2658 * In the latter case, we will let the current allocation go through with
2659 * the original cache.
2660 *
2661 * Can't be called in interrupt context or from kernel threads.
2662 * This function needs to be called with rcu_read_lock() held.
2663 */
056b7cce 2664struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2665{
2666 struct mem_cgroup *memcg;
959c8963 2667 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2668
2669 VM_BUG_ON(!cachep->memcg_params);
2670 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2671
9d100c5e 2672 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2673 return cachep;
2674
8135be5a 2675 memcg = get_mem_cgroup_from_mm(current->mm);
cf2b8fbf 2676 if (!memcg_kmem_is_active(memcg))
ca0dde97 2677 goto out;
d7f25f8a 2678
959c8963 2679 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
8135be5a
VD
2680 if (likely(memcg_cachep))
2681 return memcg_cachep;
ca0dde97
LZ
2682
2683 /*
2684 * If we are in a safe context (can wait, and not in interrupt
2685 * context), we could be be predictable and return right away.
2686 * This would guarantee that the allocation being performed
2687 * already belongs in the new cache.
2688 *
2689 * However, there are some clashes that can arrive from locking.
2690 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2691 * memcg_create_kmem_cache, this means no further allocation
2692 * could happen with the slab_mutex held. So it's better to
2693 * defer everything.
ca0dde97 2694 */
d5b3cf71 2695 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2696out:
8135be5a 2697 css_put(&memcg->css);
ca0dde97 2698 return cachep;
d7f25f8a 2699}
d7f25f8a 2700
8135be5a
VD
2701void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2702{
2703 if (!is_root_cache(cachep))
2704 css_put(&cachep->memcg_params->memcg->css);
2705}
2706
7ae1e1d0
GC
2707/*
2708 * We need to verify if the allocation against current->mm->owner's memcg is
2709 * possible for the given order. But the page is not allocated yet, so we'll
2710 * need a further commit step to do the final arrangements.
2711 *
2712 * It is possible for the task to switch cgroups in this mean time, so at
2713 * commit time, we can't rely on task conversion any longer. We'll then use
2714 * the handle argument to return to the caller which cgroup we should commit
2715 * against. We could also return the memcg directly and avoid the pointer
2716 * passing, but a boolean return value gives better semantics considering
2717 * the compiled-out case as well.
2718 *
2719 * Returning true means the allocation is possible.
2720 */
2721bool
2722__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2723{
2724 struct mem_cgroup *memcg;
2725 int ret;
2726
2727 *_memcg = NULL;
6d42c232 2728
df381975 2729 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2730
cf2b8fbf 2731 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2732 css_put(&memcg->css);
2733 return true;
2734 }
2735
3e32cb2e 2736 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2737 if (!ret)
2738 *_memcg = memcg;
7ae1e1d0
GC
2739
2740 css_put(&memcg->css);
2741 return (ret == 0);
2742}
2743
2744void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2745 int order)
2746{
7ae1e1d0
GC
2747 VM_BUG_ON(mem_cgroup_is_root(memcg));
2748
2749 /* The page allocation failed. Revert */
2750 if (!page) {
3e32cb2e 2751 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2752 return;
2753 }
1306a85a 2754 page->mem_cgroup = memcg;
7ae1e1d0
GC
2755}
2756
2757void __memcg_kmem_uncharge_pages(struct page *page, int order)
2758{
1306a85a 2759 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2760
7ae1e1d0
GC
2761 if (!memcg)
2762 return;
2763
309381fe 2764 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2765
3e32cb2e 2766 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2767 page->mem_cgroup = NULL;
7ae1e1d0
GC
2768}
2769#endif /* CONFIG_MEMCG_KMEM */
2770
ca3e0214
KH
2771#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2772
ca3e0214
KH
2773/*
2774 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2775 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2776 * charge/uncharge will be never happen and move_account() is done under
2777 * compound_lock(), so we don't have to take care of races.
ca3e0214 2778 */
e94c8a9c 2779void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2780{
e94c8a9c 2781 int i;
ca3e0214 2782
3d37c4a9
KH
2783 if (mem_cgroup_disabled())
2784 return;
b070e65c 2785
29833315 2786 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2787 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2788
1306a85a 2789 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2790 HPAGE_PMD_NR);
ca3e0214 2791}
12d27107 2792#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2793
f817ed48 2794/**
de3638d9 2795 * mem_cgroup_move_account - move account of the page
5564e88b 2796 * @page: the page
7ec99d62 2797 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2798 * @from: mem_cgroup which the page is moved from.
2799 * @to: mem_cgroup which the page is moved to. @from != @to.
2800 *
2801 * The caller must confirm following.
08e552c6 2802 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2803 * - compound_lock is held when nr_pages > 1
f817ed48 2804 *
2f3479b1
KH
2805 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2806 * from old cgroup.
f817ed48 2807 */
7ec99d62
JW
2808static int mem_cgroup_move_account(struct page *page,
2809 unsigned int nr_pages,
7ec99d62 2810 struct mem_cgroup *from,
2f3479b1 2811 struct mem_cgroup *to)
f817ed48 2812{
de3638d9
JW
2813 unsigned long flags;
2814 int ret;
987eba66 2815
f817ed48 2816 VM_BUG_ON(from == to);
309381fe 2817 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
2818 /*
2819 * The page is isolated from LRU. So, collapse function
2820 * will not handle this page. But page splitting can happen.
2821 * Do this check under compound_page_lock(). The caller should
2822 * hold it.
2823 */
2824 ret = -EBUSY;
7ec99d62 2825 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2826 goto out;
2827
0a31bc97 2828 /*
1306a85a 2829 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
0a31bc97
JW
2830 * of its source page while we change it: page migration takes
2831 * both pages off the LRU, but page cache replacement doesn't.
2832 */
2833 if (!trylock_page(page))
2834 goto out;
de3638d9
JW
2835
2836 ret = -EINVAL;
1306a85a 2837 if (page->mem_cgroup != from)
0a31bc97 2838 goto out_unlock;
de3638d9 2839
354a4783 2840 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 2841
0a31bc97 2842 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
2843 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2844 nr_pages);
2845 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2846 nr_pages);
2847 }
3ea67d06 2848
59d1d256
JW
2849 if (PageWriteback(page)) {
2850 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2851 nr_pages);
2852 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2853 nr_pages);
2854 }
3ea67d06 2855
0a31bc97 2856 /*
1306a85a 2857 * It is safe to change page->mem_cgroup here because the page
0a31bc97
JW
2858 * is referenced, charged, and isolated - we can't race with
2859 * uncharging, charging, migration, or LRU putback.
2860 */
d69b042f 2861
854ffa8d 2862 /* caller should have done css_get */
1306a85a 2863 page->mem_cgroup = to;
354a4783
JW
2864 spin_unlock_irqrestore(&from->move_lock, flags);
2865
de3638d9 2866 ret = 0;
0a31bc97
JW
2867
2868 local_irq_disable();
2869 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 2870 memcg_check_events(to, page);
0a31bc97 2871 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 2872 memcg_check_events(from, page);
0a31bc97
JW
2873 local_irq_enable();
2874out_unlock:
2875 unlock_page(page);
de3638d9 2876out:
f817ed48
KH
2877 return ret;
2878}
2879
c255a458 2880#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2881static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2882 bool charge)
d13d1443 2883{
0a31bc97
JW
2884 int val = (charge) ? 1 : -1;
2885 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2886}
02491447
DN
2887
2888/**
2889 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2890 * @entry: swap entry to be moved
2891 * @from: mem_cgroup which the entry is moved from
2892 * @to: mem_cgroup which the entry is moved to
2893 *
2894 * It succeeds only when the swap_cgroup's record for this entry is the same
2895 * as the mem_cgroup's id of @from.
2896 *
2897 * Returns 0 on success, -EINVAL on failure.
2898 *
3e32cb2e 2899 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2900 * both res and memsw, and called css_get().
2901 */
2902static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2903 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2904{
2905 unsigned short old_id, new_id;
2906
34c00c31
LZ
2907 old_id = mem_cgroup_id(from);
2908 new_id = mem_cgroup_id(to);
02491447
DN
2909
2910 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2911 mem_cgroup_swap_statistics(from, false);
483c30b5 2912 mem_cgroup_swap_statistics(to, true);
02491447
DN
2913 return 0;
2914 }
2915 return -EINVAL;
2916}
2917#else
2918static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2919 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2920{
2921 return -EINVAL;
2922}
8c7c6e34 2923#endif
d13d1443 2924
3e32cb2e 2925static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2926
d38d2a75 2927static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2928 unsigned long limit)
628f4235 2929{
3e32cb2e
JW
2930 unsigned long curusage;
2931 unsigned long oldusage;
2932 bool enlarge = false;
81d39c20 2933 int retry_count;
3e32cb2e 2934 int ret;
81d39c20
KH
2935
2936 /*
2937 * For keeping hierarchical_reclaim simple, how long we should retry
2938 * is depends on callers. We set our retry-count to be function
2939 * of # of children which we should visit in this loop.
2940 */
3e32cb2e
JW
2941 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2942 mem_cgroup_count_children(memcg);
81d39c20 2943
3e32cb2e 2944 oldusage = page_counter_read(&memcg->memory);
628f4235 2945
3e32cb2e 2946 do {
628f4235
KH
2947 if (signal_pending(current)) {
2948 ret = -EINTR;
2949 break;
2950 }
3e32cb2e
JW
2951
2952 mutex_lock(&memcg_limit_mutex);
2953 if (limit > memcg->memsw.limit) {
2954 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2955 ret = -EINVAL;
628f4235
KH
2956 break;
2957 }
3e32cb2e
JW
2958 if (limit > memcg->memory.limit)
2959 enlarge = true;
2960 ret = page_counter_limit(&memcg->memory, limit);
2961 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2962
2963 if (!ret)
2964 break;
2965
b70a2a21
JW
2966 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2967
3e32cb2e 2968 curusage = page_counter_read(&memcg->memory);
81d39c20 2969 /* Usage is reduced ? */
f894ffa8 2970 if (curusage >= oldusage)
81d39c20
KH
2971 retry_count--;
2972 else
2973 oldusage = curusage;
3e32cb2e
JW
2974 } while (retry_count);
2975
3c11ecf4
KH
2976 if (!ret && enlarge)
2977 memcg_oom_recover(memcg);
14797e23 2978
8c7c6e34
KH
2979 return ret;
2980}
2981
338c8431 2982static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2983 unsigned long limit)
8c7c6e34 2984{
3e32cb2e
JW
2985 unsigned long curusage;
2986 unsigned long oldusage;
2987 bool enlarge = false;
81d39c20 2988 int retry_count;
3e32cb2e 2989 int ret;
8c7c6e34 2990
81d39c20 2991 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2992 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2993 mem_cgroup_count_children(memcg);
2994
2995 oldusage = page_counter_read(&memcg->memsw);
2996
2997 do {
8c7c6e34
KH
2998 if (signal_pending(current)) {
2999 ret = -EINTR;
3000 break;
3001 }
3e32cb2e
JW
3002
3003 mutex_lock(&memcg_limit_mutex);
3004 if (limit < memcg->memory.limit) {
3005 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3006 ret = -EINVAL;
8c7c6e34
KH
3007 break;
3008 }
3e32cb2e
JW
3009 if (limit > memcg->memsw.limit)
3010 enlarge = true;
3011 ret = page_counter_limit(&memcg->memsw, limit);
3012 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3013
3014 if (!ret)
3015 break;
3016
b70a2a21
JW
3017 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3018
3e32cb2e 3019 curusage = page_counter_read(&memcg->memsw);
81d39c20 3020 /* Usage is reduced ? */
8c7c6e34 3021 if (curusage >= oldusage)
628f4235 3022 retry_count--;
81d39c20
KH
3023 else
3024 oldusage = curusage;
3e32cb2e
JW
3025 } while (retry_count);
3026
3c11ecf4
KH
3027 if (!ret && enlarge)
3028 memcg_oom_recover(memcg);
3e32cb2e 3029
628f4235
KH
3030 return ret;
3031}
3032
0608f43d
AM
3033unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3034 gfp_t gfp_mask,
3035 unsigned long *total_scanned)
3036{
3037 unsigned long nr_reclaimed = 0;
3038 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3039 unsigned long reclaimed;
3040 int loop = 0;
3041 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3042 unsigned long excess;
0608f43d
AM
3043 unsigned long nr_scanned;
3044
3045 if (order > 0)
3046 return 0;
3047
3048 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3049 /*
3050 * This loop can run a while, specially if mem_cgroup's continuously
3051 * keep exceeding their soft limit and putting the system under
3052 * pressure
3053 */
3054 do {
3055 if (next_mz)
3056 mz = next_mz;
3057 else
3058 mz = mem_cgroup_largest_soft_limit_node(mctz);
3059 if (!mz)
3060 break;
3061
3062 nr_scanned = 0;
3063 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3064 gfp_mask, &nr_scanned);
3065 nr_reclaimed += reclaimed;
3066 *total_scanned += nr_scanned;
0a31bc97 3067 spin_lock_irq(&mctz->lock);
bc2f2e7f 3068 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3069
3070 /*
3071 * If we failed to reclaim anything from this memory cgroup
3072 * it is time to move on to the next cgroup
3073 */
3074 next_mz = NULL;
bc2f2e7f
VD
3075 if (!reclaimed)
3076 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3077
3e32cb2e 3078 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3079 /*
3080 * One school of thought says that we should not add
3081 * back the node to the tree if reclaim returns 0.
