tmpfs: no need to use i_lock
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
1da177e4 60
6952b61d 61#include <asm/io.h>
1da177e4
LT
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
42b77728
JB
68#include "internal.h"
69
d41dee36 70#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
1da177e4
LT
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
1da177e4 91
32a93233
IM
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
a62eaf15
AK
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
9b41046c 108 return 1;
a62eaf15
AK
109}
110__setup("norandmaps", disable_randmaps);
111
62eede62 112unsigned long zero_pfn __read_mostly;
03f6462a 113unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
a62eaf15 124
d559db08 125
34e55232
KH
126#if defined(SPLIT_RSS_COUNTING)
127
a3a2e76c 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
34e55232
KH
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
136 }
137 }
138 task->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
161}
162
163unsigned long get_mm_counter(struct mm_struct *mm, int member)
164{
165 long val = 0;
166
167 /*
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
170 */
171 val = atomic_long_read(&mm->rss_stat.count[member]);
172 /*
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
175 */
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
179}
180
181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182{
183 __sync_task_rss_stat(task, mm);
184}
9547d01b 185#else /* SPLIT_RSS_COUNTING */
34e55232
KH
186
187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190static void check_sync_rss_stat(struct task_struct *task)
191{
192}
193
9547d01b
PZ
194#endif /* SPLIT_RSS_COUNTING */
195
196#ifdef HAVE_GENERIC_MMU_GATHER
197
198static int tlb_next_batch(struct mmu_gather *tlb)
199{
200 struct mmu_gather_batch *batch;
201
202 batch = tlb->active;
203 if (batch->next) {
204 tlb->active = batch->next;
205 return 1;
206 }
207
208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209 if (!batch)
210 return 0;
211
212 batch->next = NULL;
213 batch->nr = 0;
214 batch->max = MAX_GATHER_BATCH;
215
216 tlb->active->next = batch;
217 tlb->active = batch;
218
219 return 1;
220}
221
222/* tlb_gather_mmu
223 * Called to initialize an (on-stack) mmu_gather structure for page-table
224 * tear-down from @mm. The @fullmm argument is used when @mm is without
225 * users and we're going to destroy the full address space (exit/execve).
226 */
227void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228{
229 tlb->mm = mm;
230
231 tlb->fullmm = fullmm;
232 tlb->need_flush = 0;
233 tlb->fast_mode = (num_possible_cpus() == 1);
234 tlb->local.next = NULL;
235 tlb->local.nr = 0;
236 tlb->local.max = ARRAY_SIZE(tlb->__pages);
237 tlb->active = &tlb->local;
238
239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb->batch = NULL;
241#endif
242}
243
244void tlb_flush_mmu(struct mmu_gather *tlb)
245{
246 struct mmu_gather_batch *batch;
247
248 if (!tlb->need_flush)
249 return;
250 tlb->need_flush = 0;
251 tlb_flush(tlb);
252#ifdef CONFIG_HAVE_RCU_TABLE_FREE
253 tlb_table_flush(tlb);
34e55232
KH
254#endif
255
9547d01b
PZ
256 if (tlb_fast_mode(tlb))
257 return;
258
259 for (batch = &tlb->local; batch; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264}
265
266/* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
269 */
270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271{
272 struct mmu_gather_batch *batch, *next;
273
274 tlb_flush_mmu(tlb);
275
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
278
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
282 }
283 tlb->local.next = NULL;
284}
285
286/* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
291 */
292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293{
294 struct mmu_gather_batch *batch;
295
296 tlb->need_flush = 1;
297
298 if (tlb_fast_mode(tlb)) {
299 free_page_and_swap_cache(page);
300 return 1; /* avoid calling tlb_flush_mmu() */
301 }
302
303 batch = tlb->active;
304 batch->pages[batch->nr++] = page;
305 if (batch->nr == batch->max) {
306 if (!tlb_next_batch(tlb))
307 return 0;
0b43c3aa 308 batch = tlb->active;
9547d01b
PZ
309 }
310 VM_BUG_ON(batch->nr > batch->max);
311
312 return batch->max - batch->nr;
313}
314
315#endif /* HAVE_GENERIC_MMU_GATHER */
316
26723911
PZ
317#ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319/*
320 * See the comment near struct mmu_table_batch.
321 */
322
323static void tlb_remove_table_smp_sync(void *arg)
324{
325 /* Simply deliver the interrupt */
326}
327
328static void tlb_remove_table_one(void *table)
329{
330 /*
331 * This isn't an RCU grace period and hence the page-tables cannot be
332 * assumed to be actually RCU-freed.
333 *
334 * It is however sufficient for software page-table walkers that rely on
335 * IRQ disabling. See the comment near struct mmu_table_batch.
336 */
337 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338 __tlb_remove_table(table);
339}
340
341static void tlb_remove_table_rcu(struct rcu_head *head)
342{
343 struct mmu_table_batch *batch;
344 int i;
345
346 batch = container_of(head, struct mmu_table_batch, rcu);
347
348 for (i = 0; i < batch->nr; i++)
349 __tlb_remove_table(batch->tables[i]);
350
351 free_page((unsigned long)batch);
352}
353
354void tlb_table_flush(struct mmu_gather *tlb)
355{
356 struct mmu_table_batch **batch = &tlb->batch;
357
358 if (*batch) {
359 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360 *batch = NULL;
361 }
362}
363
364void tlb_remove_table(struct mmu_gather *tlb, void *table)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 tlb->need_flush = 1;
369
370 /*
371 * When there's less then two users of this mm there cannot be a
372 * concurrent page-table walk.
373 */
374 if (atomic_read(&tlb->mm->mm_users) < 2) {
375 __tlb_remove_table(table);
376 return;
377 }
378
379 if (*batch == NULL) {
380 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381 if (*batch == NULL) {
382 tlb_remove_table_one(table);
383 return;
384 }
385 (*batch)->nr = 0;
386 }
387 (*batch)->tables[(*batch)->nr++] = table;
388 if ((*batch)->nr == MAX_TABLE_BATCH)
389 tlb_table_flush(tlb);
390}
391
9547d01b 392#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 393
1da177e4
LT
394/*
395 * If a p?d_bad entry is found while walking page tables, report
396 * the error, before resetting entry to p?d_none. Usually (but
397 * very seldom) called out from the p?d_none_or_clear_bad macros.
398 */
399
400void pgd_clear_bad(pgd_t *pgd)
401{
402 pgd_ERROR(*pgd);
403 pgd_clear(pgd);
404}
405
406void pud_clear_bad(pud_t *pud)
407{
408 pud_ERROR(*pud);
409 pud_clear(pud);
410}
411
412void pmd_clear_bad(pmd_t *pmd)
413{
414 pmd_ERROR(*pmd);
415 pmd_clear(pmd);
416}
417
418/*
419 * Note: this doesn't free the actual pages themselves. That
420 * has been handled earlier when unmapping all the memory regions.
421 */
9e1b32ca
BH
422static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423 unsigned long addr)
1da177e4 424{
2f569afd 425 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 426 pmd_clear(pmd);
9e1b32ca 427 pte_free_tlb(tlb, token, addr);
e0da382c 428 tlb->mm->nr_ptes--;
1da177e4
LT
429}
430
e0da382c
HD
431static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432 unsigned long addr, unsigned long end,
433 unsigned long floor, unsigned long ceiling)
1da177e4
LT
434{
435 pmd_t *pmd;
436 unsigned long next;
e0da382c 437 unsigned long start;
1da177e4 438
e0da382c 439 start = addr;
1da177e4 440 pmd = pmd_offset(pud, addr);
1da177e4
LT
441 do {
442 next = pmd_addr_end(addr, end);
443 if (pmd_none_or_clear_bad(pmd))
444 continue;
9e1b32ca 445 free_pte_range(tlb, pmd, addr);
1da177e4
LT
446 } while (pmd++, addr = next, addr != end);
447
e0da382c
HD
448 start &= PUD_MASK;
449 if (start < floor)
450 return;
451 if (ceiling) {
452 ceiling &= PUD_MASK;
453 if (!ceiling)
454 return;
1da177e4 455 }
e0da382c
HD
456 if (end - 1 > ceiling - 1)
457 return;
458
459 pmd = pmd_offset(pud, start);
460 pud_clear(pud);
9e1b32ca 461 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
462}
463
e0da382c
HD
464static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465 unsigned long addr, unsigned long end,
466 unsigned long floor, unsigned long ceiling)
1da177e4
LT
467{
468 pud_t *pud;
469 unsigned long next;
e0da382c 470 unsigned long start;
1da177e4 471
e0da382c 472 start = addr;
1da177e4 473 pud = pud_offset(pgd, addr);
1da177e4
LT
474 do {
475 next = pud_addr_end(addr, end);
476 if (pud_none_or_clear_bad(pud))
477 continue;
e0da382c 478 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
479 } while (pud++, addr = next, addr != end);
480
e0da382c
HD
481 start &= PGDIR_MASK;
482 if (start < floor)
483 return;
484 if (ceiling) {
485 ceiling &= PGDIR_MASK;
486 if (!ceiling)
487 return;
1da177e4 488 }
e0da382c
HD
489 if (end - 1 > ceiling - 1)
490 return;
491
492 pud = pud_offset(pgd, start);
493 pgd_clear(pgd);
9e1b32ca 494 pud_free_tlb(tlb, pud, start);
1da177e4
LT
495}
496
497/*
e0da382c
HD
498 * This function frees user-level page tables of a process.
499 *
1da177e4
LT
500 * Must be called with pagetable lock held.
501 */
42b77728 502void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
503 unsigned long addr, unsigned long end,
504 unsigned long floor, unsigned long ceiling)
1da177e4
LT
505{
506 pgd_t *pgd;
507 unsigned long next;
e0da382c
HD
508
509 /*
510 * The next few lines have given us lots of grief...
511 *
512 * Why are we testing PMD* at this top level? Because often
513 * there will be no work to do at all, and we'd prefer not to
514 * go all the way down to the bottom just to discover that.
515 *
516 * Why all these "- 1"s? Because 0 represents both the bottom
517 * of the address space and the top of it (using -1 for the
518 * top wouldn't help much: the masks would do the wrong thing).
519 * The rule is that addr 0 and floor 0 refer to the bottom of
520 * the address space, but end 0 and ceiling 0 refer to the top
521 * Comparisons need to use "end - 1" and "ceiling - 1" (though
522 * that end 0 case should be mythical).
523 *
524 * Wherever addr is brought up or ceiling brought down, we must
525 * be careful to reject "the opposite 0" before it confuses the
526 * subsequent tests. But what about where end is brought down
527 * by PMD_SIZE below? no, end can't go down to 0 there.
528 *
529 * Whereas we round start (addr) and ceiling down, by different
530 * masks at different levels, in order to test whether a table
531 * now has no other vmas using it, so can be freed, we don't
532 * bother to round floor or end up - the tests don't need that.
533 */
1da177e4 534
e0da382c
HD
535 addr &= PMD_MASK;
536 if (addr < floor) {
537 addr += PMD_SIZE;
538 if (!addr)
539 return;
540 }
541 if (ceiling) {
542 ceiling &= PMD_MASK;
543 if (!ceiling)
544 return;
545 }
546 if (end - 1 > ceiling - 1)
547 end -= PMD_SIZE;
548 if (addr > end - 1)
549 return;
550
42b77728 551 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
552 do {
553 next = pgd_addr_end(addr, end);
554 if (pgd_none_or_clear_bad(pgd))
555 continue;
42b77728 556 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 557 } while (pgd++, addr = next, addr != end);
e0da382c
HD
558}
559
42b77728 560void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 561 unsigned long floor, unsigned long ceiling)
e0da382c
HD
562{
563 while (vma) {
564 struct vm_area_struct *next = vma->vm_next;
565 unsigned long addr = vma->vm_start;
566
8f4f8c16 567 /*
25d9e2d1 568 * Hide vma from rmap and truncate_pagecache before freeing
569 * pgtables
8f4f8c16 570 */
5beb4930 571 unlink_anon_vmas(vma);
8f4f8c16
HD
572 unlink_file_vma(vma);
573
9da61aef 574 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 575 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 576 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
577 } else {
578 /*
579 * Optimization: gather nearby vmas into one call down
580 */
581 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 582 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
583 vma = next;
584 next = vma->vm_next;
5beb4930 585 unlink_anon_vmas(vma);
8f4f8c16 586 unlink_file_vma(vma);
3bf5ee95
HD
587 }
588 free_pgd_range(tlb, addr, vma->vm_end,
589 floor, next? next->vm_start: ceiling);
590 }
e0da382c
HD
591 vma = next;
592 }
1da177e4
LT
593}
594
8ac1f832
AA
595int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596 pmd_t *pmd, unsigned long address)
1da177e4 597{
2f569afd 598 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 599 int wait_split_huge_page;
1bb3630e
HD
600 if (!new)
601 return -ENOMEM;
602
362a61ad
NP
603 /*
604 * Ensure all pte setup (eg. pte page lock and page clearing) are
605 * visible before the pte is made visible to other CPUs by being
606 * put into page tables.
607 *
608 * The other side of the story is the pointer chasing in the page
609 * table walking code (when walking the page table without locking;
610 * ie. most of the time). Fortunately, these data accesses consist
611 * of a chain of data-dependent loads, meaning most CPUs (alpha
612 * being the notable exception) will already guarantee loads are
613 * seen in-order. See the alpha page table accessors for the
614 * smp_read_barrier_depends() barriers in page table walking code.
615 */
616 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617
c74df32c 618 spin_lock(&mm->page_table_lock);
8ac1f832
AA
619 wait_split_huge_page = 0;
620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 621 mm->nr_ptes++;
1da177e4 622 pmd_populate(mm, pmd, new);
2f569afd 623 new = NULL;
8ac1f832
AA
624 } else if (unlikely(pmd_trans_splitting(*pmd)))
625 wait_split_huge_page = 1;
c74df32c 626 spin_unlock(&mm->page_table_lock);
2f569afd
MS
627 if (new)
628 pte_free(mm, new);
8ac1f832
AA
629 if (wait_split_huge_page)
630 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 631 return 0;
1da177e4
LT
632}
633
1bb3630e 634int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 635{
1bb3630e
HD
636 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637 if (!new)
638 return -ENOMEM;
639
362a61ad
NP
640 smp_wmb(); /* See comment in __pte_alloc */
641
1bb3630e 642 spin_lock(&init_mm.page_table_lock);
8ac1f832 643 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 644 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 645 new = NULL;
8ac1f832
AA
646 } else
647 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 648 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
649 if (new)
650 pte_free_kernel(&init_mm, new);
1bb3630e 651 return 0;
1da177e4
LT
652}
653
d559db08
KH
654static inline void init_rss_vec(int *rss)
655{
656 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
657}
658
659static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 660{
d559db08
KH
661 int i;
662
34e55232
KH
663 if (current->mm == mm)
664 sync_mm_rss(current, mm);
d559db08
KH
665 for (i = 0; i < NR_MM_COUNTERS; i++)
666 if (rss[i])
667 add_mm_counter(mm, i, rss[i]);
ae859762
HD
668}
669
b5810039 670/*
6aab341e
LT
671 * This function is called to print an error when a bad pte
672 * is found. For example, we might have a PFN-mapped pte in
673 * a region that doesn't allow it.
b5810039
NP
674 *
675 * The calling function must still handle the error.
