writeback: skip tmpfs early in balance_dirty_pages_ratelimited_nr()
[deliverable/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
1da177e4
LT
39/*
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
42 */
43static long ratelimit_pages = 32;
44
1da177e4
LT
45/*
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 48 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
49 * large amounts of I/O are submitted.
50 */
3a2e9a5a 51static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 52{
3a2e9a5a
WF
53 if (dirtied < ratelimit_pages)
54 dirtied = ratelimit_pages;
55
56 return dirtied + dirtied / 2;
1da177e4
LT
57}
58
59/* The following parameters are exported via /proc/sys/vm */
60
61/*
5b0830cb 62 * Start background writeback (via writeback threads) at this percentage
1da177e4 63 */
1b5e62b4 64int dirty_background_ratio = 10;
1da177e4 65
2da02997
DR
66/*
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
69 */
70unsigned long dirty_background_bytes;
71
195cf453
BG
72/*
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
75 */
76int vm_highmem_is_dirtyable;
77
1da177e4
LT
78/*
79 * The generator of dirty data starts writeback at this percentage
80 */
1b5e62b4 81int vm_dirty_ratio = 20;
1da177e4 82
2da02997
DR
83/*
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
86 */
87unsigned long vm_dirty_bytes;
88
1da177e4 89/*
704503d8 90 * The interval between `kupdate'-style writebacks
1da177e4 91 */
22ef37ee 92unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
93
94/*
704503d8 95 * The longest time for which data is allowed to remain dirty
1da177e4 96 */
22ef37ee 97unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
98
99/*
100 * Flag that makes the machine dump writes/reads and block dirtyings.
101 */
102int block_dump;
103
104/*
ed5b43f1
BS
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
107 */
108int laptop_mode;
109
110EXPORT_SYMBOL(laptop_mode);
111
112/* End of sysctl-exported parameters */
113
114
04fbfdc1
PZ
115/*
116 * Scale the writeback cache size proportional to the relative writeout speeds.
117 *
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
121 * share.
122 *
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
125 *
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
129 *
130 */
131static struct prop_descriptor vm_completions;
3e26c149 132static struct prop_descriptor vm_dirties;
04fbfdc1 133
04fbfdc1
PZ
134/*
135 * couple the period to the dirty_ratio:
136 *
137 * period/2 ~ roundup_pow_of_two(dirty limit)
138 */
139static int calc_period_shift(void)
140{
141 unsigned long dirty_total;
142
2da02997
DR
143 if (vm_dirty_bytes)
144 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 else
146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 100;
04fbfdc1
PZ
148 return 2 + ilog2(dirty_total - 1);
149}
150
151/*
2da02997 152 * update the period when the dirty threshold changes.
04fbfdc1 153 */
2da02997
DR
154static void update_completion_period(void)
155{
156 int shift = calc_period_shift();
157 prop_change_shift(&vm_completions, shift);
158 prop_change_shift(&vm_dirties, shift);
159}
160
161int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 162 void __user *buffer, size_t *lenp,
2da02997
DR
163 loff_t *ppos)
164{
165 int ret;
166
8d65af78 167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
168 if (ret == 0 && write)
169 dirty_background_bytes = 0;
170 return ret;
171}
172
173int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 174 void __user *buffer, size_t *lenp,
2da02997
DR
175 loff_t *ppos)
176{
177 int ret;
178
8d65af78 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
180 if (ret == 0 && write)
181 dirty_background_ratio = 0;
182 return ret;
183}
184
04fbfdc1 185int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 186 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
187 loff_t *ppos)
188{
189 int old_ratio = vm_dirty_ratio;
2da02997
DR
190 int ret;
191
8d65af78 192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
194 update_completion_period();
195 vm_dirty_bytes = 0;
196 }
197 return ret;
198}
199
200
201int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 202 void __user *buffer, size_t *lenp,
2da02997
DR
203 loff_t *ppos)
204{
fc3501d4 205 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
206 int ret;
207
8d65af78 208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 update_completion_period();
211 vm_dirty_ratio = 0;
04fbfdc1
PZ
212 }
213 return ret;
214}
215
216/*
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
219 */
220static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221{
a42dde04
PZ
222 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 bdi->max_prop_frac);
04fbfdc1
PZ
224}
225
dd5656e5
MS
226void bdi_writeout_inc(struct backing_dev_info *bdi)
227{
228 unsigned long flags;
229
230 local_irq_save(flags);
231 __bdi_writeout_inc(bdi);
232 local_irq_restore(flags);
233}
234EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
1cf6e7d8 236void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
237{
238 prop_inc_single(&vm_dirties, &tsk->dirties);
239}
240
04fbfdc1
PZ
241/*
242 * Obtain an accurate fraction of the BDI's portion.
243 */
244static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 long *numerator, long *denominator)
246{
3efaf0fa 247 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 248 numerator, denominator);
04fbfdc1
PZ
249}
250
3e26c149
PZ
251static inline void task_dirties_fraction(struct task_struct *tsk,
252 long *numerator, long *denominator)
253{
254 prop_fraction_single(&vm_dirties, &tsk->dirties,
255 numerator, denominator);
256}
257
258/*
1babe183 259 * task_dirty_limit - scale down dirty throttling threshold for one task
3e26c149
PZ
260 *
261 * task specific dirty limit:
262 *
263 * dirty -= (dirty/8) * p_{t}
1babe183
WF
264 *
265 * To protect light/slow dirtying tasks from heavier/fast ones, we start
266 * throttling individual tasks before reaching the bdi dirty limit.
