VM: don't bother with feeding upper limit to tlb_finish_mmu() in exit_mmap()
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
1da177e4 60
6952b61d 61#include <asm/io.h>
1da177e4
LT
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
42b77728
JB
68#include "internal.h"
69
d41dee36 70#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
1da177e4
LT
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
1da177e4 91
32a93233
IM
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
a62eaf15
AK
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
9b41046c 108 return 1;
a62eaf15
AK
109}
110__setup("norandmaps", disable_randmaps);
111
62eede62 112unsigned long zero_pfn __read_mostly;
03f6462a 113unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
a62eaf15 124
d559db08 125
34e55232
KH
126#if defined(SPLIT_RSS_COUNTING)
127
a3a2e76c 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
34e55232
KH
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
136 }
137 }
138 task->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
161}
162
163unsigned long get_mm_counter(struct mm_struct *mm, int member)
164{
165 long val = 0;
166
167 /*
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
170 */
171 val = atomic_long_read(&mm->rss_stat.count[member]);
172 /*
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
175 */
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
179}
180
181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182{
183 __sync_task_rss_stat(task, mm);
184}
9547d01b 185#else /* SPLIT_RSS_COUNTING */
34e55232
KH
186
187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190static void check_sync_rss_stat(struct task_struct *task)
191{
192}
193
9547d01b
PZ
194#endif /* SPLIT_RSS_COUNTING */
195
196#ifdef HAVE_GENERIC_MMU_GATHER
197
198static int tlb_next_batch(struct mmu_gather *tlb)
199{
200 struct mmu_gather_batch *batch;
201
202 batch = tlb->active;
203 if (batch->next) {
204 tlb->active = batch->next;
205 return 1;
206 }
207
208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209 if (!batch)
210 return 0;
211
212 batch->next = NULL;
213 batch->nr = 0;
214 batch->max = MAX_GATHER_BATCH;
215
216 tlb->active->next = batch;
217 tlb->active = batch;
218
219 return 1;
220}
221
222/* tlb_gather_mmu
223 * Called to initialize an (on-stack) mmu_gather structure for page-table
224 * tear-down from @mm. The @fullmm argument is used when @mm is without
225 * users and we're going to destroy the full address space (exit/execve).
226 */
227void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228{
229 tlb->mm = mm;
230
231 tlb->fullmm = fullmm;
232 tlb->need_flush = 0;
233 tlb->fast_mode = (num_possible_cpus() == 1);
234 tlb->local.next = NULL;
235 tlb->local.nr = 0;
236 tlb->local.max = ARRAY_SIZE(tlb->__pages);
237 tlb->active = &tlb->local;
238
239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb->batch = NULL;
241#endif
242}
243
244void tlb_flush_mmu(struct mmu_gather *tlb)
245{
246 struct mmu_gather_batch *batch;
247
248 if (!tlb->need_flush)
249 return;
250 tlb->need_flush = 0;
251 tlb_flush(tlb);
252#ifdef CONFIG_HAVE_RCU_TABLE_FREE
253 tlb_table_flush(tlb);
34e55232
KH
254#endif
255
9547d01b
PZ
256 if (tlb_fast_mode(tlb))
257 return;
258
259 for (batch = &tlb->local; batch; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264}
265
266/* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
269 */
270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271{
272 struct mmu_gather_batch *batch, *next;
273
274 tlb_flush_mmu(tlb);
275
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
278
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
282 }
283 tlb->local.next = NULL;
284}
285
286/* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
291 */
292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293{
294 struct mmu_gather_batch *batch;
295
f21760b1 296 VM_BUG_ON(!tlb->need_flush);
9547d01b
PZ
297
298 if (tlb_fast_mode(tlb)) {
299 free_page_and_swap_cache(page);
300 return 1; /* avoid calling tlb_flush_mmu() */
301 }
302
303 batch = tlb->active;
304 batch->pages[batch->nr++] = page;
305 if (batch->nr == batch->max) {
306 if (!tlb_next_batch(tlb))
307 return 0;
0b43c3aa 308 batch = tlb->active;
9547d01b
PZ
309 }
310 VM_BUG_ON(batch->nr > batch->max);
311
312 return batch->max - batch->nr;
313}
314
315#endif /* HAVE_GENERIC_MMU_GATHER */
316
26723911
PZ
317#ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319/*
320 * See the comment near struct mmu_table_batch.
321 */
322
323static void tlb_remove_table_smp_sync(void *arg)
324{
325 /* Simply deliver the interrupt */
326}
327
328static void tlb_remove_table_one(void *table)
329{
330 /*
331 * This isn't an RCU grace period and hence the page-tables cannot be
332 * assumed to be actually RCU-freed.
333 *
334 * It is however sufficient for software page-table walkers that rely on
335 * IRQ disabling. See the comment near struct mmu_table_batch.
336 */
337 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338 __tlb_remove_table(table);
339}
340
341static void tlb_remove_table_rcu(struct rcu_head *head)
342{
343 struct mmu_table_batch *batch;
344 int i;
345
346 batch = container_of(head, struct mmu_table_batch, rcu);
347
348 for (i = 0; i < batch->nr; i++)
349 __tlb_remove_table(batch->tables[i]);
350
351 free_page((unsigned long)batch);
352}
353
354void tlb_table_flush(struct mmu_gather *tlb)
355{
356 struct mmu_table_batch **batch = &tlb->batch;
357
358 if (*batch) {
359 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360 *batch = NULL;
361 }
362}
363
364void tlb_remove_table(struct mmu_gather *tlb, void *table)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 tlb->need_flush = 1;
369
370 /*
371 * When there's less then two users of this mm there cannot be a
372 * concurrent page-table walk.
373 */
374 if (atomic_read(&tlb->mm->mm_users) < 2) {
375 __tlb_remove_table(table);
376 return;
377 }
378
379 if (*batch == NULL) {
380 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381 if (*batch == NULL) {
382 tlb_remove_table_one(table);
383 return;
384 }
385 (*batch)->nr = 0;
386 }
387 (*batch)->tables[(*batch)->nr++] = table;
388 if ((*batch)->nr == MAX_TABLE_BATCH)
389 tlb_table_flush(tlb);
390}
391
9547d01b 392#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 393
1da177e4
LT
394/*
395 * If a p?d_bad entry is found while walking page tables, report
396 * the error, before resetting entry to p?d_none. Usually (but
397 * very seldom) called out from the p?d_none_or_clear_bad macros.
398 */
399
400void pgd_clear_bad(pgd_t *pgd)
401{
402 pgd_ERROR(*pgd);
403 pgd_clear(pgd);
404}
405
406void pud_clear_bad(pud_t *pud)
407{
408 pud_ERROR(*pud);
409 pud_clear(pud);
410}
411
412void pmd_clear_bad(pmd_t *pmd)
413{
414 pmd_ERROR(*pmd);
415 pmd_clear(pmd);
416}
417
418/*
419 * Note: this doesn't free the actual pages themselves. That
420 * has been handled earlier when unmapping all the memory regions.
421 */
9e1b32ca
BH
422static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423 unsigned long addr)
1da177e4 424{
2f569afd 425 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 426 pmd_clear(pmd);
9e1b32ca 427 pte_free_tlb(tlb, token, addr);
e0da382c 428 tlb->mm->nr_ptes--;
1da177e4
LT
429}
430
e0da382c
HD
431static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432 unsigned long addr, unsigned long end,
433 unsigned long floor, unsigned long ceiling)
1da177e4
LT
434{
435 pmd_t *pmd;
436 unsigned long next;
e0da382c 437 unsigned long start;
1da177e4 438
e0da382c 439 start = addr;
1da177e4 440 pmd = pmd_offset(pud, addr);
1da177e4
LT
441 do {
442 next = pmd_addr_end(addr, end);
443 if (pmd_none_or_clear_bad(pmd))
444 continue;
9e1b32ca 445 free_pte_range(tlb, pmd, addr);
1da177e4
LT
446 } while (pmd++, addr = next, addr != end);
447
e0da382c
HD
448 start &= PUD_MASK;
449 if (start < floor)
450 return;
451 if (ceiling) {
452 ceiling &= PUD_MASK;
453 if (!ceiling)
454 return;
1da177e4 455 }
e0da382c
HD
456 if (end - 1 > ceiling - 1)
457 return;
458
459 pmd = pmd_offset(pud, start);
460 pud_clear(pud);
9e1b32ca 461 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
462}
463
e0da382c
HD
464static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465 unsigned long addr, unsigned long end,
466 unsigned long floor, unsigned long ceiling)
1da177e4
LT
467{
468 pud_t *pud;
469 unsigned long next;
e0da382c 470 unsigned long start;
1da177e4 471
e0da382c 472 start = addr;
1da177e4 473 pud = pud_offset(pgd, addr);
1da177e4
LT
474 do {
475 next = pud_addr_end(addr, end);
476 if (pud_none_or_clear_bad(pud))
477 continue;
e0da382c 478 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
479 } while (pud++, addr = next, addr != end);
480
e0da382c
HD
481 start &= PGDIR_MASK;
482 if (start < floor)
483 return;
484 if (ceiling) {
485 ceiling &= PGDIR_MASK;
486 if (!ceiling)
487 return;
1da177e4 488 }
e0da382c
HD
489 if (end - 1 > ceiling - 1)
490 return;
491
492 pud = pud_offset(pgd, start);
493 pgd_clear(pgd);
9e1b32ca 494 pud_free_tlb(tlb, pud, start);
1da177e4
LT
495}
496
497/*
e0da382c
HD
498 * This function frees user-level page tables of a process.
499 *
1da177e4
LT
500 * Must be called with pagetable lock held.
501 */
42b77728 502void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
503 unsigned long addr, unsigned long end,
504 unsigned long floor, unsigned long ceiling)
1da177e4
LT
505{
506 pgd_t *pgd;
507 unsigned long next;
e0da382c
HD
508
509 /*
510 * The next few lines have given us lots of grief...
511 *
512 * Why are we testing PMD* at this top level? Because often
513 * there will be no work to do at all, and we'd prefer not to
514 * go all the way down to the bottom just to discover that.
515 *
516 * Why all these "- 1"s? Because 0 represents both the bottom
517 * of the address space and the top of it (using -1 for the
518 * top wouldn't help much: the masks would do the wrong thing).
519 * The rule is that addr 0 and floor 0 refer to the bottom of
520 * the address space, but end 0 and ceiling 0 refer to the top
521 * Comparisons need to use "end - 1" and "ceiling - 1" (though
522 * that end 0 case should be mythical).
523 *
524 * Wherever addr is brought up or ceiling brought down, we must
525 * be careful to reject "the opposite 0" before it confuses the
526 * subsequent tests. But what about where end is brought down
527 * by PMD_SIZE below? no, end can't go down to 0 there.
528 *
529 * Whereas we round start (addr) and ceiling down, by different
530 * masks at different levels, in order to test whether a table
531 * now has no other vmas using it, so can be freed, we don't
532 * bother to round floor or end up - the tests don't need that.
533 */
1da177e4 534
e0da382c
HD
535 addr &= PMD_MASK;
536 if (addr < floor) {
537 addr += PMD_SIZE;
538 if (!addr)
539 return;
540 }
541 if (ceiling) {
542 ceiling &= PMD_MASK;
543 if (!ceiling)
544 return;
545 }
546 if (end - 1 > ceiling - 1)
547 end -= PMD_SIZE;
548 if (addr > end - 1)
549 return;
550
42b77728 551 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
552 do {
553 next = pgd_addr_end(addr, end);
554 if (pgd_none_or_clear_bad(pgd))
555 continue;
42b77728 556 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 557 } while (pgd++, addr = next, addr != end);
e0da382c
HD
558}
559
42b77728 560void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 561 unsigned long floor, unsigned long ceiling)
e0da382c
HD
562{
563 while (vma) {
564 struct vm_area_struct *next = vma->vm_next;
565 unsigned long addr = vma->vm_start;
566
8f4f8c16 567 /*
25d9e2d1 568 * Hide vma from rmap and truncate_pagecache before freeing
569 * pgtables
8f4f8c16 570 */
5beb4930 571 unlink_anon_vmas(vma);
8f4f8c16
HD
572 unlink_file_vma(vma);
573
9da61aef 574 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 575 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 576 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
577 } else {
578 /*
579 * Optimization: gather nearby vmas into one call down
580 */
581 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 582 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
583 vma = next;
584 next = vma->vm_next;
5beb4930 585 unlink_anon_vmas(vma);
8f4f8c16 586 unlink_file_vma(vma);
3bf5ee95
HD
587 }
588 free_pgd_range(tlb, addr, vma->vm_end,
589 floor, next? next->vm_start: ceiling);
590 }
e0da382c
HD
591 vma = next;
592 }
1da177e4
LT
593}
594
8ac1f832
AA
595int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596 pmd_t *pmd, unsigned long address)
1da177e4 597{
2f569afd 598 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 599 int wait_split_huge_page;
1bb3630e
HD
600 if (!new)
601 return -ENOMEM;
602
362a61ad
NP
603 /*
604 * Ensure all pte setup (eg. pte page lock and page clearing) are
605 * visible before the pte is made visible to other CPUs by being
606 * put into page tables.
607 *
608 * The other side of the story is the pointer chasing in the page
609 * table walking code (when walking the page table without locking;
610 * ie. most of the time). Fortunately, these data accesses consist
611 * of a chain of data-dependent loads, meaning most CPUs (alpha
612 * being the notable exception) will already guarantee loads are
613 * seen in-order. See the alpha page table accessors for the
614 * smp_read_barrier_depends() barriers in page table walking code.
615 */
616 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617
c74df32c 618 spin_lock(&mm->page_table_lock);
8ac1f832
AA
619 wait_split_huge_page = 0;
620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 621 mm->nr_ptes++;
1da177e4 622 pmd_populate(mm, pmd, new);
2f569afd 623 new = NULL;
8ac1f832
AA
624 } else if (unlikely(pmd_trans_splitting(*pmd)))
625 wait_split_huge_page = 1;
c74df32c 626 spin_unlock(&mm->page_table_lock);
2f569afd
MS
627 if (new)
628 pte_free(mm, new);
8ac1f832
AA
629 if (wait_split_huge_page)
630 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 631 return 0;
1da177e4
LT
632}
633
1bb3630e 634int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 635{
1bb3630e
HD
636 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637 if (!new)
638 return -ENOMEM;
639
362a61ad
NP
640 smp_wmb(); /* See comment in __pte_alloc */
641
1bb3630e 642 spin_lock(&init_mm.page_table_lock);
8ac1f832 643 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 644 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 645 new = NULL;
8ac1f832
AA
646 } else
647 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 648 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
649 if (new)
650 pte_free_kernel(&init_mm, new);
1bb3630e 651 return 0;
1da177e4
LT
652}
653
d559db08
KH
654static inline void init_rss_vec(int *rss)
655{
656 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
657}
658
659static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 660{
d559db08
KH
661 int i;
662
34e55232
KH
663 if (current->mm == mm)
664 sync_mm_rss(current, mm);
d559db08
KH
665 for (i = 0; i < NR_MM_COUNTERS; i++)
666 if (rss[i])
667 add_mm_counter(mm, i, rss[i]);
ae859762
HD
668}
669
b5810039 670/*
6aab341e
LT
671 * This function is called to print an error when a bad pte
672 * is found. For example, we might have a PFN-mapped pte in
673 * a region that doesn't allow it.
b5810039
NP
674 *
675 * The calling function must still handle the error.
676 */
3dc14741
HD
677static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678 pte_t pte, struct page *page)
b5810039 679{
3dc14741
HD
680 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681 pud_t *pud = pud_offset(pgd, addr);
682 pmd_t *pmd = pmd_offset(pud, addr);
683 struct address_space *mapping;
684 pgoff_t index;
d936cf9b
HD
685 static unsigned long resume;
686 static unsigned long nr_shown;
687 static unsigned long nr_unshown;
688
689 /*
690 * Allow a burst of 60 reports, then keep quiet for that minute;
691 * or allow a steady drip of one report per second.