676 */
3dc14741
HD
677static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678 pte_t pte, struct page *page)
b5810039 679{
3dc14741
HD
680 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681 pud_t *pud = pud_offset(pgd, addr);
682 pmd_t *pmd = pmd_offset(pud, addr);
683 struct address_space *mapping;
684 pgoff_t index;
d936cf9b
HD
685 static unsigned long resume;
686 static unsigned long nr_shown;
687 static unsigned long nr_unshown;
688
689 /*
690 * Allow a burst of 60 reports, then keep quiet for that minute;
691 * or allow a steady drip of one report per second.
692 */
693 if (nr_shown == 60) {
694 if (time_before(jiffies, resume)) {
695 nr_unshown++;
696 return;
697 }
698 if (nr_unshown) {
1e9e6365
HD
699 printk(KERN_ALERT
700 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
701 nr_unshown);
702 nr_unshown = 0;
703 }
704 nr_shown = 0;
705 }
706 if (nr_shown++ == 0)
707 resume = jiffies + 60 * HZ;
3dc14741
HD
708
709 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710 index = linear_page_index(vma, addr);
711
1e9e6365
HD
712 printk(KERN_ALERT
713 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
714 current->comm,
715 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
716 if (page)
717 dump_page(page);
1e9e6365 718 printk(KERN_ALERT
3dc14741
HD
719 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721 /*
722 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723 */
724 if (vma->vm_ops)
1e9e6365 725 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
726 (unsigned long)vma->vm_ops->fault);
727 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 728 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 729 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 730 dump_stack();
3dc14741 731 add_taint(TAINT_BAD_PAGE);
b5810039
NP
732}
733
ca16d140 734static inline int is_cow_mapping(vm_flags_t flags)
67121172
LT
735{
736 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
737}
738
62eede62
HD
739#ifndef is_zero_pfn
740static inline int is_zero_pfn(unsigned long pfn)
741{
742 return pfn == zero_pfn;
743}
744#endif
745
746#ifndef my_zero_pfn
747static inline unsigned long my_zero_pfn(unsigned long addr)
748{
749 return zero_pfn;
750}
751#endif
752
ee498ed7 753/*
7e675137 754 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 755 *
7e675137
NP
756 * "Special" mappings do not wish to be associated with a "struct page" (either
757 * it doesn't exist, or it exists but they don't want to touch it). In this
758 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 759 *
7e675137
NP
760 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761 * pte bit, in which case this function is trivial. Secondly, an architecture
762 * may not have a spare pte bit, which requires a more complicated scheme,
763 * described below.
764 *
765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766 * special mapping (even if there are underlying and valid "struct pages").
767 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 768 *
b379d790
JH
769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772 * mapping will always honor the rule
6aab341e
LT
773 *
774 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775 *
7e675137
NP
776 * And for normal mappings this is false.
777 *
778 * This restricts such mappings to be a linear translation from virtual address
779 * to pfn. To get around this restriction, we allow arbitrary mappings so long
780 * as the vma is not a COW mapping; in that case, we know that all ptes are
781 * special (because none can have been COWed).
b379d790 782 *
b379d790 783 *
7e675137 784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
785 *
786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787 * page" backing, however the difference is that _all_ pages with a struct
788 * page (that is, those where pfn_valid is true) are refcounted and considered
789 * normal pages by the VM. The disadvantage is that pages are refcounted
790 * (which can be slower and simply not an option for some PFNMAP users). The
791 * advantage is that we don't have to follow the strict linearity rule of
792 * PFNMAP mappings in order to support COWable mappings.
793 *
ee498ed7 794 */
7e675137
NP
795#ifdef __HAVE_ARCH_PTE_SPECIAL
796# define HAVE_PTE_SPECIAL 1
797#else
798# define HAVE_PTE_SPECIAL 0
799#endif
800struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801 pte_t pte)
ee498ed7 802{
22b31eec 803 unsigned long pfn = pte_pfn(pte);
7e675137
NP
804
805 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
806 if (likely(!pte_special(pte)))
807 goto check_pfn;
a13ea5b7
HD
808 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809 return NULL;
62eede62 810 if (!is_zero_pfn(pfn))
22b31eec 811 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
812 return NULL;
813 }
814
815 /* !HAVE_PTE_SPECIAL case follows: */
816
b379d790
JH
817 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818 if (vma->vm_flags & VM_MIXEDMAP) {
819 if (!pfn_valid(pfn))
820 return NULL;
821 goto out;
822 } else {
7e675137
NP
823 unsigned long off;
824 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
825 if (pfn == vma->vm_pgoff + off)
826 return NULL;
827 if (!is_cow_mapping(vma->vm_flags))
828 return NULL;
829 }
6aab341e
LT
830 }
831
62eede62
HD
832 if (is_zero_pfn(pfn))
833 return NULL;
22b31eec
HD
834check_pfn:
835 if (unlikely(pfn > highest_memmap_pfn)) {
836 print_bad_pte(vma, addr, pte, NULL);
837 return NULL;
838 }
6aab341e
LT
839
840 /*
7e675137 841 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 842 * eg. VDSO mappings can cause them to exist.
6aab341e 843 */
b379d790 844out:
6aab341e 845 return pfn_to_page(pfn);
ee498ed7
HD
846}
847
1da177e4
LT
848/*
849 * copy one vm_area from one task to the other. Assumes the page tables
850 * already present in the new task to be cleared in the whole range
851 * covered by this vma.
1da177e4
LT
852 */
853
570a335b 854static inline unsigned long
1da177e4 855copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 856 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 857 unsigned long addr, int *rss)
1da177e4 858{
b5810039 859 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
860 pte_t pte = *src_pte;
861 struct page *page;
1da177e4
LT
862
863 /* pte contains position in swap or file, so copy. */
864 if (unlikely(!pte_present(pte))) {
865 if (!pte_file(pte)) {
0697212a
CL
866 swp_entry_t entry = pte_to_swp_entry(pte);
867
570a335b
HD
868 if (swap_duplicate(entry) < 0)
869 return entry.val;
870
1da177e4
LT
871 /* make sure dst_mm is on swapoff's mmlist. */
872 if (unlikely(list_empty(&dst_mm->mmlist))) {
873 spin_lock(&mmlist_lock);
f412ac08
HD
874 if (list_empty(&dst_mm->mmlist))
875 list_add(&dst_mm->mmlist,
876 &src_mm->mmlist);
1da177e4
LT
877 spin_unlock(&mmlist_lock);
878 }
b084d435
KH
879 if (likely(!non_swap_entry(entry)))
880 rss[MM_SWAPENTS]++;
881 else if (is_write_migration_entry(entry) &&
0697212a
CL
882 is_cow_mapping(vm_flags)) {
883 /*
884 * COW mappings require pages in both parent
885 * and child to be set to read.
886 */
887 make_migration_entry_read(&entry);
888 pte = swp_entry_to_pte(entry);
889 set_pte_at(src_mm, addr, src_pte, pte);
890 }
1da177e4 891 }
ae859762 892 goto out_set_pte;
1da177e4
LT
893 }
894
1da177e4
LT
895 /*
896 * If it's a COW mapping, write protect it both
897 * in the parent and the child
898 */
67121172 899 if (is_cow_mapping(vm_flags)) {
1da177e4 900 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 901 pte = pte_wrprotect(pte);
1da177e4
LT
902 }
903
904 /*
905 * If it's a shared mapping, mark it clean in
906 * the child
907 */
908 if (vm_flags & VM_SHARED)
909 pte = pte_mkclean(pte);
910 pte = pte_mkold(pte);
6aab341e
LT
911
912 page = vm_normal_page(vma, addr, pte);
913 if (page) {
914 get_page(page);
21333b2b 915 page_dup_rmap(page);
d559db08
KH
916 if (PageAnon(page))
917 rss[MM_ANONPAGES]++;
918 else
919 rss[MM_FILEPAGES]++;
6aab341e 920 }
ae859762
HD
921
922out_set_pte:
923 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 924 return 0;
1da177e4
LT
925}
926
71e3aac0
AA
927int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
929 unsigned long addr, unsigned long end)
1da177e4 930{
c36987e2 931 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 932 pte_t *src_pte, *dst_pte;
c74df32c 933 spinlock_t *src_ptl, *dst_ptl;
e040f218 934 int progress = 0;
d559db08 935 int rss[NR_MM_COUNTERS];
570a335b 936 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
937
938again:
d559db08
KH
939 init_rss_vec(rss);
940
c74df32c 941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
942 if (!dst_pte)
943 return -ENOMEM;
ece0e2b6 944 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 945 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 946 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
947 orig_src_pte = src_pte;
948 orig_dst_pte = dst_pte;
6606c3e0 949 arch_enter_lazy_mmu_mode();
1da177e4 950
1da177e4
LT
951 do {
952 /*
953 * We are holding two locks at this point - either of them
954 * could generate latencies in another task on another CPU.
955 */
e040f218
HD
956 if (progress >= 32) {
957 progress = 0;
958 if (need_resched() ||
95c354fe 959 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
960 break;
961 }
1da177e4
LT
962 if (pte_none(*src_pte)) {
963 progress++;
964 continue;
965 }
570a335b
HD
966 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
967 vma, addr, rss);
968 if (entry.val)
969 break;
1da177e4
LT
970 progress += 8;
971 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 972
6606c3e0 973 arch_leave_lazy_mmu_mode();
c74df32c 974 spin_unlock(src_ptl);
ece0e2b6 975 pte_unmap(orig_src_pte);
d559db08 976 add_mm_rss_vec(dst_mm, rss);
c36987e2 977 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 978 cond_resched();
570a335b
HD
979
980 if (entry.val) {
981 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
982 return -ENOMEM;
983 progress = 0;
984 }
1da177e4
LT
985 if (addr != end)
986 goto again;
987 return 0;
988}
989
990static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
991 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
992 unsigned long addr, unsigned long end)
993{
994 pmd_t *src_pmd, *dst_pmd;
995 unsigned long next;
996
997 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
998 if (!dst_pmd)
999 return -ENOMEM;
1000 src_pmd = pmd_offset(src_pud, addr);
1001 do {
1002 next = pmd_addr_end(addr, end);
71e3aac0
AA
1003 if (pmd_trans_huge(*src_pmd)) {
1004 int err;
14d1a55c 1005 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
1006 err = copy_huge_pmd(dst_mm, src_mm,
1007 dst_pmd, src_pmd, addr, vma);
1008 if (err == -ENOMEM)
1009 return -ENOMEM;
1010 if (!err)
1011 continue;
1012 /* fall through */
1013 }
1da177e4
LT
1014 if (pmd_none_or_clear_bad(src_pmd))
1015 continue;
1016 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017 vma, addr, next))
1018 return -ENOMEM;
1019 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020 return 0;
1021}
1022
1023static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025 unsigned long addr, unsigned long end)
1026{
1027 pud_t *src_pud, *dst_pud;
1028 unsigned long next;
1029
1030 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031 if (!dst_pud)
1032 return -ENOMEM;
1033 src_pud = pud_offset(src_pgd, addr);
1034 do {
1035 next = pud_addr_end(addr, end);
1036 if (pud_none_or_clear_bad(src_pud))
1037 continue;
1038 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1039 vma, addr, next))
1040 return -ENOMEM;
1041 } while (dst_pud++, src_pud++, addr = next, addr != end);
1042 return 0;
1043}
1044
1045int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046 struct vm_area_struct *vma)
1047{
1048 pgd_t *src_pgd, *dst_pgd;
1049 unsigned long next;
1050 unsigned long addr = vma->vm_start;
1051 unsigned long end = vma->vm_end;
cddb8a5c 1052 int ret;
1da177e4 1053
d992895b
NP
1054 /*
1055 * Don't copy ptes where a page fault will fill them correctly.
1056 * Fork becomes much lighter when there are big shared or private
1057 * readonly mappings. The tradeoff is that copy_page_range is more
1058 * efficient than faulting.
1059 */
4d7672b4 1060 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
1061 if (!vma->anon_vma)
1062 return 0;
1063 }
1064
1da177e4
LT
1065 if (is_vm_hugetlb_page(vma))
1066 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067
34801ba9 1068 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 1069 /*
1070 * We do not free on error cases below as remove_vma
1071 * gets called on error from higher level routine
1072 */
1073 ret = track_pfn_vma_copy(vma);
1074 if (ret)
1075 return ret;
1076 }
1077
cddb8a5c
AA
1078 /*
1079 * We need to invalidate the secondary MMU mappings only when
1080 * there could be a permission downgrade on the ptes of the
1081 * parent mm. And a permission downgrade will only happen if
1082 * is_cow_mapping() returns true.
1083 */
1084 if (is_cow_mapping(vma->vm_flags))
1085 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1086
1087 ret = 0;
1da177e4
LT
1088 dst_pgd = pgd_offset(dst_mm, addr);
1089 src_pgd = pgd_offset(src_mm, addr);
1090 do {
1091 next = pgd_addr_end(addr, end);
1092 if (pgd_none_or_clear_bad(src_pgd))
1093 continue;
cddb8a5c
AA
1094 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1095 vma, addr, next))) {
1096 ret = -ENOMEM;
1097 break;
1098 }
1da177e4 1099 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
1100
1101 if (is_cow_mapping(vma->vm_flags))
1102 mmu_notifier_invalidate_range_end(src_mm,
1103 vma->vm_start, end);
1104 return ret;
1da177e4
LT
1105}
1106
51c6f666 1107static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1108 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1109 unsigned long addr, unsigned long end,
97a89413 1110 struct zap_details *details)
1da177e4 1111{
b5810039 1112 struct mm_struct *mm = tlb->mm;
d16dfc55 1113 int force_flush = 0;
d559db08 1114 int rss[NR_MM_COUNTERS];
97a89413 1115 spinlock_t *ptl;
5f1a1907 1116 pte_t *start_pte;
97a89413 1117 pte_t *pte;
d559db08 1118
d16dfc55 1119again:
e303297e 1120 init_rss_vec(rss);
5f1a1907
SR
1121 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122 pte = start_pte;
6606c3e0 1123 arch_enter_lazy_mmu_mode();
1da177e4
LT
1124 do {
1125 pte_t ptent = *pte;
51c6f666 1126 if (pte_none(ptent)) {
1da177e4 1127 continue;
51c6f666 1128 }
6f5e6b9e 1129
1da177e4 1130 if (pte_present(ptent)) {
ee498ed7 1131 struct page *page;
51c6f666 1132
6aab341e 1133 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1134 if (unlikely(details) && page) {
1135 /*
1136 * unmap_shared_mapping_pages() wants to
1137 * invalidate cache without truncating:
1138 * unmap shared but keep private pages.
1139 */
1140 if (details->check_mapping &&
1141 details->check_mapping != page->mapping)
1142 continue;
1143 /*
1144 * Each page->index must be checked when
1145 * invalidating or truncating nonlinear.
1146 */
1147 if (details->nonlinear_vma &&
1148 (page->index < details->first_index ||
1149 page->index > details->last_index))
1150 continue;
1151 }
b5810039 1152 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1153 tlb->fullmm);
1da177e4
LT
1154 tlb_remove_tlb_entry(tlb, pte, addr);
1155 if (unlikely(!page))
1156 continue;
1157 if (unlikely(details) && details->nonlinear_vma
1158 && linear_page_index(details->nonlinear_vma,
1159 addr) != page->index)
b5810039 1160 set_pte_at(mm, addr, pte,
1da177e4 1161 pgoff_to_pte(page->index));
1da177e4 1162 if (PageAnon(page))
d559db08 1163 rss[MM_ANONPAGES]--;
6237bcd9
HD
1164 else {
1165 if (pte_dirty(ptent))
1166 set_page_dirty(page);
4917e5d0
JW
1167 if (pte_young(ptent) &&
1168 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 1169 mark_page_accessed(page);
d559db08 1170 rss[MM_FILEPAGES]--;
6237bcd9 1171 }
edc315fd 1172 page_remove_rmap(page);
3dc14741
HD
1173 if (unlikely(page_mapcount(page) < 0))
1174 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1175 force_flush = !__tlb_remove_page(tlb, page);
1176 if (force_flush)
1177 break;
1da177e4
LT
1178 continue;
1179 }
1180 /*
1181 * If details->check_mapping, we leave swap entries;
1182 * if details->nonlinear_vma, we leave file entries.
