hugetlb: printk cleanup
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
1da177e4
LT
54
55#include <asm/pgalloc.h>
56#include <asm/uaccess.h>
57#include <asm/tlb.h>
58#include <asm/tlbflush.h>
59#include <asm/pgtable.h>
60
61#include <linux/swapops.h>
62#include <linux/elf.h>
63
42b77728
JB
64#include "internal.h"
65
d41dee36 66#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
67/* use the per-pgdat data instead for discontigmem - mbligh */
68unsigned long max_mapnr;
69struct page *mem_map;
70
71EXPORT_SYMBOL(max_mapnr);
72EXPORT_SYMBOL(mem_map);
73#endif
74
75unsigned long num_physpages;
76/*
77 * A number of key systems in x86 including ioremap() rely on the assumption
78 * that high_memory defines the upper bound on direct map memory, then end
79 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
80 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
81 * and ZONE_HIGHMEM.
82 */
83void * high_memory;
1da177e4
LT
84
85EXPORT_SYMBOL(num_physpages);
86EXPORT_SYMBOL(high_memory);
1da177e4 87
32a93233
IM
88/*
89 * Randomize the address space (stacks, mmaps, brk, etc.).
90 *
91 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
92 * as ancient (libc5 based) binaries can segfault. )
93 */
94int randomize_va_space __read_mostly =
95#ifdef CONFIG_COMPAT_BRK
96 1;
97#else
98 2;
99#endif
a62eaf15
AK
100
101static int __init disable_randmaps(char *s)
102{
103 randomize_va_space = 0;
9b41046c 104 return 1;
a62eaf15
AK
105}
106__setup("norandmaps", disable_randmaps);
107
108
1da177e4
LT
109/*
110 * If a p?d_bad entry is found while walking page tables, report
111 * the error, before resetting entry to p?d_none. Usually (but
112 * very seldom) called out from the p?d_none_or_clear_bad macros.
113 */
114
115void pgd_clear_bad(pgd_t *pgd)
116{
117 pgd_ERROR(*pgd);
118 pgd_clear(pgd);
119}
120
121void pud_clear_bad(pud_t *pud)
122{
123 pud_ERROR(*pud);
124 pud_clear(pud);
125}
126
127void pmd_clear_bad(pmd_t *pmd)
128{
129 pmd_ERROR(*pmd);
130 pmd_clear(pmd);
131}
132
133/*
134 * Note: this doesn't free the actual pages themselves. That
135 * has been handled earlier when unmapping all the memory regions.
136 */
e0da382c 137static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 138{
2f569afd 139 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 140 pmd_clear(pmd);
2f569afd 141 pte_free_tlb(tlb, token);
e0da382c 142 tlb->mm->nr_ptes--;
1da177e4
LT
143}
144
e0da382c
HD
145static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
146 unsigned long addr, unsigned long end,
147 unsigned long floor, unsigned long ceiling)
1da177e4
LT
148{
149 pmd_t *pmd;
150 unsigned long next;
e0da382c 151 unsigned long start;
1da177e4 152
e0da382c 153 start = addr;
1da177e4 154 pmd = pmd_offset(pud, addr);
1da177e4
LT
155 do {
156 next = pmd_addr_end(addr, end);
157 if (pmd_none_or_clear_bad(pmd))
158 continue;
e0da382c 159 free_pte_range(tlb, pmd);
1da177e4
LT
160 } while (pmd++, addr = next, addr != end);
161
e0da382c
HD
162 start &= PUD_MASK;
163 if (start < floor)
164 return;
165 if (ceiling) {
166 ceiling &= PUD_MASK;
167 if (!ceiling)
168 return;
1da177e4 169 }
e0da382c
HD
170 if (end - 1 > ceiling - 1)
171 return;
172
173 pmd = pmd_offset(pud, start);
174 pud_clear(pud);
175 pmd_free_tlb(tlb, pmd);
1da177e4
LT
176}
177
e0da382c
HD
178static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
179 unsigned long addr, unsigned long end,
180 unsigned long floor, unsigned long ceiling)
1da177e4
LT
181{
182 pud_t *pud;
183 unsigned long next;
e0da382c 184 unsigned long start;
1da177e4 185
e0da382c 186 start = addr;
1da177e4 187 pud = pud_offset(pgd, addr);
1da177e4
LT
188 do {
189 next = pud_addr_end(addr, end);
190 if (pud_none_or_clear_bad(pud))
191 continue;
e0da382c 192 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
193 } while (pud++, addr = next, addr != end);
194
e0da382c
HD
195 start &= PGDIR_MASK;
196 if (start < floor)
197 return;
198 if (ceiling) {
199 ceiling &= PGDIR_MASK;
200 if (!ceiling)
201 return;
1da177e4 202 }
e0da382c
HD
203 if (end - 1 > ceiling - 1)
204 return;
205
206 pud = pud_offset(pgd, start);
207 pgd_clear(pgd);
208 pud_free_tlb(tlb, pud);
1da177e4
LT
209}
210
211/*
e0da382c
HD
212 * This function frees user-level page tables of a process.
213 *
1da177e4
LT
214 * Must be called with pagetable lock held.
215 */
42b77728 216void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
1da177e4
LT
219{
220 pgd_t *pgd;
221 unsigned long next;
e0da382c
HD
222 unsigned long start;
223
224 /*
225 * The next few lines have given us lots of grief...
226 *
227 * Why are we testing PMD* at this top level? Because often
228 * there will be no work to do at all, and we'd prefer not to
229 * go all the way down to the bottom just to discover that.
230 *
231 * Why all these "- 1"s? Because 0 represents both the bottom
232 * of the address space and the top of it (using -1 for the
233 * top wouldn't help much: the masks would do the wrong thing).
234 * The rule is that addr 0 and floor 0 refer to the bottom of
235 * the address space, but end 0 and ceiling 0 refer to the top
236 * Comparisons need to use "end - 1" and "ceiling - 1" (though
237 * that end 0 case should be mythical).
238 *
239 * Wherever addr is brought up or ceiling brought down, we must
240 * be careful to reject "the opposite 0" before it confuses the
241 * subsequent tests. But what about where end is brought down
242 * by PMD_SIZE below? no, end can't go down to 0 there.
243 *
244 * Whereas we round start (addr) and ceiling down, by different
245 * masks at different levels, in order to test whether a table
246 * now has no other vmas using it, so can be freed, we don't
247 * bother to round floor or end up - the tests don't need that.
248 */
1da177e4 249
e0da382c
HD
250 addr &= PMD_MASK;
251 if (addr < floor) {
252 addr += PMD_SIZE;
253 if (!addr)
254 return;
255 }
256 if (ceiling) {
257 ceiling &= PMD_MASK;
258 if (!ceiling)
259 return;
260 }
261 if (end - 1 > ceiling - 1)
262 end -= PMD_SIZE;
263 if (addr > end - 1)
264 return;
265
266 start = addr;
42b77728 267 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
268 do {
269 next = pgd_addr_end(addr, end);
270 if (pgd_none_or_clear_bad(pgd))
271 continue;
42b77728 272 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 273 } while (pgd++, addr = next, addr != end);
e0da382c
HD
274}
275
42b77728 276void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 277 unsigned long floor, unsigned long ceiling)
e0da382c
HD
278{
279 while (vma) {
280 struct vm_area_struct *next = vma->vm_next;
281 unsigned long addr = vma->vm_start;
282
8f4f8c16
HD
283 /*
284 * Hide vma from rmap and vmtruncate before freeing pgtables
285 */
286 anon_vma_unlink(vma);
287 unlink_file_vma(vma);
288
9da61aef 289 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 290 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 291 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
292 } else {
293 /*
294 * Optimization: gather nearby vmas into one call down
295 */
296 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 297 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
298 vma = next;
299 next = vma->vm_next;
8f4f8c16
HD
300 anon_vma_unlink(vma);
301 unlink_file_vma(vma);
3bf5ee95
HD
302 }
303 free_pgd_range(tlb, addr, vma->vm_end,
304 floor, next? next->vm_start: ceiling);
305 }
e0da382c
HD
306 vma = next;
307 }
1da177e4
LT
308}
309
1bb3630e 310int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 311{
2f569afd 312 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
313 if (!new)
314 return -ENOMEM;
315
362a61ad
NP
316 /*
317 * Ensure all pte setup (eg. pte page lock and page clearing) are
318 * visible before the pte is made visible to other CPUs by being
319 * put into page tables.
320 *
321 * The other side of the story is the pointer chasing in the page
322 * table walking code (when walking the page table without locking;
323 * ie. most of the time). Fortunately, these data accesses consist
324 * of a chain of data-dependent loads, meaning most CPUs (alpha
325 * being the notable exception) will already guarantee loads are
326 * seen in-order. See the alpha page table accessors for the
327 * smp_read_barrier_depends() barriers in page table walking code.
328 */
329 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
330
c74df32c 331 spin_lock(&mm->page_table_lock);
2f569afd 332 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 333 mm->nr_ptes++;
1da177e4 334 pmd_populate(mm, pmd, new);
2f569afd 335 new = NULL;
1da177e4 336 }
c74df32c 337 spin_unlock(&mm->page_table_lock);
2f569afd
MS
338 if (new)
339 pte_free(mm, new);
1bb3630e 340 return 0;
1da177e4
LT
341}
342
1bb3630e 343int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 344{
1bb3630e
HD
345 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
346 if (!new)
347 return -ENOMEM;
348
362a61ad
NP
349 smp_wmb(); /* See comment in __pte_alloc */
350
1bb3630e 351 spin_lock(&init_mm.page_table_lock);
2f569afd 352 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 353 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
354 new = NULL;
355 }
1bb3630e 356 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
357 if (new)
358 pte_free_kernel(&init_mm, new);
1bb3630e 359 return 0;
1da177e4
LT
360}
361
ae859762
HD
362static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
363{
364 if (file_rss)
365 add_mm_counter(mm, file_rss, file_rss);
366 if (anon_rss)
367 add_mm_counter(mm, anon_rss, anon_rss);
368}
369
b5810039 370/*
6aab341e
LT
371 * This function is called to print an error when a bad pte
372 * is found. For example, we might have a PFN-mapped pte in
373 * a region that doesn't allow it.
b5810039
NP
374 *
375 * The calling function must still handle the error.
376 */
377void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
378{
379 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
380 "vm_flags = %lx, vaddr = %lx\n",
381 (long long)pte_val(pte),
382 (vma->vm_mm == current->mm ? current->comm : "???"),
383 vma->vm_flags, vaddr);
384 dump_stack();
385}
386
67121172
LT
387static inline int is_cow_mapping(unsigned int flags)
388{
389 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
390}
391
ee498ed7 392/*
7e675137 393 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 394 *
7e675137
NP
395 * "Special" mappings do not wish to be associated with a "struct page" (either
396 * it doesn't exist, or it exists but they don't want to touch it). In this
397 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 398 *
7e675137
NP
399 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
400 * pte bit, in which case this function is trivial. Secondly, an architecture
401 * may not have a spare pte bit, which requires a more complicated scheme,
402 * described below.
403 *
404 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
405 * special mapping (even if there are underlying and valid "struct pages").
406 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 407 *
b379d790
JH
408 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
409 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
410 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
411 * mapping will always honor the rule
6aab341e
LT
412 *
413 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
414 *
7e675137
NP
415 * And for normal mappings this is false.
416 *
417 * This restricts such mappings to be a linear translation from virtual address
418 * to pfn. To get around this restriction, we allow arbitrary mappings so long
419 * as the vma is not a COW mapping; in that case, we know that all ptes are
420 * special (because none can have been COWed).
b379d790 421 *
b379d790 422 *
7e675137 423 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
424 *
425 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
426 * page" backing, however the difference is that _all_ pages with a struct
427 * page (that is, those where pfn_valid is true) are refcounted and considered
428 * normal pages by the VM. The disadvantage is that pages are refcounted
429 * (which can be slower and simply not an option for some PFNMAP users). The
430 * advantage is that we don't have to follow the strict linearity rule of
431 * PFNMAP mappings in order to support COWable mappings.