692 */
693 if (nr_shown == 60) {
694 if (time_before(jiffies, resume)) {
695 nr_unshown++;
696 return;
697 }
698 if (nr_unshown) {
1e9e6365
HD
699 printk(KERN_ALERT
700 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
701 nr_unshown);
702 nr_unshown = 0;
703 }
704 nr_shown = 0;
705 }
706 if (nr_shown++ == 0)
707 resume = jiffies + 60 * HZ;
3dc14741
HD
708
709 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710 index = linear_page_index(vma, addr);
711
1e9e6365
HD
712 printk(KERN_ALERT
713 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
714 current->comm,
715 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
716 if (page)
717 dump_page(page);
1e9e6365 718 printk(KERN_ALERT
3dc14741
HD
719 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721 /*
722 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723 */
724 if (vma->vm_ops)
1e9e6365 725 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
726 (unsigned long)vma->vm_ops->fault);
727 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 728 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 729 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 730 dump_stack();
3dc14741 731 add_taint(TAINT_BAD_PAGE);
b5810039
NP
732}
733
ca16d140 734static inline int is_cow_mapping(vm_flags_t flags)
67121172
LT
735{
736 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
737}
738
62eede62
HD
739#ifndef is_zero_pfn
740static inline int is_zero_pfn(unsigned long pfn)
741{
742 return pfn == zero_pfn;
743}
744#endif
745
746#ifndef my_zero_pfn
747static inline unsigned long my_zero_pfn(unsigned long addr)
748{
749 return zero_pfn;
750}
751#endif
752
ee498ed7 753/*
7e675137 754 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 755 *
7e675137
NP
756 * "Special" mappings do not wish to be associated with a "struct page" (either
757 * it doesn't exist, or it exists but they don't want to touch it). In this
758 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 759 *
7e675137
NP
760 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761 * pte bit, in which case this function is trivial. Secondly, an architecture
762 * may not have a spare pte bit, which requires a more complicated scheme,
763 * described below.
764 *
765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766 * special mapping (even if there are underlying and valid "struct pages").
767 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 768 *
b379d790
JH
769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772 * mapping will always honor the rule
6aab341e
LT
773 *
774 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775 *
7e675137
NP
776 * And for normal mappings this is false.
777 *
778 * This restricts such mappings to be a linear translation from virtual address
779 * to pfn. To get around this restriction, we allow arbitrary mappings so long
780 * as the vma is not a COW mapping; in that case, we know that all ptes are
781 * special (because none can have been COWed).
b379d790 782 *
b379d790 783 *
7e675137 784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
785 *
786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787 * page" backing, however the difference is that _all_ pages with a struct
788 * page (that is, those where pfn_valid is true) are refcounted and considered
789 * normal pages by the VM. The disadvantage is that pages are refcounted
790 * (which can be slower and simply not an option for some PFNMAP users). The
791 * advantage is that we don't have to follow the strict linearity rule of
792 * PFNMAP mappings in order to support COWable mappings.
793 *
ee498ed7 794 */
7e675137
NP
795#ifdef __HAVE_ARCH_PTE_SPECIAL
796# define HAVE_PTE_SPECIAL 1
797#else
798# define HAVE_PTE_SPECIAL 0
799#endif
800struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801 pte_t pte)
ee498ed7 802{
22b31eec 803 unsigned long pfn = pte_pfn(pte);
7e675137
NP
804
805 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
806 if (likely(!pte_special(pte)))
807 goto check_pfn;
a13ea5b7
HD
808 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809 return NULL;
62eede62 810 if (!is_zero_pfn(pfn))
22b31eec 811 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
812 return NULL;
813 }
814
815 /* !HAVE_PTE_SPECIAL case follows: */
816
b379d790
JH
817 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818 if (vma->vm_flags & VM_MIXEDMAP) {
819 if (!pfn_valid(pfn))
820 return NULL;
821 goto out;
822 } else {
7e675137
NP
823 unsigned long off;
824 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
825 if (pfn == vma->vm_pgoff + off)
826 return NULL;
827 if (!is_cow_mapping(vma->vm_flags))
828 return NULL;
829 }
6aab341e
LT
830 }
831
62eede62
HD
832 if (is_zero_pfn(pfn))
833 return NULL;
22b31eec
HD
834check_pfn:
835 if (unlikely(pfn > highest_memmap_pfn)) {
836 print_bad_pte(vma, addr, pte, NULL);
837 return NULL;
838 }
6aab341e
LT
839
840 /*
7e675137 841 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 842 * eg. VDSO mappings can cause them to exist.
6aab341e 843 */
b379d790 844out:
6aab341e 845 return pfn_to_page(pfn);
ee498ed7
HD
846}
847
1da177e4
LT
848/*
849 * copy one vm_area from one task to the other. Assumes the page tables
850 * already present in the new task to be cleared in the whole range
851 * covered by this vma.
1da177e4
LT
852 */
853
570a335b 854static inline unsigned long
1da177e4 855copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 856 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 857 unsigned long addr, int *rss)
1da177e4 858{
b5810039 859 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
860 pte_t pte = *src_pte;
861 struct page *page;
1da177e4
LT
862
863 /* pte contains position in swap or file, so copy. */
864 if (unlikely(!pte_present(pte))) {
865 if (!pte_file(pte)) {
0697212a
CL
866 swp_entry_t entry = pte_to_swp_entry(pte);
867
570a335b
HD
868 if (swap_duplicate(entry) < 0)
869 return entry.val;
870
1da177e4
LT
871 /* make sure dst_mm is on swapoff's mmlist. */
872 if (unlikely(list_empty(&dst_mm->mmlist))) {
873 spin_lock(&mmlist_lock);
f412ac08
HD
874 if (list_empty(&dst_mm->mmlist))
875 list_add(&dst_mm->mmlist,
876 &src_mm->mmlist);
1da177e4
LT
877 spin_unlock(&mmlist_lock);
878 }
b084d435
KH
879 if (likely(!non_swap_entry(entry)))
880 rss[MM_SWAPENTS]++;
9f9f1acd
KK
881 else if (is_migration_entry(entry)) {
882 page = migration_entry_to_page(entry);
883
884 if (PageAnon(page))
885 rss[MM_ANONPAGES]++;
886 else
887 rss[MM_FILEPAGES]++;
888
889 if (is_write_migration_entry(entry) &&
890 is_cow_mapping(vm_flags)) {
891 /*
892 * COW mappings require pages in both
893 * parent and child to be set to read.
894 */
895 make_migration_entry_read(&entry);
896 pte = swp_entry_to_pte(entry);
897 set_pte_at(src_mm, addr, src_pte, pte);
898 }
0697212a 899 }
1da177e4 900 }
ae859762 901 goto out_set_pte;
1da177e4
LT
902 }
903
1da177e4
LT
904 /*
905 * If it's a COW mapping, write protect it both
906 * in the parent and the child
907 */
67121172 908 if (is_cow_mapping(vm_flags)) {
1da177e4 909 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 910 pte = pte_wrprotect(pte);
1da177e4
LT
911 }
912
913 /*
914 * If it's a shared mapping, mark it clean in
915 * the child
916 */
917 if (vm_flags & VM_SHARED)
918 pte = pte_mkclean(pte);
919 pte = pte_mkold(pte);
6aab341e
LT
920
921 page = vm_normal_page(vma, addr, pte);
922 if (page) {
923 get_page(page);
21333b2b 924 page_dup_rmap(page);
d559db08
KH
925 if (PageAnon(page))
926 rss[MM_ANONPAGES]++;
927 else
928 rss[MM_FILEPAGES]++;
6aab341e 929 }
ae859762
HD
930
931out_set_pte:
932 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 933 return 0;
1da177e4
LT
934}
935
71e3aac0
AA
936int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
937 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
938 unsigned long addr, unsigned long end)
1da177e4 939{
c36987e2 940 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 941 pte_t *src_pte, *dst_pte;
c74df32c 942 spinlock_t *src_ptl, *dst_ptl;
e040f218 943 int progress = 0;
d559db08 944 int rss[NR_MM_COUNTERS];
570a335b 945 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
946
947again:
d559db08
KH
948 init_rss_vec(rss);
949
c74df32c 950 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
951 if (!dst_pte)
952 return -ENOMEM;
ece0e2b6 953 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 954 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 955 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
956 orig_src_pte = src_pte;
957 orig_dst_pte = dst_pte;
6606c3e0 958 arch_enter_lazy_mmu_mode();
1da177e4 959
1da177e4
LT
960 do {
961 /*
962 * We are holding two locks at this point - either of them
963 * could generate latencies in another task on another CPU.
964 */
e040f218
HD
965 if (progress >= 32) {
966 progress = 0;
967 if (need_resched() ||
95c354fe 968 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
969 break;
970 }
1da177e4
LT
971 if (pte_none(*src_pte)) {
972 progress++;
973 continue;
974 }
570a335b
HD
975 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
976 vma, addr, rss);
977 if (entry.val)
978 break;
1da177e4
LT
979 progress += 8;
980 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 981
6606c3e0 982 arch_leave_lazy_mmu_mode();
c74df32c 983 spin_unlock(src_ptl);
ece0e2b6 984 pte_unmap(orig_src_pte);
d559db08 985 add_mm_rss_vec(dst_mm, rss);
c36987e2 986 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 987 cond_resched();
570a335b
HD
988
989 if (entry.val) {
990 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
991 return -ENOMEM;
992 progress = 0;
993 }
1da177e4
LT
994 if (addr != end)
995 goto again;
996 return 0;
997}
998
999static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1001 unsigned long addr, unsigned long end)
1002{
1003 pmd_t *src_pmd, *dst_pmd;
1004 unsigned long next;
1005
1006 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1007 if (!dst_pmd)
1008 return -ENOMEM;
1009 src_pmd = pmd_offset(src_pud, addr);
1010 do {
1011 next = pmd_addr_end(addr, end);
71e3aac0
AA
1012 if (pmd_trans_huge(*src_pmd)) {
1013 int err;
14d1a55c 1014 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
1015 err = copy_huge_pmd(dst_mm, src_mm,
1016 dst_pmd, src_pmd, addr, vma);
1017 if (err == -ENOMEM)
1018 return -ENOMEM;
1019 if (!err)
1020 continue;
1021 /* fall through */
1022 }
1da177e4
LT
1023 if (pmd_none_or_clear_bad(src_pmd))
1024 continue;
1025 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1026 vma, addr, next))
1027 return -ENOMEM;
1028 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1029 return 0;
1030}
1031
1032static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1034 unsigned long addr, unsigned long end)
1035{
1036 pud_t *src_pud, *dst_pud;
1037 unsigned long next;
1038
1039 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1040 if (!dst_pud)
1041 return -ENOMEM;
1042 src_pud = pud_offset(src_pgd, addr);
1043 do {
1044 next = pud_addr_end(addr, end);
1045 if (pud_none_or_clear_bad(src_pud))
1046 continue;
1047 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1048 vma, addr, next))
1049 return -ENOMEM;
1050 } while (dst_pud++, src_pud++, addr = next, addr != end);
1051 return 0;
1052}
1053
1054int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055 struct vm_area_struct *vma)
1056{
1057 pgd_t *src_pgd, *dst_pgd;
1058 unsigned long next;
1059 unsigned long addr = vma->vm_start;
1060 unsigned long end = vma->vm_end;
cddb8a5c 1061 int ret;
1da177e4 1062
d992895b
NP
1063 /*
1064 * Don't copy ptes where a page fault will fill them correctly.
1065 * Fork becomes much lighter when there are big shared or private
1066 * readonly mappings. The tradeoff is that copy_page_range is more
1067 * efficient than faulting.
1068 */
4d7672b4 1069 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
1070 if (!vma->anon_vma)
1071 return 0;
1072 }
1073
1da177e4
LT
1074 if (is_vm_hugetlb_page(vma))
1075 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1076
34801ba9 1077 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 1078 /*
1079 * We do not free on error cases below as remove_vma
1080 * gets called on error from higher level routine
1081 */
1082 ret = track_pfn_vma_copy(vma);
1083 if (ret)
1084 return ret;
1085 }
1086
cddb8a5c
AA
1087 /*
1088 * We need to invalidate the secondary MMU mappings only when
1089 * there could be a permission downgrade on the ptes of the
1090 * parent mm. And a permission downgrade will only happen if
1091 * is_cow_mapping() returns true.
1092 */
1093 if (is_cow_mapping(vma->vm_flags))
1094 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1095
1096 ret = 0;
1da177e4
LT
1097 dst_pgd = pgd_offset(dst_mm, addr);
1098 src_pgd = pgd_offset(src_mm, addr);
1099 do {
1100 next = pgd_addr_end(addr, end);
1101 if (pgd_none_or_clear_bad(src_pgd))
1102 continue;
cddb8a5c
AA
1103 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1104 vma, addr, next))) {
1105 ret = -ENOMEM;
1106 break;
1107 }
1da177e4 1108 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
1109
1110 if (is_cow_mapping(vma->vm_flags))
1111 mmu_notifier_invalidate_range_end(src_mm,
1112 vma->vm_start, end);
1113 return ret;
1da177e4
LT
1114}
1115
51c6f666 1116static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1117 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1118 unsigned long addr, unsigned long end,
97a89413 1119 struct zap_details *details)
1da177e4 1120{
b5810039 1121 struct mm_struct *mm = tlb->mm;
d16dfc55 1122 int force_flush = 0;
d559db08 1123 int rss[NR_MM_COUNTERS];
97a89413 1124 spinlock_t *ptl;
5f1a1907 1125 pte_t *start_pte;
97a89413 1126 pte_t *pte;
d559db08 1127
d16dfc55 1128again:
e303297e 1129 init_rss_vec(rss);
5f1a1907
SR
1130 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1131 pte = start_pte;
6606c3e0 1132 arch_enter_lazy_mmu_mode();
1da177e4
LT
1133 do {
1134 pte_t ptent = *pte;
51c6f666 1135 if (pte_none(ptent)) {
1da177e4 1136 continue;
51c6f666 1137 }
6f5e6b9e 1138
1da177e4 1139 if (pte_present(ptent)) {
ee498ed7 1140 struct page *page;
51c6f666 1141
6aab341e 1142 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1143 if (unlikely(details) && page) {
1144 /*
1145 * unmap_shared_mapping_pages() wants to
1146 * invalidate cache without truncating:
1147 * unmap shared but keep private pages.
1148 */
1149 if (details->check_mapping &&
1150 details->check_mapping != page->mapping)
1151 continue;
1152 /*
1153 * Each page->index must be checked when
1154 * invalidating or truncating nonlinear.
1155 */
1156 if (details->nonlinear_vma &&
1157 (page->index < details->first_index ||
1158 page->index > details->last_index))
1159 continue;
1160 }
b5810039 1161 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1162 tlb->fullmm);
1da177e4
LT
1163 tlb_remove_tlb_entry(tlb, pte, addr);
1164 if (unlikely(!page))
1165 continue;
1166 if (unlikely(details) && details->nonlinear_vma
1167 && linear_page_index(details->nonlinear_vma,
1168 addr) != page->index)
b5810039 1169 set_pte_at(mm, addr, pte,
1da177e4 1170 pgoff_to_pte(page->index));
1da177e4 1171 if (PageAnon(page))
d559db08 1172 rss[MM_ANONPAGES]--;
6237bcd9
HD
1173 else {
1174 if (pte_dirty(ptent))
1175 set_page_dirty(page);
4917e5d0
JW
1176 if (pte_young(ptent) &&
1177 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 1178 mark_page_accessed(page);
d559db08 1179 rss[MM_FILEPAGES]--;
6237bcd9 1180 }
edc315fd 1181 page_remove_rmap(page);
3dc14741
HD
1182 if (unlikely(page_mapcount(page) < 0))
1183 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1184 force_flush = !__tlb_remove_page(tlb, page);
1185 if (force_flush)
1186 break;
1da177e4
LT
1187 continue;
1188 }
1189 /*
1190 * If details->check_mapping, we leave swap entries;
1191 * if details->nonlinear_vma, we leave file entries.
