memcg, tcp_kmem: check for cg_proto in sock_update_memcg
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 80struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
c077719b 84int do_swap_account __read_mostly;
c077719b 85#else
a0db00fc 86#define do_swap_account 0
c077719b
KH
87#endif
88
af7c4b0e
JW
89static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
b070e65c 92 "rss_huge",
af7c4b0e 93 "mapped_file",
c4843a75 94 "dirty",
3ea67d06 95 "writeback",
af7c4b0e
JW
96 "swap",
97};
98
af7c4b0e
JW
99static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104};
105
58cf188e
SZ
106static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112};
113
a0db00fc
KS
114#define THRESHOLDS_EVENTS_TARGET 128
115#define SOFTLIMIT_EVENTS_TARGET 1024
116#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 117
bb4cc1a8
AM
118/*
119 * Cgroups above their limits are maintained in a RB-Tree, independent of
120 * their hierarchy representation
121 */
122
123struct mem_cgroup_tree_per_zone {
124 struct rb_root rb_root;
125 spinlock_t lock;
126};
127
128struct mem_cgroup_tree_per_node {
129 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
130};
131
132struct mem_cgroup_tree {
133 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
134};
135
136static struct mem_cgroup_tree soft_limit_tree __read_mostly;
137
9490ff27
KH
138/* for OOM */
139struct mem_cgroup_eventfd_list {
140 struct list_head list;
141 struct eventfd_ctx *eventfd;
142};
2e72b634 143
79bd9814
TH
144/*
145 * cgroup_event represents events which userspace want to receive.
146 */
3bc942f3 147struct mem_cgroup_event {
79bd9814 148 /*
59b6f873 149 * memcg which the event belongs to.
79bd9814 150 */
59b6f873 151 struct mem_cgroup *memcg;
79bd9814
TH
152 /*
153 * eventfd to signal userspace about the event.
154 */
155 struct eventfd_ctx *eventfd;
156 /*
157 * Each of these stored in a list by the cgroup.
158 */
159 struct list_head list;
fba94807
TH
160 /*
161 * register_event() callback will be used to add new userspace
162 * waiter for changes related to this event. Use eventfd_signal()
163 * on eventfd to send notification to userspace.
164 */
59b6f873 165 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 166 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
167 /*
168 * unregister_event() callback will be called when userspace closes
169 * the eventfd or on cgroup removing. This callback must be set,
170 * if you want provide notification functionality.
171 */
59b6f873 172 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 173 struct eventfd_ctx *eventfd);
79bd9814
TH
174 /*
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
177 */
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
182};
183
c0ff4b85
R
184static void mem_cgroup_threshold(struct mem_cgroup *memcg);
185static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 186
7dc74be0
DN
187/* Stuffs for move charges at task migration. */
188/*
1dfab5ab 189 * Types of charges to be moved.
7dc74be0 190 */
1dfab5ab
JW
191#define MOVE_ANON 0x1U
192#define MOVE_FILE 0x2U
193#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 194
4ffef5fe
DN
195/* "mc" and its members are protected by cgroup_mutex */
196static struct move_charge_struct {
b1dd693e 197 spinlock_t lock; /* for from, to */
4ffef5fe
DN
198 struct mem_cgroup *from;
199 struct mem_cgroup *to;
1dfab5ab 200 unsigned long flags;
4ffef5fe 201 unsigned long precharge;
854ffa8d 202 unsigned long moved_charge;
483c30b5 203 unsigned long moved_swap;
8033b97c
DN
204 struct task_struct *moving_task; /* a task moving charges */
205 wait_queue_head_t waitq; /* a waitq for other context */
206} mc = {
2bd9bb20 207 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
208 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
209};
4ffef5fe 210
4e416953
BS
211/*
212 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
213 * limit reclaim to prevent infinite loops, if they ever occur.
214 */
a0db00fc 215#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 216#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 217
217bc319
KH
218enum charge_type {
219 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 220 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 221 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 222 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
223 NR_CHARGE_TYPE,
224};
225
8c7c6e34 226/* for encoding cft->private value on file */
86ae53e1
GC
227enum res_type {
228 _MEM,
229 _MEMSWAP,
230 _OOM_TYPE,
510fc4e1 231 _KMEM,
86ae53e1
GC
232};
233
a0db00fc
KS
234#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
235#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 236#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
237/* Used for OOM nofiier */
238#define OOM_CONTROL (0)
8c7c6e34 239
0999821b
GC
240/*
241 * The memcg_create_mutex will be held whenever a new cgroup is created.
242 * As a consequence, any change that needs to protect against new child cgroups
243 * appearing has to hold it as well.
244 */
245static DEFINE_MUTEX(memcg_create_mutex);
246
70ddf637
AV
247/* Some nice accessors for the vmpressure. */
248struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249{
250 if (!memcg)
251 memcg = root_mem_cgroup;
252 return &memcg->vmpressure;
253}
254
255struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256{
257 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
258}
259
7ffc0edc
MH
260static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
261{
262 return (memcg == root_mem_cgroup);
263}
264
4219b2da
LZ
265/*
266 * We restrict the id in the range of [1, 65535], so it can fit into
267 * an unsigned short.
268 */
269#define MEM_CGROUP_ID_MAX USHRT_MAX
270
34c00c31
LZ
271static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
272{
15a4c835 273 return memcg->css.id;
34c00c31
LZ
274}
275
adbe427b
VD
276/*
277 * A helper function to get mem_cgroup from ID. must be called under
278 * rcu_read_lock(). The caller is responsible for calling
279 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
280 * refcnt from swap can be called against removed memcg.)
281 */
34c00c31
LZ
282static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
283{
284 struct cgroup_subsys_state *css;
285
7d699ddb 286 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
287 return mem_cgroup_from_css(css);
288}
289
e1aab161 290/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 291#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 292
e1aab161
GC
293void sock_update_memcg(struct sock *sk)
294{
376be5ff 295 if (mem_cgroup_sockets_enabled) {
e1aab161 296 struct mem_cgroup *memcg;
3f134619 297 struct cg_proto *cg_proto;
e1aab161
GC
298
299 BUG_ON(!sk->sk_prot->proto_cgroup);
300
f3f511e1
GC
301 /* Socket cloning can throw us here with sk_cgrp already
302 * filled. It won't however, necessarily happen from
303 * process context. So the test for root memcg given
304 * the current task's memcg won't help us in this case.
305 *
306 * Respecting the original socket's memcg is a better
307 * decision in this case.
308 */
309 if (sk->sk_cgrp) {
310 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 311 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
312 return;
313 }
314
e1aab161
GC
315 rcu_read_lock();
316 memcg = mem_cgroup_from_task(current);
3f134619 317 cg_proto = sk->sk_prot->proto_cgroup(memcg);
a03f1f05 318 if (cg_proto && memcg_proto_active(cg_proto) &&
ec903c0c 319 css_tryget_online(&memcg->css)) {
3f134619 320 sk->sk_cgrp = cg_proto;
e1aab161
GC
321 }
322 rcu_read_unlock();
323 }
324}
325EXPORT_SYMBOL(sock_update_memcg);
326
327void sock_release_memcg(struct sock *sk)
328{
376be5ff 329 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
330 struct mem_cgroup *memcg;
331 WARN_ON(!sk->sk_cgrp->memcg);
332 memcg = sk->sk_cgrp->memcg;
5347e5ae 333 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
334 }
335}
d1a4c0b3
GC
336
337struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
338{
339 if (!memcg || mem_cgroup_is_root(memcg))
340 return NULL;
341
2e685cad 342 return &memcg->tcp_mem;
d1a4c0b3
GC
343}
344EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 345
3f134619
GC
346#endif
347
a8964b9b 348#ifdef CONFIG_MEMCG_KMEM
55007d84 349/*
f7ce3190 350 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
351 * The main reason for not using cgroup id for this:
352 * this works better in sparse environments, where we have a lot of memcgs,
353 * but only a few kmem-limited. Or also, if we have, for instance, 200
354 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
355 * 200 entry array for that.
55007d84 356 *
dbcf73e2
VD
357 * The current size of the caches array is stored in memcg_nr_cache_ids. It
358 * will double each time we have to increase it.
55007d84 359 */
dbcf73e2
VD
360static DEFINE_IDA(memcg_cache_ida);
361int memcg_nr_cache_ids;
749c5415 362
05257a1a
VD
363/* Protects memcg_nr_cache_ids */
364static DECLARE_RWSEM(memcg_cache_ids_sem);
365
366void memcg_get_cache_ids(void)
367{
368 down_read(&memcg_cache_ids_sem);
369}
370
371void memcg_put_cache_ids(void)
372{
373 up_read(&memcg_cache_ids_sem);
374}
375
55007d84
GC
376/*
377 * MIN_SIZE is different than 1, because we would like to avoid going through
378 * the alloc/free process all the time. In a small machine, 4 kmem-limited
379 * cgroups is a reasonable guess. In the future, it could be a parameter or
380 * tunable, but that is strictly not necessary.
381 *
b8627835 382 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
383 * this constant directly from cgroup, but it is understandable that this is
384 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 385 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
386 * increase ours as well if it increases.
387 */
388#define MEMCG_CACHES_MIN_SIZE 4
b8627835 389#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 390
d7f25f8a
GC
391/*
392 * A lot of the calls to the cache allocation functions are expected to be
393 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
394 * conditional to this static branch, we'll have to allow modules that does
395 * kmem_cache_alloc and the such to see this symbol as well
396 */
a8964b9b 397struct static_key memcg_kmem_enabled_key;
d7f25f8a 398EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 399
a8964b9b
GC
400#endif /* CONFIG_MEMCG_KMEM */
401
f64c3f54 402static struct mem_cgroup_per_zone *
e231875b 403mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 404{
e231875b
JZ
405 int nid = zone_to_nid(zone);
406 int zid = zone_idx(zone);
407
54f72fe0 408 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
409}
410
ad7fa852
TH
411/**
412 * mem_cgroup_css_from_page - css of the memcg associated with a page
413 * @page: page of interest
414 *
415 * If memcg is bound to the default hierarchy, css of the memcg associated
416 * with @page is returned. The returned css remains associated with @page
417 * until it is released.
418 *
419 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
420 * is returned.
421 *
422 * XXX: The above description of behavior on the default hierarchy isn't
423 * strictly true yet as replace_page_cache_page() can modify the
424 * association before @page is released even on the default hierarchy;
425 * however, the current and planned usages don't mix the the two functions
426 * and replace_page_cache_page() will soon be updated to make the invariant
427 * actually true.
428 */
429struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
430{
431 struct mem_cgroup *memcg;
432
433 rcu_read_lock();
434
435 memcg = page->mem_cgroup;
436
437 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
438 memcg = root_mem_cgroup;
439
440 rcu_read_unlock();
441 return &memcg->css;
442}
443
f64c3f54 444static struct mem_cgroup_per_zone *
e231875b 445mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 446{
97a6c37b
JW
447 int nid = page_to_nid(page);
448 int zid = page_zonenum(page);
f64c3f54 449
e231875b 450 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
451}
452
bb4cc1a8
AM
453static struct mem_cgroup_tree_per_zone *
454soft_limit_tree_node_zone(int nid, int zid)
455{
456 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
457}
458
459static struct mem_cgroup_tree_per_zone *
460soft_limit_tree_from_page(struct page *page)
461{
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
464
465 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
466}
467
cf2c8127
JW
468static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
469 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 470 unsigned long new_usage_in_excess)
bb4cc1a8
AM
471{
472 struct rb_node **p = &mctz->rb_root.rb_node;
473 struct rb_node *parent = NULL;
474 struct mem_cgroup_per_zone *mz_node;
475
476 if (mz->on_tree)
477 return;
478
479 mz->usage_in_excess = new_usage_in_excess;
480 if (!mz->usage_in_excess)
481 return;
482 while (*p) {
483 parent = *p;
484 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
485 tree_node);
486 if (mz->usage_in_excess < mz_node->usage_in_excess)
487 p = &(*p)->rb_left;
488 /*
489 * We can't avoid mem cgroups that are over their soft
490 * limit by the same amount
491 */
492 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
493 p = &(*p)->rb_right;
494 }
495 rb_link_node(&mz->tree_node, parent, p);
496 rb_insert_color(&mz->tree_node, &mctz->rb_root);
497 mz->on_tree = true;
498}
499
cf2c8127
JW
500static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
501 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
502{
503 if (!mz->on_tree)
504 return;
505 rb_erase(&mz->tree_node, &mctz->rb_root);
506 mz->on_tree = false;
507}
508
cf2c8127
JW
509static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
510 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 511{
0a31bc97
JW
512 unsigned long flags;
513
514 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 515 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 516 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
517}
518
3e32cb2e
JW
519static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
520{
521 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 522 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
523 unsigned long excess = 0;
524
525 if (nr_pages > soft_limit)
526 excess = nr_pages - soft_limit;
527
528 return excess;
529}
bb4cc1a8
AM
530
531static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
532{
3e32cb2e 533 unsigned long excess;
bb4cc1a8
AM
534 struct mem_cgroup_per_zone *mz;
535 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 536
e231875b 537 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
538 /*
539 * Necessary to update all ancestors when hierarchy is used.
540 * because their event counter is not touched.
541 */
542 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 543 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 544 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
545 /*
546 * We have to update the tree if mz is on RB-tree or
547 * mem is over its softlimit.
548 */
549 if (excess || mz->on_tree) {
0a31bc97
JW
550 unsigned long flags;
551
552 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
553 /* if on-tree, remove it */
554 if (mz->on_tree)
cf2c8127 555 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
556 /*
557 * Insert again. mz->usage_in_excess will be updated.
558 * If excess is 0, no tree ops.
559 */
cf2c8127 560 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 561 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
562 }
563 }
564}
565
566static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
567{
bb4cc1a8 568 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
569 struct mem_cgroup_per_zone *mz;
570 int nid, zid;
bb4cc1a8 571
e231875b
JZ
572 for_each_node(nid) {
573 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
574 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
575 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 576 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
577 }
578 }
579}
580
581static struct mem_cgroup_per_zone *
582__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
583{
584 struct rb_node *rightmost = NULL;
585 struct mem_cgroup_per_zone *mz;
586
587retry:
588 mz = NULL;
589 rightmost = rb_last(&mctz->rb_root);
590 if (!rightmost)
591 goto done; /* Nothing to reclaim from */
592
593 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
594 /*
595 * Remove the node now but someone else can add it back,
596 * we will to add it back at the end of reclaim to its correct
597 * position in the tree.
598 */
cf2c8127 599 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 600 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 601 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
602 goto retry;
603done:
604 return mz;
605}
606
607static struct mem_cgroup_per_zone *
608mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
609{
610 struct mem_cgroup_per_zone *mz;
611
0a31bc97 612 spin_lock_irq(&mctz->lock);
bb4cc1a8 613 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 614 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
615 return mz;
616}
617
711d3d2c
KH
618/*
619 * Implementation Note: reading percpu statistics for memcg.
620 *
621 * Both of vmstat[] and percpu_counter has threshold and do periodic
622 * synchronization to implement "quick" read. There are trade-off between
623 * reading cost and precision of value. Then, we may have a chance to implement
624 * a periodic synchronizion of counter in memcg's counter.
625 *
626 * But this _read() function is used for user interface now. The user accounts
627 * memory usage by memory cgroup and he _always_ requires exact value because
628 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
629 * have to visit all online cpus and make sum. So, for now, unnecessary
630 * synchronization is not implemented. (just implemented for cpu hotplug)
631 *
632 * If there are kernel internal actions which can make use of some not-exact
633 * value, and reading all cpu value can be performance bottleneck in some
634 * common workload, threashold and synchonization as vmstat[] should be
635 * implemented.
636 */
c0ff4b85 637static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 638 enum mem_cgroup_stat_index idx)
c62b1a3b 639{
7a159cc9 640 long val = 0;
c62b1a3b 641 int cpu;
c62b1a3b 642
733a572e 643 for_each_possible_cpu(cpu)
c0ff4b85 644 val += per_cpu(memcg->stat->count[idx], cpu);
c62b1a3b
KH
645 return val;
646}
647
c0ff4b85 648static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
649 enum mem_cgroup_events_index idx)
650{
651 unsigned long val = 0;
652 int cpu;
653
733a572e 654 for_each_possible_cpu(cpu)
c0ff4b85 655 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
656 return val;
657}
658
c0ff4b85 659static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 660 struct page *page,
0a31bc97 661 int nr_pages)
d52aa412 662{
b2402857
KH
663 /*
664 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
665 * counted as CACHE even if it's on ANON LRU.
666 */
0a31bc97 667 if (PageAnon(page))
b2402857 668 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 669 nr_pages);
d52aa412 670 else
b2402857 671 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 672 nr_pages);
55e462b0 673
b070e65c
DR
674 if (PageTransHuge(page))
675 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
676 nr_pages);
677
e401f176
KH
678 /* pagein of a big page is an event. So, ignore page size */
679 if (nr_pages > 0)
c0ff4b85 680 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 681 else {
c0ff4b85 682 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
683 nr_pages = -nr_pages; /* for event */
684 }
e401f176 685
13114716 686 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
687}
688
e231875b
JZ
689static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
690 int nid,
691 unsigned int lru_mask)
bb2a0de9 692{
e231875b 693 unsigned long nr = 0;
889976db
YH
694 int zid;
695
e231875b 696 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 697
e231875b
JZ
698 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
699 struct mem_cgroup_per_zone *mz;
700 enum lru_list lru;
701
702 for_each_lru(lru) {
703 if (!(BIT(lru) & lru_mask))
704 continue;
705 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
706 nr += mz->lru_size[lru];
707 }
708 }
709 return nr;
889976db 710}
bb2a0de9 711
c0ff4b85 712static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 713 unsigned int lru_mask)
6d12e2d8 714{
e231875b 715 unsigned long nr = 0;
889976db 716 int nid;
6d12e2d8 717
31aaea4a 718 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
719 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
720 return nr;
d52aa412
KH
721}
722
f53d7ce3
JW
723static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
724 enum mem_cgroup_events_target target)
7a159cc9
JW
725{
726 unsigned long val, next;
727
13114716 728 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 729 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 730 /* from time_after() in jiffies.h */
f53d7ce3
JW
731 if ((long)next - (long)val < 0) {
732 switch (target) {
733 case MEM_CGROUP_TARGET_THRESH:
734 next = val + THRESHOLDS_EVENTS_TARGET;
735 break;
bb4cc1a8
AM
736 case MEM_CGROUP_TARGET_SOFTLIMIT:
737 next = val + SOFTLIMIT_EVENTS_TARGET;
738 break;
f53d7ce3
JW
739 case MEM_CGROUP_TARGET_NUMAINFO:
740 next = val + NUMAINFO_EVENTS_TARGET;
741 break;
742 default:
743 break;
744 }
745 __this_cpu_write(memcg->stat->targets[target], next);
746 return true;
7a159cc9 747 }
f53d7ce3 748 return false;
d2265e6f
KH
749}
750
751/*
752 * Check events in order.
753 *
754 */
c0ff4b85 755static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
756{
757 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
758 if (unlikely(mem_cgroup_event_ratelimit(memcg,
759 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 760 bool do_softlimit;
82b3f2a7 761 bool do_numainfo __maybe_unused;
f53d7ce3 762
bb4cc1a8
AM
763 do_softlimit = mem_cgroup_event_ratelimit(memcg,
764 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
765#if MAX_NUMNODES > 1
766 do_numainfo = mem_cgroup_event_ratelimit(memcg,
767 MEM_CGROUP_TARGET_NUMAINFO);
768#endif
c0ff4b85 769 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
770 if (unlikely(do_softlimit))
771 mem_cgroup_update_tree(memcg, page);
453a9bf3 772#if MAX_NUMNODES > 1
f53d7ce3 773 if (unlikely(do_numainfo))
c0ff4b85 774 atomic_inc(&memcg->numainfo_events);
453a9bf3 775#endif
0a31bc97 776 }
d2265e6f
KH
777}
778
cf475ad2 779struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 780{
31a78f23
BS
781 /*
782 * mm_update_next_owner() may clear mm->owner to NULL
783 * if it races with swapoff, page migration, etc.
784 * So this can be called with p == NULL.
785 */
786 if (unlikely(!p))
787 return NULL;
788
073219e9 789 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 790}
33398cf2 791EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 792
df381975 793static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 794{
c0ff4b85 795 struct mem_cgroup *memcg = NULL;
0b7f569e 796
54595fe2
KH
797 rcu_read_lock();
798 do {
6f6acb00
MH
799 /*
800 * Page cache insertions can happen withou an
801 * actual mm context, e.g. during disk probing
802 * on boot, loopback IO, acct() writes etc.
803 */
804 if (unlikely(!mm))
df381975 805 memcg = root_mem_cgroup;
6f6acb00
MH
806 else {
807 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
808 if (unlikely(!memcg))
809 memcg = root_mem_cgroup;
810 }
ec903c0c 811 } while (!css_tryget_online(&memcg->css));
54595fe2 812 rcu_read_unlock();
c0ff4b85 813 return memcg;
54595fe2
KH
814}
815
5660048c
JW
816/**
817 * mem_cgroup_iter - iterate over memory cgroup hierarchy
818 * @root: hierarchy root
819 * @prev: previously returned memcg, NULL on first invocation
820 * @reclaim: cookie for shared reclaim walks, NULL for full walks
821 *
822 * Returns references to children of the hierarchy below @root, or
823 * @root itself, or %NULL after a full round-trip.
824 *
825 * Caller must pass the return value in @prev on subsequent
826 * invocations for reference counting, or use mem_cgroup_iter_break()
827 * to cancel a hierarchy walk before the round-trip is complete.
828 *
829 * Reclaimers can specify a zone and a priority level in @reclaim to
830 * divide up the memcgs in the hierarchy among all concurrent
831 * reclaimers operating on the same zone and priority.