1183 */
1184 if (unlikely(details))
1185 continue;
2509ef26
HD
1186 if (pte_file(ptent)) {
1187 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1188 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1189 } else {
1190 swp_entry_t entry = pte_to_swp_entry(ptent);
1191
1192 if (!non_swap_entry(entry))
1193 rss[MM_SWAPENTS]--;
1194 if (unlikely(!free_swap_and_cache(entry)))
1195 print_bad_pte(vma, addr, ptent, NULL);
1196 }
9888a1ca 1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1198 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1199
d559db08 1200 add_mm_rss_vec(mm, rss);
6606c3e0 1201 arch_leave_lazy_mmu_mode();
5f1a1907 1202 pte_unmap_unlock(start_pte, ptl);
51c6f666 1203
d16dfc55
PZ
1204 /*
1205 * mmu_gather ran out of room to batch pages, we break out of
1206 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 * and page-free while holding it.
1208 */
1209 if (force_flush) {
1210 force_flush = 0;
1211 tlb_flush_mmu(tlb);
1212 if (addr != end)
1213 goto again;
1214 }
1215
51c6f666 1216 return addr;
1da177e4
LT
1217}
1218
51c6f666 1219static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1220 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1221 unsigned long addr, unsigned long end,
97a89413 1222 struct zap_details *details)
1da177e4
LT
1223{
1224 pmd_t *pmd;
1225 unsigned long next;
1226
1227 pmd = pmd_offset(pud, addr);
1228 do {
1229 next = pmd_addr_end(addr, end);
71e3aac0 1230 if (pmd_trans_huge(*pmd)) {
14d1a55c
AA
1231 if (next-addr != HPAGE_PMD_SIZE) {
1232 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
71e3aac0 1233 split_huge_page_pmd(vma->vm_mm, pmd);
97a89413 1234 } else if (zap_huge_pmd(tlb, vma, pmd))
71e3aac0 1235 continue;
71e3aac0
AA
1236 /* fall through */
1237 }
97a89413 1238 if (pmd_none_or_clear_bad(pmd))
1da177e4 1239 continue;
97a89413
PZ
1240 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1241 cond_resched();
1242 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1243
1244 return addr;
1da177e4
LT
1245}
1246
51c6f666 1247static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1248 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1249 unsigned long addr, unsigned long end,
97a89413 1250 struct zap_details *details)
1da177e4
LT
1251{
1252 pud_t *pud;
1253 unsigned long next;
1254
1255 pud = pud_offset(pgd, addr);
1256 do {
1257 next = pud_addr_end(addr, end);
97a89413 1258 if (pud_none_or_clear_bad(pud))
1da177e4 1259 continue;
97a89413
PZ
1260 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1261 } while (pud++, addr = next, addr != end);
51c6f666
RH
1262
1263 return addr;
1da177e4
LT
1264}
1265
51c6f666
RH
1266static unsigned long unmap_page_range(struct mmu_gather *tlb,
1267 struct vm_area_struct *vma,
1da177e4 1268 unsigned long addr, unsigned long end,
97a89413 1269 struct zap_details *details)
1da177e4
LT
1270{
1271 pgd_t *pgd;
1272 unsigned long next;
1273
1274 if (details && !details->check_mapping && !details->nonlinear_vma)
1275 details = NULL;
1276
1277 BUG_ON(addr >= end);
569b846d 1278 mem_cgroup_uncharge_start();
1da177e4
LT
1279 tlb_start_vma(tlb, vma);
1280 pgd = pgd_offset(vma->vm_mm, addr);
1281 do {
1282 next = pgd_addr_end(addr, end);
97a89413 1283 if (pgd_none_or_clear_bad(pgd))
1da177e4 1284 continue;
97a89413
PZ
1285 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1286 } while (pgd++, addr = next, addr != end);
1da177e4 1287 tlb_end_vma(tlb, vma);
569b846d 1288 mem_cgroup_uncharge_end();
51c6f666
RH
1289
1290 return addr;
1da177e4
LT
1291}
1292
1da177e4
LT
1293/**
1294 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1295 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1296 * @vma: the starting vma
1297 * @start_addr: virtual address at which to start unmapping
1298 * @end_addr: virtual address at which to end unmapping
1299 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1300 * @details: details of nonlinear truncation or shared cache invalidation
1301 *
ee39b37b 1302 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 1303 *
508034a3 1304 * Unmap all pages in the vma list.
1da177e4 1305 *
1da177e4
LT
1306 * Only addresses between `start' and `end' will be unmapped.
1307 *
1308 * The VMA list must be sorted in ascending virtual address order.
1309 *
1310 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1311 * range after unmap_vmas() returns. So the only responsibility here is to
1312 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1313 * drops the lock and schedules.
1314 */
d16dfc55 1315unsigned long unmap_vmas(struct mmu_gather *tlb,
1da177e4
LT
1316 struct vm_area_struct *vma, unsigned long start_addr,
1317 unsigned long end_addr, unsigned long *nr_accounted,
1318 struct zap_details *details)
1319{
ee39b37b 1320 unsigned long start = start_addr;
cddb8a5c 1321 struct mm_struct *mm = vma->vm_mm;
1da177e4 1322
cddb8a5c 1323 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1324 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1325 unsigned long end;
1326
1327 start = max(vma->vm_start, start_addr);
1328 if (start >= vma->vm_end)
1329 continue;
1330 end = min(vma->vm_end, end_addr);
1331 if (end <= vma->vm_start)
1332 continue;
1333
1334 if (vma->vm_flags & VM_ACCOUNT)
1335 *nr_accounted += (end - start) >> PAGE_SHIFT;
1336
34801ba9 1337 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1338 untrack_pfn_vma(vma, 0, 0);
1339
1da177e4 1340 while (start != end) {
51c6f666 1341 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1342 /*
1343 * It is undesirable to test vma->vm_file as it
1344 * should be non-null for valid hugetlb area.
1345 * However, vm_file will be NULL in the error
1346 * cleanup path of do_mmap_pgoff. When
1347 * hugetlbfs ->mmap method fails,
1348 * do_mmap_pgoff() nullifies vma->vm_file
1349 * before calling this function to clean up.
1350 * Since no pte has actually been setup, it is
1351 * safe to do nothing in this case.
1352 */
97a89413 1353 if (vma->vm_file)
a137e1cc 1354 unmap_hugepage_range(vma, start, end, NULL);
a137e1cc 1355
51c6f666
RH
1356 start = end;
1357 } else
97a89413 1358 start = unmap_page_range(tlb, vma, start, end, details);
1da177e4
LT
1359 }
1360 }
97a89413 1361
cddb8a5c 1362 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1363 return start; /* which is now the end (or restart) address */
1da177e4
LT
1364}
1365
1366/**
1367 * zap_page_range - remove user pages in a given range
1368 * @vma: vm_area_struct holding the applicable pages
1369 * @address: starting address of pages to zap
1370 * @size: number of bytes to zap
1371 * @details: details of nonlinear truncation or shared cache invalidation
1372 */
ee39b37b 1373unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1374 unsigned long size, struct zap_details *details)
1375{
1376 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1377 struct mmu_gather tlb;
1da177e4
LT
1378 unsigned long end = address + size;
1379 unsigned long nr_accounted = 0;
1380
1da177e4 1381 lru_add_drain();
d16dfc55 1382 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1383 update_hiwater_rss(mm);
508034a3 1384 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
d16dfc55 1385 tlb_finish_mmu(&tlb, address, end);
ee39b37b 1386 return end;
1da177e4
LT
1387}
1388
c627f9cc
JS
1389/**
1390 * zap_vma_ptes - remove ptes mapping the vma
1391 * @vma: vm_area_struct holding ptes to be zapped
1392 * @address: starting address of pages to zap
1393 * @size: number of bytes to zap
1394 *
1395 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 *
1397 * The entire address range must be fully contained within the vma.
1398 *
1399 * Returns 0 if successful.
1400 */
1401int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1402 unsigned long size)
1403{
1404 if (address < vma->vm_start || address + size > vma->vm_end ||
1405 !(vma->vm_flags & VM_PFNMAP))
1406 return -1;
1407 zap_page_range(vma, address, size, NULL);
1408 return 0;
1409}
1410EXPORT_SYMBOL_GPL(zap_vma_ptes);
1411
142762bd
JW
1412/**
1413 * follow_page - look up a page descriptor from a user-virtual address
1414 * @vma: vm_area_struct mapping @address
1415 * @address: virtual address to look up
1416 * @flags: flags modifying lookup behaviour
1417 *
1418 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1419 *
1420 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1421 * an error pointer if there is a mapping to something not represented
1422 * by a page descriptor (see also vm_normal_page()).
1da177e4 1423 */
6aab341e 1424struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1425 unsigned int flags)
1da177e4
LT
1426{
1427 pgd_t *pgd;
1428 pud_t *pud;
1429 pmd_t *pmd;
1430 pte_t *ptep, pte;
deceb6cd 1431 spinlock_t *ptl;
1da177e4 1432 struct page *page;
6aab341e 1433 struct mm_struct *mm = vma->vm_mm;
1da177e4 1434
deceb6cd
HD
1435 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1436 if (!IS_ERR(page)) {
1437 BUG_ON(flags & FOLL_GET);
1438 goto out;
1439 }
1da177e4 1440
deceb6cd 1441 page = NULL;
1da177e4
LT
1442 pgd = pgd_offset(mm, address);
1443 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1444 goto no_page_table;
1da177e4
LT
1445
1446 pud = pud_offset(pgd, address);
ceb86879 1447 if (pud_none(*pud))
deceb6cd 1448 goto no_page_table;
8a07651e 1449 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1450 BUG_ON(flags & FOLL_GET);
1451 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1452 goto out;
1453 }
1454 if (unlikely(pud_bad(*pud)))
1455 goto no_page_table;
1456
1da177e4 1457 pmd = pmd_offset(pud, address);
aeed5fce 1458 if (pmd_none(*pmd))
deceb6cd 1459 goto no_page_table;
71e3aac0 1460 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1461 BUG_ON(flags & FOLL_GET);
1462 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1463 goto out;
deceb6cd 1464 }
71e3aac0 1465 if (pmd_trans_huge(*pmd)) {
500d65d4
AA
1466 if (flags & FOLL_SPLIT) {
1467 split_huge_page_pmd(mm, pmd);
1468 goto split_fallthrough;
1469 }
71e3aac0
AA
1470 spin_lock(&mm->page_table_lock);
1471 if (likely(pmd_trans_huge(*pmd))) {
1472 if (unlikely(pmd_trans_splitting(*pmd))) {
1473 spin_unlock(&mm->page_table_lock);
1474 wait_split_huge_page(vma->anon_vma, pmd);
1475 } else {
1476 page = follow_trans_huge_pmd(mm, address,
1477 pmd, flags);
1478 spin_unlock(&mm->page_table_lock);
1479 goto out;
1480 }
1481 } else
1482 spin_unlock(&mm->page_table_lock);
1483 /* fall through */
1484 }
500d65d4 1485split_fallthrough:
aeed5fce
HD
1486 if (unlikely(pmd_bad(*pmd)))
1487 goto no_page_table;
1488
deceb6cd 1489 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1490
1491 pte = *ptep;
deceb6cd 1492 if (!pte_present(pte))
89f5b7da 1493 goto no_page;
deceb6cd
HD
1494 if ((flags & FOLL_WRITE) && !pte_write(pte))
1495 goto unlock;
a13ea5b7 1496
6aab341e 1497 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1498 if (unlikely(!page)) {
1499 if ((flags & FOLL_DUMP) ||
62eede62 1500 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1501 goto bad_page;
1502 page = pte_page(pte);
1503 }
1da177e4 1504
deceb6cd
HD
1505 if (flags & FOLL_GET)
1506 get_page(page);
1507 if (flags & FOLL_TOUCH) {
1508 if ((flags & FOLL_WRITE) &&
1509 !pte_dirty(pte) && !PageDirty(page))
1510 set_page_dirty(page);
bd775c42
KM
1511 /*
1512 * pte_mkyoung() would be more correct here, but atomic care
1513 * is needed to avoid losing the dirty bit: it is easier to use
1514 * mark_page_accessed().
1515 */
deceb6cd
HD
1516 mark_page_accessed(page);
1517 }
a1fde08c 1518 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1519 /*
1520 * The preliminary mapping check is mainly to avoid the
1521 * pointless overhead of lock_page on the ZERO_PAGE
1522 * which might bounce very badly if there is contention.
1523 *
1524 * If the page is already locked, we don't need to
1525 * handle it now - vmscan will handle it later if and
1526 * when it attempts to reclaim the page.
1527 */
1528 if (page->mapping && trylock_page(page)) {
1529 lru_add_drain(); /* push cached pages to LRU */
1530 /*
1531 * Because we lock page here and migration is
1532 * blocked by the pte's page reference, we need
1533 * only check for file-cache page truncation.
1534 */
1535 if (page->mapping)
1536 mlock_vma_page(page);
1537 unlock_page(page);
1538 }
1539 }
deceb6cd
HD
1540unlock:
1541 pte_unmap_unlock(ptep, ptl);
1da177e4 1542out:
deceb6cd 1543 return page;
1da177e4 1544
89f5b7da
LT
1545bad_page:
1546 pte_unmap_unlock(ptep, ptl);
1547 return ERR_PTR(-EFAULT);
1548
1549no_page:
1550 pte_unmap_unlock(ptep, ptl);
1551 if (!pte_none(pte))
1552 return page;
8e4b9a60 1553
deceb6cd
HD
1554no_page_table:
1555 /*
1556 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1557 * has touched so far, we don't want to allocate unnecessary pages or
1558 * page tables. Return error instead of NULL to skip handle_mm_fault,
1559 * then get_dump_page() will return NULL to leave a hole in the dump.
1560 * But we can only make this optimization where a hole would surely
1561 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1562 */
8e4b9a60
HD
1563 if ((flags & FOLL_DUMP) &&
1564 (!vma->vm_ops || !vma->vm_ops->fault))
1565 return ERR_PTR(-EFAULT);
deceb6cd 1566 return page;
1da177e4
LT
1567}
1568
95042f9e
LT
1569static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1570{
a09a79f6
MP
1571 return stack_guard_page_start(vma, addr) ||
1572 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1573}
1574
0014bd99
HY
1575/**
1576 * __get_user_pages() - pin user pages in memory
1577 * @tsk: task_struct of target task
1578 * @mm: mm_struct of target mm
1579 * @start: starting user address
1580 * @nr_pages: number of pages from start to pin
1581 * @gup_flags: flags modifying pin behaviour
1582 * @pages: array that receives pointers to the pages pinned.
1583 * Should be at least nr_pages long. Or NULL, if caller
1584 * only intends to ensure the pages are faulted in.
1585 * @vmas: array of pointers to vmas corresponding to each page.
1586 * Or NULL if the caller does not require them.