267 * Relatively low thresholds will be allocated to heavy dirtiers. So when
268 * dirty pages grow large, heavy dirtiers will be throttled first, which will
269 * effectively curb the growth of dirty pages. Light dirtiers with high enough
270 * dirty threshold may never get throttled.
3e26c149 271 */
16c4042f
WF
272static unsigned long task_dirty_limit(struct task_struct *tsk,
273 unsigned long bdi_dirty)
3e26c149
PZ
274{
275 long numerator, denominator;
16c4042f 276 unsigned long dirty = bdi_dirty;
3e26c149
PZ
277 u64 inv = dirty >> 3;
278
279 task_dirties_fraction(tsk, &numerator, &denominator);
280 inv *= numerator;
281 do_div(inv, denominator);
282
283 dirty -= inv;
3e26c149 284
16c4042f 285 return max(dirty, bdi_dirty/2);
3e26c149
PZ
286}
287
189d3c4a
PZ
288/*
289 *
290 */
189d3c4a
PZ
291static unsigned int bdi_min_ratio;
292
293int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
294{
295 int ret = 0;
189d3c4a 296
cfc4ba53 297 spin_lock_bh(&bdi_lock);
a42dde04 298 if (min_ratio > bdi->max_ratio) {
189d3c4a 299 ret = -EINVAL;
a42dde04
PZ
300 } else {
301 min_ratio -= bdi->min_ratio;
302 if (bdi_min_ratio + min_ratio < 100) {
303 bdi_min_ratio += min_ratio;
304 bdi->min_ratio += min_ratio;
305 } else {
306 ret = -EINVAL;
307 }
308 }
cfc4ba53 309 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
310
311 return ret;
312}
313
314int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
315{
a42dde04
PZ
316 int ret = 0;
317
318 if (max_ratio > 100)
319 return -EINVAL;
320
cfc4ba53 321 spin_lock_bh(&bdi_lock);
a42dde04
PZ
322 if (bdi->min_ratio > max_ratio) {
323 ret = -EINVAL;
324 } else {
325 bdi->max_ratio = max_ratio;
326 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
327 }
cfc4ba53 328 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
329
330 return ret;
331}
a42dde04 332EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 333
1da177e4
LT
334/*
335 * Work out the current dirty-memory clamping and background writeout
336 * thresholds.
337 *
338 * The main aim here is to lower them aggressively if there is a lot of mapped
339 * memory around. To avoid stressing page reclaim with lots of unreclaimable
340 * pages. It is better to clamp down on writers than to start swapping, and
341 * performing lots of scanning.
342 *
343 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
344 *
345 * We don't permit the clamping level to fall below 5% - that is getting rather
346 * excessive.
347 *
348 * We make sure that the background writeout level is below the adjusted
349 * clamping level.
350 */
1b424464
CL
351
352static unsigned long highmem_dirtyable_memory(unsigned long total)
353{
354#ifdef CONFIG_HIGHMEM
355 int node;
356 unsigned long x = 0;
357
37b07e41 358 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
359 struct zone *z =
360 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
361
adea02a1
WF
362 x += zone_page_state(z, NR_FREE_PAGES) +
363 zone_reclaimable_pages(z);
1b424464
CL
364 }
365 /*
366 * Make sure that the number of highmem pages is never larger
367 * than the number of the total dirtyable memory. This can only
368 * occur in very strange VM situations but we want to make sure
369 * that this does not occur.
370 */
371 return min(x, total);
372#else
373 return 0;
374#endif
375}
376
3eefae99
SR
377/**
378 * determine_dirtyable_memory - amount of memory that may be used
379 *
380 * Returns the numebr of pages that can currently be freed and used
381 * by the kernel for direct mappings.
382 */
383unsigned long determine_dirtyable_memory(void)
1b424464
CL
384{
385 unsigned long x;
386
adea02a1 387 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
388
389 if (!vm_highmem_is_dirtyable)
390 x -= highmem_dirtyable_memory(x);
391
1b424464
CL
392 return x + 1; /* Ensure that we never return 0 */
393}
394
03ab450f 395/*
1babe183
WF
396 * global_dirty_limits - background-writeback and dirty-throttling thresholds
397 *
398 * Calculate the dirty thresholds based on sysctl parameters
399 * - vm.dirty_background_ratio or vm.dirty_background_bytes
400 * - vm.dirty_ratio or vm.dirty_bytes
401 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 402 * real-time tasks.
1babe183 403 */
16c4042f 404void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 405{
364aeb28
DR
406 unsigned long background;
407 unsigned long dirty;
240c879f 408 unsigned long uninitialized_var(available_memory);
1da177e4
LT
409 struct task_struct *tsk;
410
240c879f
MK
411 if (!vm_dirty_bytes || !dirty_background_bytes)
412 available_memory = determine_dirtyable_memory();
413
2da02997
DR
414 if (vm_dirty_bytes)
415 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
416 else
417 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 418
2da02997
DR
419 if (dirty_background_bytes)
420 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
421 else
422 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 423
2da02997
DR
424 if (background >= dirty)
425 background = dirty / 2;
1da177e4
LT
426 tsk = current;
427 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
428 background += background / 4;
429 dirty += dirty / 4;
430 }
431 *pbackground = background;
432 *pdirty = dirty;
16c4042f 433}
04fbfdc1 434
6f718656 435/**
1babe183 436 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
437 * @bdi: the backing_dev_info to query
438 * @dirty: global dirty limit in pages
439 *
440 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
441 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
442 * And the "limit" in the name is not seriously taken as hard limit in
443 * balance_dirty_pages().
