memcg: fix VM_BUG_ON from page migration
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
66e1707b
BS
29#include <linux/swap.h>
30#include <linux/spinlock.h>
31#include <linux/fs.h>
d2ceb9b7 32#include <linux/seq_file.h>
8cdea7c0 33
8697d331
BS
34#include <asm/uaccess.h>
35
8cdea7c0 36struct cgroup_subsys mem_cgroup_subsys;
66e1707b 37static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
8cdea7c0 38
d52aa412
KH
39/*
40 * Statistics for memory cgroup.
41 */
42enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50};
51
52struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54} ____cacheline_aligned_in_smp;
55
56struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58};
59
60/*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65{
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68}
69
70static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72{
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78}
79
6d12e2d8
KH
80/*
81 * per-zone information in memory controller.
82 */
83
84enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89};
90
91struct mem_cgroup_per_zone {
072c56c1
KH
92 /*
93 * spin_lock to protect the per cgroup LRU
94 */
95 spinlock_t lru_lock;
1ecaab2b
KH
96 struct list_head active_list;
97 struct list_head inactive_list;
6d12e2d8
KH
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
99};
100/* Macro for accessing counter */
101#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
102
103struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105};
106
107struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109};
110
8cdea7c0
BS
111/*
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
116 *
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
8cdea7c0
BS
121 */
122struct mem_cgroup {
123 struct cgroup_subsys_state css;
124 /*
125 * the counter to account for memory usage
126 */
127 struct res_counter res;
78fb7466
PE
128 /*
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
78fb7466 131 */
6d12e2d8 132 struct mem_cgroup_lru_info info;
072c56c1 133
6c48a1d0 134 int prev_priority; /* for recording reclaim priority */
d52aa412
KH
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
8cdea7c0
BS
139};
140
8a9f3ccd
BS
141/*
142 * We use the lower bit of the page->page_cgroup pointer as a bit spin
143 * lock. We need to ensure that page->page_cgroup is atleast two
144 * byte aligned (based on comments from Nick Piggin)
145 */
146#define PAGE_CGROUP_LOCK_BIT 0x0
147#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
148
8cdea7c0
BS
149/*
150 * A page_cgroup page is associated with every page descriptor. The
151 * page_cgroup helps us identify information about the cgroup
152 */
153struct page_cgroup {
154 struct list_head lru; /* per cgroup LRU list */
155 struct page *page;
156 struct mem_cgroup *mem_cgroup;
8a9f3ccd
BS
157 atomic_t ref_cnt; /* Helpful when pages move b/w */
158 /* mapped and cached states */
217bc319 159 int flags;
8cdea7c0 160};
217bc319 161#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
3564c7c4 162#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
8cdea7c0 163
c0149530
KH
164static inline int page_cgroup_nid(struct page_cgroup *pc)
165{
166 return page_to_nid(pc->page);
167}
168
169static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
170{
171 return page_zonenum(pc->page);
172}
173
8697d331
BS
174enum {
175 MEM_CGROUP_TYPE_UNSPEC = 0,
176 MEM_CGROUP_TYPE_MAPPED,
177 MEM_CGROUP_TYPE_CACHED,
178 MEM_CGROUP_TYPE_ALL,
179 MEM_CGROUP_TYPE_MAX,
180};
181
217bc319
KH
182enum charge_type {
183 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
184 MEM_CGROUP_CHARGE_TYPE_MAPPED,
185};
186
6d12e2d8 187
d52aa412
KH
188/*
189 * Always modified under lru lock. Then, not necessary to preempt_disable()
190 */
191static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
192 bool charge)
193{
194 int val = (charge)? 1 : -1;
