writeback: implement wb_domain
[deliverable/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
c42843f2 125unsigned long global_dirty_limit;
1da177e4 126
380c27ca 127static struct wb_domain global_wb_domain;
eb608e3a
JK
128
129/*
130 * Length of period for aging writeout fractions of bdis. This is an
131 * arbitrarily chosen number. The longer the period, the slower fractions will
132 * reflect changes in current writeout rate.
133 */
134#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 135
693108a8
TH
136#ifdef CONFIG_CGROUP_WRITEBACK
137
138static void wb_min_max_ratio(struct bdi_writeback *wb,
139 unsigned long *minp, unsigned long *maxp)
140{
141 unsigned long this_bw = wb->avg_write_bandwidth;
142 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
143 unsigned long long min = wb->bdi->min_ratio;
144 unsigned long long max = wb->bdi->max_ratio;
145
146 /*
147 * @wb may already be clean by the time control reaches here and
148 * the total may not include its bw.
149 */
150 if (this_bw < tot_bw) {
151 if (min) {
152 min *= this_bw;
153 do_div(min, tot_bw);
154 }
155 if (max < 100) {
156 max *= this_bw;
157 do_div(max, tot_bw);
158 }
159 }
160
161 *minp = min;
162 *maxp = max;
163}
164
165#else /* CONFIG_CGROUP_WRITEBACK */
166
167static void wb_min_max_ratio(struct bdi_writeback *wb,
168 unsigned long *minp, unsigned long *maxp)
169{
170 *minp = wb->bdi->min_ratio;
171 *maxp = wb->bdi->max_ratio;
172}
173
174#endif /* CONFIG_CGROUP_WRITEBACK */
175
a756cf59
JW
176/*
177 * In a memory zone, there is a certain amount of pages we consider
178 * available for the page cache, which is essentially the number of
179 * free and reclaimable pages, minus some zone reserves to protect
180 * lowmem and the ability to uphold the zone's watermarks without
181 * requiring writeback.
182 *
183 * This number of dirtyable pages is the base value of which the
184 * user-configurable dirty ratio is the effictive number of pages that
185 * are allowed to be actually dirtied. Per individual zone, or
186 * globally by using the sum of dirtyable pages over all zones.
187 *
188 * Because the user is allowed to specify the dirty limit globally as
189 * absolute number of bytes, calculating the per-zone dirty limit can
190 * require translating the configured limit into a percentage of
191 * global dirtyable memory first.
192 */
193
a804552b
JW
194/**
195 * zone_dirtyable_memory - number of dirtyable pages in a zone
196 * @zone: the zone
197 *
198 * Returns the zone's number of pages potentially available for dirty
199 * page cache. This is the base value for the per-zone dirty limits.
200 */
201static unsigned long zone_dirtyable_memory(struct zone *zone)
202{
203 unsigned long nr_pages;
204
205 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
206 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
207
a1c3bfb2
JW
208 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
209 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
210
211 return nr_pages;
212}
213
1edf2234
JW
214static unsigned long highmem_dirtyable_memory(unsigned long total)
215{
216#ifdef CONFIG_HIGHMEM
217 int node;
218 unsigned long x = 0;
219
220 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 221 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 222
a804552b 223 x += zone_dirtyable_memory(z);
1edf2234 224 }
c8b74c2f
SR
225 /*
226 * Unreclaimable memory (kernel memory or anonymous memory
227 * without swap) can bring down the dirtyable pages below
228 * the zone's dirty balance reserve and the above calculation
229 * will underflow. However we still want to add in nodes
230 * which are below threshold (negative values) to get a more
231 * accurate calculation but make sure that the total never
232 * underflows.
233 */
234 if ((long)x < 0)
235 x = 0;
236
1edf2234
JW
237 /*
238 * Make sure that the number of highmem pages is never larger
239 * than the number of the total dirtyable memory. This can only
240 * occur in very strange VM situations but we want to make sure
241 * that this does not occur.
242 */
243 return min(x, total);
244#else
245 return 0;
246#endif
247}
248
249/**
ccafa287 250 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 251 *
ccafa287
JW
252 * Returns the global number of pages potentially available for dirty
253 * page cache. This is the base value for the global dirty limits.
1edf2234 254 */
18cf8cf8 255static unsigned long global_dirtyable_memory(void)
1edf2234
JW
256{
257 unsigned long x;
258
a804552b 259 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 260 x -= min(x, dirty_balance_reserve);
1edf2234 261
a1c3bfb2
JW
262 x += global_page_state(NR_INACTIVE_FILE);
263 x += global_page_state(NR_ACTIVE_FILE);
a804552b 264
1edf2234
JW
265 if (!vm_highmem_is_dirtyable)
266 x -= highmem_dirtyable_memory(x);
267
268 return x + 1; /* Ensure that we never return 0 */
269}
270
ccafa287
JW
271/*
272 * global_dirty_limits - background-writeback and dirty-throttling thresholds
273 *
274 * Calculate the dirty thresholds based on sysctl parameters
275 * - vm.dirty_background_ratio or vm.dirty_background_bytes
276 * - vm.dirty_ratio or vm.dirty_bytes
277 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
278 * real-time tasks.
279 */
280void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
281{
9ef0a0ff 282 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
283 unsigned long background;
284 unsigned long dirty;
ccafa287
JW
285 struct task_struct *tsk;
286
ccafa287
JW
287 if (vm_dirty_bytes)
288 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
289 else
290 dirty = (vm_dirty_ratio * available_memory) / 100;
291
292 if (dirty_background_bytes)
293 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
294 else
295 background = (dirty_background_ratio * available_memory) / 100;
296
297 if (background >= dirty)
298 background = dirty / 2;
299 tsk = current;
300 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
301 background += background / 4;
302 dirty += dirty / 4;
303 }
304 *pbackground = background;
305 *pdirty = dirty;
306 trace_global_dirty_state(background, dirty);
307}
308
a756cf59
JW
309/**
310 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
311 * @zone: the zone
312 *
313 * Returns the maximum number of dirty pages allowed in a zone, based
314 * on the zone's dirtyable memory.
315 */
316static unsigned long zone_dirty_limit(struct zone *zone)
317{
318 unsigned long zone_memory = zone_dirtyable_memory(zone);
319 struct task_struct *tsk = current;
320 unsigned long dirty;
321
322 if (vm_dirty_bytes)
323 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
324 zone_memory / global_dirtyable_memory();
325 else
326 dirty = vm_dirty_ratio * zone_memory / 100;
327
328 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
329 dirty += dirty / 4;
330
331 return dirty;
332}
333
334/**
335 * zone_dirty_ok - tells whether a zone is within its dirty limits
336 * @zone: the zone to check
337 *
338 * Returns %true when the dirty pages in @zone are within the zone's
339 * dirty limit, %false if the limit is exceeded.