1babe183 444 *
6f718656 445 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
446 * - starving fast devices
447 * - piling up dirty pages (that will take long time to sync) on slow devices
448 *
449 * The bdi's share of dirty limit will be adapting to its throughput and
450 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
451 */
452unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
453{
454 u64 bdi_dirty;
455 long numerator, denominator;
04fbfdc1 456
16c4042f
WF
457 /*
458 * Calculate this BDI's share of the dirty ratio.
459 */
460 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 461
16c4042f
WF
462 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
463 bdi_dirty *= numerator;
464 do_div(bdi_dirty, denominator);
04fbfdc1 465
16c4042f
WF
466 bdi_dirty += (dirty * bdi->min_ratio) / 100;
467 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
468 bdi_dirty = dirty * bdi->max_ratio / 100;
469
470 return bdi_dirty;
1da177e4
LT
471}
472
473/*
474 * balance_dirty_pages() must be called by processes which are generating dirty
475 * data. It looks at the number of dirty pages in the machine and will force
476 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
477 * If we're over `background_thresh' then the writeback threads are woken to
478 * perform some writeout.
1da177e4 479 */
3a2e9a5a
WF
480static void balance_dirty_pages(struct address_space *mapping,
481 unsigned long write_chunk)
1da177e4 482{
5fce25a9
PZ
483 long nr_reclaimable, bdi_nr_reclaimable;
484 long nr_writeback, bdi_nr_writeback;
364aeb28
DR
485 unsigned long background_thresh;
486 unsigned long dirty_thresh;
487 unsigned long bdi_thresh;
1da177e4 488 unsigned long pages_written = 0;
87c6a9b2 489 unsigned long pause = 1;
e50e3720 490 bool dirty_exceeded = false;
1da177e4
LT
491 struct backing_dev_info *bdi = mapping->backing_dev_info;
492
493 for (;;) {
494 struct writeback_control wbc = {
1da177e4
LT
495 .sync_mode = WB_SYNC_NONE,
496 .older_than_this = NULL,
497 .nr_to_write = write_chunk,
111ebb6e 498 .range_cyclic = 1,
1da177e4
LT
499 };
500
5fce25a9
PZ
501 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
502 global_page_state(NR_UNSTABLE_NFS);
503 nr_writeback = global_page_state(NR_WRITEBACK);
504
16c4042f
WF
505 global_dirty_limits(&background_thresh, &dirty_thresh);
506
507 /*
508 * Throttle it only when the background writeback cannot
509 * catch-up. This avoids (excessively) small writeouts
510 * when the bdi limits are ramping up.
511 */
4cbec4c8 512 if (nr_reclaimable + nr_writeback <=
16c4042f
WF
513 (background_thresh + dirty_thresh) / 2)
514 break;
515
516 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
517 bdi_thresh = task_dirty_limit(current, bdi_thresh);
518
e50e3720
WF
519 /*
520 * In order to avoid the stacked BDI deadlock we need
521 * to ensure we accurately count the 'dirty' pages when
522 * the threshold is low.
523 *
524 * Otherwise it would be possible to get thresh+n pages
525 * reported dirty, even though there are thresh-m pages
526 * actually dirty; with m+n sitting in the percpu
527 * deltas.
528 */
529 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
530 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
531 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
532 } else {
533 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
534 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
535 }
5fce25a9 536
e50e3720
WF
537 /*
538 * The bdi thresh is somehow "soft" limit derived from the
539 * global "hard" limit. The former helps to prevent heavy IO
540 * bdi or process from holding back light ones; The latter is
541 * the last resort safeguard.
542 */
543 dirty_exceeded =
4cbec4c8
WF
544 (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
545 || (nr_reclaimable + nr_writeback > dirty_thresh);
e50e3720
WF
546
547 if (!dirty_exceeded)
04fbfdc1 548 break;
1da177e4 549
04fbfdc1
PZ
550 if (!bdi->dirty_exceeded)
551 bdi->dirty_exceeded = 1;
1da177e4
LT
552
553 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
554 * Unstable writes are a feature of certain networked
555 * filesystems (i.e. NFS) in which data may have been
556 * written to the server's write cache, but has not yet
557 * been flushed to permanent storage.
d7831a0b
RK
558 * Only move pages to writeback if this bdi is over its
559 * threshold otherwise wait until the disk writes catch
560 * up.
1da177e4 561 */
028c2dd1 562 trace_wbc_balance_dirty_start(&wbc, bdi);
d7831a0b 563 if (bdi_nr_reclaimable > bdi_thresh) {
9c3a8ee8 564 writeback_inodes_wb(&bdi->wb, &wbc);
1da177e4 565 pages_written += write_chunk - wbc.nr_to_write;
028c2dd1 566 trace_wbc_balance_dirty_written(&wbc, bdi);
e50e3720
WF
567 if (pages_written >= write_chunk)
568 break; /* We've done our duty */
04fbfdc1 569 }
028c2dd1 570 trace_wbc_balance_dirty_wait(&wbc, bdi);
d153ba64 571 __set_current_state(TASK_UNINTERRUPTIBLE);
d25105e8 572 io_schedule_timeout(pause);
87c6a9b2
JA
573
574 /*
575 * Increase the delay for each loop, up to our previous
576 * default of taking a 100ms nap.
577 */
578 pause <<= 1;
579 if (pause > HZ / 10)
580 pause = HZ / 10;
1da177e4
LT
581 }
582
e50e3720 583 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 584 bdi->dirty_exceeded = 0;
1da177e4
LT
585
586 if (writeback_in_progress(bdi))
5b0830cb 587 return;
1da177e4
LT
588
589 /*
590 * In laptop mode, we wait until hitting the higher threshold before
591 * starting background writeout, and then write out all the way down
592 * to the lower threshold. So slow writers cause minimal disk activity.