195 struct mem_cgroup_stat *stat = &mem->stat;
196 VM_BUG_ON(!irqs_disabled());
197
198 if (flags & PAGE_CGROUP_FLAG_CACHE)
199 __mem_cgroup_stat_add_safe(stat,
200 MEM_CGROUP_STAT_CACHE, val);
201 else
202 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
6d12e2d8
KH
203}
204
205static inline struct mem_cgroup_per_zone *
206mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
207{
208 BUG_ON(!mem->info.nodeinfo[nid]);
209 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
210}
211
212static inline struct mem_cgroup_per_zone *
213page_cgroup_zoneinfo(struct page_cgroup *pc)
214{
215 struct mem_cgroup *mem = pc->mem_cgroup;
216 int nid = page_cgroup_nid(pc);
217 int zid = page_cgroup_zid(pc);
d52aa412 218
6d12e2d8
KH
219 return mem_cgroup_zoneinfo(mem, nid, zid);
220}
221
222static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
223 enum mem_cgroup_zstat_index idx)
224{
225 int nid, zid;
226 struct mem_cgroup_per_zone *mz;
227 u64 total = 0;
228
229 for_each_online_node(nid)
230 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
231 mz = mem_cgroup_zoneinfo(mem, nid, zid);
232 total += MEM_CGROUP_ZSTAT(mz, idx);
233 }
234 return total;
d52aa412
KH
235}
236
8697d331 237static struct mem_cgroup init_mem_cgroup;
8cdea7c0
BS
238
239static inline
240struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
241{
242 return container_of(cgroup_subsys_state(cont,
243 mem_cgroup_subsys_id), struct mem_cgroup,
244 css);
245}
246
78fb7466
PE
247static inline
248struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
249{
250 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
251 struct mem_cgroup, css);
252}
253
254void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
255{
256 struct mem_cgroup *mem;
257
258 mem = mem_cgroup_from_task(p);
259 css_get(&mem->css);
260 mm->mem_cgroup = mem;
261}
262
263void mm_free_cgroup(struct mm_struct *mm)
264{
265 css_put(&mm->mem_cgroup->css);
266}
267
8a9f3ccd
BS
268static inline int page_cgroup_locked(struct page *page)
269{
270 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
271 &page->page_cgroup);
272}
273
78fb7466
PE
274void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
275{
8a9f3ccd
BS
276 int locked;
277
278 /*
279 * While resetting the page_cgroup we might not hold the
280 * page_cgroup lock. free_hot_cold_page() is an example
281 * of such a scenario
282 */
283 if (pc)
284 VM_BUG_ON(!page_cgroup_locked(page));
285 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
286 page->page_cgroup = ((unsigned long)pc | locked);
78fb7466
PE
287}
288
289struct page_cgroup *page_get_page_cgroup(struct page *page)
290{
8a9f3ccd
BS
291 return (struct page_cgroup *)
292 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
293}
294
8697d331 295static void __always_inline lock_page_cgroup(struct page *page)
8a9f3ccd
BS
296{
297 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
298 VM_BUG_ON(!page_cgroup_locked(page));
299}
300
8697d331 301static void __always_inline unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
302{
303 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
304}
305
9175e031
KH
306/*
307 * Tie new page_cgroup to struct page under lock_page_cgroup()
308 * This can fail if the page has been tied to a page_cgroup.
309 * If success, returns 0.
310 */
d52aa412
KH
311static int page_cgroup_assign_new_page_cgroup(struct page *page,
312 struct page_cgroup *pc)
9175e031
KH
313{
314 int ret = 0;
315
316 lock_page_cgroup(page);
317 if (!page_get_page_cgroup(page))
318 page_assign_page_cgroup(page, pc);
319 else /* A page is tied to other pc. */
320 ret = 1;
321 unlock_page_cgroup(page);
322 return ret;
323}
324
325/*
326 * Clear page->page_cgroup member under lock_page_cgroup().
327 * If given "pc" value is different from one page->page_cgroup,
328 * page->cgroup is not cleared.
329 * Returns a value of page->page_cgroup at lock taken.