340 */
341bool zone_dirty_ok(struct zone *zone)
342{
343 unsigned long limit = zone_dirty_limit(zone);
344
345 return zone_page_state(zone, NR_FILE_DIRTY) +
346 zone_page_state(zone, NR_UNSTABLE_NFS) +
347 zone_page_state(zone, NR_WRITEBACK) <= limit;
348}
349
2da02997 350int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 351 void __user *buffer, size_t *lenp,
2da02997
DR
352 loff_t *ppos)
353{
354 int ret;
355
8d65af78 356 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
357 if (ret == 0 && write)
358 dirty_background_bytes = 0;
359 return ret;
360}
361
362int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 363 void __user *buffer, size_t *lenp,
2da02997
DR
364 loff_t *ppos)
365{
366 int ret;
367
8d65af78 368 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
369 if (ret == 0 && write)
370 dirty_background_ratio = 0;
371 return ret;
372}
373
04fbfdc1 374int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 375 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
376 loff_t *ppos)
377{
378 int old_ratio = vm_dirty_ratio;
2da02997
DR
379 int ret;
380
8d65af78 381 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 382 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 383 writeback_set_ratelimit();
2da02997
DR
384 vm_dirty_bytes = 0;
385 }
386 return ret;
387}
388
2da02997 389int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 390 void __user *buffer, size_t *lenp,
2da02997
DR
391 loff_t *ppos)
392{
fc3501d4 393 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
394 int ret;
395
8d65af78 396 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 397 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 398 writeback_set_ratelimit();
2da02997 399 vm_dirty_ratio = 0;
04fbfdc1
PZ
400 }
401 return ret;
402}
403
eb608e3a
JK
404static unsigned long wp_next_time(unsigned long cur_time)
405{
406 cur_time += VM_COMPLETIONS_PERIOD_LEN;
407 /* 0 has a special meaning... */
408 if (!cur_time)
409 return 1;
410 return cur_time;
411}
412
04fbfdc1 413/*
380c27ca 414 * Increment the wb's writeout completion count and the global writeout
04fbfdc1
PZ
415 * completion count. Called from test_clear_page_writeback().
416 */
93f78d88 417static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 418{
380c27ca
TH
419 struct wb_domain *dom = &global_wb_domain;
420
93f78d88 421 __inc_wb_stat(wb, WB_WRITTEN);
380c27ca 422 __fprop_inc_percpu_max(&dom->completions, &wb->completions,
93f78d88 423 wb->bdi->max_prop_frac);
eb608e3a 424 /* First event after period switching was turned off? */
380c27ca 425 if (!unlikely(dom->period_time)) {
eb608e3a
JK
426 /*
427 * We can race with other __bdi_writeout_inc calls here but
428 * it does not cause any harm since the resulting time when
429 * timer will fire and what is in writeout_period_time will be
430 * roughly the same.
431 */
380c27ca
TH
432 dom->period_time = wp_next_time(jiffies);
433 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 434 }
04fbfdc1
PZ
435}
436
93f78d88 437void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
438{
439 unsigned long flags;
440
441 local_irq_save(flags);
93f78d88 442 __wb_writeout_inc(wb);
dd5656e5
MS
443 local_irq_restore(flags);
444}
93f78d88 445EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 446
eb608e3a
JK
447/*
448 * On idle system, we can be called long after we scheduled because we use
449 * deferred timers so count with missed periods.
450 */
451static void writeout_period(unsigned long t)
452{
380c27ca
TH
453 struct wb_domain *dom = (void *)t;
454 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
455 VM_COMPLETIONS_PERIOD_LEN;
456
380c27ca
TH
457 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
458 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 459 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 460 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
461 } else {
462 /*
463 * Aging has zeroed all fractions. Stop wasting CPU on period
464 * updates.
465 */
380c27ca 466 dom->period_time = 0;
eb608e3a
JK
467 }
468}
469
380c27ca
TH
470int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
471{
472 memset(dom, 0, sizeof(*dom));
473 init_timer_deferrable(&dom->period_timer);
474 dom->period_timer.function = writeout_period;
475 dom->period_timer.data = (unsigned long)dom;
476 return fprop_global_init(&dom->completions, gfp);
477}
478
189d3c4a 479/*
d08c429b
JW
480 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
481 * registered backing devices, which, for obvious reasons, can not
482 * exceed 100%.
189d3c4a 483 */
189d3c4a
PZ
484static unsigned int bdi_min_ratio;
485
486int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
487{
488 int ret = 0;
189d3c4a 489
cfc4ba53 490 spin_lock_bh(&bdi_lock);
a42dde04 491 if (min_ratio > bdi->max_ratio) {
189d3c4a 492 ret = -EINVAL;
a42dde04
PZ
493 } else {
494 min_ratio -= bdi->min_ratio;
495 if (bdi_min_ratio + min_ratio < 100) {
496 bdi_min_ratio += min_ratio;
497 bdi->min_ratio += min_ratio;
498 } else {
499 ret = -EINVAL;
500 }
501 }
cfc4ba53 502 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
503
504 return ret;
505}
506
507int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
508{
a42dde04
PZ
509 int ret = 0;
510
511 if (max_ratio > 100)
512 return -EINVAL;
513
cfc4ba53 514 spin_lock_bh(&bdi_lock);
a42dde04
PZ
515 if (bdi->min_ratio > max_ratio) {
516 ret = -EINVAL;
517 } else {
518 bdi->max_ratio = max_ratio;
eb608e3a 519 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 520 }
cfc4ba53 521 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
522
523 return ret;
524}
a42dde04 525EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 526
6c14ae1e
WF
527static unsigned long dirty_freerun_ceiling(unsigned long thresh,
528 unsigned long bg_thresh)
529{
530 return (thresh + bg_thresh) / 2;
531}
532
ffd1f609
WF
533static unsigned long hard_dirty_limit(unsigned long thresh)
534{
535 return max(thresh, global_dirty_limit);
536}
537
6f718656 538/**
0d960a38 539 * wb_calc_thresh - @wb's share of dirty throttling threshold
a88a341a 540 * @wb: bdi_writeback to query
6f718656 541 * @dirty: global dirty limit in pages
1babe183 542 *
a88a341a 543 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 544 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
545 *
546 * Note that balance_dirty_pages() will only seriously take it as a hard limit
547 * when sleeping max_pause per page is not enough to keep the dirty pages under
548 * control. For example, when the device is completely stalled due to some error
549 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
550 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 551 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 552 *
6f718656 553 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
554 * - starving fast devices
555 * - piling up dirty pages (that will take long time to sync) on slow devices
556 *
a88a341a 557 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
558 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
559 */
0d960a38 560unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
16c4042f 561{
380c27ca 562 struct wb_domain *dom = &global_wb_domain;
0d960a38 563 u64 wb_thresh;
16c4042f 564 long numerator, denominator;
693108a8 565 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 566
16c4042f 567 /*
0d960a38 568 * Calculate this BDI's share of the thresh ratio.