593 *
594 * In normal mode, we start background writeout at the lower
595 * background_thresh, to keep the amount of dirty memory low.
596 */
597 if ((laptop_mode && pages_written) ||
e50e3720 598 (!laptop_mode && (nr_reclaimable > background_thresh)))
c5444198 599 bdi_start_background_writeback(bdi);
1da177e4
LT
600}
601
a200ee18 602void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 603{
a200ee18 604 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
605 struct address_space *mapping = page_mapping(page);
606
607 if (mapping)
608 balance_dirty_pages_ratelimited(mapping);
609 }
610}
611
245b2e70
TH
612static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
613
1da177e4 614/**
fa5a734e 615 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 616 * @mapping: address_space which was dirtied
a580290c 617 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
618 *
619 * Processes which are dirtying memory should call in here once for each page
620 * which was newly dirtied. The function will periodically check the system's
621 * dirty state and will initiate writeback if needed.
622 *
623 * On really big machines, get_writeback_state is expensive, so try to avoid
624 * calling it too often (ratelimiting). But once we're over the dirty memory
625 * limit we decrease the ratelimiting by a lot, to prevent individual processes
626 * from overshooting the limit by (ratelimit_pages) each.
627 */
fa5a734e
AM
628void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
629 unsigned long nr_pages_dirtied)
1da177e4 630{
36715cef 631 struct backing_dev_info *bdi = mapping->backing_dev_info;
fa5a734e
AM
632 unsigned long ratelimit;
633 unsigned long *p;
1da177e4 634
36715cef
WF
635 if (!bdi_cap_account_dirty(bdi))
636 return;
637
1da177e4 638 ratelimit = ratelimit_pages;
04fbfdc1 639 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
640 ratelimit = 8;
641
642 /*
643 * Check the rate limiting. Also, we do not want to throttle real-time
644 * tasks in balance_dirty_pages(). Period.
645 */
fa5a734e 646 preempt_disable();
245b2e70 647 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
648 *p += nr_pages_dirtied;
649 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 650 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
651 *p = 0;
652 preempt_enable();
3a2e9a5a 653 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
654 return;
655 }
fa5a734e 656 preempt_enable();
1da177e4 657}
fa5a734e 658EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 659
232ea4d6 660void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 661{
364aeb28
DR
662 unsigned long background_thresh;
663 unsigned long dirty_thresh;
1da177e4
LT
664
665 for ( ; ; ) {
16c4042f 666 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
667
668 /*
669 * Boost the allowable dirty threshold a bit for page
670 * allocators so they don't get DoS'ed by heavy writers
671 */
672 dirty_thresh += dirty_thresh / 10; /* wheeee... */
673
c24f21bd
CL
674 if (global_page_state(NR_UNSTABLE_NFS) +
675 global_page_state(NR_WRITEBACK) <= dirty_thresh)
676 break;
8aa7e847 677 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
678
679 /*
680 * The caller might hold locks which can prevent IO completion
681 * or progress in the filesystem. So we cannot just sit here
682 * waiting for IO to complete.
683 */
684 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
685 break;
1da177e4
LT
686 }
687}
688
1da177e4
LT
689/*
690 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
691 */
692int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 693 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 694{
8d65af78 695 proc_dointvec(table, write, buffer, length, ppos);
6423104b 696 bdi_arm_supers_timer();
1da177e4
LT
697 return 0;
698}
699
c2c4986e 700#ifdef CONFIG_BLOCK
31373d09 701void laptop_mode_timer_fn(unsigned long data)
1da177e4 702{
31373d09
MG
703 struct request_queue *q = (struct request_queue *)data;
704 int nr_pages = global_page_state(NR_FILE_DIRTY) +
705 global_page_state(NR_UNSTABLE_NFS);
1da177e4 706
31373d09
MG
707 /*
708 * We want to write everything out, not just down to the dirty
709 * threshold
710 */
31373d09 711 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 712 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
713}
714
715/*
716 * We've spun up the disk and we're in laptop mode: schedule writeback
717 * of all dirty data a few seconds from now. If the flush is already scheduled
718 * then push it back - the user is still using the disk.
719 */
31373d09 720void laptop_io_completion(struct backing_dev_info *info)
1da177e4 721{
31373d09 722 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
723}
724
725/*
726 * We're in laptop mode and we've just synced. The sync's writes will have
727 * caused another writeback to be scheduled by laptop_io_completion.
728 * Nothing needs to be written back anymore, so we unschedule the writeback.
729 */
730void laptop_sync_completion(void)
731{
31373d09
MG
732 struct backing_dev_info *bdi;
733
734 rcu_read_lock();
735
736 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
737 del_timer(&bdi->laptop_mode_wb_timer);
738
739 rcu_read_unlock();
1da177e4 740}
c2c4986e 741#endif
1da177e4
LT
742
743/*
744 * If ratelimit_pages is too high then we can get into dirty-data overload
745 * if a large number of processes all perform writes at the same time.
746 * If it is too low then SMP machines will call the (expensive)
747 * get_writeback_state too often.
748 *
749 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
750 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
751 * thresholds before writeback cuts in.
752 *
753 * But the limit should not be set too high. Because it also controls the
754 * amount of memory which the balance_dirty_pages() caller has to write back.
755 * If this is too large then the caller will block on the IO queue all the
756 * time. So limit it to four megabytes - the balance_dirty_pages() caller
757 * will write six megabyte chunks, max.