330 * A can can detect failure of clearing by following
331 * clear_page_cgroup(page, pc) == pc
332 */
333
d52aa412
KH
334static struct page_cgroup *clear_page_cgroup(struct page *page,
335 struct page_cgroup *pc)
9175e031
KH
336{
337 struct page_cgroup *ret;
338 /* lock and clear */
339 lock_page_cgroup(page);
340 ret = page_get_page_cgroup(page);
341 if (likely(ret == pc))
342 page_assign_page_cgroup(page, NULL);
343 unlock_page_cgroup(page);
344 return ret;
345}
346
6d12e2d8
KH
347static void __mem_cgroup_remove_list(struct page_cgroup *pc)
348{
349 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
350 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
351
352 if (from)
353 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
354 else
355 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
356
357 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
358 list_del_init(&pc->lru);
359}
360
361static void __mem_cgroup_add_list(struct page_cgroup *pc)
362{
363 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
364 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
365
366 if (!to) {
367 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
1ecaab2b 368 list_add(&pc->lru, &mz->inactive_list);
6d12e2d8
KH
369 } else {
370 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
1ecaab2b 371 list_add(&pc->lru, &mz->active_list);
6d12e2d8
KH
372 }
373 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
374}
375
8697d331 376static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b 377{
6d12e2d8
KH
378 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
379 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
380
381 if (from)
382 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
383 else
384 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
385
3564c7c4 386 if (active) {
6d12e2d8 387 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
3564c7c4 388 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 389 list_move(&pc->lru, &mz->active_list);
3564c7c4 390 } else {
6d12e2d8 391 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
3564c7c4 392 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 393 list_move(&pc->lru, &mz->inactive_list);
3564c7c4 394 }
66e1707b
BS
395}
396
4c4a2214
DR
397int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
398{
399 int ret;
400
401 task_lock(task);
bd845e38 402 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
403 task_unlock(task);
404 return ret;
405}
406
66e1707b
BS
407/*
408 * This routine assumes that the appropriate zone's lru lock is already held
409 */
427d5416 410void mem_cgroup_move_lists(struct page *page, bool active)
66e1707b 411{
427d5416 412 struct page_cgroup *pc;
072c56c1
KH
413 struct mem_cgroup_per_zone *mz;
414 unsigned long flags;
415
427d5416 416 pc = page_get_page_cgroup(page);
66e1707b
BS
417 if (!pc)
418 return;
419
072c56c1
KH
420 mz = page_cgroup_zoneinfo(pc);
421 spin_lock_irqsave(&mz->lru_lock, flags);
66e1707b 422 __mem_cgroup_move_lists(pc, active);
072c56c1 423 spin_unlock_irqrestore(&mz->lru_lock, flags);
66e1707b
BS
424}
425
58ae83db
KH
426/*
427 * Calculate mapped_ratio under memory controller. This will be used in
428 * vmscan.c for deteremining we have to reclaim mapped pages.
429 */
430int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
431{
432 long total, rss;
433
434 /*
435 * usage is recorded in bytes. But, here, we assume the number of
436 * physical pages can be represented by "long" on any arch.
437 */
438 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
439 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
440 return (int)((rss * 100L) / total);
441}
5932f367
KH
442/*
443 * This function is called from vmscan.c. In page reclaiming loop. balance
444 * between active and inactive list is calculated. For memory controller
445 * page reclaiming, we should use using mem_cgroup's imbalance rather than
446 * zone's global lru imbalance.
447 */
448long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
449{
450 unsigned long active, inactive;
451 /* active and inactive are the number of pages. 'long' is ok.*/
452 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
453 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
454 return (long) (active / (inactive + 1));
455}
58ae83db 456
6c48a1d0
KH
457/*
458 * prev_priority control...this will be used in memory reclaim path.
459 */
460int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
461{
462 return mem->prev_priority;
463}
464
465void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
466{
467 if (priority < mem->prev_priority)
468 mem->prev_priority = priority;
469}
470
471void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
472{
473 mem->prev_priority = priority;
474}
475
cc38108e
KH
476/*
477 * Calculate # of pages to be scanned in this priority/zone.
478 * See also vmscan.c
479 *
480 * priority starts from "DEF_PRIORITY" and decremented in each loop.
481 * (see include/linux/mmzone.h)
482 */
483
484long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
485 struct zone *zone, int priority)
486{
487 long nr_active;
488 int nid = zone->zone_pgdat->node_id;
489 int zid = zone_idx(zone);
490 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
491
492 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
493 return (nr_active >> priority);
494}
495
496long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
497 struct zone *zone, int priority)
498{
499 long nr_inactive;
500 int nid = zone->zone_pgdat->node_id;
501 int zid = zone_idx(zone);
502 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
503
504 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
505
506 return (nr_inactive >> priority);
507}
508
66e1707b
BS
509unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
510 struct list_head *dst,
511 unsigned long *scanned, int order,
512 int mode, struct zone *z,
513 struct mem_cgroup *mem_cont,
514 int active)
515{
516 unsigned long nr_taken = 0;
517 struct page *page;
518 unsigned long scan;
519 LIST_HEAD(pc_list);
520 struct list_head *src;
ff7283fa 521 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
522 int nid = z->zone_pgdat->node_id;
523 int zid = zone_idx(z);
524 struct mem_cgroup_per_zone *mz;
66e1707b 525
1ecaab2b 526 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
66e1707b 527 if (active)
1ecaab2b 528 src = &mz->active_list;
66e1707b 529 else
1ecaab2b
KH
530 src = &mz->inactive_list;
531
66e1707b 532
072c56c1 533 spin_lock(&mz->lru_lock);
ff7283fa
KH
534 scan = 0;
535 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 536 if (scan >= nr_to_scan)
ff7283fa 537 break;
66e1707b 538 page = pc->page;
66e1707b 539
436c6541 540 if (unlikely(!PageLRU(page)))
ff7283fa 541 continue;
ff7283fa 542
66e1707b
BS
543 if (PageActive(page) && !active) {
544 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
545 continue;
546 }
547 if (!PageActive(page) && active) {
548 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
549 continue;
550 }
551
436c6541
HD
552 scan++;
553 list_move(&pc->lru, &pc_list);
66e1707b
BS
554
555 if (__isolate_lru_page(page, mode) == 0) {
556 list_move(&page->lru, dst);
557 nr_taken++;
558 }
559 }
560
561 list_splice(&pc_list, src);
072c56c1 562 spin_unlock(&mz->lru_lock);
66e1707b
BS
563
564 *scanned = scan;
565 return nr_taken;
566}
567
8a9f3ccd
BS
568/*
569 * Charge the memory controller for page usage.