3082 * But our reclaim could return 0, simply because due
3083 * to priority we are exposing a smaller subset of
3084 * memory to reclaim from. Consider this as a longer
3085 * term TODO.
3086 */
3087 /* If excess == 0, no tree ops */
cf2c8127 3088 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3089 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3090 css_put(&mz->memcg->css);
3091 loop++;
3092 /*
3093 * Could not reclaim anything and there are no more
3094 * mem cgroups to try or we seem to be looping without
3095 * reclaiming anything.
3096 */
3097 if (!nr_reclaimed &&
3098 (next_mz == NULL ||
3099 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3100 break;
3101 } while (!nr_reclaimed);
3102 if (next_mz)
3103 css_put(&next_mz->memcg->css);
3104 return nr_reclaimed;
3105}
3106
ea280e7b
TH
3107/*
3108 * Test whether @memcg has children, dead or alive. Note that this
3109 * function doesn't care whether @memcg has use_hierarchy enabled and
3110 * returns %true if there are child csses according to the cgroup
3111 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3112 */
b5f99b53
GC
3113static inline bool memcg_has_children(struct mem_cgroup *memcg)
3114{
ea280e7b
TH
3115 bool ret;
3116
696ac172 3117 /*
ea280e7b
TH
3118 * The lock does not prevent addition or deletion of children, but
3119 * it prevents a new child from being initialized based on this
3120 * parent in css_online(), so it's enough to decide whether
3121 * hierarchically inherited attributes can still be changed or not.
696ac172 3122 */
ea280e7b
TH
3123 lockdep_assert_held(&memcg_create_mutex);
3124
3125 rcu_read_lock();
3126 ret = css_next_child(NULL, &memcg->css);
3127 rcu_read_unlock();
3128 return ret;
b5f99b53
GC
3129}
3130
c26251f9
MH
3131/*
3132 * Reclaims as many pages from the given memcg as possible and moves
3133 * the rest to the parent.
3134 *
3135 * Caller is responsible for holding css reference for memcg.
3136 */
3137static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3138{
3139 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3140
c1e862c1
KH
3141 /* we call try-to-free pages for make this cgroup empty */
3142 lru_add_drain_all();
f817ed48 3143 /* try to free all pages in this cgroup */
3e32cb2e 3144 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3145 int progress;
c1e862c1 3146
c26251f9
MH
3147 if (signal_pending(current))
3148 return -EINTR;
3149
b70a2a21
JW
3150 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3151 GFP_KERNEL, true);
c1e862c1 3152 if (!progress) {
f817ed48 3153 nr_retries--;
c1e862c1 3154 /* maybe some writeback is necessary */
8aa7e847 3155 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3156 }
f817ed48
KH
3157
3158 }
ab5196c2
MH
3159
3160 return 0;
cc847582
KH
3161}
3162
6770c64e
TH
3163static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3164 char *buf, size_t nbytes,
3165 loff_t off)
c1e862c1 3166{
6770c64e 3167 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3168
d8423011
MH
3169 if (mem_cgroup_is_root(memcg))
3170 return -EINVAL;
6770c64e 3171 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3172}
3173
182446d0
TH
3174static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3175 struct cftype *cft)
18f59ea7 3176{
182446d0 3177 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3178}
3179
182446d0
TH
3180static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3181 struct cftype *cft, u64 val)
18f59ea7
BS
3182{
3183 int retval = 0;
182446d0 3184 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3185 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3186
0999821b 3187 mutex_lock(&memcg_create_mutex);
567fb435
GC
3188
3189 if (memcg->use_hierarchy == val)
3190 goto out;
3191
18f59ea7 3192 /*
af901ca1 3193 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3194 * in the child subtrees. If it is unset, then the change can
3195 * occur, provided the current cgroup has no children.
3196 *
3197 * For the root cgroup, parent_mem is NULL, we allow value to be
3198 * set if there are no children.
3199 */
c0ff4b85 3200 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3201 (val == 1 || val == 0)) {
ea280e7b 3202 if (!memcg_has_children(memcg))
c0ff4b85 3203 memcg->use_hierarchy = val;
18f59ea7
BS
3204 else
3205 retval = -EBUSY;
3206 } else
3207 retval = -EINVAL;
567fb435
GC
3208
3209out:
0999821b 3210 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3211
3212 return retval;
3213}
3214
3e32cb2e
JW
3215static unsigned long tree_stat(struct mem_cgroup *memcg,
3216 enum mem_cgroup_stat_index idx)
ce00a967
JW
3217{
3218 struct mem_cgroup *iter;
3219 long val = 0;
3220
3221 /* Per-cpu values can be negative, use a signed accumulator */
3222 for_each_mem_cgroup_tree(iter, memcg)
3223 val += mem_cgroup_read_stat(iter, idx);
3224
3225 if (val < 0) /* race ? */
3226 val = 0;
3227 return val;
3228}
3229
3230static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3231{
3232 u64 val;
3233
3e32cb2e
JW
3234 if (mem_cgroup_is_root(memcg)) {
3235 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3236 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3237 if (swap)
3238 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3239 } else {
ce00a967 3240 if (!swap)
3e32cb2e 3241 val = page_counter_read(&memcg->memory);
ce00a967 3242 else
3e32cb2e 3243 val = page_counter_read(&memcg->memsw);
ce00a967 3244 }
ce00a967
JW
3245 return val << PAGE_SHIFT;
3246}
3247
3e32cb2e
JW
3248enum {
3249 RES_USAGE,
3250 RES_LIMIT,
3251 RES_MAX_USAGE,
3252 RES_FAILCNT,
3253 RES_SOFT_LIMIT,
3254};
ce00a967 3255
791badbd 3256static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3257 struct cftype *cft)
8cdea7c0 3258{
182446d0 3259 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3260 struct page_counter *counter;
af36f906 3261
3e32cb2e 3262 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3263 case _MEM:
3e32cb2e
JW
3264 counter = &memcg->memory;
3265 break;
8c7c6e34 3266 case _MEMSWAP:
3e32cb2e
JW
3267 counter = &memcg->memsw;
3268 break;
510fc4e1 3269 case _KMEM:
3e32cb2e 3270 counter = &memcg->kmem;
510fc4e1 3271 break;
8c7c6e34
KH
3272 default:
3273 BUG();
8c7c6e34 3274 }
3e32cb2e
JW
3275
3276 switch (MEMFILE_ATTR(cft->private)) {
3277 case RES_USAGE:
3278 if (counter == &memcg->memory)
3279 return mem_cgroup_usage(memcg, false);
3280 if (counter == &memcg->memsw)
3281 return mem_cgroup_usage(memcg, true);
3282 return (u64)page_counter_read(counter) * PAGE_SIZE;
3283 case RES_LIMIT:
3284 return (u64)counter->limit * PAGE_SIZE;
3285 case RES_MAX_USAGE:
3286 return (u64)counter->watermark * PAGE_SIZE;
3287 case RES_FAILCNT:
3288 return counter->failcnt;
3289 case RES_SOFT_LIMIT:
3290 return (u64)memcg->soft_limit * PAGE_SIZE;
3291 default:
3292 BUG();
3293 }
8cdea7c0 3294}
510fc4e1 3295
510fc4e1 3296#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3297static int memcg_activate_kmem(struct mem_cgroup *memcg,
3298 unsigned long nr_pages)
d6441637
VD
3299{
3300 int err = 0;
3301 int memcg_id;
3302
3303 if (memcg_kmem_is_active(memcg))
3304 return 0;
3305
510fc4e1
GC
3306 /*
3307 * For simplicity, we won't allow this to be disabled. It also can't
3308 * be changed if the cgroup has children already, or if tasks had
3309 * already joined.
3310 *
3311 * If tasks join before we set the limit, a person looking at
3312 * kmem.usage_in_bytes will have no way to determine when it took
3313 * place, which makes the value quite meaningless.
3314 *
3315 * After it first became limited, changes in the value of the limit are
3316 * of course permitted.
510fc4e1 3317 */
0999821b 3318 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3319 if (cgroup_has_tasks(memcg->css.cgroup) ||
3320 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3321 err = -EBUSY;
3322 mutex_unlock(&memcg_create_mutex);
3323 if (err)
3324 goto out;
510fc4e1 3325
f3bb3043 3326 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3327 if (memcg_id < 0) {
3328 err = memcg_id;
3329 goto out;
3330 }
3331
d6441637 3332 /*
900a38f0
VD
3333 * We couldn't have accounted to this cgroup, because it hasn't got
3334 * activated yet, so this should succeed.
d6441637 3335 */
3e32cb2e 3336 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3337 VM_BUG_ON(err);
3338
3339 static_key_slow_inc(&memcg_kmem_enabled_key);
3340 /*
900a38f0
VD
3341 * A memory cgroup is considered kmem-active as soon as it gets
3342 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3343 * guarantee no one starts accounting before all call sites are
3344 * patched.
3345 */
900a38f0 3346 memcg->kmemcg_id = memcg_id;
510fc4e1 3347out:
d6441637 3348 return err;
d6441637
VD
3349}
3350
d6441637 3351static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3352 unsigned long limit)
d6441637
VD
3353{
3354 int ret;
3355
3e32cb2e 3356 mutex_lock(&memcg_limit_mutex);
d6441637 3357 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3358 ret = memcg_activate_kmem(memcg, limit);
d6441637 3359 else
3e32cb2e
JW
3360 ret = page_counter_limit(&memcg->kmem, limit);
3361 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3362 return ret;
3363}
3364
55007d84 3365static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3366{
55007d84 3367 int ret = 0;
510fc4e1 3368 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3369
d6441637
VD
3370 if (!parent)
3371 return 0;
55007d84 3372
8c0145b6 3373 mutex_lock(&memcg_limit_mutex);
55007d84 3374 /*
d6441637
VD
3375 * If the parent cgroup is not kmem-active now, it cannot be activated
3376 * after this point, because it has at least one child already.
55007d84 3377 */
d6441637 3378 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3379 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3380 mutex_unlock(&memcg_limit_mutex);
55007d84 3381 return ret;
510fc4e1 3382}
d6441637
VD
3383#else
3384static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3385 unsigned long limit)
d6441637
VD
3386{
3387 return -EINVAL;
3388}
6d043990 3389#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3390
628f4235
KH
3391/*
3392 * The user of this function is...
3393 * RES_LIMIT.