1587 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1588 *
1589 * Returns number of pages pinned. This may be fewer than the number
1590 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1591 * were pinned, returns -errno. Each page returned must be released
1592 * with a put_page() call when it is finished with. vmas will only
1593 * remain valid while mmap_sem is held.
1594 *
1595 * Must be called with mmap_sem held for read or write.
1596 *
1597 * __get_user_pages walks a process's page tables and takes a reference to
1598 * each struct page that each user address corresponds to at a given
1599 * instant. That is, it takes the page that would be accessed if a user
1600 * thread accesses the given user virtual address at that instant.
1601 *
1602 * This does not guarantee that the page exists in the user mappings when
1603 * __get_user_pages returns, and there may even be a completely different
1604 * page there in some cases (eg. if mmapped pagecache has been invalidated
1605 * and subsequently re faulted). However it does guarantee that the page
1606 * won't be freed completely. And mostly callers simply care that the page
1607 * contains data that was valid *at some point in time*. Typically, an IO
1608 * or similar operation cannot guarantee anything stronger anyway because
1609 * locks can't be held over the syscall boundary.
1610 *
1611 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1612 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1613 * appropriate) must be called after the page is finished with, and
1614 * before put_page is called.
1615 *
1616 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1617 * or mmap_sem contention, and if waiting is needed to pin all pages,
1618 * *@nonblocking will be set to 0.
1619 *
1620 * In most cases, get_user_pages or get_user_pages_fast should be used
1621 * instead of __get_user_pages. __get_user_pages should be used only if
1622 * you need some special @gup_flags.
1623 */
b291f000 1624int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1625 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1626 struct page **pages, struct vm_area_struct **vmas,
1627 int *nonblocking)
1da177e4
LT
1628{
1629 int i;
58fa879e 1630 unsigned long vm_flags;
1da177e4 1631
9d73777e 1632 if (nr_pages <= 0)
900cf086 1633 return 0;
58fa879e
HD
1634
1635 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1636
1da177e4
LT
1637 /*
1638 * Require read or write permissions.
58fa879e 1639 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1640 */
58fa879e
HD
1641 vm_flags = (gup_flags & FOLL_WRITE) ?
1642 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1643 vm_flags &= (gup_flags & FOLL_FORCE) ?
1644 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1645 i = 0;
1646
1647 do {
deceb6cd 1648 struct vm_area_struct *vma;
1da177e4
LT
1649
1650 vma = find_extend_vma(mm, start);
e7f22e20 1651 if (!vma && in_gate_area(mm, start)) {
1da177e4 1652 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1653 pgd_t *pgd;
1654 pud_t *pud;
1655 pmd_t *pmd;
1656 pte_t *pte;
b291f000
NP
1657
1658 /* user gate pages are read-only */
58fa879e 1659 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1660 return i ? : -EFAULT;
1661 if (pg > TASK_SIZE)
1662 pgd = pgd_offset_k(pg);
1663 else
1664 pgd = pgd_offset_gate(mm, pg);
1665 BUG_ON(pgd_none(*pgd));
1666 pud = pud_offset(pgd, pg);
1667 BUG_ON(pud_none(*pud));
1668 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1669 if (pmd_none(*pmd))
1670 return i ? : -EFAULT;
f66055ab 1671 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1672 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1673 if (pte_none(*pte)) {
1674 pte_unmap(pte);
1675 return i ? : -EFAULT;
1676 }
95042f9e 1677 vma = get_gate_vma(mm);
1da177e4 1678 if (pages) {
de51257a
HD
1679 struct page *page;
1680
95042f9e 1681 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1682 if (!page) {
1683 if (!(gup_flags & FOLL_DUMP) &&
1684 is_zero_pfn(pte_pfn(*pte)))
1685 page = pte_page(*pte);
1686 else {
1687 pte_unmap(pte);
1688 return i ? : -EFAULT;
1689 }
1690 }
6aab341e 1691 pages[i] = page;
de51257a 1692 get_page(page);
1da177e4
LT
1693 }
1694 pte_unmap(pte);
95042f9e 1695 goto next_page;
1da177e4
LT
1696 }
1697
b291f000
NP
1698 if (!vma ||
1699 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1700 !(vm_flags & vma->vm_flags))
1da177e4
LT
1701 return i ? : -EFAULT;
1702
2a15efc9
HD
1703 if (is_vm_hugetlb_page(vma)) {
1704 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1705 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1706 continue;
1707 }
deceb6cd 1708
1da177e4 1709 do {
08ef4729 1710 struct page *page;
58fa879e 1711 unsigned int foll_flags = gup_flags;
1da177e4 1712
462e00cc 1713 /*
4779280d 1714 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1715 * pages and potentially allocating memory.
462e00cc 1716 */
1c3aff1c 1717 if (unlikely(fatal_signal_pending(current)))
4779280d 1718 return i ? i : -ERESTARTSYS;
462e00cc 1719
deceb6cd 1720 cond_resched();
6aab341e 1721 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1722 int ret;
53a7706d
ML
1723 unsigned int fault_flags = 0;
1724
a09a79f6
MP
1725 /* For mlock, just skip the stack guard page. */
1726 if (foll_flags & FOLL_MLOCK) {
1727 if (stack_guard_page(vma, start))
1728 goto next_page;
1729 }
53a7706d
ML
1730 if (foll_flags & FOLL_WRITE)
1731 fault_flags |= FAULT_FLAG_WRITE;
1732 if (nonblocking)
1733 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1734 if (foll_flags & FOLL_NOWAIT)
1735 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1736
d26ed650 1737 ret = handle_mm_fault(mm, vma, start,
53a7706d 1738 fault_flags);
d26ed650 1739
83c54070
NP
1740 if (ret & VM_FAULT_ERROR) {
1741 if (ret & VM_FAULT_OOM)
1742 return i ? i : -ENOMEM;
69ebb83e
HY
1743 if (ret & (VM_FAULT_HWPOISON |
1744 VM_FAULT_HWPOISON_LARGE)) {
1745 if (i)
1746 return i;
1747 else if (gup_flags & FOLL_HWPOISON)
1748 return -EHWPOISON;
1749 else
1750 return -EFAULT;
1751 }
1752 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1753 return i ? i : -EFAULT;
1754 BUG();
1755 }
e7f22e20
SW
1756
1757 if (tsk) {
1758 if (ret & VM_FAULT_MAJOR)
1759 tsk->maj_flt++;
1760 else
1761 tsk->min_flt++;
1762 }
83c54070 1763
53a7706d 1764 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1765 if (nonblocking)
1766 *nonblocking = 0;
53a7706d
ML
1767 return i;
1768 }
1769
a68d2ebc 1770 /*
83c54070
NP
1771 * The VM_FAULT_WRITE bit tells us that
1772 * do_wp_page has broken COW when necessary,
1773 * even if maybe_mkwrite decided not to set
1774 * pte_write. We can thus safely do subsequent
878b63ac
HD
1775 * page lookups as if they were reads. But only
1776 * do so when looping for pte_write is futile:
1777 * in some cases userspace may also be wanting
1778 * to write to the gotten user page, which a
1779 * read fault here might prevent (a readonly
1780 * page might get reCOWed by userspace write).
a68d2ebc 1781 */
878b63ac
HD
1782 if ((ret & VM_FAULT_WRITE) &&
1783 !(vma->vm_flags & VM_WRITE))
deceb6cd 1784 foll_flags &= ~FOLL_WRITE;
83c54070 1785
7f7bbbe5 1786 cond_resched();
1da177e4 1787 }
89f5b7da
LT
1788 if (IS_ERR(page))
1789 return i ? i : PTR_ERR(page);
1da177e4 1790 if (pages) {
08ef4729 1791 pages[i] = page;
03beb076 1792
a6f36be3 1793 flush_anon_page(vma, page, start);
08ef4729 1794 flush_dcache_page(page);
1da177e4 1795 }
95042f9e 1796next_page:
1da177e4
LT
1797 if (vmas)
1798 vmas[i] = vma;
1799 i++;
1800 start += PAGE_SIZE;
9d73777e
PZ
1801 nr_pages--;
1802 } while (nr_pages && start < vma->vm_end);
1803 } while (nr_pages);
1da177e4
LT
1804 return i;
1805}
0014bd99 1806EXPORT_SYMBOL(__get_user_pages);
b291f000 1807
d2bf6be8
NP
1808/**
1809 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1810 * @tsk: the task_struct to use for page fault accounting, or
1811 * NULL if faults are not to be recorded.
d2bf6be8
NP
1812 * @mm: mm_struct of target mm
1813 * @start: starting user address
9d73777e 1814 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1815 * @write: whether pages will be written to by the caller
1816 * @force: whether to force write access even if user mapping is
1817 * readonly. This will result in the page being COWed even
1818 * in MAP_SHARED mappings. You do not want this.
1819 * @pages: array that receives pointers to the pages pinned.
1820 * Should be at least nr_pages long. Or NULL, if caller
1821 * only intends to ensure the pages are faulted in.
1822 * @vmas: array of pointers to vmas corresponding to each page.
1823 * Or NULL if the caller does not require them.
1824 *
1825 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1826 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1827 * were pinned, returns -errno. Each page returned must be released
1828 * with a put_page() call when it is finished with. vmas will only
1829 * remain valid while mmap_sem is held.
1830 *
1831 * Must be called with mmap_sem held for read or write.
1832 *
1833 * get_user_pages walks a process's page tables and takes a reference to
1834 * each struct page that each user address corresponds to at a given
1835 * instant. That is, it takes the page that would be accessed if a user
1836 * thread accesses the given user virtual address at that instant.
1837 *
1838 * This does not guarantee that the page exists in the user mappings when
1839 * get_user_pages returns, and there may even be a completely different
1840 * page there in some cases (eg. if mmapped pagecache has been invalidated
1841 * and subsequently re faulted). However it does guarantee that the page
1842 * won't be freed completely. And mostly callers simply care that the page
1843 * contains data that was valid *at some point in time*. Typically, an IO
1844 * or similar operation cannot guarantee anything stronger anyway because
1845 * locks can't be held over the syscall boundary.
1846 *
1847 * If write=0, the page must not be written to. If the page is written to,
1848 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1849 * after the page is finished with, and before put_page is called.
1850 *
1851 * get_user_pages is typically used for fewer-copy IO operations, to get a
1852 * handle on the memory by some means other than accesses via the user virtual
1853 * addresses. The pages may be submitted for DMA to devices or accessed via
1854 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1855 * use the correct cache flushing APIs.
1856 *
1857 * See also get_user_pages_fast, for performance critical applications.
1858 */
b291f000 1859int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1860 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1861 struct page **pages, struct vm_area_struct **vmas)
1862{
58fa879e 1863 int flags = FOLL_TOUCH;
b291f000 1864
58fa879e
HD
1865 if (pages)
1866 flags |= FOLL_GET;
b291f000 1867 if (write)
58fa879e 1868 flags |= FOLL_WRITE;
b291f000 1869 if (force)
58fa879e 1870 flags |= FOLL_FORCE;
b291f000 1871
53a7706d
ML
1872 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1873 NULL);
b291f000 1874}
1da177e4
LT
1875EXPORT_SYMBOL(get_user_pages);
1876
f3e8fccd
HD
1877/**
1878 * get_dump_page() - pin user page in memory while writing it to core dump
1879 * @addr: user address
1880 *
1881 * Returns struct page pointer of user page pinned for dump,
1882 * to be freed afterwards by page_cache_release() or put_page().
1883 *
1884 * Returns NULL on any kind of failure - a hole must then be inserted into
1885 * the corefile, to preserve alignment with its headers; and also returns
1886 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1887 * allowing a hole to be left in the corefile to save diskspace.
1888 *
1889 * Called without mmap_sem, but after all other threads have been killed.
1890 */
1891#ifdef CONFIG_ELF_CORE
1892struct page *get_dump_page(unsigned long addr)
1893{
1894 struct vm_area_struct *vma;
1895 struct page *page;
1896
1897 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
1898 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1899 NULL) < 1)
f3e8fccd 1900 return NULL;
f3e8fccd
HD
1901 flush_cache_page(vma, addr, page_to_pfn(page));
1902 return page;
1903}
1904#endif /* CONFIG_ELF_CORE */
1905
25ca1d6c 1906pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1907 spinlock_t **ptl)
c9cfcddf
LT
1908{
1909 pgd_t * pgd = pgd_offset(mm, addr);
1910 pud_t * pud = pud_alloc(mm, pgd, addr);
1911 if (pud) {
49c91fb0 1912 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1913 if (pmd) {
1914 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1915 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1916 }
c9cfcddf
LT
1917 }
1918 return NULL;
1919}
1920
238f58d8
LT
1921/*
1922 * This is the old fallback for page remapping.
1923 *
1924 * For historical reasons, it only allows reserved pages. Only
1925 * old drivers should use this, and they needed to mark their
1926 * pages reserved for the old functions anyway.
1927 */
423bad60
NP
1928static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1929 struct page *page, pgprot_t prot)
238f58d8 1930{
423bad60 1931 struct mm_struct *mm = vma->vm_mm;
238f58d8 1932 int retval;
c9cfcddf 1933 pte_t *pte;
8a9f3ccd
BS
1934 spinlock_t *ptl;
1935
238f58d8 1936 retval = -EINVAL;
a145dd41 1937 if (PageAnon(page))
5b4e655e 1938 goto out;
238f58d8
LT
1939 retval = -ENOMEM;
1940 flush_dcache_page(page);
c9cfcddf 1941 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1942 if (!pte)
5b4e655e 1943 goto out;
238f58d8
LT
1944 retval = -EBUSY;
1945 if (!pte_none(*pte))
1946 goto out_unlock;
1947
1948 /* Ok, finally just insert the thing.. */
1949 get_page(page);
34e55232 1950 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1951 page_add_file_rmap(page);
1952 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1953
1954 retval = 0;
8a9f3ccd
BS
1955 pte_unmap_unlock(pte, ptl);
1956 return retval;
238f58d8
LT
1957out_unlock:
1958 pte_unmap_unlock(pte, ptl);
1959out:
1960 return retval;
1961}
1962
bfa5bf6d
REB
1963/**
1964 * vm_insert_page - insert single page into user vma
1965 * @vma: user vma to map to
1966 * @addr: target user address of this page
1967 * @page: source kernel page
1968 *
a145dd41
LT
1969 * This allows drivers to insert individual pages they've allocated
1970 * into a user vma.
1971 *
1972 * The page has to be a nice clean _individual_ kernel allocation.
1973 * If you allocate a compound page, you need to have marked it as
1974 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1975 * (see split_page()).
a145dd41
LT
1976 *
1977 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1978 * took an arbitrary page protection parameter. This doesn't allow
1979 * that. Your vma protection will have to be set up correctly, which
1980 * means that if you want a shared writable mapping, you'd better
1981 * ask for a shared writable mapping!
1982 *
1983 * The page does not need to be reserved.