832 */
694fbc0f 833struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 834 struct mem_cgroup *prev,
694fbc0f 835 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 836{
33398cf2 837 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 838 struct cgroup_subsys_state *css = NULL;
9f3a0d09 839 struct mem_cgroup *memcg = NULL;
5ac8fb31 840 struct mem_cgroup *pos = NULL;
711d3d2c 841
694fbc0f
AM
842 if (mem_cgroup_disabled())
843 return NULL;
5660048c 844
9f3a0d09
JW
845 if (!root)
846 root = root_mem_cgroup;
7d74b06f 847
9f3a0d09 848 if (prev && !reclaim)
5ac8fb31 849 pos = prev;
14067bb3 850
9f3a0d09
JW
851 if (!root->use_hierarchy && root != root_mem_cgroup) {
852 if (prev)
5ac8fb31 853 goto out;
694fbc0f 854 return root;
9f3a0d09 855 }
14067bb3 856
542f85f9 857 rcu_read_lock();
5f578161 858
5ac8fb31
JW
859 if (reclaim) {
860 struct mem_cgroup_per_zone *mz;
861
862 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
863 iter = &mz->iter[reclaim->priority];
864
865 if (prev && reclaim->generation != iter->generation)
866 goto out_unlock;
867
868 do {
4db0c3c2 869 pos = READ_ONCE(iter->position);
5ac8fb31
JW
870 /*
871 * A racing update may change the position and
872 * put the last reference, hence css_tryget(),
873 * or retry to see the updated position.
874 */
875 } while (pos && !css_tryget(&pos->css));
876 }
877
878 if (pos)
879 css = &pos->css;
880
881 for (;;) {
882 css = css_next_descendant_pre(css, &root->css);
883 if (!css) {
884 /*
885 * Reclaimers share the hierarchy walk, and a
886 * new one might jump in right at the end of
887 * the hierarchy - make sure they see at least
888 * one group and restart from the beginning.
889 */
890 if (!prev)
891 continue;
892 break;
527a5ec9 893 }
7d74b06f 894
5ac8fb31
JW
895 /*
896 * Verify the css and acquire a reference. The root
897 * is provided by the caller, so we know it's alive
898 * and kicking, and don't take an extra reference.
899 */
900 memcg = mem_cgroup_from_css(css);
14067bb3 901
5ac8fb31
JW
902 if (css == &root->css)
903 break;
14067bb3 904
b2052564 905 if (css_tryget(css)) {
5ac8fb31
JW
906 /*
907 * Make sure the memcg is initialized:
908 * mem_cgroup_css_online() orders the the
909 * initialization against setting the flag.
910 */
911 if (smp_load_acquire(&memcg->initialized))
912 break;
542f85f9 913
5ac8fb31 914 css_put(css);
527a5ec9 915 }
9f3a0d09 916
5ac8fb31 917 memcg = NULL;
9f3a0d09 918 }
5ac8fb31
JW
919
920 if (reclaim) {
921 if (cmpxchg(&iter->position, pos, memcg) == pos) {
922 if (memcg)
923 css_get(&memcg->css);
924 if (pos)
925 css_put(&pos->css);
926 }
927
928 /*
929 * pairs with css_tryget when dereferencing iter->position
930 * above.
931 */
932 if (pos)
933 css_put(&pos->css);
934
935 if (!memcg)
936 iter->generation++;
937 else if (!prev)
938 reclaim->generation = iter->generation;
9f3a0d09 939 }
5ac8fb31 940
542f85f9
MH
941out_unlock:
942 rcu_read_unlock();
5ac8fb31 943out:
c40046f3
MH
944 if (prev && prev != root)
945 css_put(&prev->css);
946
9f3a0d09 947 return memcg;
14067bb3 948}
7d74b06f 949
5660048c
JW
950/**
951 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
952 * @root: hierarchy root
953 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
954 */
955void mem_cgroup_iter_break(struct mem_cgroup *root,
956 struct mem_cgroup *prev)
9f3a0d09
JW
957{
958 if (!root)
959 root = root_mem_cgroup;
960 if (prev && prev != root)
961 css_put(&prev->css);
962}
7d74b06f 963
9f3a0d09
JW
964/*
965 * Iteration constructs for visiting all cgroups (under a tree). If
966 * loops are exited prematurely (break), mem_cgroup_iter_break() must
967 * be used for reference counting.
968 */
969#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 970 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 971 iter != NULL; \
527a5ec9 972 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 973
9f3a0d09 974#define for_each_mem_cgroup(iter) \
527a5ec9 975 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 976 iter != NULL; \
527a5ec9 977 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 978
925b7673
JW
979/**
980 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
981 * @zone: zone of the wanted lruvec
fa9add64 982 * @memcg: memcg of the wanted lruvec
925b7673
JW
983 *
984 * Returns the lru list vector holding pages for the given @zone and
985 * @mem. This can be the global zone lruvec, if the memory controller
986 * is disabled.
987 */
988struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
989 struct mem_cgroup *memcg)
990{
991 struct mem_cgroup_per_zone *mz;
bea8c150 992 struct lruvec *lruvec;
925b7673 993
bea8c150
HD
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
925b7673 998
e231875b 999 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1000 lruvec = &mz->lruvec;
1001out:
1002 /*
1003 * Since a node can be onlined after the mem_cgroup was created,
1004 * we have to be prepared to initialize lruvec->zone here;
1005 * and if offlined then reonlined, we need to reinitialize it.
1006 */
1007 if (unlikely(lruvec->zone != zone))
1008 lruvec->zone = zone;
1009 return lruvec;
925b7673
JW
1010}
1011
925b7673 1012/**
dfe0e773 1013 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1014 * @page: the page
fa9add64 1015 * @zone: zone of the page
dfe0e773
JW
1016 *
1017 * This function is only safe when following the LRU page isolation
1018 * and putback protocol: the LRU lock must be held, and the page must
1019 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1020 */
fa9add64 1021struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1022{
08e552c6 1023 struct mem_cgroup_per_zone *mz;
925b7673 1024 struct mem_cgroup *memcg;
bea8c150 1025 struct lruvec *lruvec;
6d12e2d8 1026
bea8c150
HD
1027 if (mem_cgroup_disabled()) {
1028 lruvec = &zone->lruvec;
1029 goto out;
1030 }
925b7673 1031
1306a85a 1032 memcg = page->mem_cgroup;
7512102c 1033 /*
dfe0e773 1034 * Swapcache readahead pages are added to the LRU - and
29833315 1035 * possibly migrated - before they are charged.
7512102c 1036 */
29833315
JW
1037 if (!memcg)
1038 memcg = root_mem_cgroup;
7512102c 1039
e231875b 1040 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1041 lruvec = &mz->lruvec;
1042out:
1043 /*
1044 * Since a node can be onlined after the mem_cgroup was created,
1045 * we have to be prepared to initialize lruvec->zone here;
1046 * and if offlined then reonlined, we need to reinitialize it.
1047 */
1048 if (unlikely(lruvec->zone != zone))
1049 lruvec->zone = zone;
1050 return lruvec;
08e552c6 1051}
b69408e8 1052
925b7673 1053/**
fa9add64
HD
1054 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1055 * @lruvec: mem_cgroup per zone lru vector
1056 * @lru: index of lru list the page is sitting on
1057 * @nr_pages: positive when adding or negative when removing
925b7673 1058 *
fa9add64
HD
1059 * This function must be called when a page is added to or removed from an
1060 * lru list.
3f58a829 1061 */
fa9add64
HD
1062void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1063 int nr_pages)
3f58a829
MK
1064{
1065 struct mem_cgroup_per_zone *mz;
fa9add64 1066 unsigned long *lru_size;
3f58a829
MK
1067
1068 if (mem_cgroup_disabled())
1069 return;
1070
fa9add64
HD
1071 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1072 lru_size = mz->lru_size + lru;
1073 *lru_size += nr_pages;
1074 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1075}
544122e5 1076
2314b42d 1077bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1078{
2314b42d 1079 struct mem_cgroup *task_memcg;
158e0a2d 1080 struct task_struct *p;
ffbdccf5 1081 bool ret;
4c4a2214 1082
158e0a2d 1083 p = find_lock_task_mm(task);
de077d22 1084 if (p) {
2314b42d 1085 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1086 task_unlock(p);
1087 } else {
1088 /*
1089 * All threads may have already detached their mm's, but the oom
1090 * killer still needs to detect if they have already been oom
1091 * killed to prevent needlessly killing additional tasks.
1092 */
ffbdccf5 1093 rcu_read_lock();
2314b42d
JW
1094 task_memcg = mem_cgroup_from_task(task);
1095 css_get(&task_memcg->css);
ffbdccf5 1096 rcu_read_unlock();
de077d22 1097 }
2314b42d
JW
1098 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1099 css_put(&task_memcg->css);
4c4a2214
DR
1100 return ret;
1101}
1102
3e32cb2e 1103#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1104 container_of(counter, struct mem_cgroup, member)
1105
19942822 1106/**
9d11ea9f 1107 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1108 * @memcg: the memory cgroup
19942822 1109 *
9d11ea9f 1110 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1111 * pages.
19942822 1112 */
c0ff4b85 1113static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1114{
3e32cb2e
JW
1115 unsigned long margin = 0;
1116 unsigned long count;
1117 unsigned long limit;
9d11ea9f 1118
3e32cb2e 1119 count = page_counter_read(&memcg->memory);
4db0c3c2 1120 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1121 if (count < limit)
1122 margin = limit - count;
1123
1124 if (do_swap_account) {
1125 count = page_counter_read(&memcg->memsw);
4db0c3c2 1126 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1127 if (count <= limit)
1128 margin = min(margin, limit - count);
1129 }
1130
1131 return margin;
19942822
JW
1132}
1133
32047e2a 1134/*
bdcbb659 1135 * A routine for checking "mem" is under move_account() or not.
32047e2a 1136 *
bdcbb659
QH
1137 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1138 * moving cgroups. This is for waiting at high-memory pressure
1139 * caused by "move".
32047e2a 1140 */
c0ff4b85 1141static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1142{
2bd9bb20
KH
1143 struct mem_cgroup *from;
1144 struct mem_cgroup *to;
4b534334 1145 bool ret = false;
2bd9bb20
KH
1146 /*
1147 * Unlike task_move routines, we access mc.to, mc.from not under
1148 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1149 */
1150 spin_lock(&mc.lock);
1151 from = mc.from;
1152 to = mc.to;
1153 if (!from)
1154 goto unlock;
3e92041d 1155
2314b42d
JW
1156 ret = mem_cgroup_is_descendant(from, memcg) ||
1157 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1158unlock:
1159 spin_unlock(&mc.lock);
4b534334
KH
1160 return ret;
1161}
1162
c0ff4b85 1163static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1164{
1165 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1166 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1167 DEFINE_WAIT(wait);
1168 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1169 /* moving charge context might have finished. */
1170 if (mc.moving_task)
1171 schedule();
1172 finish_wait(&mc.waitq, &wait);
1173 return true;
1174 }
1175 }
1176 return false;
1177}
1178
58cf188e 1179#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1180/**
58cf188e 1181 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1182 * @memcg: The memory cgroup that went over limit
1183 * @p: Task that is going to be killed
1184 *
1185 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1186 * enabled
1187 */
1188void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1189{
e61734c5 1190 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1191 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1192 struct mem_cgroup *iter;
1193 unsigned int i;
e222432b 1194
08088cb9 1195 mutex_lock(&oom_info_lock);
e222432b
BS
1196 rcu_read_lock();
1197
2415b9f5
BV
1198 if (p) {
1199 pr_info("Task in ");
1200 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1201 pr_cont(" killed as a result of limit of ");
1202 } else {
1203 pr_info("Memory limit reached of cgroup ");
1204 }
1205
e61734c5 1206 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1207 pr_cont("\n");
e222432b 1208
e222432b
BS
1209 rcu_read_unlock();
1210
3e32cb2e
JW
1211 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1212 K((u64)page_counter_read(&memcg->memory)),
1213 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1214 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1215 K((u64)page_counter_read(&memcg->memsw)),
1216 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1217 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1218 K((u64)page_counter_read(&memcg->kmem)),
1219 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1220
1221 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1222 pr_info("Memory cgroup stats for ");
1223 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1224 pr_cont(":");
1225
1226 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1227 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1228 continue;
1229 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1230 K(mem_cgroup_read_stat(iter, i)));
1231 }
1232
1233 for (i = 0; i < NR_LRU_LISTS; i++)
1234 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1235 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1236
1237 pr_cont("\n");
1238 }
08088cb9 1239 mutex_unlock(&oom_info_lock);
e222432b
BS
1240}
1241
81d39c20
KH
1242/*
1243 * This function returns the number of memcg under hierarchy tree. Returns
1244 * 1(self count) if no children.
1245 */
c0ff4b85 1246static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1247{
1248 int num = 0;
7d74b06f
KH
1249 struct mem_cgroup *iter;
1250
c0ff4b85 1251 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1252 num++;
81d39c20
KH
1253 return num;
1254}
1255
a63d83f4
DR
1256/*
1257 * Return the memory (and swap, if configured) limit for a memcg.
1258 */
3e32cb2e 1259static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1260{
3e32cb2e 1261 unsigned long limit;
f3e8eb70 1262
3e32cb2e 1263 limit = memcg->memory.limit;
9a5a8f19 1264 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1265 unsigned long memsw_limit;
9a5a8f19 1266
3e32cb2e
JW
1267 memsw_limit = memcg->memsw.limit;
1268 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1269 }
9a5a8f19 1270 return limit;
a63d83f4
DR
1271}
1272
19965460
DR
1273static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1274 int order)
9cbb78bb 1275{
6e0fc46d
DR
1276 struct oom_control oc = {
1277 .zonelist = NULL,
1278 .nodemask = NULL,
1279 .gfp_mask = gfp_mask,
1280 .order = order,
6e0fc46d 1281 };
9cbb78bb
DR
1282 struct mem_cgroup *iter;
1283 unsigned long chosen_points = 0;
1284 unsigned long totalpages;
1285 unsigned int points = 0;
1286 struct task_struct *chosen = NULL;
1287
dc56401f
JW
1288 mutex_lock(&oom_lock);
1289
876aafbf 1290 /*
465adcf1
DR
1291 * If current has a pending SIGKILL or is exiting, then automatically
1292 * select it. The goal is to allow it to allocate so that it may
1293 * quickly exit and free its memory.
876aafbf 1294 */
d003f371 1295 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1296 mark_oom_victim(current);
dc56401f 1297 goto unlock;
876aafbf
DR
1298 }
1299
6e0fc46d 1300 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1301 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1302 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1303 struct css_task_iter it;
9cbb78bb
DR
1304 struct task_struct *task;
1305
72ec7029
TH
1306 css_task_iter_start(&iter->css, &it);
1307 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1308 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1309 case OOM_SCAN_SELECT:
1310 if (chosen)
1311 put_task_struct(chosen);
1312 chosen = task;
1313 chosen_points = ULONG_MAX;
1314 get_task_struct(chosen);
1315 /* fall through */
1316 case OOM_SCAN_CONTINUE:
1317 continue;
1318 case OOM_SCAN_ABORT:
72ec7029 1319 css_task_iter_end(&it);
9cbb78bb
DR
1320 mem_cgroup_iter_break(memcg, iter);
1321 if (chosen)
1322 put_task_struct(chosen);
dc56401f 1323 goto unlock;
9cbb78bb
DR
1324 case OOM_SCAN_OK:
1325 break;
1326 };
1327 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1328 if (!points || points < chosen_points)
1329 continue;
1330 /* Prefer thread group leaders for display purposes */
1331 if (points == chosen_points &&
1332 thread_group_leader(chosen))
1333 continue;
1334
1335 if (chosen)
1336 put_task_struct(chosen);
1337 chosen = task;
1338 chosen_points = points;
1339 get_task_struct(chosen);
9cbb78bb 1340 }
72ec7029 1341 css_task_iter_end(&it);
9cbb78bb
DR
1342 }
1343
dc56401f
JW
1344 if (chosen) {
1345 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1346 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1347 "Memory cgroup out of memory");
dc56401f
JW
1348 }
1349unlock:
1350 mutex_unlock(&oom_lock);
9cbb78bb
DR
1351}
1352
ae6e71d3
MC
1353#if MAX_NUMNODES > 1
1354
4d0c066d
KH
1355/**
1356 * test_mem_cgroup_node_reclaimable
dad7557e 1357 * @memcg: the target memcg
4d0c066d
KH
1358 * @nid: the node ID to be checked.
1359 * @noswap : specify true here if the user wants flle only information.
1360 *
1361 * This function returns whether the specified memcg contains any
1362 * reclaimable pages on a node. Returns true if there are any reclaimable
1363 * pages in the node.
1364 */
c0ff4b85 1365static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1366 int nid, bool noswap)
1367{
c0ff4b85 1368 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1369 return true;
1370 if (noswap || !total_swap_pages)
1371 return false;
c0ff4b85 1372 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1373 return true;
1374 return false;
1375
1376}
889976db
YH
1377
1378/*
1379 * Always updating the nodemask is not very good - even if we have an empty
1380 * list or the wrong list here, we can start from some node and traverse all
1381 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1382 *
1383 */
c0ff4b85 1384static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1385{
1386 int nid;
453a9bf3
KH
1387 /*
1388 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1389 * pagein/pageout changes since the last update.
1390 */
c0ff4b85 1391 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1392 return;
c0ff4b85 1393 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1394 return;
1395
889976db 1396 /* make a nodemask where this memcg uses memory from */
31aaea4a 1397 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1398
31aaea4a 1399 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1400
c0ff4b85
R
1401 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1402 node_clear(nid, memcg->scan_nodes);
889976db 1403 }
453a9bf3 1404
c0ff4b85
R
1405 atomic_set(&memcg->numainfo_events, 0);
1406 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1407}
1408
1409/*
1410 * Selecting a node where we start reclaim from. Because what we need is just
1411 * reducing usage counter, start from anywhere is O,K. Considering
1412 * memory reclaim from current node, there are pros. and cons.
1413 *
1414 * Freeing memory from current node means freeing memory from a node which
1415 * we'll use or we've used. So, it may make LRU bad. And if several threads
1416 * hit limits, it will see a contention on a node. But freeing from remote
1417 * node means more costs for memory reclaim because of memory latency.
1418 *
1419 * Now, we use round-robin. Better algorithm is welcomed.
1420 */
c0ff4b85 1421int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1422{
1423 int node;
1424
c0ff4b85
R
1425 mem_cgroup_may_update_nodemask(memcg);
1426 node = memcg->last_scanned_node;
889976db 1427
c0ff4b85 1428 node = next_node(node, memcg->scan_nodes);
889976db 1429 if (node == MAX_NUMNODES)
c0ff4b85 1430 node = first_node(memcg->scan_nodes);
889976db
YH
1431 /*
1432 * We call this when we hit limit, not when pages are added to LRU.
1433 * No LRU may hold pages because all pages are UNEVICTABLE or
1434 * memcg is too small and all pages are not on LRU. In that case,
1435 * we use curret node.
1436 */
1437 if (unlikely(node == MAX_NUMNODES))
1438 node = numa_node_id();
1439
c0ff4b85 1440 memcg->last_scanned_node = node;
889976db
YH
1441 return node;
1442}
889976db 1443#else
c0ff4b85 1444int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1445{
1446 return 0;
1447}
1448#endif
1449
0608f43d
AM
1450static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1451 struct zone *zone,
1452 gfp_t gfp_mask,
1453 unsigned long *total_scanned)
1454{
1455 struct mem_cgroup *victim = NULL;
1456 int total = 0;
1457 int loop = 0;
1458 unsigned long excess;
1459 unsigned long nr_scanned;
1460 struct mem_cgroup_reclaim_cookie reclaim = {
1461 .zone = zone,
1462 .priority = 0,
1463 };
1464
3e32cb2e 1465 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1466
1467 while (1) {
1468 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1469 if (!victim) {
1470 loop++;
1471 if (loop >= 2) {
1472 /*
1473 * If we have not been able to reclaim
1474 * anything, it might because there are
1475 * no reclaimable pages under this hierarchy
1476 */
1477 if (!total)
1478 break;
1479 /*
1480 * We want to do more targeted reclaim.
1481 * excess >> 2 is not to excessive so as to
1482 * reclaim too much, nor too less that we keep
1483 * coming back to reclaim from this cgroup
1484 */
1485 if (total >= (excess >> 2) ||
1486 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1487 break;
1488 }
1489 continue;
1490 }
0608f43d
AM
1491 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1492 zone, &nr_scanned);
1493 *total_scanned += nr_scanned;
3e32cb2e 1494 if (!soft_limit_excess(root_memcg))
0608f43d 1495 break;
6d61ef40 1496 }
0608f43d
AM
1497 mem_cgroup_iter_break(root_memcg, victim);
1498 return total;
6d61ef40
BS
1499}
1500
0056f4e6
JW
1501#ifdef CONFIG_LOCKDEP
1502static struct lockdep_map memcg_oom_lock_dep_map = {
1503 .name = "memcg_oom_lock",
1504};
1505#endif
1506
fb2a6fc5
JW
1507static DEFINE_SPINLOCK(memcg_oom_lock);
1508
867578cb
KH
1509/*
1510 * Check OOM-Killer is already running under our hierarchy.
1511 * If someone is running, return false.
1512 */
fb2a6fc5 1513static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1514{
79dfdacc 1515 struct mem_cgroup *iter, *failed = NULL;
a636b327 1516
fb2a6fc5
JW
1517 spin_lock(&memcg_oom_lock);
1518
9f3a0d09 1519 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1520 if (iter->oom_lock) {
79dfdacc
MH
1521 /*
1522 * this subtree of our hierarchy is already locked
1523 * so we cannot give a lock.