570 * Return
571 * 0 if the charge was successful
572 * < 0 if the cgroup is over its limit
573 */
217bc319
KH
574static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
575 gfp_t gfp_mask, enum charge_type ctype)
8a9f3ccd
BS
576{
577 struct mem_cgroup *mem;
9175e031 578 struct page_cgroup *pc;
66e1707b
BS
579 unsigned long flags;
580 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
072c56c1 581 struct mem_cgroup_per_zone *mz;
8a9f3ccd
BS
582
583 /*
584 * Should page_cgroup's go to their own slab?
585 * One could optimize the performance of the charging routine
586 * by saving a bit in the page_flags and using it as a lock
587 * to see if the cgroup page already has a page_cgroup associated
588 * with it
589 */
66e1707b 590retry:
82369553
HD
591 if (page) {
592 lock_page_cgroup(page);
593 pc = page_get_page_cgroup(page);
594 /*
595 * The page_cgroup exists and
596 * the page has already been accounted.
597 */
598 if (pc) {
599 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
600 /* this page is under being uncharged ? */
601 unlock_page_cgroup(page);
602 cpu_relax();
603 goto retry;
604 } else {
605 unlock_page_cgroup(page);
606 goto done;
607 }
9175e031 608 }
82369553 609 unlock_page_cgroup(page);
8a9f3ccd 610 }
8a9f3ccd 611
e1a1cd59 612 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
8a9f3ccd
BS
613 if (pc == NULL)
614 goto err;
615
8a9f3ccd 616 /*
3be91277
HD
617 * We always charge the cgroup the mm_struct belongs to.
618 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
619 * thread group leader migrates. It's possible that mm is not
620 * set, if so charge the init_mm (happens for pagecache usage).
621 */
622 if (!mm)
623 mm = &init_mm;
624
3be91277 625 rcu_read_lock();
8a9f3ccd
BS
626 mem = rcu_dereference(mm->mem_cgroup);
627 /*
628 * For every charge from the cgroup, increment reference
629 * count
630 */
631 css_get(&mem->css);
632 rcu_read_unlock();
633
634 /*
635 * If we created the page_cgroup, we should free it on exceeding
636 * the cgroup limit.
637 */
0eea1030 638 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
639 if (!(gfp_mask & __GFP_WAIT))
640 goto out;
e1a1cd59
BS
641
642 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
643 continue;
644
645 /*
646 * try_to_free_mem_cgroup_pages() might not give us a full
647 * picture of reclaim. Some pages are reclaimed and might be
648 * moved to swap cache or just unmapped from the cgroup.
649 * Check the limit again to see if the reclaim reduced the
650 * current usage of the cgroup before giving up
651 */
652 if (res_counter_check_under_limit(&mem->res))
653 continue;
3be91277
HD
654
655 if (!nr_retries--) {
656 mem_cgroup_out_of_memory(mem, gfp_mask);
657 goto out;
66e1707b 658 }
3be91277 659 congestion_wait(WRITE, HZ/10);
8a9f3ccd
BS
660 }
661
8a9f3ccd
BS
662 atomic_set(&pc->ref_cnt, 1);
663 pc->mem_cgroup = mem;
664 pc->page = page;
3564c7c4 665 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
217bc319
KH
666 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
667 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
3be91277 668
82369553 669 if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
9175e031 670 /*
3be91277
HD
671 * Another charge has been added to this page already.
672 * We take lock_page_cgroup(page) again and read
9175e031
KH
673 * page->cgroup, increment refcnt.... just retry is OK.