1984 */
423bad60
NP
1985int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1986 struct page *page)
a145dd41
LT
1987{
1988 if (addr < vma->vm_start || addr >= vma->vm_end)
1989 return -EFAULT;
1990 if (!page_count(page))
1991 return -EINVAL;
4d7672b4 1992 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1993 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1994}
e3c3374f 1995EXPORT_SYMBOL(vm_insert_page);
a145dd41 1996
423bad60
NP
1997static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1998 unsigned long pfn, pgprot_t prot)
1999{
2000 struct mm_struct *mm = vma->vm_mm;
2001 int retval;
2002 pte_t *pte, entry;
2003 spinlock_t *ptl;
2004
2005 retval = -ENOMEM;
2006 pte = get_locked_pte(mm, addr, &ptl);
2007 if (!pte)
2008 goto out;
2009 retval = -EBUSY;
2010 if (!pte_none(*pte))
2011 goto out_unlock;
2012
2013 /* Ok, finally just insert the thing.. */
2014 entry = pte_mkspecial(pfn_pte(pfn, prot));
2015 set_pte_at(mm, addr, pte, entry);
4b3073e1 2016 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2017
2018 retval = 0;
2019out_unlock:
2020 pte_unmap_unlock(pte, ptl);
2021out:
2022 return retval;
2023}
2024
e0dc0d8f
NP
2025/**
2026 * vm_insert_pfn - insert single pfn into user vma
2027 * @vma: user vma to map to
2028 * @addr: target user address of this page
2029 * @pfn: source kernel pfn
2030 *
2031 * Similar to vm_inert_page, this allows drivers to insert individual pages
2032 * they've allocated into a user vma. Same comments apply.
2033 *
2034 * This function should only be called from a vm_ops->fault handler, and
2035 * in that case the handler should return NULL.
0d71d10a
NP
2036 *
2037 * vma cannot be a COW mapping.
2038 *
2039 * As this is called only for pages that do not currently exist, we
2040 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2041 */
2042int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2043 unsigned long pfn)
e0dc0d8f 2044{
2ab64037 2045 int ret;
e4b866ed 2046 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2047 /*
2048 * Technically, architectures with pte_special can avoid all these
2049 * restrictions (same for remap_pfn_range). However we would like
2050 * consistency in testing and feature parity among all, so we should
2051 * try to keep these invariants in place for everybody.
2052 */
b379d790
JH
2053 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2054 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2055 (VM_PFNMAP|VM_MIXEDMAP));
2056 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2057 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2058
423bad60
NP
2059 if (addr < vma->vm_start || addr >= vma->vm_end)
2060 return -EFAULT;
e4b866ed 2061 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 2062 return -EINVAL;
2063
e4b866ed 2064 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2065
2066 if (ret)
2067 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2068
2069 return ret;
423bad60
NP
2070}
2071EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2072
423bad60
NP
2073int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2074 unsigned long pfn)
2075{
2076 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2077
423bad60
NP
2078 if (addr < vma->vm_start || addr >= vma->vm_end)
2079 return -EFAULT;
e0dc0d8f 2080
423bad60
NP
2081 /*
2082 * If we don't have pte special, then we have to use the pfn_valid()
2083 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2084 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2085 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2086 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2087 */
2088 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2089 struct page *page;
2090
2091 page = pfn_to_page(pfn);
2092 return insert_page(vma, addr, page, vma->vm_page_prot);
2093 }
2094 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2095}
423bad60 2096EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2097
1da177e4
LT
2098/*
2099 * maps a range of physical memory into the requested pages. the old
2100 * mappings are removed. any references to nonexistent pages results
2101 * in null mappings (currently treated as "copy-on-access")
2102 */
2103static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2104 unsigned long addr, unsigned long end,
2105 unsigned long pfn, pgprot_t prot)
2106{
2107 pte_t *pte;
c74df32c 2108 spinlock_t *ptl;
1da177e4 2109
c74df32c 2110 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2111 if (!pte)
2112 return -ENOMEM;
6606c3e0 2113 arch_enter_lazy_mmu_mode();
1da177e4
LT
2114 do {
2115 BUG_ON(!pte_none(*pte));
7e675137 2116 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2117 pfn++;
2118 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2119 arch_leave_lazy_mmu_mode();
c74df32c 2120 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2121 return 0;
2122}
2123
2124static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2125 unsigned long addr, unsigned long end,
2126 unsigned long pfn, pgprot_t prot)
2127{
2128 pmd_t *pmd;
2129 unsigned long next;
2130
2131 pfn -= addr >> PAGE_SHIFT;
2132 pmd = pmd_alloc(mm, pud, addr);
2133 if (!pmd)
2134 return -ENOMEM;
f66055ab 2135 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2136 do {
2137 next = pmd_addr_end(addr, end);
2138 if (remap_pte_range(mm, pmd, addr, next,
2139 pfn + (addr >> PAGE_SHIFT), prot))
2140 return -ENOMEM;
2141 } while (pmd++, addr = next, addr != end);
2142 return 0;
2143}
2144
2145static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2146 unsigned long addr, unsigned long end,
2147 unsigned long pfn, pgprot_t prot)
2148{
2149 pud_t *pud;
2150 unsigned long next;
2151
2152 pfn -= addr >> PAGE_SHIFT;
2153 pud = pud_alloc(mm, pgd, addr);
2154 if (!pud)
2155 return -ENOMEM;
2156 do {
2157 next = pud_addr_end(addr, end);
2158 if (remap_pmd_range(mm, pud, addr, next,
2159 pfn + (addr >> PAGE_SHIFT), prot))
2160 return -ENOMEM;
2161 } while (pud++, addr = next, addr != end);
2162 return 0;
2163}
2164
bfa5bf6d
REB
2165/**
2166 * remap_pfn_range - remap kernel memory to userspace
2167 * @vma: user vma to map to
2168 * @addr: target user address to start at
2169 * @pfn: physical address of kernel memory
2170 * @size: size of map area
2171 * @prot: page protection flags for this mapping
2172 *
2173 * Note: this is only safe if the mm semaphore is held when called.
2174 */
1da177e4
LT
2175int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2176 unsigned long pfn, unsigned long size, pgprot_t prot)
2177{
2178 pgd_t *pgd;
2179 unsigned long next;
2d15cab8 2180 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2181 struct mm_struct *mm = vma->vm_mm;
2182 int err;
2183
2184 /*
2185 * Physically remapped pages are special. Tell the
2186 * rest of the world about it:
2187 * VM_IO tells people not to look at these pages
2188 * (accesses can have side effects).
0b14c179
HD
2189 * VM_RESERVED is specified all over the place, because
2190 * in 2.4 it kept swapout's vma scan off this vma; but
2191 * in 2.6 the LRU scan won't even find its pages, so this
2192 * flag means no more than count its pages in reserved_vm,
2193 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
2194 * VM_PFNMAP tells the core MM that the base pages are just
2195 * raw PFN mappings, and do not have a "struct page" associated
2196 * with them.
fb155c16
LT
2197 *
2198 * There's a horrible special case to handle copy-on-write
2199 * behaviour that some programs depend on. We mark the "original"
2200 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 2201 */
4bb9c5c0 2202 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 2203 vma->vm_pgoff = pfn;
895791da 2204 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 2205 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 2206 return -EINVAL;
fb155c16 2207
6aab341e 2208 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 2209
e4b866ed 2210 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 2211 if (err) {
2212 /*
2213 * To indicate that track_pfn related cleanup is not
2214 * needed from higher level routine calling unmap_vmas
2215 */
2216 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 2217 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 2218 return -EINVAL;
a3670613 2219 }
2ab64037 2220
1da177e4
LT
2221 BUG_ON(addr >= end);
2222 pfn -= addr >> PAGE_SHIFT;
2223 pgd = pgd_offset(mm, addr);
2224 flush_cache_range(vma, addr, end);
1da177e4
LT
2225 do {
2226 next = pgd_addr_end(addr, end);
2227 err = remap_pud_range(mm, pgd, addr, next,
2228 pfn + (addr >> PAGE_SHIFT), prot);
2229 if (err)
2230 break;
2231 } while (pgd++, addr = next, addr != end);
2ab64037 2232
2233 if (err)
2234 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2235
1da177e4
LT
2236 return err;
2237}
2238EXPORT_SYMBOL(remap_pfn_range);
2239
aee16b3c
JF
2240static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2241 unsigned long addr, unsigned long end,
2242 pte_fn_t fn, void *data)
2243{
2244 pte_t *pte;
2245 int err;
2f569afd 2246 pgtable_t token;
94909914 2247 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2248
2249 pte = (mm == &init_mm) ?
2250 pte_alloc_kernel(pmd, addr) :
2251 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2252 if (!pte)
2253 return -ENOMEM;
2254
2255 BUG_ON(pmd_huge(*pmd));
2256
38e0edb1
JF
2257 arch_enter_lazy_mmu_mode();
2258
2f569afd 2259 token = pmd_pgtable(*pmd);
aee16b3c
JF
2260
2261 do {
c36987e2 2262 err = fn(pte++, token, addr, data);
aee16b3c
JF
2263 if (err)
2264 break;
c36987e2 2265 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2266
38e0edb1
JF
2267 arch_leave_lazy_mmu_mode();
2268
aee16b3c
JF
2269 if (mm != &init_mm)
2270 pte_unmap_unlock(pte-1, ptl);
2271 return err;
2272}
2273
2274static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2275 unsigned long addr, unsigned long end,
2276 pte_fn_t fn, void *data)
2277{
2278 pmd_t *pmd;
2279 unsigned long next;
2280 int err;
2281
ceb86879
AK
2282 BUG_ON(pud_huge(*pud));
2283
aee16b3c
JF
2284 pmd = pmd_alloc(mm, pud, addr);
2285 if (!pmd)
2286 return -ENOMEM;
2287 do {
2288 next = pmd_addr_end(addr, end);
2289 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2290 if (err)
2291 break;
2292 } while (pmd++, addr = next, addr != end);
2293 return err;
2294}
2295
2296static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2297 unsigned long addr, unsigned long end,
2298 pte_fn_t fn, void *data)
2299{
2300 pud_t *pud;
2301 unsigned long next;
2302 int err;
2303
2304 pud = pud_alloc(mm, pgd, addr);
2305 if (!pud)
2306 return -ENOMEM;
2307 do {
2308 next = pud_addr_end(addr, end);
2309 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2310 if (err)
2311 break;
2312 } while (pud++, addr = next, addr != end);
2313 return err;
2314}
2315
2316/*
2317 * Scan a region of virtual memory, filling in page tables as necessary
2318 * and calling a provided function on each leaf page table.
2319 */
2320int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2321 unsigned long size, pte_fn_t fn, void *data)
2322{
2323 pgd_t *pgd;
2324 unsigned long next;
57250a5b 2325 unsigned long end = addr + size;
aee16b3c
JF
2326 int err;
2327
2328 BUG_ON(addr >= end);
2329 pgd = pgd_offset(mm, addr);
2330 do {
2331 next = pgd_addr_end(addr, end);
2332 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2333 if (err)
2334 break;
2335 } while (pgd++, addr = next, addr != end);
57250a5b 2336
aee16b3c
JF
2337 return err;
2338}
2339EXPORT_SYMBOL_GPL(apply_to_page_range);
2340
8f4e2101
HD
2341/*
2342 * handle_pte_fault chooses page fault handler according to an entry
2343 * which was read non-atomically. Before making any commitment, on
2344 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2345 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2346 * must check under lock before unmapping the pte and proceeding
2347 * (but do_wp_page is only called after already making such a check;
a335b2e1 2348 * and do_anonymous_page can safely check later on).
8f4e2101 2349 */
4c21e2f2 2350static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2351 pte_t *page_table, pte_t orig_pte)
2352{
2353 int same = 1;
2354#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2355 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2356 spinlock_t *ptl = pte_lockptr(mm, pmd);
2357 spin_lock(ptl);
8f4e2101 2358 same = pte_same(*page_table, orig_pte);
4c21e2f2 2359 spin_unlock(ptl);
8f4e2101
HD
2360 }
2361#endif
2362 pte_unmap(page_table);
2363 return same;
2364}
2365
9de455b2 2366static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2367{
2368 /*
2369 * If the source page was a PFN mapping, we don't have
2370 * a "struct page" for it. We do a best-effort copy by
2371 * just copying from the original user address. If that
2372 * fails, we just zero-fill it. Live with it.
2373 */
2374 if (unlikely(!src)) {
2375 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
2376 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2377
2378 /*
2379 * This really shouldn't fail, because the page is there
2380 * in the page tables. But it might just be unreadable,
2381 * in which case we just give up and fill the result with
2382 * zeroes.
2383 */
2384 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2385 clear_page(kaddr);
6aab341e 2386 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 2387 flush_dcache_page(dst);
0ed361de
NP
2388 } else
2389 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2390}
2391
1da177e4
LT
2392/*
2393 * This routine handles present pages, when users try to write
2394 * to a shared page. It is done by copying the page to a new address
2395 * and decrementing the shared-page counter for the old page.
2396 *
1da177e4
LT
2397 * Note that this routine assumes that the protection checks have been
2398 * done by the caller (the low-level page fault routine in most cases).
2399 * Thus we can safely just mark it writable once we've done any necessary
2400 * COW.
2401 *
2402 * We also mark the page dirty at this point even though the page will
2403 * change only once the write actually happens. This avoids a few races,
2404 * and potentially makes it more efficient.
2405 *
8f4e2101
HD
2406 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2407 * but allow concurrent faults), with pte both mapped and locked.
2408 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2409 */
65500d23
HD
2410static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2411 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2412 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2413 __releases(ptl)
1da177e4 2414{
e5bbe4df 2415 struct page *old_page, *new_page;
1da177e4 2416 pte_t entry;
b009c024 2417 int ret = 0;
a200ee18 2418 int page_mkwrite = 0;
d08b3851 2419 struct page *dirty_page = NULL;
1da177e4 2420
6aab341e 2421 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2422 if (!old_page) {
2423 /*
2424 * VM_MIXEDMAP !pfn_valid() case
2425 *
2426 * We should not cow pages in a shared writeable mapping.
2427 * Just mark the pages writable as we can't do any dirty
2428 * accounting on raw pfn maps.
2429 */
2430 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2431 (VM_WRITE|VM_SHARED))
2432 goto reuse;
6aab341e 2433 goto gotten;
251b97f5 2434 }
1da177e4 2435
d08b3851 2436 /*
ee6a6457
PZ
2437 * Take out anonymous pages first, anonymous shared vmas are
2438 * not dirty accountable.
d08b3851 2439 */
9a840895 2440 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2441 if (!trylock_page(old_page)) {
2442 page_cache_get(old_page);
2443 pte_unmap_unlock(page_table, ptl);
2444 lock_page(old_page);
2445 page_table = pte_offset_map_lock(mm, pmd, address,
2446 &ptl);
2447 if (!pte_same(*page_table, orig_pte)) {
2448 unlock_page(old_page);
ab967d86
HD
2449 goto unlock;
2450 }
2451 page_cache_release(old_page);
ee6a6457 2452 }
b009c024 2453 if (reuse_swap_page(old_page)) {
c44b6743
RR
2454 /*
2455 * The page is all ours. Move it to our anon_vma so
2456 * the rmap code will not search our parent or siblings.
2457 * Protected against the rmap code by the page lock.
2458 */
2459 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2460 unlock_page(old_page);
2461 goto reuse;
2462 }
ab967d86 2463 unlock_page(old_page);
ee6a6457 2464 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2465 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2466 /*
2467 * Only catch write-faults on shared writable pages,
2468 * read-only shared pages can get COWed by
2469 * get_user_pages(.write=1, .force=1).
2470 */
9637a5ef 2471 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2472 struct vm_fault vmf;
2473 int tmp;
2474
2475 vmf.virtual_address = (void __user *)(address &
2476 PAGE_MASK);
2477 vmf.pgoff = old_page->index;
2478 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2479 vmf.page = old_page;
2480
9637a5ef
DH
2481 /*
2482 * Notify the address space that the page is about to
2483 * become writable so that it can prohibit this or wait
2484 * for the page to get into an appropriate state.
2485 *
2486 * We do this without the lock held, so that it can
2487 * sleep if it needs to.