1524 */
79dfdacc 1525 failed = iter;
9f3a0d09
JW
1526 mem_cgroup_iter_break(memcg, iter);
1527 break;
23751be0
JW
1528 } else
1529 iter->oom_lock = true;
7d74b06f 1530 }
867578cb 1531
fb2a6fc5
JW
1532 if (failed) {
1533 /*
1534 * OK, we failed to lock the whole subtree so we have
1535 * to clean up what we set up to the failing subtree
1536 */
1537 for_each_mem_cgroup_tree(iter, memcg) {
1538 if (iter == failed) {
1539 mem_cgroup_iter_break(memcg, iter);
1540 break;
1541 }
1542 iter->oom_lock = false;
79dfdacc 1543 }
0056f4e6
JW
1544 } else
1545 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1546
1547 spin_unlock(&memcg_oom_lock);
1548
1549 return !failed;
a636b327 1550}
0b7f569e 1551
fb2a6fc5 1552static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1553{
7d74b06f
KH
1554 struct mem_cgroup *iter;
1555
fb2a6fc5 1556 spin_lock(&memcg_oom_lock);
0056f4e6 1557 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1558 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1559 iter->oom_lock = false;
fb2a6fc5 1560 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1561}
1562
c0ff4b85 1563static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1564{
1565 struct mem_cgroup *iter;
1566
c2b42d3c 1567 spin_lock(&memcg_oom_lock);
c0ff4b85 1568 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1569 iter->under_oom++;
1570 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1571}
1572
c0ff4b85 1573static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1574{
1575 struct mem_cgroup *iter;
1576
867578cb
KH
1577 /*
1578 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1579 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1580 */
c2b42d3c 1581 spin_lock(&memcg_oom_lock);
c0ff4b85 1582 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1583 if (iter->under_oom > 0)
1584 iter->under_oom--;
1585 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1586}
1587
867578cb
KH
1588static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1589
dc98df5a 1590struct oom_wait_info {
d79154bb 1591 struct mem_cgroup *memcg;
dc98df5a
KH
1592 wait_queue_t wait;
1593};
1594
1595static int memcg_oom_wake_function(wait_queue_t *wait,
1596 unsigned mode, int sync, void *arg)
1597{
d79154bb
HD
1598 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1599 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1600 struct oom_wait_info *oom_wait_info;
1601
1602 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1603 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1604
2314b42d
JW
1605 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1606 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1607 return 0;
dc98df5a
KH
1608 return autoremove_wake_function(wait, mode, sync, arg);
1609}
1610
c0ff4b85 1611static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1612{
c2b42d3c
TH
1613 /*
1614 * For the following lockless ->under_oom test, the only required
1615 * guarantee is that it must see the state asserted by an OOM when
1616 * this function is called as a result of userland actions
1617 * triggered by the notification of the OOM. This is trivially
1618 * achieved by invoking mem_cgroup_mark_under_oom() before
1619 * triggering notification.
1620 */
1621 if (memcg && memcg->under_oom)
f4b90b70 1622 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1623}
1624
3812c8c8 1625static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1626{
3812c8c8
JW
1627 if (!current->memcg_oom.may_oom)
1628 return;
867578cb 1629 /*
49426420
JW
1630 * We are in the middle of the charge context here, so we
1631 * don't want to block when potentially sitting on a callstack
1632 * that holds all kinds of filesystem and mm locks.
1633 *
1634 * Also, the caller may handle a failed allocation gracefully
1635 * (like optional page cache readahead) and so an OOM killer
1636 * invocation might not even be necessary.
1637 *
1638 * That's why we don't do anything here except remember the
1639 * OOM context and then deal with it at the end of the page
1640 * fault when the stack is unwound, the locks are released,
1641 * and when we know whether the fault was overall successful.
867578cb 1642 */
49426420
JW
1643 css_get(&memcg->css);
1644 current->memcg_oom.memcg = memcg;
1645 current->memcg_oom.gfp_mask = mask;
1646 current->memcg_oom.order = order;
3812c8c8
JW
1647}
1648
1649/**
1650 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1651 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1652 *
49426420
JW
1653 * This has to be called at the end of a page fault if the memcg OOM
1654 * handler was enabled.
3812c8c8 1655 *
49426420 1656 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1657 * sleep on a waitqueue until the userspace task resolves the
1658 * situation. Sleeping directly in the charge context with all kinds
1659 * of locks held is not a good idea, instead we remember an OOM state
1660 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1661 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1662 *
1663 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1664 * completed, %false otherwise.
3812c8c8 1665 */
49426420 1666bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1667{
49426420 1668 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1669 struct oom_wait_info owait;
49426420 1670 bool locked;
3812c8c8
JW
1671
1672 /* OOM is global, do not handle */
3812c8c8 1673 if (!memcg)
49426420 1674 return false;
3812c8c8 1675
c32b3cbe 1676 if (!handle || oom_killer_disabled)
49426420 1677 goto cleanup;
3812c8c8
JW
1678
1679 owait.memcg = memcg;
1680 owait.wait.flags = 0;
1681 owait.wait.func = memcg_oom_wake_function;
1682 owait.wait.private = current;
1683 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1684
3812c8c8 1685 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1686 mem_cgroup_mark_under_oom(memcg);
1687
1688 locked = mem_cgroup_oom_trylock(memcg);
1689
1690 if (locked)
1691 mem_cgroup_oom_notify(memcg);
1692
1693 if (locked && !memcg->oom_kill_disable) {
1694 mem_cgroup_unmark_under_oom(memcg);
1695 finish_wait(&memcg_oom_waitq, &owait.wait);
1696 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1697 current->memcg_oom.order);
1698 } else {
3812c8c8 1699 schedule();
49426420
JW
1700 mem_cgroup_unmark_under_oom(memcg);
1701 finish_wait(&memcg_oom_waitq, &owait.wait);
1702 }
1703
1704 if (locked) {
fb2a6fc5
JW
1705 mem_cgroup_oom_unlock(memcg);
1706 /*
1707 * There is no guarantee that an OOM-lock contender
1708 * sees the wakeups triggered by the OOM kill
1709 * uncharges. Wake any sleepers explicitely.
1710 */
1711 memcg_oom_recover(memcg);
1712 }
49426420
JW
1713cleanup:
1714 current->memcg_oom.memcg = NULL;
3812c8c8 1715 css_put(&memcg->css);
867578cb 1716 return true;
0b7f569e
KH
1717}
1718
d7365e78
JW
1719/**
1720 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1721 * @page: page that is going to change accounted state
32047e2a 1722 *
d7365e78
JW
1723 * This function must mark the beginning of an accounted page state
1724 * change to prevent double accounting when the page is concurrently
1725 * being moved to another memcg:
32047e2a 1726 *
6de22619 1727 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1728 * if (TestClearPageState(page))
1729 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1730 * mem_cgroup_end_page_stat(memcg);
d69b042f 1731 */
6de22619 1732struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1733{
1734 struct mem_cgroup *memcg;
6de22619 1735 unsigned long flags;
89c06bd5 1736
6de22619
JW
1737 /*
1738 * The RCU lock is held throughout the transaction. The fast
1739 * path can get away without acquiring the memcg->move_lock
1740 * because page moving starts with an RCU grace period.
1741 *
1742 * The RCU lock also protects the memcg from being freed when
1743 * the page state that is going to change is the only thing
1744 * preventing the page from being uncharged.
1745 * E.g. end-writeback clearing PageWriteback(), which allows
1746 * migration to go ahead and uncharge the page before the
1747 * account transaction might be complete.
1748 */
d7365e78
JW
1749 rcu_read_lock();
1750
1751 if (mem_cgroup_disabled())
1752 return NULL;
89c06bd5 1753again:
1306a85a 1754 memcg = page->mem_cgroup;
29833315 1755 if (unlikely(!memcg))
d7365e78
JW
1756 return NULL;
1757
bdcbb659 1758 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1759 return memcg;
89c06bd5 1760
6de22619 1761 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1762 if (memcg != page->mem_cgroup) {
6de22619 1763 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1764 goto again;
1765 }
6de22619
JW
1766
1767 /*
1768 * When charge migration first begins, we can have locked and
1769 * unlocked page stat updates happening concurrently. Track
1770 * the task who has the lock for mem_cgroup_end_page_stat().
1771 */
1772 memcg->move_lock_task = current;
1773 memcg->move_lock_flags = flags;
d7365e78
JW
1774
1775 return memcg;
89c06bd5 1776}
c4843a75 1777EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1778
d7365e78
JW
1779/**
1780 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1781 * @memcg: the memcg that was accounted against
d7365e78 1782 */
6de22619 1783void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1784{
6de22619
JW
1785 if (memcg && memcg->move_lock_task == current) {
1786 unsigned long flags = memcg->move_lock_flags;
1787
1788 memcg->move_lock_task = NULL;
1789 memcg->move_lock_flags = 0;
1790
1791 spin_unlock_irqrestore(&memcg->move_lock, flags);
1792 }
89c06bd5 1793
d7365e78 1794 rcu_read_unlock();
89c06bd5 1795}
c4843a75 1796EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1797
cdec2e42
KH
1798/*
1799 * size of first charge trial. "32" comes from vmscan.c's magic value.
1800 * TODO: maybe necessary to use big numbers in big irons.
1801 */
7ec99d62 1802#define CHARGE_BATCH 32U
cdec2e42
KH
1803struct memcg_stock_pcp {
1804 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1805 unsigned int nr_pages;
cdec2e42 1806 struct work_struct work;
26fe6168 1807 unsigned long flags;
a0db00fc 1808#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1809};
1810static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1811static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1812
a0956d54
SS
1813/**
1814 * consume_stock: Try to consume stocked charge on this cpu.
1815 * @memcg: memcg to consume from.
1816 * @nr_pages: how many pages to charge.
1817 *
1818 * The charges will only happen if @memcg matches the current cpu's memcg
1819 * stock, and at least @nr_pages are available in that stock. Failure to
1820 * service an allocation will refill the stock.
1821 *
1822 * returns true if successful, false otherwise.
cdec2e42 1823 */
a0956d54 1824static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1825{
1826 struct memcg_stock_pcp *stock;
3e32cb2e 1827 bool ret = false;
cdec2e42 1828
a0956d54 1829 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1830 return ret;
a0956d54 1831
cdec2e42 1832 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1833 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1834 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1835 ret = true;
1836 }
cdec2e42
KH
1837 put_cpu_var(memcg_stock);
1838 return ret;
1839}
1840
1841/*
3e32cb2e 1842 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1843 */
1844static void drain_stock(struct memcg_stock_pcp *stock)
1845{
1846 struct mem_cgroup *old = stock->cached;
1847
11c9ea4e 1848 if (stock->nr_pages) {
3e32cb2e 1849 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 1850 if (do_swap_account)
3e32cb2e 1851 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1852 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1853 stock->nr_pages = 0;
cdec2e42
KH
1854 }
1855 stock->cached = NULL;
cdec2e42
KH
1856}
1857
1858/*
1859 * This must be called under preempt disabled or must be called by
1860 * a thread which is pinned to local cpu.
1861 */
1862static void drain_local_stock(struct work_struct *dummy)
1863{
7c8e0181 1864 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1865 drain_stock(stock);
26fe6168 1866 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1867}
1868
1869/*
3e32cb2e 1870 * Cache charges(val) to local per_cpu area.
320cc51d 1871 * This will be consumed by consume_stock() function, later.
cdec2e42 1872 */
c0ff4b85 1873static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1874{
1875 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1876
c0ff4b85 1877 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1878 drain_stock(stock);
c0ff4b85 1879 stock->cached = memcg;
cdec2e42 1880 }
11c9ea4e 1881 stock->nr_pages += nr_pages;
cdec2e42
KH
1882 put_cpu_var(memcg_stock);
1883}
1884
1885/*
c0ff4b85 1886 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1887 * of the hierarchy under it.
cdec2e42 1888 */
6d3d6aa2 1889static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1890{
26fe6168 1891 int cpu, curcpu;
d38144b7 1892
6d3d6aa2
JW
1893 /* If someone's already draining, avoid adding running more workers. */
1894 if (!mutex_trylock(&percpu_charge_mutex))
1895 return;
cdec2e42 1896 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1897 get_online_cpus();
5af12d0e 1898 curcpu = get_cpu();
cdec2e42
KH
1899 for_each_online_cpu(cpu) {
1900 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1901 struct mem_cgroup *memcg;
26fe6168 1902
c0ff4b85
R
1903 memcg = stock->cached;
1904 if (!memcg || !stock->nr_pages)
26fe6168 1905 continue;
2314b42d 1906 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1907 continue;
d1a05b69
MH
1908 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1909 if (cpu == curcpu)
1910 drain_local_stock(&stock->work);
1911 else
1912 schedule_work_on(cpu, &stock->work);
1913 }
cdec2e42 1914 }
5af12d0e 1915 put_cpu();
f894ffa8 1916 put_online_cpus();
9f50fad6 1917 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1918}
1919
0db0628d 1920static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1921 unsigned long action,
1922 void *hcpu)
1923{
1924 int cpu = (unsigned long)hcpu;
1925 struct memcg_stock_pcp *stock;
1926
619d094b 1927 if (action == CPU_ONLINE)
1489ebad 1928 return NOTIFY_OK;
1489ebad 1929
d833049b 1930 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1931 return NOTIFY_OK;
711d3d2c 1932
cdec2e42
KH
1933 stock = &per_cpu(memcg_stock, cpu);
1934 drain_stock(stock);
1935 return NOTIFY_OK;
1936}
1937
00501b53
JW
1938static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1939 unsigned int nr_pages)
8a9f3ccd 1940{
7ec99d62 1941 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1942 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1943 struct mem_cgroup *mem_over_limit;
3e32cb2e 1944 struct page_counter *counter;
6539cc05 1945 unsigned long nr_reclaimed;
b70a2a21
JW
1946 bool may_swap = true;
1947 bool drained = false;
05b84301 1948 int ret = 0;
a636b327 1949
ce00a967
JW
1950 if (mem_cgroup_is_root(memcg))
1951 goto done;
6539cc05 1952retry:
b6b6cc72
MH
1953 if (consume_stock(memcg, nr_pages))
1954 goto done;
8a9f3ccd 1955
3fbe7244 1956 if (!do_swap_account ||
3e32cb2e
JW
1957 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1958 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1959 goto done_restock;
3fbe7244 1960 if (do_swap_account)
3e32cb2e
JW
1961 page_counter_uncharge(&memcg->memsw, batch);
1962 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1963 } else {
3e32cb2e 1964 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1965 may_swap = false;
3fbe7244 1966 }
7a81b88c 1967
6539cc05
JW
1968 if (batch > nr_pages) {
1969 batch = nr_pages;
1970 goto retry;
1971 }
6d61ef40 1972
06b078fc
JW
1973 /*
1974 * Unlike in global OOM situations, memcg is not in a physical
1975 * memory shortage. Allow dying and OOM-killed tasks to
1976 * bypass the last charges so that they can exit quickly and
1977 * free their memory.
1978 */
1979 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1980 fatal_signal_pending(current) ||
1981 current->flags & PF_EXITING))
1982 goto bypass;
1983
1984 if (unlikely(task_in_memcg_oom(current)))
1985 goto nomem;
1986
6539cc05
JW
1987 if (!(gfp_mask & __GFP_WAIT))
1988 goto nomem;
4b534334 1989
241994ed
JW
1990 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1991
b70a2a21
JW
1992 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1993 gfp_mask, may_swap);
6539cc05 1994
61e02c74 1995 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1996 goto retry;
28c34c29 1997
b70a2a21 1998 if (!drained) {
6d3d6aa2 1999 drain_all_stock(mem_over_limit);
b70a2a21
JW
2000 drained = true;
2001 goto retry;
2002 }
2003
28c34c29
JW
2004 if (gfp_mask & __GFP_NORETRY)
2005 goto nomem;
6539cc05
JW
2006 /*
2007 * Even though the limit is exceeded at this point, reclaim
2008 * may have been able to free some pages. Retry the charge
2009 * before killing the task.
2010 *
2011 * Only for regular pages, though: huge pages are rather
2012 * unlikely to succeed so close to the limit, and we fall back
2013 * to regular pages anyway in case of failure.
2014 */
61e02c74 2015 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2016 goto retry;
2017 /*
2018 * At task move, charge accounts can be doubly counted. So, it's
2019 * better to wait until the end of task_move if something is going on.
2020 */
2021 if (mem_cgroup_wait_acct_move(mem_over_limit))
2022 goto retry;
2023
9b130619
JW
2024 if (nr_retries--)
2025 goto retry;
2026
06b078fc
JW
2027 if (gfp_mask & __GFP_NOFAIL)
2028 goto bypass;
2029
6539cc05
JW
2030 if (fatal_signal_pending(current))
2031 goto bypass;
2032
241994ed
JW
2033 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2034
61e02c74 2035 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2036nomem:
6d1fdc48 2037 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2038 return -ENOMEM;
867578cb 2039bypass:
ce00a967 2040 return -EINTR;
6539cc05
JW
2041
2042done_restock:
e8ea14cc 2043 css_get_many(&memcg->css, batch);
6539cc05
JW
2044 if (batch > nr_pages)
2045 refill_stock(memcg, batch - nr_pages);
7d638093
VD
2046 if (!(gfp_mask & __GFP_WAIT))
2047 goto done;
241994ed
JW
2048 /*
2049 * If the hierarchy is above the normal consumption range,
2050 * make the charging task trim their excess contribution.
2051 */
2052 do {
2053 if (page_counter_read(&memcg->memory) <= memcg->high)
2054 continue;
2055 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2056 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2057 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2058done:
05b84301 2059 return ret;
7a81b88c 2060}
8a9f3ccd 2061
00501b53 2062static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2063{
ce00a967
JW
2064 if (mem_cgroup_is_root(memcg))
2065 return;
2066
3e32cb2e 2067 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2068 if (do_swap_account)
3e32cb2e 2069 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2070
e8ea14cc 2071 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2072}
2073
0a31bc97
JW
2074/*
2075 * try_get_mem_cgroup_from_page - look up page's memcg association
2076 * @page: the page
2077 *
2078 * Look up, get a css reference, and return the memcg that owns @page.
2079 *
2080 * The page must be locked to prevent racing with swap-in and page
2081 * cache charges. If coming from an unlocked page table, the caller
2082 * must ensure the page is on the LRU or this can race with charging.
2083 */
e42d9d5d 2084struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2085{
29833315 2086 struct mem_cgroup *memcg;
a3b2d692 2087 unsigned short id;
b5a84319
KH
2088 swp_entry_t ent;
2089
309381fe 2090 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2091
1306a85a 2092 memcg = page->mem_cgroup;
29833315
JW
2093 if (memcg) {
2094 if (!css_tryget_online(&memcg->css))
c0ff4b85 2095 memcg = NULL;
e42d9d5d 2096 } else if (PageSwapCache(page)) {
3c776e64 2097 ent.val = page_private(page);
9fb4b7cc 2098 id = lookup_swap_cgroup_id(ent);
a3b2d692 2099 rcu_read_lock();
adbe427b 2100 memcg = mem_cgroup_from_id(id);
ec903c0c 2101 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2102 memcg = NULL;
a3b2d692 2103 rcu_read_unlock();
3c776e64 2104 }
c0ff4b85 2105 return memcg;
b5a84319
KH
2106}
2107
0a31bc97
JW
2108static void lock_page_lru(struct page *page, int *isolated)
2109{
2110 struct zone *zone = page_zone(page);
2111
2112 spin_lock_irq(&zone->lru_lock);
2113 if (PageLRU(page)) {
2114 struct lruvec *lruvec;
2115
2116 lruvec = mem_cgroup_page_lruvec(page, zone);
2117 ClearPageLRU(page);
2118 del_page_from_lru_list(page, lruvec, page_lru(page));
2119 *isolated = 1;
2120 } else
2121 *isolated = 0;
2122}
2123
2124static void unlock_page_lru(struct page *page, int isolated)
2125{
2126 struct zone *zone = page_zone(page);
2127
2128 if (isolated) {
2129 struct lruvec *lruvec;
2130
2131 lruvec = mem_cgroup_page_lruvec(page, zone);
2132 VM_BUG_ON_PAGE(PageLRU(page), page);
2133 SetPageLRU(page);
2134 add_page_to_lru_list(page, lruvec, page_lru(page));
2135 }
2136 spin_unlock_irq(&zone->lru_lock);
2137}
2138
00501b53 2139static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2140 bool lrucare)
7a81b88c 2141{
0a31bc97 2142 int isolated;
9ce70c02 2143
1306a85a 2144 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2145
2146 /*
2147 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2148 * may already be on some other mem_cgroup's LRU. Take care of it.
2149 */
0a31bc97
JW
2150 if (lrucare)
2151 lock_page_lru(page, &isolated);
9ce70c02 2152
0a31bc97
JW
2153 /*
2154 * Nobody should be changing or seriously looking at
1306a85a 2155 * page->mem_cgroup at this point:
0a31bc97
JW
2156 *
2157 * - the page is uncharged
2158 *
2159 * - the page is off-LRU
2160 *
2161 * - an anonymous fault has exclusive page access, except for
2162 * a locked page table
2163 *
2164 * - a page cache insertion, a swapin fault, or a migration
2165 * have the page locked
2166 */
1306a85a 2167 page->mem_cgroup = memcg;
9ce70c02 2168
0a31bc97
JW
2169 if (lrucare)
2170 unlock_page_lru(page, isolated);
7a81b88c 2171}
66e1707b 2172
7ae1e1d0 2173#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2174int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2175 unsigned long nr_pages)
7ae1e1d0 2176{
3e32cb2e 2177 struct page_counter *counter;
7ae1e1d0 2178 int ret = 0;
7ae1e1d0 2179
3e32cb2e
JW
2180 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2181 if (ret < 0)
7ae1e1d0
GC
2182 return ret;
2183
3e32cb2e 2184 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2185 if (ret == -EINTR) {
2186 /*
00501b53
JW
2187 * try_charge() chose to bypass to root due to OOM kill or
2188 * fatal signal. Since our only options are to either fail
2189 * the allocation or charge it to this cgroup, do it as a
2190 * temporary condition. But we can't fail. From a kmem/slab
2191 * perspective, the cache has already been selected, by
2192 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2193 * our minds.