432 *
ee498ed7 433 */
7e675137
NP
434#ifdef __HAVE_ARCH_PTE_SPECIAL
435# define HAVE_PTE_SPECIAL 1
436#else
437# define HAVE_PTE_SPECIAL 0
438#endif
439struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
440 pte_t pte)
ee498ed7 441{
7e675137
NP
442 unsigned long pfn;
443
444 if (HAVE_PTE_SPECIAL) {
445 if (likely(!pte_special(pte))) {
446 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
447 return pte_page(pte);
448 }
449 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
450 return NULL;
451 }
452
453 /* !HAVE_PTE_SPECIAL case follows: */
454
455 pfn = pte_pfn(pte);
6aab341e 456
b379d790
JH
457 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
458 if (vma->vm_flags & VM_MIXEDMAP) {
459 if (!pfn_valid(pfn))
460 return NULL;
461 goto out;
462 } else {
7e675137
NP
463 unsigned long off;
464 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
465 if (pfn == vma->vm_pgoff + off)
466 return NULL;
467 if (!is_cow_mapping(vma->vm_flags))
468 return NULL;
469 }
6aab341e
LT
470 }
471
7e675137 472 VM_BUG_ON(!pfn_valid(pfn));
6aab341e
LT
473
474 /*
7e675137 475 * NOTE! We still have PageReserved() pages in the page tables.
6aab341e 476 *
7e675137 477 * eg. VDSO mappings can cause them to exist.
6aab341e 478 */
b379d790 479out:
6aab341e 480 return pfn_to_page(pfn);
ee498ed7
HD
481}
482
1da177e4
LT
483/*
484 * copy one vm_area from one task to the other. Assumes the page tables
485 * already present in the new task to be cleared in the whole range
486 * covered by this vma.
1da177e4
LT
487 */
488
8c103762 489static inline void
1da177e4 490copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 491 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 492 unsigned long addr, int *rss)
1da177e4 493{
b5810039 494 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
495 pte_t pte = *src_pte;
496 struct page *page;
1da177e4
LT
497
498 /* pte contains position in swap or file, so copy. */
499 if (unlikely(!pte_present(pte))) {
500 if (!pte_file(pte)) {
0697212a
CL
501 swp_entry_t entry = pte_to_swp_entry(pte);
502
503 swap_duplicate(entry);
1da177e4
LT
504 /* make sure dst_mm is on swapoff's mmlist. */
505 if (unlikely(list_empty(&dst_mm->mmlist))) {
506 spin_lock(&mmlist_lock);
f412ac08
HD
507 if (list_empty(&dst_mm->mmlist))
508 list_add(&dst_mm->mmlist,
509 &src_mm->mmlist);
1da177e4
LT
510 spin_unlock(&mmlist_lock);
511 }
0697212a
CL
512 if (is_write_migration_entry(entry) &&
513 is_cow_mapping(vm_flags)) {
514 /*
515 * COW mappings require pages in both parent
516 * and child to be set to read.
517 */
518 make_migration_entry_read(&entry);
519 pte = swp_entry_to_pte(entry);
520 set_pte_at(src_mm, addr, src_pte, pte);
521 }
1da177e4 522 }
ae859762 523 goto out_set_pte;
1da177e4
LT
524 }
525
1da177e4
LT
526 /*
527 * If it's a COW mapping, write protect it both
528 * in the parent and the child
529 */
67121172 530 if (is_cow_mapping(vm_flags)) {
1da177e4 531 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 532 pte = pte_wrprotect(pte);
1da177e4
LT
533 }
534
535 /*
536 * If it's a shared mapping, mark it clean in
537 * the child
538 */
539 if (vm_flags & VM_SHARED)
540 pte = pte_mkclean(pte);
541 pte = pte_mkold(pte);
6aab341e
LT
542
543 page = vm_normal_page(vma, addr, pte);
544 if (page) {
545 get_page(page);
c97a9e10 546 page_dup_rmap(page, vma, addr);
6aab341e
LT
547 rss[!!PageAnon(page)]++;
548 }
ae859762
HD
549
550out_set_pte:
551 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
552}
553
554static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
555 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
556 unsigned long addr, unsigned long end)
557{
558 pte_t *src_pte, *dst_pte;
c74df32c 559 spinlock_t *src_ptl, *dst_ptl;
e040f218 560 int progress = 0;
8c103762 561 int rss[2];
1da177e4
LT
562
563again:
ae859762 564 rss[1] = rss[0] = 0;
c74df32c 565 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
566 if (!dst_pte)
567 return -ENOMEM;
568 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 569 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 570 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 571 arch_enter_lazy_mmu_mode();
1da177e4 572
1da177e4
LT
573 do {
574 /*
575 * We are holding two locks at this point - either of them
576 * could generate latencies in another task on another CPU.
577 */
e040f218
HD
578 if (progress >= 32) {
579 progress = 0;
580 if (need_resched() ||
95c354fe 581 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
582 break;
583 }
1da177e4
LT
584 if (pte_none(*src_pte)) {
585 progress++;
586 continue;
587 }
8c103762 588 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
589 progress += 8;
590 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 591
6606c3e0 592 arch_leave_lazy_mmu_mode();
c74df32c 593 spin_unlock(src_ptl);
1da177e4 594 pte_unmap_nested(src_pte - 1);
ae859762 595 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
596 pte_unmap_unlock(dst_pte - 1, dst_ptl);
597 cond_resched();
1da177e4
LT
598 if (addr != end)
599 goto again;
600 return 0;
601}
602
603static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
604 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
605 unsigned long addr, unsigned long end)
606{
607 pmd_t *src_pmd, *dst_pmd;
608 unsigned long next;
609
610 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
611 if (!dst_pmd)
612 return -ENOMEM;
613 src_pmd = pmd_offset(src_pud, addr);
614 do {
615 next = pmd_addr_end(addr, end);
616 if (pmd_none_or_clear_bad(src_pmd))
617 continue;
618 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
619 vma, addr, next))
620 return -ENOMEM;
621 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
622 return 0;
623}
624
625static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
626 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
627 unsigned long addr, unsigned long end)
628{
629 pud_t *src_pud, *dst_pud;
630 unsigned long next;
631
632 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
633 if (!dst_pud)
634 return -ENOMEM;
635 src_pud = pud_offset(src_pgd, addr);
636 do {
637 next = pud_addr_end(addr, end);
638 if (pud_none_or_clear_bad(src_pud))
639 continue;
640 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
641 vma, addr, next))
642 return -ENOMEM;
643 } while (dst_pud++, src_pud++, addr = next, addr != end);
644 return 0;
645}
646
647int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
648 struct vm_area_struct *vma)
649{
650 pgd_t *src_pgd, *dst_pgd;
651 unsigned long next;
652 unsigned long addr = vma->vm_start;
653 unsigned long end = vma->vm_end;
654
d992895b
NP
655 /*
656 * Don't copy ptes where a page fault will fill them correctly.
657 * Fork becomes much lighter when there are big shared or private
658 * readonly mappings. The tradeoff is that copy_page_range is more
659 * efficient than faulting.
660 */
4d7672b4 661 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
662 if (!vma->anon_vma)
663 return 0;
664 }
665
1da177e4
LT
666 if (is_vm_hugetlb_page(vma))
667 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
668
669 dst_pgd = pgd_offset(dst_mm, addr);
670 src_pgd = pgd_offset(src_mm, addr);
671 do {
672 next = pgd_addr_end(addr, end);
673 if (pgd_none_or_clear_bad(src_pgd))
674 continue;
675 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
676 vma, addr, next))
677 return -ENOMEM;
678 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
679 return 0;
680}
681
51c6f666 682static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 683 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 684 unsigned long addr, unsigned long end,
51c6f666 685 long *zap_work, struct zap_details *details)
1da177e4 686{
b5810039 687 struct mm_struct *mm = tlb->mm;
1da177e4 688 pte_t *pte;
508034a3 689 spinlock_t *ptl;
ae859762
HD
690 int file_rss = 0;
691 int anon_rss = 0;
1da177e4 692
508034a3 693 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 694 arch_enter_lazy_mmu_mode();
1da177e4
LT
695 do {
696 pte_t ptent = *pte;
51c6f666
RH
697 if (pte_none(ptent)) {
698 (*zap_work)--;
1da177e4 699 continue;
51c6f666 700 }
6f5e6b9e
HD
701
702 (*zap_work) -= PAGE_SIZE;
703
1da177e4 704 if (pte_present(ptent)) {
ee498ed7 705 struct page *page;
51c6f666 706
6aab341e 707 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
708 if (unlikely(details) && page) {
709 /*
710 * unmap_shared_mapping_pages() wants to
711 * invalidate cache without truncating:
712 * unmap shared but keep private pages.
713 */
714 if (details->check_mapping &&
715 details->check_mapping != page->mapping)
716 continue;
717 /*
718 * Each page->index must be checked when
719 * invalidating or truncating nonlinear.
720 */
721 if (details->nonlinear_vma &&
722 (page->index < details->first_index ||
723 page->index > details->last_index))
724 continue;
725 }
b5810039 726 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 727 tlb->fullmm);
1da177e4
LT
728 tlb_remove_tlb_entry(tlb, pte, addr);
729 if (unlikely(!page))
730 continue;
731 if (unlikely(details) && details->nonlinear_vma
732 && linear_page_index(details->nonlinear_vma,
733 addr) != page->index)
b5810039 734 set_pte_at(mm, addr, pte,
1da177e4 735 pgoff_to_pte(page->index));
1da177e4 736 if (PageAnon(page))
86d912f4 737 anon_rss--;
6237bcd9
HD
738 else {
739 if (pte_dirty(ptent))
740 set_page_dirty(page);
741 if (pte_young(ptent))
daa88c8d 742 SetPageReferenced(page);
86d912f4 743 file_rss--;
6237bcd9 744 }
7de6b805 745 page_remove_rmap(page, vma);
1da177e4
LT
746 tlb_remove_page(tlb, page);
747 continue;
748 }
749 /*
750 * If details->check_mapping, we leave swap entries;
751 * if details->nonlinear_vma, we leave file entries.
752 */
753 if (unlikely(details))
754 continue;
755 if (!pte_file(ptent))
756 free_swap_and_cache(pte_to_swp_entry(ptent));
9888a1ca 757 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 758 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 759
86d912f4 760 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 761 arch_leave_lazy_mmu_mode();
508034a3 762 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
763
764 return addr;
1da177e4
LT
765}
766
51c6f666 767static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 768 struct vm_area_struct *vma, pud_t *pud,
1da177e4 769 unsigned long addr, unsigned long end,
51c6f666 770 long *zap_work, struct zap_details *details)
1da177e4
LT
771{
772 pmd_t *pmd;
773 unsigned long next;
774
775 pmd = pmd_offset(pud, addr);
776 do {
777 next = pmd_addr_end(addr, end);
51c6f666
RH
778 if (pmd_none_or_clear_bad(pmd)) {
779 (*zap_work)--;
1da177e4 780 continue;
51c6f666
RH
781 }
782 next = zap_pte_range(tlb, vma, pmd, addr, next,
783 zap_work, details);
784 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
785
786 return addr;
1da177e4
LT
787}
788
51c6f666 789static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 790 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 791 unsigned long addr, unsigned long end,
51c6f666 792 long *zap_work, struct zap_details *details)
1da177e4
LT
793{
794 pud_t *pud;
795 unsigned long next;
796
797 pud = pud_offset(pgd, addr);
798 do {
799 next = pud_addr_end(addr, end);
51c6f666
RH
800 if (pud_none_or_clear_bad(pud)) {
801 (*zap_work)--;
1da177e4 802 continue;
51c6f666
RH
803 }
804 next = zap_pmd_range(tlb, vma, pud, addr, next,
805 zap_work, details);
806 } while (pud++, addr = next, (addr != end && *zap_work > 0));
807
808 return addr;
1da177e4
LT
809}
810
51c6f666
RH
811static unsigned long unmap_page_range(struct mmu_gather *tlb,
812 struct vm_area_struct *vma,
1da177e4 813 unsigned long addr, unsigned long end,
51c6f666 814 long *zap_work, struct zap_details *details)
1da177e4
LT
815{
816 pgd_t *pgd;
817 unsigned long next;
818
819 if (details && !details->check_mapping && !details->nonlinear_vma)
820 details = NULL;
821
822 BUG_ON(addr >= end);
823 tlb_start_vma(tlb, vma);
824 pgd = pgd_offset(vma->vm_mm, addr);
825 do {
826 next = pgd_addr_end(addr, end);
51c6f666
RH
827 if (pgd_none_or_clear_bad(pgd)) {
828 (*zap_work)--;
1da177e4 829 continue;
51c6f666
RH
830 }
831 next = zap_pud_range(tlb, vma, pgd, addr, next,
832 zap_work, details);
833 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 834 tlb_end_vma(tlb, vma);
51c6f666
RH
835
836 return addr;
1da177e4
LT
837}
838
839#ifdef CONFIG_PREEMPT
840# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
841#else
842/* No preempt: go for improved straight-line efficiency */
843# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
844#endif
845
846/**
847 * unmap_vmas - unmap a range of memory covered by a list of vma's
848 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
849 * @vma: the starting vma
850 * @start_addr: virtual address at which to start unmapping
851 * @end_addr: virtual address at which to end unmapping
852 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
853 * @details: details of nonlinear truncation or shared cache invalidation
854 *
ee39b37b 855 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 856 *
508034a3 857 * Unmap all pages in the vma list.