674 */
675 res_counter_uncharge(&mem->res, PAGE_SIZE);
676 css_put(&mem->css);
677 kfree(pc);
82369553
HD
678 if (!page)
679 goto done;
9175e031
KH
680 goto retry;
681 }
8a9f3ccd 682
072c56c1
KH
683 mz = page_cgroup_zoneinfo(pc);
684 spin_lock_irqsave(&mz->lru_lock, flags);
d52aa412 685 /* Update statistics vector */
6d12e2d8 686 __mem_cgroup_add_list(pc);
072c56c1 687 spin_unlock_irqrestore(&mz->lru_lock, flags);
66e1707b 688
8a9f3ccd 689done:
8a9f3ccd 690 return 0;
3be91277
HD
691out:
692 css_put(&mem->css);
8a9f3ccd 693 kfree(pc);
8a9f3ccd 694err:
8a9f3ccd
BS
695 return -ENOMEM;
696}
697
217bc319
KH
698int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
699 gfp_t gfp_mask)
700{
701 return mem_cgroup_charge_common(page, mm, gfp_mask,
702 MEM_CGROUP_CHARGE_TYPE_MAPPED);
703}
704
8697d331
BS
705/*
706 * See if the cached pages should be charged at all?
707 */
e1a1cd59
BS
708int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
709 gfp_t gfp_mask)
8697d331 710{
ac44d354 711 int ret = 0;
8697d331
BS
712 if (!mm)
713 mm = &init_mm;
714
3c541e14 715 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
217bc319 716 MEM_CGROUP_CHARGE_TYPE_CACHE);
ac44d354 717 return ret;
8697d331
BS
718}
719
8a9f3ccd
BS
720/*
721 * Uncharging is always a welcome operation, we never complain, simply
3c541e14 722 * uncharge. This routine should be called with lock_page_cgroup held
8a9f3ccd
BS
723 */
724void mem_cgroup_uncharge(struct page_cgroup *pc)
725{
726 struct mem_cgroup *mem;
072c56c1 727 struct mem_cgroup_per_zone *mz;
8a9f3ccd 728 struct page *page;
66e1707b 729 unsigned long flags;
8a9f3ccd 730
8697d331 731 /*
3c541e14 732 * Check if our page_cgroup is valid
8697d331 733 */
8a9f3ccd
BS
734 if (!pc)
735 return;
736
737 if (atomic_dec_and_test(&pc->ref_cnt)) {
738 page = pc->page;
072c56c1 739 mz = page_cgroup_zoneinfo(pc);
9175e031
KH
740 /*
741 * get page->cgroup and clear it under lock.
cc847582 742 * force_empty can drop page->cgroup without checking refcnt.
9175e031 743 */
3c541e14 744 unlock_page_cgroup(page);
9175e031
KH
745 if (clear_page_cgroup(page, pc) == pc) {
746 mem = pc->mem_cgroup;
747 css_put(&mem->css);
748 res_counter_uncharge(&mem->res, PAGE_SIZE);
072c56c1 749 spin_lock_irqsave(&mz->lru_lock, flags);
6d12e2d8 750 __mem_cgroup_remove_list(pc);
072c56c1 751 spin_unlock_irqrestore(&mz->lru_lock, flags);
9175e031 752 kfree(pc);
9175e031 753 }
3c541e14 754 lock_page_cgroup(page);
8a9f3ccd 755 }
78fb7466 756}
6d12e2d8 757
3c541e14
BS
758void mem_cgroup_uncharge_page(struct page *page)
759{
760 lock_page_cgroup(page);
761 mem_cgroup_uncharge(page_get_page_cgroup(page));
762 unlock_page_cgroup(page);
763}
764
ae41be37
KH
765/*
766 * Returns non-zero if a page (under migration) has valid page_cgroup member.
767 * Refcnt of page_cgroup is incremented.
768 */
769
770int mem_cgroup_prepare_migration(struct page *page)
771{
772 struct page_cgroup *pc;
773 int ret = 0;
774 lock_page_cgroup(page);
775 pc = page_get_page_cgroup(page);
776 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
777 ret = 1;
778 unlock_page_cgroup(page);
779 return ret;
780}
781
782void mem_cgroup_end_migration(struct page *page)
783{
3c541e14
BS
784 struct page_cgroup *pc;
785
786 lock_page_cgroup(page);
787 pc = page_get_page_cgroup(page);
ae41be37 788 mem_cgroup_uncharge(pc);
3c541e14 789 unlock_page_cgroup(page);
ae41be37
KH
790}
791/*
792 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
793 * And no race with uncharge() routines because page_cgroup for *page*
794 * has extra one reference by mem_cgroup_prepare_migration.