758 */
759
2d1d43f6 760void writeback_set_ratelimit(void)
1da177e4 761{
40c99aae 762 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
763 if (ratelimit_pages < 16)
764 ratelimit_pages = 16;
765 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
766 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
767}
768
26c2143b 769static int __cpuinit
1da177e4
LT
770ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
771{
2d1d43f6 772 writeback_set_ratelimit();
aa0f0303 773 return NOTIFY_DONE;
1da177e4
LT
774}
775
74b85f37 776static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
777 .notifier_call = ratelimit_handler,
778 .next = NULL,
779};
780
781/*
dc6e29da
LT
782 * Called early on to tune the page writeback dirty limits.
783 *
784 * We used to scale dirty pages according to how total memory
785 * related to pages that could be allocated for buffers (by
786 * comparing nr_free_buffer_pages() to vm_total_pages.
787 *
788 * However, that was when we used "dirty_ratio" to scale with
789 * all memory, and we don't do that any more. "dirty_ratio"
790 * is now applied to total non-HIGHPAGE memory (by subtracting
791 * totalhigh_pages from vm_total_pages), and as such we can't
792 * get into the old insane situation any more where we had
793 * large amounts of dirty pages compared to a small amount of
794 * non-HIGHMEM memory.
795 *
796 * But we might still want to scale the dirty_ratio by how
797 * much memory the box has..
1da177e4
LT
798 */
799void __init page_writeback_init(void)
800{
04fbfdc1
PZ
801 int shift;
802
2d1d43f6 803 writeback_set_ratelimit();
1da177e4 804 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
805
806 shift = calc_period_shift();
807 prop_descriptor_init(&vm_completions, shift);
3e26c149 808 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
809}
810
f446daae
JK
811/**
812 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
813 * @mapping: address space structure to write
814 * @start: starting page index
815 * @end: ending page index (inclusive)
816 *
817 * This function scans the page range from @start to @end (inclusive) and tags
818 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
819 * that write_cache_pages (or whoever calls this function) will then use
820 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
821 * used to avoid livelocking of writeback by a process steadily creating new
822 * dirty pages in the file (thus it is important for this function to be quick
823 * so that it can tag pages faster than a dirtying process can create them).
824 */
825/*
826 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
827 */
f446daae
JK
828void tag_pages_for_writeback(struct address_space *mapping,
829 pgoff_t start, pgoff_t end)
830{
3c111a07 831#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
832 unsigned long tagged;
833
834 do {
835 spin_lock_irq(&mapping->tree_lock);
836 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
837 &start, end, WRITEBACK_TAG_BATCH,
838 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
839 spin_unlock_irq(&mapping->tree_lock);
840 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
841 cond_resched();
d5ed3a4a
JK
842 /* We check 'start' to handle wrapping when end == ~0UL */
843 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
844}
845EXPORT_SYMBOL(tag_pages_for_writeback);
846
811d736f 847/**
0ea97180 848 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
849 * @mapping: address space structure to write
850 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
851 * @writepage: function called for each page
852 * @data: data passed to writepage function
811d736f 853 *
0ea97180 854 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
855 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
856 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
857 * and msync() need to guarantee that all the data which was dirty at the time
858 * the call was made get new I/O started against them. If wbc->sync_mode is
859 * WB_SYNC_ALL then we were called for data integrity and we must wait for
860 * existing IO to complete.
f446daae
JK
861 *
862 * To avoid livelocks (when other process dirties new pages), we first tag
863 * pages which should be written back with TOWRITE tag and only then start
864 * writing them. For data-integrity sync we have to be careful so that we do
865 * not miss some pages (e.g., because some other process has cleared TOWRITE
866 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
867 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 868 */
0ea97180
MS
869int write_cache_pages(struct address_space *mapping,
870 struct writeback_control *wbc, writepage_t writepage,
871 void *data)
811d736f 872{
811d736f
DH
873 int ret = 0;
874 int done = 0;
811d736f
DH
875 struct pagevec pvec;
876 int nr_pages;
31a12666 877 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
878 pgoff_t index;
879 pgoff_t end; /* Inclusive */
bd19e012 880 pgoff_t done_index;
31a12666 881 int cycled;
811d736f 882 int range_whole = 0;
f446daae 883 int tag;
811d736f 884
811d736f
DH
885 pagevec_init(&pvec, 0);
886 if (wbc->range_cyclic) {
31a12666
NP
887 writeback_index = mapping->writeback_index; /* prev offset */
888 index = writeback_index;
889 if (index == 0)
890 cycled = 1;
891 else
892 cycled = 0;
811d736f
DH
893 end = -1;
894 } else {
895 index = wbc->range_start >> PAGE_CACHE_SHIFT;
896 end = wbc->range_end >> PAGE_CACHE_SHIFT;
897 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
898 range_whole = 1;
31a12666 899 cycled = 1; /* ignore range_cyclic tests */
811d736f 900 }
6e6938b6 901 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
902 tag = PAGECACHE_TAG_TOWRITE;
903 else
904 tag = PAGECACHE_TAG_DIRTY;
811d736f 905retry:
6e6938b6 906 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 907 tag_pages_for_writeback(mapping, index, end);
bd19e012 908 done_index = index;
5a3d5c98
NP
909 while (!done && (index <= end)) {
910 int i;
911
f446daae 912 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
913 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
914 if (nr_pages == 0)
915 break;
811d736f 916
811d736f
DH
917 for (i = 0; i < nr_pages; i++) {
918 struct page *page = pvec.pages[i];
919
920 /*
d5482cdf
NP
921 * At this point, the page may be truncated or
922 * invalidated (changing page->mapping to NULL), or
923 * even swizzled back from swapper_space to tmpfs file
924 * mapping. However, page->index will not change
925 * because we have a reference on the page.