1da177e4 858 *
508034a3
HD
859 * We aim to not hold locks for too long (for scheduling latency reasons).
860 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
861 * return the ending mmu_gather to the caller.
862 *
863 * Only addresses between `start' and `end' will be unmapped.
864 *
865 * The VMA list must be sorted in ascending virtual address order.
866 *
867 * unmap_vmas() assumes that the caller will flush the whole unmapped address
868 * range after unmap_vmas() returns. So the only responsibility here is to
869 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
870 * drops the lock and schedules.
871 */
508034a3 872unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
873 struct vm_area_struct *vma, unsigned long start_addr,
874 unsigned long end_addr, unsigned long *nr_accounted,
875 struct zap_details *details)
876{
51c6f666 877 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
878 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
879 int tlb_start_valid = 0;
ee39b37b 880 unsigned long start = start_addr;
1da177e4 881 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 882 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
883
884 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
885 unsigned long end;
886
887 start = max(vma->vm_start, start_addr);
888 if (start >= vma->vm_end)
889 continue;
890 end = min(vma->vm_end, end_addr);
891 if (end <= vma->vm_start)
892 continue;
893
894 if (vma->vm_flags & VM_ACCOUNT)
895 *nr_accounted += (end - start) >> PAGE_SHIFT;
896
1da177e4 897 while (start != end) {
1da177e4
LT
898 if (!tlb_start_valid) {
899 tlb_start = start;
900 tlb_start_valid = 1;
901 }
902
51c6f666 903 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
904 /*
905 * It is undesirable to test vma->vm_file as it
906 * should be non-null for valid hugetlb area.
907 * However, vm_file will be NULL in the error
908 * cleanup path of do_mmap_pgoff. When
909 * hugetlbfs ->mmap method fails,
910 * do_mmap_pgoff() nullifies vma->vm_file
911 * before calling this function to clean up.
912 * Since no pte has actually been setup, it is
913 * safe to do nothing in this case.
914 */
915 if (vma->vm_file) {
916 unmap_hugepage_range(vma, start, end, NULL);
917 zap_work -= (end - start) /
a5516438 918 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
919 }
920
51c6f666
RH
921 start = end;
922 } else
923 start = unmap_page_range(*tlbp, vma,
924 start, end, &zap_work, details);
925
926 if (zap_work > 0) {
927 BUG_ON(start != end);
928 break;
1da177e4
LT
929 }
930
1da177e4
LT
931 tlb_finish_mmu(*tlbp, tlb_start, start);
932
933 if (need_resched() ||
95c354fe 934 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 935 if (i_mmap_lock) {
508034a3 936 *tlbp = NULL;
1da177e4
LT
937 goto out;
938 }
1da177e4 939 cond_resched();
1da177e4
LT
940 }
941
508034a3 942 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 943 tlb_start_valid = 0;
51c6f666 944 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
945 }
946 }
947out:
ee39b37b 948 return start; /* which is now the end (or restart) address */
1da177e4
LT
949}
950
951/**
952 * zap_page_range - remove user pages in a given range
953 * @vma: vm_area_struct holding the applicable pages
954 * @address: starting address of pages to zap
955 * @size: number of bytes to zap
956 * @details: details of nonlinear truncation or shared cache invalidation
957 */
ee39b37b 958unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
959 unsigned long size, struct zap_details *details)
960{
961 struct mm_struct *mm = vma->vm_mm;
962 struct mmu_gather *tlb;
963 unsigned long end = address + size;
964 unsigned long nr_accounted = 0;
965
1da177e4 966 lru_add_drain();
1da177e4 967 tlb = tlb_gather_mmu(mm, 0);
365e9c87 968 update_hiwater_rss(mm);
508034a3
HD
969 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
970 if (tlb)
971 tlb_finish_mmu(tlb, address, end);
ee39b37b 972 return end;
1da177e4
LT
973}
974
975/*
976 * Do a quick page-table lookup for a single page.
1da177e4 977 */
6aab341e 978struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 979 unsigned int flags)
1da177e4
LT
980{
981 pgd_t *pgd;
982 pud_t *pud;
983 pmd_t *pmd;
984 pte_t *ptep, pte;
deceb6cd 985 spinlock_t *ptl;
1da177e4 986 struct page *page;
6aab341e 987 struct mm_struct *mm = vma->vm_mm;
1da177e4 988
deceb6cd
HD
989 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
990 if (!IS_ERR(page)) {
991 BUG_ON(flags & FOLL_GET);
992 goto out;
993 }
1da177e4 994
deceb6cd 995 page = NULL;
1da177e4
LT
996 pgd = pgd_offset(mm, address);
997 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 998 goto no_page_table;
1da177e4
LT
999
1000 pud = pud_offset(pgd, address);
1001 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
deceb6cd 1002 goto no_page_table;
1da177e4
LT
1003
1004 pmd = pmd_offset(pud, address);
aeed5fce 1005 if (pmd_none(*pmd))
deceb6cd
HD
1006 goto no_page_table;
1007
1008 if (pmd_huge(*pmd)) {
1009 BUG_ON(flags & FOLL_GET);
1010 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1011 goto out;
deceb6cd 1012 }
1da177e4 1013
aeed5fce
HD
1014 if (unlikely(pmd_bad(*pmd)))
1015 goto no_page_table;
1016
deceb6cd 1017 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1018
1019 pte = *ptep;
deceb6cd 1020 if (!pte_present(pte))
89f5b7da 1021 goto no_page;
deceb6cd
HD
1022 if ((flags & FOLL_WRITE) && !pte_write(pte))
1023 goto unlock;
6aab341e
LT
1024 page = vm_normal_page(vma, address, pte);
1025 if (unlikely(!page))
89f5b7da 1026 goto bad_page;
1da177e4 1027
deceb6cd
HD
1028 if (flags & FOLL_GET)
1029 get_page(page);
1030 if (flags & FOLL_TOUCH) {
1031 if ((flags & FOLL_WRITE) &&
1032 !pte_dirty(pte) && !PageDirty(page))
1033 set_page_dirty(page);
1034 mark_page_accessed(page);
1035 }
1036unlock:
1037 pte_unmap_unlock(ptep, ptl);
1da177e4 1038out:
deceb6cd 1039 return page;
1da177e4 1040
89f5b7da
LT
1041bad_page:
1042 pte_unmap_unlock(ptep, ptl);
1043 return ERR_PTR(-EFAULT);
1044
1045no_page:
1046 pte_unmap_unlock(ptep, ptl);
1047 if (!pte_none(pte))
1048 return page;
1049 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1050no_page_table:
1051 /*
1052 * When core dumping an enormous anonymous area that nobody
1053 * has touched so far, we don't want to allocate page tables.
1054 */
1055 if (flags & FOLL_ANON) {
557ed1fa 1056 page = ZERO_PAGE(0);
deceb6cd
HD
1057 if (flags & FOLL_GET)
1058 get_page(page);
1059 BUG_ON(flags & FOLL_WRITE);
1060 }
1061 return page;
1da177e4
LT
1062}
1063
672ca28e
LT
1064/* Can we do the FOLL_ANON optimization? */
1065static inline int use_zero_page(struct vm_area_struct *vma)
1066{
1067 /*
1068 * We don't want to optimize FOLL_ANON for make_pages_present()
1069 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1070 * we want to get the page from the page tables to make sure
1071 * that we serialize and update with any other user of that
1072 * mapping.
1073 */
1074 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1075 return 0;
1076 /*
0d71d10a 1077 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1078 */
0d71d10a 1079 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1080}
1081
1da177e4
LT
1082int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1083 unsigned long start, int len, int write, int force,
1084 struct page **pages, struct vm_area_struct **vmas)
1085{
1086 int i;
deceb6cd 1087 unsigned int vm_flags;
1da177e4 1088
900cf086
JC
1089 if (len <= 0)
1090 return 0;
1da177e4
LT
1091 /*
1092 * Require read or write permissions.
1093 * If 'force' is set, we only require the "MAY" flags.
1094 */
deceb6cd
HD
1095 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1096 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1097 i = 0;
1098
1099 do {
deceb6cd
HD
1100 struct vm_area_struct *vma;
1101 unsigned int foll_flags;
1da177e4
LT
1102
1103 vma = find_extend_vma(mm, start);
1104 if (!vma && in_gate_area(tsk, start)) {
1105 unsigned long pg = start & PAGE_MASK;
1106 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1107 pgd_t *pgd;
1108 pud_t *pud;
1109 pmd_t *pmd;
1110 pte_t *pte;
1111 if (write) /* user gate pages are read-only */
1112 return i ? : -EFAULT;
1113 if (pg > TASK_SIZE)
1114 pgd = pgd_offset_k(pg);
1115 else
1116 pgd = pgd_offset_gate(mm, pg);
1117 BUG_ON(pgd_none(*pgd));
1118 pud = pud_offset(pgd, pg);
1119 BUG_ON(pud_none(*pud));
1120 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1121 if (pmd_none(*pmd))
1122 return i ? : -EFAULT;
1da177e4 1123 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1124 if (pte_none(*pte)) {
1125 pte_unmap(pte);
1126 return i ? : -EFAULT;
1127 }
1da177e4 1128 if (pages) {
fa2a455b 1129 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1130 pages[i] = page;
1131 if (page)
1132 get_page(page);
1da177e4
LT
1133 }
1134 pte_unmap(pte);
1135 if (vmas)
1136 vmas[i] = gate_vma;
1137 i++;
1138 start += PAGE_SIZE;
1139 len--;
1140 continue;
1141 }
1142
1ff80389 1143 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
deceb6cd 1144 || !(vm_flags & vma->vm_flags))
1da177e4
LT
1145 return i ? : -EFAULT;
1146
1147 if (is_vm_hugetlb_page(vma)) {
1148 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1149 &start, &len, i, write);
1da177e4
LT
1150 continue;
1151 }
deceb6cd
HD
1152
1153 foll_flags = FOLL_TOUCH;
1154 if (pages)
1155 foll_flags |= FOLL_GET;
672ca28e 1156 if (!write && use_zero_page(vma))
deceb6cd
HD
1157 foll_flags |= FOLL_ANON;
1158
1da177e4 1159 do {
08ef4729 1160 struct page *page;
1da177e4 1161
462e00cc
ES
1162 /*
1163 * If tsk is ooming, cut off its access to large memory
1164 * allocations. It has a pending SIGKILL, but it can't
1165 * be processed until returning to user space.