1192 */
1193 if (unlikely(details))
1194 continue;
2509ef26
HD
1195 if (pte_file(ptent)) {
1196 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1197 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1198 } else {
1199 swp_entry_t entry = pte_to_swp_entry(ptent);
1200
1201 if (!non_swap_entry(entry))
1202 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1203 else if (is_migration_entry(entry)) {
1204 struct page *page;
1205
1206 page = migration_entry_to_page(entry);
1207
1208 if (PageAnon(page))
1209 rss[MM_ANONPAGES]--;
1210 else
1211 rss[MM_FILEPAGES]--;
1212 }
b084d435
KH
1213 if (unlikely(!free_swap_and_cache(entry)))
1214 print_bad_pte(vma, addr, ptent, NULL);
1215 }
9888a1ca 1216 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1217 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1218
d559db08 1219 add_mm_rss_vec(mm, rss);
6606c3e0 1220 arch_leave_lazy_mmu_mode();
5f1a1907 1221 pte_unmap_unlock(start_pte, ptl);
51c6f666 1222
d16dfc55
PZ
1223 /*
1224 * mmu_gather ran out of room to batch pages, we break out of
1225 * the PTE lock to avoid doing the potential expensive TLB invalidate
1226 * and page-free while holding it.
1227 */
1228 if (force_flush) {
1229 force_flush = 0;
1230 tlb_flush_mmu(tlb);
1231 if (addr != end)
1232 goto again;
1233 }
1234
51c6f666 1235 return addr;
1da177e4
LT
1236}
1237
51c6f666 1238static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1239 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1240 unsigned long addr, unsigned long end,
97a89413 1241 struct zap_details *details)
1da177e4
LT
1242{
1243 pmd_t *pmd;
1244 unsigned long next;
1245
1246 pmd = pmd_offset(pud, addr);
1247 do {
1248 next = pmd_addr_end(addr, end);
71e3aac0 1249 if (pmd_trans_huge(*pmd)) {
14d1a55c
AA
1250 if (next-addr != HPAGE_PMD_SIZE) {
1251 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
71e3aac0 1252 split_huge_page_pmd(vma->vm_mm, pmd);
f21760b1 1253 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
71e3aac0 1254 continue;
71e3aac0
AA
1255 /* fall through */
1256 }
97a89413 1257 if (pmd_none_or_clear_bad(pmd))
1da177e4 1258 continue;
97a89413
PZ
1259 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1260 cond_resched();
1261 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1262
1263 return addr;
1da177e4
LT
1264}
1265
51c6f666 1266static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1267 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1268 unsigned long addr, unsigned long end,
97a89413 1269 struct zap_details *details)
1da177e4
LT
1270{
1271 pud_t *pud;
1272 unsigned long next;
1273
1274 pud = pud_offset(pgd, addr);
1275 do {
1276 next = pud_addr_end(addr, end);
97a89413 1277 if (pud_none_or_clear_bad(pud))
1da177e4 1278 continue;
97a89413
PZ
1279 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1280 } while (pud++, addr = next, addr != end);
51c6f666
RH
1281
1282 return addr;
1da177e4
LT
1283}
1284
038c7aa1
AV
1285static void unmap_page_range(struct mmu_gather *tlb,
1286 struct vm_area_struct *vma,
1287 unsigned long addr, unsigned long end,
1288 struct zap_details *details)
1da177e4
LT
1289{
1290 pgd_t *pgd;
1291 unsigned long next;
1292
1293 if (details && !details->check_mapping && !details->nonlinear_vma)
1294 details = NULL;
1295
1296 BUG_ON(addr >= end);
569b846d 1297 mem_cgroup_uncharge_start();
1da177e4
LT
1298 tlb_start_vma(tlb, vma);
1299 pgd = pgd_offset(vma->vm_mm, addr);
1300 do {
1301 next = pgd_addr_end(addr, end);
97a89413 1302 if (pgd_none_or_clear_bad(pgd))
1da177e4 1303 continue;
97a89413
PZ
1304 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1305 } while (pgd++, addr = next, addr != end);
1da177e4 1306 tlb_end_vma(tlb, vma);
569b846d 1307 mem_cgroup_uncharge_end();
1da177e4
LT
1308}
1309
1da177e4
LT
1310/**
1311 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1312 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1313 * @vma: the starting vma
1314 * @start_addr: virtual address at which to start unmapping
1315 * @end_addr: virtual address at which to end unmapping
1316 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1317 * @details: details of nonlinear truncation or shared cache invalidation
1318 *
ee39b37b 1319 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 1320 *
508034a3 1321 * Unmap all pages in the vma list.
1da177e4 1322 *
1da177e4
LT
1323 * Only addresses between `start' and `end' will be unmapped.
1324 *
1325 * The VMA list must be sorted in ascending virtual address order.
1326 *
1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328 * range after unmap_vmas() returns. So the only responsibility here is to
1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330 * drops the lock and schedules.
1331 */
d16dfc55 1332unsigned long unmap_vmas(struct mmu_gather *tlb,
1da177e4
LT
1333 struct vm_area_struct *vma, unsigned long start_addr,
1334 unsigned long end_addr, unsigned long *nr_accounted,
1335 struct zap_details *details)
1336{
ee39b37b 1337 unsigned long start = start_addr;
cddb8a5c 1338 struct mm_struct *mm = vma->vm_mm;
1da177e4 1339
cddb8a5c 1340 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1341 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1342 unsigned long end;
1343
1344 start = max(vma->vm_start, start_addr);
1345 if (start >= vma->vm_end)
1346 continue;
1347 end = min(vma->vm_end, end_addr);
1348 if (end <= vma->vm_start)
1349 continue;
1350
1351 if (vma->vm_flags & VM_ACCOUNT)
1352 *nr_accounted += (end - start) >> PAGE_SHIFT;
1353
34801ba9 1354 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1355 untrack_pfn_vma(vma, 0, 0);
1356
8b2a1238 1357 if (start != end) {
51c6f666 1358 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1359 /*
1360 * It is undesirable to test vma->vm_file as it
1361 * should be non-null for valid hugetlb area.
1362 * However, vm_file will be NULL in the error
1363 * cleanup path of do_mmap_pgoff. When
1364 * hugetlbfs ->mmap method fails,
1365 * do_mmap_pgoff() nullifies vma->vm_file
1366 * before calling this function to clean up.
1367 * Since no pte has actually been setup, it is
1368 * safe to do nothing in this case.
1369 */
97a89413 1370 if (vma->vm_file)
a137e1cc 1371 unmap_hugepage_range(vma, start, end, NULL);
51c6f666 1372 } else
038c7aa1 1373 unmap_page_range(tlb, vma, start, end, details);
1da177e4 1374 }
8b2a1238 1375 start = end;
1da177e4 1376 }
97a89413 1377
cddb8a5c 1378 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1379 return start; /* which is now the end (or restart) address */
1da177e4
LT
1380}
1381
1382/**
1383 * zap_page_range - remove user pages in a given range
1384 * @vma: vm_area_struct holding the applicable pages
1385 * @address: starting address of pages to zap
1386 * @size: number of bytes to zap
1387 * @details: details of nonlinear truncation or shared cache invalidation
1388 */
14f5ff5d 1389void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1390 unsigned long size, struct zap_details *details)
1391{
1392 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1393 struct mmu_gather tlb;
1da177e4
LT
1394 unsigned long end = address + size;
1395 unsigned long nr_accounted = 0;
1396
1da177e4 1397 lru_add_drain();
d16dfc55 1398 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1399 update_hiwater_rss(mm);
14f5ff5d 1400 unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
d16dfc55 1401 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1402}
1403
c627f9cc
JS
1404/**
1405 * zap_vma_ptes - remove ptes mapping the vma
1406 * @vma: vm_area_struct holding ptes to be zapped
1407 * @address: starting address of pages to zap
1408 * @size: number of bytes to zap
1409 *
1410 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1411 *
1412 * The entire address range must be fully contained within the vma.
1413 *
1414 * Returns 0 if successful.
1415 */
1416int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1417 unsigned long size)
1418{
1419 if (address < vma->vm_start || address + size > vma->vm_end ||
1420 !(vma->vm_flags & VM_PFNMAP))
1421 return -1;
1422 zap_page_range(vma, address, size, NULL);
1423 return 0;
1424}
1425EXPORT_SYMBOL_GPL(zap_vma_ptes);
1426
142762bd
JW
1427/**
1428 * follow_page - look up a page descriptor from a user-virtual address
1429 * @vma: vm_area_struct mapping @address
1430 * @address: virtual address to look up
1431 * @flags: flags modifying lookup behaviour
1432 *
1433 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1434 *
1435 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1436 * an error pointer if there is a mapping to something not represented
1437 * by a page descriptor (see also vm_normal_page()).
1da177e4 1438 */
6aab341e 1439struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1440 unsigned int flags)
1da177e4
LT
1441{
1442 pgd_t *pgd;
1443 pud_t *pud;
1444 pmd_t *pmd;
1445 pte_t *ptep, pte;
deceb6cd 1446 spinlock_t *ptl;
1da177e4 1447 struct page *page;
6aab341e 1448 struct mm_struct *mm = vma->vm_mm;
1da177e4 1449
deceb6cd
HD
1450 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1451 if (!IS_ERR(page)) {
1452 BUG_ON(flags & FOLL_GET);
1453 goto out;
1454 }
1da177e4 1455
deceb6cd 1456 page = NULL;
1da177e4
LT
1457 pgd = pgd_offset(mm, address);
1458 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1459 goto no_page_table;
1da177e4
LT
1460
1461 pud = pud_offset(pgd, address);
ceb86879 1462 if (pud_none(*pud))
deceb6cd 1463 goto no_page_table;
8a07651e 1464 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1465 BUG_ON(flags & FOLL_GET);
1466 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1467 goto out;
1468 }
1469 if (unlikely(pud_bad(*pud)))
1470 goto no_page_table;
1471
1da177e4 1472 pmd = pmd_offset(pud, address);
aeed5fce 1473 if (pmd_none(*pmd))
deceb6cd 1474 goto no_page_table;
71e3aac0 1475 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1476 BUG_ON(flags & FOLL_GET);
1477 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1478 goto out;
deceb6cd 1479 }
71e3aac0 1480 if (pmd_trans_huge(*pmd)) {
500d65d4
AA
1481 if (flags & FOLL_SPLIT) {
1482 split_huge_page_pmd(mm, pmd);
1483 goto split_fallthrough;
1484 }
71e3aac0
AA
1485 spin_lock(&mm->page_table_lock);
1486 if (likely(pmd_trans_huge(*pmd))) {
1487 if (unlikely(pmd_trans_splitting(*pmd))) {
1488 spin_unlock(&mm->page_table_lock);
1489 wait_split_huge_page(vma->anon_vma, pmd);
1490 } else {
1491 page = follow_trans_huge_pmd(mm, address,
1492 pmd, flags);
1493 spin_unlock(&mm->page_table_lock);
1494 goto out;
1495 }
1496 } else
1497 spin_unlock(&mm->page_table_lock);
1498 /* fall through */
1499 }
500d65d4 1500split_fallthrough:
aeed5fce
HD
1501 if (unlikely(pmd_bad(*pmd)))
1502 goto no_page_table;
1503
deceb6cd 1504 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1505
1506 pte = *ptep;
deceb6cd 1507 if (!pte_present(pte))
89f5b7da 1508 goto no_page;
deceb6cd
HD
1509 if ((flags & FOLL_WRITE) && !pte_write(pte))
1510 goto unlock;
a13ea5b7 1511
6aab341e 1512 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1513 if (unlikely(!page)) {
1514 if ((flags & FOLL_DUMP) ||
62eede62 1515 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1516 goto bad_page;
1517 page = pte_page(pte);
1518 }
1da177e4 1519
deceb6cd 1520 if (flags & FOLL_GET)
70b50f94 1521 get_page_foll(page);
deceb6cd
HD
1522 if (flags & FOLL_TOUCH) {
1523 if ((flags & FOLL_WRITE) &&
1524 !pte_dirty(pte) && !PageDirty(page))
1525 set_page_dirty(page);
bd775c42
KM
1526 /*
1527 * pte_mkyoung() would be more correct here, but atomic care
1528 * is needed to avoid losing the dirty bit: it is easier to use
1529 * mark_page_accessed().
1530 */
deceb6cd
HD
1531 mark_page_accessed(page);
1532 }
a1fde08c 1533 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1534 /*
1535 * The preliminary mapping check is mainly to avoid the
1536 * pointless overhead of lock_page on the ZERO_PAGE
1537 * which might bounce very badly if there is contention.
1538 *
1539 * If the page is already locked, we don't need to
1540 * handle it now - vmscan will handle it later if and
1541 * when it attempts to reclaim the page.
1542 */
1543 if (page->mapping && trylock_page(page)) {
1544 lru_add_drain(); /* push cached pages to LRU */
1545 /*
1546 * Because we lock page here and migration is
1547 * blocked by the pte's page reference, we need
1548 * only check for file-cache page truncation.
1549 */
1550 if (page->mapping)
1551 mlock_vma_page(page);
1552 unlock_page(page);
1553 }
1554 }
deceb6cd
HD
1555unlock:
1556 pte_unmap_unlock(ptep, ptl);
1da177e4 1557out:
deceb6cd 1558 return page;
1da177e4 1559
89f5b7da
LT
1560bad_page:
1561 pte_unmap_unlock(ptep, ptl);
1562 return ERR_PTR(-EFAULT);
1563
1564no_page:
1565 pte_unmap_unlock(ptep, ptl);
1566 if (!pte_none(pte))
1567 return page;
8e4b9a60 1568
deceb6cd
HD
1569no_page_table:
1570 /*
1571 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1572 * has touched so far, we don't want to allocate unnecessary pages or
1573 * page tables. Return error instead of NULL to skip handle_mm_fault,
1574 * then get_dump_page() will return NULL to leave a hole in the dump.
1575 * But we can only make this optimization where a hole would surely
1576 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1577 */
8e4b9a60
HD
1578 if ((flags & FOLL_DUMP) &&
1579 (!vma->vm_ops || !vma->vm_ops->fault))
1580 return ERR_PTR(-EFAULT);
deceb6cd 1581 return page;
1da177e4
LT
1582}
1583
95042f9e
LT
1584static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1585{
a09a79f6
MP
1586 return stack_guard_page_start(vma, addr) ||
1587 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1588}
1589
0014bd99
HY
1590/**
1591 * __get_user_pages() - pin user pages in memory
1592 * @tsk: task_struct of target task
1593 * @mm: mm_struct of target mm
1594 * @start: starting user address
1595 * @nr_pages: number of pages from start to pin
1596 * @gup_flags: flags modifying pin behaviour
1597 * @pages: array that receives pointers to the pages pinned.
1598 * Should be at least nr_pages long. Or NULL, if caller
1599 * only intends to ensure the pages are faulted in.
1600 * @vmas: array of pointers to vmas corresponding to each page.
1601 * Or NULL if the caller does not require them.
1602 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1603 *
1604 * Returns number of pages pinned. This may be fewer than the number
1605 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1606 * were pinned, returns -errno. Each page returned must be released
1607 * with a put_page() call when it is finished with. vmas will only
1608 * remain valid while mmap_sem is held.
1609 *
1610 * Must be called with mmap_sem held for read or write.
1611 *
1612 * __get_user_pages walks a process's page tables and takes a reference to
1613 * each struct page that each user address corresponds to at a given
1614 * instant. That is, it takes the page that would be accessed if a user
1615 * thread accesses the given user virtual address at that instant.