3394 */
451af504
TH
3395static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3396 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3397{
451af504 3398 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3399 unsigned long nr_pages;
628f4235
KH
3400 int ret;
3401
451af504 3402 buf = strstrip(buf);
3e32cb2e
JW
3403 ret = page_counter_memparse(buf, &nr_pages);
3404 if (ret)
3405 return ret;
af36f906 3406
3e32cb2e 3407 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3408 case RES_LIMIT:
4b3bde4c
BS
3409 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3410 ret = -EINVAL;
3411 break;
3412 }
3e32cb2e
JW
3413 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3414 case _MEM:
3415 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3416 break;
3e32cb2e
JW
3417 case _MEMSWAP:
3418 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3419 break;
3e32cb2e
JW
3420 case _KMEM:
3421 ret = memcg_update_kmem_limit(memcg, nr_pages);
3422 break;
3423 }
296c81d8 3424 break;
3e32cb2e
JW
3425 case RES_SOFT_LIMIT:
3426 memcg->soft_limit = nr_pages;
3427 ret = 0;
628f4235
KH
3428 break;
3429 }
451af504 3430 return ret ?: nbytes;
8cdea7c0
BS
3431}
3432
6770c64e
TH
3433static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3434 size_t nbytes, loff_t off)
c84872e1 3435{
6770c64e 3436 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3437 struct page_counter *counter;
c84872e1 3438
3e32cb2e
JW
3439 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3440 case _MEM:
3441 counter = &memcg->memory;
3442 break;
3443 case _MEMSWAP:
3444 counter = &memcg->memsw;
3445 break;
3446 case _KMEM:
3447 counter = &memcg->kmem;
3448 break;
3449 default:
3450 BUG();
3451 }
af36f906 3452
3e32cb2e 3453 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3454 case RES_MAX_USAGE:
3e32cb2e 3455 page_counter_reset_watermark(counter);
29f2a4da
PE
3456 break;
3457 case RES_FAILCNT:
3e32cb2e 3458 counter->failcnt = 0;
29f2a4da 3459 break;
3e32cb2e
JW
3460 default:
3461 BUG();
29f2a4da 3462 }
f64c3f54 3463
6770c64e 3464 return nbytes;
c84872e1
PE
3465}
3466
182446d0 3467static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3468 struct cftype *cft)
3469{
182446d0 3470 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3471}
3472
02491447 3473#ifdef CONFIG_MMU
182446d0 3474static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3475 struct cftype *cft, u64 val)
3476{
182446d0 3477 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3478
3479 if (val >= (1 << NR_MOVE_TYPE))
3480 return -EINVAL;
ee5e8472 3481
7dc74be0 3482 /*
ee5e8472
GC
3483 * No kind of locking is needed in here, because ->can_attach() will
3484 * check this value once in the beginning of the process, and then carry
3485 * on with stale data. This means that changes to this value will only
3486 * affect task migrations starting after the change.
7dc74be0 3487 */
c0ff4b85 3488 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3489 return 0;
3490}
02491447 3491#else
182446d0 3492static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3493 struct cftype *cft, u64 val)
3494{
3495 return -ENOSYS;
3496}
3497#endif
7dc74be0 3498
406eb0c9 3499#ifdef CONFIG_NUMA
2da8ca82 3500static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3501{
25485de6
GT
3502 struct numa_stat {
3503 const char *name;
3504 unsigned int lru_mask;
3505 };
3506
3507 static const struct numa_stat stats[] = {
3508 { "total", LRU_ALL },
3509 { "file", LRU_ALL_FILE },
3510 { "anon", LRU_ALL_ANON },
3511 { "unevictable", BIT(LRU_UNEVICTABLE) },
3512 };
3513 const struct numa_stat *stat;
406eb0c9 3514 int nid;
25485de6 3515 unsigned long nr;
2da8ca82 3516 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3517
25485de6
GT
3518 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3519 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3520 seq_printf(m, "%s=%lu", stat->name, nr);
3521 for_each_node_state(nid, N_MEMORY) {
3522 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3523 stat->lru_mask);
3524 seq_printf(m, " N%d=%lu", nid, nr);
3525 }
3526 seq_putc(m, '\n');
406eb0c9 3527 }
406eb0c9 3528
071aee13
YH
3529 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3530 struct mem_cgroup *iter;
3531
3532 nr = 0;
3533 for_each_mem_cgroup_tree(iter, memcg)
3534 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3535 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3536 for_each_node_state(nid, N_MEMORY) {
3537 nr = 0;
3538 for_each_mem_cgroup_tree(iter, memcg)
3539 nr += mem_cgroup_node_nr_lru_pages(
3540 iter, nid, stat->lru_mask);
3541 seq_printf(m, " N%d=%lu", nid, nr);
3542 }
3543 seq_putc(m, '\n');
406eb0c9 3544 }
406eb0c9 3545
406eb0c9
YH
3546 return 0;
3547}
3548#endif /* CONFIG_NUMA */
3549
2da8ca82 3550static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3551{
2da8ca82 3552 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3553 unsigned long memory, memsw;
af7c4b0e
JW
3554 struct mem_cgroup *mi;
3555 unsigned int i;
406eb0c9 3556
70bc068c
RS
3557 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3558
af7c4b0e 3559 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3560 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3561 continue;
af7c4b0e
JW
3562 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3563 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3564 }
7b854121 3565
af7c4b0e
JW
3566 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3567 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3568 mem_cgroup_read_events(memcg, i));
3569
3570 for (i = 0; i < NR_LRU_LISTS; i++)
3571 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3572 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3573
14067bb3 3574 /* Hierarchical information */
3e32cb2e
JW
3575 memory = memsw = PAGE_COUNTER_MAX;
3576 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3577 memory = min(memory, mi->memory.limit);
3578 memsw = min(memsw, mi->memsw.limit);
fee7b548 3579 }
3e32cb2e
JW
3580 seq_printf(m, "hierarchical_memory_limit %llu\n",
3581 (u64)memory * PAGE_SIZE);
3582 if (do_swap_account)
3583 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3584 (u64)memsw * PAGE_SIZE);
7f016ee8 3585
af7c4b0e
JW
3586 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3587 long long val = 0;
3588
bff6bb83 3589 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3590 continue;
af7c4b0e
JW
3591 for_each_mem_cgroup_tree(mi, memcg)
3592 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3593 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3594 }
3595
3596 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3597 unsigned long long val = 0;
3598
3599 for_each_mem_cgroup_tree(mi, memcg)
3600 val += mem_cgroup_read_events(mi, i);
3601 seq_printf(m, "total_%s %llu\n",
3602 mem_cgroup_events_names[i], val);
3603 }
3604
3605 for (i = 0; i < NR_LRU_LISTS; i++) {
3606 unsigned long long val = 0;
3607
3608 for_each_mem_cgroup_tree(mi, memcg)
3609 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3610 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3611 }
14067bb3 3612
7f016ee8 3613#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3614 {
3615 int nid, zid;
3616 struct mem_cgroup_per_zone *mz;
89abfab1 3617 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3618 unsigned long recent_rotated[2] = {0, 0};
3619 unsigned long recent_scanned[2] = {0, 0};
3620
3621 for_each_online_node(nid)
3622 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3623 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3624 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3625
89abfab1
HD
3626 recent_rotated[0] += rstat->recent_rotated[0];
3627 recent_rotated[1] += rstat->recent_rotated[1];
3628 recent_scanned[0] += rstat->recent_scanned[0];
3629 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3630 }
78ccf5b5
JW
3631 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3632 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3633 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3634 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3635 }
3636#endif
3637
d2ceb9b7
KH
3638 return 0;
3639}
3640
182446d0
TH
3641static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3642 struct cftype *cft)
a7885eb8 3643{
182446d0 3644 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3645
1f4c025b 3646 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3647}
3648
182446d0
TH
3649static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3650 struct cftype *cft, u64 val)
a7885eb8 3651{
182446d0 3652 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3653
3dae7fec 3654 if (val > 100)
a7885eb8
KM
3655 return -EINVAL;
3656
14208b0e 3657 if (css->parent)
3dae7fec
JW
3658 memcg->swappiness = val;
3659 else
3660 vm_swappiness = val;
068b38c1 3661
a7885eb8
KM
3662 return 0;
3663}
3664
2e72b634
KS
3665static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3666{
3667 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3668 unsigned long usage;
2e72b634
KS
3669 int i;
3670
3671 rcu_read_lock();
3672 if (!swap)
2c488db2 3673 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3674 else
2c488db2 3675 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3676
3677 if (!t)
3678 goto unlock;
3679
ce00a967 3680 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3681
3682 /*
748dad36 3683 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3684 * If it's not true, a threshold was crossed after last
3685 * call of __mem_cgroup_threshold().
3686 */
5407a562 3687 i = t->current_threshold;
2e72b634
KS
3688
3689 /*
3690 * Iterate backward over array of thresholds starting from
3691 * current_threshold and check if a threshold is crossed.
3692 * If none of thresholds below usage is crossed, we read
3693 * only one element of the array here.
3694 */
3695 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3696 eventfd_signal(t->entries[i].eventfd, 1);
3697
3698 /* i = current_threshold + 1 */
3699 i++;
3700
3701 /*
3702 * Iterate forward over array of thresholds starting from
3703 * current_threshold+1 and check if a threshold is crossed.
3704 * If none of thresholds above usage is crossed, we read
3705 * only one element of the array here.
3706 */
3707 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3708 eventfd_signal(t->entries[i].eventfd, 1);
3709
3710 /* Update current_threshold */
5407a562 3711 t->current_threshold = i - 1;
2e72b634
KS
3712unlock:
3713 rcu_read_unlock();
3714}
3715
3716static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3717{
ad4ca5f4
KS
3718 while (memcg) {
3719 __mem_cgroup_threshold(memcg, false);
3720 if (do_swap_account)
3721 __mem_cgroup_threshold(memcg, true);
3722
3723 memcg = parent_mem_cgroup(memcg);
3724 }
2e72b634
KS
3725}
3726
3727static int compare_thresholds(const void *a, const void *b)
3728{
3729 const struct mem_cgroup_threshold *_a = a;
3730 const struct mem_cgroup_threshold *_b = b;
3731
2bff24a3
GT
3732 if (_a->threshold > _b->threshold)
3733 return 1;
3734
3735 if (_a->threshold < _b->threshold)
3736 return -1;
3737
3738 return 0;
2e72b634
KS
3739}
3740
c0ff4b85 3741static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3742{
3743 struct mem_cgroup_eventfd_list *ev;
3744
2bcf2e92
MH
3745 spin_lock(&memcg_oom_lock);
3746
c0ff4b85 3747 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3748 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3749
3750 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3751 return 0;
3752}
3753
c0ff4b85 3754static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3755{
7d74b06f
KH
3756 struct mem_cgroup *iter;
3757
c0ff4b85 3758 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3759 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3760}
3761
59b6f873 3762static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3763 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3764{
2c488db2
KS
3765 struct mem_cgroup_thresholds *thresholds;
3766 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3767 unsigned long threshold;
3768 unsigned long usage;
2c488db2 3769 int i, size, ret;
2e72b634 3770
3e32cb2e 3771 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
3772 if (ret)
3773 return ret;
3774
3775 mutex_lock(&memcg->thresholds_lock);
2c488db2 3776
05b84301 3777 if (type == _MEM) {
2c488db2 3778 thresholds = &memcg->thresholds;
ce00a967 3779 usage = mem_cgroup_usage(memcg, false);
05b84301 3780 } else if (type == _MEMSWAP) {
2c488db2 3781 thresholds = &memcg->memsw_thresholds;
ce00a967 3782 usage = mem_cgroup_usage(memcg, true);
05b84301 3783 } else
2e72b634
KS
3784 BUG();
3785
2e72b634 3786 /* Check if a threshold crossed before adding a new one */
2c488db2 3787 if (thresholds->primary)
2e72b634
KS
3788 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3789
2c488db2 3790 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3791
3792 /* Allocate memory for new array of thresholds */
2c488db2 3793 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3794 GFP_KERNEL);
2c488db2 3795 if (!new) {
2e72b634
KS
3796 ret = -ENOMEM;
3797 goto unlock;
3798 }
2c488db2 3799 new->size = size;
2e72b634
KS
3800
3801 /* Copy thresholds (if any) to new array */
2c488db2
KS
3802 if (thresholds->primary) {
3803 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3804 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3805 }
3806
2e72b634 3807 /* Add new threshold */
2c488db2
KS
3808 new->entries[size - 1].eventfd = eventfd;
3809 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3810
3811 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3812 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3813 compare_thresholds, NULL);
3814
3815 /* Find current threshold */
2c488db2 3816 new->current_threshold = -1;
2e72b634 3817 for (i = 0; i < size; i++) {
748dad36 3818 if (new->entries[i].threshold <= usage) {
2e72b634 3819 /*
2c488db2
KS
3820 * new->current_threshold will not be used until
3821 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3822 * it here.