1166 */
1167 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1168 return i ? i : -ENOMEM;
462e00cc 1169
deceb6cd
HD
1170 if (write)
1171 foll_flags |= FOLL_WRITE;
a68d2ebc 1172
deceb6cd 1173 cond_resched();
6aab341e 1174 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1175 int ret;
83c54070 1176 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1177 foll_flags & FOLL_WRITE);
83c54070
NP
1178 if (ret & VM_FAULT_ERROR) {
1179 if (ret & VM_FAULT_OOM)
1180 return i ? i : -ENOMEM;
1181 else if (ret & VM_FAULT_SIGBUS)
1182 return i ? i : -EFAULT;
1183 BUG();
1184 }
1185 if (ret & VM_FAULT_MAJOR)
1186 tsk->maj_flt++;
1187 else
1188 tsk->min_flt++;
1189
a68d2ebc 1190 /*
83c54070
NP
1191 * The VM_FAULT_WRITE bit tells us that
1192 * do_wp_page has broken COW when necessary,
1193 * even if maybe_mkwrite decided not to set
1194 * pte_write. We can thus safely do subsequent
1195 * page lookups as if they were reads.
a68d2ebc
LT
1196 */
1197 if (ret & VM_FAULT_WRITE)
deceb6cd 1198 foll_flags &= ~FOLL_WRITE;
83c54070 1199
7f7bbbe5 1200 cond_resched();
1da177e4 1201 }
89f5b7da
LT
1202 if (IS_ERR(page))
1203 return i ? i : PTR_ERR(page);
1da177e4 1204 if (pages) {
08ef4729 1205 pages[i] = page;
03beb076 1206
a6f36be3 1207 flush_anon_page(vma, page, start);
08ef4729 1208 flush_dcache_page(page);
1da177e4
LT
1209 }
1210 if (vmas)
1211 vmas[i] = vma;
1212 i++;
1213 start += PAGE_SIZE;
1214 len--;
08ef4729 1215 } while (len && start < vma->vm_end);
08ef4729 1216 } while (len);
1da177e4
LT
1217 return i;
1218}
1da177e4
LT
1219EXPORT_SYMBOL(get_user_pages);
1220
920c7a5d
HH
1221pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1222 spinlock_t **ptl)
c9cfcddf
LT
1223{
1224 pgd_t * pgd = pgd_offset(mm, addr);
1225 pud_t * pud = pud_alloc(mm, pgd, addr);
1226 if (pud) {
49c91fb0 1227 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1228 if (pmd)
1229 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1230 }
1231 return NULL;
1232}
1233
238f58d8
LT
1234/*
1235 * This is the old fallback for page remapping.
1236 *
1237 * For historical reasons, it only allows reserved pages. Only
1238 * old drivers should use this, and they needed to mark their
1239 * pages reserved for the old functions anyway.
1240 */
423bad60
NP
1241static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1242 struct page *page, pgprot_t prot)
238f58d8 1243{
423bad60 1244 struct mm_struct *mm = vma->vm_mm;
238f58d8 1245 int retval;
c9cfcddf 1246 pte_t *pte;
8a9f3ccd
BS
1247 spinlock_t *ptl;
1248
e1a1cd59 1249 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
8a9f3ccd
BS
1250 if (retval)
1251 goto out;
238f58d8
LT
1252
1253 retval = -EINVAL;
a145dd41 1254 if (PageAnon(page))
8a9f3ccd 1255 goto out_uncharge;
238f58d8
LT
1256 retval = -ENOMEM;
1257 flush_dcache_page(page);
c9cfcddf 1258 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1259 if (!pte)
8a9f3ccd 1260 goto out_uncharge;
238f58d8
LT
1261 retval = -EBUSY;
1262 if (!pte_none(*pte))
1263 goto out_unlock;
1264
1265 /* Ok, finally just insert the thing.. */
1266 get_page(page);
1267 inc_mm_counter(mm, file_rss);
1268 page_add_file_rmap(page);
1269 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1270
1271 retval = 0;
8a9f3ccd
BS
1272 pte_unmap_unlock(pte, ptl);
1273 return retval;
238f58d8
LT
1274out_unlock:
1275 pte_unmap_unlock(pte, ptl);
8a9f3ccd
BS
1276out_uncharge:
1277 mem_cgroup_uncharge_page(page);
238f58d8
LT
1278out:
1279 return retval;
1280}
1281
bfa5bf6d
REB
1282/**
1283 * vm_insert_page - insert single page into user vma
1284 * @vma: user vma to map to
1285 * @addr: target user address of this page
1286 * @page: source kernel page
1287 *
a145dd41
LT
1288 * This allows drivers to insert individual pages they've allocated
1289 * into a user vma.
1290 *
1291 * The page has to be a nice clean _individual_ kernel allocation.
1292 * If you allocate a compound page, you need to have marked it as
1293 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1294 * (see split_page()).
a145dd41
LT
1295 *
1296 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1297 * took an arbitrary page protection parameter. This doesn't allow
1298 * that. Your vma protection will have to be set up correctly, which
1299 * means that if you want a shared writable mapping, you'd better
1300 * ask for a shared writable mapping!
1301 *
1302 * The page does not need to be reserved.
1303 */
423bad60
NP
1304int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1305 struct page *page)
a145dd41
LT
1306{
1307 if (addr < vma->vm_start || addr >= vma->vm_end)
1308 return -EFAULT;
1309 if (!page_count(page))
1310 return -EINVAL;
4d7672b4 1311 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1312 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1313}
e3c3374f 1314EXPORT_SYMBOL(vm_insert_page);
a145dd41 1315
423bad60
NP
1316static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1317 unsigned long pfn, pgprot_t prot)
1318{
1319 struct mm_struct *mm = vma->vm_mm;
1320 int retval;
1321 pte_t *pte, entry;
1322 spinlock_t *ptl;
1323
1324 retval = -ENOMEM;
1325 pte = get_locked_pte(mm, addr, &ptl);
1326 if (!pte)
1327 goto out;
1328 retval = -EBUSY;
1329 if (!pte_none(*pte))
1330 goto out_unlock;
1331
1332 /* Ok, finally just insert the thing.. */
1333 entry = pte_mkspecial(pfn_pte(pfn, prot));
1334 set_pte_at(mm, addr, pte, entry);
1335 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1336
1337 retval = 0;
1338out_unlock:
1339 pte_unmap_unlock(pte, ptl);
1340out:
1341 return retval;
1342}
1343
e0dc0d8f
NP
1344/**
1345 * vm_insert_pfn - insert single pfn into user vma
1346 * @vma: user vma to map to
1347 * @addr: target user address of this page
1348 * @pfn: source kernel pfn
1349 *
1350 * Similar to vm_inert_page, this allows drivers to insert individual pages
1351 * they've allocated into a user vma. Same comments apply.
1352 *
1353 * This function should only be called from a vm_ops->fault handler, and
1354 * in that case the handler should return NULL.
0d71d10a
NP
1355 *
1356 * vma cannot be a COW mapping.
1357 *
1358 * As this is called only for pages that do not currently exist, we
1359 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1360 */
1361int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1362 unsigned long pfn)
e0dc0d8f 1363{
7e675137
NP
1364 /*
1365 * Technically, architectures with pte_special can avoid all these
1366 * restrictions (same for remap_pfn_range). However we would like
1367 * consistency in testing and feature parity among all, so we should
1368 * try to keep these invariants in place for everybody.
1369 */
b379d790
JH
1370 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1371 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1372 (VM_PFNMAP|VM_MIXEDMAP));
1373 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1374 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1375
423bad60
NP
1376 if (addr < vma->vm_start || addr >= vma->vm_end)
1377 return -EFAULT;
1378 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1379}
1380EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1381
423bad60
NP
1382int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1383 unsigned long pfn)
1384{
1385 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1386
423bad60
NP
1387 if (addr < vma->vm_start || addr >= vma->vm_end)
1388 return -EFAULT;
e0dc0d8f 1389
423bad60
NP
1390 /*
1391 * If we don't have pte special, then we have to use the pfn_valid()
1392 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1393 * refcount the page if pfn_valid is true (hence insert_page rather
1394 * than insert_pfn).
1395 */
1396 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1397 struct page *page;
1398
1399 page = pfn_to_page(pfn);
1400 return insert_page(vma, addr, page, vma->vm_page_prot);
1401 }
1402 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1403}
423bad60 1404EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1405
1da177e4
LT
1406/*
1407 * maps a range of physical memory into the requested pages. the old
1408 * mappings are removed. any references to nonexistent pages results
1409 * in null mappings (currently treated as "copy-on-access")
1410 */
1411static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1412 unsigned long addr, unsigned long end,
1413 unsigned long pfn, pgprot_t prot)
1414{
1415 pte_t *pte;
c74df32c 1416 spinlock_t *ptl;
1da177e4 1417
c74df32c 1418 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1419 if (!pte)
1420 return -ENOMEM;
6606c3e0 1421 arch_enter_lazy_mmu_mode();
1da177e4
LT
1422 do {
1423 BUG_ON(!pte_none(*pte));
7e675137 1424 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1425 pfn++;
1426 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1427 arch_leave_lazy_mmu_mode();
c74df32c 1428 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1429 return 0;
1430}
1431
1432static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1433 unsigned long addr, unsigned long end,
1434 unsigned long pfn, pgprot_t prot)
1435{
1436 pmd_t *pmd;
1437 unsigned long next;
1438
1439 pfn -= addr >> PAGE_SHIFT;
1440 pmd = pmd_alloc(mm, pud, addr);
1441 if (!pmd)
1442 return -ENOMEM;
1443 do {
1444 next = pmd_addr_end(addr, end);
1445 if (remap_pte_range(mm, pmd, addr, next,
1446 pfn + (addr >> PAGE_SHIFT), prot))
1447 return -ENOMEM;
1448 } while (pmd++, addr = next, addr != end);
1449 return 0;
1450}
1451
1452static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1453 unsigned long addr, unsigned long end,
1454 unsigned long pfn, pgprot_t prot)
1455{
1456 pud_t *pud;
1457 unsigned long next;
1458
1459 pfn -= addr >> PAGE_SHIFT;
1460 pud = pud_alloc(mm, pgd, addr);
1461 if (!pud)
1462 return -ENOMEM;
1463 do {
1464 next = pud_addr_end(addr, end);
1465 if (remap_pmd_range(mm, pud, addr, next,
1466 pfn + (addr >> PAGE_SHIFT), prot))
1467 return -ENOMEM;
1468 } while (pud++, addr = next, addr != end);
1469 return 0;
1470}
1471
bfa5bf6d
REB
1472/**
1473 * remap_pfn_range - remap kernel memory to userspace
1474 * @vma: user vma to map to
1475 * @addr: target user address to start at
1476 * @pfn: physical address of kernel memory
1477 * @size: size of map area
1478 * @prot: page protection flags for this mapping
1479 *
1480 * Note: this is only safe if the mm semaphore is held when called.
1481 */
1da177e4
LT
1482int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1483 unsigned long pfn, unsigned long size, pgprot_t prot)
1484{
1485 pgd_t *pgd;
1486 unsigned long next;
2d15cab8 1487 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1488 struct mm_struct *mm = vma->vm_mm;
1489 int err;
1490
1491 /*
1492 * Physically remapped pages are special. Tell the
1493 * rest of the world about it:
1494 * VM_IO tells people not to look at these pages
1495 * (accesses can have side effects).
0b14c179
HD
1496 * VM_RESERVED is specified all over the place, because
1497 * in 2.4 it kept swapout's vma scan off this vma; but
1498 * in 2.6 the LRU scan won't even find its pages, so this
1499 * flag means no more than count its pages in reserved_vm,
1500 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1501 * VM_PFNMAP tells the core MM that the base pages are just
1502 * raw PFN mappings, and do not have a "struct page" associated
1503 * with them.
fb155c16
LT
1504 *
1505 * There's a horrible special case to handle copy-on-write
1506 * behaviour that some programs depend on. We mark the "original"
1507 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1508 */
67121172 1509 if (is_cow_mapping(vma->vm_flags)) {
fb155c16 1510 if (addr != vma->vm_start || end != vma->vm_end)
7fc7e2ee 1511 return -EINVAL;
fb155c16
LT
1512 vma->vm_pgoff = pfn;
1513 }
1514
6aab341e 1515 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4
LT
1516
1517 BUG_ON(addr >= end);
1518 pfn -= addr >> PAGE_SHIFT;
1519 pgd = pgd_offset(mm, addr);
1520 flush_cache_range(vma, addr, end);
1da177e4
LT
1521 do {
1522 next = pgd_addr_end(addr, end);
1523 err = remap_pud_range(mm, pgd, addr, next,
1524 pfn + (addr >> PAGE_SHIFT), prot);
1525 if (err)
1526 break;
1527 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1528 return err;
1529}
1530EXPORT_SYMBOL(remap_pfn_range);
1531
aee16b3c
JF
1532static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1533 unsigned long addr, unsigned long end,
1534 pte_fn_t fn, void *data)
1535{
1536 pte_t *pte;
1537 int err;
2f569afd 1538 pgtable_t token;
94909914 1539 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1540
1541 pte = (mm == &init_mm) ?