16c4042f 569 */
380c27ca
TH
570 fprop_fraction_percpu(&dom->completions, &wb->completions,
571 &numerator, &denominator);
04fbfdc1 572
0d960a38
TH
573 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
574 wb_thresh *= numerator;
575 do_div(wb_thresh, denominator);
04fbfdc1 576
693108a8
TH
577 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
578
0d960a38
TH
579 wb_thresh += (thresh * wb_min_ratio) / 100;
580 if (wb_thresh > (thresh * wb_max_ratio) / 100)
581 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 582
0d960a38 583 return wb_thresh;
1da177e4
LT
584}
585
5a537485
MP
586/*
587 * setpoint - dirty 3
588 * f(dirty) := 1.0 + (----------------)
589 * limit - setpoint
590 *
591 * it's a 3rd order polynomial that subjects to
592 *
593 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
594 * (2) f(setpoint) = 1.0 => the balance point
595 * (3) f(limit) = 0 => the hard limit
596 * (4) df/dx <= 0 => negative feedback control
597 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
598 * => fast response on large errors; small oscillation near setpoint
599 */
d5c9fde3 600static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
601 unsigned long dirty,
602 unsigned long limit)
603{
604 long long pos_ratio;
605 long x;
606
d5c9fde3 607 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
608 limit - setpoint + 1);
609 pos_ratio = x;
610 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
611 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
612 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
613
614 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
615}
616
6c14ae1e
WF
617/*
618 * Dirty position control.
619 *
620 * (o) global/bdi setpoints
621 *
de1fff37 622 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
623 * When the number of dirty pages is higher/lower than the setpoint, the
624 * dirty position control ratio (and hence task dirty ratelimit) will be
625 * decreased/increased to bring the dirty pages back to the setpoint.
626 *
627 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
628 *
629 * if (dirty < setpoint) scale up pos_ratio
630 * if (dirty > setpoint) scale down pos_ratio
631 *
de1fff37
TH
632 * if (wb_dirty < wb_setpoint) scale up pos_ratio
633 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
634 *
635 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
636 *
637 * (o) global control line
638 *
639 * ^ pos_ratio
640 * |
641 * | |<===== global dirty control scope ======>|
642 * 2.0 .............*
643 * | .*
644 * | . *
645 * | . *
646 * | . *
647 * | . *
648 * | . *
649 * 1.0 ................................*
650 * | . . *
651 * | . . *
652 * | . . *
653 * | . . *
654 * | . . *
655 * 0 +------------.------------------.----------------------*------------->
656 * freerun^ setpoint^ limit^ dirty pages
657 *
de1fff37 658 * (o) wb control line
6c14ae1e
WF
659 *
660 * ^ pos_ratio
661 * |
662 * | *
663 * | *
664 * | *
665 * | *
666 * | * |<=========== span ============>|
667 * 1.0 .......................*
668 * | . *
669 * | . *
670 * | . *
671 * | . *
672 * | . *
673 * | . *
674 * | . *
675 * | . *
676 * | . *
677 * | . *
678 * | . *
679 * 1/4 ...............................................* * * * * * * * * * * *
680 * | . .
681 * | . .
682 * | . .
683 * 0 +----------------------.-------------------------------.------------->
de1fff37 684 * wb_setpoint^ x_intercept^
6c14ae1e 685 *
de1fff37 686 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
687 * be smoothly throttled down to normal if it starts high in situations like
688 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
689 * card's wb_dirty may rush to many times higher than wb_setpoint.
690 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 691 */
a88a341a
TH
692static unsigned long wb_position_ratio(struct bdi_writeback *wb,
693 unsigned long thresh,
694 unsigned long bg_thresh,
695 unsigned long dirty,
de1fff37
TH
696 unsigned long wb_thresh,
697 unsigned long wb_dirty)
6c14ae1e 698{
a88a341a 699 unsigned long write_bw = wb->avg_write_bandwidth;
6c14ae1e
WF
700 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
701 unsigned long limit = hard_dirty_limit(thresh);
702 unsigned long x_intercept;
703 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 704 unsigned long wb_setpoint;
6c14ae1e
WF
705 unsigned long span;
706 long long pos_ratio; /* for scaling up/down the rate limit */
707 long x;
708
709 if (unlikely(dirty >= limit))
710 return 0;
711
712 /*
713 * global setpoint
714 *
5a537485
MP
715 * See comment for pos_ratio_polynom().
716 */
717 setpoint = (freerun + limit) / 2;
718 pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
719
720 /*
721 * The strictlimit feature is a tool preventing mistrusted filesystems
722 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
723 * such filesystems balance_dirty_pages always checks wb counters
724 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
725 * This is especially important for fuse which sets bdi->max_ratio to
726 * 1% by default. Without strictlimit feature, fuse writeback may
727 * consume arbitrary amount of RAM because it is accounted in
728 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 729 *
a88a341a 730 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 731 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
732 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
733 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 734 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 735 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 736 * about ~6K pages (as the average of background and throttle wb
5a537485 737 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 738 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 739 *
5a537485 740 * Note, that we cannot use global counters in these calculations
de1fff37 741 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
742 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
743 * in the example above).
6c14ae1e 744 */
a88a341a 745 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37
TH
746 long long wb_pos_ratio;
747 unsigned long wb_bg_thresh;
5a537485 748
de1fff37 749 if (wb_dirty < 8)
5a537485
MP
750 return min_t(long long, pos_ratio * 2,
751 2 << RATELIMIT_CALC_SHIFT);
752
de1fff37 753 if (wb_dirty >= wb_thresh)
5a537485
MP
754 return 0;
755
de1fff37
TH
756 wb_bg_thresh = div_u64((u64)wb_thresh * bg_thresh, thresh);
757 wb_setpoint = dirty_freerun_ceiling(wb_thresh, wb_bg_thresh);
5a537485 758
de1fff37 759 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
5a537485
MP
760 return 0;
761
de1fff37
TH
762 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, wb_dirty,
763 wb_thresh);
5a537485
MP
764
765 /*
de1fff37
TH
766 * Typically, for strictlimit case, wb_setpoint << setpoint
767 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 768 * state ("dirty") is not limiting factor and we have to
de1fff37 769 * make decision based on wb counters. But there is an
5a537485
MP
770 * important case when global pos_ratio should get precedence:
771 * global limits are exceeded (e.g. due to activities on other
de1fff37 772 * wb's) while given strictlimit wb is below limit.