3823 */
2c488db2 3824 ++new->current_threshold;
748dad36
SZ
3825 } else
3826 break;
2e72b634
KS
3827 }
3828
2c488db2
KS
3829 /* Free old spare buffer and save old primary buffer as spare */
3830 kfree(thresholds->spare);
3831 thresholds->spare = thresholds->primary;
3832
3833 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3834
907860ed 3835 /* To be sure that nobody uses thresholds */
2e72b634
KS
3836 synchronize_rcu();
3837
2e72b634
KS
3838unlock:
3839 mutex_unlock(&memcg->thresholds_lock);
3840
3841 return ret;
3842}
3843
59b6f873 3844static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3845 struct eventfd_ctx *eventfd, const char *args)
3846{
59b6f873 3847 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3848}
3849
59b6f873 3850static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3851 struct eventfd_ctx *eventfd, const char *args)
3852{
59b6f873 3853 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3854}
3855
59b6f873 3856static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3857 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3858{
2c488db2
KS
3859 struct mem_cgroup_thresholds *thresholds;
3860 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3861 unsigned long usage;
2c488db2 3862 int i, j, size;
2e72b634
KS
3863
3864 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3865
3866 if (type == _MEM) {
2c488db2 3867 thresholds = &memcg->thresholds;
ce00a967 3868 usage = mem_cgroup_usage(memcg, false);
05b84301 3869 } else if (type == _MEMSWAP) {
2c488db2 3870 thresholds = &memcg->memsw_thresholds;
ce00a967 3871 usage = mem_cgroup_usage(memcg, true);
05b84301 3872 } else
2e72b634
KS
3873 BUG();
3874
371528ca
AV
3875 if (!thresholds->primary)
3876 goto unlock;
3877
2e72b634
KS
3878 /* Check if a threshold crossed before removing */
3879 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3880
3881 /* Calculate new number of threshold */
2c488db2
KS
3882 size = 0;
3883 for (i = 0; i < thresholds->primary->size; i++) {
3884 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3885 size++;
3886 }
3887
2c488db2 3888 new = thresholds->spare;
907860ed 3889
2e72b634
KS
3890 /* Set thresholds array to NULL if we don't have thresholds */
3891 if (!size) {
2c488db2
KS
3892 kfree(new);
3893 new = NULL;
907860ed 3894 goto swap_buffers;
2e72b634
KS
3895 }
3896
2c488db2 3897 new->size = size;
2e72b634
KS
3898
3899 /* Copy thresholds and find current threshold */
2c488db2
KS
3900 new->current_threshold = -1;
3901 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3902 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3903 continue;
3904
2c488db2 3905 new->entries[j] = thresholds->primary->entries[i];
748dad36 3906 if (new->entries[j].threshold <= usage) {
2e72b634 3907 /*
2c488db2 3908 * new->current_threshold will not be used
2e72b634
KS
3909 * until rcu_assign_pointer(), so it's safe to increment
3910 * it here.
3911 */
2c488db2 3912 ++new->current_threshold;
2e72b634
KS
3913 }
3914 j++;
3915 }
3916
907860ed 3917swap_buffers:
2c488db2
KS
3918 /* Swap primary and spare array */
3919 thresholds->spare = thresholds->primary;
8c757763
SZ
3920 /* If all events are unregistered, free the spare array */
3921 if (!new) {
3922 kfree(thresholds->spare);
3923 thresholds->spare = NULL;
3924 }
3925
2c488db2 3926 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3927
907860ed 3928 /* To be sure that nobody uses thresholds */
2e72b634 3929 synchronize_rcu();
371528ca 3930unlock:
2e72b634 3931 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3932}
c1e862c1 3933
59b6f873 3934static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3935 struct eventfd_ctx *eventfd)
3936{
59b6f873 3937 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3938}
3939
59b6f873 3940static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3941 struct eventfd_ctx *eventfd)
3942{
59b6f873 3943 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3944}
3945
59b6f873 3946static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3947 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3948{
9490ff27 3949 struct mem_cgroup_eventfd_list *event;
9490ff27 3950
9490ff27
KH
3951 event = kmalloc(sizeof(*event), GFP_KERNEL);
3952 if (!event)
3953 return -ENOMEM;
3954
1af8efe9 3955 spin_lock(&memcg_oom_lock);
9490ff27
KH
3956
3957 event->eventfd = eventfd;
3958 list_add(&event->list, &memcg->oom_notify);
3959
3960 /* already in OOM ? */
79dfdacc 3961 if (atomic_read(&memcg->under_oom))
9490ff27 3962 eventfd_signal(eventfd, 1);
1af8efe9 3963 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3964
3965 return 0;
3966}
3967
59b6f873 3968static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3969 struct eventfd_ctx *eventfd)
9490ff27 3970{
9490ff27 3971 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3972
1af8efe9 3973 spin_lock(&memcg_oom_lock);
9490ff27 3974
c0ff4b85 3975 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3976 if (ev->eventfd == eventfd) {
3977 list_del(&ev->list);
3978 kfree(ev);
3979 }
3980 }
3981
1af8efe9 3982 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3983}
3984
2da8ca82 3985static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3986{
2da8ca82 3987 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3988
791badbd
TH
3989 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3990 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3991 return 0;
3992}
3993
182446d0 3994static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3995 struct cftype *cft, u64 val)
3996{
182446d0 3997 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3998
3999 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4000 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4001 return -EINVAL;
4002
c0ff4b85 4003 memcg->oom_kill_disable = val;
4d845ebf 4004 if (!val)
c0ff4b85 4005 memcg_oom_recover(memcg);
3dae7fec 4006
3c11ecf4
KH
4007 return 0;
4008}
4009
c255a458 4010#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4011static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4012{
55007d84
GC
4013 int ret;
4014
55007d84
GC
4015 ret = memcg_propagate_kmem(memcg);
4016 if (ret)
4017 return ret;
2633d7a0 4018
1d62e436 4019 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4020}
e5671dfa 4021
10d5ebf4 4022static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4023{
d5b3cf71 4024 memcg_destroy_kmem_caches(memcg);
1d62e436 4025 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4026}
e5671dfa 4027#else
cbe128e3 4028static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4029{
4030 return 0;
4031}
d1a4c0b3 4032
10d5ebf4
LZ
4033static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4034{
4035}
e5671dfa
GC
4036#endif
4037
3bc942f3
TH
4038/*
4039 * DO NOT USE IN NEW FILES.
4040 *
4041 * "cgroup.event_control" implementation.
4042 *
4043 * This is way over-engineered. It tries to support fully configurable
4044 * events for each user. Such level of flexibility is completely
4045 * unnecessary especially in the light of the planned unified hierarchy.
4046 *
4047 * Please deprecate this and replace with something simpler if at all
4048 * possible.
4049 */
4050
79bd9814
TH
4051/*
4052 * Unregister event and free resources.
4053 *
4054 * Gets called from workqueue.
4055 */
3bc942f3 4056static void memcg_event_remove(struct work_struct *work)
79bd9814 4057{
3bc942f3
TH
4058 struct mem_cgroup_event *event =
4059 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4060 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4061
4062 remove_wait_queue(event->wqh, &event->wait);
4063
59b6f873 4064 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4065
4066 /* Notify userspace the event is going away. */
4067 eventfd_signal(event->eventfd, 1);
4068
4069 eventfd_ctx_put(event->eventfd);
4070 kfree(event);
59b6f873 4071 css_put(&memcg->css);
79bd9814
TH
4072}
4073
4074/*
4075 * Gets called on POLLHUP on eventfd when user closes it.
4076 *
4077 * Called with wqh->lock held and interrupts disabled.
4078 */
3bc942f3
TH
4079static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4080 int sync, void *key)
79bd9814 4081{
3bc942f3
TH
4082 struct mem_cgroup_event *event =
4083 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4084 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4085 unsigned long flags = (unsigned long)key;
4086
4087 if (flags & POLLHUP) {
4088 /*
4089 * If the event has been detached at cgroup removal, we
4090 * can simply return knowing the other side will cleanup
4091 * for us.
4092 *
4093 * We can't race against event freeing since the other
4094 * side will require wqh->lock via remove_wait_queue(),
4095 * which we hold.
4096 */
fba94807 4097 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4098 if (!list_empty(&event->list)) {
4099 list_del_init(&event->list);
4100 /*
4101 * We are in atomic context, but cgroup_event_remove()
4102 * may sleep, so we have to call it in workqueue.
4103 */
4104 schedule_work(&event->remove);
4105 }
fba94807 4106 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4107 }
4108
4109 return 0;
4110}
4111
3bc942f3 4112static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4113 wait_queue_head_t *wqh, poll_table *pt)
4114{
3bc942f3
TH
4115 struct mem_cgroup_event *event =
4116 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4117
4118 event->wqh = wqh;
4119 add_wait_queue(wqh, &event->wait);
4120}
4121
4122/*
3bc942f3
TH
4123 * DO NOT USE IN NEW FILES.
4124 *
79bd9814
TH
4125 * Parse input and register new cgroup event handler.
4126 *
4127 * Input must be in format '<event_fd> <control_fd> <args>'.
4128 * Interpretation of args is defined by control file implementation.
4129 */
451af504
TH
4130static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4131 char *buf, size_t nbytes, loff_t off)
79bd9814 4132{
451af504 4133 struct cgroup_subsys_state *css = of_css(of);
fba94807 4134 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4135 struct mem_cgroup_event *event;
79bd9814
TH
4136 struct cgroup_subsys_state *cfile_css;
4137 unsigned int efd, cfd;
4138 struct fd efile;
4139 struct fd cfile;
fba94807 4140 const char *name;
79bd9814
TH
4141 char *endp;
4142 int ret;
4143
451af504
TH
4144 buf = strstrip(buf);
4145
4146 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4147 if (*endp != ' ')
4148 return -EINVAL;
451af504 4149 buf = endp + 1;
79bd9814 4150
451af504 4151 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4152 if ((*endp != ' ') && (*endp != '\0'))
4153 return -EINVAL;
451af504 4154 buf = endp + 1;
79bd9814
TH
4155
4156 event = kzalloc(sizeof(*event), GFP_KERNEL);
4157 if (!event)
4158 return -ENOMEM;
4159
59b6f873 4160 event->memcg = memcg;
79bd9814 4161 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4162 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4163 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4164 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4165
4166 efile = fdget(efd);
4167 if (!efile.file) {
4168 ret = -EBADF;
4169 goto out_kfree;
4170 }
4171
4172 event->eventfd = eventfd_ctx_fileget(efile.file);
4173 if (IS_ERR(event->eventfd)) {
4174 ret = PTR_ERR(event->eventfd);
4175 goto out_put_efile;
4176 }
4177
4178 cfile = fdget(cfd);
4179 if (!cfile.file) {
4180 ret = -EBADF;
4181 goto out_put_eventfd;
4182 }
4183
4184 /* the process need read permission on control file */
4185 /* AV: shouldn't we check that it's been opened for read instead? */
4186 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4187 if (ret < 0)
4188 goto out_put_cfile;
4189
fba94807
TH
4190 /*
4191 * Determine the event callbacks and set them in @event. This used
4192 * to be done via struct cftype but cgroup core no longer knows
4193 * about these events. The following is crude but the whole thing
4194 * is for compatibility anyway.
3bc942f3
TH
4195 *
4196 * DO NOT ADD NEW FILES.
fba94807 4197 */
b583043e 4198 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4199
4200 if (!strcmp(name, "memory.usage_in_bytes")) {
4201 event->register_event = mem_cgroup_usage_register_event;
4202 event->unregister_event = mem_cgroup_usage_unregister_event;
4203 } else if (!strcmp(name, "memory.oom_control")) {
4204 event->register_event = mem_cgroup_oom_register_event;
4205 event->unregister_event = mem_cgroup_oom_unregister_event;
4206 } else if (!strcmp(name, "memory.pressure_level")) {
4207 event->register_event = vmpressure_register_event;
4208 event->unregister_event = vmpressure_unregister_event;
4209 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4210 event->register_event = memsw_cgroup_usage_register_event;
4211 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4212 } else {
4213 ret = -EINVAL;
4214 goto out_put_cfile;
4215 }
4216
79bd9814 4217 /*
b5557c4c
TH
4218 * Verify @cfile should belong to @css. Also, remaining events are
4219 * automatically removed on cgroup destruction but the removal is
4220 * asynchronous, so take an extra ref on @css.