1542 pte_alloc_kernel(pmd, addr) :
1543 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1544 if (!pte)
1545 return -ENOMEM;
1546
1547 BUG_ON(pmd_huge(*pmd));
1548
2f569afd 1549 token = pmd_pgtable(*pmd);
aee16b3c
JF
1550
1551 do {
2f569afd 1552 err = fn(pte, token, addr, data);
aee16b3c
JF
1553 if (err)
1554 break;
1555 } while (pte++, addr += PAGE_SIZE, addr != end);
1556
1557 if (mm != &init_mm)
1558 pte_unmap_unlock(pte-1, ptl);
1559 return err;
1560}
1561
1562static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1563 unsigned long addr, unsigned long end,
1564 pte_fn_t fn, void *data)
1565{
1566 pmd_t *pmd;
1567 unsigned long next;
1568 int err;
1569
1570 pmd = pmd_alloc(mm, pud, addr);
1571 if (!pmd)
1572 return -ENOMEM;
1573 do {
1574 next = pmd_addr_end(addr, end);
1575 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1576 if (err)
1577 break;
1578 } while (pmd++, addr = next, addr != end);
1579 return err;
1580}
1581
1582static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1583 unsigned long addr, unsigned long end,
1584 pte_fn_t fn, void *data)
1585{
1586 pud_t *pud;
1587 unsigned long next;
1588 int err;
1589
1590 pud = pud_alloc(mm, pgd, addr);
1591 if (!pud)
1592 return -ENOMEM;
1593 do {
1594 next = pud_addr_end(addr, end);
1595 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1596 if (err)
1597 break;
1598 } while (pud++, addr = next, addr != end);
1599 return err;
1600}
1601
1602/*
1603 * Scan a region of virtual memory, filling in page tables as necessary
1604 * and calling a provided function on each leaf page table.
1605 */
1606int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1607 unsigned long size, pte_fn_t fn, void *data)
1608{
1609 pgd_t *pgd;
1610 unsigned long next;
1611 unsigned long end = addr + size;
1612 int err;
1613
1614 BUG_ON(addr >= end);
1615 pgd = pgd_offset(mm, addr);
1616 do {
1617 next = pgd_addr_end(addr, end);
1618 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1619 if (err)
1620 break;
1621 } while (pgd++, addr = next, addr != end);
1622 return err;
1623}
1624EXPORT_SYMBOL_GPL(apply_to_page_range);
1625
8f4e2101
HD
1626/*
1627 * handle_pte_fault chooses page fault handler according to an entry
1628 * which was read non-atomically. Before making any commitment, on
1629 * those architectures or configurations (e.g. i386 with PAE) which
1630 * might give a mix of unmatched parts, do_swap_page and do_file_page
1631 * must check under lock before unmapping the pte and proceeding
1632 * (but do_wp_page is only called after already making such a check;
1633 * and do_anonymous_page and do_no_page can safely check later on).
1634 */
4c21e2f2 1635static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1636 pte_t *page_table, pte_t orig_pte)
1637{
1638 int same = 1;
1639#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1640 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1641 spinlock_t *ptl = pte_lockptr(mm, pmd);
1642 spin_lock(ptl);
8f4e2101 1643 same = pte_same(*page_table, orig_pte);
4c21e2f2 1644 spin_unlock(ptl);
8f4e2101
HD
1645 }
1646#endif
1647 pte_unmap(page_table);
1648 return same;
1649}
1650
1da177e4
LT
1651/*
1652 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1653 * servicing faults for write access. In the normal case, do always want
1654 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1655 * that do not have writing enabled, when used by access_process_vm.
1656 */
1657static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1658{
1659 if (likely(vma->vm_flags & VM_WRITE))
1660 pte = pte_mkwrite(pte);
1661 return pte;
1662}
1663
9de455b2 1664static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1665{
1666 /*
1667 * If the source page was a PFN mapping, we don't have
1668 * a "struct page" for it. We do a best-effort copy by
1669 * just copying from the original user address. If that
1670 * fails, we just zero-fill it. Live with it.
1671 */
1672 if (unlikely(!src)) {
1673 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1674 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1675
1676 /*
1677 * This really shouldn't fail, because the page is there
1678 * in the page tables. But it might just be unreadable,
1679 * in which case we just give up and fill the result with
1680 * zeroes.
1681 */
1682 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1683 memset(kaddr, 0, PAGE_SIZE);
1684 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1685 flush_dcache_page(dst);
0ed361de
NP
1686 } else
1687 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1688}
1689
1da177e4
LT
1690/*
1691 * This routine handles present pages, when users try to write
1692 * to a shared page. It is done by copying the page to a new address
1693 * and decrementing the shared-page counter for the old page.
1694 *
1da177e4
LT
1695 * Note that this routine assumes that the protection checks have been
1696 * done by the caller (the low-level page fault routine in most cases).
1697 * Thus we can safely just mark it writable once we've done any necessary
1698 * COW.
1699 *
1700 * We also mark the page dirty at this point even though the page will
1701 * change only once the write actually happens. This avoids a few races,
1702 * and potentially makes it more efficient.
1703 *
8f4e2101
HD
1704 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1705 * but allow concurrent faults), with pte both mapped and locked.
1706 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1707 */
65500d23
HD
1708static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1709 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1710 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1711{
e5bbe4df 1712 struct page *old_page, *new_page;
1da177e4 1713 pte_t entry;
83c54070 1714 int reuse = 0, ret = 0;
a200ee18 1715 int page_mkwrite = 0;
d08b3851 1716 struct page *dirty_page = NULL;
1da177e4 1717
6aab341e 1718 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1719 if (!old_page) {
1720 /*
1721 * VM_MIXEDMAP !pfn_valid() case
1722 *
1723 * We should not cow pages in a shared writeable mapping.
1724 * Just mark the pages writable as we can't do any dirty
1725 * accounting on raw pfn maps.
1726 */
1727 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1728 (VM_WRITE|VM_SHARED))
1729 goto reuse;
6aab341e 1730 goto gotten;
251b97f5 1731 }
1da177e4 1732
d08b3851 1733 /*
ee6a6457
PZ
1734 * Take out anonymous pages first, anonymous shared vmas are
1735 * not dirty accountable.
d08b3851 1736 */
ee6a6457
PZ
1737 if (PageAnon(old_page)) {
1738 if (!TestSetPageLocked(old_page)) {
1739 reuse = can_share_swap_page(old_page);
1740 unlock_page(old_page);
1741 }
1742 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1743 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1744 /*
1745 * Only catch write-faults on shared writable pages,
1746 * read-only shared pages can get COWed by
1747 * get_user_pages(.write=1, .force=1).
1748 */
9637a5ef
DH
1749 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1750 /*
1751 * Notify the address space that the page is about to
1752 * become writable so that it can prohibit this or wait
1753 * for the page to get into an appropriate state.
1754 *
1755 * We do this without the lock held, so that it can
1756 * sleep if it needs to.
1757 */
1758 page_cache_get(old_page);
1759 pte_unmap_unlock(page_table, ptl);
1760
1761 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1762 goto unwritable_page;
1763
9637a5ef
DH
1764 /*
1765 * Since we dropped the lock we need to revalidate
1766 * the PTE as someone else may have changed it. If
1767 * they did, we just return, as we can count on the
1768 * MMU to tell us if they didn't also make it writable.
1769 */
1770 page_table = pte_offset_map_lock(mm, pmd, address,
1771 &ptl);
c3704ceb 1772 page_cache_release(old_page);
9637a5ef
DH
1773 if (!pte_same(*page_table, orig_pte))
1774 goto unlock;
a200ee18
PZ
1775
1776 page_mkwrite = 1;
1da177e4 1777 }
d08b3851
PZ
1778 dirty_page = old_page;
1779 get_page(dirty_page);
9637a5ef 1780 reuse = 1;
9637a5ef
DH
1781 }
1782
1783 if (reuse) {
251b97f5 1784reuse:
9637a5ef
DH
1785 flush_cache_page(vma, address, pte_pfn(orig_pte));
1786 entry = pte_mkyoung(orig_pte);
1787 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1788 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1789 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1790 ret |= VM_FAULT_WRITE;
1791 goto unlock;
1da177e4 1792 }
1da177e4
LT
1793
1794 /*
1795 * Ok, we need to copy. Oh, well..
1796 */
b5810039 1797 page_cache_get(old_page);
920fc356 1798gotten:
8f4e2101 1799 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1800
1801 if (unlikely(anon_vma_prepare(vma)))
65500d23 1802 goto oom;
557ed1fa
NP
1803 VM_BUG_ON(old_page == ZERO_PAGE(0));
1804 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1805 if (!new_page)
1806 goto oom;
1807 cow_user_page(new_page, old_page, address, vma);
0ed361de 1808 __SetPageUptodate(new_page);
65500d23 1809
e1a1cd59 1810 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
1811 goto oom_free_new;
1812
1da177e4
LT
1813 /*
1814 * Re-check the pte - we dropped the lock
1815 */
8f4e2101 1816 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1817 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 1818 if (old_page) {
920fc356
HD
1819 if (!PageAnon(old_page)) {
1820 dec_mm_counter(mm, file_rss);
1821 inc_mm_counter(mm, anon_rss);
1822 }
1823 } else
4294621f 1824 inc_mm_counter(mm, anon_rss);
eca35133 1825 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1826 entry = mk_pte(new_page, vma->vm_page_prot);
1827 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
1828 /*
1829 * Clear the pte entry and flush it first, before updating the
1830 * pte with the new entry. This will avoid a race condition
1831 * seen in the presence of one thread doing SMC and another
1832 * thread doing COW.
1833 */
1834 ptep_clear_flush(vma, address, page_table);
1835 set_pte_at(mm, address, page_table, entry);
65500d23 1836 update_mmu_cache(vma, address, entry);
1da177e4 1837 lru_cache_add_active(new_page);
9617d95e 1838 page_add_new_anon_rmap(new_page, vma, address);
1da177e4 1839
945754a1
NP
1840 if (old_page) {
1841 /*
1842 * Only after switching the pte to the new page may
1843 * we remove the mapcount here. Otherwise another
1844 * process may come and find the rmap count decremented
1845 * before the pte is switched to the new page, and
1846 * "reuse" the old page writing into it while our pte
1847 * here still points into it and can be read by other
1848 * threads.
1849 *
1850 * The critical issue is to order this
1851 * page_remove_rmap with the ptp_clear_flush above.
1852 * Those stores are ordered by (if nothing else,)
1853 * the barrier present in the atomic_add_negative
1854 * in page_remove_rmap.
1855 *
1856 * Then the TLB flush in ptep_clear_flush ensures that
1857 * no process can access the old page before the
1858 * decremented mapcount is visible. And the old page
1859 * cannot be reused until after the decremented
1860 * mapcount is visible. So transitively, TLBs to
1861 * old page will be flushed before it can be reused.
1862 */
1863 page_remove_rmap(old_page, vma);
1864 }
1865
1da177e4
LT
1866 /* Free the old page.. */
1867 new_page = old_page;
f33ea7f4 1868 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
1869 } else
1870 mem_cgroup_uncharge_page(new_page);
1871
920fc356
HD
1872 if (new_page)
1873 page_cache_release(new_page);
1874 if (old_page)
1875 page_cache_release(old_page);
65500d23 1876unlock:
8f4e2101 1877 pte_unmap_unlock(page_table, ptl);
d08b3851 1878 if (dirty_page) {
8f7b3d15
AS
1879 if (vma->vm_file)
1880 file_update_time(vma->vm_file);
1881
79352894
NP
1882 /*
1883 * Yes, Virginia, this is actually required to prevent a race
1884 * with clear_page_dirty_for_io() from clearing the page dirty
1885 * bit after it clear all dirty ptes, but before a racing
1886 * do_wp_page installs a dirty pte.