5a537485 773 *
de1fff37 774 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 775 * but it would look too non-natural for the case of all
de1fff37 776 * activity in the system coming from a single strictlimit wb
5a537485
MP
777 * with bdi->max_ratio == 100%.
778 *
779 * Note that min() below somewhat changes the dynamics of the
780 * control system. Normally, pos_ratio value can be well over 3
de1fff37 781 * (when globally we are at freerun and wb is well below wb
5a537485
MP
782 * setpoint). Now the maximum pos_ratio in the same situation
783 * is 2. We might want to tweak this if we observe the control
784 * system is too slow to adapt.
785 */
de1fff37 786 return min(pos_ratio, wb_pos_ratio);
5a537485 787 }
6c14ae1e
WF
788
789 /*
790 * We have computed basic pos_ratio above based on global situation. If
de1fff37 791 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
792 * pos_ratio further down/up. That is done by the following mechanism.
793 */
794
795 /*
de1fff37 796 * wb setpoint
6c14ae1e 797 *
de1fff37 798 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 799 *
de1fff37 800 * x_intercept - wb_dirty
6c14ae1e 801 * := --------------------------
de1fff37 802 * x_intercept - wb_setpoint
6c14ae1e 803 *
de1fff37 804 * The main wb control line is a linear function that subjects to
6c14ae1e 805 *
de1fff37
TH
806 * (1) f(wb_setpoint) = 1.0
807 * (2) k = - 1 / (8 * write_bw) (in single wb case)
808 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 809 *
de1fff37 810 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 811 * regularly within range
de1fff37 812 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
813 * for various filesystems, where (2) can yield in a reasonable 12.5%
814 * fluctuation range for pos_ratio.
815 *
de1fff37 816 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 817 * own size, so move the slope over accordingly and choose a slope that
de1fff37 818 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 819 */
de1fff37
TH
820 if (unlikely(wb_thresh > thresh))
821 wb_thresh = thresh;
aed21ad2 822 /*
de1fff37 823 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
824 * device is slow, but that it has remained inactive for long time.
825 * Honour such devices a reasonable good (hopefully IO efficient)
826 * threshold, so that the occasional writes won't be blocked and active
827 * writes can rampup the threshold quickly.
828 */
de1fff37 829 wb_thresh = max(wb_thresh, (limit - dirty) / 8);
6c14ae1e 830 /*
de1fff37
TH
831 * scale global setpoint to wb's:
832 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 833 */
de1fff37
TH
834 x = div_u64((u64)wb_thresh << 16, thresh + 1);
835 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 836 /*
de1fff37
TH
837 * Use span=(8*write_bw) in single wb case as indicated by
838 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 839 *
de1fff37
TH
840 * wb_thresh thresh - wb_thresh
841 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
842 * thresh thresh
6c14ae1e 843 */
de1fff37
TH
844 span = (thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
845 x_intercept = wb_setpoint + span;
6c14ae1e 846
de1fff37
TH
847 if (wb_dirty < x_intercept - span / 4) {
848 pos_ratio = div64_u64(pos_ratio * (x_intercept - wb_dirty),
849 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
850 } else
851 pos_ratio /= 4;
852
8927f66c 853 /*
de1fff37 854 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
855 * It may push the desired control point of global dirty pages higher
856 * than setpoint.
857 */
de1fff37
TH
858 x_intercept = wb_thresh / 2;
859 if (wb_dirty < x_intercept) {
860 if (wb_dirty > x_intercept / 8)
861 pos_ratio = div_u64(pos_ratio * x_intercept, wb_dirty);
50657fc4 862 else
8927f66c
WF
863 pos_ratio *= 8;
864 }
865
6c14ae1e
WF
866 return pos_ratio;
867}
868
a88a341a
TH
869static void wb_update_write_bandwidth(struct bdi_writeback *wb,
870 unsigned long elapsed,
871 unsigned long written)
e98be2d5
WF
872{
873 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
874 unsigned long avg = wb->avg_write_bandwidth;
875 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
876 u64 bw;
877
878 /*
879 * bw = written * HZ / elapsed
880 *
881 * bw * elapsed + write_bandwidth * (period - elapsed)
882 * write_bandwidth = ---------------------------------------------------
883 * period
c72efb65
TH
884 *
885 * @written may have decreased due to account_page_redirty().
886 * Avoid underflowing @bw calculation.
e98be2d5 887 */
a88a341a 888 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
889 bw *= HZ;
890 if (unlikely(elapsed > period)) {
891 do_div(bw, elapsed);
892 avg = bw;
893 goto out;
894 }
a88a341a 895 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
896 bw >>= ilog2(period);
897
898 /*
899 * one more level of smoothing, for filtering out sudden spikes
900 */
901 if (avg > old && old >= (unsigned long)bw)
902 avg -= (avg - old) >> 3;
903
904 if (avg < old && old <= (unsigned long)bw)
905 avg += (old - avg) >> 3;
906
907out:
95a46c65
TH
908 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
909 avg = max(avg, 1LU);
910 if (wb_has_dirty_io(wb)) {
911 long delta = avg - wb->avg_write_bandwidth;
912 WARN_ON_ONCE(atomic_long_add_return(delta,
913 &wb->bdi->tot_write_bandwidth) <= 0);
914 }
a88a341a
TH
915 wb->write_bandwidth = bw;
916 wb->avg_write_bandwidth = avg;
e98be2d5
WF
917}
918
c42843f2
WF
919/*
920 * The global dirtyable memory and dirty threshold could be suddenly knocked
921 * down by a large amount (eg. on the startup of KVM in a swapless system).
922 * This may throw the system into deep dirty exceeded state and throttle
923 * heavy/light dirtiers alike. To retain good responsiveness, maintain
924 * global_dirty_limit for tracking slowly down to the knocked down dirty
925 * threshold.
926 */
927static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
928{
929 unsigned long limit = global_dirty_limit;
930
931 /*
932 * Follow up in one step.
933 */
934 if (limit < thresh) {
935 limit = thresh;
936 goto update;
937 }
938
939 /*
940 * Follow down slowly. Use the higher one as the target, because thresh
941 * may drop below dirty. This is exactly the reason to introduce
942 * global_dirty_limit which is guaranteed to lie above the dirty pages.