1616 *
1617 * This does not guarantee that the page exists in the user mappings when
1618 * __get_user_pages returns, and there may even be a completely different
1619 * page there in some cases (eg. if mmapped pagecache has been invalidated
1620 * and subsequently re faulted). However it does guarantee that the page
1621 * won't be freed completely. And mostly callers simply care that the page
1622 * contains data that was valid *at some point in time*. Typically, an IO
1623 * or similar operation cannot guarantee anything stronger anyway because
1624 * locks can't be held over the syscall boundary.
1625 *
1626 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1627 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1628 * appropriate) must be called after the page is finished with, and
1629 * before put_page is called.
1630 *
1631 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1632 * or mmap_sem contention, and if waiting is needed to pin all pages,
1633 * *@nonblocking will be set to 0.
1634 *
1635 * In most cases, get_user_pages or get_user_pages_fast should be used
1636 * instead of __get_user_pages. __get_user_pages should be used only if
1637 * you need some special @gup_flags.
1638 */
b291f000 1639int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1640 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1641 struct page **pages, struct vm_area_struct **vmas,
1642 int *nonblocking)
1da177e4
LT
1643{
1644 int i;
58fa879e 1645 unsigned long vm_flags;
1da177e4 1646
9d73777e 1647 if (nr_pages <= 0)
900cf086 1648 return 0;
58fa879e
HD
1649
1650 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1651
1da177e4
LT
1652 /*
1653 * Require read or write permissions.
58fa879e 1654 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1655 */
58fa879e
HD
1656 vm_flags = (gup_flags & FOLL_WRITE) ?
1657 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1658 vm_flags &= (gup_flags & FOLL_FORCE) ?
1659 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1660 i = 0;
1661
1662 do {
deceb6cd 1663 struct vm_area_struct *vma;
1da177e4
LT
1664
1665 vma = find_extend_vma(mm, start);
e7f22e20 1666 if (!vma && in_gate_area(mm, start)) {
1da177e4 1667 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1668 pgd_t *pgd;
1669 pud_t *pud;
1670 pmd_t *pmd;
1671 pte_t *pte;
b291f000
NP
1672
1673 /* user gate pages are read-only */
58fa879e 1674 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1675 return i ? : -EFAULT;
1676 if (pg > TASK_SIZE)
1677 pgd = pgd_offset_k(pg);
1678 else
1679 pgd = pgd_offset_gate(mm, pg);
1680 BUG_ON(pgd_none(*pgd));
1681 pud = pud_offset(pgd, pg);
1682 BUG_ON(pud_none(*pud));
1683 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1684 if (pmd_none(*pmd))
1685 return i ? : -EFAULT;
f66055ab 1686 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1687 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1688 if (pte_none(*pte)) {
1689 pte_unmap(pte);
1690 return i ? : -EFAULT;
1691 }
95042f9e 1692 vma = get_gate_vma(mm);
1da177e4 1693 if (pages) {
de51257a
HD
1694 struct page *page;
1695
95042f9e 1696 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1697 if (!page) {
1698 if (!(gup_flags & FOLL_DUMP) &&
1699 is_zero_pfn(pte_pfn(*pte)))
1700 page = pte_page(*pte);
1701 else {
1702 pte_unmap(pte);
1703 return i ? : -EFAULT;
1704 }
1705 }
6aab341e 1706 pages[i] = page;
de51257a 1707 get_page(page);
1da177e4
LT
1708 }
1709 pte_unmap(pte);
95042f9e 1710 goto next_page;
1da177e4
LT
1711 }
1712
b291f000
NP
1713 if (!vma ||
1714 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1715 !(vm_flags & vma->vm_flags))
1da177e4
LT
1716 return i ? : -EFAULT;
1717
2a15efc9
HD
1718 if (is_vm_hugetlb_page(vma)) {
1719 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1720 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1721 continue;
1722 }
deceb6cd 1723
1da177e4 1724 do {
08ef4729 1725 struct page *page;
58fa879e 1726 unsigned int foll_flags = gup_flags;
1da177e4 1727
462e00cc 1728 /*
4779280d 1729 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1730 * pages and potentially allocating memory.
462e00cc 1731 */
1c3aff1c 1732 if (unlikely(fatal_signal_pending(current)))
4779280d 1733 return i ? i : -ERESTARTSYS;
462e00cc 1734
deceb6cd 1735 cond_resched();
6aab341e 1736 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1737 int ret;
53a7706d
ML
1738 unsigned int fault_flags = 0;
1739
a09a79f6
MP
1740 /* For mlock, just skip the stack guard page. */
1741 if (foll_flags & FOLL_MLOCK) {
1742 if (stack_guard_page(vma, start))
1743 goto next_page;
1744 }
53a7706d
ML
1745 if (foll_flags & FOLL_WRITE)
1746 fault_flags |= FAULT_FLAG_WRITE;
1747 if (nonblocking)
1748 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1749 if (foll_flags & FOLL_NOWAIT)
1750 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1751
d26ed650 1752 ret = handle_mm_fault(mm, vma, start,
53a7706d 1753 fault_flags);
d26ed650 1754
83c54070
NP
1755 if (ret & VM_FAULT_ERROR) {
1756 if (ret & VM_FAULT_OOM)
1757 return i ? i : -ENOMEM;
69ebb83e
HY
1758 if (ret & (VM_FAULT_HWPOISON |
1759 VM_FAULT_HWPOISON_LARGE)) {
1760 if (i)
1761 return i;
1762 else if (gup_flags & FOLL_HWPOISON)
1763 return -EHWPOISON;
1764 else
1765 return -EFAULT;
1766 }
1767 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1768 return i ? i : -EFAULT;
1769 BUG();
1770 }
e7f22e20
SW
1771
1772 if (tsk) {
1773 if (ret & VM_FAULT_MAJOR)
1774 tsk->maj_flt++;
1775 else
1776 tsk->min_flt++;
1777 }
83c54070 1778
53a7706d 1779 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1780 if (nonblocking)
1781 *nonblocking = 0;
53a7706d
ML
1782 return i;
1783 }
1784
a68d2ebc 1785 /*
83c54070
NP
1786 * The VM_FAULT_WRITE bit tells us that
1787 * do_wp_page has broken COW when necessary,
1788 * even if maybe_mkwrite decided not to set
1789 * pte_write. We can thus safely do subsequent
878b63ac
HD
1790 * page lookups as if they were reads. But only
1791 * do so when looping for pte_write is futile:
1792 * in some cases userspace may also be wanting
1793 * to write to the gotten user page, which a
1794 * read fault here might prevent (a readonly
1795 * page might get reCOWed by userspace write).
a68d2ebc 1796 */
878b63ac
HD
1797 if ((ret & VM_FAULT_WRITE) &&
1798 !(vma->vm_flags & VM_WRITE))
deceb6cd 1799 foll_flags &= ~FOLL_WRITE;
83c54070 1800
7f7bbbe5 1801 cond_resched();
1da177e4 1802 }
89f5b7da
LT
1803 if (IS_ERR(page))
1804 return i ? i : PTR_ERR(page);
1da177e4 1805 if (pages) {
08ef4729 1806 pages[i] = page;
03beb076 1807
a6f36be3 1808 flush_anon_page(vma, page, start);
08ef4729 1809 flush_dcache_page(page);
1da177e4 1810 }
95042f9e 1811next_page:
1da177e4
LT
1812 if (vmas)
1813 vmas[i] = vma;
1814 i++;
1815 start += PAGE_SIZE;
9d73777e
PZ
1816 nr_pages--;
1817 } while (nr_pages && start < vma->vm_end);
1818 } while (nr_pages);
1da177e4
LT
1819 return i;
1820}
0014bd99 1821EXPORT_SYMBOL(__get_user_pages);
b291f000 1822
2efaca92
BH
1823/*
1824 * fixup_user_fault() - manually resolve a user page fault
1825 * @tsk: the task_struct to use for page fault accounting, or
1826 * NULL if faults are not to be recorded.
1827 * @mm: mm_struct of target mm
1828 * @address: user address
1829 * @fault_flags:flags to pass down to handle_mm_fault()
1830 *
1831 * This is meant to be called in the specific scenario where for locking reasons
1832 * we try to access user memory in atomic context (within a pagefault_disable()
1833 * section), this returns -EFAULT, and we want to resolve the user fault before
1834 * trying again.
1835 *
1836 * Typically this is meant to be used by the futex code.
1837 *
1838 * The main difference with get_user_pages() is that this function will
1839 * unconditionally call handle_mm_fault() which will in turn perform all the
1840 * necessary SW fixup of the dirty and young bits in the PTE, while
1841 * handle_mm_fault() only guarantees to update these in the struct page.
1842 *
1843 * This is important for some architectures where those bits also gate the
1844 * access permission to the page because they are maintained in software. On
1845 * such architectures, gup() will not be enough to make a subsequent access
1846 * succeed.
1847 *
1848 * This should be called with the mm_sem held for read.
1849 */
1850int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1851 unsigned long address, unsigned int fault_flags)
1852{
1853 struct vm_area_struct *vma;
1854 int ret;
1855
1856 vma = find_extend_vma(mm, address);
1857 if (!vma || address < vma->vm_start)
1858 return -EFAULT;
1859
1860 ret = handle_mm_fault(mm, vma, address, fault_flags);
1861 if (ret & VM_FAULT_ERROR) {
1862 if (ret & VM_FAULT_OOM)
1863 return -ENOMEM;
1864 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1865 return -EHWPOISON;
1866 if (ret & VM_FAULT_SIGBUS)
1867 return -EFAULT;
1868 BUG();
1869 }
1870 if (tsk) {
1871 if (ret & VM_FAULT_MAJOR)
1872 tsk->maj_flt++;
1873 else
1874 tsk->min_flt++;
1875 }
1876 return 0;
1877}
1878
1879/*
d2bf6be8 1880 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1881 * @tsk: the task_struct to use for page fault accounting, or
1882 * NULL if faults are not to be recorded.
d2bf6be8
NP
1883 * @mm: mm_struct of target mm
1884 * @start: starting user address
9d73777e 1885 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1886 * @write: whether pages will be written to by the caller
1887 * @force: whether to force write access even if user mapping is
1888 * readonly. This will result in the page being COWed even
1889 * in MAP_SHARED mappings. You do not want this.
1890 * @pages: array that receives pointers to the pages pinned.
1891 * Should be at least nr_pages long. Or NULL, if caller
1892 * only intends to ensure the pages are faulted in.
1893 * @vmas: array of pointers to vmas corresponding to each page.
1894 * Or NULL if the caller does not require them.
1895 *
1896 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1897 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1898 * were pinned, returns -errno. Each page returned must be released
1899 * with a put_page() call when it is finished with. vmas will only
1900 * remain valid while mmap_sem is held.
1901 *
1902 * Must be called with mmap_sem held for read or write.
1903 *
1904 * get_user_pages walks a process's page tables and takes a reference to
1905 * each struct page that each user address corresponds to at a given
1906 * instant. That is, it takes the page that would be accessed if a user
1907 * thread accesses the given user virtual address at that instant.
1908 *
1909 * This does not guarantee that the page exists in the user mappings when
1910 * get_user_pages returns, and there may even be a completely different
1911 * page there in some cases (eg. if mmapped pagecache has been invalidated
1912 * and subsequently re faulted). However it does guarantee that the page
1913 * won't be freed completely. And mostly callers simply care that the page
1914 * contains data that was valid *at some point in time*. Typically, an IO
1915 * or similar operation cannot guarantee anything stronger anyway because
1916 * locks can't be held over the syscall boundary.
1917 *
1918 * If write=0, the page must not be written to. If the page is written to,
1919 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1920 * after the page is finished with, and before put_page is called.
1921 *
1922 * get_user_pages is typically used for fewer-copy IO operations, to get a
1923 * handle on the memory by some means other than accesses via the user virtual
1924 * addresses. The pages may be submitted for DMA to devices or accessed via
1925 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1926 * use the correct cache flushing APIs.
1927 *
1928 * See also get_user_pages_fast, for performance critical applications.
1929 */
b291f000 1930int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1931 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1932 struct page **pages, struct vm_area_struct **vmas)
1933{
58fa879e 1934 int flags = FOLL_TOUCH;
b291f000 1935
58fa879e
HD
1936 if (pages)
1937 flags |= FOLL_GET;
b291f000 1938 if (write)
58fa879e 1939 flags |= FOLL_WRITE;
b291f000 1940 if (force)
58fa879e 1941 flags |= FOLL_FORCE;
b291f000 1942
53a7706d
ML
1943 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1944 NULL);
b291f000 1945}
1da177e4
LT
1946EXPORT_SYMBOL(get_user_pages);
1947
f3e8fccd
HD
1948/**
1949 * get_dump_page() - pin user page in memory while writing it to core dump
1950 * @addr: user address
1951 *
1952 * Returns struct page pointer of user page pinned for dump,
1953 * to be freed afterwards by page_cache_release() or put_page().
1954 *
1955 * Returns NULL on any kind of failure - a hole must then be inserted into
1956 * the corefile, to preserve alignment with its headers; and also returns
1957 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1958 * allowing a hole to be left in the corefile to save diskspace.
1959 *
1960 * Called without mmap_sem, but after all other threads have been killed.
1961 */
1962#ifdef CONFIG_ELF_CORE
1963struct page *get_dump_page(unsigned long addr)
1964{
1965 struct vm_area_struct *vma;
1966 struct page *page;
1967
1968 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
1969 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1970 NULL) < 1)
f3e8fccd 1971 return NULL;
f3e8fccd
HD
1972 flush_cache_page(vma, addr, page_to_pfn(page));
1973 return page;
1974}
1975#endif /* CONFIG_ELF_CORE */
1976
25ca1d6c 1977pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1978 spinlock_t **ptl)
c9cfcddf
LT
1979{
1980 pgd_t * pgd = pgd_offset(mm, addr);
1981 pud_t * pud = pud_alloc(mm, pgd, addr);
1982 if (pud) {
49c91fb0 1983 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1984 if (pmd) {
1985 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1986 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1987 }
c9cfcddf
LT
1988 }
1989 return NULL;
1990}
1991
238f58d8
LT
1992/*
1993 * This is the old fallback for page remapping.
1994 *
1995 * For historical reasons, it only allows reserved pages. Only
1996 * old drivers should use this, and they needed to mark their
1997 * pages reserved for the old functions anyway.
1998 */
423bad60
NP
1999static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2000 struct page *page, pgprot_t prot)
238f58d8 2001{
423bad60 2002 struct mm_struct *mm = vma->vm_mm;
238f58d8 2003 int retval;
c9cfcddf 2004 pte_t *pte;
8a9f3ccd
BS
2005 spinlock_t *ptl;
2006
238f58d8 2007 retval = -EINVAL;
a145dd41 2008 if (PageAnon(page))
5b4e655e 2009 goto out;
238f58d8
LT
2010 retval = -ENOMEM;
2011 flush_dcache_page(page);
c9cfcddf 2012 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2013 if (!pte)
5b4e655e 2014 goto out;
238f58d8
LT
2015 retval = -EBUSY;
2016 if (!pte_none(*pte))
2017 goto out_unlock;
2018
2019 /* Ok, finally just insert the thing.. */
2020 get_page(page);
34e55232 2021 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2022 page_add_file_rmap(page);
2023 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2024
2025 retval = 0;
8a9f3ccd
BS
2026 pte_unmap_unlock(pte, ptl);
2027 return retval;
238f58d8
LT
2028out_unlock:
2029 pte_unmap_unlock(pte, ptl);
2030out:
2031 return retval;
2032}
2033
bfa5bf6d
REB
2034/**
2035 * vm_insert_page - insert single page into user vma
2036 * @vma: user vma to map to
2037 * @addr: target user address of this page
2038 * @page: source kernel page
2039 *
a145dd41
LT
2040 * This allows drivers to insert individual pages they've allocated
2041 * into a user vma.
2042 *
2043 * The page has to be a nice clean _individual_ kernel allocation.