79bd9814 4221 */
b583043e 4222 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4223 &memory_cgrp_subsys);
79bd9814 4224 ret = -EINVAL;
5a17f543 4225 if (IS_ERR(cfile_css))
79bd9814 4226 goto out_put_cfile;
5a17f543
TH
4227 if (cfile_css != css) {
4228 css_put(cfile_css);
79bd9814 4229 goto out_put_cfile;
5a17f543 4230 }
79bd9814 4231
451af504 4232 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4233 if (ret)
4234 goto out_put_css;
4235
4236 efile.file->f_op->poll(efile.file, &event->pt);
4237
fba94807
TH
4238 spin_lock(&memcg->event_list_lock);
4239 list_add(&event->list, &memcg->event_list);
4240 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4241
4242 fdput(cfile);
4243 fdput(efile);
4244
451af504 4245 return nbytes;
79bd9814
TH
4246
4247out_put_css:
b5557c4c 4248 css_put(css);
79bd9814
TH
4249out_put_cfile:
4250 fdput(cfile);
4251out_put_eventfd:
4252 eventfd_ctx_put(event->eventfd);
4253out_put_efile:
4254 fdput(efile);
4255out_kfree:
4256 kfree(event);
4257
4258 return ret;
4259}
4260
8cdea7c0
BS
4261static struct cftype mem_cgroup_files[] = {
4262 {
0eea1030 4263 .name = "usage_in_bytes",
8c7c6e34 4264 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4265 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4266 },
c84872e1
PE
4267 {
4268 .name = "max_usage_in_bytes",
8c7c6e34 4269 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4270 .write = mem_cgroup_reset,
791badbd 4271 .read_u64 = mem_cgroup_read_u64,
c84872e1 4272 },
8cdea7c0 4273 {
0eea1030 4274 .name = "limit_in_bytes",
8c7c6e34 4275 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4276 .write = mem_cgroup_write,
791badbd 4277 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4278 },
296c81d8
BS
4279 {
4280 .name = "soft_limit_in_bytes",
4281 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4282 .write = mem_cgroup_write,
791badbd 4283 .read_u64 = mem_cgroup_read_u64,
296c81d8 4284 },
8cdea7c0
BS
4285 {
4286 .name = "failcnt",
8c7c6e34 4287 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4288 .write = mem_cgroup_reset,
791badbd 4289 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4290 },
d2ceb9b7
KH
4291 {
4292 .name = "stat",
2da8ca82 4293 .seq_show = memcg_stat_show,
d2ceb9b7 4294 },
c1e862c1
KH
4295 {
4296 .name = "force_empty",
6770c64e 4297 .write = mem_cgroup_force_empty_write,
c1e862c1 4298 },
18f59ea7
BS
4299 {
4300 .name = "use_hierarchy",
4301 .write_u64 = mem_cgroup_hierarchy_write,
4302 .read_u64 = mem_cgroup_hierarchy_read,
4303 },
79bd9814 4304 {
3bc942f3 4305 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4306 .write = memcg_write_event_control,
79bd9814
TH
4307 .flags = CFTYPE_NO_PREFIX,
4308 .mode = S_IWUGO,
4309 },
a7885eb8
KM
4310 {
4311 .name = "swappiness",
4312 .read_u64 = mem_cgroup_swappiness_read,
4313 .write_u64 = mem_cgroup_swappiness_write,
4314 },
7dc74be0
DN
4315 {
4316 .name = "move_charge_at_immigrate",
4317 .read_u64 = mem_cgroup_move_charge_read,
4318 .write_u64 = mem_cgroup_move_charge_write,
4319 },
9490ff27
KH
4320 {
4321 .name = "oom_control",
2da8ca82 4322 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4323 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4324 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4325 },
70ddf637
AV
4326 {
4327 .name = "pressure_level",
70ddf637 4328 },
406eb0c9
YH
4329#ifdef CONFIG_NUMA
4330 {
4331 .name = "numa_stat",
2da8ca82 4332 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4333 },
4334#endif
510fc4e1
GC
4335#ifdef CONFIG_MEMCG_KMEM
4336 {
4337 .name = "kmem.limit_in_bytes",
4338 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4339 .write = mem_cgroup_write,
791badbd 4340 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4341 },
4342 {
4343 .name = "kmem.usage_in_bytes",
4344 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4345 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4346 },
4347 {
4348 .name = "kmem.failcnt",
4349 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4350 .write = mem_cgroup_reset,
791badbd 4351 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4352 },
4353 {
4354 .name = "kmem.max_usage_in_bytes",
4355 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4356 .write = mem_cgroup_reset,
791badbd 4357 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4358 },
749c5415
GC
4359#ifdef CONFIG_SLABINFO
4360 {
4361 .name = "kmem.slabinfo",
b047501c
VD
4362 .seq_start = slab_start,
4363 .seq_next = slab_next,
4364 .seq_stop = slab_stop,
4365 .seq_show = memcg_slab_show,
749c5415
GC
4366 },
4367#endif
8c7c6e34 4368#endif
6bc10349 4369 { }, /* terminate */
af36f906 4370};
8c7c6e34 4371
2d11085e
MH
4372#ifdef CONFIG_MEMCG_SWAP
4373static struct cftype memsw_cgroup_files[] = {
4374 {
4375 .name = "memsw.usage_in_bytes",
4376 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4377 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4378 },
4379 {
4380 .name = "memsw.max_usage_in_bytes",
4381 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4382 .write = mem_cgroup_reset,
791badbd 4383 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4384 },
4385 {
4386 .name = "memsw.limit_in_bytes",
4387 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4388 .write = mem_cgroup_write,
791badbd 4389 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4390 },
4391 {
4392 .name = "memsw.failcnt",
4393 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4394 .write = mem_cgroup_reset,
791badbd 4395 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4396 },
4397 { }, /* terminate */
4398};
4399#endif
c0ff4b85 4400static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4401{
4402 struct mem_cgroup_per_node *pn;
1ecaab2b 4403 struct mem_cgroup_per_zone *mz;
41e3355d 4404 int zone, tmp = node;
1ecaab2b
KH
4405 /*
4406 * This routine is called against possible nodes.
4407 * But it's BUG to call kmalloc() against offline node.
4408 *
4409 * TODO: this routine can waste much memory for nodes which will
4410 * never be onlined. It's better to use memory hotplug callback
4411 * function.
4412 */
41e3355d
KH
4413 if (!node_state(node, N_NORMAL_MEMORY))
4414 tmp = -1;
17295c88 4415 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4416 if (!pn)
4417 return 1;
1ecaab2b 4418
1ecaab2b
KH
4419 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4420 mz = &pn->zoneinfo[zone];
bea8c150 4421 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4422 mz->usage_in_excess = 0;
4423 mz->on_tree = false;
d79154bb 4424 mz->memcg = memcg;
1ecaab2b 4425 }
54f72fe0 4426 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4427 return 0;
4428}
4429
c0ff4b85 4430static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4431{
54f72fe0 4432 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4433}
4434
33327948
KH
4435static struct mem_cgroup *mem_cgroup_alloc(void)
4436{
d79154bb 4437 struct mem_cgroup *memcg;
8ff69e2c 4438 size_t size;
33327948 4439
8ff69e2c
VD
4440 size = sizeof(struct mem_cgroup);
4441 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4442
8ff69e2c 4443 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4444 if (!memcg)
e7bbcdf3
DC
4445 return NULL;
4446
d79154bb
HD
4447 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4448 if (!memcg->stat)
d2e61b8d 4449 goto out_free;
d79154bb
HD
4450 spin_lock_init(&memcg->pcp_counter_lock);
4451 return memcg;
d2e61b8d
DC
4452
4453out_free:
8ff69e2c 4454 kfree(memcg);
d2e61b8d 4455 return NULL;
33327948
KH
4456}
4457
59927fb9 4458/*
c8b2a36f
GC
4459 * At destroying mem_cgroup, references from swap_cgroup can remain.
4460 * (scanning all at force_empty is too costly...)
4461 *
4462 * Instead of clearing all references at force_empty, we remember
4463 * the number of reference from swap_cgroup and free mem_cgroup when
4464 * it goes down to 0.
4465 *
4466 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4467 */
c8b2a36f
GC
4468
4469static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4470{
c8b2a36f 4471 int node;
59927fb9 4472
bb4cc1a8 4473 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4474
4475 for_each_node(node)
4476 free_mem_cgroup_per_zone_info(memcg, node);
4477
4478 free_percpu(memcg->stat);
4479
a8964b9b 4480 disarm_static_keys(memcg);
8ff69e2c 4481 kfree(memcg);
59927fb9 4482}
3afe36b1 4483
7bcc1bb1
DN
4484/*
4485 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4486 */
e1aab161 4487struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4488{
3e32cb2e 4489 if (!memcg->memory.parent)
7bcc1bb1 4490 return NULL;
3e32cb2e 4491 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4492}
e1aab161 4493EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4494
bb4cc1a8
AM
4495static void __init mem_cgroup_soft_limit_tree_init(void)
4496{
4497 struct mem_cgroup_tree_per_node *rtpn;
4498 struct mem_cgroup_tree_per_zone *rtpz;
4499 int tmp, node, zone;
4500
4501 for_each_node(node) {
4502 tmp = node;
4503 if (!node_state(node, N_NORMAL_MEMORY))
4504 tmp = -1;
4505 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4506 BUG_ON(!rtpn);
4507
4508 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4509
4510 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4511 rtpz = &rtpn->rb_tree_per_zone[zone];
4512 rtpz->rb_root = RB_ROOT;
4513 spin_lock_init(&rtpz->lock);
4514 }
4515 }
4516}
4517
0eb253e2 4518static struct cgroup_subsys_state * __ref
eb95419b 4519mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4520{
d142e3e6 4521 struct mem_cgroup *memcg;
04046e1a 4522 long error = -ENOMEM;
6d12e2d8 4523 int node;
8cdea7c0 4524
c0ff4b85
R
4525 memcg = mem_cgroup_alloc();
4526 if (!memcg)
04046e1a 4527 return ERR_PTR(error);
78fb7466 4528
3ed28fa1 4529 for_each_node(node)
c0ff4b85 4530 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4531 goto free_out;
f64c3f54 4532
c077719b 4533 /* root ? */
eb95419b 4534 if (parent_css == NULL) {
a41c58a6 4535 root_mem_cgroup = memcg;
3e32cb2e 4536 page_counter_init(&memcg->memory, NULL);
24d404dc 4537 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4538 page_counter_init(&memcg->memsw, NULL);
4539 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4540 }
28dbc4b6 4541
d142e3e6
GC
4542 memcg->last_scanned_node = MAX_NUMNODES;
4543 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4544 memcg->move_charge_at_immigrate = 0;
4545 mutex_init(&memcg->thresholds_lock);
4546 spin_lock_init(&memcg->move_lock);
70ddf637 4547 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4548 INIT_LIST_HEAD(&memcg->event_list);
4549 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4550#ifdef CONFIG_MEMCG_KMEM
4551 memcg->kmemcg_id = -1;
900a38f0 4552#endif
d142e3e6
GC
4553
4554 return &memcg->css;
4555
4556free_out:
4557 __mem_cgroup_free(memcg);
4558 return ERR_PTR(error);
4559}
4560
4561static int
eb95419b 4562mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4563{
eb95419b 4564 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4565 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4566 int ret;
d142e3e6 4567
15a4c835 4568 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4569 return -ENOSPC;
4570
63876986 4571 if (!parent)
d142e3e6
GC
4572 return 0;
4573
0999821b 4574 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4575
4576 memcg->use_hierarchy = parent->use_hierarchy;
4577 memcg->oom_kill_disable = parent->oom_kill_disable;
4578 memcg->swappiness = mem_cgroup_swappiness(parent);
4579
4580 if (parent->use_hierarchy) {
3e32cb2e 4581 page_counter_init(&memcg->memory, &parent->memory);
24d404dc 4582 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4583 page_counter_init(&memcg->memsw, &parent->memsw);
4584 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4585
7bcc1bb1 4586 /*
8d76a979
LZ
4587 * No need to take a reference to the parent because cgroup
4588 * core guarantees its existence.