943 */
944 thresh = max(thresh, dirty);
945 if (limit > thresh) {
946 limit -= (limit - thresh) >> 5;
947 goto update;
948 }
949 return;
950update:
951 global_dirty_limit = limit;
952}
953
954static void global_update_bandwidth(unsigned long thresh,
955 unsigned long dirty,
956 unsigned long now)
957{
958 static DEFINE_SPINLOCK(dirty_lock);
7d70e154 959 static unsigned long update_time = INITIAL_JIFFIES;
c42843f2
WF
960
961 /*
962 * check locklessly first to optimize away locking for the most time
963 */
964 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
965 return;
966
967 spin_lock(&dirty_lock);
968 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
969 update_dirty_limit(thresh, dirty);
970 update_time = now;
971 }
972 spin_unlock(&dirty_lock);
973}
974
be3ffa27 975/*
de1fff37 976 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 977 *
de1fff37 978 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
979 * Obviously it should be around (write_bw / N) when there are N dd tasks.
980 */
a88a341a
TH
981static void wb_update_dirty_ratelimit(struct bdi_writeback *wb,
982 unsigned long thresh,
983 unsigned long bg_thresh,
984 unsigned long dirty,
de1fff37
TH
985 unsigned long wb_thresh,
986 unsigned long wb_dirty,
a88a341a
TH
987 unsigned long dirtied,
988 unsigned long elapsed)
be3ffa27 989{
7381131c
WF
990 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
991 unsigned long limit = hard_dirty_limit(thresh);
992 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
993 unsigned long write_bw = wb->avg_write_bandwidth;
994 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
995 unsigned long dirty_rate;
996 unsigned long task_ratelimit;
997 unsigned long balanced_dirty_ratelimit;
998 unsigned long pos_ratio;
7381131c
WF
999 unsigned long step;
1000 unsigned long x;
be3ffa27
WF
1001
1002 /*
1003 * The dirty rate will match the writeout rate in long term, except
1004 * when dirty pages are truncated by userspace or re-dirtied by FS.
1005 */
a88a341a 1006 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1007
a88a341a 1008 pos_ratio = wb_position_ratio(wb, thresh, bg_thresh, dirty,
de1fff37 1009 wb_thresh, wb_dirty);
be3ffa27
WF
1010 /*
1011 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1012 */
1013 task_ratelimit = (u64)dirty_ratelimit *
1014 pos_ratio >> RATELIMIT_CALC_SHIFT;
1015 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1016
1017 /*
1018 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1019 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1020 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1021 * formula will yield the balanced rate limit (write_bw / N).
1022 *
1023 * Note that the expanded form is not a pure rate feedback:
1024 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1025 * but also takes pos_ratio into account:
1026 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1027 *
1028 * (1) is not realistic because pos_ratio also takes part in balancing
1029 * the dirty rate. Consider the state
1030 * pos_ratio = 0.5 (3)
1031 * rate = 2 * (write_bw / N) (4)
1032 * If (1) is used, it will stuck in that state! Because each dd will
1033 * be throttled at
1034 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1035 * yielding
1036 * dirty_rate = N * task_ratelimit = write_bw (6)
1037 * put (6) into (1) we get
1038 * rate_(i+1) = rate_(i) (7)
1039 *
1040 * So we end up using (2) to always keep
1041 * rate_(i+1) ~= (write_bw / N) (8)
1042 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1043 * pos_ratio is able to drive itself to 1.0, which is not only where
1044 * the dirty count meet the setpoint, but also where the slope of
1045 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1046 */
1047 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1048 dirty_rate | 1);
bdaac490
WF
1049 /*
1050 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1051 */
1052 if (unlikely(balanced_dirty_ratelimit > write_bw))
1053 balanced_dirty_ratelimit = write_bw;
be3ffa27 1054
7381131c
WF
1055 /*
1056 * We could safely do this and return immediately:
1057 *
de1fff37 1058 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1059 *
1060 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1061 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1062 * limit the step size.
1063 *
1064 * The below code essentially only uses the relative value of
1065 *
1066 * task_ratelimit - dirty_ratelimit
1067 * = (pos_ratio - 1) * dirty_ratelimit
1068 *
1069 * which reflects the direction and size of dirty position error.
1070 */
1071
1072 /*
1073 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1074 * task_ratelimit is on the same side of dirty_ratelimit, too.
1075 * For example, when
1076 * - dirty_ratelimit > balanced_dirty_ratelimit
1077 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1078 * lowering dirty_ratelimit will help meet both the position and rate
1079 * control targets. Otherwise, don't update dirty_ratelimit if it will
1080 * only help meet the rate target. After all, what the users ultimately
1081 * feel and care are stable dirty rate and small position error.
1082 *
1083 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1084 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1085 * keeps jumping around randomly and can even leap far away at times
1086 * due to the small 200ms estimation period of dirty_rate (we want to
1087 * keep that period small to reduce time lags).
1088 */
1089 step = 0;
5a537485
MP
1090
1091 /*
de1fff37 1092 * For strictlimit case, calculations above were based on wb counters
a88a341a 1093 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1094 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1095 * Hence, to calculate "step" properly, we have to use wb_dirty as
1096 * "dirty" and wb_setpoint as "setpoint".
5a537485 1097 *
de1fff37
TH
1098 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1099 * it's possible that wb_thresh is close to zero due to inactivity
0d960a38 1100 * of backing device (see the implementation of wb_calc_thresh()).
5a537485 1101 */
a88a341a 1102 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37
TH
1103 dirty = wb_dirty;
1104 if (wb_dirty < 8)
1105 setpoint = wb_dirty + 1;
5a537485 1106 else
de1fff37 1107 setpoint = (wb_thresh +
0d960a38 1108 wb_calc_thresh(wb, bg_thresh)) / 2;
5a537485
MP
1109 }
1110
7381131c 1111 if (dirty < setpoint) {
a88a341a 1112 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1113 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1114 if (dirty_ratelimit < x)
1115 step = x - dirty_ratelimit;
1116 } else {
a88a341a 1117 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1118 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1119 if (dirty_ratelimit > x)
1120 step = dirty_ratelimit - x;
1121 }
1122
1123 /*
1124 * Don't pursue 100% rate matching. It's impossible since the balanced
1125 * rate itself is constantly fluctuating. So decrease the track speed
1126 * when it gets close to the target. Helps eliminate pointless tremors.
1127 */
1128 step >>= dirty_ratelimit / (2 * step + 1);
1129 /*
1130 * Limit the tracking speed to avoid overshooting.