2488 */
2489 page_cache_get(old_page);
2490 pte_unmap_unlock(page_table, ptl);
2491
c2ec175c
NP
2492 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2493 if (unlikely(tmp &
2494 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2495 ret = tmp;
9637a5ef 2496 goto unwritable_page;
c2ec175c 2497 }
b827e496
NP
2498 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2499 lock_page(old_page);
2500 if (!old_page->mapping) {
2501 ret = 0; /* retry the fault */
2502 unlock_page(old_page);
2503 goto unwritable_page;
2504 }
2505 } else
2506 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2507
9637a5ef
DH
2508 /*
2509 * Since we dropped the lock we need to revalidate
2510 * the PTE as someone else may have changed it. If
2511 * they did, we just return, as we can count on the
2512 * MMU to tell us if they didn't also make it writable.
2513 */
2514 page_table = pte_offset_map_lock(mm, pmd, address,
2515 &ptl);
b827e496
NP
2516 if (!pte_same(*page_table, orig_pte)) {
2517 unlock_page(old_page);
9637a5ef 2518 goto unlock;
b827e496 2519 }
a200ee18
PZ
2520
2521 page_mkwrite = 1;
1da177e4 2522 }
d08b3851
PZ
2523 dirty_page = old_page;
2524 get_page(dirty_page);
9637a5ef 2525
251b97f5 2526reuse:
9637a5ef
DH
2527 flush_cache_page(vma, address, pte_pfn(orig_pte));
2528 entry = pte_mkyoung(orig_pte);
2529 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2530 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2531 update_mmu_cache(vma, address, page_table);
72ddc8f7 2532 pte_unmap_unlock(page_table, ptl);
9637a5ef 2533 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2534
2535 if (!dirty_page)
2536 return ret;
2537
2538 /*
2539 * Yes, Virginia, this is actually required to prevent a race
2540 * with clear_page_dirty_for_io() from clearing the page dirty
2541 * bit after it clear all dirty ptes, but before a racing
2542 * do_wp_page installs a dirty pte.
2543 *
a335b2e1 2544 * __do_fault is protected similarly.
72ddc8f7
ML
2545 */
2546 if (!page_mkwrite) {
2547 wait_on_page_locked(dirty_page);
2548 set_page_dirty_balance(dirty_page, page_mkwrite);
2549 }
2550 put_page(dirty_page);
2551 if (page_mkwrite) {
2552 struct address_space *mapping = dirty_page->mapping;
2553
2554 set_page_dirty(dirty_page);
2555 unlock_page(dirty_page);
2556 page_cache_release(dirty_page);
2557 if (mapping) {
2558 /*
2559 * Some device drivers do not set page.mapping
2560 * but still dirty their pages
2561 */
2562 balance_dirty_pages_ratelimited(mapping);
2563 }
2564 }
2565
2566 /* file_update_time outside page_lock */
2567 if (vma->vm_file)
2568 file_update_time(vma->vm_file);
2569
2570 return ret;
1da177e4 2571 }
1da177e4
LT
2572
2573 /*
2574 * Ok, we need to copy. Oh, well..
2575 */
b5810039 2576 page_cache_get(old_page);
920fc356 2577gotten:
8f4e2101 2578 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2579
2580 if (unlikely(anon_vma_prepare(vma)))
65500d23 2581 goto oom;
a13ea5b7 2582
62eede62 2583 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2584 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2585 if (!new_page)
2586 goto oom;
2587 } else {
2588 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2589 if (!new_page)
2590 goto oom;
2591 cow_user_page(new_page, old_page, address, vma);
2592 }
2593 __SetPageUptodate(new_page);
2594
2c26fdd7 2595 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2596 goto oom_free_new;
2597
1da177e4
LT
2598 /*
2599 * Re-check the pte - we dropped the lock
2600 */
8f4e2101 2601 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2602 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2603 if (old_page) {
920fc356 2604 if (!PageAnon(old_page)) {
34e55232
KH
2605 dec_mm_counter_fast(mm, MM_FILEPAGES);
2606 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2607 }
2608 } else
34e55232 2609 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2610 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2611 entry = mk_pte(new_page, vma->vm_page_prot);
2612 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2613 /*
2614 * Clear the pte entry and flush it first, before updating the
2615 * pte with the new entry. This will avoid a race condition
2616 * seen in the presence of one thread doing SMC and another
2617 * thread doing COW.
2618 */
828502d3 2619 ptep_clear_flush(vma, address, page_table);
9617d95e 2620 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2621 /*
2622 * We call the notify macro here because, when using secondary
2623 * mmu page tables (such as kvm shadow page tables), we want the
2624 * new page to be mapped directly into the secondary page table.
2625 */
2626 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2627 update_mmu_cache(vma, address, page_table);
945754a1
NP
2628 if (old_page) {
2629 /*
2630 * Only after switching the pte to the new page may
2631 * we remove the mapcount here. Otherwise another
2632 * process may come and find the rmap count decremented
2633 * before the pte is switched to the new page, and
2634 * "reuse" the old page writing into it while our pte
2635 * here still points into it and can be read by other
2636 * threads.
2637 *
2638 * The critical issue is to order this
2639 * page_remove_rmap with the ptp_clear_flush above.
2640 * Those stores are ordered by (if nothing else,)
2641 * the barrier present in the atomic_add_negative
2642 * in page_remove_rmap.
2643 *
2644 * Then the TLB flush in ptep_clear_flush ensures that
2645 * no process can access the old page before the
2646 * decremented mapcount is visible. And the old page
2647 * cannot be reused until after the decremented
2648 * mapcount is visible. So transitively, TLBs to
2649 * old page will be flushed before it can be reused.
2650 */
edc315fd 2651 page_remove_rmap(old_page);
945754a1
NP
2652 }
2653
1da177e4
LT
2654 /* Free the old page.. */
2655 new_page = old_page;
f33ea7f4 2656 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2657 } else
2658 mem_cgroup_uncharge_page(new_page);
2659
920fc356
HD
2660 if (new_page)
2661 page_cache_release(new_page);
65500d23 2662unlock:
8f4e2101 2663 pte_unmap_unlock(page_table, ptl);
e15f8c01
ML
2664 if (old_page) {
2665 /*
2666 * Don't let another task, with possibly unlocked vma,
2667 * keep the mlocked page.
2668 */
2669 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2670 lock_page(old_page); /* LRU manipulation */
2671 munlock_vma_page(old_page);
2672 unlock_page(old_page);
2673 }
2674 page_cache_release(old_page);
2675 }
f33ea7f4 2676 return ret;
8a9f3ccd 2677oom_free_new:
6dbf6d3b 2678 page_cache_release(new_page);
65500d23 2679oom:
b827e496
NP
2680 if (old_page) {
2681 if (page_mkwrite) {
2682 unlock_page(old_page);
2683 page_cache_release(old_page);
2684 }
920fc356 2685 page_cache_release(old_page);
b827e496 2686 }
1da177e4 2687 return VM_FAULT_OOM;
9637a5ef
DH
2688
2689unwritable_page:
2690 page_cache_release(old_page);
c2ec175c 2691 return ret;
1da177e4
LT
2692}
2693
97a89413 2694static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2695 unsigned long start_addr, unsigned long end_addr,
2696 struct zap_details *details)
2697{
97a89413 2698 zap_page_range(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2699}
2700
2701static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2702 struct zap_details *details)
2703{
2704 struct vm_area_struct *vma;
2705 struct prio_tree_iter iter;
2706 pgoff_t vba, vea, zba, zea;
2707
1da177e4
LT
2708 vma_prio_tree_foreach(vma, &iter, root,
2709 details->first_index, details->last_index) {
1da177e4
LT
2710
2711 vba = vma->vm_pgoff;
2712 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2713 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2714 zba = details->first_index;
2715 if (zba < vba)
2716 zba = vba;
2717 zea = details->last_index;
2718 if (zea > vea)
2719 zea = vea;
2720
97a89413 2721 unmap_mapping_range_vma(vma,
1da177e4
LT
2722 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2723 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2724 details);
1da177e4
LT
2725 }
2726}
2727
2728static inline void unmap_mapping_range_list(struct list_head *head,
2729 struct zap_details *details)
2730{
2731 struct vm_area_struct *vma;
2732
2733 /*
2734 * In nonlinear VMAs there is no correspondence between virtual address
2735 * offset and file offset. So we must perform an exhaustive search
2736 * across *all* the pages in each nonlinear VMA, not just the pages
2737 * whose virtual address lies outside the file truncation point.
2738 */
1da177e4 2739 list_for_each_entry(vma, head, shared.vm_set.list) {
1da177e4 2740 details->nonlinear_vma = vma;
97a89413 2741 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2742 }
2743}
2744
2745/**
72fd4a35 2746 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2747 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2748 * @holebegin: byte in first page to unmap, relative to the start of
2749 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2750 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2751 * must keep the partial page. In contrast, we must get rid of
2752 * partial pages.
2753 * @holelen: size of prospective hole in bytes. This will be rounded
2754 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2755 * end of the file.
2756 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2757 * but 0 when invalidating pagecache, don't throw away private data.
2758 */
2759void unmap_mapping_range(struct address_space *mapping,
2760 loff_t const holebegin, loff_t const holelen, int even_cows)
2761{
2762 struct zap_details details;
2763 pgoff_t hba = holebegin >> PAGE_SHIFT;
2764 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2765
2766 /* Check for overflow. */
2767 if (sizeof(holelen) > sizeof(hlen)) {
2768 long long holeend =
2769 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2770 if (holeend & ~(long long)ULONG_MAX)
2771 hlen = ULONG_MAX - hba + 1;
2772 }
2773
2774 details.check_mapping = even_cows? NULL: mapping;
2775 details.nonlinear_vma = NULL;
2776 details.first_index = hba;
2777 details.last_index = hba + hlen - 1;
2778 if (details.last_index < details.first_index)
2779 details.last_index = ULONG_MAX;
1da177e4 2780
1da177e4 2781
3d48ae45 2782 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
2783 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2784 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2785 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2786 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2787 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2788}
2789EXPORT_SYMBOL(unmap_mapping_range);
2790
1da177e4 2791/*
8f4e2101
HD
2792 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2793 * but allow concurrent faults), and pte mapped but not yet locked.
2794 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2795 */
65500d23
HD
2796static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2797 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2798 unsigned int flags, pte_t orig_pte)
1da177e4 2799{
8f4e2101 2800 spinlock_t *ptl;
4969c119 2801 struct page *page, *swapcache = NULL;
65500d23 2802 swp_entry_t entry;
1da177e4 2803 pte_t pte;
d065bd81 2804 int locked;
56039efa 2805 struct mem_cgroup *ptr;
ad8c2ee8 2806 int exclusive = 0;
83c54070 2807 int ret = 0;
1da177e4 2808
4c21e2f2 2809 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2810 goto out;
65500d23
HD
2811
2812 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2813 if (unlikely(non_swap_entry(entry))) {
2814 if (is_migration_entry(entry)) {
2815 migration_entry_wait(mm, pmd, address);
2816 } else if (is_hwpoison_entry(entry)) {
2817 ret = VM_FAULT_HWPOISON;
2818 } else {
2819 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2820 ret = VM_FAULT_SIGBUS;
d1737fdb 2821 }
0697212a
CL
2822 goto out;
2823 }
0ff92245 2824 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2825 page = lookup_swap_cache(entry);
2826 if (!page) {
a5c9b696 2827 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2828 page = swapin_readahead(entry,
2829 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2830 if (!page) {
2831 /*
8f4e2101
HD
2832 * Back out if somebody else faulted in this pte
2833 * while we released the pte lock.
1da177e4 2834 */
8f4e2101 2835 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2836 if (likely(pte_same(*page_table, orig_pte)))
2837 ret = VM_FAULT_OOM;
0ff92245 2838 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2839 goto unlock;
1da177e4
LT
2840 }
2841
2842 /* Had to read the page from swap area: Major fault */
2843 ret = VM_FAULT_MAJOR;
f8891e5e 2844 count_vm_event(PGMAJFAULT);
456f998e 2845 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2846 } else if (PageHWPoison(page)) {
71f72525
WF
2847 /*
2848 * hwpoisoned dirty swapcache pages are kept for killing
2849 * owner processes (which may be unknown at hwpoison time)
2850 */
d1737fdb
AK
2851 ret = VM_FAULT_HWPOISON;
2852 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2853 goto out_release;
1da177e4
LT
2854 }
2855
d065bd81 2856 locked = lock_page_or_retry(page, mm, flags);
073e587e 2857 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2858 if (!locked) {
2859 ret |= VM_FAULT_RETRY;
2860 goto out_release;
2861 }
073e587e 2862
4969c119 2863 /*
31c4a3d3
HD
2864 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2865 * release the swapcache from under us. The page pin, and pte_same
2866 * test below, are not enough to exclude that. Even if it is still
2867 * swapcache, we need to check that the page's swap has not changed.
4969c119 2868 */
31c4a3d3 2869 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2870 goto out_page;
2871
2872 if (ksm_might_need_to_copy(page, vma, address)) {
2873 swapcache = page;
2874 page = ksm_does_need_to_copy(page, vma, address);
2875
2876 if (unlikely(!page)) {
2877 ret = VM_FAULT_OOM;
2878 page = swapcache;
2879 swapcache = NULL;
2880 goto out_page;
2881 }
5ad64688
HD
2882 }
2883
2c26fdd7 2884 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2885 ret = VM_FAULT_OOM;
bc43f75c 2886 goto out_page;
8a9f3ccd
BS
2887 }
2888
1da177e4 2889 /*
8f4e2101 2890 * Back out if somebody else already faulted in this pte.
1da177e4 2891 */
8f4e2101 2892 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2893 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2894 goto out_nomap;
b8107480
KK
2895
2896 if (unlikely(!PageUptodate(page))) {
2897 ret = VM_FAULT_SIGBUS;
2898 goto out_nomap;
1da177e4
LT
2899 }
2900
8c7c6e34
KH
2901 /*
2902 * The page isn't present yet, go ahead with the fault.
2903 *
2904 * Be careful about the sequence of operations here.
2905 * To get its accounting right, reuse_swap_page() must be called
2906 * while the page is counted on swap but not yet in mapcount i.e.
2907 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2908 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2909 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2910 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2911 * in page->private. In this case, a record in swap_cgroup is silently
2912 * discarded at swap_free().
8c7c6e34 2913 */
1da177e4 2914
34e55232 2915 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2916 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2917 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2918 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2919 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2920 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2921 ret |= VM_FAULT_WRITE;
ad8c2ee8 2922 exclusive = 1;
1da177e4 2923 }
1da177e4
LT
2924 flush_icache_page(vma, page);
2925 set_pte_at(mm, address, page_table, pte);
ad8c2ee8 2926 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
2927 /* It's better to call commit-charge after rmap is established */
2928 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2929
c475a8ab 2930 swap_free(entry);
b291f000 2931 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2932 try_to_free_swap(page);
c475a8ab 2933 unlock_page(page);
4969c119
AA
2934 if (swapcache) {
2935 /*
2936 * Hold the lock to avoid the swap entry to be reused
2937 * until we take the PT lock for the pte_same() check
2938 * (to avoid false positives from pte_same). For
2939 * further safety release the lock after the swap_free
2940 * so that the swap count won't change under a
2941 * parallel locked swapcache.