795 */
796
797void mem_cgroup_page_migration(struct page *page, struct page *newpage)
798{
799 struct page_cgroup *pc;
6d12e2d8
KH
800 struct mem_cgroup *mem;
801 unsigned long flags;
072c56c1 802 struct mem_cgroup_per_zone *mz;
ae41be37
KH
803retry:
804 pc = page_get_page_cgroup(page);
805 if (!pc)
806 return;
6d12e2d8 807 mem = pc->mem_cgroup;
072c56c1 808 mz = page_cgroup_zoneinfo(pc);
ae41be37
KH
809 if (clear_page_cgroup(page, pc) != pc)
810 goto retry;
072c56c1 811 spin_lock_irqsave(&mz->lru_lock, flags);
6d12e2d8
KH
812
813 __mem_cgroup_remove_list(pc);
072c56c1
KH
814 spin_unlock_irqrestore(&mz->lru_lock, flags);
815
ae41be37
KH
816 pc->page = newpage;
817 lock_page_cgroup(newpage);
818 page_assign_page_cgroup(newpage, pc);
819 unlock_page_cgroup(newpage);
6d12e2d8 820
072c56c1
KH
821 mz = page_cgroup_zoneinfo(pc);
822 spin_lock_irqsave(&mz->lru_lock, flags);
823 __mem_cgroup_add_list(pc);
824 spin_unlock_irqrestore(&mz->lru_lock, flags);
ae41be37
KH
825 return;
826}
78fb7466 827
cc847582
KH
828/*
829 * This routine traverse page_cgroup in given list and drop them all.
830 * This routine ignores page_cgroup->ref_cnt.
831 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
832 */
833#define FORCE_UNCHARGE_BATCH (128)
834static void
072c56c1
KH
835mem_cgroup_force_empty_list(struct mem_cgroup *mem,
836 struct mem_cgroup_per_zone *mz,
837 int active)
cc847582
KH
838{
839 struct page_cgroup *pc;
840 struct page *page;
841 int count;
842 unsigned long flags;
072c56c1
KH
843 struct list_head *list;
844
845 if (active)
846 list = &mz->active_list;
847 else
848 list = &mz->inactive_list;
cc847582 849
1ecaab2b
KH
850 if (list_empty(list))
851 return;
cc847582
KH
852retry:
853 count = FORCE_UNCHARGE_BATCH;
072c56c1 854 spin_lock_irqsave(&mz->lru_lock, flags);
cc847582
KH
855
856 while (--count && !list_empty(list)) {
857 pc = list_entry(list->prev, struct page_cgroup, lru);
858 page = pc->page;
859 /* Avoid race with charge */
860 atomic_set(&pc->ref_cnt, 0);
861 if (clear_page_cgroup(page, pc) == pc) {
862 css_put(&mem->css);
863 res_counter_uncharge(&mem->res, PAGE_SIZE);
6d12e2d8 864 __mem_cgroup_remove_list(pc);
cc847582
KH
865 kfree(pc);
866 } else /* being uncharged ? ...do relax */
867 break;
868 }
072c56c1 869 spin_unlock_irqrestore(&mz->lru_lock, flags);
cc847582
KH
870 if (!list_empty(list)) {
871 cond_resched();
872 goto retry;
873 }
874 return;
875}
876
877/*
878 * make mem_cgroup's charge to be 0 if there is no task.
879 * This enables deleting this mem_cgroup.
880 */
881
882int mem_cgroup_force_empty(struct mem_cgroup *mem)
883{
884 int ret = -EBUSY;
1ecaab2b 885 int node, zid;
cc847582
KH
886 css_get(&mem->css);
887 /*
888 * page reclaim code (kswapd etc..) will move pages between
889` * active_list <-> inactive_list while we don't take a lock.
890 * So, we have to do loop here until all lists are empty.