2194 *
2195 * This condition will only trigger if the task entered
00501b53
JW
2196 * memcg_charge_kmem in a sane state, but was OOM-killed
2197 * during try_charge() above. Tasks that were already dying
2198 * when the allocation triggers should have been already
7ae1e1d0
GC
2199 * directed to the root cgroup in memcontrol.h
2200 */
3e32cb2e 2201 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2202 if (do_swap_account)
3e32cb2e 2203 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2204 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2205 ret = 0;
2206 } else if (ret)
3e32cb2e 2207 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2208
2209 return ret;
2210}
2211
dbf22eb6 2212void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2213{
3e32cb2e 2214 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2215 if (do_swap_account)
3e32cb2e 2216 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2217
64f21993 2218 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2219
e8ea14cc 2220 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2221}
2222
f3bb3043 2223static int memcg_alloc_cache_id(void)
55007d84 2224{
f3bb3043
VD
2225 int id, size;
2226 int err;
2227
dbcf73e2 2228 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2229 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2230 if (id < 0)
2231 return id;
55007d84 2232
dbcf73e2 2233 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2234 return id;
2235
2236 /*
2237 * There's no space for the new id in memcg_caches arrays,
2238 * so we have to grow them.
2239 */
05257a1a 2240 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2241
2242 size = 2 * (id + 1);
55007d84
GC
2243 if (size < MEMCG_CACHES_MIN_SIZE)
2244 size = MEMCG_CACHES_MIN_SIZE;
2245 else if (size > MEMCG_CACHES_MAX_SIZE)
2246 size = MEMCG_CACHES_MAX_SIZE;
2247
f3bb3043 2248 err = memcg_update_all_caches(size);
60d3fd32
VD
2249 if (!err)
2250 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2251 if (!err)
2252 memcg_nr_cache_ids = size;
2253
2254 up_write(&memcg_cache_ids_sem);
2255
f3bb3043 2256 if (err) {
dbcf73e2 2257 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2258 return err;
2259 }
2260 return id;
2261}
2262
2263static void memcg_free_cache_id(int id)
2264{
dbcf73e2 2265 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2266}
2267
d5b3cf71 2268struct memcg_kmem_cache_create_work {
5722d094
VD
2269 struct mem_cgroup *memcg;
2270 struct kmem_cache *cachep;
2271 struct work_struct work;
2272};
2273
d5b3cf71 2274static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2275{
d5b3cf71
VD
2276 struct memcg_kmem_cache_create_work *cw =
2277 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2278 struct mem_cgroup *memcg = cw->memcg;
2279 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2280
d5b3cf71 2281 memcg_create_kmem_cache(memcg, cachep);
bd673145 2282
5722d094 2283 css_put(&memcg->css);
d7f25f8a
GC
2284 kfree(cw);
2285}
2286
2287/*
2288 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2289 */
d5b3cf71
VD
2290static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2291 struct kmem_cache *cachep)
d7f25f8a 2292{
d5b3cf71 2293 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2294
776ed0f0 2295 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2296 if (!cw)
d7f25f8a 2297 return;
8135be5a
VD
2298
2299 css_get(&memcg->css);
d7f25f8a
GC
2300
2301 cw->memcg = memcg;
2302 cw->cachep = cachep;
d5b3cf71 2303 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2304
d7f25f8a
GC
2305 schedule_work(&cw->work);
2306}
2307
d5b3cf71
VD
2308static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2309 struct kmem_cache *cachep)
0e9d92f2
GC
2310{
2311 /*
2312 * We need to stop accounting when we kmalloc, because if the
2313 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2314 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2315 *
2316 * However, it is better to enclose the whole function. Depending on
2317 * the debugging options enabled, INIT_WORK(), for instance, can
2318 * trigger an allocation. This too, will make us recurse. Because at
2319 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2320 * the safest choice is to do it like this, wrapping the whole function.
2321 */
6f185c29 2322 current->memcg_kmem_skip_account = 1;
d5b3cf71 2323 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2324 current->memcg_kmem_skip_account = 0;
0e9d92f2 2325}
c67a8a68 2326
d7f25f8a
GC
2327/*
2328 * Return the kmem_cache we're supposed to use for a slab allocation.
2329 * We try to use the current memcg's version of the cache.
2330 *
2331 * If the cache does not exist yet, if we are the first user of it,
2332 * we either create it immediately, if possible, or create it asynchronously
2333 * in a workqueue.
2334 * In the latter case, we will let the current allocation go through with
2335 * the original cache.
2336 *
2337 * Can't be called in interrupt context or from kernel threads.
2338 * This function needs to be called with rcu_read_lock() held.
2339 */
056b7cce 2340struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2341{
2342 struct mem_cgroup *memcg;
959c8963 2343 struct kmem_cache *memcg_cachep;
2a4db7eb 2344 int kmemcg_id;
d7f25f8a 2345
f7ce3190 2346 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2347
9d100c5e 2348 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2349 return cachep;
2350
8135be5a 2351 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2352 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2353 if (kmemcg_id < 0)
ca0dde97 2354 goto out;
d7f25f8a 2355
2a4db7eb 2356 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2357 if (likely(memcg_cachep))
2358 return memcg_cachep;
ca0dde97
LZ
2359
2360 /*
2361 * If we are in a safe context (can wait, and not in interrupt
2362 * context), we could be be predictable and return right away.
2363 * This would guarantee that the allocation being performed
2364 * already belongs in the new cache.
2365 *
2366 * However, there are some clashes that can arrive from locking.
2367 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2368 * memcg_create_kmem_cache, this means no further allocation
2369 * could happen with the slab_mutex held. So it's better to
2370 * defer everything.
ca0dde97 2371 */
d5b3cf71 2372 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2373out:
8135be5a 2374 css_put(&memcg->css);
ca0dde97 2375 return cachep;
d7f25f8a 2376}
d7f25f8a 2377
8135be5a
VD
2378void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2379{
2380 if (!is_root_cache(cachep))
f7ce3190 2381 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2382}
2383
7ae1e1d0
GC
2384/*
2385 * We need to verify if the allocation against current->mm->owner's memcg is
2386 * possible for the given order. But the page is not allocated yet, so we'll
2387 * need a further commit step to do the final arrangements.
2388 *
2389 * It is possible for the task to switch cgroups in this mean time, so at
2390 * commit time, we can't rely on task conversion any longer. We'll then use
2391 * the handle argument to return to the caller which cgroup we should commit
2392 * against. We could also return the memcg directly and avoid the pointer
2393 * passing, but a boolean return value gives better semantics considering
2394 * the compiled-out case as well.
2395 *
2396 * Returning true means the allocation is possible.
2397 */
2398bool
2399__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2400{
2401 struct mem_cgroup *memcg;
2402 int ret;
2403
2404 *_memcg = NULL;
6d42c232 2405
df381975 2406 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2407
cf2b8fbf 2408 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2409 css_put(&memcg->css);
2410 return true;
2411 }
2412
3e32cb2e 2413 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2414 if (!ret)
2415 *_memcg = memcg;
7ae1e1d0
GC
2416
2417 css_put(&memcg->css);
2418 return (ret == 0);
2419}
2420
2421void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2422 int order)
2423{
7ae1e1d0
GC
2424 VM_BUG_ON(mem_cgroup_is_root(memcg));
2425
2426 /* The page allocation failed. Revert */
2427 if (!page) {
3e32cb2e 2428 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2429 return;
2430 }
1306a85a 2431 page->mem_cgroup = memcg;
7ae1e1d0
GC
2432}
2433
2434void __memcg_kmem_uncharge_pages(struct page *page, int order)
2435{
1306a85a 2436 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2437
7ae1e1d0
GC
2438 if (!memcg)
2439 return;
2440
309381fe 2441 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2442
3e32cb2e 2443 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2444 page->mem_cgroup = NULL;
7ae1e1d0 2445}
60d3fd32
VD
2446
2447struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2448{
2449 struct mem_cgroup *memcg = NULL;
2450 struct kmem_cache *cachep;
2451 struct page *page;
2452
2453 page = virt_to_head_page(ptr);
2454 if (PageSlab(page)) {
2455 cachep = page->slab_cache;
2456 if (!is_root_cache(cachep))
f7ce3190 2457 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2458 } else
2459 /* page allocated by alloc_kmem_pages */
2460 memcg = page->mem_cgroup;
2461
2462 return memcg;
2463}
7ae1e1d0
GC
2464#endif /* CONFIG_MEMCG_KMEM */
2465
ca3e0214
KH
2466#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2467
ca3e0214
KH
2468/*
2469 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2470 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2471 * charge/uncharge will be never happen and move_account() is done under
2472 * compound_lock(), so we don't have to take care of races.
ca3e0214 2473 */
e94c8a9c 2474void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2475{
e94c8a9c 2476 int i;
ca3e0214 2477
3d37c4a9
KH
2478 if (mem_cgroup_disabled())
2479 return;
b070e65c 2480
29833315 2481 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2482 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2483
1306a85a 2484 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2485 HPAGE_PMD_NR);
ca3e0214 2486}
12d27107 2487#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2488
c255a458 2489#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2490static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2491 bool charge)
d13d1443 2492{
0a31bc97
JW
2493 int val = (charge) ? 1 : -1;
2494 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2495}
02491447
DN
2496
2497/**
2498 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2499 * @entry: swap entry to be moved
2500 * @from: mem_cgroup which the entry is moved from
2501 * @to: mem_cgroup which the entry is moved to
2502 *
2503 * It succeeds only when the swap_cgroup's record for this entry is the same
2504 * as the mem_cgroup's id of @from.
2505 *
2506 * Returns 0 on success, -EINVAL on failure.
2507 *
3e32cb2e 2508 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2509 * both res and memsw, and called css_get().
2510 */
2511static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2512 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2513{
2514 unsigned short old_id, new_id;
2515
34c00c31
LZ
2516 old_id = mem_cgroup_id(from);
2517 new_id = mem_cgroup_id(to);
02491447
DN
2518
2519 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2520 mem_cgroup_swap_statistics(from, false);
483c30b5 2521 mem_cgroup_swap_statistics(to, true);
02491447
DN
2522 return 0;
2523 }
2524 return -EINVAL;
2525}
2526#else
2527static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2528 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2529{
2530 return -EINVAL;
2531}
8c7c6e34 2532#endif
d13d1443 2533
3e32cb2e 2534static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2535
d38d2a75 2536static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2537 unsigned long limit)
628f4235 2538{
3e32cb2e
JW
2539 unsigned long curusage;
2540 unsigned long oldusage;
2541 bool enlarge = false;
81d39c20 2542 int retry_count;
3e32cb2e 2543 int ret;
81d39c20
KH
2544
2545 /*
2546 * For keeping hierarchical_reclaim simple, how long we should retry
2547 * is depends on callers. We set our retry-count to be function
2548 * of # of children which we should visit in this loop.
2549 */
3e32cb2e
JW
2550 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2551 mem_cgroup_count_children(memcg);
81d39c20 2552
3e32cb2e 2553 oldusage = page_counter_read(&memcg->memory);
628f4235 2554
3e32cb2e 2555 do {
628f4235
KH
2556 if (signal_pending(current)) {
2557 ret = -EINTR;
2558 break;
2559 }
3e32cb2e
JW
2560
2561 mutex_lock(&memcg_limit_mutex);
2562 if (limit > memcg->memsw.limit) {
2563 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2564 ret = -EINVAL;
628f4235
KH
2565 break;
2566 }
3e32cb2e
JW
2567 if (limit > memcg->memory.limit)
2568 enlarge = true;
2569 ret = page_counter_limit(&memcg->memory, limit);
2570 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2571
2572 if (!ret)
2573 break;
2574
b70a2a21
JW
2575 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2576
3e32cb2e 2577 curusage = page_counter_read(&memcg->memory);
81d39c20 2578 /* Usage is reduced ? */
f894ffa8 2579 if (curusage >= oldusage)
81d39c20
KH
2580 retry_count--;
2581 else
2582 oldusage = curusage;
3e32cb2e
JW
2583 } while (retry_count);
2584
3c11ecf4
KH
2585 if (!ret && enlarge)
2586 memcg_oom_recover(memcg);
14797e23 2587
8c7c6e34
KH
2588 return ret;
2589}
2590
338c8431 2591static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2592 unsigned long limit)
8c7c6e34 2593{
3e32cb2e
JW
2594 unsigned long curusage;
2595 unsigned long oldusage;
2596 bool enlarge = false;
81d39c20 2597 int retry_count;
3e32cb2e 2598 int ret;
8c7c6e34 2599
81d39c20 2600 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2601 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2602 mem_cgroup_count_children(memcg);
2603
2604 oldusage = page_counter_read(&memcg->memsw);
2605
2606 do {
8c7c6e34
KH
2607 if (signal_pending(current)) {
2608 ret = -EINTR;
2609 break;
2610 }
3e32cb2e
JW
2611
2612 mutex_lock(&memcg_limit_mutex);
2613 if (limit < memcg->memory.limit) {
2614 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2615 ret = -EINVAL;
8c7c6e34
KH
2616 break;
2617 }
3e32cb2e
JW
2618 if (limit > memcg->memsw.limit)
2619 enlarge = true;
2620 ret = page_counter_limit(&memcg->memsw, limit);
2621 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2622
2623 if (!ret)
2624 break;
2625
b70a2a21
JW
2626 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2627
3e32cb2e 2628 curusage = page_counter_read(&memcg->memsw);
81d39c20 2629 /* Usage is reduced ? */
8c7c6e34 2630 if (curusage >= oldusage)
628f4235 2631 retry_count--;
81d39c20
KH
2632 else
2633 oldusage = curusage;
3e32cb2e
JW
2634 } while (retry_count);
2635
3c11ecf4
KH
2636 if (!ret && enlarge)
2637 memcg_oom_recover(memcg);
3e32cb2e 2638
628f4235
KH
2639 return ret;
2640}
2641
0608f43d
AM
2642unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2643 gfp_t gfp_mask,
2644 unsigned long *total_scanned)
2645{
2646 unsigned long nr_reclaimed = 0;
2647 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2648 unsigned long reclaimed;
2649 int loop = 0;
2650 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2651 unsigned long excess;
0608f43d
AM
2652 unsigned long nr_scanned;
2653
2654 if (order > 0)
2655 return 0;
2656
2657 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2658 /*
2659 * This loop can run a while, specially if mem_cgroup's continuously
2660 * keep exceeding their soft limit and putting the system under
2661 * pressure
2662 */
2663 do {
2664 if (next_mz)
2665 mz = next_mz;
2666 else
2667 mz = mem_cgroup_largest_soft_limit_node(mctz);
2668 if (!mz)
2669 break;
2670
2671 nr_scanned = 0;
2672 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2673 gfp_mask, &nr_scanned);
2674 nr_reclaimed += reclaimed;
2675 *total_scanned += nr_scanned;
0a31bc97 2676 spin_lock_irq(&mctz->lock);
bc2f2e7f 2677 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2678
2679 /*
2680 * If we failed to reclaim anything from this memory cgroup
2681 * it is time to move on to the next cgroup
2682 */
2683 next_mz = NULL;
bc2f2e7f
VD
2684 if (!reclaimed)
2685 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2686
3e32cb2e 2687 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2688 /*
2689 * One school of thought says that we should not add
2690 * back the node to the tree if reclaim returns 0.
2691 * But our reclaim could return 0, simply because due
2692 * to priority we are exposing a smaller subset of
2693 * memory to reclaim from. Consider this as a longer
2694 * term TODO.
2695 */
2696 /* If excess == 0, no tree ops */
cf2c8127 2697 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2698 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2699 css_put(&mz->memcg->css);
2700 loop++;
2701 /*
2702 * Could not reclaim anything and there are no more
2703 * mem cgroups to try or we seem to be looping without
2704 * reclaiming anything.
2705 */
2706 if (!nr_reclaimed &&
2707 (next_mz == NULL ||
2708 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2709 break;
2710 } while (!nr_reclaimed);
2711 if (next_mz)
2712 css_put(&next_mz->memcg->css);
2713 return nr_reclaimed;
2714}
2715
ea280e7b
TH
2716/*
2717 * Test whether @memcg has children, dead or alive. Note that this
2718 * function doesn't care whether @memcg has use_hierarchy enabled and
2719 * returns %true if there are child csses according to the cgroup
2720 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2721 */
b5f99b53
GC
2722static inline bool memcg_has_children(struct mem_cgroup *memcg)
2723{
ea280e7b
TH
2724 bool ret;
2725
696ac172 2726 /*
ea280e7b
TH
2727 * The lock does not prevent addition or deletion of children, but
2728 * it prevents a new child from being initialized based on this
2729 * parent in css_online(), so it's enough to decide whether
2730 * hierarchically inherited attributes can still be changed or not.
696ac172 2731 */
ea280e7b
TH
2732 lockdep_assert_held(&memcg_create_mutex);
2733
2734 rcu_read_lock();
2735 ret = css_next_child(NULL, &memcg->css);
2736 rcu_read_unlock();
2737 return ret;
b5f99b53
GC
2738}
2739
c26251f9
MH
2740/*
2741 * Reclaims as many pages from the given memcg as possible and moves
2742 * the rest to the parent.
2743 *
2744 * Caller is responsible for holding css reference for memcg.
2745 */
2746static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2747{
2748 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2749
c1e862c1
KH
2750 /* we call try-to-free pages for make this cgroup empty */
2751 lru_add_drain_all();
f817ed48 2752 /* try to free all pages in this cgroup */
3e32cb2e 2753 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2754 int progress;
c1e862c1 2755
c26251f9
MH
2756 if (signal_pending(current))
2757 return -EINTR;
2758
b70a2a21
JW
2759 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2760 GFP_KERNEL, true);
c1e862c1 2761 if (!progress) {
f817ed48 2762 nr_retries--;
c1e862c1 2763 /* maybe some writeback is necessary */
8aa7e847 2764 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2765 }
f817ed48
KH
2766
2767 }
ab5196c2
MH
2768
2769 return 0;
cc847582
KH
2770}
2771
6770c64e
TH
2772static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2773 char *buf, size_t nbytes,
2774 loff_t off)
c1e862c1 2775{
6770c64e 2776 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2777
d8423011
MH
2778 if (mem_cgroup_is_root(memcg))
2779 return -EINVAL;
6770c64e 2780 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2781}
2782
182446d0
TH
2783static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2784 struct cftype *cft)
18f59ea7 2785{
182446d0 2786 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2787}
2788
182446d0
TH
2789static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2790 struct cftype *cft, u64 val)
18f59ea7
BS
2791{
2792 int retval = 0;
182446d0 2793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2794 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2795
0999821b 2796 mutex_lock(&memcg_create_mutex);
567fb435
GC
2797
2798 if (memcg->use_hierarchy == val)
2799 goto out;
2800
18f59ea7 2801 /*
af901ca1 2802 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2803 * in the child subtrees. If it is unset, then the change can
2804 * occur, provided the current cgroup has no children.
2805 *
2806 * For the root cgroup, parent_mem is NULL, we allow value to be
2807 * set if there are no children.
2808 */
c0ff4b85 2809 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2810 (val == 1 || val == 0)) {
ea280e7b 2811 if (!memcg_has_children(memcg))
c0ff4b85 2812 memcg->use_hierarchy = val;
18f59ea7
BS
2813 else
2814 retval = -EBUSY;
2815 } else
2816 retval = -EINVAL;
567fb435
GC
2817
2818out:
0999821b 2819 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2820
2821 return retval;
2822}
2823
3e32cb2e
JW
2824static unsigned long tree_stat(struct mem_cgroup *memcg,
2825 enum mem_cgroup_stat_index idx)
ce00a967
JW
2826{
2827 struct mem_cgroup *iter;
2828 long val = 0;
2829
2830 /* Per-cpu values can be negative, use a signed accumulator */
2831 for_each_mem_cgroup_tree(iter, memcg)
2832 val += mem_cgroup_read_stat(iter, idx);
2833
2834 if (val < 0) /* race ? */
2835 val = 0;
2836 return val;
2837}
2838
2839static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2840{
2841 u64 val;
2842
3e32cb2e
JW
2843 if (mem_cgroup_is_root(memcg)) {
2844 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2845 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2846 if (swap)
2847 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2848 } else {
ce00a967 2849 if (!swap)
3e32cb2e 2850 val = page_counter_read(&memcg->memory);
ce00a967 2851 else
3e32cb2e 2852 val = page_counter_read(&memcg->memsw);
ce00a967 2853 }
ce00a967
JW
2854 return val << PAGE_SHIFT;
2855}
2856
3e32cb2e
JW
2857enum {
2858 RES_USAGE,
2859 RES_LIMIT,
2860 RES_MAX_USAGE,
2861 RES_FAILCNT,
2862 RES_SOFT_LIMIT,
2863};
ce00a967 2864
791badbd 2865static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2866 struct cftype *cft)
8cdea7c0 2867{
182446d0 2868 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2869 struct page_counter *counter;
af36f906 2870
3e32cb2e 2871 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2872 case _MEM:
3e32cb2e
JW
2873 counter = &memcg->memory;
2874 break;
8c7c6e34 2875 case _MEMSWAP:
3e32cb2e
JW
2876 counter = &memcg->memsw;
2877 break;
510fc4e1 2878 case _KMEM:
3e32cb2e 2879 counter = &memcg->kmem;
510fc4e1 2880 break;
8c7c6e34
KH
2881 default:
2882 BUG();
8c7c6e34 2883 }
3e32cb2e
JW
2884
2885 switch (MEMFILE_ATTR(cft->private)) {
2886 case RES_USAGE:
2887 if (counter == &memcg->memory)
2888 return mem_cgroup_usage(memcg, false);
2889 if (counter == &memcg->memsw)
2890 return mem_cgroup_usage(memcg, true);
2891 return (u64)page_counter_read(counter) * PAGE_SIZE;
2892 case RES_LIMIT:
2893 return (u64)counter->limit * PAGE_SIZE;
2894 case RES_MAX_USAGE:
2895 return (u64)counter->watermark * PAGE_SIZE;
2896 case RES_FAILCNT:
2897 return counter->failcnt;
2898 case RES_SOFT_LIMIT:
2899 return (u64)memcg->soft_limit * PAGE_SIZE;
2900 default:
2901 BUG();
2902 }
8cdea7c0 2903}
510fc4e1 2904
510fc4e1 2905#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2906static int memcg_activate_kmem(struct mem_cgroup *memcg,
2907 unsigned long nr_pages)
d6441637
VD
2908{
2909 int err = 0;
2910 int memcg_id;
2911
2a4db7eb 2912 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2913 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2914 BUG_ON(memcg->kmem_acct_active);
d6441637 2915
510fc4e1
GC
2916 /*
2917 * For simplicity, we won't allow this to be disabled. It also can't
2918 * be changed if the cgroup has children already, or if tasks had
2919 * already joined.