2942 */
2943 unlock_page(swapcache);
2944 page_cache_release(swapcache);
2945 }
c475a8ab 2946
30c9f3a9 2947 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2948 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2949 if (ret & VM_FAULT_ERROR)
2950 ret &= VM_FAULT_ERROR;
1da177e4
LT
2951 goto out;
2952 }
2953
2954 /* No need to invalidate - it was non-present before */
4b3073e1 2955 update_mmu_cache(vma, address, page_table);
65500d23 2956unlock:
8f4e2101 2957 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2958out:
2959 return ret;
b8107480 2960out_nomap:
7a81b88c 2961 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2962 pte_unmap_unlock(page_table, ptl);
bc43f75c 2963out_page:
b8107480 2964 unlock_page(page);
4779cb31 2965out_release:
b8107480 2966 page_cache_release(page);
4969c119
AA
2967 if (swapcache) {
2968 unlock_page(swapcache);
2969 page_cache_release(swapcache);
2970 }
65500d23 2971 return ret;
1da177e4
LT
2972}
2973
320b2b8d 2974/*
8ca3eb08
LT
2975 * This is like a special single-page "expand_{down|up}wards()",
2976 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2977 * doesn't hit another vma.
320b2b8d
LT
2978 */
2979static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2980{
2981 address &= PAGE_MASK;
2982 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2983 struct vm_area_struct *prev = vma->vm_prev;
2984
2985 /*
2986 * Is there a mapping abutting this one below?
2987 *
2988 * That's only ok if it's the same stack mapping
2989 * that has gotten split..
2990 */
2991 if (prev && prev->vm_end == address)
2992 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2993
d05f3169 2994 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2995 }
8ca3eb08
LT
2996 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2997 struct vm_area_struct *next = vma->vm_next;
2998
2999 /* As VM_GROWSDOWN but s/below/above/ */
3000 if (next && next->vm_start == address + PAGE_SIZE)
3001 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3002
3003 expand_upwards(vma, address + PAGE_SIZE);
3004 }
320b2b8d
LT
3005 return 0;
3006}
3007
1da177e4 3008/*
8f4e2101
HD
3009 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3010 * but allow concurrent faults), and pte mapped but not yet locked.
3011 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3012 */
65500d23
HD
3013static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3014 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3015 unsigned int flags)
1da177e4 3016{
8f4e2101
HD
3017 struct page *page;
3018 spinlock_t *ptl;
1da177e4 3019 pte_t entry;
1da177e4 3020
11ac5524
LT
3021 pte_unmap(page_table);
3022
3023 /* Check if we need to add a guard page to the stack */
3024 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3025 return VM_FAULT_SIGBUS;
3026
11ac5524 3027 /* Use the zero-page for reads */
62eede62
HD
3028 if (!(flags & FAULT_FLAG_WRITE)) {
3029 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3030 vma->vm_page_prot));
11ac5524 3031 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3032 if (!pte_none(*page_table))
3033 goto unlock;
3034 goto setpte;
3035 }
3036
557ed1fa 3037 /* Allocate our own private page. */
557ed1fa
NP
3038 if (unlikely(anon_vma_prepare(vma)))
3039 goto oom;
3040 page = alloc_zeroed_user_highpage_movable(vma, address);
3041 if (!page)
3042 goto oom;
0ed361de 3043 __SetPageUptodate(page);
8f4e2101 3044
2c26fdd7 3045 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3046 goto oom_free_page;
3047
557ed1fa 3048 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3049 if (vma->vm_flags & VM_WRITE)
3050 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3051
557ed1fa 3052 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3053 if (!pte_none(*page_table))
557ed1fa 3054 goto release;
9ba69294 3055
34e55232 3056 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3057 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3058setpte:
65500d23 3059 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3060
3061 /* No need to invalidate - it was non-present before */
4b3073e1 3062 update_mmu_cache(vma, address, page_table);
65500d23 3063unlock:
8f4e2101 3064 pte_unmap_unlock(page_table, ptl);
83c54070 3065 return 0;
8f4e2101 3066release:
8a9f3ccd 3067 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3068 page_cache_release(page);
3069 goto unlock;
8a9f3ccd 3070oom_free_page:
6dbf6d3b 3071 page_cache_release(page);
65500d23 3072oom:
1da177e4
LT
3073 return VM_FAULT_OOM;
3074}
3075
3076/*
54cb8821 3077 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3078 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3079 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3080 * the next page fault.
1da177e4
LT
3081 *
3082 * As this is called only for pages that do not currently exist, we
3083 * do not need to flush old virtual caches or the TLB.
3084 *
8f4e2101 3085 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3086 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3087 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3088 */
54cb8821 3089static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3090 unsigned long address, pmd_t *pmd,
54cb8821 3091 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3092{
16abfa08 3093 pte_t *page_table;
8f4e2101 3094 spinlock_t *ptl;
d0217ac0 3095 struct page *page;
1da177e4 3096 pte_t entry;
1da177e4 3097 int anon = 0;
5b4e655e 3098 int charged = 0;
d08b3851 3099 struct page *dirty_page = NULL;
d0217ac0
NP
3100 struct vm_fault vmf;
3101 int ret;
a200ee18 3102 int page_mkwrite = 0;
54cb8821 3103
d0217ac0
NP
3104 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3105 vmf.pgoff = pgoff;
3106 vmf.flags = flags;
3107 vmf.page = NULL;
1da177e4 3108
3c18ddd1 3109 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3110 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3111 VM_FAULT_RETRY)))
3c18ddd1 3112 return ret;
1da177e4 3113
a3b947ea
AK
3114 if (unlikely(PageHWPoison(vmf.page))) {
3115 if (ret & VM_FAULT_LOCKED)
3116 unlock_page(vmf.page);
3117 return VM_FAULT_HWPOISON;
3118 }
3119
d00806b1 3120 /*
d0217ac0 3121 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3122 * locked.
3123 */
83c54070 3124 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3125 lock_page(vmf.page);
54cb8821 3126 else
d0217ac0 3127 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3128
1da177e4
LT
3129 /*
3130 * Should we do an early C-O-W break?
3131 */
d0217ac0 3132 page = vmf.page;
54cb8821 3133 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3134 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 3135 anon = 1;
d00806b1 3136 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 3137 ret = VM_FAULT_OOM;
54cb8821 3138 goto out;
d00806b1 3139 }
83c54070
NP
3140 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3141 vma, address);
d00806b1 3142 if (!page) {
d0217ac0 3143 ret = VM_FAULT_OOM;
54cb8821 3144 goto out;
d00806b1 3145 }
2c26fdd7 3146 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
3147 ret = VM_FAULT_OOM;
3148 page_cache_release(page);
3149 goto out;
3150 }
3151 charged = 1;
d0217ac0 3152 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3153 __SetPageUptodate(page);
9637a5ef 3154 } else {
54cb8821
NP
3155 /*
3156 * If the page will be shareable, see if the backing
9637a5ef 3157 * address space wants to know that the page is about
54cb8821
NP
3158 * to become writable
3159 */
69676147 3160 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3161 int tmp;
3162
69676147 3163 unlock_page(page);
b827e496 3164 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3165 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3166 if (unlikely(tmp &
3167 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3168 ret = tmp;
b827e496 3169 goto unwritable_page;
d0217ac0 3170 }
b827e496
NP
3171 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3172 lock_page(page);
3173 if (!page->mapping) {
3174 ret = 0; /* retry the fault */
3175 unlock_page(page);
3176 goto unwritable_page;
3177 }
3178 } else
3179 VM_BUG_ON(!PageLocked(page));
a200ee18 3180 page_mkwrite = 1;
9637a5ef
DH
3181 }
3182 }
54cb8821 3183
1da177e4
LT
3184 }
3185
8f4e2101 3186 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3187
3188 /*
3189 * This silly early PAGE_DIRTY setting removes a race
3190 * due to the bad i386 page protection. But it's valid
3191 * for other architectures too.
3192 *
30c9f3a9 3193 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3194 * an exclusive copy of the page, or this is a shared mapping,
3195 * so we can make it writable and dirty to avoid having to
3196 * handle that later.
3197 */
3198 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3199 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3200 flush_icache_page(vma, page);
3201 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3202 if (flags & FAULT_FLAG_WRITE)
1da177e4 3203 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3204 if (anon) {
34e55232 3205 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3206 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3207 } else {
34e55232 3208 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3209 page_add_file_rmap(page);
54cb8821 3210 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3211 dirty_page = page;
d08b3851
PZ
3212 get_page(dirty_page);
3213 }
4294621f 3214 }
64d6519d 3215 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3216
3217 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3218 update_mmu_cache(vma, address, page_table);
1da177e4 3219 } else {
5b4e655e
KH
3220 if (charged)
3221 mem_cgroup_uncharge_page(page);
d00806b1
NP
3222 if (anon)
3223 page_cache_release(page);
3224 else
54cb8821 3225 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3226 }
3227
8f4e2101 3228 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
3229
3230out:
b827e496
NP
3231 if (dirty_page) {
3232 struct address_space *mapping = page->mapping;
8f7b3d15 3233
b827e496
NP
3234 if (set_page_dirty(dirty_page))
3235 page_mkwrite = 1;
3236 unlock_page(dirty_page);
d08b3851 3237 put_page(dirty_page);
b827e496
NP
3238 if (page_mkwrite && mapping) {
3239 /*
3240 * Some device drivers do not set page.mapping but still
3241 * dirty their pages
3242 */
3243 balance_dirty_pages_ratelimited(mapping);
3244 }
3245
3246 /* file_update_time outside page_lock */
3247 if (vma->vm_file)
3248 file_update_time(vma->vm_file);
3249 } else {
3250 unlock_page(vmf.page);
3251 if (anon)
3252 page_cache_release(vmf.page);
d08b3851 3253 }
d00806b1 3254
83c54070 3255 return ret;
b827e496
NP
3256
3257unwritable_page:
3258 page_cache_release(page);
3259 return ret;
54cb8821 3260}
d00806b1 3261
54cb8821
NP
3262static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3263 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3264 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3265{
3266 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3267 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3268
16abfa08
HD
3269 pte_unmap(page_table);
3270 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3271}
3272
1da177e4
LT
3273/*
3274 * Fault of a previously existing named mapping. Repopulate the pte
3275 * from the encoded file_pte if possible. This enables swappable
3276 * nonlinear vmas.
8f4e2101
HD
3277 *
3278 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3279 * but allow concurrent faults), and pte mapped but not yet locked.
3280 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3281 */
d0217ac0 3282static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3283 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3284 unsigned int flags, pte_t orig_pte)
1da177e4 3285{
65500d23 3286 pgoff_t pgoff;
1da177e4 3287
30c9f3a9
LT
3288 flags |= FAULT_FLAG_NONLINEAR;
3289
4c21e2f2 3290 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3291 return 0;
1da177e4 3292
2509ef26 3293 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3294 /*
3295 * Page table corrupted: show pte and kill process.
3296 */
3dc14741 3297 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3298 return VM_FAULT_SIGBUS;
65500d23 3299 }
65500d23
HD
3300
3301 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3302 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3303}
3304
3305/*
3306 * These routines also need to handle stuff like marking pages dirty
3307 * and/or accessed for architectures that don't do it in hardware (most
3308 * RISC architectures). The early dirtying is also good on the i386.
3309 *
3310 * There is also a hook called "update_mmu_cache()" that architectures
3311 * with external mmu caches can use to update those (ie the Sparc or
3312 * PowerPC hashed page tables that act as extended TLBs).
3313 *
c74df32c
HD
3314 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3315 * but allow concurrent faults), and pte mapped but not yet locked.
3316 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3317 */
71e3aac0
AA
3318int handle_pte_fault(struct mm_struct *mm,
3319 struct vm_area_struct *vma, unsigned long address,
3320 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3321{
3322 pte_t entry;
8f4e2101 3323 spinlock_t *ptl;
1da177e4 3324
8dab5241 3325 entry = *pte;
1da177e4 3326 if (!pte_present(entry)) {
65500d23 3327 if (pte_none(entry)) {
f4b81804 3328 if (vma->vm_ops) {
3c18ddd1 3329 if (likely(vma->vm_ops->fault))
54cb8821 3330 return do_linear_fault(mm, vma, address,
30c9f3a9 3331 pte, pmd, flags, entry);
f4b81804
JS
3332 }
3333 return do_anonymous_page(mm, vma, address,
30c9f3a9 3334 pte, pmd, flags);
65500d23 3335 }
1da177e4 3336 if (pte_file(entry))
d0217ac0 3337 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3338 pte, pmd, flags, entry);
65500d23 3339 return do_swap_page(mm, vma, address,
30c9f3a9 3340 pte, pmd, flags, entry);
1da177e4
LT
3341 }
3342
4c21e2f2 3343 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3344 spin_lock(ptl);
3345 if (unlikely(!pte_same(*pte, entry)))
3346 goto unlock;
30c9f3a9 3347 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3348 if (!pte_write(entry))
8f4e2101
HD
3349 return do_wp_page(mm, vma, address,
3350 pte, pmd, ptl, entry);
1da177e4
LT
3351 entry = pte_mkdirty(entry);
3352 }
3353 entry = pte_mkyoung(entry);
30c9f3a9 3354 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3355 update_mmu_cache(vma, address, pte);
1a44e149
AA
3356 } else {
3357 /*
3358 * This is needed only for protection faults but the arch code
3359 * is not yet telling us if this is a protection fault or not.
3360 * This still avoids useless tlb flushes for .text page faults
3361 * with threads.
3362 */
30c9f3a9 3363 if (flags & FAULT_FLAG_WRITE)
61c77326 3364 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3365 }
8f4e2101
HD
3366unlock:
3367 pte_unmap_unlock(pte, ptl);
83c54070 3368 return 0;
1da177e4
LT
3369}
3370
3371/*
3372 * By the time we get here, we already hold the mm semaphore
3373 */
83c54070 3374int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3375 unsigned long address, unsigned int flags)
1da177e4
LT
3376{
3377 pgd_t *pgd;
3378 pud_t *pud;
3379 pmd_t *pmd;
3380 pte_t *pte;
3381
3382 __set_current_state(TASK_RUNNING);
3383
f8891e5e 3384 count_vm_event(PGFAULT);
456f998e 3385 mem_cgroup_count_vm_event(mm, PGFAULT);
1da177e4 3386
34e55232
KH
3387 /* do counter updates before entering really critical section. */
3388 check_sync_rss_stat(current);
3389
ac9b9c66 3390 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3391 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3392
1da177e4 3393 pgd = pgd_offset(mm, address);
1da177e4
LT
3394 pud = pud_alloc(mm, pgd, address);
3395 if (!pud)
c74df32c 3396 return VM_FAULT_OOM;
1da177e4
LT
3397 pmd = pmd_alloc(mm, pud, address);
3398 if (!pmd)
c74df32c 3399 return VM_FAULT_OOM;
71e3aac0
AA
3400 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3401 if (!vma->vm_ops)
3402 return do_huge_pmd_anonymous_page(mm, vma, address,
3403 pmd, flags);
3404 } else {
3405 pmd_t orig_pmd = *pmd;
3406 barrier();
3407 if (pmd_trans_huge(orig_pmd)) {
3408 if (flags & FAULT_FLAG_WRITE &&
3409 !pmd_write(orig_pmd) &&
3410 !pmd_trans_splitting(orig_pmd))
3411 return do_huge_pmd_wp_page(mm, vma, address,
3412 pmd, orig_pmd);
3413 return 0;
3414 }
3415 }
3416
3417 /*
3418 * Use __pte_alloc instead of pte_alloc_map, because we can't
3419 * run pte_offset_map on the pmd, if an huge pmd could
3420 * materialize from under us from a different thread.