7bcc1bb1 4589 */
18f59ea7 4590 } else {
3e32cb2e 4591 page_counter_init(&memcg->memory, NULL);
24d404dc 4592 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4593 page_counter_init(&memcg->memsw, NULL);
4594 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4595 /*
4596 * Deeper hierachy with use_hierarchy == false doesn't make
4597 * much sense so let cgroup subsystem know about this
4598 * unfortunate state in our controller.
4599 */
d142e3e6 4600 if (parent != root_mem_cgroup)
073219e9 4601 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4602 }
0999821b 4603 mutex_unlock(&memcg_create_mutex);
d6441637 4604
2f7dd7a4
JW
4605 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4606 if (ret)
4607 return ret;
4608
4609 /*
4610 * Make sure the memcg is initialized: mem_cgroup_iter()
4611 * orders reading memcg->initialized against its callers
4612 * reading the memcg members.
4613 */
4614 smp_store_release(&memcg->initialized, 1);
4615
4616 return 0;
8cdea7c0
BS
4617}
4618
eb95419b 4619static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4620{
eb95419b 4621 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4622 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4623
4624 /*
4625 * Unregister events and notify userspace.
4626 * Notify userspace about cgroup removing only after rmdir of cgroup
4627 * directory to avoid race between userspace and kernelspace.
4628 */
fba94807
TH
4629 spin_lock(&memcg->event_list_lock);
4630 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4631 list_del_init(&event->list);
4632 schedule_work(&event->remove);
4633 }
fba94807 4634 spin_unlock(&memcg->event_list_lock);
ec64f515 4635
33cb876e 4636 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4637}
4638
eb95419b 4639static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4640{
eb95419b 4641 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4642
10d5ebf4 4643 memcg_destroy_kmem(memcg);
465939a1 4644 __mem_cgroup_free(memcg);
8cdea7c0
BS
4645}
4646
1ced953b
TH
4647/**
4648 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4649 * @css: the target css
4650 *
4651 * Reset the states of the mem_cgroup associated with @css. This is
4652 * invoked when the userland requests disabling on the default hierarchy
4653 * but the memcg is pinned through dependency. The memcg should stop
4654 * applying policies and should revert to the vanilla state as it may be
4655 * made visible again.
4656 *
4657 * The current implementation only resets the essential configurations.
4658 * This needs to be expanded to cover all the visible parts.
4659 */
4660static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4661{
4662 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4663
3e32cb2e
JW
4664 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4665 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4666 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
24d404dc 4667 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4668}
4669
02491447 4670#ifdef CONFIG_MMU
7dc74be0 4671/* Handlers for move charge at task migration. */
854ffa8d 4672static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4673{
05b84301 4674 int ret;
9476db97
JW
4675
4676 /* Try a single bulk charge without reclaim first */
00501b53 4677 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4678 if (!ret) {
854ffa8d 4679 mc.precharge += count;
854ffa8d
DN
4680 return ret;
4681 }
692e7c45 4682 if (ret == -EINTR) {
00501b53 4683 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4684 return ret;
4685 }
9476db97
JW
4686
4687 /* Try charges one by one with reclaim */
854ffa8d 4688 while (count--) {
00501b53 4689 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4690 /*
4691 * In case of failure, any residual charges against
4692 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4693 * later on. However, cancel any charges that are
4694 * bypassed to root right away or they'll be lost.
9476db97 4695 */
692e7c45 4696 if (ret == -EINTR)
00501b53 4697 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4698 if (ret)
38c5d72f 4699 return ret;
854ffa8d 4700 mc.precharge++;
9476db97 4701 cond_resched();
854ffa8d 4702 }
9476db97 4703 return 0;
4ffef5fe
DN
4704}
4705
4706/**
8d32ff84 4707 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4708 * @vma: the vma the pte to be checked belongs
4709 * @addr: the address corresponding to the pte to be checked
4710 * @ptent: the pte to be checked
02491447 4711 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4712 *
4713 * Returns
4714 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4715 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4716 * move charge. if @target is not NULL, the page is stored in target->page
4717 * with extra refcnt got(Callers should handle it).
02491447
DN
4718 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4719 * target for charge migration. if @target is not NULL, the entry is stored
4720 * in target->ent.
4ffef5fe
DN
4721 *
4722 * Called with pte lock held.
4723 */
4ffef5fe
DN
4724union mc_target {
4725 struct page *page;
02491447 4726 swp_entry_t ent;
4ffef5fe
DN
4727};
4728
4ffef5fe 4729enum mc_target_type {
8d32ff84 4730 MC_TARGET_NONE = 0,
4ffef5fe 4731 MC_TARGET_PAGE,
02491447 4732 MC_TARGET_SWAP,
4ffef5fe
DN
4733};
4734
90254a65
DN
4735static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4736 unsigned long addr, pte_t ptent)
4ffef5fe 4737{
90254a65 4738 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4739
90254a65
DN
4740 if (!page || !page_mapped(page))
4741 return NULL;
4742 if (PageAnon(page)) {
4743 /* we don't move shared anon */
4b91355e 4744 if (!move_anon())
90254a65 4745 return NULL;
87946a72
DN
4746 } else if (!move_file())
4747 /* we ignore mapcount for file pages */
90254a65
DN
4748 return NULL;
4749 if (!get_page_unless_zero(page))
4750 return NULL;
4751
4752 return page;
4753}
4754
4b91355e 4755#ifdef CONFIG_SWAP
90254a65
DN
4756static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4757 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4758{
90254a65
DN
4759 struct page *page = NULL;
4760 swp_entry_t ent = pte_to_swp_entry(ptent);
4761
4762 if (!move_anon() || non_swap_entry(ent))
4763 return NULL;
4b91355e
KH
4764 /*
4765 * Because lookup_swap_cache() updates some statistics counter,
4766 * we call find_get_page() with swapper_space directly.
4767 */
33806f06 4768 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4769 if (do_swap_account)
4770 entry->val = ent.val;
4771
4772 return page;
4773}
4b91355e
KH
4774#else
4775static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4776 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4777{
4778 return NULL;
4779}
4780#endif
90254a65 4781
87946a72
DN
4782static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4783 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4784{
4785 struct page *page = NULL;
87946a72
DN
4786 struct address_space *mapping;
4787 pgoff_t pgoff;
4788
4789 if (!vma->vm_file) /* anonymous vma */
4790 return NULL;
4791 if (!move_file())
4792 return NULL;
4793
87946a72 4794 mapping = vma->vm_file->f_mapping;
0661a336 4795 pgoff = linear_page_index(vma, addr);
87946a72
DN
4796
4797 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4798#ifdef CONFIG_SWAP
4799 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4800 if (shmem_mapping(mapping)) {
4801 page = find_get_entry(mapping, pgoff);
4802 if (radix_tree_exceptional_entry(page)) {
4803 swp_entry_t swp = radix_to_swp_entry(page);
4804 if (do_swap_account)
4805 *entry = swp;
4806 page = find_get_page(swap_address_space(swp), swp.val);
4807 }
4808 } else
4809 page = find_get_page(mapping, pgoff);
4810#else
4811 page = find_get_page(mapping, pgoff);
aa3b1895 4812#endif
87946a72
DN
4813 return page;
4814}
4815
8d32ff84 4816static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4817 unsigned long addr, pte_t ptent, union mc_target *target)
4818{
4819 struct page *page = NULL;
8d32ff84 4820 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4821 swp_entry_t ent = { .val = 0 };
4822
4823 if (pte_present(ptent))
4824 page = mc_handle_present_pte(vma, addr, ptent);
4825 else if (is_swap_pte(ptent))
4826 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4827 else if (pte_none(ptent))
87946a72 4828 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4829
4830 if (!page && !ent.val)
8d32ff84 4831 return ret;
02491447 4832 if (page) {
02491447 4833 /*
0a31bc97 4834 * Do only loose check w/o serialization.
1306a85a 4835 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4836 * not under LRU exclusion.
02491447 4837 */
1306a85a 4838 if (page->mem_cgroup == mc.from) {
02491447
DN
4839 ret = MC_TARGET_PAGE;
4840 if (target)
4841 target->page = page;
4842 }
4843 if (!ret || !target)
4844 put_page(page);
4845 }
90254a65
DN
4846 /* There is a swap entry and a page doesn't exist or isn't charged */
4847 if (ent.val && !ret &&
34c00c31 4848 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4849 ret = MC_TARGET_SWAP;
4850 if (target)
4851 target->ent = ent;
4ffef5fe 4852 }
4ffef5fe
DN
4853 return ret;
4854}
4855
12724850
NH
4856#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4857/*
4858 * We don't consider swapping or file mapped pages because THP does not
4859 * support them for now.
4860 * Caller should make sure that pmd_trans_huge(pmd) is true.
4861 */
4862static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4863 unsigned long addr, pmd_t pmd, union mc_target *target)
4864{
4865 struct page *page = NULL;
12724850
NH
4866 enum mc_target_type ret = MC_TARGET_NONE;
4867
4868 page = pmd_page(pmd);
309381fe 4869 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
4870 if (!move_anon())
4871 return ret;
1306a85a 4872 if (page->mem_cgroup == mc.from) {
12724850
NH
4873 ret = MC_TARGET_PAGE;
4874 if (target) {
4875 get_page(page);
4876 target->page = page;
4877 }
4878 }
4879 return ret;
4880}
4881#else
4882static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4883 unsigned long addr, pmd_t pmd, union mc_target *target)
4884{
4885 return MC_TARGET_NONE;
4886}
4887#endif
4888
4ffef5fe
DN
4889static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4890 unsigned long addr, unsigned long end,
4891 struct mm_walk *walk)
4892{
4893 struct vm_area_struct *vma = walk->private;
4894 pte_t *pte;
4895 spinlock_t *ptl;
4896
bf929152 4897 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4898 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4899 mc.precharge += HPAGE_PMD_NR;
bf929152 4900 spin_unlock(ptl);
1a5a9906 4901 return 0;
12724850 4902 }
03319327 4903
45f83cef
AA
4904 if (pmd_trans_unstable(pmd))
4905 return 0;
4ffef5fe
DN
4906 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4907 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4908 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4909 mc.precharge++; /* increment precharge temporarily */
4910 pte_unmap_unlock(pte - 1, ptl);
4911 cond_resched();
4912
7dc74be0
DN
4913 return 0;
4914}
4915
4ffef5fe
DN
4916static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4917{
4918 unsigned long precharge;
4919 struct vm_area_struct *vma;
4920
dfe076b0 4921 down_read(&mm->mmap_sem);
4ffef5fe
DN
4922 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4923 struct mm_walk mem_cgroup_count_precharge_walk = {
4924 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4925 .mm = mm,
4926 .private = vma,
4927 };
4928 if (is_vm_hugetlb_page(vma))
4929 continue;
4ffef5fe
DN
4930 walk_page_range(vma->vm_start, vma->vm_end,
4931 &mem_cgroup_count_precharge_walk);
4932 }
dfe076b0 4933 up_read(&mm->mmap_sem);
4ffef5fe
DN
4934
4935 precharge = mc.precharge;
4936 mc.precharge = 0;
4937
4938 return precharge;
4939}
4940
4ffef5fe
DN
4941static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4942{
dfe076b0
DN
4943 unsigned long precharge = mem_cgroup_count_precharge(mm);
4944
4945 VM_BUG_ON(mc.moving_task);
4946 mc.moving_task = current;
4947 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4948}
4949
dfe076b0
DN
4950/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4951static void __mem_cgroup_clear_mc(void)
4ffef5fe 4952{
2bd9bb20
KH
4953 struct mem_cgroup *from = mc.from;
4954 struct mem_cgroup *to = mc.to;
4955
4ffef5fe 4956 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4957 if (mc.precharge) {
00501b53 4958 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4959 mc.precharge = 0;
4960 }
4961 /*
4962 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4963 * we must uncharge here.