1131 */
1132 step = (step + 7) / 8;
1133
1134 if (dirty_ratelimit < balanced_dirty_ratelimit)
1135 dirty_ratelimit += step;
1136 else
1137 dirty_ratelimit -= step;
1138
a88a341a
TH
1139 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1140 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1141
a88a341a 1142 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1143}
1144
8a731799
TH
1145static void __wb_update_bandwidth(struct bdi_writeback *wb,
1146 unsigned long thresh,
1147 unsigned long bg_thresh,
1148 unsigned long dirty,
1149 unsigned long wb_thresh,
1150 unsigned long wb_dirty,
1151 unsigned long start_time,
1152 bool update_ratelimit)
e98be2d5
WF
1153{
1154 unsigned long now = jiffies;
a88a341a 1155 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1156 unsigned long dirtied;
e98be2d5
WF
1157 unsigned long written;
1158
8a731799
TH
1159 lockdep_assert_held(&wb->list_lock);
1160
e98be2d5
WF
1161 /*
1162 * rate-limit, only update once every 200ms.
1163 */
1164 if (elapsed < BANDWIDTH_INTERVAL)
1165 return;
1166
a88a341a
TH
1167 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1168 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1169
1170 /*
1171 * Skip quiet periods when disk bandwidth is under-utilized.
1172 * (at least 1s idle time between two flusher runs)
1173 */
a88a341a 1174 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1175 goto snapshot;
1176
8a731799 1177 if (update_ratelimit) {
c42843f2 1178 global_update_bandwidth(thresh, dirty, now);
a88a341a 1179 wb_update_dirty_ratelimit(wb, thresh, bg_thresh, dirty,
de1fff37 1180 wb_thresh, wb_dirty,
a88a341a 1181 dirtied, elapsed);
be3ffa27 1182 }
a88a341a 1183 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1184
1185snapshot:
a88a341a
TH
1186 wb->dirtied_stamp = dirtied;
1187 wb->written_stamp = written;
1188 wb->bw_time_stamp = now;
e98be2d5
WF
1189}
1190
8a731799 1191void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1192{
8a731799 1193 __wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time, false);
e98be2d5
WF
1194}
1195
9d823e8f 1196/*
d0e1d66b 1197 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1198 * will look to see if it needs to start dirty throttling.
1199 *
1200 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1201 * global_page_state() too often. So scale it near-sqrt to the safety margin
1202 * (the number of pages we may dirty without exceeding the dirty limits).
1203 */
1204static unsigned long dirty_poll_interval(unsigned long dirty,
1205 unsigned long thresh)
1206{
1207 if (thresh > dirty)
1208 return 1UL << (ilog2(thresh - dirty) >> 1);
1209
1210 return 1;
1211}
1212
a88a341a 1213static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1214 unsigned long wb_dirty)
c8462cc9 1215{
a88a341a 1216 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1217 unsigned long t;
c8462cc9 1218
7ccb9ad5
WF
1219 /*
1220 * Limit pause time for small memory systems. If sleeping for too long
1221 * time, a small pool of dirty/writeback pages may go empty and disk go
1222 * idle.
1223 *
1224 * 8 serves as the safety ratio.
1225 */
de1fff37 1226 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1227 t++;
1228
e3b6c655 1229 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1230}
1231
a88a341a
TH
1232static long wb_min_pause(struct bdi_writeback *wb,
1233 long max_pause,
1234 unsigned long task_ratelimit,
1235 unsigned long dirty_ratelimit,
1236 int *nr_dirtied_pause)
c8462cc9 1237{
a88a341a
TH
1238 long hi = ilog2(wb->avg_write_bandwidth);
1239 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1240 long t; /* target pause */
1241 long pause; /* estimated next pause */
1242 int pages; /* target nr_dirtied_pause */
c8462cc9 1243
7ccb9ad5
WF
1244 /* target for 10ms pause on 1-dd case */
1245 t = max(1, HZ / 100);
c8462cc9
WF
1246
1247 /*
1248 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1249 * overheads.
1250 *
7ccb9ad5 1251 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1252 */
1253 if (hi > lo)
7ccb9ad5 1254 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1255
1256 /*
7ccb9ad5
WF
1257 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1258 * on the much more stable dirty_ratelimit. However the next pause time
1259 * will be computed based on task_ratelimit and the two rate limits may
1260 * depart considerably at some time. Especially if task_ratelimit goes
1261 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1262 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1263 * result task_ratelimit won't be executed faithfully, which could
1264 * eventually bring down dirty_ratelimit.
c8462cc9 1265 *
7ccb9ad5
WF
1266 * We apply two rules to fix it up:
1267 * 1) try to estimate the next pause time and if necessary, use a lower
1268 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1269 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1270 * 2) limit the target pause time to max_pause/2, so that the normal
1271 * small fluctuations of task_ratelimit won't trigger rule (1) and
1272 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1273 */
7ccb9ad5
WF
1274 t = min(t, 1 + max_pause / 2);
1275 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1276
1277 /*
5b9b3574
WF
1278 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1279 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1280 * When the 16 consecutive reads are often interrupted by some dirty
1281 * throttling pause during the async writes, cfq will go into idles
1282 * (deadline is fine). So push nr_dirtied_pause as high as possible
1283 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1284 */
5b9b3574
WF
1285 if (pages < DIRTY_POLL_THRESH) {
1286 t = max_pause;
1287 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1288 if (pages > DIRTY_POLL_THRESH) {
1289 pages = DIRTY_POLL_THRESH;
1290 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1291 }
1292 }
1293
7ccb9ad5
WF
1294 pause = HZ * pages / (task_ratelimit + 1);
1295 if (pause > max_pause) {
1296 t = max_pause;
1297 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1298 }
c8462cc9 1299
7ccb9ad5 1300 *nr_dirtied_pause = pages;
c8462cc9 1301 /*
7ccb9ad5 1302 * The minimal pause time will normally be half the target pause time.
c8462cc9 1303 */
5b9b3574 1304 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1305}
1306
a88a341a
TH
1307static inline void wb_dirty_limits(struct bdi_writeback *wb,
1308 unsigned long dirty_thresh,
1309 unsigned long background_thresh,
de1fff37
TH
1310 unsigned long *wb_dirty,
1311 unsigned long *wb_thresh,
1312 unsigned long *wb_bg_thresh)
5a537485 1313{
93f78d88 1314 unsigned long wb_reclaimable;
5a537485
MP
1315
1316 /*
de1fff37 1317 * wb_thresh is not treated as some limiting factor as
5a537485 1318 * dirty_thresh, due to reasons
de1fff37 1319 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1320 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1321 * go into state (wb_dirty >> wb_thresh) either because
1322 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1323 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1324 * dirtiers for 100 seconds until wb_dirty drops under
1325 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1326 * wb_position_ratio() will let the dirtier task progress
de1fff37 1327 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1328 */
0d960a38 1329 *wb_thresh = wb_calc_thresh(wb, dirty_thresh);
5a537485 1330
de1fff37
TH
1331 if (wb_bg_thresh)
1332 *wb_bg_thresh = dirty_thresh ? div_u64((u64)*wb_thresh *
1333 background_thresh,
1334 dirty_thresh) : 0;
5a537485
MP
1335
1336 /*
1337 * In order to avoid the stacked BDI deadlock we need
1338 * to ensure we accurately count the 'dirty' pages when
1339 * the threshold is low.