811d736f 926 */
d5482cdf
NP
927 if (page->index > end) {
928 /*
929 * can't be range_cyclic (1st pass) because
930 * end == -1 in that case.
931 */
932 done = 1;
933 break;
934 }
935
cf15b07c 936 done_index = page->index;
d5482cdf 937
811d736f
DH
938 lock_page(page);
939
5a3d5c98
NP
940 /*
941 * Page truncated or invalidated. We can freely skip it
942 * then, even for data integrity operations: the page
943 * has disappeared concurrently, so there could be no
944 * real expectation of this data interity operation
945 * even if there is now a new, dirty page at the same
946 * pagecache address.
947 */
811d736f 948 if (unlikely(page->mapping != mapping)) {
5a3d5c98 949continue_unlock:
811d736f
DH
950 unlock_page(page);
951 continue;
952 }
953
515f4a03
NP
954 if (!PageDirty(page)) {
955 /* someone wrote it for us */
956 goto continue_unlock;
957 }
958
959 if (PageWriteback(page)) {
960 if (wbc->sync_mode != WB_SYNC_NONE)
961 wait_on_page_writeback(page);
962 else
963 goto continue_unlock;
964 }
811d736f 965
515f4a03
NP
966 BUG_ON(PageWriteback(page));
967 if (!clear_page_dirty_for_io(page))
5a3d5c98 968 goto continue_unlock;
811d736f 969
9e094383 970 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 971 ret = (*writepage)(page, wbc, data);
00266770
NP
972 if (unlikely(ret)) {
973 if (ret == AOP_WRITEPAGE_ACTIVATE) {
974 unlock_page(page);
975 ret = 0;
976 } else {
977 /*
978 * done_index is set past this page,
979 * so media errors will not choke
980 * background writeout for the entire
981 * file. This has consequences for
982 * range_cyclic semantics (ie. it may
983 * not be suitable for data integrity
984 * writeout).
985 */
cf15b07c 986 done_index = page->index + 1;
00266770
NP
987 done = 1;
988 break;
989 }
0b564927 990 }
00266770 991
546a1924
DC
992 /*
993 * We stop writing back only if we are not doing
994 * integrity sync. In case of integrity sync we have to
995 * keep going until we have written all the pages
996 * we tagged for writeback prior to entering this loop.
997 */
998 if (--wbc->nr_to_write <= 0 &&
999 wbc->sync_mode == WB_SYNC_NONE) {
1000 done = 1;
1001 break;
05fe478d 1002 }
811d736f
DH
1003 }
1004 pagevec_release(&pvec);
1005 cond_resched();
1006 }
3a4c6800 1007 if (!cycled && !done) {
811d736f 1008 /*
31a12666 1009 * range_cyclic:
811d736f
DH
1010 * We hit the last page and there is more work to be done: wrap
1011 * back to the start of the file
1012 */
31a12666 1013 cycled = 1;
811d736f 1014 index = 0;
31a12666 1015 end = writeback_index - 1;
811d736f
DH
1016 goto retry;
1017 }
0b564927
DC
1018 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1019 mapping->writeback_index = done_index;
06d6cf69 1020
811d736f
DH
1021 return ret;
1022}
0ea97180
MS
1023EXPORT_SYMBOL(write_cache_pages);
1024
1025/*
1026 * Function used by generic_writepages to call the real writepage
1027 * function and set the mapping flags on error
1028 */
1029static int __writepage(struct page *page, struct writeback_control *wbc,
1030 void *data)
1031{
1032 struct address_space *mapping = data;
1033 int ret = mapping->a_ops->writepage(page, wbc);
1034 mapping_set_error(mapping, ret);
1035 return ret;
1036}
1037
1038/**
1039 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1040 * @mapping: address space structure to write
1041 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1042 *
1043 * This is a library function, which implements the writepages()
1044 * address_space_operation.
1045 */
1046int generic_writepages(struct address_space *mapping,
1047 struct writeback_control *wbc)
1048{
9b6096a6
SL
1049 struct blk_plug plug;
1050 int ret;
1051
0ea97180
MS
1052 /* deal with chardevs and other special file */
1053 if (!mapping->a_ops->writepage)
1054 return 0;
1055
9b6096a6
SL
1056 blk_start_plug(&plug);
1057 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1058 blk_finish_plug(&plug);
1059 return ret;
0ea97180 1060}
811d736f
DH
1061
1062EXPORT_SYMBOL(generic_writepages);
1063
1da177e4
LT
1064int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1065{
22905f77
AM
1066 int ret;
1067
1da177e4
LT
1068 if (wbc->nr_to_write <= 0)
1069 return 0;
1070 if (mapping->a_ops->writepages)
d08b3851 1071 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1072 else
1073 ret = generic_writepages(mapping, wbc);
22905f77 1074 return ret;
1da177e4
LT
1075}
1076
1077/**
1078 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1079 * @page: the page to write
1080 * @wait: if true, wait on writeout
1da177e4
LT
1081 *
1082 * The page must be locked by the caller and will be unlocked upon return.
1083 *
1084 * write_one_page() returns a negative error code if I/O failed.
1085 */
1086int write_one_page(struct page *page, int wait)
1087{
1088 struct address_space *mapping = page->mapping;
1089 int ret = 0;
1090 struct writeback_control wbc = {
1091 .sync_mode = WB_SYNC_ALL,
1092 .nr_to_write = 1,
1093 };
1094
1095 BUG_ON(!PageLocked(page));
1096
1097 if (wait)
1098 wait_on_page_writeback(page);
1099
1100 if (clear_page_dirty_for_io(page)) {
1101 page_cache_get(page);
1102 ret = mapping->a_ops->writepage(page, &wbc);
1103 if (ret == 0 && wait) {
1104 wait_on_page_writeback(page);
1105 if (PageError(page))
1106 ret = -EIO;
1107 }
1108 page_cache_release(page);
1109 } else {
1110 unlock_page(page);
1111 }
1112 return ret;
1113}
1114EXPORT_SYMBOL(write_one_page);
1115
76719325
KC
1116/*
1117 * For address_spaces which do not use buffers nor write back.