1887 *
1888 * do_no_page is protected similarly.
1889 */
1890 wait_on_page_locked(dirty_page);
a200ee18 1891 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
1892 put_page(dirty_page);
1893 }
f33ea7f4 1894 return ret;
8a9f3ccd 1895oom_free_new:
6dbf6d3b 1896 page_cache_release(new_page);
65500d23 1897oom:
920fc356
HD
1898 if (old_page)
1899 page_cache_release(old_page);
1da177e4 1900 return VM_FAULT_OOM;
9637a5ef
DH
1901
1902unwritable_page:
1903 page_cache_release(old_page);
1904 return VM_FAULT_SIGBUS;
1da177e4
LT
1905}
1906
1907/*
1908 * Helper functions for unmap_mapping_range().
1909 *
1910 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1911 *
1912 * We have to restart searching the prio_tree whenever we drop the lock,
1913 * since the iterator is only valid while the lock is held, and anyway
1914 * a later vma might be split and reinserted earlier while lock dropped.
1915 *
1916 * The list of nonlinear vmas could be handled more efficiently, using
1917 * a placeholder, but handle it in the same way until a need is shown.
1918 * It is important to search the prio_tree before nonlinear list: a vma
1919 * may become nonlinear and be shifted from prio_tree to nonlinear list
1920 * while the lock is dropped; but never shifted from list to prio_tree.
1921 *
1922 * In order to make forward progress despite restarting the search,
1923 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1924 * quickly skip it next time around. Since the prio_tree search only
1925 * shows us those vmas affected by unmapping the range in question, we
1926 * can't efficiently keep all vmas in step with mapping->truncate_count:
1927 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1928 * mapping->truncate_count and vma->vm_truncate_count are protected by
1929 * i_mmap_lock.
1930 *
1931 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1932 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1933 * and restart from that address when we reach that vma again. It might
1934 * have been split or merged, shrunk or extended, but never shifted: so
1935 * restart_addr remains valid so long as it remains in the vma's range.
1936 * unmap_mapping_range forces truncate_count to leap over page-aligned
1937 * values so we can save vma's restart_addr in its truncate_count field.
1938 */
1939#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1940
1941static void reset_vma_truncate_counts(struct address_space *mapping)
1942{
1943 struct vm_area_struct *vma;
1944 struct prio_tree_iter iter;
1945
1946 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1947 vma->vm_truncate_count = 0;
1948 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1949 vma->vm_truncate_count = 0;
1950}
1951
1952static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1953 unsigned long start_addr, unsigned long end_addr,
1954 struct zap_details *details)
1955{
1956 unsigned long restart_addr;
1957 int need_break;
1958
d00806b1
NP
1959 /*
1960 * files that support invalidating or truncating portions of the
d0217ac0 1961 * file from under mmaped areas must have their ->fault function
83c54070
NP
1962 * return a locked page (and set VM_FAULT_LOCKED in the return).
1963 * This provides synchronisation against concurrent unmapping here.
d00806b1 1964 */
d00806b1 1965
1da177e4
LT
1966again:
1967 restart_addr = vma->vm_truncate_count;
1968 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1969 start_addr = restart_addr;
1970 if (start_addr >= end_addr) {
1971 /* Top of vma has been split off since last time */
1972 vma->vm_truncate_count = details->truncate_count;
1973 return 0;
1974 }
1975 }
1976
ee39b37b
HD
1977 restart_addr = zap_page_range(vma, start_addr,
1978 end_addr - start_addr, details);
95c354fe 1979 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 1980
ee39b37b 1981 if (restart_addr >= end_addr) {
1da177e4
LT
1982 /* We have now completed this vma: mark it so */
1983 vma->vm_truncate_count = details->truncate_count;
1984 if (!need_break)
1985 return 0;
1986 } else {
1987 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1988 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1989 if (!need_break)
1990 goto again;
1991 }
1992
1993 spin_unlock(details->i_mmap_lock);
1994 cond_resched();
1995 spin_lock(details->i_mmap_lock);
1996 return -EINTR;
1997}
1998
1999static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2000 struct zap_details *details)
2001{
2002 struct vm_area_struct *vma;
2003 struct prio_tree_iter iter;
2004 pgoff_t vba, vea, zba, zea;
2005
2006restart:
2007 vma_prio_tree_foreach(vma, &iter, root,
2008 details->first_index, details->last_index) {
2009 /* Skip quickly over those we have already dealt with */
2010 if (vma->vm_truncate_count == details->truncate_count)
2011 continue;
2012
2013 vba = vma->vm_pgoff;
2014 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2015 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2016 zba = details->first_index;
2017 if (zba < vba)
2018 zba = vba;
2019 zea = details->last_index;
2020 if (zea > vea)
2021 zea = vea;
2022
2023 if (unmap_mapping_range_vma(vma,
2024 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2025 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2026 details) < 0)
2027 goto restart;
2028 }
2029}
2030
2031static inline void unmap_mapping_range_list(struct list_head *head,
2032 struct zap_details *details)
2033{
2034 struct vm_area_struct *vma;
2035
2036 /*
2037 * In nonlinear VMAs there is no correspondence between virtual address
2038 * offset and file offset. So we must perform an exhaustive search
2039 * across *all* the pages in each nonlinear VMA, not just the pages
2040 * whose virtual address lies outside the file truncation point.
2041 */
2042restart:
2043 list_for_each_entry(vma, head, shared.vm_set.list) {
2044 /* Skip quickly over those we have already dealt with */
2045 if (vma->vm_truncate_count == details->truncate_count)
2046 continue;
2047 details->nonlinear_vma = vma;
2048 if (unmap_mapping_range_vma(vma, vma->vm_start,
2049 vma->vm_end, details) < 0)
2050 goto restart;
2051 }
2052}
2053
2054/**
72fd4a35 2055 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2056 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2057 * @holebegin: byte in first page to unmap, relative to the start of
2058 * the underlying file. This will be rounded down to a PAGE_SIZE
2059 * boundary. Note that this is different from vmtruncate(), which
2060 * must keep the partial page. In contrast, we must get rid of
2061 * partial pages.
2062 * @holelen: size of prospective hole in bytes. This will be rounded
2063 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2064 * end of the file.
2065 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2066 * but 0 when invalidating pagecache, don't throw away private data.
2067 */
2068void unmap_mapping_range(struct address_space *mapping,
2069 loff_t const holebegin, loff_t const holelen, int even_cows)
2070{
2071 struct zap_details details;
2072 pgoff_t hba = holebegin >> PAGE_SHIFT;
2073 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2074
2075 /* Check for overflow. */
2076 if (sizeof(holelen) > sizeof(hlen)) {
2077 long long holeend =
2078 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2079 if (holeend & ~(long long)ULONG_MAX)
2080 hlen = ULONG_MAX - hba + 1;
2081 }
2082
2083 details.check_mapping = even_cows? NULL: mapping;
2084 details.nonlinear_vma = NULL;
2085 details.first_index = hba;
2086 details.last_index = hba + hlen - 1;
2087 if (details.last_index < details.first_index)
2088 details.last_index = ULONG_MAX;
2089 details.i_mmap_lock = &mapping->i_mmap_lock;
2090
2091 spin_lock(&mapping->i_mmap_lock);
2092
d00806b1 2093 /* Protect against endless unmapping loops */
1da177e4 2094 mapping->truncate_count++;
1da177e4
LT
2095 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2096 if (mapping->truncate_count == 0)
2097 reset_vma_truncate_counts(mapping);
2098 mapping->truncate_count++;
2099 }
2100 details.truncate_count = mapping->truncate_count;
2101
2102 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2103 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2104 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2105 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2106 spin_unlock(&mapping->i_mmap_lock);
2107}
2108EXPORT_SYMBOL(unmap_mapping_range);
2109
bfa5bf6d
REB
2110/**
2111 * vmtruncate - unmap mappings "freed" by truncate() syscall
2112 * @inode: inode of the file used
2113 * @offset: file offset to start truncating
1da177e4
LT
2114 *
2115 * NOTE! We have to be ready to update the memory sharing
2116 * between the file and the memory map for a potential last
2117 * incomplete page. Ugly, but necessary.
2118 */
2119int vmtruncate(struct inode * inode, loff_t offset)
2120{
61d5048f
CH
2121 if (inode->i_size < offset) {
2122 unsigned long limit;
2123
2124 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2125 if (limit != RLIM_INFINITY && offset > limit)
2126 goto out_sig;
2127 if (offset > inode->i_sb->s_maxbytes)
2128 goto out_big;
2129 i_size_write(inode, offset);
2130 } else {
2131 struct address_space *mapping = inode->i_mapping;
1da177e4 2132
61d5048f
CH
2133 /*
2134 * truncation of in-use swapfiles is disallowed - it would
2135 * cause subsequent swapout to scribble on the now-freed
2136 * blocks.
2137 */
2138 if (IS_SWAPFILE(inode))
2139 return -ETXTBSY;
2140 i_size_write(inode, offset);
2141
2142 /*
2143 * unmap_mapping_range is called twice, first simply for
2144 * efficiency so that truncate_inode_pages does fewer
2145 * single-page unmaps. However after this first call, and
2146 * before truncate_inode_pages finishes, it is possible for
2147 * private pages to be COWed, which remain after
2148 * truncate_inode_pages finishes, hence the second
2149 * unmap_mapping_range call must be made for correctness.
2150 */
2151 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2152 truncate_inode_pages(mapping, offset);
2153 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2154 }
d00806b1 2155
1da177e4
LT
2156 if (inode->i_op && inode->i_op->truncate)
2157 inode->i_op->truncate(inode);
2158 return 0;
61d5048f 2159
1da177e4
LT
2160out_sig:
2161 send_sig(SIGXFSZ, current, 0);
2162out_big:
2163 return -EFBIG;
1da177e4 2164}
1da177e4
LT
2165EXPORT_SYMBOL(vmtruncate);
2166
f6b3ec23
BP
2167int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2168{
2169 struct address_space *mapping = inode->i_mapping;
2170
2171 /*
2172 * If the underlying filesystem is not going to provide
2173 * a way to truncate a range of blocks (punch a hole) -
2174 * we should return failure right now.
2175 */
2176 if (!inode->i_op || !inode->i_op->truncate_range)
2177 return -ENOSYS;
2178
1b1dcc1b 2179 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2180 down_write(&inode->i_alloc_sem);
2181 unmap_mapping_range(mapping, offset, (end - offset), 1);
2182 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2183 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2184 inode->i_op->truncate_range(inode, offset, end);
2185 up_write(&inode->i_alloc_sem);
1b1dcc1b 2186 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2187
2188 return 0;
2189}
f6b3ec23 2190
1da177e4 2191/*
8f4e2101
HD
2192 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2193 * but allow concurrent faults), and pte mapped but not yet locked.
2194 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2195 */
65500d23
HD
2196static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2197 unsigned long address, pte_t *page_table, pmd_t *pmd,
2198 int write_access, pte_t orig_pte)
1da177e4 2199{
8f4e2101 2200 spinlock_t *ptl;
1da177e4 2201 struct page *page;
65500d23 2202 swp_entry_t entry;
1da177e4 2203 pte_t pte;
83c54070 2204 int ret = 0;
1da177e4 2205
4c21e2f2 2206 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2207 goto out;
65500d23
HD
2208
2209 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2210 if (is_migration_entry(entry)) {
2211 migration_entry_wait(mm, pmd, address);
2212 goto out;
2213 }
0ff92245 2214 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2215 page = lookup_swap_cache(entry);
2216 if (!page) {
098fe651 2217 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2218 page = swapin_readahead(entry,
2219 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2220 if (!page) {
2221 /*
8f4e2101
HD
2222 * Back out if somebody else faulted in this pte
2223 * while we released the pte lock.