2920 *
2921 * If tasks join before we set the limit, a person looking at
2922 * kmem.usage_in_bytes will have no way to determine when it took
2923 * place, which makes the value quite meaningless.
2924 *
2925 * After it first became limited, changes in the value of the limit are
2926 * of course permitted.
510fc4e1 2927 */
0999821b 2928 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
2929 if (cgroup_has_tasks(memcg->css.cgroup) ||
2930 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2931 err = -EBUSY;
2932 mutex_unlock(&memcg_create_mutex);
2933 if (err)
2934 goto out;
510fc4e1 2935
f3bb3043 2936 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2937 if (memcg_id < 0) {
2938 err = memcg_id;
2939 goto out;
2940 }
2941
d6441637 2942 /*
900a38f0
VD
2943 * We couldn't have accounted to this cgroup, because it hasn't got
2944 * activated yet, so this should succeed.
d6441637 2945 */
3e32cb2e 2946 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2947 VM_BUG_ON(err);
2948
2949 static_key_slow_inc(&memcg_kmem_enabled_key);
2950 /*
900a38f0
VD
2951 * A memory cgroup is considered kmem-active as soon as it gets
2952 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2953 * guarantee no one starts accounting before all call sites are
2954 * patched.
2955 */
900a38f0 2956 memcg->kmemcg_id = memcg_id;
2788cf0c 2957 memcg->kmem_acct_activated = true;
2a4db7eb 2958 memcg->kmem_acct_active = true;
510fc4e1 2959out:
d6441637 2960 return err;
d6441637
VD
2961}
2962
d6441637 2963static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2964 unsigned long limit)
d6441637
VD
2965{
2966 int ret;
2967
3e32cb2e 2968 mutex_lock(&memcg_limit_mutex);
d6441637 2969 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2970 ret = memcg_activate_kmem(memcg, limit);
d6441637 2971 else
3e32cb2e
JW
2972 ret = page_counter_limit(&memcg->kmem, limit);
2973 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2974 return ret;
2975}
2976
55007d84 2977static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2978{
55007d84 2979 int ret = 0;
510fc4e1 2980 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2981
d6441637
VD
2982 if (!parent)
2983 return 0;
55007d84 2984
8c0145b6 2985 mutex_lock(&memcg_limit_mutex);
55007d84 2986 /*
d6441637
VD
2987 * If the parent cgroup is not kmem-active now, it cannot be activated
2988 * after this point, because it has at least one child already.
55007d84 2989 */
d6441637 2990 if (memcg_kmem_is_active(parent))
8c0145b6
VD
2991 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2992 mutex_unlock(&memcg_limit_mutex);
55007d84 2993 return ret;
510fc4e1 2994}
d6441637
VD
2995#else
2996static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2997 unsigned long limit)
d6441637
VD
2998{
2999 return -EINVAL;
3000}
6d043990 3001#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3002
628f4235
KH
3003/*
3004 * The user of this function is...
3005 * RES_LIMIT.
3006 */
451af504
TH
3007static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3008 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3009{
451af504 3010 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3011 unsigned long nr_pages;
628f4235
KH
3012 int ret;
3013
451af504 3014 buf = strstrip(buf);
650c5e56 3015 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3016 if (ret)
3017 return ret;
af36f906 3018
3e32cb2e 3019 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3020 case RES_LIMIT:
4b3bde4c
BS
3021 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3022 ret = -EINVAL;
3023 break;
3024 }
3e32cb2e
JW
3025 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3026 case _MEM:
3027 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3028 break;
3e32cb2e
JW
3029 case _MEMSWAP:
3030 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3031 break;
3e32cb2e
JW
3032 case _KMEM:
3033 ret = memcg_update_kmem_limit(memcg, nr_pages);
3034 break;
3035 }
296c81d8 3036 break;
3e32cb2e
JW
3037 case RES_SOFT_LIMIT:
3038 memcg->soft_limit = nr_pages;
3039 ret = 0;
628f4235
KH
3040 break;
3041 }
451af504 3042 return ret ?: nbytes;
8cdea7c0
BS
3043}
3044
6770c64e
TH
3045static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3046 size_t nbytes, loff_t off)
c84872e1 3047{
6770c64e 3048 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3049 struct page_counter *counter;
c84872e1 3050
3e32cb2e
JW
3051 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3052 case _MEM:
3053 counter = &memcg->memory;
3054 break;
3055 case _MEMSWAP:
3056 counter = &memcg->memsw;
3057 break;
3058 case _KMEM:
3059 counter = &memcg->kmem;
3060 break;
3061 default:
3062 BUG();
3063 }
af36f906 3064
3e32cb2e 3065 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3066 case RES_MAX_USAGE:
3e32cb2e 3067 page_counter_reset_watermark(counter);
29f2a4da
PE
3068 break;
3069 case RES_FAILCNT:
3e32cb2e 3070 counter->failcnt = 0;
29f2a4da 3071 break;
3e32cb2e
JW
3072 default:
3073 BUG();
29f2a4da 3074 }
f64c3f54 3075
6770c64e 3076 return nbytes;
c84872e1
PE
3077}
3078
182446d0 3079static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3080 struct cftype *cft)
3081{
182446d0 3082 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3083}
3084
02491447 3085#ifdef CONFIG_MMU
182446d0 3086static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3087 struct cftype *cft, u64 val)
3088{
182446d0 3089 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3090
1dfab5ab 3091 if (val & ~MOVE_MASK)
7dc74be0 3092 return -EINVAL;
ee5e8472 3093
7dc74be0 3094 /*
ee5e8472
GC
3095 * No kind of locking is needed in here, because ->can_attach() will
3096 * check this value once in the beginning of the process, and then carry
3097 * on with stale data. This means that changes to this value will only
3098 * affect task migrations starting after the change.
7dc74be0 3099 */
c0ff4b85 3100 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3101 return 0;
3102}
02491447 3103#else
182446d0 3104static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3105 struct cftype *cft, u64 val)
3106{
3107 return -ENOSYS;
3108}
3109#endif
7dc74be0 3110
406eb0c9 3111#ifdef CONFIG_NUMA
2da8ca82 3112static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3113{
25485de6
GT
3114 struct numa_stat {
3115 const char *name;
3116 unsigned int lru_mask;
3117 };
3118
3119 static const struct numa_stat stats[] = {
3120 { "total", LRU_ALL },
3121 { "file", LRU_ALL_FILE },
3122 { "anon", LRU_ALL_ANON },
3123 { "unevictable", BIT(LRU_UNEVICTABLE) },
3124 };
3125 const struct numa_stat *stat;
406eb0c9 3126 int nid;
25485de6 3127 unsigned long nr;
2da8ca82 3128 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3129
25485de6
GT
3130 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3131 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3132 seq_printf(m, "%s=%lu", stat->name, nr);
3133 for_each_node_state(nid, N_MEMORY) {
3134 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3135 stat->lru_mask);
3136 seq_printf(m, " N%d=%lu", nid, nr);
3137 }
3138 seq_putc(m, '\n');
406eb0c9 3139 }
406eb0c9 3140
071aee13
YH
3141 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3142 struct mem_cgroup *iter;
3143
3144 nr = 0;
3145 for_each_mem_cgroup_tree(iter, memcg)
3146 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3147 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3148 for_each_node_state(nid, N_MEMORY) {
3149 nr = 0;
3150 for_each_mem_cgroup_tree(iter, memcg)
3151 nr += mem_cgroup_node_nr_lru_pages(
3152 iter, nid, stat->lru_mask);
3153 seq_printf(m, " N%d=%lu", nid, nr);
3154 }
3155 seq_putc(m, '\n');
406eb0c9 3156 }
406eb0c9 3157
406eb0c9
YH
3158 return 0;
3159}
3160#endif /* CONFIG_NUMA */
3161
2da8ca82 3162static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3163{
2da8ca82 3164 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3165 unsigned long memory, memsw;
af7c4b0e
JW
3166 struct mem_cgroup *mi;
3167 unsigned int i;
406eb0c9 3168
0ca44b14
GT
3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3170 MEM_CGROUP_STAT_NSTATS);
3171 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3172 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3173 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3174
af7c4b0e 3175 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3176 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3177 continue;
af7c4b0e
JW
3178 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3179 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3180 }
7b854121 3181
af7c4b0e
JW
3182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3183 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3184 mem_cgroup_read_events(memcg, i));
3185
3186 for (i = 0; i < NR_LRU_LISTS; i++)
3187 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3188 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3189
14067bb3 3190 /* Hierarchical information */
3e32cb2e
JW
3191 memory = memsw = PAGE_COUNTER_MAX;
3192 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3193 memory = min(memory, mi->memory.limit);
3194 memsw = min(memsw, mi->memsw.limit);
fee7b548 3195 }
3e32cb2e
JW
3196 seq_printf(m, "hierarchical_memory_limit %llu\n",
3197 (u64)memory * PAGE_SIZE);
3198 if (do_swap_account)
3199 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3200 (u64)memsw * PAGE_SIZE);
7f016ee8 3201
af7c4b0e
JW
3202 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3203 long long val = 0;
3204
bff6bb83 3205 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3206 continue;
af7c4b0e
JW
3207 for_each_mem_cgroup_tree(mi, memcg)
3208 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3209 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3210 }
3211
3212 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3213 unsigned long long val = 0;
3214
3215 for_each_mem_cgroup_tree(mi, memcg)
3216 val += mem_cgroup_read_events(mi, i);
3217 seq_printf(m, "total_%s %llu\n",
3218 mem_cgroup_events_names[i], val);
3219 }
3220
3221 for (i = 0; i < NR_LRU_LISTS; i++) {
3222 unsigned long long val = 0;
3223
3224 for_each_mem_cgroup_tree(mi, memcg)
3225 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3226 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3227 }
14067bb3 3228
7f016ee8 3229#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3230 {
3231 int nid, zid;
3232 struct mem_cgroup_per_zone *mz;
89abfab1 3233 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3234 unsigned long recent_rotated[2] = {0, 0};
3235 unsigned long recent_scanned[2] = {0, 0};
3236
3237 for_each_online_node(nid)
3238 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3239 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3240 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3241
89abfab1
HD
3242 recent_rotated[0] += rstat->recent_rotated[0];
3243 recent_rotated[1] += rstat->recent_rotated[1];
3244 recent_scanned[0] += rstat->recent_scanned[0];
3245 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3246 }
78ccf5b5
JW
3247 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3248 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3249 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3250 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3251 }
3252#endif
3253
d2ceb9b7
KH
3254 return 0;
3255}
3256
182446d0
TH
3257static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3258 struct cftype *cft)
a7885eb8 3259{
182446d0 3260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3261
1f4c025b 3262 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3263}
3264
182446d0
TH
3265static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3266 struct cftype *cft, u64 val)
a7885eb8 3267{
182446d0 3268 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3269
3dae7fec 3270 if (val > 100)
a7885eb8
KM
3271 return -EINVAL;
3272
14208b0e 3273 if (css->parent)
3dae7fec
JW
3274 memcg->swappiness = val;
3275 else
3276 vm_swappiness = val;
068b38c1 3277
a7885eb8
KM
3278 return 0;
3279}
3280
2e72b634
KS
3281static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3282{
3283 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3284 unsigned long usage;
2e72b634
KS
3285 int i;
3286
3287 rcu_read_lock();
3288 if (!swap)
2c488db2 3289 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3290 else
2c488db2 3291 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3292
3293 if (!t)
3294 goto unlock;
3295
ce00a967 3296 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3297
3298 /*
748dad36 3299 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3300 * If it's not true, a threshold was crossed after last
3301 * call of __mem_cgroup_threshold().
3302 */
5407a562 3303 i = t->current_threshold;
2e72b634
KS
3304
3305 /*
3306 * Iterate backward over array of thresholds starting from
3307 * current_threshold and check if a threshold is crossed.
3308 * If none of thresholds below usage is crossed, we read
3309 * only one element of the array here.
3310 */
3311 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3312 eventfd_signal(t->entries[i].eventfd, 1);
3313
3314 /* i = current_threshold + 1 */
3315 i++;
3316
3317 /*
3318 * Iterate forward over array of thresholds starting from
3319 * current_threshold+1 and check if a threshold is crossed.
3320 * If none of thresholds above usage is crossed, we read
3321 * only one element of the array here.
3322 */
3323 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3324 eventfd_signal(t->entries[i].eventfd, 1);
3325
3326 /* Update current_threshold */
5407a562 3327 t->current_threshold = i - 1;
2e72b634
KS
3328unlock:
3329 rcu_read_unlock();
3330}
3331
3332static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3333{
ad4ca5f4
KS
3334 while (memcg) {
3335 __mem_cgroup_threshold(memcg, false);
3336 if (do_swap_account)
3337 __mem_cgroup_threshold(memcg, true);
3338
3339 memcg = parent_mem_cgroup(memcg);
3340 }
2e72b634
KS
3341}
3342
3343static int compare_thresholds(const void *a, const void *b)
3344{
3345 const struct mem_cgroup_threshold *_a = a;
3346 const struct mem_cgroup_threshold *_b = b;
3347
2bff24a3
GT
3348 if (_a->threshold > _b->threshold)
3349 return 1;
3350
3351 if (_a->threshold < _b->threshold)
3352 return -1;
3353
3354 return 0;
2e72b634
KS
3355}
3356
c0ff4b85 3357static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3358{
3359 struct mem_cgroup_eventfd_list *ev;
3360
2bcf2e92
MH
3361 spin_lock(&memcg_oom_lock);
3362
c0ff4b85 3363 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3364 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3365
3366 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3367 return 0;
3368}
3369
c0ff4b85 3370static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3371{
7d74b06f
KH
3372 struct mem_cgroup *iter;
3373
c0ff4b85 3374 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3375 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3376}
3377
59b6f873 3378static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3379 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3380{
2c488db2
KS
3381 struct mem_cgroup_thresholds *thresholds;
3382 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3383 unsigned long threshold;
3384 unsigned long usage;
2c488db2 3385 int i, size, ret;
2e72b634 3386
650c5e56 3387 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3388 if (ret)
3389 return ret;
3390
3391 mutex_lock(&memcg->thresholds_lock);
2c488db2 3392
05b84301 3393 if (type == _MEM) {
2c488db2 3394 thresholds = &memcg->thresholds;
ce00a967 3395 usage = mem_cgroup_usage(memcg, false);
05b84301 3396 } else if (type == _MEMSWAP) {
2c488db2 3397 thresholds = &memcg->memsw_thresholds;
ce00a967 3398 usage = mem_cgroup_usage(memcg, true);
05b84301 3399 } else
2e72b634
KS
3400 BUG();
3401
2e72b634 3402 /* Check if a threshold crossed before adding a new one */
2c488db2 3403 if (thresholds->primary)
2e72b634
KS
3404 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3405
2c488db2 3406 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3407
3408 /* Allocate memory for new array of thresholds */
2c488db2 3409 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3410 GFP_KERNEL);
2c488db2 3411 if (!new) {
2e72b634
KS
3412 ret = -ENOMEM;
3413 goto unlock;
3414 }
2c488db2 3415 new->size = size;
2e72b634
KS
3416
3417 /* Copy thresholds (if any) to new array */
2c488db2
KS
3418 if (thresholds->primary) {
3419 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3420 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3421 }
3422
2e72b634 3423 /* Add new threshold */
2c488db2
KS
3424 new->entries[size - 1].eventfd = eventfd;
3425 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3426
3427 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3428 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3429 compare_thresholds, NULL);
3430
3431 /* Find current threshold */
2c488db2 3432 new->current_threshold = -1;
2e72b634 3433 for (i = 0; i < size; i++) {
748dad36 3434 if (new->entries[i].threshold <= usage) {
2e72b634 3435 /*
2c488db2
KS
3436 * new->current_threshold will not be used until
3437 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3438 * it here.
3439 */
2c488db2 3440 ++new->current_threshold;
748dad36
SZ
3441 } else
3442 break;
2e72b634
KS
3443 }
3444
2c488db2
KS
3445 /* Free old spare buffer and save old primary buffer as spare */
3446 kfree(thresholds->spare);
3447 thresholds->spare = thresholds->primary;
3448
3449 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3450
907860ed 3451 /* To be sure that nobody uses thresholds */
2e72b634
KS
3452 synchronize_rcu();
3453
2e72b634
KS
3454unlock:
3455 mutex_unlock(&memcg->thresholds_lock);
3456
3457 return ret;
3458}
3459
59b6f873 3460static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3461 struct eventfd_ctx *eventfd, const char *args)
3462{
59b6f873 3463 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3464}
3465
59b6f873 3466static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3467 struct eventfd_ctx *eventfd, const char *args)
3468{
59b6f873 3469 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3470}
3471
59b6f873 3472static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3473 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3474{
2c488db2
KS
3475 struct mem_cgroup_thresholds *thresholds;
3476 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3477 unsigned long usage;
2c488db2 3478 int i, j, size;
2e72b634
KS
3479
3480 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3481
3482 if (type == _MEM) {
2c488db2 3483 thresholds = &memcg->thresholds;
ce00a967 3484 usage = mem_cgroup_usage(memcg, false);
05b84301 3485 } else if (type == _MEMSWAP) {
2c488db2 3486 thresholds = &memcg->memsw_thresholds;
ce00a967 3487 usage = mem_cgroup_usage(memcg, true);
05b84301 3488 } else
2e72b634
KS
3489 BUG();
3490
371528ca
AV
3491 if (!thresholds->primary)
3492 goto unlock;
3493
2e72b634
KS
3494 /* Check if a threshold crossed before removing */
3495 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3496
3497 /* Calculate new number of threshold */
2c488db2
KS
3498 size = 0;
3499 for (i = 0; i < thresholds->primary->size; i++) {
3500 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3501 size++;
3502 }
3503
2c488db2 3504 new = thresholds->spare;
907860ed 3505
2e72b634
KS
3506 /* Set thresholds array to NULL if we don't have thresholds */
3507 if (!size) {
2c488db2
KS
3508 kfree(new);
3509 new = NULL;
907860ed 3510 goto swap_buffers;
2e72b634
KS
3511 }
3512
2c488db2 3513 new->size = size;
2e72b634
KS
3514
3515 /* Copy thresholds and find current threshold */
2c488db2
KS
3516 new->current_threshold = -1;
3517 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3518 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3519 continue;
3520
2c488db2 3521 new->entries[j] = thresholds->primary->entries[i];
748dad36 3522 if (new->entries[j].threshold <= usage) {
2e72b634 3523 /*
2c488db2 3524 * new->current_threshold will not be used
2e72b634
KS
3525 * until rcu_assign_pointer(), so it's safe to increment
3526 * it here.
3527 */
2c488db2 3528 ++new->current_threshold;
2e72b634
KS
3529 }
3530 j++;
3531 }
3532
907860ed 3533swap_buffers:
2c488db2
KS
3534 /* Swap primary and spare array */
3535 thresholds->spare = thresholds->primary;
8c757763
SZ
3536 /* If all events are unregistered, free the spare array */
3537 if (!new) {
3538 kfree(thresholds->spare);
3539 thresholds->spare = NULL;
3540 }
3541
2c488db2 3542 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3543
907860ed 3544 /* To be sure that nobody uses thresholds */
2e72b634 3545 synchronize_rcu();
371528ca 3546unlock:
2e72b634 3547 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3548}
c1e862c1 3549
59b6f873 3550static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3551 struct eventfd_ctx *eventfd)
3552{
59b6f873 3553 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3554}
3555
59b6f873 3556static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3557 struct eventfd_ctx *eventfd)
3558{
59b6f873 3559 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3560}
3561
59b6f873 3562static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3563 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3564{
9490ff27 3565 struct mem_cgroup_eventfd_list *event;
9490ff27 3566
9490ff27
KH
3567 event = kmalloc(sizeof(*event), GFP_KERNEL);
3568 if (!event)
3569 return -ENOMEM;
3570
1af8efe9 3571 spin_lock(&memcg_oom_lock);
9490ff27
KH
3572
3573 event->eventfd = eventfd;
3574 list_add(&event->list, &memcg->oom_notify);
3575
3576 /* already in OOM ? */
c2b42d3c 3577 if (memcg->under_oom)
9490ff27 3578 eventfd_signal(eventfd, 1);
1af8efe9 3579 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3580
3581 return 0;
3582}
3583
59b6f873 3584static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3585 struct eventfd_ctx *eventfd)
9490ff27 3586{
9490ff27 3587 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3588
1af8efe9 3589 spin_lock(&memcg_oom_lock);
9490ff27 3590
c0ff4b85 3591 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3592 if (ev->eventfd == eventfd) {
3593 list_del(&ev->list);
3594 kfree(ev);
3595 }
3596 }
3597
1af8efe9 3598 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3599}
3600
2da8ca82 3601static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3602{
2da8ca82 3603 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3604
791badbd 3605 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3606 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3607 return 0;
3608}
3609
182446d0 3610static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3611 struct cftype *cft, u64 val)
3612{
182446d0 3613 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3614
3615 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3616 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3617 return -EINVAL;
3618
c0ff4b85 3619 memcg->oom_kill_disable = val;
4d845ebf 3620 if (!val)
c0ff4b85 3621 memcg_oom_recover(memcg);
3dae7fec 3622
3c11ecf4
KH
3623 return 0;
3624}
3625
c255a458 3626#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3627static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3628{
55007d84
GC
3629 int ret;
3630
55007d84
GC
3631 ret = memcg_propagate_kmem(memcg);
3632 if (ret)
3633 return ret;
2633d7a0 3634
1d62e436 3635 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3636}
e5671dfa 3637
2a4db7eb
VD
3638static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3639{
2788cf0c
VD
3640 struct cgroup_subsys_state *css;
3641 struct mem_cgroup *parent, *child;
3642 int kmemcg_id;
3643
2a4db7eb
VD
3644 if (!memcg->kmem_acct_active)
3645 return;
3646
3647 /*
3648 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3649 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3650 * guarantees no cache will be created for this cgroup after we are
3651 * done (see memcg_create_kmem_cache()).