2044 * If you allocate a compound page, you need to have marked it as
2045 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2046 * (see split_page()).
a145dd41
LT
2047 *
2048 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2049 * took an arbitrary page protection parameter. This doesn't allow
2050 * that. Your vma protection will have to be set up correctly, which
2051 * means that if you want a shared writable mapping, you'd better
2052 * ask for a shared writable mapping!
2053 *
2054 * The page does not need to be reserved.
2055 */
423bad60
NP
2056int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2057 struct page *page)
a145dd41
LT
2058{
2059 if (addr < vma->vm_start || addr >= vma->vm_end)
2060 return -EFAULT;
2061 if (!page_count(page))
2062 return -EINVAL;
4d7672b4 2063 vma->vm_flags |= VM_INSERTPAGE;
423bad60 2064 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2065}
e3c3374f 2066EXPORT_SYMBOL(vm_insert_page);
a145dd41 2067
423bad60
NP
2068static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2069 unsigned long pfn, pgprot_t prot)
2070{
2071 struct mm_struct *mm = vma->vm_mm;
2072 int retval;
2073 pte_t *pte, entry;
2074 spinlock_t *ptl;
2075
2076 retval = -ENOMEM;
2077 pte = get_locked_pte(mm, addr, &ptl);
2078 if (!pte)
2079 goto out;
2080 retval = -EBUSY;
2081 if (!pte_none(*pte))
2082 goto out_unlock;
2083
2084 /* Ok, finally just insert the thing.. */
2085 entry = pte_mkspecial(pfn_pte(pfn, prot));
2086 set_pte_at(mm, addr, pte, entry);
4b3073e1 2087 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2088
2089 retval = 0;
2090out_unlock:
2091 pte_unmap_unlock(pte, ptl);
2092out:
2093 return retval;
2094}
2095
e0dc0d8f
NP
2096/**
2097 * vm_insert_pfn - insert single pfn into user vma
2098 * @vma: user vma to map to
2099 * @addr: target user address of this page
2100 * @pfn: source kernel pfn
2101 *
2102 * Similar to vm_inert_page, this allows drivers to insert individual pages
2103 * they've allocated into a user vma. Same comments apply.
2104 *
2105 * This function should only be called from a vm_ops->fault handler, and
2106 * in that case the handler should return NULL.
0d71d10a
NP
2107 *
2108 * vma cannot be a COW mapping.
2109 *
2110 * As this is called only for pages that do not currently exist, we
2111 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2112 */
2113int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2114 unsigned long pfn)
e0dc0d8f 2115{
2ab64037 2116 int ret;
e4b866ed 2117 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2118 /*
2119 * Technically, architectures with pte_special can avoid all these
2120 * restrictions (same for remap_pfn_range). However we would like
2121 * consistency in testing and feature parity among all, so we should
2122 * try to keep these invariants in place for everybody.
2123 */
b379d790
JH
2124 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2125 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2126 (VM_PFNMAP|VM_MIXEDMAP));
2127 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2128 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2129
423bad60
NP
2130 if (addr < vma->vm_start || addr >= vma->vm_end)
2131 return -EFAULT;
e4b866ed 2132 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 2133 return -EINVAL;
2134
e4b866ed 2135 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2136
2137 if (ret)
2138 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2139
2140 return ret;
423bad60
NP
2141}
2142EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2143
423bad60
NP
2144int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2145 unsigned long pfn)
2146{
2147 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2148
423bad60
NP
2149 if (addr < vma->vm_start || addr >= vma->vm_end)
2150 return -EFAULT;
e0dc0d8f 2151
423bad60
NP
2152 /*
2153 * If we don't have pte special, then we have to use the pfn_valid()
2154 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2155 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2156 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2157 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2158 */
2159 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2160 struct page *page;
2161
2162 page = pfn_to_page(pfn);
2163 return insert_page(vma, addr, page, vma->vm_page_prot);
2164 }
2165 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2166}
423bad60 2167EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2168
1da177e4
LT
2169/*
2170 * maps a range of physical memory into the requested pages. the old
2171 * mappings are removed. any references to nonexistent pages results
2172 * in null mappings (currently treated as "copy-on-access")
2173 */
2174static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2175 unsigned long addr, unsigned long end,
2176 unsigned long pfn, pgprot_t prot)
2177{
2178 pte_t *pte;
c74df32c 2179 spinlock_t *ptl;
1da177e4 2180
c74df32c 2181 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2182 if (!pte)
2183 return -ENOMEM;
6606c3e0 2184 arch_enter_lazy_mmu_mode();
1da177e4
LT
2185 do {
2186 BUG_ON(!pte_none(*pte));
7e675137 2187 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2188 pfn++;
2189 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2190 arch_leave_lazy_mmu_mode();
c74df32c 2191 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2192 return 0;
2193}
2194
2195static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2196 unsigned long addr, unsigned long end,
2197 unsigned long pfn, pgprot_t prot)
2198{
2199 pmd_t *pmd;
2200 unsigned long next;
2201
2202 pfn -= addr >> PAGE_SHIFT;
2203 pmd = pmd_alloc(mm, pud, addr);
2204 if (!pmd)
2205 return -ENOMEM;
f66055ab 2206 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2207 do {
2208 next = pmd_addr_end(addr, end);
2209 if (remap_pte_range(mm, pmd, addr, next,
2210 pfn + (addr >> PAGE_SHIFT), prot))
2211 return -ENOMEM;
2212 } while (pmd++, addr = next, addr != end);
2213 return 0;
2214}
2215
2216static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2217 unsigned long addr, unsigned long end,
2218 unsigned long pfn, pgprot_t prot)
2219{
2220 pud_t *pud;
2221 unsigned long next;
2222
2223 pfn -= addr >> PAGE_SHIFT;
2224 pud = pud_alloc(mm, pgd, addr);
2225 if (!pud)
2226 return -ENOMEM;
2227 do {
2228 next = pud_addr_end(addr, end);
2229 if (remap_pmd_range(mm, pud, addr, next,
2230 pfn + (addr >> PAGE_SHIFT), prot))
2231 return -ENOMEM;
2232 } while (pud++, addr = next, addr != end);
2233 return 0;
2234}
2235
bfa5bf6d
REB
2236/**
2237 * remap_pfn_range - remap kernel memory to userspace
2238 * @vma: user vma to map to
2239 * @addr: target user address to start at
2240 * @pfn: physical address of kernel memory
2241 * @size: size of map area
2242 * @prot: page protection flags for this mapping
2243 *
2244 * Note: this is only safe if the mm semaphore is held when called.
2245 */
1da177e4
LT
2246int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2247 unsigned long pfn, unsigned long size, pgprot_t prot)
2248{
2249 pgd_t *pgd;
2250 unsigned long next;
2d15cab8 2251 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2252 struct mm_struct *mm = vma->vm_mm;
2253 int err;
2254
2255 /*
2256 * Physically remapped pages are special. Tell the
2257 * rest of the world about it:
2258 * VM_IO tells people not to look at these pages
2259 * (accesses can have side effects).
0b14c179
HD
2260 * VM_RESERVED is specified all over the place, because
2261 * in 2.4 it kept swapout's vma scan off this vma; but
2262 * in 2.6 the LRU scan won't even find its pages, so this
2263 * flag means no more than count its pages in reserved_vm,
2264 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
2265 * VM_PFNMAP tells the core MM that the base pages are just
2266 * raw PFN mappings, and do not have a "struct page" associated
2267 * with them.
fb155c16
LT
2268 *
2269 * There's a horrible special case to handle copy-on-write
2270 * behaviour that some programs depend on. We mark the "original"
2271 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 2272 */
4bb9c5c0 2273 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 2274 vma->vm_pgoff = pfn;
895791da 2275 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 2276 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 2277 return -EINVAL;
fb155c16 2278
6aab341e 2279 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 2280
e4b866ed 2281 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 2282 if (err) {
2283 /*
2284 * To indicate that track_pfn related cleanup is not
2285 * needed from higher level routine calling unmap_vmas
2286 */
2287 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 2288 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 2289 return -EINVAL;
a3670613 2290 }
2ab64037 2291
1da177e4
LT
2292 BUG_ON(addr >= end);
2293 pfn -= addr >> PAGE_SHIFT;
2294 pgd = pgd_offset(mm, addr);
2295 flush_cache_range(vma, addr, end);
1da177e4
LT
2296 do {
2297 next = pgd_addr_end(addr, end);
2298 err = remap_pud_range(mm, pgd, addr, next,
2299 pfn + (addr >> PAGE_SHIFT), prot);
2300 if (err)
2301 break;
2302 } while (pgd++, addr = next, addr != end);
2ab64037 2303
2304 if (err)
2305 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2306
1da177e4
LT
2307 return err;
2308}
2309EXPORT_SYMBOL(remap_pfn_range);
2310
aee16b3c
JF
2311static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2312 unsigned long addr, unsigned long end,
2313 pte_fn_t fn, void *data)
2314{
2315 pte_t *pte;
2316 int err;
2f569afd 2317 pgtable_t token;
94909914 2318 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2319
2320 pte = (mm == &init_mm) ?
2321 pte_alloc_kernel(pmd, addr) :
2322 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2323 if (!pte)
2324 return -ENOMEM;
2325
2326 BUG_ON(pmd_huge(*pmd));
2327
38e0edb1
JF
2328 arch_enter_lazy_mmu_mode();
2329
2f569afd 2330 token = pmd_pgtable(*pmd);
aee16b3c
JF
2331
2332 do {
c36987e2 2333 err = fn(pte++, token, addr, data);
aee16b3c
JF
2334 if (err)
2335 break;
c36987e2 2336 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2337
38e0edb1
JF
2338 arch_leave_lazy_mmu_mode();
2339
aee16b3c
JF
2340 if (mm != &init_mm)
2341 pte_unmap_unlock(pte-1, ptl);
2342 return err;
2343}
2344
2345static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2346 unsigned long addr, unsigned long end,
2347 pte_fn_t fn, void *data)
2348{
2349 pmd_t *pmd;
2350 unsigned long next;
2351 int err;
2352
ceb86879
AK
2353 BUG_ON(pud_huge(*pud));
2354
aee16b3c
JF
2355 pmd = pmd_alloc(mm, pud, addr);
2356 if (!pmd)
2357 return -ENOMEM;
2358 do {
2359 next = pmd_addr_end(addr, end);
2360 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2361 if (err)
2362 break;
2363 } while (pmd++, addr = next, addr != end);
2364 return err;
2365}
2366
2367static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2368 unsigned long addr, unsigned long end,
2369 pte_fn_t fn, void *data)
2370{
2371 pud_t *pud;
2372 unsigned long next;
2373 int err;
2374
2375 pud = pud_alloc(mm, pgd, addr);
2376 if (!pud)
2377 return -ENOMEM;
2378 do {
2379 next = pud_addr_end(addr, end);
2380 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2381 if (err)
2382 break;
2383 } while (pud++, addr = next, addr != end);
2384 return err;
2385}
2386
2387/*
2388 * Scan a region of virtual memory, filling in page tables as necessary
2389 * and calling a provided function on each leaf page table.
2390 */
2391int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2392 unsigned long size, pte_fn_t fn, void *data)
2393{
2394 pgd_t *pgd;
2395 unsigned long next;
57250a5b 2396 unsigned long end = addr + size;
aee16b3c
JF
2397 int err;
2398
2399 BUG_ON(addr >= end);
2400 pgd = pgd_offset(mm, addr);
2401 do {
2402 next = pgd_addr_end(addr, end);
2403 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2404 if (err)
2405 break;
2406 } while (pgd++, addr = next, addr != end);
57250a5b 2407
aee16b3c
JF
2408 return err;
2409}
2410EXPORT_SYMBOL_GPL(apply_to_page_range);
2411
8f4e2101
HD
2412/*
2413 * handle_pte_fault chooses page fault handler according to an entry
2414 * which was read non-atomically. Before making any commitment, on
2415 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2416 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2417 * must check under lock before unmapping the pte and proceeding
2418 * (but do_wp_page is only called after already making such a check;
a335b2e1 2419 * and do_anonymous_page can safely check later on).
8f4e2101 2420 */
4c21e2f2 2421static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2422 pte_t *page_table, pte_t orig_pte)
2423{
2424 int same = 1;
2425#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2426 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2427 spinlock_t *ptl = pte_lockptr(mm, pmd);
2428 spin_lock(ptl);
8f4e2101 2429 same = pte_same(*page_table, orig_pte);
4c21e2f2 2430 spin_unlock(ptl);
8f4e2101
HD
2431 }
2432#endif
2433 pte_unmap(page_table);
2434 return same;
2435}
2436
9de455b2 2437static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2438{
2439 /*
2440 * If the source page was a PFN mapping, we don't have
2441 * a "struct page" for it. We do a best-effort copy by
2442 * just copying from the original user address. If that
2443 * fails, we just zero-fill it. Live with it.
2444 */
2445 if (unlikely(!src)) {
2446 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
2447 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2448
2449 /*
2450 * This really shouldn't fail, because the page is there
2451 * in the page tables. But it might just be unreadable,
2452 * in which case we just give up and fill the result with
2453 * zeroes.
2454 */
2455 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2456 clear_page(kaddr);
6aab341e 2457 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 2458 flush_dcache_page(dst);
0ed361de
NP
2459 } else
2460 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2461}
2462
1da177e4
LT
2463/*
2464 * This routine handles present pages, when users try to write
2465 * to a shared page. It is done by copying the page to a new address
2466 * and decrementing the shared-page counter for the old page.
2467 *
1da177e4
LT
2468 * Note that this routine assumes that the protection checks have been
2469 * done by the caller (the low-level page fault routine in most cases).
2470 * Thus we can safely just mark it writable once we've done any necessary
2471 * COW.
2472 *
2473 * We also mark the page dirty at this point even though the page will
2474 * change only once the write actually happens. This avoids a few races,
2475 * and potentially makes it more efficient.
2476 *
8f4e2101
HD
2477 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2478 * but allow concurrent faults), with pte both mapped and locked.
2479 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2480 */
65500d23
HD
2481static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2482 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2483 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2484 __releases(ptl)
1da177e4 2485{
e5bbe4df 2486 struct page *old_page, *new_page;
1da177e4 2487 pte_t entry;
b009c024 2488 int ret = 0;
a200ee18 2489 int page_mkwrite = 0;
d08b3851 2490 struct page *dirty_page = NULL;
1da177e4 2491
6aab341e 2492 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2493 if (!old_page) {
2494 /*
2495 * VM_MIXEDMAP !pfn_valid() case
2496 *
2497 * We should not cow pages in a shared writeable mapping.
2498 * Just mark the pages writable as we can't do any dirty
2499 * accounting on raw pfn maps.
2500 */
2501 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2502 (VM_WRITE|VM_SHARED))
2503 goto reuse;
6aab341e 2504 goto gotten;
251b97f5 2505 }
1da177e4 2506
d08b3851 2507 /*
ee6a6457
PZ
2508 * Take out anonymous pages first, anonymous shared vmas are
2509 * not dirty accountable.
d08b3851 2510 */
9a840895 2511 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2512 if (!trylock_page(old_page)) {
2513 page_cache_get(old_page);
2514 pte_unmap_unlock(page_table, ptl);
2515 lock_page(old_page);
2516 page_table = pte_offset_map_lock(mm, pmd, address,
2517 &ptl);
2518 if (!pte_same(*page_table, orig_pte)) {
2519 unlock_page(old_page);
ab967d86
HD
2520 goto unlock;
2521 }
2522 page_cache_release(old_page);
ee6a6457 2523 }
b009c024 2524 if (reuse_swap_page(old_page)) {
c44b6743
RR
2525 /*
2526 * The page is all ours. Move it to our anon_vma so
2527 * the rmap code will not search our parent or siblings.
2528 * Protected against the rmap code by the page lock.
2529 */
2530 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2531 unlock_page(old_page);
2532 goto reuse;
2533 }
ab967d86 2534 unlock_page(old_page);
ee6a6457 2535 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2536 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2537 /*
2538 * Only catch write-faults on shared writable pages,
2539 * read-only shared pages can get COWed by
2540 * get_user_pages(.write=1, .force=1).