1da177e4 2224 */
8f4e2101 2225 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2226 if (likely(pte_same(*page_table, orig_pte)))
2227 ret = VM_FAULT_OOM;
0ff92245 2228 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2229 goto unlock;
1da177e4
LT
2230 }
2231
2232 /* Had to read the page from swap area: Major fault */
2233 ret = VM_FAULT_MAJOR;
f8891e5e 2234 count_vm_event(PGMAJFAULT);
1da177e4
LT
2235 }
2236
e1a1cd59 2237 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd
BS
2238 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2239 ret = VM_FAULT_OOM;
2240 goto out;
2241 }
2242
1da177e4
LT
2243 mark_page_accessed(page);
2244 lock_page(page);
20a1022d 2245 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2246
2247 /*
8f4e2101 2248 * Back out if somebody else already faulted in this pte.
1da177e4 2249 */
8f4e2101 2250 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2251 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2252 goto out_nomap;
b8107480
KK
2253
2254 if (unlikely(!PageUptodate(page))) {
2255 ret = VM_FAULT_SIGBUS;
2256 goto out_nomap;
1da177e4
LT
2257 }
2258
2259 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2260
4294621f 2261 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2262 pte = mk_pte(page, vma->vm_page_prot);
2263 if (write_access && can_share_swap_page(page)) {
2264 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2265 write_access = 0;
2266 }
1da177e4
LT
2267
2268 flush_icache_page(vma, page);
2269 set_pte_at(mm, address, page_table, pte);
2270 page_add_anon_rmap(page, vma, address);
2271
c475a8ab
HD
2272 swap_free(entry);
2273 if (vm_swap_full())
2274 remove_exclusive_swap_page(page);
2275 unlock_page(page);
2276
1da177e4 2277 if (write_access) {
61469f1d
HD
2278 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2279 if (ret & VM_FAULT_ERROR)
2280 ret &= VM_FAULT_ERROR;
1da177e4
LT
2281 goto out;
2282 }
2283
2284 /* No need to invalidate - it was non-present before */
2285 update_mmu_cache(vma, address, pte);
65500d23 2286unlock:
8f4e2101 2287 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2288out:
2289 return ret;
b8107480 2290out_nomap:
8a9f3ccd 2291 mem_cgroup_uncharge_page(page);
8f4e2101 2292 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2293 unlock_page(page);
2294 page_cache_release(page);
65500d23 2295 return ret;
1da177e4
LT
2296}
2297
2298/*
8f4e2101
HD
2299 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2300 * but allow concurrent faults), and pte mapped but not yet locked.
2301 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2302 */
65500d23
HD
2303static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2304 unsigned long address, pte_t *page_table, pmd_t *pmd,
2305 int write_access)
1da177e4 2306{
8f4e2101
HD
2307 struct page *page;
2308 spinlock_t *ptl;
1da177e4 2309 pte_t entry;
1da177e4 2310
557ed1fa
NP
2311 /* Allocate our own private page. */
2312 pte_unmap(page_table);
8f4e2101 2313
557ed1fa
NP
2314 if (unlikely(anon_vma_prepare(vma)))
2315 goto oom;
2316 page = alloc_zeroed_user_highpage_movable(vma, address);
2317 if (!page)
2318 goto oom;
0ed361de 2319 __SetPageUptodate(page);
8f4e2101 2320
e1a1cd59 2321 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2322 goto oom_free_page;
2323
557ed1fa
NP
2324 entry = mk_pte(page, vma->vm_page_prot);
2325 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2326
557ed1fa
NP
2327 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2328 if (!pte_none(*page_table))
2329 goto release;
2330 inc_mm_counter(mm, anon_rss);
2331 lru_cache_add_active(page);
2332 page_add_new_anon_rmap(page, vma, address);
65500d23 2333 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2334
2335 /* No need to invalidate - it was non-present before */
65500d23 2336 update_mmu_cache(vma, address, entry);
65500d23 2337unlock:
8f4e2101 2338 pte_unmap_unlock(page_table, ptl);
83c54070 2339 return 0;
8f4e2101 2340release:
8a9f3ccd 2341 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2342 page_cache_release(page);
2343 goto unlock;
8a9f3ccd 2344oom_free_page:
6dbf6d3b 2345 page_cache_release(page);
65500d23 2346oom:
1da177e4
LT
2347 return VM_FAULT_OOM;
2348}
2349
2350/*
54cb8821 2351 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2352 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2353 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2354 * the next page fault.
1da177e4
LT
2355 *
2356 * As this is called only for pages that do not currently exist, we
2357 * do not need to flush old virtual caches or the TLB.
2358 *
8f4e2101 2359 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2360 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2361 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2362 */
54cb8821 2363static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2364 unsigned long address, pmd_t *pmd,
54cb8821 2365 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2366{
16abfa08 2367 pte_t *page_table;
8f4e2101 2368 spinlock_t *ptl;
d0217ac0 2369 struct page *page;
1da177e4 2370 pte_t entry;
1da177e4 2371 int anon = 0;
d08b3851 2372 struct page *dirty_page = NULL;
d0217ac0
NP
2373 struct vm_fault vmf;
2374 int ret;
a200ee18 2375 int page_mkwrite = 0;
54cb8821 2376
d0217ac0
NP
2377 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2378 vmf.pgoff = pgoff;
2379 vmf.flags = flags;
2380 vmf.page = NULL;
1da177e4 2381
3c18ddd1
NP
2382 ret = vma->vm_ops->fault(vma, &vmf);
2383 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2384 return ret;
1da177e4 2385
d00806b1 2386 /*
d0217ac0 2387 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2388 * locked.
2389 */
83c54070 2390 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2391 lock_page(vmf.page);
54cb8821 2392 else
d0217ac0 2393 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2394
1da177e4
LT
2395 /*
2396 * Should we do an early C-O-W break?
2397 */
d0217ac0 2398 page = vmf.page;
54cb8821 2399 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2400 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2401 anon = 1;
d00806b1 2402 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2403 ret = VM_FAULT_OOM;
54cb8821 2404 goto out;
d00806b1 2405 }
83c54070
NP
2406 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2407 vma, address);
d00806b1 2408 if (!page) {
d0217ac0 2409 ret = VM_FAULT_OOM;
54cb8821 2410 goto out;
d00806b1 2411 }
d0217ac0 2412 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2413 __SetPageUptodate(page);
9637a5ef 2414 } else {
54cb8821
NP
2415 /*
2416 * If the page will be shareable, see if the backing
9637a5ef 2417 * address space wants to know that the page is about
54cb8821
NP
2418 * to become writable
2419 */
69676147
MF
2420 if (vma->vm_ops->page_mkwrite) {
2421 unlock_page(page);
2422 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2423 ret = VM_FAULT_SIGBUS;
2424 anon = 1; /* no anon but release vmf.page */
69676147
MF
2425 goto out_unlocked;
2426 }
2427 lock_page(page);
d0217ac0
NP
2428 /*
2429 * XXX: this is not quite right (racy vs
2430 * invalidate) to unlock and relock the page
2431 * like this, however a better fix requires
2432 * reworking page_mkwrite locking API, which
2433 * is better done later.
2434 */
2435 if (!page->mapping) {
83c54070 2436 ret = 0;
d0217ac0
NP
2437 anon = 1; /* no anon but release vmf.page */
2438 goto out;
2439 }
a200ee18 2440 page_mkwrite = 1;
9637a5ef
DH
2441 }
2442 }
54cb8821 2443
1da177e4
LT
2444 }
2445
e1a1cd59 2446 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd
BS
2447 ret = VM_FAULT_OOM;
2448 goto out;
2449 }
2450
8f4e2101 2451 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2452
2453 /*
2454 * This silly early PAGE_DIRTY setting removes a race
2455 * due to the bad i386 page protection. But it's valid
2456 * for other architectures too.
2457 *
2458 * Note that if write_access is true, we either now have
2459 * an exclusive copy of the page, or this is a shared mapping,
2460 * so we can make it writable and dirty to avoid having to
2461 * handle that later.
2462 */
2463 /* Only go through if we didn't race with anybody else... */
54cb8821 2464 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2465 flush_icache_page(vma, page);
2466 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2467 if (flags & FAULT_FLAG_WRITE)
1da177e4
LT
2468 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2469 set_pte_at(mm, address, page_table, entry);
2470 if (anon) {
d00806b1
NP
2471 inc_mm_counter(mm, anon_rss);
2472 lru_cache_add_active(page);
2473 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2474 } else {
4294621f 2475 inc_mm_counter(mm, file_rss);
d00806b1 2476 page_add_file_rmap(page);
54cb8821 2477 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2478 dirty_page = page;
d08b3851
PZ
2479 get_page(dirty_page);
2480 }
4294621f 2481 }
d00806b1
NP
2482
2483 /* no need to invalidate: a not-present page won't be cached */
2484 update_mmu_cache(vma, address, entry);
1da177e4 2485 } else {
8a9f3ccd 2486 mem_cgroup_uncharge_page(page);
d00806b1
NP
2487 if (anon)
2488 page_cache_release(page);
2489 else
54cb8821 2490 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2491 }
2492
8f4e2101 2493 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2494
2495out:
d0217ac0 2496 unlock_page(vmf.page);
69676147 2497out_unlocked:
d00806b1 2498 if (anon)
d0217ac0 2499 page_cache_release(vmf.page);
d00806b1 2500 else if (dirty_page) {
8f7b3d15
AS
2501 if (vma->vm_file)
2502 file_update_time(vma->vm_file);
2503
a200ee18 2504 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2505 put_page(dirty_page);
2506 }
d00806b1 2507
83c54070 2508 return ret;
54cb8821 2509}
d00806b1 2510
54cb8821
NP
2511static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2512 unsigned long address, pte_t *page_table, pmd_t *pmd,
2513 int write_access, pte_t orig_pte)
2514{
2515 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2516 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2517 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2518
16abfa08
HD
2519 pte_unmap(page_table);
2520 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2521}
2522
1da177e4
LT
2523/*
2524 * Fault of a previously existing named mapping. Repopulate the pte
2525 * from the encoded file_pte if possible. This enables swappable
2526 * nonlinear vmas.
8f4e2101
HD
2527 *
2528 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2529 * but allow concurrent faults), and pte mapped but not yet locked.
2530 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2531 */
d0217ac0 2532static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2533 unsigned long address, pte_t *page_table, pmd_t *pmd,
2534 int write_access, pte_t orig_pte)
1da177e4 2535{
d0217ac0
NP
2536 unsigned int flags = FAULT_FLAG_NONLINEAR |
2537 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2538 pgoff_t pgoff;
1da177e4 2539
4c21e2f2 2540 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2541 return 0;
1da177e4 2542
d0217ac0
NP
2543 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2544 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
65500d23
HD
2545 /*
2546 * Page table corrupted: show pte and kill process.
2547 */
b5810039 2548 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2549 return VM_FAULT_OOM;
2550 }
65500d23
HD
2551
2552 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2553 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2554}
2555
2556/*
2557 * These routines also need to handle stuff like marking pages dirty
2558 * and/or accessed for architectures that don't do it in hardware (most
2559 * RISC architectures). The early dirtying is also good on the i386.
2560 *
2561 * There is also a hook called "update_mmu_cache()" that architectures
2562 * with external mmu caches can use to update those (ie the Sparc or
2563 * PowerPC hashed page tables that act as extended TLBs).
2564 *
c74df32c
HD
2565 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2566 * but allow concurrent faults), and pte mapped but not yet locked.