1340 *
1341 * Otherwise it would be possible to get thresh+n pages
1342 * reported dirty, even though there are thresh-m pages
1343 * actually dirty; with m+n sitting in the percpu
1344 * deltas.
1345 */
de1fff37 1346 if (*wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1347 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
de1fff37 1348 *wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1349 } else {
93f78d88 1350 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
de1fff37 1351 *wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1352 }
1353}
1354
1da177e4
LT
1355/*
1356 * balance_dirty_pages() must be called by processes which are generating dirty
1357 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1358 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1359 * If we're over `background_thresh' then the writeback threads are woken to
1360 * perform some writeout.
1da177e4 1361 */
3a2e9a5a 1362static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1363 struct bdi_writeback *wb,
143dfe86 1364 unsigned long pages_dirtied)
1da177e4 1365{
143dfe86 1366 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
7762741e 1367 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
364aeb28
DR
1368 unsigned long background_thresh;
1369 unsigned long dirty_thresh;
83712358 1370 long period;
7ccb9ad5
WF
1371 long pause;
1372 long max_pause;
1373 long min_pause;
1374 int nr_dirtied_pause;
e50e3720 1375 bool dirty_exceeded = false;
143dfe86 1376 unsigned long task_ratelimit;
7ccb9ad5 1377 unsigned long dirty_ratelimit;
143dfe86 1378 unsigned long pos_ratio;
dfb8ae56 1379 struct backing_dev_info *bdi = wb->bdi;
5a537485 1380 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1381 unsigned long start_time = jiffies;
1da177e4
LT
1382
1383 for (;;) {
83712358 1384 unsigned long now = jiffies;
de1fff37 1385 unsigned long uninitialized_var(wb_thresh);
5a537485 1386 unsigned long thresh;
de1fff37 1387 unsigned long uninitialized_var(wb_dirty);
5a537485
MP
1388 unsigned long dirty;
1389 unsigned long bg_thresh;
83712358 1390
143dfe86
WF
1391 /*
1392 * Unstable writes are a feature of certain networked
1393 * filesystems (i.e. NFS) in which data may have been
1394 * written to the server's write cache, but has not yet
1395 * been flushed to permanent storage.
1396 */
5fce25a9
PZ
1397 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1398 global_page_state(NR_UNSTABLE_NFS);
7762741e 1399 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1400
16c4042f
WF
1401 global_dirty_limits(&background_thresh, &dirty_thresh);
1402
5a537485 1403 if (unlikely(strictlimit)) {
a88a341a 1404 wb_dirty_limits(wb, dirty_thresh, background_thresh,
de1fff37 1405 &wb_dirty, &wb_thresh, &bg_thresh);
5a537485 1406
de1fff37
TH
1407 dirty = wb_dirty;
1408 thresh = wb_thresh;
5a537485
MP
1409 } else {
1410 dirty = nr_dirty;
1411 thresh = dirty_thresh;
1412 bg_thresh = background_thresh;
1413 }
1414
16c4042f
WF
1415 /*
1416 * Throttle it only when the background writeback cannot
1417 * catch-up. This avoids (excessively) small writeouts
de1fff37 1418 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1419 *
de1fff37
TH
1420 * In strictlimit case make decision based on the wb counters
1421 * and limits. Small writeouts when the wb limits are ramping
5a537485 1422 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1423 */
5a537485 1424 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1425 current->dirty_paused_when = now;
1426 current->nr_dirtied = 0;
7ccb9ad5 1427 current->nr_dirtied_pause =
5a537485 1428 dirty_poll_interval(dirty, thresh);
16c4042f 1429 break;
83712358 1430 }
16c4042f 1431
bc05873d 1432 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1433 wb_start_background_writeback(wb);
143dfe86 1434
5a537485 1435 if (!strictlimit)
a88a341a 1436 wb_dirty_limits(wb, dirty_thresh, background_thresh,
de1fff37 1437 &wb_dirty, &wb_thresh, NULL);
5fce25a9 1438
de1fff37 1439 dirty_exceeded = (wb_dirty > wb_thresh) &&
5a537485 1440 ((nr_dirty > dirty_thresh) || strictlimit);
a88a341a
TH
1441 if (dirty_exceeded && !wb->dirty_exceeded)
1442 wb->dirty_exceeded = 1;
1da177e4 1443
8a731799
TH
1444 if (time_is_before_jiffies(wb->bw_time_stamp +
1445 BANDWIDTH_INTERVAL)) {
1446 spin_lock(&wb->list_lock);
1447 __wb_update_bandwidth(wb, dirty_thresh,
1448 background_thresh, nr_dirty,
1449 wb_thresh, wb_dirty, start_time,
1450 true);
1451 spin_unlock(&wb->list_lock);
1452 }
e98be2d5 1453
a88a341a
TH
1454 dirty_ratelimit = wb->dirty_ratelimit;
1455 pos_ratio = wb_position_ratio(wb, dirty_thresh,
1456 background_thresh, nr_dirty,
de1fff37 1457 wb_thresh, wb_dirty);
3a73dbbc
WF
1458 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1459 RATELIMIT_CALC_SHIFT;
de1fff37 1460 max_pause = wb_max_pause(wb, wb_dirty);
a88a341a
TH
1461 min_pause = wb_min_pause(wb, max_pause,
1462 task_ratelimit, dirty_ratelimit,
1463 &nr_dirtied_pause);
7ccb9ad5 1464
3a73dbbc 1465 if (unlikely(task_ratelimit == 0)) {
83712358 1466 period = max_pause;
c8462cc9 1467 pause = max_pause;
143dfe86 1468 goto pause;
04fbfdc1 1469 }
83712358
WF
1470 period = HZ * pages_dirtied / task_ratelimit;
1471 pause = period;
1472 if (current->dirty_paused_when)
1473 pause -= now - current->dirty_paused_when;
1474 /*
1475 * For less than 1s think time (ext3/4 may block the dirtier
1476 * for up to 800ms from time to time on 1-HDD; so does xfs,
1477 * however at much less frequency), try to compensate it in
1478 * future periods by updating the virtual time; otherwise just
1479 * do a reset, as it may be a light dirtier.