1118 */
1119int __set_page_dirty_no_writeback(struct page *page)
1120{
1121 if (!PageDirty(page))
c3f0da63 1122 return !TestSetPageDirty(page);
76719325
KC
1123 return 0;
1124}
1125
e3a7cca1
ES
1126/*
1127 * Helper function for set_page_dirty family.
1128 * NOTE: This relies on being atomic wrt interrupts.
1129 */
1130void account_page_dirtied(struct page *page, struct address_space *mapping)
1131{
1132 if (mapping_cap_account_dirty(mapping)) {
1133 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1134 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1
ES
1135 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1136 task_dirty_inc(current);
1137 task_io_account_write(PAGE_CACHE_SIZE);
1138 }
1139}
679ceace 1140EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1141
f629d1c9
MR
1142/*
1143 * Helper function for set_page_writeback family.
1144 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1145 * wrt interrupts.
1146 */
1147void account_page_writeback(struct page *page)
1148{
1149 inc_zone_page_state(page, NR_WRITEBACK);
ea941f0e 1150 inc_zone_page_state(page, NR_WRITTEN);
f629d1c9
MR
1151}
1152EXPORT_SYMBOL(account_page_writeback);
1153
1da177e4
LT
1154/*
1155 * For address_spaces which do not use buffers. Just tag the page as dirty in
1156 * its radix tree.
1157 *
1158 * This is also used when a single buffer is being dirtied: we want to set the
1159 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1160 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1161 *
1162 * Most callers have locked the page, which pins the address_space in memory.
1163 * But zap_pte_range() does not lock the page, however in that case the
1164 * mapping is pinned by the vma's ->vm_file reference.
1165 *
1166 * We take care to handle the case where the page was truncated from the
183ff22b 1167 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1168 */
1169int __set_page_dirty_nobuffers(struct page *page)
1170{
1da177e4
LT
1171 if (!TestSetPageDirty(page)) {
1172 struct address_space *mapping = page_mapping(page);
1173 struct address_space *mapping2;
1174
8c08540f
AM
1175 if (!mapping)
1176 return 1;
1177
19fd6231 1178 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1179 mapping2 = page_mapping(page);
1180 if (mapping2) { /* Race with truncate? */
1181 BUG_ON(mapping2 != mapping);
787d2214 1182 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1183 account_page_dirtied(page, mapping);
8c08540f
AM
1184 radix_tree_tag_set(&mapping->page_tree,
1185 page_index(page), PAGECACHE_TAG_DIRTY);
1186 }
19fd6231 1187 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1188 if (mapping->host) {
1189 /* !PageAnon && !swapper_space */
1190 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1191 }
4741c9fd 1192 return 1;
1da177e4 1193 }
4741c9fd 1194 return 0;
1da177e4
LT
1195}
1196EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1197
1198/*
1199 * When a writepage implementation decides that it doesn't want to write this
1200 * page for some reason, it should redirty the locked page via
1201 * redirty_page_for_writepage() and it should then unlock the page and return 0
1202 */
1203int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1204{
1205 wbc->pages_skipped++;
1206 return __set_page_dirty_nobuffers(page);
1207}
1208EXPORT_SYMBOL(redirty_page_for_writepage);
1209
1210/*
6746aff7
WF
1211 * Dirty a page.
1212 *
1213 * For pages with a mapping this should be done under the page lock
1214 * for the benefit of asynchronous memory errors who prefer a consistent
1215 * dirty state. This rule can be broken in some special cases,
1216 * but should be better not to.
1217 *
1da177e4
LT
1218 * If the mapping doesn't provide a set_page_dirty a_op, then
1219 * just fall through and assume that it wants buffer_heads.
1220 */
1cf6e7d8 1221int set_page_dirty(struct page *page)
1da177e4
LT
1222{
1223 struct address_space *mapping = page_mapping(page);
1224
1225 if (likely(mapping)) {
1226 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1227 /*
1228 * readahead/lru_deactivate_page could remain
1229 * PG_readahead/PG_reclaim due to race with end_page_writeback
1230 * About readahead, if the page is written, the flags would be
1231 * reset. So no problem.
1232 * About lru_deactivate_page, if the page is redirty, the flag
1233 * will be reset. So no problem. but if the page is used by readahead
1234 * it will confuse readahead and make it restart the size rampup
1235 * process. But it's a trivial problem.
1236 */
1237 ClearPageReclaim(page);
9361401e
DH
1238#ifdef CONFIG_BLOCK
1239 if (!spd)
1240 spd = __set_page_dirty_buffers;
1241#endif
1242 return (*spd)(page);
1da177e4 1243 }
4741c9fd
AM
1244 if (!PageDirty(page)) {
1245 if (!TestSetPageDirty(page))
1246 return 1;
1247 }
1da177e4
LT
1248 return 0;
1249}
1250EXPORT_SYMBOL(set_page_dirty);
1251
1252/*
1253 * set_page_dirty() is racy if the caller has no reference against
1254 * page->mapping->host, and if the page is unlocked. This is because another
1255 * CPU could truncate the page off the mapping and then free the mapping.