3652 */
3653 memcg->kmem_acct_active = false;
3654
3655 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3656
3657 kmemcg_id = memcg->kmemcg_id;
3658 BUG_ON(kmemcg_id < 0);
3659
3660 parent = parent_mem_cgroup(memcg);
3661 if (!parent)
3662 parent = root_mem_cgroup;
3663
3664 /*
3665 * Change kmemcg_id of this cgroup and all its descendants to the
3666 * parent's id, and then move all entries from this cgroup's list_lrus
3667 * to ones of the parent. After we have finished, all list_lrus
3668 * corresponding to this cgroup are guaranteed to remain empty. The
3669 * ordering is imposed by list_lru_node->lock taken by
3670 * memcg_drain_all_list_lrus().
3671 */
3672 css_for_each_descendant_pre(css, &memcg->css) {
3673 child = mem_cgroup_from_css(css);
3674 BUG_ON(child->kmemcg_id != kmemcg_id);
3675 child->kmemcg_id = parent->kmemcg_id;
3676 if (!memcg->use_hierarchy)
3677 break;
3678 }
3679 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3680
3681 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3682}
3683
10d5ebf4 3684static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3685{
f48b80a5
VD
3686 if (memcg->kmem_acct_activated) {
3687 memcg_destroy_kmem_caches(memcg);
3688 static_key_slow_dec(&memcg_kmem_enabled_key);
3689 WARN_ON(page_counter_read(&memcg->kmem));
3690 }
1d62e436 3691 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3692}
e5671dfa 3693#else
cbe128e3 3694static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3695{
3696 return 0;
3697}
d1a4c0b3 3698
2a4db7eb
VD
3699static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3700{
3701}
3702
10d5ebf4
LZ
3703static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3704{
3705}
e5671dfa
GC
3706#endif
3707
52ebea74
TH
3708#ifdef CONFIG_CGROUP_WRITEBACK
3709
3710struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3711{
3712 return &memcg->cgwb_list;
3713}
3714
841710aa
TH
3715static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3716{
3717 return wb_domain_init(&memcg->cgwb_domain, gfp);
3718}
3719
3720static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3721{
3722 wb_domain_exit(&memcg->cgwb_domain);
3723}
3724
2529bb3a
TH
3725static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3726{
3727 wb_domain_size_changed(&memcg->cgwb_domain);
3728}
3729
841710aa
TH
3730struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3731{
3732 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3733
3734 if (!memcg->css.parent)
3735 return NULL;
3736
3737 return &memcg->cgwb_domain;
3738}
3739
c2aa723a
TH
3740/**
3741 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3742 * @wb: bdi_writeback in question
3743 * @pavail: out parameter for number of available pages
3744 * @pdirty: out parameter for number of dirty pages
3745 * @pwriteback: out parameter for number of pages under writeback
3746 *
3747 * Determine the numbers of available, dirty, and writeback pages in @wb's
3748 * memcg. Dirty and writeback are self-explanatory. Available is a bit
3749 * more involved.
3750 *
3751 * A memcg's headroom is "min(max, high) - used". The available memory is
3752 * calculated as the lowest headroom of itself and the ancestors plus the
3753 * number of pages already being used for file pages. Note that this
3754 * doesn't consider the actual amount of available memory in the system.
3755 * The caller should further cap *@pavail accordingly.
3756 */
3757void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
3758 unsigned long *pdirty, unsigned long *pwriteback)
3759{
3760 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3761 struct mem_cgroup *parent;
3762 unsigned long head_room = PAGE_COUNTER_MAX;
3763 unsigned long file_pages;
3764
3765 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3766
3767 /* this should eventually include NR_UNSTABLE_NFS */
3768 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3769
3770 file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3771 (1 << LRU_ACTIVE_FILE));
3772 while ((parent = parent_mem_cgroup(memcg))) {
3773 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3774 unsigned long used = page_counter_read(&memcg->memory);
3775
3776 head_room = min(head_room, ceiling - min(ceiling, used));
3777 memcg = parent;
3778 }
3779
3780 *pavail = file_pages + head_room;
3781}
3782
841710aa
TH
3783#else /* CONFIG_CGROUP_WRITEBACK */
3784
3785static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3786{
3787 return 0;
3788}
3789
3790static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3791{
3792}
3793
2529bb3a
TH
3794static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3795{
3796}
3797
52ebea74
TH
3798#endif /* CONFIG_CGROUP_WRITEBACK */
3799
3bc942f3
TH
3800/*
3801 * DO NOT USE IN NEW FILES.
3802 *
3803 * "cgroup.event_control" implementation.
3804 *
3805 * This is way over-engineered. It tries to support fully configurable
3806 * events for each user. Such level of flexibility is completely
3807 * unnecessary especially in the light of the planned unified hierarchy.
3808 *
3809 * Please deprecate this and replace with something simpler if at all
3810 * possible.
3811 */
3812
79bd9814
TH
3813/*
3814 * Unregister event and free resources.
3815 *
3816 * Gets called from workqueue.
3817 */
3bc942f3 3818static void memcg_event_remove(struct work_struct *work)
79bd9814 3819{
3bc942f3
TH
3820 struct mem_cgroup_event *event =
3821 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3822 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3823
3824 remove_wait_queue(event->wqh, &event->wait);
3825
59b6f873 3826 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3827
3828 /* Notify userspace the event is going away. */
3829 eventfd_signal(event->eventfd, 1);
3830
3831 eventfd_ctx_put(event->eventfd);
3832 kfree(event);
59b6f873 3833 css_put(&memcg->css);
79bd9814
TH
3834}
3835
3836/*
3837 * Gets called on POLLHUP on eventfd when user closes it.
3838 *
3839 * Called with wqh->lock held and interrupts disabled.
3840 */
3bc942f3
TH
3841static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3842 int sync, void *key)
79bd9814 3843{
3bc942f3
TH
3844 struct mem_cgroup_event *event =
3845 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3846 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3847 unsigned long flags = (unsigned long)key;
3848
3849 if (flags & POLLHUP) {
3850 /*
3851 * If the event has been detached at cgroup removal, we
3852 * can simply return knowing the other side will cleanup
3853 * for us.
3854 *
3855 * We can't race against event freeing since the other
3856 * side will require wqh->lock via remove_wait_queue(),
3857 * which we hold.
3858 */
fba94807 3859 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3860 if (!list_empty(&event->list)) {
3861 list_del_init(&event->list);
3862 /*
3863 * We are in atomic context, but cgroup_event_remove()
3864 * may sleep, so we have to call it in workqueue.
3865 */
3866 schedule_work(&event->remove);
3867 }
fba94807 3868 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3869 }
3870
3871 return 0;
3872}
3873
3bc942f3 3874static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3875 wait_queue_head_t *wqh, poll_table *pt)
3876{
3bc942f3
TH
3877 struct mem_cgroup_event *event =
3878 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3879
3880 event->wqh = wqh;
3881 add_wait_queue(wqh, &event->wait);
3882}
3883
3884/*
3bc942f3
TH
3885 * DO NOT USE IN NEW FILES.
3886 *
79bd9814
TH
3887 * Parse input and register new cgroup event handler.
3888 *
3889 * Input must be in format '<event_fd> <control_fd> <args>'.
3890 * Interpretation of args is defined by control file implementation.
3891 */
451af504
TH
3892static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3893 char *buf, size_t nbytes, loff_t off)
79bd9814 3894{
451af504 3895 struct cgroup_subsys_state *css = of_css(of);
fba94807 3896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3897 struct mem_cgroup_event *event;
79bd9814
TH
3898 struct cgroup_subsys_state *cfile_css;
3899 unsigned int efd, cfd;
3900 struct fd efile;
3901 struct fd cfile;
fba94807 3902 const char *name;
79bd9814
TH
3903 char *endp;
3904 int ret;
3905
451af504
TH
3906 buf = strstrip(buf);
3907
3908 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3909 if (*endp != ' ')
3910 return -EINVAL;
451af504 3911 buf = endp + 1;
79bd9814 3912
451af504 3913 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3914 if ((*endp != ' ') && (*endp != '\0'))
3915 return -EINVAL;
451af504 3916 buf = endp + 1;
79bd9814
TH
3917
3918 event = kzalloc(sizeof(*event), GFP_KERNEL);
3919 if (!event)
3920 return -ENOMEM;
3921
59b6f873 3922 event->memcg = memcg;
79bd9814 3923 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3924 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3925 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3926 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3927
3928 efile = fdget(efd);
3929 if (!efile.file) {
3930 ret = -EBADF;
3931 goto out_kfree;
3932 }
3933
3934 event->eventfd = eventfd_ctx_fileget(efile.file);
3935 if (IS_ERR(event->eventfd)) {
3936 ret = PTR_ERR(event->eventfd);
3937 goto out_put_efile;
3938 }
3939
3940 cfile = fdget(cfd);
3941 if (!cfile.file) {
3942 ret = -EBADF;
3943 goto out_put_eventfd;
3944 }
3945
3946 /* the process need read permission on control file */
3947 /* AV: shouldn't we check that it's been opened for read instead? */
3948 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3949 if (ret < 0)
3950 goto out_put_cfile;
3951
fba94807
TH
3952 /*
3953 * Determine the event callbacks and set them in @event. This used
3954 * to be done via struct cftype but cgroup core no longer knows
3955 * about these events. The following is crude but the whole thing
3956 * is for compatibility anyway.
3bc942f3
TH
3957 *
3958 * DO NOT ADD NEW FILES.
fba94807 3959 */
b583043e 3960 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3961
3962 if (!strcmp(name, "memory.usage_in_bytes")) {
3963 event->register_event = mem_cgroup_usage_register_event;
3964 event->unregister_event = mem_cgroup_usage_unregister_event;
3965 } else if (!strcmp(name, "memory.oom_control")) {
3966 event->register_event = mem_cgroup_oom_register_event;
3967 event->unregister_event = mem_cgroup_oom_unregister_event;
3968 } else if (!strcmp(name, "memory.pressure_level")) {
3969 event->register_event = vmpressure_register_event;
3970 event->unregister_event = vmpressure_unregister_event;
3971 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3972 event->register_event = memsw_cgroup_usage_register_event;
3973 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3974 } else {
3975 ret = -EINVAL;
3976 goto out_put_cfile;
3977 }
3978
79bd9814 3979 /*
b5557c4c
TH
3980 * Verify @cfile should belong to @css. Also, remaining events are
3981 * automatically removed on cgroup destruction but the removal is
3982 * asynchronous, so take an extra ref on @css.
79bd9814 3983 */
b583043e 3984 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3985 &memory_cgrp_subsys);
79bd9814 3986 ret = -EINVAL;
5a17f543 3987 if (IS_ERR(cfile_css))
79bd9814 3988 goto out_put_cfile;
5a17f543
TH
3989 if (cfile_css != css) {
3990 css_put(cfile_css);
79bd9814 3991 goto out_put_cfile;
5a17f543 3992 }
79bd9814 3993
451af504 3994 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3995 if (ret)
3996 goto out_put_css;
3997
3998 efile.file->f_op->poll(efile.file, &event->pt);
3999
fba94807
TH
4000 spin_lock(&memcg->event_list_lock);
4001 list_add(&event->list, &memcg->event_list);
4002 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4003
4004 fdput(cfile);
4005 fdput(efile);
4006
451af504 4007 return nbytes;
79bd9814
TH
4008
4009out_put_css:
b5557c4c 4010 css_put(css);
79bd9814
TH
4011out_put_cfile:
4012 fdput(cfile);
4013out_put_eventfd:
4014 eventfd_ctx_put(event->eventfd);
4015out_put_efile:
4016 fdput(efile);
4017out_kfree:
4018 kfree(event);
4019
4020 return ret;
4021}
4022
241994ed 4023static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4024 {
0eea1030 4025 .name = "usage_in_bytes",
8c7c6e34 4026 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4027 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4028 },
c84872e1
PE
4029 {
4030 .name = "max_usage_in_bytes",
8c7c6e34 4031 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4032 .write = mem_cgroup_reset,
791badbd 4033 .read_u64 = mem_cgroup_read_u64,
c84872e1 4034 },
8cdea7c0 4035 {
0eea1030 4036 .name = "limit_in_bytes",
8c7c6e34 4037 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4038 .write = mem_cgroup_write,
791badbd 4039 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4040 },
296c81d8
BS
4041 {
4042 .name = "soft_limit_in_bytes",
4043 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4044 .write = mem_cgroup_write,
791badbd 4045 .read_u64 = mem_cgroup_read_u64,
296c81d8 4046 },
8cdea7c0
BS
4047 {
4048 .name = "failcnt",
8c7c6e34 4049 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4050 .write = mem_cgroup_reset,
791badbd 4051 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4052 },
d2ceb9b7
KH
4053 {
4054 .name = "stat",
2da8ca82 4055 .seq_show = memcg_stat_show,
d2ceb9b7 4056 },
c1e862c1
KH
4057 {
4058 .name = "force_empty",
6770c64e 4059 .write = mem_cgroup_force_empty_write,
c1e862c1 4060 },
18f59ea7
BS
4061 {
4062 .name = "use_hierarchy",
4063 .write_u64 = mem_cgroup_hierarchy_write,
4064 .read_u64 = mem_cgroup_hierarchy_read,
4065 },
79bd9814 4066 {
3bc942f3 4067 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4068 .write = memcg_write_event_control,
79bd9814
TH
4069 .flags = CFTYPE_NO_PREFIX,
4070 .mode = S_IWUGO,
4071 },
a7885eb8
KM
4072 {
4073 .name = "swappiness",
4074 .read_u64 = mem_cgroup_swappiness_read,
4075 .write_u64 = mem_cgroup_swappiness_write,
4076 },
7dc74be0
DN
4077 {
4078 .name = "move_charge_at_immigrate",
4079 .read_u64 = mem_cgroup_move_charge_read,
4080 .write_u64 = mem_cgroup_move_charge_write,
4081 },
9490ff27
KH
4082 {
4083 .name = "oom_control",
2da8ca82 4084 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4085 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4086 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4087 },
70ddf637
AV
4088 {
4089 .name = "pressure_level",
70ddf637 4090 },
406eb0c9
YH
4091#ifdef CONFIG_NUMA
4092 {
4093 .name = "numa_stat",
2da8ca82 4094 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4095 },
4096#endif
510fc4e1
GC
4097#ifdef CONFIG_MEMCG_KMEM
4098 {
4099 .name = "kmem.limit_in_bytes",
4100 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4101 .write = mem_cgroup_write,
791badbd 4102 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4103 },
4104 {
4105 .name = "kmem.usage_in_bytes",
4106 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4107 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4108 },
4109 {
4110 .name = "kmem.failcnt",
4111 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4112 .write = mem_cgroup_reset,
791badbd 4113 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4114 },
4115 {
4116 .name = "kmem.max_usage_in_bytes",
4117 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4118 .write = mem_cgroup_reset,
791badbd 4119 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4120 },
749c5415
GC
4121#ifdef CONFIG_SLABINFO
4122 {
4123 .name = "kmem.slabinfo",
b047501c
VD
4124 .seq_start = slab_start,
4125 .seq_next = slab_next,
4126 .seq_stop = slab_stop,
4127 .seq_show = memcg_slab_show,
749c5415
GC
4128 },
4129#endif
8c7c6e34 4130#endif
6bc10349 4131 { }, /* terminate */
af36f906 4132};
8c7c6e34 4133
c0ff4b85 4134static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4135{
4136 struct mem_cgroup_per_node *pn;
1ecaab2b 4137 struct mem_cgroup_per_zone *mz;
41e3355d 4138 int zone, tmp = node;
1ecaab2b
KH
4139 /*
4140 * This routine is called against possible nodes.
4141 * But it's BUG to call kmalloc() against offline node.
4142 *
4143 * TODO: this routine can waste much memory for nodes which will
4144 * never be onlined. It's better to use memory hotplug callback
4145 * function.
4146 */
41e3355d
KH
4147 if (!node_state(node, N_NORMAL_MEMORY))
4148 tmp = -1;
17295c88 4149 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4150 if (!pn)
4151 return 1;
1ecaab2b 4152
1ecaab2b
KH
4153 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4154 mz = &pn->zoneinfo[zone];
bea8c150 4155 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4156 mz->usage_in_excess = 0;
4157 mz->on_tree = false;
d79154bb 4158 mz->memcg = memcg;
1ecaab2b 4159 }
54f72fe0 4160 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4161 return 0;
4162}
4163
c0ff4b85 4164static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4165{
54f72fe0 4166 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4167}
4168
33327948
KH
4169static struct mem_cgroup *mem_cgroup_alloc(void)
4170{
d79154bb 4171 struct mem_cgroup *memcg;
8ff69e2c 4172 size_t size;
33327948 4173
8ff69e2c
VD
4174 size = sizeof(struct mem_cgroup);
4175 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4176
8ff69e2c 4177 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4178 if (!memcg)
e7bbcdf3
DC
4179 return NULL;
4180
d79154bb
HD
4181 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4182 if (!memcg->stat)
d2e61b8d 4183 goto out_free;
841710aa
TH
4184
4185 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4186 goto out_free_stat;
4187
d79154bb
HD
4188 spin_lock_init(&memcg->pcp_counter_lock);
4189 return memcg;
d2e61b8d 4190
841710aa
TH
4191out_free_stat:
4192 free_percpu(memcg->stat);
d2e61b8d 4193out_free:
8ff69e2c 4194 kfree(memcg);
d2e61b8d 4195 return NULL;
33327948
KH
4196}
4197
59927fb9 4198/*
c8b2a36f
GC
4199 * At destroying mem_cgroup, references from swap_cgroup can remain.
4200 * (scanning all at force_empty is too costly...)
4201 *
4202 * Instead of clearing all references at force_empty, we remember
4203 * the number of reference from swap_cgroup and free mem_cgroup when
4204 * it goes down to 0.
4205 *
4206 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4207 */
c8b2a36f
GC
4208
4209static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4210{
c8b2a36f 4211 int node;
59927fb9 4212
bb4cc1a8 4213 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4214
4215 for_each_node(node)
4216 free_mem_cgroup_per_zone_info(memcg, node);
4217
4218 free_percpu(memcg->stat);
841710aa 4219 memcg_wb_domain_exit(memcg);
8ff69e2c 4220 kfree(memcg);
59927fb9 4221}
3afe36b1 4222
7bcc1bb1
DN
4223/*
4224 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4225 */
e1aab161 4226struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4227{
3e32cb2e 4228 if (!memcg->memory.parent)
7bcc1bb1 4229 return NULL;
3e32cb2e 4230 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4231}
e1aab161 4232EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4233
0eb253e2 4234static struct cgroup_subsys_state * __ref
eb95419b 4235mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4236{
d142e3e6 4237 struct mem_cgroup *memcg;
04046e1a 4238 long error = -ENOMEM;
6d12e2d8 4239 int node;
8cdea7c0 4240
c0ff4b85
R
4241 memcg = mem_cgroup_alloc();
4242 if (!memcg)
04046e1a 4243 return ERR_PTR(error);
78fb7466 4244
3ed28fa1 4245 for_each_node(node)
c0ff4b85 4246 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4247 goto free_out;
f64c3f54 4248
c077719b 4249 /* root ? */
eb95419b 4250 if (parent_css == NULL) {
a41c58a6 4251 root_mem_cgroup = memcg;
56161634 4252 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4253 page_counter_init(&memcg->memory, NULL);
241994ed 4254 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4255 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4256 page_counter_init(&memcg->memsw, NULL);
4257 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4258 }
28dbc4b6 4259
d142e3e6
GC
4260 memcg->last_scanned_node = MAX_NUMNODES;
4261 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4262 memcg->move_charge_at_immigrate = 0;
4263 mutex_init(&memcg->thresholds_lock);
4264 spin_lock_init(&memcg->move_lock);
70ddf637 4265 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4266 INIT_LIST_HEAD(&memcg->event_list);
4267 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4268#ifdef CONFIG_MEMCG_KMEM
4269 memcg->kmemcg_id = -1;
900a38f0 4270#endif
52ebea74
TH
4271#ifdef CONFIG_CGROUP_WRITEBACK
4272 INIT_LIST_HEAD(&memcg->cgwb_list);
4273#endif
d142e3e6
GC
4274 return &memcg->css;
4275
4276free_out:
4277 __mem_cgroup_free(memcg);
4278 return ERR_PTR(error);
4279}
4280
4281static int
eb95419b 4282mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4283{
eb95419b 4284 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4285 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4286 int ret;
d142e3e6 4287
15a4c835 4288 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4289 return -ENOSPC;
4290
63876986 4291 if (!parent)
d142e3e6
GC
4292 return 0;
4293
0999821b 4294 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4295
4296 memcg->use_hierarchy = parent->use_hierarchy;
4297 memcg->oom_kill_disable = parent->oom_kill_disable;
4298 memcg->swappiness = mem_cgroup_swappiness(parent);
4299
4300 if (parent->use_hierarchy) {
3e32cb2e 4301 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4302 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4303 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4304 page_counter_init(&memcg->memsw, &parent->memsw);
4305 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4306
7bcc1bb1 4307 /*
8d76a979
LZ
4308 * No need to take a reference to the parent because cgroup
4309 * core guarantees its existence.
7bcc1bb1 4310 */
18f59ea7 4311 } else {
3e32cb2e 4312 page_counter_init(&memcg->memory, NULL);
241994ed 4313 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4314 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4315 page_counter_init(&memcg->memsw, NULL);
4316 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4317 /*
4318 * Deeper hierachy with use_hierarchy == false doesn't make
4319 * much sense so let cgroup subsystem know about this
4320 * unfortunate state in our controller.