2567 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2568 */
2569static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2570 struct vm_area_struct *vma, unsigned long address,
2571 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2572{
2573 pte_t entry;
8f4e2101 2574 spinlock_t *ptl;
1da177e4 2575
8dab5241 2576 entry = *pte;
1da177e4 2577 if (!pte_present(entry)) {
65500d23 2578 if (pte_none(entry)) {
f4b81804 2579 if (vma->vm_ops) {
3c18ddd1 2580 if (likely(vma->vm_ops->fault))
54cb8821
NP
2581 return do_linear_fault(mm, vma, address,
2582 pte, pmd, write_access, entry);
f4b81804
JS
2583 }
2584 return do_anonymous_page(mm, vma, address,
2585 pte, pmd, write_access);
65500d23 2586 }
1da177e4 2587 if (pte_file(entry))
d0217ac0 2588 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2589 pte, pmd, write_access, entry);
2590 return do_swap_page(mm, vma, address,
2591 pte, pmd, write_access, entry);
1da177e4
LT
2592 }
2593
4c21e2f2 2594 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2595 spin_lock(ptl);
2596 if (unlikely(!pte_same(*pte, entry)))
2597 goto unlock;
1da177e4
LT
2598 if (write_access) {
2599 if (!pte_write(entry))
8f4e2101
HD
2600 return do_wp_page(mm, vma, address,
2601 pte, pmd, ptl, entry);
1da177e4
LT
2602 entry = pte_mkdirty(entry);
2603 }
2604 entry = pte_mkyoung(entry);
8dab5241 2605 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2606 update_mmu_cache(vma, address, entry);
1a44e149
AA
2607 } else {
2608 /*
2609 * This is needed only for protection faults but the arch code
2610 * is not yet telling us if this is a protection fault or not.
2611 * This still avoids useless tlb flushes for .text page faults
2612 * with threads.
2613 */
2614 if (write_access)
2615 flush_tlb_page(vma, address);
2616 }
8f4e2101
HD
2617unlock:
2618 pte_unmap_unlock(pte, ptl);
83c54070 2619 return 0;
1da177e4
LT
2620}
2621
2622/*
2623 * By the time we get here, we already hold the mm semaphore
2624 */
83c54070 2625int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2626 unsigned long address, int write_access)
2627{
2628 pgd_t *pgd;
2629 pud_t *pud;
2630 pmd_t *pmd;
2631 pte_t *pte;
2632
2633 __set_current_state(TASK_RUNNING);
2634
f8891e5e 2635 count_vm_event(PGFAULT);
1da177e4 2636
ac9b9c66
HD
2637 if (unlikely(is_vm_hugetlb_page(vma)))
2638 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2639
1da177e4 2640 pgd = pgd_offset(mm, address);
1da177e4
LT
2641 pud = pud_alloc(mm, pgd, address);
2642 if (!pud)
c74df32c 2643 return VM_FAULT_OOM;
1da177e4
LT
2644 pmd = pmd_alloc(mm, pud, address);
2645 if (!pmd)
c74df32c 2646 return VM_FAULT_OOM;
1da177e4
LT
2647 pte = pte_alloc_map(mm, pmd, address);
2648 if (!pte)
c74df32c 2649 return VM_FAULT_OOM;
1da177e4 2650
c74df32c 2651 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2652}
2653
2654#ifndef __PAGETABLE_PUD_FOLDED
2655/*
2656 * Allocate page upper directory.
872fec16 2657 * We've already handled the fast-path in-line.
1da177e4 2658 */
1bb3630e 2659int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2660{
c74df32c
HD
2661 pud_t *new = pud_alloc_one(mm, address);
2662 if (!new)
1bb3630e 2663 return -ENOMEM;
1da177e4 2664
362a61ad
NP
2665 smp_wmb(); /* See comment in __pte_alloc */
2666
872fec16 2667 spin_lock(&mm->page_table_lock);
1bb3630e 2668 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2669 pud_free(mm, new);
1bb3630e
HD
2670 else
2671 pgd_populate(mm, pgd, new);
c74df32c 2672 spin_unlock(&mm->page_table_lock);
1bb3630e 2673 return 0;
1da177e4
LT
2674}
2675#endif /* __PAGETABLE_PUD_FOLDED */
2676
2677#ifndef __PAGETABLE_PMD_FOLDED
2678/*
2679 * Allocate page middle directory.
872fec16 2680 * We've already handled the fast-path in-line.
1da177e4 2681 */
1bb3630e 2682int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2683{
c74df32c
HD
2684 pmd_t *new = pmd_alloc_one(mm, address);
2685 if (!new)
1bb3630e 2686 return -ENOMEM;
1da177e4 2687
362a61ad
NP
2688 smp_wmb(); /* See comment in __pte_alloc */
2689
872fec16 2690 spin_lock(&mm->page_table_lock);
1da177e4 2691#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2692 if (pud_present(*pud)) /* Another has populated it */
5e541973 2693 pmd_free(mm, new);
1bb3630e
HD
2694 else
2695 pud_populate(mm, pud, new);
1da177e4 2696#else
1bb3630e 2697 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2698 pmd_free(mm, new);
1bb3630e
HD
2699 else
2700 pgd_populate(mm, pud, new);
1da177e4 2701#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2702 spin_unlock(&mm->page_table_lock);
1bb3630e 2703 return 0;
e0f39591 2704}
1da177e4
LT
2705#endif /* __PAGETABLE_PMD_FOLDED */
2706
2707int make_pages_present(unsigned long addr, unsigned long end)
2708{
2709 int ret, len, write;
2710 struct vm_area_struct * vma;
2711
2712 vma = find_vma(current->mm, addr);
2713 if (!vma)
2714 return -1;
2715 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2716 BUG_ON(addr >= end);
2717 BUG_ON(end > vma->vm_end);
68e116a3 2718 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2719 ret = get_user_pages(current, current->mm, addr,
2720 len, write, 0, NULL, NULL);
2721 if (ret < 0)
2722 return ret;
2723 return ret == len ? 0 : -1;
2724}
2725
1da177e4
LT
2726#if !defined(__HAVE_ARCH_GATE_AREA)
2727
2728#if defined(AT_SYSINFO_EHDR)
5ce7852c 2729static struct vm_area_struct gate_vma;
1da177e4
LT
2730
2731static int __init gate_vma_init(void)
2732{
2733 gate_vma.vm_mm = NULL;
2734 gate_vma.vm_start = FIXADDR_USER_START;
2735 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2736 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2737 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2738 /*
2739 * Make sure the vDSO gets into every core dump.
2740 * Dumping its contents makes post-mortem fully interpretable later
2741 * without matching up the same kernel and hardware config to see
2742 * what PC values meant.
2743 */
2744 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2745 return 0;
2746}
2747__initcall(gate_vma_init);
2748#endif
2749
2750struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2751{
2752#ifdef AT_SYSINFO_EHDR
2753 return &gate_vma;
2754#else
2755 return NULL;
2756#endif
2757}
2758
2759int in_gate_area_no_task(unsigned long addr)
2760{
2761#ifdef AT_SYSINFO_EHDR
2762 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2763 return 1;
2764#endif
2765 return 0;
2766}
2767
2768#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2769
28b2ee20
RR
2770#ifdef CONFIG_HAVE_IOREMAP_PROT
2771static resource_size_t follow_phys(struct vm_area_struct *vma,
2772 unsigned long address, unsigned int flags,
2773 unsigned long *prot)
2774{
2775 pgd_t *pgd;
2776 pud_t *pud;
2777 pmd_t *pmd;
2778 pte_t *ptep, pte;
2779 spinlock_t *ptl;
2780 resource_size_t phys_addr = 0;
2781 struct mm_struct *mm = vma->vm_mm;
2782
2783 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2784
2785 pgd = pgd_offset(mm, address);
2786 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2787 goto no_page_table;
2788
2789 pud = pud_offset(pgd, address);
2790 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2791 goto no_page_table;
2792
2793 pmd = pmd_offset(pud, address);
2794 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2795 goto no_page_table;
2796
2797 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2798 if (pmd_huge(*pmd))
2799 goto no_page_table;
2800
2801 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2802 if (!ptep)
2803 goto out;
2804
2805 pte = *ptep;
2806 if (!pte_present(pte))
2807 goto unlock;
2808 if ((flags & FOLL_WRITE) && !pte_write(pte))
2809 goto unlock;
2810 phys_addr = pte_pfn(pte);
2811 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2812
2813 *prot = pgprot_val(pte_pgprot(pte));
2814
2815unlock:
2816 pte_unmap_unlock(ptep, ptl);
2817out:
2818 return phys_addr;
2819no_page_table:
2820 return 0;
2821}
2822
2823int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2824 void *buf, int len, int write)
2825{
2826 resource_size_t phys_addr;
2827 unsigned long prot = 0;
2828 void *maddr;
2829 int offset = addr & (PAGE_SIZE-1);
2830
2831 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2832 return -EINVAL;
2833
2834 phys_addr = follow_phys(vma, addr, write, &prot);
2835
2836 if (!phys_addr)
2837 return -EINVAL;
2838
2839 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2840 if (write)
2841 memcpy_toio(maddr + offset, buf, len);
2842 else
2843 memcpy_fromio(buf, maddr + offset, len);
2844 iounmap(maddr);
2845
2846 return len;
2847}
2848#endif
2849
0ec76a11
DH
2850/*
2851 * Access another process' address space.
2852 * Source/target buffer must be kernel space,
2853 * Do not walk the page table directly, use get_user_pages
2854 */
2855int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2856{
2857 struct mm_struct *mm;
2858 struct vm_area_struct *vma;
0ec76a11
DH
2859 void *old_buf = buf;
2860
2861 mm = get_task_mm(tsk);
2862 if (!mm)
2863 return 0;
2864
2865 down_read(&mm->mmap_sem);
183ff22b 2866 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
2867 while (len) {
2868 int bytes, ret, offset;
2869 void *maddr;
28b2ee20 2870 struct page *page = NULL;
0ec76a11
DH
2871
2872 ret = get_user_pages(tsk, mm, addr, 1,
2873 write, 1, &page, &vma);
28b2ee20
RR
2874 if (ret <= 0) {
2875 /*
2876 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2877 * we can access using slightly different code.
2878 */
2879#ifdef CONFIG_HAVE_IOREMAP_PROT
2880 vma = find_vma(mm, addr);
2881 if (!vma)
2882 break;
2883 if (vma->vm_ops && vma->vm_ops->access)
2884 ret = vma->vm_ops->access(vma, addr, buf,
2885 len, write);
2886 if (ret <= 0)
2887#endif
2888 break;
2889 bytes = ret;
0ec76a11 2890 } else {
28b2ee20
RR
2891 bytes = len;
2892 offset = addr & (PAGE_SIZE-1);
2893 if (bytes > PAGE_SIZE-offset)
2894 bytes = PAGE_SIZE-offset;
2895
2896 maddr = kmap(page);
2897 if (write) {
2898 copy_to_user_page(vma, page, addr,
2899 maddr + offset, buf, bytes);
2900 set_page_dirty_lock(page);
2901 } else {
2902 copy_from_user_page(vma, page, addr,
2903 buf, maddr + offset, bytes);
2904 }
2905 kunmap(page);
2906 page_cache_release(page);
0ec76a11 2907 }
0ec76a11
DH
2908 len -= bytes;
2909 buf += bytes;
2910 addr += bytes;
2911 }
2912 up_read(&mm->mmap_sem);
2913 mmput(mm);
2914
2915 return buf - old_buf;
2916}
03252919
AK
2917
2918/*
2919 * Print the name of a VMA.
2920 */
2921void print_vma_addr(char *prefix, unsigned long ip)
2922{
2923 struct mm_struct *mm = current->mm;
2924 struct vm_area_struct *vma;
2925
e8bff74a
IM
2926 /*
2927 * Do not print if we are in atomic
2928 * contexts (in exception stacks, etc.):
2929 */
2930 if (preempt_count())
2931 return;
2932
03252919
AK
2933 down_read(&mm->mmap_sem);
2934 vma = find_vma(mm, ip);
2935 if (vma && vma->vm_file) {
2936 struct file *f = vma->vm_file;
2937 char *buf = (char *)__get_free_page(GFP_KERNEL);
2938 if (buf) {
2939 char *p, *s;
2940
cf28b486 2941 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
2942 if (IS_ERR(p))
2943 p = "?";
2944 s = strrchr(p, '/');
2945 if (s)
2946 p = s+1;
2947 printk("%s%s[%lx+%lx]", prefix, p,
2948 vma->vm_start,
2949 vma->vm_end - vma->vm_start);
2950 free_page((unsigned long)buf);
2951 }
2952 }
2953 up_read(&current->mm->mmap_sem);
2954}
This page took 0.535354 seconds and 5 git commands to generate.