1256 *
1257 * Usually, the page _is_ locked, or the caller is a user-space process which
1258 * holds a reference on the inode by having an open file.
1259 *
1260 * In other cases, the page should be locked before running set_page_dirty().
1261 */
1262int set_page_dirty_lock(struct page *page)
1263{
1264 int ret;
1265
7eaceacc 1266 lock_page(page);
1da177e4
LT
1267 ret = set_page_dirty(page);
1268 unlock_page(page);
1269 return ret;
1270}
1271EXPORT_SYMBOL(set_page_dirty_lock);
1272
1da177e4
LT
1273/*
1274 * Clear a page's dirty flag, while caring for dirty memory accounting.
1275 * Returns true if the page was previously dirty.
1276 *
1277 * This is for preparing to put the page under writeout. We leave the page
1278 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1279 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1280 * implementation will run either set_page_writeback() or set_page_dirty(),
1281 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1282 * back into sync.
1283 *
1284 * This incoherency between the page's dirty flag and radix-tree tag is
1285 * unfortunate, but it only exists while the page is locked.
1286 */
1287int clear_page_dirty_for_io(struct page *page)
1288{
1289 struct address_space *mapping = page_mapping(page);
1290
79352894
NP
1291 BUG_ON(!PageLocked(page));
1292
7658cc28
LT
1293 if (mapping && mapping_cap_account_dirty(mapping)) {
1294 /*
1295 * Yes, Virginia, this is indeed insane.
1296 *
1297 * We use this sequence to make sure that
1298 * (a) we account for dirty stats properly
1299 * (b) we tell the low-level filesystem to
1300 * mark the whole page dirty if it was
1301 * dirty in a pagetable. Only to then
1302 * (c) clean the page again and return 1 to
1303 * cause the writeback.
1304 *
1305 * This way we avoid all nasty races with the
1306 * dirty bit in multiple places and clearing
1307 * them concurrently from different threads.
1308 *
1309 * Note! Normally the "set_page_dirty(page)"
1310 * has no effect on the actual dirty bit - since
1311 * that will already usually be set. But we
1312 * need the side effects, and it can help us
1313 * avoid races.
1314 *
1315 * We basically use the page "master dirty bit"
1316 * as a serialization point for all the different
1317 * threads doing their things.
7658cc28
LT
1318 */
1319 if (page_mkclean(page))
1320 set_page_dirty(page);
79352894
NP
1321 /*
1322 * We carefully synchronise fault handlers against
1323 * installing a dirty pte and marking the page dirty
1324 * at this point. We do this by having them hold the
1325 * page lock at some point after installing their
1326 * pte, but before marking the page dirty.
1327 * Pages are always locked coming in here, so we get
1328 * the desired exclusion. See mm/memory.c:do_wp_page()
1329 * for more comments.
1330 */
7658cc28 1331 if (TestClearPageDirty(page)) {
8c08540f 1332 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1333 dec_bdi_stat(mapping->backing_dev_info,
1334 BDI_RECLAIMABLE);
7658cc28 1335 return 1;
1da177e4 1336 }
7658cc28 1337 return 0;
1da177e4 1338 }
7658cc28 1339 return TestClearPageDirty(page);
1da177e4 1340}
58bb01a9 1341EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1342
1343int test_clear_page_writeback(struct page *page)
1344{
1345 struct address_space *mapping = page_mapping(page);
1346 int ret;
1347
1348 if (mapping) {
69cb51d1 1349 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1350 unsigned long flags;
1351
19fd6231 1352 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1353 ret = TestClearPageWriteback(page);
69cb51d1 1354 if (ret) {
1da177e4
LT
1355 radix_tree_tag_clear(&mapping->page_tree,
1356 page_index(page),
1357 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1358 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1359 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1360 __bdi_writeout_inc(bdi);
1361 }
69cb51d1 1362 }
19fd6231 1363 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1364 } else {
1365 ret = TestClearPageWriteback(page);
1366 }
d688abf5
AM
1367 if (ret)
1368 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1369 return ret;
1370}
1371
1372int test_set_page_writeback(struct page *page)
1373{
1374 struct address_space *mapping = page_mapping(page);
1375 int ret;
1376
1377 if (mapping) {
69cb51d1 1378 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1379 unsigned long flags;
1380
19fd6231 1381 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1382 ret = TestSetPageWriteback(page);
69cb51d1 1383 if (!ret) {
1da177e4
LT
1384 radix_tree_tag_set(&mapping->page_tree,
1385 page_index(page),
1386 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1387 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1388 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1389 }
1da177e4
LT
1390 if (!PageDirty(page))
1391 radix_tree_tag_clear(&mapping->page_tree,
1392 page_index(page),
1393 PAGECACHE_TAG_DIRTY);
f446daae
JK
1394 radix_tree_tag_clear(&mapping->page_tree,
1395 page_index(page),
1396 PAGECACHE_TAG_TOWRITE);
19fd6231 1397 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1398 } else {
1399 ret = TestSetPageWriteback(page);
1400 }
d688abf5 1401 if (!ret)
f629d1c9 1402 account_page_writeback(page);
1da177e4
LT
1403 return ret;
1404
1405}
1406EXPORT_SYMBOL(test_set_page_writeback);
1407
1408/*
00128188 1409 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1410 * passed tag.
1411 */
1412int mapping_tagged(struct address_space *mapping, int tag)
1413{
1da177e4 1414 int ret;
00128188 1415 rcu_read_lock();
1da177e4 1416 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1417 rcu_read_unlock();
1da177e4
LT
1418 return ret;
1419}
1420EXPORT_SYMBOL(mapping_tagged);
This page took 1.023867 seconds and 5 git commands to generate.