3421 */
cc03638d 3422 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
c74df32c 3423 return VM_FAULT_OOM;
71e3aac0
AA
3424 /* if an huge pmd materialized from under us just retry later */
3425 if (unlikely(pmd_trans_huge(*pmd)))
3426 return 0;
3427 /*
3428 * A regular pmd is established and it can't morph into a huge pmd
3429 * from under us anymore at this point because we hold the mmap_sem
3430 * read mode and khugepaged takes it in write mode. So now it's
3431 * safe to run pte_offset_map().
3432 */
3433 pte = pte_offset_map(pmd, address);
1da177e4 3434
30c9f3a9 3435 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3436}
3437
3438#ifndef __PAGETABLE_PUD_FOLDED
3439/*
3440 * Allocate page upper directory.
872fec16 3441 * We've already handled the fast-path in-line.
1da177e4 3442 */
1bb3630e 3443int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3444{
c74df32c
HD
3445 pud_t *new = pud_alloc_one(mm, address);
3446 if (!new)
1bb3630e 3447 return -ENOMEM;
1da177e4 3448
362a61ad
NP
3449 smp_wmb(); /* See comment in __pte_alloc */
3450
872fec16 3451 spin_lock(&mm->page_table_lock);
1bb3630e 3452 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3453 pud_free(mm, new);
1bb3630e
HD
3454 else
3455 pgd_populate(mm, pgd, new);
c74df32c 3456 spin_unlock(&mm->page_table_lock);
1bb3630e 3457 return 0;
1da177e4
LT
3458}
3459#endif /* __PAGETABLE_PUD_FOLDED */
3460
3461#ifndef __PAGETABLE_PMD_FOLDED
3462/*
3463 * Allocate page middle directory.
872fec16 3464 * We've already handled the fast-path in-line.
1da177e4 3465 */
1bb3630e 3466int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3467{
c74df32c
HD
3468 pmd_t *new = pmd_alloc_one(mm, address);
3469 if (!new)
1bb3630e 3470 return -ENOMEM;
1da177e4 3471
362a61ad
NP
3472 smp_wmb(); /* See comment in __pte_alloc */
3473
872fec16 3474 spin_lock(&mm->page_table_lock);
1da177e4 3475#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3476 if (pud_present(*pud)) /* Another has populated it */
5e541973 3477 pmd_free(mm, new);
1bb3630e
HD
3478 else
3479 pud_populate(mm, pud, new);
1da177e4 3480#else
1bb3630e 3481 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3482 pmd_free(mm, new);
1bb3630e
HD
3483 else
3484 pgd_populate(mm, pud, new);
1da177e4 3485#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3486 spin_unlock(&mm->page_table_lock);
1bb3630e 3487 return 0;
e0f39591 3488}
1da177e4
LT
3489#endif /* __PAGETABLE_PMD_FOLDED */
3490
3491int make_pages_present(unsigned long addr, unsigned long end)
3492{
3493 int ret, len, write;
3494 struct vm_area_struct * vma;
3495
3496 vma = find_vma(current->mm, addr);
3497 if (!vma)
a477097d 3498 return -ENOMEM;
5ecfda04
ML
3499 /*
3500 * We want to touch writable mappings with a write fault in order
3501 * to break COW, except for shared mappings because these don't COW
3502 * and we would not want to dirty them for nothing.
3503 */
3504 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
5bcb28b1
ES
3505 BUG_ON(addr >= end);
3506 BUG_ON(end > vma->vm_end);
68e116a3 3507 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3508 ret = get_user_pages(current, current->mm, addr,
3509 len, write, 0, NULL, NULL);
c11d69d8 3510 if (ret < 0)
1da177e4 3511 return ret;
9978ad58 3512 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3513}
3514
1da177e4
LT
3515#if !defined(__HAVE_ARCH_GATE_AREA)
3516
3517#if defined(AT_SYSINFO_EHDR)
5ce7852c 3518static struct vm_area_struct gate_vma;
1da177e4
LT
3519
3520static int __init gate_vma_init(void)
3521{
3522 gate_vma.vm_mm = NULL;
3523 gate_vma.vm_start = FIXADDR_USER_START;
3524 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3525 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3526 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3527 /*
3528 * Make sure the vDSO gets into every core dump.
3529 * Dumping its contents makes post-mortem fully interpretable later
3530 * without matching up the same kernel and hardware config to see
3531 * what PC values meant.
3532 */
3533 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3534 return 0;
3535}
3536__initcall(gate_vma_init);
3537#endif
3538
31db58b3 3539struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3540{
3541#ifdef AT_SYSINFO_EHDR
3542 return &gate_vma;
3543#else
3544 return NULL;
3545#endif
3546}
3547
cae5d390 3548int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3549{
3550#ifdef AT_SYSINFO_EHDR
3551 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3552 return 1;
3553#endif
3554 return 0;
3555}
3556
3557#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3558
1b36ba81 3559static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3560 pte_t **ptepp, spinlock_t **ptlp)
3561{
3562 pgd_t *pgd;
3563 pud_t *pud;
3564 pmd_t *pmd;
3565 pte_t *ptep;
3566
3567 pgd = pgd_offset(mm, address);
3568 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3569 goto out;
3570
3571 pud = pud_offset(pgd, address);
3572 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3573 goto out;
3574
3575 pmd = pmd_offset(pud, address);
f66055ab 3576 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3577 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3578 goto out;
3579
3580 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3581 if (pmd_huge(*pmd))
3582 goto out;
3583
3584 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3585 if (!ptep)
3586 goto out;
3587 if (!pte_present(*ptep))
3588 goto unlock;
3589 *ptepp = ptep;
3590 return 0;
3591unlock:
3592 pte_unmap_unlock(ptep, *ptlp);
3593out:
3594 return -EINVAL;
3595}
3596
1b36ba81
NK
3597static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3598 pte_t **ptepp, spinlock_t **ptlp)
3599{
3600 int res;
3601
3602 /* (void) is needed to make gcc happy */
3603 (void) __cond_lock(*ptlp,
3604 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3605 return res;
3606}
3607
3b6748e2
JW
3608/**
3609 * follow_pfn - look up PFN at a user virtual address
3610 * @vma: memory mapping
3611 * @address: user virtual address
3612 * @pfn: location to store found PFN
3613 *
3614 * Only IO mappings and raw PFN mappings are allowed.
3615 *
3616 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3617 */
3618int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3619 unsigned long *pfn)
3620{
3621 int ret = -EINVAL;
3622 spinlock_t *ptl;
3623 pte_t *ptep;
3624
3625 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3626 return ret;
3627
3628 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3629 if (ret)
3630 return ret;
3631 *pfn = pte_pfn(*ptep);
3632 pte_unmap_unlock(ptep, ptl);
3633 return 0;
3634}
3635EXPORT_SYMBOL(follow_pfn);
3636
28b2ee20 3637#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3638int follow_phys(struct vm_area_struct *vma,
3639 unsigned long address, unsigned int flags,
3640 unsigned long *prot, resource_size_t *phys)
28b2ee20 3641{
03668a4d 3642 int ret = -EINVAL;
28b2ee20
RR
3643 pte_t *ptep, pte;
3644 spinlock_t *ptl;
28b2ee20 3645
d87fe660 3646 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3647 goto out;
28b2ee20 3648
03668a4d 3649 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3650 goto out;
28b2ee20 3651 pte = *ptep;
03668a4d 3652
28b2ee20
RR
3653 if ((flags & FOLL_WRITE) && !pte_write(pte))
3654 goto unlock;
28b2ee20
RR
3655
3656 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3657 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3658
03668a4d 3659 ret = 0;
28b2ee20
RR
3660unlock:
3661 pte_unmap_unlock(ptep, ptl);
3662out:
d87fe660 3663 return ret;
28b2ee20
RR
3664}
3665
3666int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3667 void *buf, int len, int write)
3668{
3669 resource_size_t phys_addr;
3670 unsigned long prot = 0;
2bc7273b 3671 void __iomem *maddr;
28b2ee20
RR
3672 int offset = addr & (PAGE_SIZE-1);
3673
d87fe660 3674 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3675 return -EINVAL;
3676
3677 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3678 if (write)
3679 memcpy_toio(maddr + offset, buf, len);
3680 else
3681 memcpy_fromio(buf, maddr + offset, len);
3682 iounmap(maddr);
3683
3684 return len;
3685}
3686#endif
3687
0ec76a11 3688/*
206cb636
SW
3689 * Access another process' address space as given in mm. If non-NULL, use the
3690 * given task for page fault accounting.
0ec76a11 3691 */
206cb636
SW
3692static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3693 unsigned long addr, void *buf, int len, int write)
0ec76a11 3694{
0ec76a11 3695 struct vm_area_struct *vma;
0ec76a11
DH
3696 void *old_buf = buf;
3697
0ec76a11 3698 down_read(&mm->mmap_sem);
183ff22b 3699 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3700 while (len) {
3701 int bytes, ret, offset;
3702 void *maddr;
28b2ee20 3703 struct page *page = NULL;
0ec76a11
DH
3704
3705 ret = get_user_pages(tsk, mm, addr, 1,
3706 write, 1, &page, &vma);
28b2ee20
RR
3707 if (ret <= 0) {
3708 /*
3709 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3710 * we can access using slightly different code.
3711 */
3712#ifdef CONFIG_HAVE_IOREMAP_PROT
3713 vma = find_vma(mm, addr);
fe936dfc 3714 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3715 break;
3716 if (vma->vm_ops && vma->vm_ops->access)
3717 ret = vma->vm_ops->access(vma, addr, buf,
3718 len, write);
3719 if (ret <= 0)
3720#endif
3721 break;
3722 bytes = ret;
0ec76a11 3723 } else {
28b2ee20
RR
3724 bytes = len;
3725 offset = addr & (PAGE_SIZE-1);
3726 if (bytes > PAGE_SIZE-offset)
3727 bytes = PAGE_SIZE-offset;
3728
3729 maddr = kmap(page);
3730 if (write) {
3731 copy_to_user_page(vma, page, addr,
3732 maddr + offset, buf, bytes);
3733 set_page_dirty_lock(page);
3734 } else {
3735 copy_from_user_page(vma, page, addr,
3736 buf, maddr + offset, bytes);
3737 }
3738 kunmap(page);
3739 page_cache_release(page);
0ec76a11 3740 }
0ec76a11
DH
3741 len -= bytes;
3742 buf += bytes;
3743 addr += bytes;
3744 }
3745 up_read(&mm->mmap_sem);
0ec76a11
DH
3746
3747 return buf - old_buf;
3748}
03252919 3749
5ddd36b9 3750/**
ae91dbfc 3751 * access_remote_vm - access another process' address space
5ddd36b9
SW
3752 * @mm: the mm_struct of the target address space
3753 * @addr: start address to access
3754 * @buf: source or destination buffer
3755 * @len: number of bytes to transfer
3756 * @write: whether the access is a write
3757 *
3758 * The caller must hold a reference on @mm.
3759 */
3760int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3761 void *buf, int len, int write)
3762{
3763 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3764}
3765
206cb636
SW
3766/*
3767 * Access another process' address space.
3768 * Source/target buffer must be kernel space,
3769 * Do not walk the page table directly, use get_user_pages
3770 */
3771int access_process_vm(struct task_struct *tsk, unsigned long addr,
3772 void *buf, int len, int write)
3773{
3774 struct mm_struct *mm;
3775 int ret;
3776
3777 mm = get_task_mm(tsk);
3778 if (!mm)
3779 return 0;
3780
3781 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3782 mmput(mm);
3783
3784 return ret;
3785}
3786
03252919
AK
3787/*
3788 * Print the name of a VMA.
3789 */
3790void print_vma_addr(char *prefix, unsigned long ip)
3791{
3792 struct mm_struct *mm = current->mm;
3793 struct vm_area_struct *vma;
3794
e8bff74a
IM
3795 /*
3796 * Do not print if we are in atomic
3797 * contexts (in exception stacks, etc.):
3798 */
3799 if (preempt_count())
3800 return;
3801
03252919
AK
3802 down_read(&mm->mmap_sem);
3803 vma = find_vma(mm, ip);
3804 if (vma && vma->vm_file) {
3805 struct file *f = vma->vm_file;
3806 char *buf = (char *)__get_free_page(GFP_KERNEL);
3807 if (buf) {
3808 char *p, *s;
3809
cf28b486 3810 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3811 if (IS_ERR(p))
3812 p = "?";
3813 s = strrchr(p, '/');
3814 if (s)
3815 p = s+1;
3816 printk("%s%s[%lx+%lx]", prefix, p,
3817 vma->vm_start,
3818 vma->vm_end - vma->vm_start);
3819 free_page((unsigned long)buf);
3820 }
3821 }
3822 up_read(&current->mm->mmap_sem);
3823}
3ee1afa3
NP
3824
3825#ifdef CONFIG_PROVE_LOCKING
3826void might_fault(void)
3827{
95156f00
PZ
3828 /*
3829 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3830 * holding the mmap_sem, this is safe because kernel memory doesn't
3831 * get paged out, therefore we'll never actually fault, and the
3832 * below annotations will generate false positives.
3833 */
3834 if (segment_eq(get_fs(), KERNEL_DS))
3835 return;
3836
3ee1afa3
NP
3837 might_sleep();
3838 /*
3839 * it would be nicer only to annotate paths which are not under
3840 * pagefault_disable, however that requires a larger audit and
3841 * providing helpers like get_user_atomic.
3842 */
3843 if (!in_atomic() && current->mm)
3844 might_lock_read(&current->mm->mmap_sem);
3845}
3846EXPORT_SYMBOL(might_fault);
3847#endif
47ad8475
AA
3848
3849#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3850static void clear_gigantic_page(struct page *page,
3851 unsigned long addr,
3852 unsigned int pages_per_huge_page)
3853{
3854 int i;
3855 struct page *p = page;
3856
3857 might_sleep();
3858 for (i = 0; i < pages_per_huge_page;
3859 i++, p = mem_map_next(p, page, i)) {
3860 cond_resched();
3861 clear_user_highpage(p, addr + i * PAGE_SIZE);
3862 }
3863}
3864void clear_huge_page(struct page *page,
3865 unsigned long addr, unsigned int pages_per_huge_page)
3866{
3867 int i;
3868
3869 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3870 clear_gigantic_page(page, addr, pages_per_huge_page);
3871 return;
3872 }
3873
3874 might_sleep();
3875 for (i = 0; i < pages_per_huge_page; i++) {
3876 cond_resched();
3877 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3878 }
3879}
3880
3881static void copy_user_gigantic_page(struct page *dst, struct page *src,
3882 unsigned long addr,
3883 struct vm_area_struct *vma,
3884 unsigned int pages_per_huge_page)
3885{
3886 int i;
3887 struct page *dst_base = dst;
3888 struct page *src_base = src;
3889
3890 for (i = 0; i < pages_per_huge_page; ) {
3891 cond_resched();
3892 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3893
3894 i++;
3895 dst = mem_map_next(dst, dst_base, i);
3896 src = mem_map_next(src, src_base, i);
3897 }
3898}
3899
3900void copy_user_huge_page(struct page *dst, struct page *src,
3901 unsigned long addr, struct vm_area_struct *vma,
3902 unsigned int pages_per_huge_page)
3903{
3904 int i;
3905
3906 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3907 copy_user_gigantic_page(dst, src, addr, vma,
3908 pages_per_huge_page);
3909 return;
3910 }
3911
3912 might_sleep();
3913 for (i = 0; i < pages_per_huge_page; i++) {
3914 cond_resched();
3915 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3916 }
3917}
3918#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
This page took 0.957389 seconds and 5 git commands to generate.