4964 */
4965 if (mc.moved_charge) {
00501b53 4966 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4967 mc.moved_charge = 0;
4ffef5fe 4968 }
483c30b5
DN
4969 /* we must fixup refcnts and charges */
4970 if (mc.moved_swap) {
483c30b5 4971 /* uncharge swap account from the old cgroup */
ce00a967 4972 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4973 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4974
05b84301 4975 /*
3e32cb2e
JW
4976 * we charged both to->memory and to->memsw, so we
4977 * should uncharge to->memory.
05b84301 4978 */
ce00a967 4979 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4980 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4981
e8ea14cc 4982 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4983
4050377b 4984 /* we've already done css_get(mc.to) */
483c30b5
DN
4985 mc.moved_swap = 0;
4986 }
dfe076b0
DN
4987 memcg_oom_recover(from);
4988 memcg_oom_recover(to);
4989 wake_up_all(&mc.waitq);
4990}
4991
4992static void mem_cgroup_clear_mc(void)
4993{
dfe076b0
DN
4994 /*
4995 * we must clear moving_task before waking up waiters at the end of
4996 * task migration.
4997 */
4998 mc.moving_task = NULL;
4999 __mem_cgroup_clear_mc();
2bd9bb20 5000 spin_lock(&mc.lock);
4ffef5fe
DN
5001 mc.from = NULL;
5002 mc.to = NULL;
2bd9bb20 5003 spin_unlock(&mc.lock);
4ffef5fe
DN
5004}
5005
eb95419b 5006static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5007 struct cgroup_taskset *tset)
7dc74be0 5008{
2f7ee569 5009 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5010 int ret = 0;
eb95419b 5011 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5012 unsigned long move_charge_at_immigrate;
7dc74be0 5013
ee5e8472
GC
5014 /*
5015 * We are now commited to this value whatever it is. Changes in this
5016 * tunable will only affect upcoming migrations, not the current one.
5017 * So we need to save it, and keep it going.
5018 */
5019 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5020 if (move_charge_at_immigrate) {
7dc74be0
DN
5021 struct mm_struct *mm;
5022 struct mem_cgroup *from = mem_cgroup_from_task(p);
5023
c0ff4b85 5024 VM_BUG_ON(from == memcg);
7dc74be0
DN
5025
5026 mm = get_task_mm(p);
5027 if (!mm)
5028 return 0;
7dc74be0 5029 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5030 if (mm->owner == p) {
5031 VM_BUG_ON(mc.from);
5032 VM_BUG_ON(mc.to);
5033 VM_BUG_ON(mc.precharge);
854ffa8d 5034 VM_BUG_ON(mc.moved_charge);
483c30b5 5035 VM_BUG_ON(mc.moved_swap);
247b1447 5036
2bd9bb20 5037 spin_lock(&mc.lock);
4ffef5fe 5038 mc.from = from;
c0ff4b85 5039 mc.to = memcg;
ee5e8472 5040 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5041 spin_unlock(&mc.lock);
dfe076b0 5042 /* We set mc.moving_task later */
4ffef5fe
DN
5043
5044 ret = mem_cgroup_precharge_mc(mm);
5045 if (ret)
5046 mem_cgroup_clear_mc();
dfe076b0
DN
5047 }
5048 mmput(mm);
7dc74be0
DN
5049 }
5050 return ret;
5051}
5052
eb95419b 5053static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5054 struct cgroup_taskset *tset)
7dc74be0 5055{
4e2f245d
JW
5056 if (mc.to)
5057 mem_cgroup_clear_mc();
7dc74be0
DN
5058}
5059
4ffef5fe
DN
5060static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5061 unsigned long addr, unsigned long end,
5062 struct mm_walk *walk)
7dc74be0 5063{
4ffef5fe
DN
5064 int ret = 0;
5065 struct vm_area_struct *vma = walk->private;
5066 pte_t *pte;
5067 spinlock_t *ptl;
12724850
NH
5068 enum mc_target_type target_type;
5069 union mc_target target;
5070 struct page *page;
4ffef5fe 5071
12724850
NH
5072 /*
5073 * We don't take compound_lock() here but no race with splitting thp
5074 * happens because:
5075 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5076 * under splitting, which means there's no concurrent thp split,
5077 * - if another thread runs into split_huge_page() just after we
5078 * entered this if-block, the thread must wait for page table lock
5079 * to be unlocked in __split_huge_page_splitting(), where the main
5080 * part of thp split is not executed yet.
5081 */
bf929152 5082 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5083 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5084 spin_unlock(ptl);
12724850
NH
5085 return 0;
5086 }
5087 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5088 if (target_type == MC_TARGET_PAGE) {
5089 page = target.page;
5090 if (!isolate_lru_page(page)) {
12724850 5091 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5092 mc.from, mc.to)) {
12724850
NH
5093 mc.precharge -= HPAGE_PMD_NR;
5094 mc.moved_charge += HPAGE_PMD_NR;
5095 }
5096 putback_lru_page(page);
5097 }
5098 put_page(page);
5099 }
bf929152 5100 spin_unlock(ptl);
1a5a9906 5101 return 0;
12724850
NH
5102 }
5103
45f83cef
AA
5104 if (pmd_trans_unstable(pmd))
5105 return 0;
4ffef5fe
DN
5106retry:
5107 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5108 for (; addr != end; addr += PAGE_SIZE) {
5109 pte_t ptent = *(pte++);
02491447 5110 swp_entry_t ent;
4ffef5fe
DN
5111
5112 if (!mc.precharge)
5113 break;
5114
8d32ff84 5115 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5116 case MC_TARGET_PAGE:
5117 page = target.page;
5118 if (isolate_lru_page(page))
5119 goto put;
1306a85a 5120 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5121 mc.precharge--;
854ffa8d
DN
5122 /* we uncharge from mc.from later. */
5123 mc.moved_charge++;
4ffef5fe
DN
5124 }
5125 putback_lru_page(page);
8d32ff84 5126put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5127 put_page(page);
5128 break;
02491447
DN
5129 case MC_TARGET_SWAP:
5130 ent = target.ent;
e91cbb42 5131 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5132 mc.precharge--;
483c30b5
DN
5133 /* we fixup refcnts and charges later. */
5134 mc.moved_swap++;
5135 }
02491447 5136 break;
4ffef5fe
DN
5137 default:
5138 break;
5139 }
5140 }
5141 pte_unmap_unlock(pte - 1, ptl);
5142 cond_resched();
5143
5144 if (addr != end) {
5145 /*
5146 * We have consumed all precharges we got in can_attach().
5147 * We try charge one by one, but don't do any additional
5148 * charges to mc.to if we have failed in charge once in attach()
5149 * phase.
5150 */
854ffa8d 5151 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5152 if (!ret)
5153 goto retry;
5154 }
5155
5156 return ret;
5157}
5158
5159static void mem_cgroup_move_charge(struct mm_struct *mm)
5160{
5161 struct vm_area_struct *vma;
5162
5163 lru_add_drain_all();
312722cb
JW
5164 /*
5165 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5166 * move_lock while we're moving its pages to another memcg.
5167 * Then wait for already started RCU-only updates to finish.
5168 */
5169 atomic_inc(&mc.from->moving_account);
5170 synchronize_rcu();
dfe076b0
DN
5171retry:
5172 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5173 /*
5174 * Someone who are holding the mmap_sem might be waiting in
5175 * waitq. So we cancel all extra charges, wake up all waiters,
5176 * and retry. Because we cancel precharges, we might not be able
5177 * to move enough charges, but moving charge is a best-effort
5178 * feature anyway, so it wouldn't be a big problem.
5179 */
5180 __mem_cgroup_clear_mc();
5181 cond_resched();
5182 goto retry;
5183 }
4ffef5fe
DN
5184 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5185 int ret;
5186 struct mm_walk mem_cgroup_move_charge_walk = {
5187 .pmd_entry = mem_cgroup_move_charge_pte_range,
5188 .mm = mm,
5189 .private = vma,
5190 };
5191 if (is_vm_hugetlb_page(vma))
5192 continue;
4ffef5fe
DN
5193 ret = walk_page_range(vma->vm_start, vma->vm_end,
5194 &mem_cgroup_move_charge_walk);
5195 if (ret)
5196 /*
5197 * means we have consumed all precharges and failed in
5198 * doing additional charge. Just abandon here.
5199 */
5200 break;
5201 }
dfe076b0 5202 up_read(&mm->mmap_sem);
312722cb 5203 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5204}
5205
eb95419b 5206static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5207 struct cgroup_taskset *tset)
67e465a7 5208{
2f7ee569 5209 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5210 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5211
dfe076b0 5212 if (mm) {
a433658c
KM
5213 if (mc.to)
5214 mem_cgroup_move_charge(mm);
dfe076b0
DN
5215 mmput(mm);
5216 }
a433658c
KM
5217 if (mc.to)
5218 mem_cgroup_clear_mc();
67e465a7 5219}
5cfb80a7 5220#else /* !CONFIG_MMU */
eb95419b 5221static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5222 struct cgroup_taskset *tset)
5cfb80a7
DN
5223{
5224 return 0;
5225}
eb95419b 5226static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5227 struct cgroup_taskset *tset)
5cfb80a7
DN
5228{
5229}
eb95419b 5230static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5231 struct cgroup_taskset *tset)
5cfb80a7
DN
5232{
5233}
5234#endif
67e465a7 5235
f00baae7
TH
5236/*
5237 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5238 * to verify whether we're attached to the default hierarchy on each mount
5239 * attempt.
f00baae7 5240 */
eb95419b 5241static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5242{
5243 /*
aa6ec29b 5244 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5245 * guarantees that @root doesn't have any children, so turning it
5246 * on for the root memcg is enough.
5247 */
aa6ec29b 5248 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5249 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5250}
5251
073219e9 5252struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5253 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5254 .css_online = mem_cgroup_css_online,
92fb9748
TH
5255 .css_offline = mem_cgroup_css_offline,
5256 .css_free = mem_cgroup_css_free,
1ced953b 5257 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5258 .can_attach = mem_cgroup_can_attach,
5259 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5260 .attach = mem_cgroup_move_task,
f00baae7 5261 .bind = mem_cgroup_bind,
5577964e 5262 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5263 .early_init = 0,
8cdea7c0 5264};
c077719b 5265
c255a458 5266#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5267static int __init enable_swap_account(char *s)
5268{
a2c8990a 5269 if (!strcmp(s, "1"))
a42c390c 5270 really_do_swap_account = 1;
a2c8990a 5271 else if (!strcmp(s, "0"))
a42c390c
MH
5272 really_do_swap_account = 0;
5273 return 1;
5274}
a2c8990a 5275__setup("swapaccount=", enable_swap_account);
c077719b 5276
2d11085e
MH
5277static void __init memsw_file_init(void)
5278{
2cf669a5
TH
5279 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5280 memsw_cgroup_files));
6acc8b02
MH
5281}
5282
5283static void __init enable_swap_cgroup(void)
5284{
5285 if (!mem_cgroup_disabled() && really_do_swap_account) {
5286 do_swap_account = 1;
5287 memsw_file_init();
5288 }
2d11085e 5289}
6acc8b02 5290
2d11085e 5291#else
6acc8b02 5292static void __init enable_swap_cgroup(void)
2d11085e
MH
5293{
5294}
c077719b 5295#endif
2d11085e 5296
0a31bc97
JW
5297#ifdef CONFIG_MEMCG_SWAP
5298/**
5299 * mem_cgroup_swapout - transfer a memsw charge to swap
5300 * @page: page whose memsw charge to transfer
5301 * @entry: swap entry to move the charge to
5302 *
5303 * Transfer the memsw charge of @page to @entry.