4321 */
d142e3e6 4322 if (parent != root_mem_cgroup)
073219e9 4323 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4324 }
0999821b 4325 mutex_unlock(&memcg_create_mutex);
d6441637 4326
2f7dd7a4
JW
4327 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4328 if (ret)
4329 return ret;
4330
4331 /*
4332 * Make sure the memcg is initialized: mem_cgroup_iter()
4333 * orders reading memcg->initialized against its callers
4334 * reading the memcg members.
4335 */
4336 smp_store_release(&memcg->initialized, 1);
4337
4338 return 0;
8cdea7c0
BS
4339}
4340
eb95419b 4341static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4342{
eb95419b 4343 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4344 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4345
4346 /*
4347 * Unregister events and notify userspace.
4348 * Notify userspace about cgroup removing only after rmdir of cgroup
4349 * directory to avoid race between userspace and kernelspace.
4350 */
fba94807
TH
4351 spin_lock(&memcg->event_list_lock);
4352 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4353 list_del_init(&event->list);
4354 schedule_work(&event->remove);
4355 }
fba94807 4356 spin_unlock(&memcg->event_list_lock);
ec64f515 4357
33cb876e 4358 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4359
4360 memcg_deactivate_kmem(memcg);
52ebea74
TH
4361
4362 wb_memcg_offline(memcg);
df878fb0
KH
4363}
4364
eb95419b 4365static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4366{
eb95419b 4367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4368
10d5ebf4 4369 memcg_destroy_kmem(memcg);
465939a1 4370 __mem_cgroup_free(memcg);
8cdea7c0
BS
4371}
4372
1ced953b
TH
4373/**
4374 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4375 * @css: the target css
4376 *
4377 * Reset the states of the mem_cgroup associated with @css. This is
4378 * invoked when the userland requests disabling on the default hierarchy
4379 * but the memcg is pinned through dependency. The memcg should stop
4380 * applying policies and should revert to the vanilla state as it may be
4381 * made visible again.
4382 *
4383 * The current implementation only resets the essential configurations.
4384 * This needs to be expanded to cover all the visible parts.
4385 */
4386static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4387{
4388 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4389
3e32cb2e
JW
4390 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4391 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4392 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4393 memcg->low = 0;
4394 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4395 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4396 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4397}
4398
02491447 4399#ifdef CONFIG_MMU
7dc74be0 4400/* Handlers for move charge at task migration. */
854ffa8d 4401static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4402{
05b84301 4403 int ret;
9476db97
JW
4404
4405 /* Try a single bulk charge without reclaim first */
00501b53 4406 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4407 if (!ret) {
854ffa8d 4408 mc.precharge += count;
854ffa8d
DN
4409 return ret;
4410 }
692e7c45 4411 if (ret == -EINTR) {
00501b53 4412 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4413 return ret;
4414 }
9476db97
JW
4415
4416 /* Try charges one by one with reclaim */
854ffa8d 4417 while (count--) {
00501b53 4418 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4419 /*
4420 * In case of failure, any residual charges against
4421 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4422 * later on. However, cancel any charges that are
4423 * bypassed to root right away or they'll be lost.
9476db97 4424 */
692e7c45 4425 if (ret == -EINTR)
00501b53 4426 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4427 if (ret)
38c5d72f 4428 return ret;
854ffa8d 4429 mc.precharge++;
9476db97 4430 cond_resched();
854ffa8d 4431 }
9476db97 4432 return 0;
4ffef5fe
DN
4433}
4434
4435/**
8d32ff84 4436 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4437 * @vma: the vma the pte to be checked belongs
4438 * @addr: the address corresponding to the pte to be checked
4439 * @ptent: the pte to be checked
02491447 4440 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4441 *
4442 * Returns
4443 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4444 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4445 * move charge. if @target is not NULL, the page is stored in target->page
4446 * with extra refcnt got(Callers should handle it).
02491447
DN
4447 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4448 * target for charge migration. if @target is not NULL, the entry is stored
4449 * in target->ent.
4ffef5fe
DN
4450 *
4451 * Called with pte lock held.
4452 */
4ffef5fe
DN
4453union mc_target {
4454 struct page *page;
02491447 4455 swp_entry_t ent;
4ffef5fe
DN
4456};
4457
4ffef5fe 4458enum mc_target_type {
8d32ff84 4459 MC_TARGET_NONE = 0,
4ffef5fe 4460 MC_TARGET_PAGE,
02491447 4461 MC_TARGET_SWAP,
4ffef5fe
DN
4462};
4463
90254a65
DN
4464static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4465 unsigned long addr, pte_t ptent)
4ffef5fe 4466{
90254a65 4467 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4468
90254a65
DN
4469 if (!page || !page_mapped(page))
4470 return NULL;
4471 if (PageAnon(page)) {
1dfab5ab 4472 if (!(mc.flags & MOVE_ANON))
90254a65 4473 return NULL;
1dfab5ab
JW
4474 } else {
4475 if (!(mc.flags & MOVE_FILE))
4476 return NULL;
4477 }
90254a65
DN
4478 if (!get_page_unless_zero(page))
4479 return NULL;
4480
4481 return page;
4482}
4483
4b91355e 4484#ifdef CONFIG_SWAP
90254a65
DN
4485static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4486 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4487{
90254a65
DN
4488 struct page *page = NULL;
4489 swp_entry_t ent = pte_to_swp_entry(ptent);
4490
1dfab5ab 4491 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4492 return NULL;
4b91355e
KH
4493 /*
4494 * Because lookup_swap_cache() updates some statistics counter,
4495 * we call find_get_page() with swapper_space directly.
4496 */
33806f06 4497 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4498 if (do_swap_account)
4499 entry->val = ent.val;
4500
4501 return page;
4502}
4b91355e
KH
4503#else
4504static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4505 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4506{
4507 return NULL;
4508}
4509#endif
90254a65 4510
87946a72
DN
4511static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4512 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4513{
4514 struct page *page = NULL;
87946a72
DN
4515 struct address_space *mapping;
4516 pgoff_t pgoff;
4517
4518 if (!vma->vm_file) /* anonymous vma */
4519 return NULL;
1dfab5ab 4520 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4521 return NULL;
4522
87946a72 4523 mapping = vma->vm_file->f_mapping;
0661a336 4524 pgoff = linear_page_index(vma, addr);
87946a72
DN
4525
4526 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4527#ifdef CONFIG_SWAP
4528 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4529 if (shmem_mapping(mapping)) {
4530 page = find_get_entry(mapping, pgoff);
4531 if (radix_tree_exceptional_entry(page)) {
4532 swp_entry_t swp = radix_to_swp_entry(page);
4533 if (do_swap_account)
4534 *entry = swp;
4535 page = find_get_page(swap_address_space(swp), swp.val);
4536 }
4537 } else
4538 page = find_get_page(mapping, pgoff);
4539#else
4540 page = find_get_page(mapping, pgoff);
aa3b1895 4541#endif
87946a72
DN
4542 return page;
4543}
4544
b1b0deab
CG
4545/**
4546 * mem_cgroup_move_account - move account of the page
4547 * @page: the page
4548 * @nr_pages: number of regular pages (>1 for huge pages)
4549 * @from: mem_cgroup which the page is moved from.
4550 * @to: mem_cgroup which the page is moved to. @from != @to.
4551 *
4552 * The caller must confirm following.
4553 * - page is not on LRU (isolate_page() is useful.)
4554 * - compound_lock is held when nr_pages > 1
4555 *
4556 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4557 * from old cgroup.
4558 */
4559static int mem_cgroup_move_account(struct page *page,
4560 unsigned int nr_pages,
4561 struct mem_cgroup *from,
4562 struct mem_cgroup *to)
4563{
4564 unsigned long flags;
4565 int ret;
c4843a75 4566 bool anon;
b1b0deab
CG
4567
4568 VM_BUG_ON(from == to);
4569 VM_BUG_ON_PAGE(PageLRU(page), page);
4570 /*
4571 * The page is isolated from LRU. So, collapse function
4572 * will not handle this page. But page splitting can happen.
4573 * Do this check under compound_page_lock(). The caller should
4574 * hold it.
4575 */
4576 ret = -EBUSY;
4577 if (nr_pages > 1 && !PageTransHuge(page))
4578 goto out;
4579
4580 /*
4581 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4582 * of its source page while we change it: page migration takes
4583 * both pages off the LRU, but page cache replacement doesn't.
4584 */
4585 if (!trylock_page(page))
4586 goto out;
4587
4588 ret = -EINVAL;
4589 if (page->mem_cgroup != from)
4590 goto out_unlock;
4591
c4843a75
GT
4592 anon = PageAnon(page);
4593
b1b0deab
CG
4594 spin_lock_irqsave(&from->move_lock, flags);
4595
c4843a75 4596 if (!anon && page_mapped(page)) {
b1b0deab
CG
4597 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4598 nr_pages);
4599 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4600 nr_pages);
4601 }
4602
c4843a75
GT
4603 /*
4604 * move_lock grabbed above and caller set from->moving_account, so
4605 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4606 * So mapping should be stable for dirty pages.
4607 */
4608 if (!anon && PageDirty(page)) {
4609 struct address_space *mapping = page_mapping(page);
4610
4611 if (mapping_cap_account_dirty(mapping)) {
4612 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4613 nr_pages);
4614 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4615 nr_pages);
4616 }
4617 }
4618
b1b0deab
CG
4619 if (PageWriteback(page)) {
4620 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4621 nr_pages);
4622 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4623 nr_pages);
4624 }
4625
4626 /*
4627 * It is safe to change page->mem_cgroup here because the page
4628 * is referenced, charged, and isolated - we can't race with
4629 * uncharging, charging, migration, or LRU putback.
4630 */
4631
4632 /* caller should have done css_get */
4633 page->mem_cgroup = to;
4634 spin_unlock_irqrestore(&from->move_lock, flags);
4635
4636 ret = 0;
4637
4638 local_irq_disable();
4639 mem_cgroup_charge_statistics(to, page, nr_pages);
4640 memcg_check_events(to, page);
4641 mem_cgroup_charge_statistics(from, page, -nr_pages);
4642 memcg_check_events(from, page);
4643 local_irq_enable();
4644out_unlock:
4645 unlock_page(page);
4646out:
4647 return ret;
4648}
4649
8d32ff84 4650static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4651 unsigned long addr, pte_t ptent, union mc_target *target)
4652{
4653 struct page *page = NULL;
8d32ff84 4654 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4655 swp_entry_t ent = { .val = 0 };
4656
4657 if (pte_present(ptent))
4658 page = mc_handle_present_pte(vma, addr, ptent);
4659 else if (is_swap_pte(ptent))
4660 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4661 else if (pte_none(ptent))
87946a72 4662 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4663
4664 if (!page && !ent.val)
8d32ff84 4665 return ret;
02491447 4666 if (page) {
02491447 4667 /*
0a31bc97 4668 * Do only loose check w/o serialization.
1306a85a 4669 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4670 * not under LRU exclusion.
02491447 4671 */
1306a85a 4672 if (page->mem_cgroup == mc.from) {
02491447
DN
4673 ret = MC_TARGET_PAGE;
4674 if (target)
4675 target->page = page;
4676 }
4677 if (!ret || !target)
4678 put_page(page);
4679 }
90254a65
DN
4680 /* There is a swap entry and a page doesn't exist or isn't charged */
4681 if (ent.val && !ret &&
34c00c31 4682 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4683 ret = MC_TARGET_SWAP;
4684 if (target)
4685 target->ent = ent;
4ffef5fe 4686 }
4ffef5fe
DN
4687 return ret;
4688}
4689
12724850
NH
4690#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4691/*
4692 * We don't consider swapping or file mapped pages because THP does not
4693 * support them for now.
4694 * Caller should make sure that pmd_trans_huge(pmd) is true.
4695 */
4696static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4697 unsigned long addr, pmd_t pmd, union mc_target *target)
4698{
4699 struct page *page = NULL;
12724850
NH
4700 enum mc_target_type ret = MC_TARGET_NONE;
4701
4702 page = pmd_page(pmd);
309381fe 4703 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4704 if (!(mc.flags & MOVE_ANON))
12724850 4705 return ret;
1306a85a 4706 if (page->mem_cgroup == mc.from) {
12724850
NH
4707 ret = MC_TARGET_PAGE;
4708 if (target) {
4709 get_page(page);
4710 target->page = page;
4711 }
4712 }
4713 return ret;
4714}
4715#else
4716static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4717 unsigned long addr, pmd_t pmd, union mc_target *target)
4718{
4719 return MC_TARGET_NONE;
4720}
4721#endif
4722
4ffef5fe
DN
4723static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4724 unsigned long addr, unsigned long end,
4725 struct mm_walk *walk)
4726{
26bcd64a 4727 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4728 pte_t *pte;
4729 spinlock_t *ptl;
4730
bf929152 4731 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4732 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4733 mc.precharge += HPAGE_PMD_NR;
bf929152 4734 spin_unlock(ptl);
1a5a9906 4735 return 0;
12724850 4736 }
03319327 4737
45f83cef
AA
4738 if (pmd_trans_unstable(pmd))
4739 return 0;
4ffef5fe
DN
4740 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4741 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4742 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4743 mc.precharge++; /* increment precharge temporarily */
4744 pte_unmap_unlock(pte - 1, ptl);
4745 cond_resched();
4746
7dc74be0
DN
4747 return 0;
4748}
4749
4ffef5fe
DN
4750static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4751{
4752 unsigned long precharge;
4ffef5fe 4753
26bcd64a
NH
4754 struct mm_walk mem_cgroup_count_precharge_walk = {
4755 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4756 .mm = mm,
4757 };
dfe076b0 4758 down_read(&mm->mmap_sem);
26bcd64a 4759 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4760 up_read(&mm->mmap_sem);
4ffef5fe
DN
4761
4762 precharge = mc.precharge;
4763 mc.precharge = 0;
4764
4765 return precharge;
4766}
4767
4ffef5fe
DN
4768static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4769{
dfe076b0
DN
4770 unsigned long precharge = mem_cgroup_count_precharge(mm);
4771
4772 VM_BUG_ON(mc.moving_task);
4773 mc.moving_task = current;
4774 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4775}
4776
dfe076b0
DN
4777/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4778static void __mem_cgroup_clear_mc(void)
4ffef5fe 4779{
2bd9bb20
KH
4780 struct mem_cgroup *from = mc.from;
4781 struct mem_cgroup *to = mc.to;
4782
4ffef5fe 4783 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4784 if (mc.precharge) {
00501b53 4785 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4786 mc.precharge = 0;
4787 }
4788 /*
4789 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4790 * we must uncharge here.
4791 */
4792 if (mc.moved_charge) {
00501b53 4793 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4794 mc.moved_charge = 0;
4ffef5fe 4795 }
483c30b5
DN
4796 /* we must fixup refcnts and charges */
4797 if (mc.moved_swap) {
483c30b5 4798 /* uncharge swap account from the old cgroup */
ce00a967 4799 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4800 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4801
05b84301 4802 /*
3e32cb2e
JW
4803 * we charged both to->memory and to->memsw, so we
4804 * should uncharge to->memory.
05b84301 4805 */
ce00a967 4806 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4807 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4808
e8ea14cc 4809 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4810
4050377b 4811 /* we've already done css_get(mc.to) */
483c30b5
DN
4812 mc.moved_swap = 0;
4813 }
dfe076b0
DN
4814 memcg_oom_recover(from);
4815 memcg_oom_recover(to);
4816 wake_up_all(&mc.waitq);
4817}
4818
4819static void mem_cgroup_clear_mc(void)
4820{
dfe076b0
DN
4821 /*
4822 * we must clear moving_task before waking up waiters at the end of
4823 * task migration.
4824 */
4825 mc.moving_task = NULL;
4826 __mem_cgroup_clear_mc();
2bd9bb20 4827 spin_lock(&mc.lock);
4ffef5fe
DN
4828 mc.from = NULL;
4829 mc.to = NULL;
2bd9bb20 4830 spin_unlock(&mc.lock);
4ffef5fe
DN
4831}
4832
eb95419b 4833static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 4834 struct cgroup_taskset *tset)
7dc74be0 4835{
eb95419b 4836 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9f2115f9
TH
4837 struct mem_cgroup *from;
4838 struct task_struct *p;
4839 struct mm_struct *mm;
1dfab5ab 4840 unsigned long move_flags;
9f2115f9 4841 int ret = 0;
7dc74be0 4842
ee5e8472
GC
4843 /*
4844 * We are now commited to this value whatever it is. Changes in this
4845 * tunable will only affect upcoming migrations, not the current one.
4846 * So we need to save it, and keep it going.
4847 */
4db0c3c2 4848 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
9f2115f9
TH
4849 if (!move_flags)
4850 return 0;
4851
4852 p = cgroup_taskset_first(tset);
4853 from = mem_cgroup_from_task(p);
4854
4855 VM_BUG_ON(from == memcg);
4856
4857 mm = get_task_mm(p);
4858 if (!mm)
4859 return 0;
4860 /* We move charges only when we move a owner of the mm */
4861 if (mm->owner == p) {
4862 VM_BUG_ON(mc.from);
4863 VM_BUG_ON(mc.to);
4864 VM_BUG_ON(mc.precharge);
4865 VM_BUG_ON(mc.moved_charge);
4866 VM_BUG_ON(mc.moved_swap);
4867
4868 spin_lock(&mc.lock);
4869 mc.from = from;
4870 mc.to = memcg;
4871 mc.flags = move_flags;
4872 spin_unlock(&mc.lock);
4873 /* We set mc.moving_task later */
4874
4875 ret = mem_cgroup_precharge_mc(mm);
4876 if (ret)
4877 mem_cgroup_clear_mc();
7dc74be0 4878 }
9f2115f9 4879 mmput(mm);
7dc74be0
DN
4880 return ret;
4881}
4882
eb95419b 4883static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 4884 struct cgroup_taskset *tset)
7dc74be0 4885{
4e2f245d
JW
4886 if (mc.to)
4887 mem_cgroup_clear_mc();
7dc74be0
DN
4888}
4889
4ffef5fe
DN
4890static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4891 unsigned long addr, unsigned long end,
4892 struct mm_walk *walk)
7dc74be0 4893{
4ffef5fe 4894 int ret = 0;
26bcd64a 4895 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4896 pte_t *pte;
4897 spinlock_t *ptl;
12724850
NH
4898 enum mc_target_type target_type;
4899 union mc_target target;
4900 struct page *page;
4ffef5fe 4901
12724850
NH
4902 /*
4903 * We don't take compound_lock() here but no race with splitting thp
4904 * happens because:
4905 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4906 * under splitting, which means there's no concurrent thp split,
4907 * - if another thread runs into split_huge_page() just after we
4908 * entered this if-block, the thread must wait for page table lock
4909 * to be unlocked in __split_huge_page_splitting(), where the main
4910 * part of thp split is not executed yet.
4911 */
bf929152 4912 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4913 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4914 spin_unlock(ptl);
12724850
NH
4915 return 0;
4916 }
4917 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4918 if (target_type == MC_TARGET_PAGE) {
4919 page = target.page;
4920 if (!isolate_lru_page(page)) {
12724850 4921 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4922 mc.from, mc.to)) {
12724850
NH
4923 mc.precharge -= HPAGE_PMD_NR;
4924 mc.moved_charge += HPAGE_PMD_NR;
4925 }
4926 putback_lru_page(page);
4927 }
4928 put_page(page);
4929 }
bf929152 4930 spin_unlock(ptl);
1a5a9906 4931 return 0;
12724850
NH
4932 }
4933
45f83cef
AA
4934 if (pmd_trans_unstable(pmd))
4935 return 0;
4ffef5fe
DN
4936retry:
4937 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4938 for (; addr != end; addr += PAGE_SIZE) {
4939 pte_t ptent = *(pte++);
02491447 4940 swp_entry_t ent;
4ffef5fe
DN
4941
4942 if (!mc.precharge)
4943 break;
4944
8d32ff84 4945 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4946 case MC_TARGET_PAGE:
4947 page = target.page;
4948 if (isolate_lru_page(page))
4949 goto put;
1306a85a 4950 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 4951 mc.precharge--;
854ffa8d
DN
4952 /* we uncharge from mc.from later. */
4953 mc.moved_charge++;
4ffef5fe
DN
4954 }
4955 putback_lru_page(page);
8d32ff84 4956put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4957 put_page(page);
4958 break;
02491447
DN
4959 case MC_TARGET_SWAP:
4960 ent = target.ent;
e91cbb42 4961 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4962 mc.precharge--;
483c30b5
DN
4963 /* we fixup refcnts and charges later. */
4964 mc.moved_swap++;
4965 }
02491447 4966 break;
4ffef5fe
DN
4967 default:
4968 break;
4969 }
4970 }
4971 pte_unmap_unlock(pte - 1, ptl);
4972 cond_resched();
4973
4974 if (addr != end) {
4975 /*
4976 * We have consumed all precharges we got in can_attach().
4977 * We try charge one by one, but don't do any additional
4978 * charges to mc.to if we have failed in charge once in attach()
4979 * phase.
4980 */
854ffa8d 4981 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4982 if (!ret)
4983 goto retry;
4984 }
4985
4986 return ret;
4987}
4988
4989static void mem_cgroup_move_charge(struct mm_struct *mm)
4990{
26bcd64a
NH
4991 struct mm_walk mem_cgroup_move_charge_walk = {
4992 .pmd_entry = mem_cgroup_move_charge_pte_range,
4993 .mm = mm,
4994 };
4ffef5fe
DN
4995
4996 lru_add_drain_all();
312722cb
JW
4997 /*
4998 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4999 * move_lock while we're moving its pages to another memcg.
5000 * Then wait for already started RCU-only updates to finish.
5001 */
5002 atomic_inc(&mc.from->moving_account);
5003 synchronize_rcu();
dfe076b0
DN
5004retry:
5005 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5006 /*
5007 * Someone who are holding the mmap_sem might be waiting in
5008 * waitq. So we cancel all extra charges, wake up all waiters,
5009 * and retry. Because we cancel precharges, we might not be able
5010 * to move enough charges, but moving charge is a best-effort
5011 * feature anyway, so it wouldn't be a big problem.