891 */
1ecaab2b 892 while (mem->res.usage > 0) {
cc847582
KH
893 if (atomic_read(&mem->css.cgroup->count) > 0)
894 goto out;
1ecaab2b
KH
895 for_each_node_state(node, N_POSSIBLE)
896 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
897 struct mem_cgroup_per_zone *mz;
898 mz = mem_cgroup_zoneinfo(mem, node, zid);
899 /* drop all page_cgroup in active_list */
072c56c1 900 mem_cgroup_force_empty_list(mem, mz, 1);
1ecaab2b 901 /* drop all page_cgroup in inactive_list */
072c56c1 902 mem_cgroup_force_empty_list(mem, mz, 0);
1ecaab2b 903 }
cc847582
KH
904 }
905 ret = 0;
906out:
907 css_put(&mem->css);
908 return ret;
909}
910
911
912
0eea1030
BS
913int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
914{
915 *tmp = memparse(buf, &buf);
916 if (*buf != '\0')
917 return -EINVAL;
918
919 /*
920 * Round up the value to the closest page size
921 */
922 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
923 return 0;
924}
925
926static ssize_t mem_cgroup_read(struct cgroup *cont,
927 struct cftype *cft, struct file *file,
928 char __user *userbuf, size_t nbytes, loff_t *ppos)
8cdea7c0
BS
929{
930 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
931 cft->private, userbuf, nbytes, ppos,
932 NULL);
8cdea7c0
BS
933}
934
935static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
936 struct file *file, const char __user *userbuf,
937 size_t nbytes, loff_t *ppos)
938{
939 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
940 cft->private, userbuf, nbytes, ppos,
941 mem_cgroup_write_strategy);
8cdea7c0
BS
942}
943
cc847582
KH
944static ssize_t mem_force_empty_write(struct cgroup *cont,
945 struct cftype *cft, struct file *file,
946 const char __user *userbuf,
947 size_t nbytes, loff_t *ppos)
948{
949 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
950 int ret;
951 ret = mem_cgroup_force_empty(mem);
952 if (!ret)
953 ret = nbytes;
954 return ret;
955}
956
957/*
958 * Note: This should be removed if cgroup supports write-only file.
959 */
960
961static ssize_t mem_force_empty_read(struct cgroup *cont,
962 struct cftype *cft,
963 struct file *file, char __user *userbuf,
964 size_t nbytes, loff_t *ppos)
965{
966 return -EINVAL;
967}
968
969
d2ceb9b7
KH
970static const struct mem_cgroup_stat_desc {
971 const char *msg;
972 u64 unit;
973} mem_cgroup_stat_desc[] = {
974 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
975 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
976};
977
978static int mem_control_stat_show(struct seq_file *m, void *arg)
979{
980 struct cgroup *cont = m->private;
981 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
982 struct mem_cgroup_stat *stat = &mem_cont->stat;
983 int i;
984
985 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
986 s64 val;
987
988 val = mem_cgroup_read_stat(stat, i);
989 val *= mem_cgroup_stat_desc[i].unit;
990 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
991 (long long)val);
992 }
6d12e2d8
KH
993 /* showing # of active pages */
994 {
995 unsigned long active, inactive;
996
997 inactive = mem_cgroup_get_all_zonestat(mem_cont,
998 MEM_CGROUP_ZSTAT_INACTIVE);
999 active = mem_cgroup_get_all_zonestat(mem_cont,
1000 MEM_CGROUP_ZSTAT_ACTIVE);
1001 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
1002 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
1003 }
d2ceb9b7
KH
1004 return 0;
1005}
1006
1007static const struct file_operations mem_control_stat_file_operations = {
1008 .read = seq_read,
1009 .llseek = seq_lseek,
1010 .release = single_release,
1011};
1012
1013static int mem_control_stat_open(struct inode *unused, struct file *file)
1014{
1015 /* XXX __d_cont */
1016 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
1017
1018 file->f_op = &mem_control_stat_file_operations;
1019 return single_open(file, mem_control_stat_show, cont);
1020}
1021
1022
1023
8cdea7c0
BS
1024static struct cftype mem_cgroup_files[] = {
1025 {
0eea1030 1026 .name = "usage_in_bytes",
8cdea7c0
BS
1027 .private = RES_USAGE,
1028 .read = mem_cgroup_read,
1029 },
1030 {
0eea1030 1031 .name = "limit_in_bytes",
8cdea7c0
BS
1032 .private = RES_LIMIT,
1033 .write = mem_cgroup_write,
1034 .read = mem_cgroup_read,
1035 },
1036 {
1037 .name = "failcnt",
1038 .private = RES_FAILCNT,
1039 .read = mem_cgroup_read,
1040 },
cc847582
KH
1041 {
1042 .name = "force_empty",
1043 .write = mem_force_empty_write,
1044 .read = mem_force_empty_read,
1045 },
d2ceb9b7
KH
1046 {
1047 .name = "stat",
1048 .open = mem_control_stat_open,
1049 },
8cdea7c0
BS
1050};
1051
6d12e2d8
KH
1052static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1053{
1054 struct mem_cgroup_per_node *pn;
1ecaab2b
KH
1055 struct mem_cgroup_per_zone *mz;
1056 int zone;
1057 /*
1058 * This routine is called against possible nodes.