2541 */
9637a5ef 2542 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2543 struct vm_fault vmf;
2544 int tmp;
2545
2546 vmf.virtual_address = (void __user *)(address &
2547 PAGE_MASK);
2548 vmf.pgoff = old_page->index;
2549 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2550 vmf.page = old_page;
2551
9637a5ef
DH
2552 /*
2553 * Notify the address space that the page is about to
2554 * become writable so that it can prohibit this or wait
2555 * for the page to get into an appropriate state.
2556 *
2557 * We do this without the lock held, so that it can
2558 * sleep if it needs to.
2559 */
2560 page_cache_get(old_page);
2561 pte_unmap_unlock(page_table, ptl);
2562
c2ec175c
NP
2563 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2564 if (unlikely(tmp &
2565 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2566 ret = tmp;
9637a5ef 2567 goto unwritable_page;
c2ec175c 2568 }
b827e496
NP
2569 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2570 lock_page(old_page);
2571 if (!old_page->mapping) {
2572 ret = 0; /* retry the fault */
2573 unlock_page(old_page);
2574 goto unwritable_page;
2575 }
2576 } else
2577 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2578
9637a5ef
DH
2579 /*
2580 * Since we dropped the lock we need to revalidate
2581 * the PTE as someone else may have changed it. If
2582 * they did, we just return, as we can count on the
2583 * MMU to tell us if they didn't also make it writable.
2584 */
2585 page_table = pte_offset_map_lock(mm, pmd, address,
2586 &ptl);
b827e496
NP
2587 if (!pte_same(*page_table, orig_pte)) {
2588 unlock_page(old_page);
9637a5ef 2589 goto unlock;
b827e496 2590 }
a200ee18
PZ
2591
2592 page_mkwrite = 1;
1da177e4 2593 }
d08b3851
PZ
2594 dirty_page = old_page;
2595 get_page(dirty_page);
9637a5ef 2596
251b97f5 2597reuse:
9637a5ef
DH
2598 flush_cache_page(vma, address, pte_pfn(orig_pte));
2599 entry = pte_mkyoung(orig_pte);
2600 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2601 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2602 update_mmu_cache(vma, address, page_table);
72ddc8f7 2603 pte_unmap_unlock(page_table, ptl);
9637a5ef 2604 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2605
2606 if (!dirty_page)
2607 return ret;
2608
2609 /*
2610 * Yes, Virginia, this is actually required to prevent a race
2611 * with clear_page_dirty_for_io() from clearing the page dirty
2612 * bit after it clear all dirty ptes, but before a racing
2613 * do_wp_page installs a dirty pte.
2614 *
a335b2e1 2615 * __do_fault is protected similarly.
72ddc8f7
ML
2616 */
2617 if (!page_mkwrite) {
2618 wait_on_page_locked(dirty_page);
2619 set_page_dirty_balance(dirty_page, page_mkwrite);
2620 }
2621 put_page(dirty_page);
2622 if (page_mkwrite) {
2623 struct address_space *mapping = dirty_page->mapping;
2624
2625 set_page_dirty(dirty_page);
2626 unlock_page(dirty_page);
2627 page_cache_release(dirty_page);
2628 if (mapping) {
2629 /*
2630 * Some device drivers do not set page.mapping
2631 * but still dirty their pages
2632 */
2633 balance_dirty_pages_ratelimited(mapping);
2634 }
2635 }
2636
2637 /* file_update_time outside page_lock */
2638 if (vma->vm_file)
2639 file_update_time(vma->vm_file);
2640
2641 return ret;
1da177e4 2642 }
1da177e4
LT
2643
2644 /*
2645 * Ok, we need to copy. Oh, well..
2646 */
b5810039 2647 page_cache_get(old_page);
920fc356 2648gotten:
8f4e2101 2649 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2650
2651 if (unlikely(anon_vma_prepare(vma)))
65500d23 2652 goto oom;
a13ea5b7 2653
62eede62 2654 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2655 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2656 if (!new_page)
2657 goto oom;
2658 } else {
2659 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2660 if (!new_page)
2661 goto oom;
2662 cow_user_page(new_page, old_page, address, vma);
2663 }
2664 __SetPageUptodate(new_page);
2665
2c26fdd7 2666 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2667 goto oom_free_new;
2668
1da177e4
LT
2669 /*
2670 * Re-check the pte - we dropped the lock
2671 */
8f4e2101 2672 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2673 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2674 if (old_page) {
920fc356 2675 if (!PageAnon(old_page)) {
34e55232
KH
2676 dec_mm_counter_fast(mm, MM_FILEPAGES);
2677 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2678 }
2679 } else
34e55232 2680 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2681 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2682 entry = mk_pte(new_page, vma->vm_page_prot);
2683 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2684 /*
2685 * Clear the pte entry and flush it first, before updating the
2686 * pte with the new entry. This will avoid a race condition
2687 * seen in the presence of one thread doing SMC and another
2688 * thread doing COW.
2689 */
828502d3 2690 ptep_clear_flush(vma, address, page_table);
9617d95e 2691 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2692 /*
2693 * We call the notify macro here because, when using secondary
2694 * mmu page tables (such as kvm shadow page tables), we want the
2695 * new page to be mapped directly into the secondary page table.
2696 */
2697 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2698 update_mmu_cache(vma, address, page_table);
945754a1
NP
2699 if (old_page) {
2700 /*
2701 * Only after switching the pte to the new page may
2702 * we remove the mapcount here. Otherwise another
2703 * process may come and find the rmap count decremented
2704 * before the pte is switched to the new page, and
2705 * "reuse" the old page writing into it while our pte
2706 * here still points into it and can be read by other
2707 * threads.
2708 *
2709 * The critical issue is to order this
2710 * page_remove_rmap with the ptp_clear_flush above.
2711 * Those stores are ordered by (if nothing else,)
2712 * the barrier present in the atomic_add_negative
2713 * in page_remove_rmap.
2714 *
2715 * Then the TLB flush in ptep_clear_flush ensures that
2716 * no process can access the old page before the
2717 * decremented mapcount is visible. And the old page
2718 * cannot be reused until after the decremented
2719 * mapcount is visible. So transitively, TLBs to
2720 * old page will be flushed before it can be reused.
2721 */
edc315fd 2722 page_remove_rmap(old_page);
945754a1
NP
2723 }
2724
1da177e4
LT
2725 /* Free the old page.. */
2726 new_page = old_page;
f33ea7f4 2727 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2728 } else
2729 mem_cgroup_uncharge_page(new_page);
2730
920fc356
HD
2731 if (new_page)
2732 page_cache_release(new_page);
65500d23 2733unlock:
8f4e2101 2734 pte_unmap_unlock(page_table, ptl);
e15f8c01
ML
2735 if (old_page) {
2736 /*
2737 * Don't let another task, with possibly unlocked vma,
2738 * keep the mlocked page.
2739 */
2740 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2741 lock_page(old_page); /* LRU manipulation */
2742 munlock_vma_page(old_page);
2743 unlock_page(old_page);
2744 }
2745 page_cache_release(old_page);
2746 }
f33ea7f4 2747 return ret;
8a9f3ccd 2748oom_free_new:
6dbf6d3b 2749 page_cache_release(new_page);
65500d23 2750oom:
b827e496
NP
2751 if (old_page) {
2752 if (page_mkwrite) {
2753 unlock_page(old_page);
2754 page_cache_release(old_page);
2755 }
920fc356 2756 page_cache_release(old_page);
b827e496 2757 }
1da177e4 2758 return VM_FAULT_OOM;
9637a5ef
DH
2759
2760unwritable_page:
2761 page_cache_release(old_page);
c2ec175c 2762 return ret;
1da177e4
LT
2763}
2764
97a89413 2765static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2766 unsigned long start_addr, unsigned long end_addr,
2767 struct zap_details *details)
2768{
97a89413 2769 zap_page_range(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2770}
2771
2772static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2773 struct zap_details *details)
2774{
2775 struct vm_area_struct *vma;
2776 struct prio_tree_iter iter;
2777 pgoff_t vba, vea, zba, zea;
2778
1da177e4
LT
2779 vma_prio_tree_foreach(vma, &iter, root,
2780 details->first_index, details->last_index) {
1da177e4
LT
2781
2782 vba = vma->vm_pgoff;
2783 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2784 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2785 zba = details->first_index;
2786 if (zba < vba)
2787 zba = vba;
2788 zea = details->last_index;
2789 if (zea > vea)
2790 zea = vea;
2791
97a89413 2792 unmap_mapping_range_vma(vma,
1da177e4
LT
2793 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2794 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2795 details);
1da177e4
LT
2796 }
2797}
2798
2799static inline void unmap_mapping_range_list(struct list_head *head,
2800 struct zap_details *details)
2801{
2802 struct vm_area_struct *vma;
2803
2804 /*
2805 * In nonlinear VMAs there is no correspondence between virtual address
2806 * offset and file offset. So we must perform an exhaustive search
2807 * across *all* the pages in each nonlinear VMA, not just the pages
2808 * whose virtual address lies outside the file truncation point.
2809 */
1da177e4 2810 list_for_each_entry(vma, head, shared.vm_set.list) {
1da177e4 2811 details->nonlinear_vma = vma;
97a89413 2812 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2813 }
2814}
2815
2816/**
72fd4a35 2817 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2818 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2819 * @holebegin: byte in first page to unmap, relative to the start of
2820 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2821 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2822 * must keep the partial page. In contrast, we must get rid of
2823 * partial pages.
2824 * @holelen: size of prospective hole in bytes. This will be rounded
2825 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2826 * end of the file.
2827 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2828 * but 0 when invalidating pagecache, don't throw away private data.
2829 */
2830void unmap_mapping_range(struct address_space *mapping,
2831 loff_t const holebegin, loff_t const holelen, int even_cows)
2832{
2833 struct zap_details details;
2834 pgoff_t hba = holebegin >> PAGE_SHIFT;
2835 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2836
2837 /* Check for overflow. */
2838 if (sizeof(holelen) > sizeof(hlen)) {
2839 long long holeend =
2840 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2841 if (holeend & ~(long long)ULONG_MAX)
2842 hlen = ULONG_MAX - hba + 1;
2843 }
2844
2845 details.check_mapping = even_cows? NULL: mapping;
2846 details.nonlinear_vma = NULL;
2847 details.first_index = hba;
2848 details.last_index = hba + hlen - 1;
2849 if (details.last_index < details.first_index)
2850 details.last_index = ULONG_MAX;
1da177e4 2851
1da177e4 2852
3d48ae45 2853 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
2854 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2855 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2856 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2857 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2858 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2859}
2860EXPORT_SYMBOL(unmap_mapping_range);
2861
1da177e4 2862/*
8f4e2101
HD
2863 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2864 * but allow concurrent faults), and pte mapped but not yet locked.
2865 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2866 */
65500d23
HD
2867static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2868 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2869 unsigned int flags, pte_t orig_pte)
1da177e4 2870{
8f4e2101 2871 spinlock_t *ptl;
4969c119 2872 struct page *page, *swapcache = NULL;
65500d23 2873 swp_entry_t entry;
1da177e4 2874 pte_t pte;
d065bd81 2875 int locked;
56039efa 2876 struct mem_cgroup *ptr;
ad8c2ee8 2877 int exclusive = 0;
83c54070 2878 int ret = 0;
1da177e4 2879
4c21e2f2 2880 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2881 goto out;
65500d23
HD
2882
2883 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2884 if (unlikely(non_swap_entry(entry))) {
2885 if (is_migration_entry(entry)) {
2886 migration_entry_wait(mm, pmd, address);
2887 } else if (is_hwpoison_entry(entry)) {
2888 ret = VM_FAULT_HWPOISON;
2889 } else {
2890 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2891 ret = VM_FAULT_SIGBUS;
d1737fdb 2892 }
0697212a
CL
2893 goto out;
2894 }
0ff92245 2895 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2896 page = lookup_swap_cache(entry);
2897 if (!page) {
a5c9b696 2898 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2899 page = swapin_readahead(entry,
2900 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2901 if (!page) {
2902 /*
8f4e2101
HD
2903 * Back out if somebody else faulted in this pte
2904 * while we released the pte lock.
1da177e4 2905 */
8f4e2101 2906 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2907 if (likely(pte_same(*page_table, orig_pte)))
2908 ret = VM_FAULT_OOM;
0ff92245 2909 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2910 goto unlock;
1da177e4
LT
2911 }
2912
2913 /* Had to read the page from swap area: Major fault */
2914 ret = VM_FAULT_MAJOR;
f8891e5e 2915 count_vm_event(PGMAJFAULT);
456f998e 2916 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2917 } else if (PageHWPoison(page)) {
71f72525
WF
2918 /*
2919 * hwpoisoned dirty swapcache pages are kept for killing
2920 * owner processes (which may be unknown at hwpoison time)
2921 */
d1737fdb
AK
2922 ret = VM_FAULT_HWPOISON;
2923 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2924 goto out_release;
1da177e4
LT
2925 }
2926
d065bd81 2927 locked = lock_page_or_retry(page, mm, flags);
073e587e 2928 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2929 if (!locked) {
2930 ret |= VM_FAULT_RETRY;
2931 goto out_release;
2932 }
073e587e 2933
4969c119 2934 /*
31c4a3d3
HD
2935 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2936 * release the swapcache from under us. The page pin, and pte_same
2937 * test below, are not enough to exclude that. Even if it is still
2938 * swapcache, we need to check that the page's swap has not changed.
4969c119 2939 */
31c4a3d3 2940 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2941 goto out_page;
2942
2943 if (ksm_might_need_to_copy(page, vma, address)) {
2944 swapcache = page;
2945 page = ksm_does_need_to_copy(page, vma, address);
2946
2947 if (unlikely(!page)) {
2948 ret = VM_FAULT_OOM;
2949 page = swapcache;
2950 swapcache = NULL;
2951 goto out_page;
2952 }
5ad64688
HD
2953 }
2954
2c26fdd7 2955 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2956 ret = VM_FAULT_OOM;
bc43f75c 2957 goto out_page;
8a9f3ccd
BS
2958 }
2959
1da177e4 2960 /*
8f4e2101 2961 * Back out if somebody else already faulted in this pte.
1da177e4 2962 */
8f4e2101 2963 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2964 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2965 goto out_nomap;
b8107480
KK
2966
2967 if (unlikely(!PageUptodate(page))) {
2968 ret = VM_FAULT_SIGBUS;
2969 goto out_nomap;
1da177e4
LT
2970 }
2971
8c7c6e34
KH
2972 /*
2973 * The page isn't present yet, go ahead with the fault.
2974 *
2975 * Be careful about the sequence of operations here.
2976 * To get its accounting right, reuse_swap_page() must be called
2977 * while the page is counted on swap but not yet in mapcount i.e.
2978 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2979 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2980 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2981 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2982 * in page->private. In this case, a record in swap_cgroup is silently
2983 * discarded at swap_free().
8c7c6e34 2984 */
1da177e4 2985
34e55232 2986 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2987 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2988 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2989 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2990 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2991 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2992 ret |= VM_FAULT_WRITE;
ad8c2ee8 2993 exclusive = 1;
1da177e4 2994 }
1da177e4
LT
2995 flush_icache_page(vma, page);
2996 set_pte_at(mm, address, page_table, pte);
ad8c2ee8 2997 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
2998 /* It's better to call commit-charge after rmap is established */
2999 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 3000
c475a8ab 3001 swap_free(entry);
b291f000 3002 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3003 try_to_free_swap(page);
c475a8ab 3004 unlock_page(page);
4969c119
AA
3005 if (swapcache) {
3006 /*
3007 * Hold the lock to avoid the swap entry to be reused
3008 * until we take the PT lock for the pte_same() check
3009 * (to avoid false positives from pte_same). For
3010 * further safety release the lock after the swap_free
3011 * so that the swap count won't change under a
3012 * parallel locked swapcache.