5304 */
5305void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5306{
7bdd143c 5307 struct mem_cgroup *memcg;
0a31bc97
JW
5308 unsigned short oldid;
5309
5310 VM_BUG_ON_PAGE(PageLRU(page), page);
5311 VM_BUG_ON_PAGE(page_count(page), page);
5312
5313 if (!do_swap_account)
5314 return;
5315
1306a85a 5316 memcg = page->mem_cgroup;
0a31bc97
JW
5317
5318 /* Readahead page, never charged */
29833315 5319 if (!memcg)
0a31bc97
JW
5320 return;
5321
7bdd143c 5322 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5323 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5324 mem_cgroup_swap_statistics(memcg, true);
5325
1306a85a 5326 page->mem_cgroup = NULL;
0a31bc97 5327
7bdd143c
JW
5328 if (!mem_cgroup_is_root(memcg))
5329 page_counter_uncharge(&memcg->memory, 1);
5330
5331 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5332 VM_BUG_ON(!irqs_disabled());
0a31bc97 5333
7bdd143c
JW
5334 mem_cgroup_charge_statistics(memcg, page, -1);
5335 memcg_check_events(memcg, page);
0a31bc97
JW
5336}
5337
5338/**
5339 * mem_cgroup_uncharge_swap - uncharge a swap entry
5340 * @entry: swap entry to uncharge
5341 *
5342 * Drop the memsw charge associated with @entry.
5343 */
5344void mem_cgroup_uncharge_swap(swp_entry_t entry)
5345{
5346 struct mem_cgroup *memcg;
5347 unsigned short id;
5348
5349 if (!do_swap_account)
5350 return;
5351
5352 id = swap_cgroup_record(entry, 0);
5353 rcu_read_lock();
5354 memcg = mem_cgroup_lookup(id);
5355 if (memcg) {
ce00a967 5356 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5357 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5358 mem_cgroup_swap_statistics(memcg, false);
5359 css_put(&memcg->css);
5360 }
5361 rcu_read_unlock();
5362}
5363#endif
5364
00501b53
JW
5365/**
5366 * mem_cgroup_try_charge - try charging a page
5367 * @page: page to charge
5368 * @mm: mm context of the victim
5369 * @gfp_mask: reclaim mode
5370 * @memcgp: charged memcg return
5371 *
5372 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5373 * pages according to @gfp_mask if necessary.
5374 *
5375 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5376 * Otherwise, an error code is returned.
5377 *
5378 * After page->mapping has been set up, the caller must finalize the
5379 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5380 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5381 */
5382int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5383 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5384{
5385 struct mem_cgroup *memcg = NULL;
5386 unsigned int nr_pages = 1;
5387 int ret = 0;
5388
5389 if (mem_cgroup_disabled())
5390 goto out;
5391
5392 if (PageSwapCache(page)) {
00501b53
JW
5393 /*
5394 * Every swap fault against a single page tries to charge the
5395 * page, bail as early as possible. shmem_unuse() encounters
5396 * already charged pages, too. The USED bit is protected by
5397 * the page lock, which serializes swap cache removal, which
5398 * in turn serializes uncharging.
5399 */
1306a85a 5400 if (page->mem_cgroup)
00501b53
JW
5401 goto out;
5402 }
5403
5404 if (PageTransHuge(page)) {
5405 nr_pages <<= compound_order(page);
5406 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5407 }
5408
5409 if (do_swap_account && PageSwapCache(page))
5410 memcg = try_get_mem_cgroup_from_page(page);
5411 if (!memcg)
5412 memcg = get_mem_cgroup_from_mm(mm);
5413
5414 ret = try_charge(memcg, gfp_mask, nr_pages);
5415
5416 css_put(&memcg->css);
5417
5418 if (ret == -EINTR) {
5419 memcg = root_mem_cgroup;
5420 ret = 0;
5421 }
5422out:
5423 *memcgp = memcg;
5424 return ret;
5425}
5426
5427/**
5428 * mem_cgroup_commit_charge - commit a page charge
5429 * @page: page to charge
5430 * @memcg: memcg to charge the page to
5431 * @lrucare: page might be on LRU already
5432 *
5433 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5434 * after page->mapping has been set up. This must happen atomically
5435 * as part of the page instantiation, i.e. under the page table lock
5436 * for anonymous pages, under the page lock for page and swap cache.
5437 *
5438 * In addition, the page must not be on the LRU during the commit, to
5439 * prevent racing with task migration. If it might be, use @lrucare.
5440 *
5441 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5442 */
5443void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5444 bool lrucare)
5445{
5446 unsigned int nr_pages = 1;
5447
5448 VM_BUG_ON_PAGE(!page->mapping, page);
5449 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5450
5451 if (mem_cgroup_disabled())
5452 return;
5453 /*
5454 * Swap faults will attempt to charge the same page multiple
5455 * times. But reuse_swap_page() might have removed the page
5456 * from swapcache already, so we can't check PageSwapCache().
5457 */
5458 if (!memcg)
5459 return;
5460
6abb5a86
JW
5461 commit_charge(page, memcg, lrucare);
5462
00501b53
JW
5463 if (PageTransHuge(page)) {
5464 nr_pages <<= compound_order(page);
5465 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5466 }
5467
6abb5a86
JW
5468 local_irq_disable();
5469 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5470 memcg_check_events(memcg, page);
5471 local_irq_enable();
00501b53
JW
5472
5473 if (do_swap_account && PageSwapCache(page)) {
5474 swp_entry_t entry = { .val = page_private(page) };
5475 /*
5476 * The swap entry might not get freed for a long time,
5477 * let's not wait for it. The page already received a
5478 * memory+swap charge, drop the swap entry duplicate.
5479 */
5480 mem_cgroup_uncharge_swap(entry);
5481 }
5482}
5483
5484/**
5485 * mem_cgroup_cancel_charge - cancel a page charge
5486 * @page: page to charge
5487 * @memcg: memcg to charge the page to
5488 *
5489 * Cancel a charge transaction started by mem_cgroup_try_charge().
5490 */
5491void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5492{
5493 unsigned int nr_pages = 1;
5494
5495 if (mem_cgroup_disabled())
5496 return;
5497 /*
5498 * Swap faults will attempt to charge the same page multiple
5499 * times. But reuse_swap_page() might have removed the page
5500 * from swapcache already, so we can't check PageSwapCache().
5501 */
5502 if (!memcg)
5503 return;
5504
5505 if (PageTransHuge(page)) {
5506 nr_pages <<= compound_order(page);
5507 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5508 }
5509
5510 cancel_charge(memcg, nr_pages);
5511}
5512
747db954 5513static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5514 unsigned long nr_anon, unsigned long nr_file,
5515 unsigned long nr_huge, struct page *dummy_page)
5516{
18eca2e6 5517 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5518 unsigned long flags;
5519
ce00a967 5520 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5521 page_counter_uncharge(&memcg->memory, nr_pages);
5522 if (do_swap_account)
5523 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5524 memcg_oom_recover(memcg);
5525 }
747db954
JW
5526
5527 local_irq_save(flags);
5528 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5529 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5530 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5531 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5532 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5533 memcg_check_events(memcg, dummy_page);
5534 local_irq_restore(flags);
e8ea14cc
JW
5535
5536 if (!mem_cgroup_is_root(memcg))
18eca2e6 5537 css_put_many(&memcg->css, nr_pages);
747db954
JW
5538}
5539
5540static void uncharge_list(struct list_head *page_list)
5541{
5542 struct mem_cgroup *memcg = NULL;
747db954
JW
5543 unsigned long nr_anon = 0;
5544 unsigned long nr_file = 0;
5545 unsigned long nr_huge = 0;
5546 unsigned long pgpgout = 0;
747db954
JW
5547 struct list_head *next;
5548 struct page *page;
5549
5550 next = page_list->next;
5551 do {
5552 unsigned int nr_pages = 1;
747db954
JW
5553
5554 page = list_entry(next, struct page, lru);
5555 next = page->lru.next;
5556
5557 VM_BUG_ON_PAGE(PageLRU(page), page);
5558 VM_BUG_ON_PAGE(page_count(page), page);
5559
1306a85a 5560 if (!page->mem_cgroup)
747db954
JW
5561 continue;
5562
5563 /*
5564 * Nobody should be changing or seriously looking at
1306a85a 5565 * page->mem_cgroup at this point, we have fully
29833315 5566 * exclusive access to the page.
747db954
JW
5567 */
5568
1306a85a 5569 if (memcg != page->mem_cgroup) {
747db954 5570 if (memcg) {
18eca2e6
JW
5571 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5572 nr_huge, page);
5573 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5574 }
1306a85a 5575 memcg = page->mem_cgroup;
747db954
JW
5576 }
5577
5578 if (PageTransHuge(page)) {
5579 nr_pages <<= compound_order(page);
5580 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5581 nr_huge += nr_pages;
5582 }
5583
5584 if (PageAnon(page))
5585 nr_anon += nr_pages;
5586 else
5587 nr_file += nr_pages;
5588
1306a85a 5589 page->mem_cgroup = NULL;
747db954
JW
5590
5591 pgpgout++;
5592 } while (next != page_list);
5593
5594 if (memcg)
18eca2e6
JW
5595 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5596 nr_huge, page);
747db954
JW
5597}
5598
0a31bc97
JW
5599/**
5600 * mem_cgroup_uncharge - uncharge a page
5601 * @page: page to uncharge
5602 *
5603 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5604 * mem_cgroup_commit_charge().
5605 */
5606void mem_cgroup_uncharge(struct page *page)
5607{
0a31bc97
JW
5608 if (mem_cgroup_disabled())
5609 return;
5610
747db954 5611 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5612 if (!page->mem_cgroup)
0a31bc97
JW
5613 return;
5614
747db954
JW
5615 INIT_LIST_HEAD(&page->lru);
5616 uncharge_list(&page->lru);
5617}
0a31bc97 5618
747db954
JW
5619/**
5620 * mem_cgroup_uncharge_list - uncharge a list of page
5621 * @page_list: list of pages to uncharge
5622 *
5623 * Uncharge a list of pages previously charged with
5624 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5625 */
5626void mem_cgroup_uncharge_list(struct list_head *page_list)
5627{
5628 if (mem_cgroup_disabled())
5629 return;
0a31bc97 5630
747db954
JW
5631 if (!list_empty(page_list))
5632 uncharge_list(page_list);
0a31bc97
JW
5633}
5634
5635/**
5636 * mem_cgroup_migrate - migrate a charge to another page
5637 * @oldpage: currently charged page
5638 * @newpage: page to transfer the charge to
f5e03a49 5639 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5640 *
5641 * Migrate the charge from @oldpage to @newpage.
5642 *
5643 * Both pages must be locked, @newpage->mapping must be set up.
5644 */
5645void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5646 bool lrucare)
5647{
29833315 5648 struct mem_cgroup *memcg;
0a31bc97
JW
5649 int isolated;
5650
5651 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5652 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5653 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5654 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5655 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5656 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5657 newpage);
0a31bc97
JW
5658
5659 if (mem_cgroup_disabled())
5660 return;
5661
5662 /* Page cache replacement: new page already charged? */
1306a85a 5663 if (newpage->mem_cgroup)
0a31bc97
JW
5664 return;
5665
7d5e3245
JW
5666 /*
5667 * Swapcache readahead pages can get migrated before being
5668 * charged, and migration from compaction can happen to an
5669 * uncharged page when the PFN walker finds a page that
5670 * reclaim just put back on the LRU but has not released yet.
5671 */
1306a85a 5672 memcg = oldpage->mem_cgroup;
29833315 5673 if (!memcg)
0a31bc97
JW
5674 return;
5675
0a31bc97
JW
5676 if (lrucare)
5677 lock_page_lru(oldpage, &isolated);
5678
1306a85a 5679 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5680
5681 if (lrucare)
5682 unlock_page_lru(oldpage, isolated);
5683
29833315 5684 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5685}
5686
2d11085e 5687/*
1081312f
MH
5688 * subsys_initcall() for memory controller.
5689 *
5690 * Some parts like hotcpu_notifier() have to be initialized from this context
5691 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5692 * everything that doesn't depend on a specific mem_cgroup structure should
5693 * be initialized from here.
2d11085e
MH
5694 */
5695static int __init mem_cgroup_init(void)
5696{
5697 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 5698 enable_swap_cgroup();
bb4cc1a8 5699 mem_cgroup_soft_limit_tree_init();
e4777496 5700 memcg_stock_init();
2d11085e
MH
5701 return 0;
5702}
5703subsys_initcall(mem_cgroup_init);
This page took 1.426581 seconds and 5 git commands to generate.