1059 * But it's BUG to call kmalloc() against offline node.
1060 *
1061 * TODO: this routine can waste much memory for nodes which will
1062 * never be onlined. It's better to use memory hotplug callback
1063 * function.
1064 */
1065 if (node_state(node, N_HIGH_MEMORY))
1066 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1067 else
1068 pn = kmalloc(sizeof(*pn), GFP_KERNEL);
6d12e2d8
KH
1069 if (!pn)
1070 return 1;
1ecaab2b 1071
6d12e2d8
KH
1072 mem->info.nodeinfo[node] = pn;
1073 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1074
1075 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1076 mz = &pn->zoneinfo[zone];
1077 INIT_LIST_HEAD(&mz->active_list);
1078 INIT_LIST_HEAD(&mz->inactive_list);
072c56c1 1079 spin_lock_init(&mz->lru_lock);
1ecaab2b 1080 }
6d12e2d8
KH
1081 return 0;
1082}
1083
1ecaab2b
KH
1084static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1085{
1086 kfree(mem->info.nodeinfo[node]);
1087}
1088
1089
78fb7466
PE
1090static struct mem_cgroup init_mem_cgroup;
1091
8cdea7c0
BS
1092static struct cgroup_subsys_state *
1093mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1094{
1095 struct mem_cgroup *mem;
6d12e2d8 1096 int node;
8cdea7c0 1097
78fb7466
PE
1098 if (unlikely((cont->parent) == NULL)) {
1099 mem = &init_mem_cgroup;
1100 init_mm.mem_cgroup = mem;
1101 } else
1102 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1103
1104 if (mem == NULL)
2dda81ca 1105 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1106
1107 res_counter_init(&mem->res);
1ecaab2b 1108
6d12e2d8
KH
1109 memset(&mem->info, 0, sizeof(mem->info));
1110
1111 for_each_node_state(node, N_POSSIBLE)
1112 if (alloc_mem_cgroup_per_zone_info(mem, node))
1113 goto free_out;
1114
8cdea7c0 1115 return &mem->css;
6d12e2d8
KH
1116free_out:
1117 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1118 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8
KH
1119 if (cont->parent != NULL)
1120 kfree(mem);
2dda81ca 1121 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1122}
1123
df878fb0
KH
1124static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1125 struct cgroup *cont)
1126{
1127 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1128 mem_cgroup_force_empty(mem);
1129}
1130
8cdea7c0
BS
1131static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1132 struct cgroup *cont)
1133{
6d12e2d8
KH
1134 int node;
1135 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1136
1137 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1138 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1139
8cdea7c0
BS
1140 kfree(mem_cgroup_from_cont(cont));
1141}
1142
1143static int mem_cgroup_populate(struct cgroup_subsys *ss,
1144 struct cgroup *cont)
1145{
1146 return cgroup_add_files(cont, ss, mem_cgroup_files,
1147 ARRAY_SIZE(mem_cgroup_files));
1148}
1149
67e465a7
BS
1150static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1151 struct cgroup *cont,
1152 struct cgroup *old_cont,
1153 struct task_struct *p)
1154{
1155 struct mm_struct *mm;
1156 struct mem_cgroup *mem, *old_mem;
1157
1158 mm = get_task_mm(p);
1159 if (mm == NULL)
1160 return;
1161
1162 mem = mem_cgroup_from_cont(cont);
1163 old_mem = mem_cgroup_from_cont(old_cont);
1164
1165 if (mem == old_mem)
1166 goto out;
1167
1168 /*
1169 * Only thread group leaders are allowed to migrate, the mm_struct is
1170 * in effect owned by the leader
1171 */
1172 if (p->tgid != p->pid)
1173 goto out;
1174
1175 css_get(&mem->css);
1176 rcu_assign_pointer(mm->mem_cgroup, mem);
1177 css_put(&old_mem->css);
1178
1179out:
1180 mmput(mm);
1181 return;
1182}
1183
8cdea7c0
BS
1184struct cgroup_subsys mem_cgroup_subsys = {
1185 .name = "memory",
1186 .subsys_id = mem_cgroup_subsys_id,
1187 .create = mem_cgroup_create,
df878fb0 1188 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1189 .destroy = mem_cgroup_destroy,
1190 .populate = mem_cgroup_populate,
67e465a7 1191 .attach = mem_cgroup_move_task,
6d12e2d8 1192 .early_init = 0,
8cdea7c0 1193};
This page took 0.114887 seconds and 5 git commands to generate.