3013 */
3014 unlock_page(swapcache);
3015 page_cache_release(swapcache);
3016 }
c475a8ab 3017
30c9f3a9 3018 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3019 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3020 if (ret & VM_FAULT_ERROR)
3021 ret &= VM_FAULT_ERROR;
1da177e4
LT
3022 goto out;
3023 }
3024
3025 /* No need to invalidate - it was non-present before */
4b3073e1 3026 update_mmu_cache(vma, address, page_table);
65500d23 3027unlock:
8f4e2101 3028 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3029out:
3030 return ret;
b8107480 3031out_nomap:
7a81b88c 3032 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3033 pte_unmap_unlock(page_table, ptl);
bc43f75c 3034out_page:
b8107480 3035 unlock_page(page);
4779cb31 3036out_release:
b8107480 3037 page_cache_release(page);
4969c119
AA
3038 if (swapcache) {
3039 unlock_page(swapcache);
3040 page_cache_release(swapcache);
3041 }
65500d23 3042 return ret;
1da177e4
LT
3043}
3044
320b2b8d 3045/*
8ca3eb08
LT
3046 * This is like a special single-page "expand_{down|up}wards()",
3047 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3048 * doesn't hit another vma.
320b2b8d
LT
3049 */
3050static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3051{
3052 address &= PAGE_MASK;
3053 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3054 struct vm_area_struct *prev = vma->vm_prev;
3055
3056 /*
3057 * Is there a mapping abutting this one below?
3058 *
3059 * That's only ok if it's the same stack mapping
3060 * that has gotten split..
3061 */
3062 if (prev && prev->vm_end == address)
3063 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3064
d05f3169 3065 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3066 }
8ca3eb08
LT
3067 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3068 struct vm_area_struct *next = vma->vm_next;
3069
3070 /* As VM_GROWSDOWN but s/below/above/ */
3071 if (next && next->vm_start == address + PAGE_SIZE)
3072 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3073
3074 expand_upwards(vma, address + PAGE_SIZE);
3075 }
320b2b8d
LT
3076 return 0;
3077}
3078
1da177e4 3079/*
8f4e2101
HD
3080 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3081 * but allow concurrent faults), and pte mapped but not yet locked.
3082 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3083 */
65500d23
HD
3084static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3085 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3086 unsigned int flags)
1da177e4 3087{
8f4e2101
HD
3088 struct page *page;
3089 spinlock_t *ptl;
1da177e4 3090 pte_t entry;
1da177e4 3091
11ac5524
LT
3092 pte_unmap(page_table);
3093
3094 /* Check if we need to add a guard page to the stack */
3095 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3096 return VM_FAULT_SIGBUS;
3097
11ac5524 3098 /* Use the zero-page for reads */
62eede62
HD
3099 if (!(flags & FAULT_FLAG_WRITE)) {
3100 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3101 vma->vm_page_prot));
11ac5524 3102 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3103 if (!pte_none(*page_table))
3104 goto unlock;
3105 goto setpte;
3106 }
3107
557ed1fa 3108 /* Allocate our own private page. */
557ed1fa
NP
3109 if (unlikely(anon_vma_prepare(vma)))
3110 goto oom;
3111 page = alloc_zeroed_user_highpage_movable(vma, address);
3112 if (!page)
3113 goto oom;
0ed361de 3114 __SetPageUptodate(page);
8f4e2101 3115
2c26fdd7 3116 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3117 goto oom_free_page;
3118
557ed1fa 3119 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3120 if (vma->vm_flags & VM_WRITE)
3121 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3122
557ed1fa 3123 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3124 if (!pte_none(*page_table))
557ed1fa 3125 goto release;
9ba69294 3126
34e55232 3127 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3128 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3129setpte:
65500d23 3130 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3131
3132 /* No need to invalidate - it was non-present before */
4b3073e1 3133 update_mmu_cache(vma, address, page_table);
65500d23 3134unlock:
8f4e2101 3135 pte_unmap_unlock(page_table, ptl);
83c54070 3136 return 0;
8f4e2101 3137release:
8a9f3ccd 3138 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3139 page_cache_release(page);
3140 goto unlock;
8a9f3ccd 3141oom_free_page:
6dbf6d3b 3142 page_cache_release(page);
65500d23 3143oom:
1da177e4
LT
3144 return VM_FAULT_OOM;
3145}
3146
3147/*
54cb8821 3148 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3149 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3150 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3151 * the next page fault.
1da177e4
LT
3152 *
3153 * As this is called only for pages that do not currently exist, we
3154 * do not need to flush old virtual caches or the TLB.
3155 *
8f4e2101 3156 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3157 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3158 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3159 */
54cb8821 3160static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3161 unsigned long address, pmd_t *pmd,
54cb8821 3162 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3163{
16abfa08 3164 pte_t *page_table;
8f4e2101 3165 spinlock_t *ptl;
d0217ac0 3166 struct page *page;
1d65f86d 3167 struct page *cow_page;
1da177e4 3168 pte_t entry;
1da177e4 3169 int anon = 0;
d08b3851 3170 struct page *dirty_page = NULL;
d0217ac0
NP
3171 struct vm_fault vmf;
3172 int ret;
a200ee18 3173 int page_mkwrite = 0;
54cb8821 3174
1d65f86d
KH
3175 /*
3176 * If we do COW later, allocate page befor taking lock_page()
3177 * on the file cache page. This will reduce lock holding time.
3178 */
3179 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3180
3181 if (unlikely(anon_vma_prepare(vma)))
3182 return VM_FAULT_OOM;
3183
3184 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3185 if (!cow_page)
3186 return VM_FAULT_OOM;
3187
3188 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3189 page_cache_release(cow_page);
3190 return VM_FAULT_OOM;
3191 }
3192 } else
3193 cow_page = NULL;
3194
d0217ac0
NP
3195 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3196 vmf.pgoff = pgoff;
3197 vmf.flags = flags;
3198 vmf.page = NULL;
1da177e4 3199
3c18ddd1 3200 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3201 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3202 VM_FAULT_RETRY)))
1d65f86d 3203 goto uncharge_out;
1da177e4 3204
a3b947ea
AK
3205 if (unlikely(PageHWPoison(vmf.page))) {
3206 if (ret & VM_FAULT_LOCKED)
3207 unlock_page(vmf.page);
1d65f86d
KH
3208 ret = VM_FAULT_HWPOISON;
3209 goto uncharge_out;
a3b947ea
AK
3210 }
3211
d00806b1 3212 /*
d0217ac0 3213 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3214 * locked.
3215 */
83c54070 3216 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3217 lock_page(vmf.page);
54cb8821 3218 else
d0217ac0 3219 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3220
1da177e4
LT
3221 /*
3222 * Should we do an early C-O-W break?
3223 */
d0217ac0 3224 page = vmf.page;
54cb8821 3225 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3226 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3227 page = cow_page;
54cb8821 3228 anon = 1;
d0217ac0 3229 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3230 __SetPageUptodate(page);
9637a5ef 3231 } else {
54cb8821
NP
3232 /*
3233 * If the page will be shareable, see if the backing
9637a5ef 3234 * address space wants to know that the page is about
54cb8821
NP
3235 * to become writable
3236 */
69676147 3237 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3238 int tmp;
3239
69676147 3240 unlock_page(page);
b827e496 3241 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3242 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3243 if (unlikely(tmp &
3244 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3245 ret = tmp;
b827e496 3246 goto unwritable_page;
d0217ac0 3247 }
b827e496
NP
3248 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3249 lock_page(page);
3250 if (!page->mapping) {
3251 ret = 0; /* retry the fault */
3252 unlock_page(page);
3253 goto unwritable_page;
3254 }
3255 } else
3256 VM_BUG_ON(!PageLocked(page));
a200ee18 3257 page_mkwrite = 1;
9637a5ef
DH
3258 }
3259 }
54cb8821 3260
1da177e4
LT
3261 }
3262
8f4e2101 3263 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3264
3265 /*
3266 * This silly early PAGE_DIRTY setting removes a race
3267 * due to the bad i386 page protection. But it's valid
3268 * for other architectures too.
3269 *
30c9f3a9 3270 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3271 * an exclusive copy of the page, or this is a shared mapping,
3272 * so we can make it writable and dirty to avoid having to
3273 * handle that later.
3274 */
3275 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3276 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3277 flush_icache_page(vma, page);
3278 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3279 if (flags & FAULT_FLAG_WRITE)
1da177e4 3280 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3281 if (anon) {
34e55232 3282 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3283 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3284 } else {
34e55232 3285 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3286 page_add_file_rmap(page);
54cb8821 3287 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3288 dirty_page = page;
d08b3851
PZ
3289 get_page(dirty_page);
3290 }
4294621f 3291 }
64d6519d 3292 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3293
3294 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3295 update_mmu_cache(vma, address, page_table);
1da177e4 3296 } else {
1d65f86d
KH
3297 if (cow_page)
3298 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3299 if (anon)
3300 page_cache_release(page);
3301 else
54cb8821 3302 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3303 }
3304
8f4e2101 3305 pte_unmap_unlock(page_table, ptl);
d00806b1 3306
b827e496
NP
3307 if (dirty_page) {
3308 struct address_space *mapping = page->mapping;
8f7b3d15 3309
b827e496
NP
3310 if (set_page_dirty(dirty_page))
3311 page_mkwrite = 1;
3312 unlock_page(dirty_page);
d08b3851 3313 put_page(dirty_page);
b827e496
NP
3314 if (page_mkwrite && mapping) {
3315 /*
3316 * Some device drivers do not set page.mapping but still
3317 * dirty their pages
3318 */
3319 balance_dirty_pages_ratelimited(mapping);
3320 }
3321
3322 /* file_update_time outside page_lock */
3323 if (vma->vm_file)
3324 file_update_time(vma->vm_file);
3325 } else {
3326 unlock_page(vmf.page);
3327 if (anon)
3328 page_cache_release(vmf.page);
d08b3851 3329 }
d00806b1 3330
83c54070 3331 return ret;
b827e496
NP
3332
3333unwritable_page:
3334 page_cache_release(page);
3335 return ret;
1d65f86d
KH
3336uncharge_out:
3337 /* fs's fault handler get error */
3338 if (cow_page) {
3339 mem_cgroup_uncharge_page(cow_page);
3340 page_cache_release(cow_page);
3341 }
3342 return ret;
54cb8821 3343}
d00806b1 3344
54cb8821
NP
3345static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3346 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3347 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3348{
3349 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3350 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3351
16abfa08
HD
3352 pte_unmap(page_table);
3353 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3354}
3355
1da177e4
LT
3356/*
3357 * Fault of a previously existing named mapping. Repopulate the pte
3358 * from the encoded file_pte if possible. This enables swappable
3359 * nonlinear vmas.
8f4e2101
HD
3360 *
3361 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3362 * but allow concurrent faults), and pte mapped but not yet locked.
3363 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3364 */
d0217ac0 3365static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3366 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3367 unsigned int flags, pte_t orig_pte)
1da177e4 3368{
65500d23 3369 pgoff_t pgoff;
1da177e4 3370
30c9f3a9
LT
3371 flags |= FAULT_FLAG_NONLINEAR;
3372
4c21e2f2 3373 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3374 return 0;
1da177e4 3375
2509ef26 3376 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3377 /*
3378 * Page table corrupted: show pte and kill process.
3379 */
3dc14741 3380 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3381 return VM_FAULT_SIGBUS;
65500d23 3382 }
65500d23
HD
3383
3384 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3385 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3386}
3387
3388/*
3389 * These routines also need to handle stuff like marking pages dirty
3390 * and/or accessed for architectures that don't do it in hardware (most
3391 * RISC architectures). The early dirtying is also good on the i386.
3392 *
3393 * There is also a hook called "update_mmu_cache()" that architectures
3394 * with external mmu caches can use to update those (ie the Sparc or
3395 * PowerPC hashed page tables that act as extended TLBs).
3396 *
c74df32c
HD
3397 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3398 * but allow concurrent faults), and pte mapped but not yet locked.
3399 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3400 */
71e3aac0
AA
3401int handle_pte_fault(struct mm_struct *mm,
3402 struct vm_area_struct *vma, unsigned long address,
3403 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3404{
3405 pte_t entry;
8f4e2101 3406 spinlock_t *ptl;
1da177e4 3407
8dab5241 3408 entry = *pte;
1da177e4 3409 if (!pte_present(entry)) {
65500d23 3410 if (pte_none(entry)) {
f4b81804 3411 if (vma->vm_ops) {
3c18ddd1 3412 if (likely(vma->vm_ops->fault))
54cb8821 3413 return do_linear_fault(mm, vma, address,
30c9f3a9 3414 pte, pmd, flags, entry);
f4b81804
JS
3415 }
3416 return do_anonymous_page(mm, vma, address,
30c9f3a9 3417 pte, pmd, flags);
65500d23 3418 }
1da177e4 3419 if (pte_file(entry))
d0217ac0 3420 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3421 pte, pmd, flags, entry);
65500d23 3422 return do_swap_page(mm, vma, address,
30c9f3a9 3423 pte, pmd, flags, entry);
1da177e4
LT
3424 }
3425
4c21e2f2 3426 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3427 spin_lock(ptl);
3428 if (unlikely(!pte_same(*pte, entry)))
3429 goto unlock;
30c9f3a9 3430 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3431 if (!pte_write(entry))
8f4e2101
HD
3432 return do_wp_page(mm, vma, address,
3433 pte, pmd, ptl, entry);
1da177e4
LT
3434 entry = pte_mkdirty(entry);
3435 }
3436 entry = pte_mkyoung(entry);
30c9f3a9 3437 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3438 update_mmu_cache(vma, address, pte);
1a44e149
AA
3439 } else {
3440 /*
3441 * This is needed only for protection faults but the arch code
3442 * is not yet telling us if this is a protection fault or not.
3443 * This still avoids useless tlb flushes for .text page faults
3444 * with threads.
3445 */
30c9f3a9 3446 if (flags & FAULT_FLAG_WRITE)
61c77326 3447 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3448 }
8f4e2101
HD
3449unlock:
3450 pte_unmap_unlock(pte, ptl);
83c54070 3451 return 0;
1da177e4
LT
3452}
3453
3454/*
3455 * By the time we get here, we already hold the mm semaphore
3456 */
83c54070 3457int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3458 unsigned long address, unsigned int flags)
1da177e4
LT
3459{
3460 pgd_t *pgd;
3461 pud_t *pud;
3462 pmd_t *pmd;
3463 pte_t *pte;
3464
3465 __set_current_state(TASK_RUNNING);
3466
f8891e5e 3467 count_vm_event(PGFAULT);
456f998e 3468 mem_cgroup_count_vm_event(mm, PGFAULT);
1da177e4 3469
34e55232
KH
3470 /* do counter updates before entering really critical section. */
3471 check_sync_rss_stat(current);
3472
ac9b9c66 3473 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3474 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3475
1da177e4 3476 pgd = pgd_offset(mm, address);
1da177e4
LT
3477 pud = pud_alloc(mm, pgd, address);
3478 if (!pud)
c74df32c 3479 return VM_FAULT_OOM;
1da177e4
LT
3480 pmd = pmd_alloc(mm, pud, address);
3481 if (!pmd)
c74df32c 3482 return VM_FAULT_OOM;
71e3aac0
AA
3483 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3484 if (!vma->vm_ops)
3485 return do_huge_pmd_anonymous_page(mm, vma, address,
3486 pmd, flags);
3487 } else {
3488 pmd_t orig_pmd = *pmd;
3489 barrier();
3490 if (pmd_trans_huge(orig_pmd)) {
3491 if (flags & FAULT_FLAG_WRITE &&
3492 !pmd_write(orig_pmd) &&
3493 !pmd_trans_splitting(orig_pmd))
3494 return do_huge_pmd_wp_page(mm, vma, address,
3495 pmd, orig_pmd);
3496 return 0;
3497 }
3498 }
3499
3500 /*
3501 * Use __pte_alloc instead of pte_alloc_map, because we can't
3502 * run pte_offset_map on the pmd, if an huge pmd could
3503 * materialize from under us from a different thread.