5012 */
5013 __mem_cgroup_clear_mc();
5014 cond_resched();
5015 goto retry;
5016 }
26bcd64a
NH
5017 /*
5018 * When we have consumed all precharges and failed in doing
5019 * additional charge, the page walk just aborts.
5020 */
5021 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5022 up_read(&mm->mmap_sem);
312722cb 5023 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5024}
5025
eb95419b 5026static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5027 struct cgroup_taskset *tset)
67e465a7 5028{
2f7ee569 5029 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5030 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5031
dfe076b0 5032 if (mm) {
a433658c
KM
5033 if (mc.to)
5034 mem_cgroup_move_charge(mm);
dfe076b0
DN
5035 mmput(mm);
5036 }
a433658c
KM
5037 if (mc.to)
5038 mem_cgroup_clear_mc();
67e465a7 5039}
5cfb80a7 5040#else /* !CONFIG_MMU */
eb95419b 5041static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5042 struct cgroup_taskset *tset)
5cfb80a7
DN
5043{
5044 return 0;
5045}
eb95419b 5046static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5047 struct cgroup_taskset *tset)
5cfb80a7
DN
5048{
5049}
eb95419b 5050static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5051 struct cgroup_taskset *tset)
5cfb80a7
DN
5052{
5053}
5054#endif
67e465a7 5055
f00baae7
TH
5056/*
5057 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5058 * to verify whether we're attached to the default hierarchy on each mount
5059 * attempt.
f00baae7 5060 */
eb95419b 5061static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5062{
5063 /*
aa6ec29b 5064 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5065 * guarantees that @root doesn't have any children, so turning it
5066 * on for the root memcg is enough.
5067 */
aa6ec29b 5068 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5069 root_mem_cgroup->use_hierarchy = true;
5070 else
5071 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5072}
5073
241994ed
JW
5074static u64 memory_current_read(struct cgroup_subsys_state *css,
5075 struct cftype *cft)
5076{
5077 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5078}
5079
5080static int memory_low_show(struct seq_file *m, void *v)
5081{
5082 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5083 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5084
5085 if (low == PAGE_COUNTER_MAX)
d2973697 5086 seq_puts(m, "max\n");
241994ed
JW
5087 else
5088 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5089
5090 return 0;
5091}
5092
5093static ssize_t memory_low_write(struct kernfs_open_file *of,
5094 char *buf, size_t nbytes, loff_t off)
5095{
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5097 unsigned long low;
5098 int err;
5099
5100 buf = strstrip(buf);
d2973697 5101 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5102 if (err)
5103 return err;
5104
5105 memcg->low = low;
5106
5107 return nbytes;
5108}
5109
5110static int memory_high_show(struct seq_file *m, void *v)
5111{
5112 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5113 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5114
5115 if (high == PAGE_COUNTER_MAX)
d2973697 5116 seq_puts(m, "max\n");
241994ed
JW
5117 else
5118 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5119
5120 return 0;
5121}
5122
5123static ssize_t memory_high_write(struct kernfs_open_file *of,
5124 char *buf, size_t nbytes, loff_t off)
5125{
5126 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5127 unsigned long high;
5128 int err;
5129
5130 buf = strstrip(buf);
d2973697 5131 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5132 if (err)
5133 return err;
5134
5135 memcg->high = high;
5136
2529bb3a 5137 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5138 return nbytes;
5139}
5140
5141static int memory_max_show(struct seq_file *m, void *v)
5142{
5143 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5144 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5145
5146 if (max == PAGE_COUNTER_MAX)
d2973697 5147 seq_puts(m, "max\n");
241994ed
JW
5148 else
5149 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5150
5151 return 0;
5152}
5153
5154static ssize_t memory_max_write(struct kernfs_open_file *of,
5155 char *buf, size_t nbytes, loff_t off)
5156{
5157 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5158 unsigned long max;
5159 int err;
5160
5161 buf = strstrip(buf);
d2973697 5162 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5163 if (err)
5164 return err;
5165
5166 err = mem_cgroup_resize_limit(memcg, max);
5167 if (err)
5168 return err;
5169
2529bb3a 5170 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5171 return nbytes;
5172}
5173
5174static int memory_events_show(struct seq_file *m, void *v)
5175{
5176 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5177
5178 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5179 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5180 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5181 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5182
5183 return 0;
5184}
5185
5186static struct cftype memory_files[] = {
5187 {
5188 .name = "current",
5189 .read_u64 = memory_current_read,
5190 },
5191 {
5192 .name = "low",
5193 .flags = CFTYPE_NOT_ON_ROOT,
5194 .seq_show = memory_low_show,
5195 .write = memory_low_write,
5196 },
5197 {
5198 .name = "high",
5199 .flags = CFTYPE_NOT_ON_ROOT,
5200 .seq_show = memory_high_show,
5201 .write = memory_high_write,
5202 },
5203 {
5204 .name = "max",
5205 .flags = CFTYPE_NOT_ON_ROOT,
5206 .seq_show = memory_max_show,
5207 .write = memory_max_write,
5208 },
5209 {
5210 .name = "events",
5211 .flags = CFTYPE_NOT_ON_ROOT,
5212 .seq_show = memory_events_show,
5213 },
5214 { } /* terminate */
5215};
5216
073219e9 5217struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5218 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5219 .css_online = mem_cgroup_css_online,
92fb9748
TH
5220 .css_offline = mem_cgroup_css_offline,
5221 .css_free = mem_cgroup_css_free,
1ced953b 5222 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5223 .can_attach = mem_cgroup_can_attach,
5224 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5225 .attach = mem_cgroup_move_task,
f00baae7 5226 .bind = mem_cgroup_bind,
241994ed
JW
5227 .dfl_cftypes = memory_files,
5228 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5229 .early_init = 0,
8cdea7c0 5230};
c077719b 5231
241994ed
JW
5232/**
5233 * mem_cgroup_low - check if memory consumption is below the normal range
5234 * @root: the highest ancestor to consider
5235 * @memcg: the memory cgroup to check
5236 *
5237 * Returns %true if memory consumption of @memcg, and that of all
5238 * configurable ancestors up to @root, is below the normal range.
5239 */
5240bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5241{
5242 if (mem_cgroup_disabled())
5243 return false;
5244
5245 /*
5246 * The toplevel group doesn't have a configurable range, so
5247 * it's never low when looked at directly, and it is not
5248 * considered an ancestor when assessing the hierarchy.
5249 */
5250
5251 if (memcg == root_mem_cgroup)
5252 return false;
5253
4e54dede 5254 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5255 return false;
5256
5257 while (memcg != root) {
5258 memcg = parent_mem_cgroup(memcg);
5259
5260 if (memcg == root_mem_cgroup)
5261 break;
5262
4e54dede 5263 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5264 return false;
5265 }
5266 return true;
5267}
5268
00501b53
JW
5269/**
5270 * mem_cgroup_try_charge - try charging a page
5271 * @page: page to charge
5272 * @mm: mm context of the victim
5273 * @gfp_mask: reclaim mode
5274 * @memcgp: charged memcg return
5275 *
5276 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5277 * pages according to @gfp_mask if necessary.
5278 *
5279 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5280 * Otherwise, an error code is returned.
5281 *
5282 * After page->mapping has been set up, the caller must finalize the
5283 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5284 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5285 */
5286int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5287 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5288{
5289 struct mem_cgroup *memcg = NULL;
5290 unsigned int nr_pages = 1;
5291 int ret = 0;
5292
5293 if (mem_cgroup_disabled())
5294 goto out;
5295
5296 if (PageSwapCache(page)) {
00501b53
JW
5297 /*
5298 * Every swap fault against a single page tries to charge the
5299 * page, bail as early as possible. shmem_unuse() encounters
5300 * already charged pages, too. The USED bit is protected by
5301 * the page lock, which serializes swap cache removal, which
5302 * in turn serializes uncharging.
5303 */
1306a85a 5304 if (page->mem_cgroup)
00501b53
JW
5305 goto out;
5306 }
5307
5308 if (PageTransHuge(page)) {
5309 nr_pages <<= compound_order(page);
5310 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5311 }
5312
5313 if (do_swap_account && PageSwapCache(page))
5314 memcg = try_get_mem_cgroup_from_page(page);
5315 if (!memcg)
5316 memcg = get_mem_cgroup_from_mm(mm);
5317
5318 ret = try_charge(memcg, gfp_mask, nr_pages);
5319
5320 css_put(&memcg->css);
5321
5322 if (ret == -EINTR) {
5323 memcg = root_mem_cgroup;
5324 ret = 0;
5325 }
5326out:
5327 *memcgp = memcg;
5328 return ret;
5329}
5330
5331/**
5332 * mem_cgroup_commit_charge - commit a page charge
5333 * @page: page to charge
5334 * @memcg: memcg to charge the page to
5335 * @lrucare: page might be on LRU already
5336 *
5337 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5338 * after page->mapping has been set up. This must happen atomically
5339 * as part of the page instantiation, i.e. under the page table lock
5340 * for anonymous pages, under the page lock for page and swap cache.
5341 *
5342 * In addition, the page must not be on the LRU during the commit, to
5343 * prevent racing with task migration. If it might be, use @lrucare.
5344 *
5345 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5346 */
5347void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5348 bool lrucare)
5349{
5350 unsigned int nr_pages = 1;
5351
5352 VM_BUG_ON_PAGE(!page->mapping, page);
5353 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5354
5355 if (mem_cgroup_disabled())
5356 return;
5357 /*
5358 * Swap faults will attempt to charge the same page multiple
5359 * times. But reuse_swap_page() might have removed the page
5360 * from swapcache already, so we can't check PageSwapCache().
5361 */
5362 if (!memcg)
5363 return;
5364
6abb5a86
JW
5365 commit_charge(page, memcg, lrucare);
5366
00501b53
JW
5367 if (PageTransHuge(page)) {
5368 nr_pages <<= compound_order(page);
5369 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5370 }
5371
6abb5a86
JW
5372 local_irq_disable();
5373 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5374 memcg_check_events(memcg, page);
5375 local_irq_enable();
00501b53
JW
5376
5377 if (do_swap_account && PageSwapCache(page)) {
5378 swp_entry_t entry = { .val = page_private(page) };
5379 /*
5380 * The swap entry might not get freed for a long time,
5381 * let's not wait for it. The page already received a
5382 * memory+swap charge, drop the swap entry duplicate.
5383 */
5384 mem_cgroup_uncharge_swap(entry);
5385 }
5386}
5387
5388/**
5389 * mem_cgroup_cancel_charge - cancel a page charge
5390 * @page: page to charge
5391 * @memcg: memcg to charge the page to
5392 *
5393 * Cancel a charge transaction started by mem_cgroup_try_charge().
5394 */
5395void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5396{
5397 unsigned int nr_pages = 1;
5398
5399 if (mem_cgroup_disabled())
5400 return;
5401 /*
5402 * Swap faults will attempt to charge the same page multiple
5403 * times. But reuse_swap_page() might have removed the page
5404 * from swapcache already, so we can't check PageSwapCache().
5405 */
5406 if (!memcg)
5407 return;
5408
5409 if (PageTransHuge(page)) {
5410 nr_pages <<= compound_order(page);
5411 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5412 }
5413
5414 cancel_charge(memcg, nr_pages);
5415}
5416
747db954 5417static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5418 unsigned long nr_anon, unsigned long nr_file,
5419 unsigned long nr_huge, struct page *dummy_page)
5420{
18eca2e6 5421 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5422 unsigned long flags;
5423
ce00a967 5424 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5425 page_counter_uncharge(&memcg->memory, nr_pages);
5426 if (do_swap_account)
5427 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5428 memcg_oom_recover(memcg);
5429 }
747db954
JW
5430
5431 local_irq_save(flags);
5432 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5433 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5434 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5435 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5436 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5437 memcg_check_events(memcg, dummy_page);
5438 local_irq_restore(flags);
e8ea14cc
JW
5439
5440 if (!mem_cgroup_is_root(memcg))
18eca2e6 5441 css_put_many(&memcg->css, nr_pages);
747db954
JW
5442}
5443
5444static void uncharge_list(struct list_head *page_list)
5445{
5446 struct mem_cgroup *memcg = NULL;
747db954
JW
5447 unsigned long nr_anon = 0;
5448 unsigned long nr_file = 0;
5449 unsigned long nr_huge = 0;
5450 unsigned long pgpgout = 0;
747db954
JW
5451 struct list_head *next;
5452 struct page *page;
5453
5454 next = page_list->next;
5455 do {
5456 unsigned int nr_pages = 1;
747db954
JW
5457
5458 page = list_entry(next, struct page, lru);
5459 next = page->lru.next;
5460
5461 VM_BUG_ON_PAGE(PageLRU(page), page);
5462 VM_BUG_ON_PAGE(page_count(page), page);
5463
1306a85a 5464 if (!page->mem_cgroup)
747db954
JW
5465 continue;
5466
5467 /*
5468 * Nobody should be changing or seriously looking at
1306a85a 5469 * page->mem_cgroup at this point, we have fully
29833315 5470 * exclusive access to the page.
747db954
JW
5471 */
5472
1306a85a 5473 if (memcg != page->mem_cgroup) {
747db954 5474 if (memcg) {
18eca2e6
JW
5475 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5476 nr_huge, page);
5477 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5478 }
1306a85a 5479 memcg = page->mem_cgroup;
747db954
JW
5480 }
5481
5482 if (PageTransHuge(page)) {
5483 nr_pages <<= compound_order(page);
5484 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5485 nr_huge += nr_pages;
5486 }
5487
5488 if (PageAnon(page))
5489 nr_anon += nr_pages;
5490 else
5491 nr_file += nr_pages;
5492
1306a85a 5493 page->mem_cgroup = NULL;
747db954
JW
5494
5495 pgpgout++;
5496 } while (next != page_list);
5497
5498 if (memcg)
18eca2e6
JW
5499 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5500 nr_huge, page);
747db954
JW
5501}
5502
0a31bc97
JW
5503/**
5504 * mem_cgroup_uncharge - uncharge a page
5505 * @page: page to uncharge
5506 *
5507 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5508 * mem_cgroup_commit_charge().
5509 */
5510void mem_cgroup_uncharge(struct page *page)
5511{
0a31bc97
JW
5512 if (mem_cgroup_disabled())
5513 return;
5514
747db954 5515 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5516 if (!page->mem_cgroup)
0a31bc97
JW
5517 return;
5518
747db954
JW
5519 INIT_LIST_HEAD(&page->lru);
5520 uncharge_list(&page->lru);
5521}
0a31bc97 5522
747db954
JW
5523/**
5524 * mem_cgroup_uncharge_list - uncharge a list of page
5525 * @page_list: list of pages to uncharge
5526 *
5527 * Uncharge a list of pages previously charged with
5528 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5529 */
5530void mem_cgroup_uncharge_list(struct list_head *page_list)
5531{
5532 if (mem_cgroup_disabled())
5533 return;
0a31bc97 5534
747db954
JW
5535 if (!list_empty(page_list))
5536 uncharge_list(page_list);
0a31bc97
JW
5537}
5538
5539/**
5540 * mem_cgroup_migrate - migrate a charge to another page
5541 * @oldpage: currently charged page
5542 * @newpage: page to transfer the charge to
f5e03a49 5543 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5544 *
5545 * Migrate the charge from @oldpage to @newpage.
5546 *
5547 * Both pages must be locked, @newpage->mapping must be set up.
5548 */
5549void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5550 bool lrucare)
5551{
29833315 5552 struct mem_cgroup *memcg;
0a31bc97
JW
5553 int isolated;
5554
5555 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5556 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5557 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5558 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5559 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5560 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5561 newpage);
0a31bc97
JW
5562
5563 if (mem_cgroup_disabled())
5564 return;
5565
5566 /* Page cache replacement: new page already charged? */
1306a85a 5567 if (newpage->mem_cgroup)
0a31bc97
JW
5568 return;
5569
7d5e3245
JW
5570 /*
5571 * Swapcache readahead pages can get migrated before being
5572 * charged, and migration from compaction can happen to an
5573 * uncharged page when the PFN walker finds a page that
5574 * reclaim just put back on the LRU but has not released yet.
5575 */
1306a85a 5576 memcg = oldpage->mem_cgroup;
29833315 5577 if (!memcg)
0a31bc97
JW
5578 return;
5579
0a31bc97
JW
5580 if (lrucare)
5581 lock_page_lru(oldpage, &isolated);
5582
1306a85a 5583 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5584
5585 if (lrucare)
5586 unlock_page_lru(oldpage, isolated);
5587
29833315 5588 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5589}
5590
2d11085e 5591/*
1081312f
MH
5592 * subsys_initcall() for memory controller.
5593 *
5594 * Some parts like hotcpu_notifier() have to be initialized from this context
5595 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5596 * everything that doesn't depend on a specific mem_cgroup structure should
5597 * be initialized from here.
2d11085e
MH
5598 */
5599static int __init mem_cgroup_init(void)
5600{
95a045f6
JW
5601 int cpu, node;
5602
2d11085e 5603 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5604
5605 for_each_possible_cpu(cpu)
5606 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5607 drain_local_stock);
5608
5609 for_each_node(node) {
5610 struct mem_cgroup_tree_per_node *rtpn;
5611 int zone;
5612
5613 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5614 node_online(node) ? node : NUMA_NO_NODE);
5615
5616 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5617 struct mem_cgroup_tree_per_zone *rtpz;
5618
5619 rtpz = &rtpn->rb_tree_per_zone[zone];
5620 rtpz->rb_root = RB_ROOT;
5621 spin_lock_init(&rtpz->lock);
5622 }
5623 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5624 }
5625
2d11085e
MH
5626 return 0;
5627}
5628subsys_initcall(mem_cgroup_init);
21afa38e
JW
5629
5630#ifdef CONFIG_MEMCG_SWAP
5631/**
5632 * mem_cgroup_swapout - transfer a memsw charge to swap
5633 * @page: page whose memsw charge to transfer
5634 * @entry: swap entry to move the charge to
5635 *
5636 * Transfer the memsw charge of @page to @entry.
5637 */
5638void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5639{
5640 struct mem_cgroup *memcg;
5641 unsigned short oldid;
5642
5643 VM_BUG_ON_PAGE(PageLRU(page), page);
5644 VM_BUG_ON_PAGE(page_count(page), page);
5645
5646 if (!do_swap_account)
5647 return;
5648
5649 memcg = page->mem_cgroup;
5650
5651 /* Readahead page, never charged */
5652 if (!memcg)
5653 return;
5654
5655 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5656 VM_BUG_ON_PAGE(oldid, page);
5657 mem_cgroup_swap_statistics(memcg, true);
5658
5659 page->mem_cgroup = NULL;
5660
5661 if (!mem_cgroup_is_root(memcg))
5662 page_counter_uncharge(&memcg->memory, 1);
5663
ce9ce665
SAS
5664 /*
5665 * Interrupts should be disabled here because the caller holds the
5666 * mapping->tree_lock lock which is taken with interrupts-off. It is
5667 * important here to have the interrupts disabled because it is the
5668 * only synchronisation we have for udpating the per-CPU variables.
5669 */
5670 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5671 mem_cgroup_charge_statistics(memcg, page, -1);
5672 memcg_check_events(memcg, page);
5673}
5674
5675/**
5676 * mem_cgroup_uncharge_swap - uncharge a swap entry
5677 * @entry: swap entry to uncharge
5678 *
5679 * Drop the memsw charge associated with @entry.
5680 */
5681void mem_cgroup_uncharge_swap(swp_entry_t entry)
5682{
5683 struct mem_cgroup *memcg;
5684 unsigned short id;
5685
5686 if (!do_swap_account)
5687 return;
5688
5689 id = swap_cgroup_record(entry, 0);
5690 rcu_read_lock();
adbe427b 5691 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5692 if (memcg) {
5693 if (!mem_cgroup_is_root(memcg))
5694 page_counter_uncharge(&memcg->memsw, 1);
5695 mem_cgroup_swap_statistics(memcg, false);
5696 css_put(&memcg->css);
5697 }
5698 rcu_read_unlock();
5699}
5700
5701/* for remember boot option*/
5702#ifdef CONFIG_MEMCG_SWAP_ENABLED
5703static int really_do_swap_account __initdata = 1;
5704#else
5705static int really_do_swap_account __initdata;
5706#endif
5707
5708static int __init enable_swap_account(char *s)
5709{
5710 if (!strcmp(s, "1"))
5711 really_do_swap_account = 1;
5712 else if (!strcmp(s, "0"))
5713 really_do_swap_account = 0;
5714 return 1;
5715}
5716__setup("swapaccount=", enable_swap_account);
5717
5718static struct cftype memsw_cgroup_files[] = {
5719 {
5720 .name = "memsw.usage_in_bytes",
5721 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5722 .read_u64 = mem_cgroup_read_u64,
5723 },
5724 {
5725 .name = "memsw.max_usage_in_bytes",
5726 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5727 .write = mem_cgroup_reset,
5728 .read_u64 = mem_cgroup_read_u64,
5729 },
5730 {
5731 .name = "memsw.limit_in_bytes",
5732 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5733 .write = mem_cgroup_write,
5734 .read_u64 = mem_cgroup_read_u64,
5735 },
5736 {
5737 .name = "memsw.failcnt",
5738 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5739 .write = mem_cgroup_reset,
5740 .read_u64 = mem_cgroup_read_u64,
5741 },
5742 { }, /* terminate */
5743};
5744
5745static int __init mem_cgroup_swap_init(void)
5746{
5747 if (!mem_cgroup_disabled() && really_do_swap_account) {
5748 do_swap_account = 1;
5749 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5750 memsw_cgroup_files));
5751 }
5752 return 0;
5753}
5754subsys_initcall(mem_cgroup_swap_init);
5755
5756#endif /* CONFIG_MEMCG_SWAP */
This page took 1.216281 seconds and 5 git commands to generate.