3504 */
cc03638d 3505 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
c74df32c 3506 return VM_FAULT_OOM;
71e3aac0
AA
3507 /* if an huge pmd materialized from under us just retry later */
3508 if (unlikely(pmd_trans_huge(*pmd)))
3509 return 0;
3510 /*
3511 * A regular pmd is established and it can't morph into a huge pmd
3512 * from under us anymore at this point because we hold the mmap_sem
3513 * read mode and khugepaged takes it in write mode. So now it's
3514 * safe to run pte_offset_map().
3515 */
3516 pte = pte_offset_map(pmd, address);
1da177e4 3517
30c9f3a9 3518 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3519}
3520
3521#ifndef __PAGETABLE_PUD_FOLDED
3522/*
3523 * Allocate page upper directory.
872fec16 3524 * We've already handled the fast-path in-line.
1da177e4 3525 */
1bb3630e 3526int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3527{
c74df32c
HD
3528 pud_t *new = pud_alloc_one(mm, address);
3529 if (!new)
1bb3630e 3530 return -ENOMEM;
1da177e4 3531
362a61ad
NP
3532 smp_wmb(); /* See comment in __pte_alloc */
3533
872fec16 3534 spin_lock(&mm->page_table_lock);
1bb3630e 3535 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3536 pud_free(mm, new);
1bb3630e
HD
3537 else
3538 pgd_populate(mm, pgd, new);
c74df32c 3539 spin_unlock(&mm->page_table_lock);
1bb3630e 3540 return 0;
1da177e4
LT
3541}
3542#endif /* __PAGETABLE_PUD_FOLDED */
3543
3544#ifndef __PAGETABLE_PMD_FOLDED
3545/*
3546 * Allocate page middle directory.
872fec16 3547 * We've already handled the fast-path in-line.
1da177e4 3548 */
1bb3630e 3549int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3550{
c74df32c
HD
3551 pmd_t *new = pmd_alloc_one(mm, address);
3552 if (!new)
1bb3630e 3553 return -ENOMEM;
1da177e4 3554
362a61ad
NP
3555 smp_wmb(); /* See comment in __pte_alloc */
3556
872fec16 3557 spin_lock(&mm->page_table_lock);
1da177e4 3558#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3559 if (pud_present(*pud)) /* Another has populated it */
5e541973 3560 pmd_free(mm, new);
1bb3630e
HD
3561 else
3562 pud_populate(mm, pud, new);
1da177e4 3563#else
1bb3630e 3564 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3565 pmd_free(mm, new);
1bb3630e
HD
3566 else
3567 pgd_populate(mm, pud, new);
1da177e4 3568#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3569 spin_unlock(&mm->page_table_lock);
1bb3630e 3570 return 0;
e0f39591 3571}
1da177e4
LT
3572#endif /* __PAGETABLE_PMD_FOLDED */
3573
3574int make_pages_present(unsigned long addr, unsigned long end)
3575{
3576 int ret, len, write;
3577 struct vm_area_struct * vma;
3578
3579 vma = find_vma(current->mm, addr);
3580 if (!vma)
a477097d 3581 return -ENOMEM;
5ecfda04
ML
3582 /*
3583 * We want to touch writable mappings with a write fault in order
3584 * to break COW, except for shared mappings because these don't COW
3585 * and we would not want to dirty them for nothing.
3586 */
3587 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
5bcb28b1
ES
3588 BUG_ON(addr >= end);
3589 BUG_ON(end > vma->vm_end);
68e116a3 3590 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3591 ret = get_user_pages(current, current->mm, addr,
3592 len, write, 0, NULL, NULL);
c11d69d8 3593 if (ret < 0)
1da177e4 3594 return ret;
9978ad58 3595 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3596}
3597
1da177e4
LT
3598#if !defined(__HAVE_ARCH_GATE_AREA)
3599
3600#if defined(AT_SYSINFO_EHDR)
5ce7852c 3601static struct vm_area_struct gate_vma;
1da177e4
LT
3602
3603static int __init gate_vma_init(void)
3604{
3605 gate_vma.vm_mm = NULL;
3606 gate_vma.vm_start = FIXADDR_USER_START;
3607 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3608 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3609 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3610 /*
3611 * Make sure the vDSO gets into every core dump.
3612 * Dumping its contents makes post-mortem fully interpretable later
3613 * without matching up the same kernel and hardware config to see
3614 * what PC values meant.
3615 */
3616 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3617 return 0;
3618}
3619__initcall(gate_vma_init);
3620#endif
3621
31db58b3 3622struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3623{
3624#ifdef AT_SYSINFO_EHDR
3625 return &gate_vma;
3626#else
3627 return NULL;
3628#endif
3629}
3630
cae5d390 3631int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3632{
3633#ifdef AT_SYSINFO_EHDR
3634 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3635 return 1;
3636#endif
3637 return 0;
3638}
3639
3640#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3641
1b36ba81 3642static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3643 pte_t **ptepp, spinlock_t **ptlp)
3644{
3645 pgd_t *pgd;
3646 pud_t *pud;
3647 pmd_t *pmd;
3648 pte_t *ptep;
3649
3650 pgd = pgd_offset(mm, address);
3651 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3652 goto out;
3653
3654 pud = pud_offset(pgd, address);
3655 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3656 goto out;
3657
3658 pmd = pmd_offset(pud, address);
f66055ab 3659 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3660 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3661 goto out;
3662
3663 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3664 if (pmd_huge(*pmd))
3665 goto out;
3666
3667 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3668 if (!ptep)
3669 goto out;
3670 if (!pte_present(*ptep))
3671 goto unlock;
3672 *ptepp = ptep;
3673 return 0;
3674unlock:
3675 pte_unmap_unlock(ptep, *ptlp);
3676out:
3677 return -EINVAL;
3678}
3679
1b36ba81
NK
3680static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3681 pte_t **ptepp, spinlock_t **ptlp)
3682{
3683 int res;
3684
3685 /* (void) is needed to make gcc happy */
3686 (void) __cond_lock(*ptlp,
3687 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3688 return res;
3689}
3690
3b6748e2
JW
3691/**
3692 * follow_pfn - look up PFN at a user virtual address
3693 * @vma: memory mapping
3694 * @address: user virtual address
3695 * @pfn: location to store found PFN
3696 *
3697 * Only IO mappings and raw PFN mappings are allowed.
3698 *
3699 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3700 */
3701int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3702 unsigned long *pfn)
3703{
3704 int ret = -EINVAL;
3705 spinlock_t *ptl;
3706 pte_t *ptep;
3707
3708 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3709 return ret;
3710
3711 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3712 if (ret)
3713 return ret;
3714 *pfn = pte_pfn(*ptep);
3715 pte_unmap_unlock(ptep, ptl);
3716 return 0;
3717}
3718EXPORT_SYMBOL(follow_pfn);
3719
28b2ee20 3720#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3721int follow_phys(struct vm_area_struct *vma,
3722 unsigned long address, unsigned int flags,
3723 unsigned long *prot, resource_size_t *phys)
28b2ee20 3724{
03668a4d 3725 int ret = -EINVAL;
28b2ee20
RR
3726 pte_t *ptep, pte;
3727 spinlock_t *ptl;
28b2ee20 3728
d87fe660 3729 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3730 goto out;
28b2ee20 3731
03668a4d 3732 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3733 goto out;
28b2ee20 3734 pte = *ptep;
03668a4d 3735
28b2ee20
RR
3736 if ((flags & FOLL_WRITE) && !pte_write(pte))
3737 goto unlock;
28b2ee20
RR
3738
3739 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3740 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3741
03668a4d 3742 ret = 0;
28b2ee20
RR
3743unlock:
3744 pte_unmap_unlock(ptep, ptl);
3745out:
d87fe660 3746 return ret;
28b2ee20
RR
3747}
3748
3749int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3750 void *buf, int len, int write)
3751{
3752 resource_size_t phys_addr;
3753 unsigned long prot = 0;
2bc7273b 3754 void __iomem *maddr;
28b2ee20
RR
3755 int offset = addr & (PAGE_SIZE-1);
3756
d87fe660 3757 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3758 return -EINVAL;
3759
3760 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3761 if (write)
3762 memcpy_toio(maddr + offset, buf, len);
3763 else
3764 memcpy_fromio(buf, maddr + offset, len);
3765 iounmap(maddr);
3766
3767 return len;
3768}
3769#endif
3770
0ec76a11 3771/*
206cb636
SW
3772 * Access another process' address space as given in mm. If non-NULL, use the
3773 * given task for page fault accounting.
0ec76a11 3774 */
206cb636
SW
3775static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3776 unsigned long addr, void *buf, int len, int write)
0ec76a11 3777{
0ec76a11 3778 struct vm_area_struct *vma;
0ec76a11
DH
3779 void *old_buf = buf;
3780
0ec76a11 3781 down_read(&mm->mmap_sem);
183ff22b 3782 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3783 while (len) {
3784 int bytes, ret, offset;
3785 void *maddr;
28b2ee20 3786 struct page *page = NULL;
0ec76a11
DH
3787
3788 ret = get_user_pages(tsk, mm, addr, 1,
3789 write, 1, &page, &vma);
28b2ee20
RR
3790 if (ret <= 0) {
3791 /*
3792 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3793 * we can access using slightly different code.
3794 */
3795#ifdef CONFIG_HAVE_IOREMAP_PROT
3796 vma = find_vma(mm, addr);
fe936dfc 3797 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3798 break;
3799 if (vma->vm_ops && vma->vm_ops->access)
3800 ret = vma->vm_ops->access(vma, addr, buf,
3801 len, write);
3802 if (ret <= 0)
3803#endif
3804 break;
3805 bytes = ret;
0ec76a11 3806 } else {
28b2ee20
RR
3807 bytes = len;
3808 offset = addr & (PAGE_SIZE-1);
3809 if (bytes > PAGE_SIZE-offset)
3810 bytes = PAGE_SIZE-offset;
3811
3812 maddr = kmap(page);
3813 if (write) {
3814 copy_to_user_page(vma, page, addr,
3815 maddr + offset, buf, bytes);
3816 set_page_dirty_lock(page);
3817 } else {
3818 copy_from_user_page(vma, page, addr,
3819 buf, maddr + offset, bytes);
3820 }
3821 kunmap(page);
3822 page_cache_release(page);
0ec76a11 3823 }
0ec76a11
DH
3824 len -= bytes;
3825 buf += bytes;
3826 addr += bytes;
3827 }
3828 up_read(&mm->mmap_sem);
0ec76a11
DH
3829
3830 return buf - old_buf;
3831}
03252919 3832
5ddd36b9 3833/**
ae91dbfc 3834 * access_remote_vm - access another process' address space
5ddd36b9
SW
3835 * @mm: the mm_struct of the target address space
3836 * @addr: start address to access
3837 * @buf: source or destination buffer
3838 * @len: number of bytes to transfer
3839 * @write: whether the access is a write
3840 *
3841 * The caller must hold a reference on @mm.
3842 */
3843int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3844 void *buf, int len, int write)
3845{
3846 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3847}
3848
206cb636
SW
3849/*
3850 * Access another process' address space.
3851 * Source/target buffer must be kernel space,
3852 * Do not walk the page table directly, use get_user_pages
3853 */
3854int access_process_vm(struct task_struct *tsk, unsigned long addr,
3855 void *buf, int len, int write)
3856{
3857 struct mm_struct *mm;
3858 int ret;
3859
3860 mm = get_task_mm(tsk);
3861 if (!mm)
3862 return 0;
3863
3864 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3865 mmput(mm);
3866
3867 return ret;
3868}
3869
03252919
AK
3870/*
3871 * Print the name of a VMA.
3872 */
3873void print_vma_addr(char *prefix, unsigned long ip)
3874{
3875 struct mm_struct *mm = current->mm;
3876 struct vm_area_struct *vma;
3877
e8bff74a
IM
3878 /*
3879 * Do not print if we are in atomic
3880 * contexts (in exception stacks, etc.):
3881 */
3882 if (preempt_count())
3883 return;
3884
03252919
AK
3885 down_read(&mm->mmap_sem);
3886 vma = find_vma(mm, ip);
3887 if (vma && vma->vm_file) {
3888 struct file *f = vma->vm_file;
3889 char *buf = (char *)__get_free_page(GFP_KERNEL);
3890 if (buf) {
3891 char *p, *s;
3892
cf28b486 3893 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3894 if (IS_ERR(p))
3895 p = "?";
3896 s = strrchr(p, '/');
3897 if (s)
3898 p = s+1;
3899 printk("%s%s[%lx+%lx]", prefix, p,
3900 vma->vm_start,
3901 vma->vm_end - vma->vm_start);
3902 free_page((unsigned long)buf);
3903 }
3904 }
3905 up_read(&current->mm->mmap_sem);
3906}
3ee1afa3
NP
3907
3908#ifdef CONFIG_PROVE_LOCKING
3909void might_fault(void)
3910{
95156f00
PZ
3911 /*
3912 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3913 * holding the mmap_sem, this is safe because kernel memory doesn't
3914 * get paged out, therefore we'll never actually fault, and the
3915 * below annotations will generate false positives.
3916 */
3917 if (segment_eq(get_fs(), KERNEL_DS))
3918 return;
3919
3ee1afa3
NP
3920 might_sleep();
3921 /*
3922 * it would be nicer only to annotate paths which are not under
3923 * pagefault_disable, however that requires a larger audit and
3924 * providing helpers like get_user_atomic.
3925 */
3926 if (!in_atomic() && current->mm)
3927 might_lock_read(&current->mm->mmap_sem);
3928}
3929EXPORT_SYMBOL(might_fault);
3930#endif
47ad8475
AA
3931
3932#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3933static void clear_gigantic_page(struct page *page,
3934 unsigned long addr,
3935 unsigned int pages_per_huge_page)
3936{
3937 int i;
3938 struct page *p = page;
3939
3940 might_sleep();
3941 for (i = 0; i < pages_per_huge_page;
3942 i++, p = mem_map_next(p, page, i)) {
3943 cond_resched();
3944 clear_user_highpage(p, addr + i * PAGE_SIZE);
3945 }
3946}
3947void clear_huge_page(struct page *page,
3948 unsigned long addr, unsigned int pages_per_huge_page)
3949{
3950 int i;
3951
3952 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3953 clear_gigantic_page(page, addr, pages_per_huge_page);
3954 return;
3955 }
3956
3957 might_sleep();
3958 for (i = 0; i < pages_per_huge_page; i++) {
3959 cond_resched();
3960 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3961 }
3962}
3963
3964static void copy_user_gigantic_page(struct page *dst, struct page *src,
3965 unsigned long addr,
3966 struct vm_area_struct *vma,
3967 unsigned int pages_per_huge_page)
3968{
3969 int i;
3970 struct page *dst_base = dst;
3971 struct page *src_base = src;
3972
3973 for (i = 0; i < pages_per_huge_page; ) {
3974 cond_resched();
3975 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3976
3977 i++;
3978 dst = mem_map_next(dst, dst_base, i);
3979 src = mem_map_next(src, src_base, i);
3980 }
3981}
3982
3983void copy_user_huge_page(struct page *dst, struct page *src,
3984 unsigned long addr, struct vm_area_struct *vma,
3985 unsigned int pages_per_huge_page)
3986{
3987 int i;
3988
3989 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3990 copy_user_gigantic_page(dst, src, addr, vma,
3991 pages_per_huge_page);
3992 return;
3993 }
3994
3995 might_sleep();
3996 for (i = 0; i < pages_per_huge_page; i++) {
3997 cond_resched();
3998 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3999 }
4000}
4001#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
This page took 0.901043 seconds and 5 git commands to generate.