1480 */
7ccb9ad5 1481 if (pause < min_pause) {
ece13ac3
WF
1482 trace_balance_dirty_pages(bdi,
1483 dirty_thresh,
1484 background_thresh,
1485 nr_dirty,
de1fff37
TH
1486 wb_thresh,
1487 wb_dirty,
ece13ac3
WF
1488 dirty_ratelimit,
1489 task_ratelimit,
1490 pages_dirtied,
83712358 1491 period,
7ccb9ad5 1492 min(pause, 0L),
ece13ac3 1493 start_time);
83712358
WF
1494 if (pause < -HZ) {
1495 current->dirty_paused_when = now;
1496 current->nr_dirtied = 0;
1497 } else if (period) {
1498 current->dirty_paused_when += period;
1499 current->nr_dirtied = 0;
7ccb9ad5
WF
1500 } else if (current->nr_dirtied_pause <= pages_dirtied)
1501 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1502 break;
04fbfdc1 1503 }
7ccb9ad5
WF
1504 if (unlikely(pause > max_pause)) {
1505 /* for occasional dropped task_ratelimit */
1506 now += min(pause - max_pause, max_pause);
1507 pause = max_pause;
1508 }
143dfe86
WF
1509
1510pause:
ece13ac3
WF
1511 trace_balance_dirty_pages(bdi,
1512 dirty_thresh,
1513 background_thresh,
1514 nr_dirty,
de1fff37
TH
1515 wb_thresh,
1516 wb_dirty,
ece13ac3
WF
1517 dirty_ratelimit,
1518 task_ratelimit,
1519 pages_dirtied,
83712358 1520 period,
ece13ac3
WF
1521 pause,
1522 start_time);
499d05ec 1523 __set_current_state(TASK_KILLABLE);
d25105e8 1524 io_schedule_timeout(pause);
87c6a9b2 1525
83712358
WF
1526 current->dirty_paused_when = now + pause;
1527 current->nr_dirtied = 0;
7ccb9ad5 1528 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1529
ffd1f609 1530 /*
1df64719
WF
1531 * This is typically equal to (nr_dirty < dirty_thresh) and can
1532 * also keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1533 */
1df64719 1534 if (task_ratelimit)
ffd1f609 1535 break;
499d05ec 1536
c5c6343c
WF
1537 /*
1538 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1539 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1540 * to go through, so that tasks on them still remain responsive.
1541 *
1542 * In theory 1 page is enough to keep the comsumer-producer
1543 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1544 * more page. However wb_dirty has accounting errors. So use
93f78d88 1545 * the larger and more IO friendly wb_stat_error.
c5c6343c 1546 */
de1fff37 1547 if (wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1548 break;
1549
499d05ec
JK
1550 if (fatal_signal_pending(current))
1551 break;
1da177e4
LT
1552 }
1553
a88a341a
TH
1554 if (!dirty_exceeded && wb->dirty_exceeded)
1555 wb->dirty_exceeded = 0;
1da177e4 1556
bc05873d 1557 if (writeback_in_progress(wb))
5b0830cb 1558 return;
1da177e4
LT
1559
1560 /*
1561 * In laptop mode, we wait until hitting the higher threshold before
1562 * starting background writeout, and then write out all the way down
1563 * to the lower threshold. So slow writers cause minimal disk activity.
1564 *
1565 * In normal mode, we start background writeout at the lower
1566 * background_thresh, to keep the amount of dirty memory low.
1567 */
143dfe86
WF
1568 if (laptop_mode)
1569 return;
1570
1571 if (nr_reclaimable > background_thresh)
9ecf4866 1572 wb_start_background_writeback(wb);
1da177e4
LT
1573}
1574
9d823e8f 1575static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1576
54848d73
WF
1577/*
1578 * Normal tasks are throttled by
1579 * loop {
1580 * dirty tsk->nr_dirtied_pause pages;
1581 * take a snap in balance_dirty_pages();
1582 * }
1583 * However there is a worst case. If every task exit immediately when dirtied
1584 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1585 * called to throttle the page dirties. The solution is to save the not yet
1586 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1587 * randomly into the running tasks. This works well for the above worst case,
1588 * as the new task will pick up and accumulate the old task's leaked dirty
1589 * count and eventually get throttled.
1590 */
1591DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1592
1da177e4 1593/**
d0e1d66b 1594 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1595 * @mapping: address_space which was dirtied
1da177e4
LT
1596 *
1597 * Processes which are dirtying memory should call in here once for each page
1598 * which was newly dirtied. The function will periodically check the system's
1599 * dirty state and will initiate writeback if needed.
1600 *
1601 * On really big machines, get_writeback_state is expensive, so try to avoid
1602 * calling it too often (ratelimiting). But once we're over the dirty memory
1603 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1604 * from overshooting the limit by (ratelimit_pages) each.
1605 */
d0e1d66b 1606void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1607{
dfb8ae56
TH
1608 struct inode *inode = mapping->host;
1609 struct backing_dev_info *bdi = inode_to_bdi(inode);
1610 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1611 int ratelimit;
1612 int *p;
1da177e4 1613
36715cef
WF
1614 if (!bdi_cap_account_dirty(bdi))
1615 return;
1616
dfb8ae56
TH
1617 if (inode_cgwb_enabled(inode))
1618 wb = wb_get_create_current(bdi, GFP_KERNEL);
1619 if (!wb)
1620 wb = &bdi->wb;
1621
9d823e8f 1622 ratelimit = current->nr_dirtied_pause;
a88a341a 1623 if (wb->dirty_exceeded)
9d823e8f
WF
1624 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1625
9d823e8f 1626 preempt_disable();
1da177e4 1627 /*
9d823e8f
WF
1628 * This prevents one CPU to accumulate too many dirtied pages without
1629 * calling into balance_dirty_pages(), which can happen when there are
1630 * 1000+ tasks, all of them start dirtying pages at exactly the same
1631 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1632 */
7c8e0181 1633 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1634 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1635 *p = 0;
d3bc1fef
WF
1636 else if (unlikely(*p >= ratelimit_pages)) {
1637 *p = 0;
1638 ratelimit = 0;
1da177e4 1639 }
54848d73
WF
1640 /*
1641 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1642 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1643 * the dirty throttling and livelock other long-run dirtiers.
1644 */
7c8e0181 1645 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1646 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1647 unsigned long nr_pages_dirtied;
54848d73
WF
1648 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1649 *p -= nr_pages_dirtied;
1650 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1651 }
fa5a734e 1652 preempt_enable();
9d823e8f
WF
1653
1654 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1655 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1656
1657 wb_put(wb);
1da177e4 1658}
d0e1d66b 1659EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1660
232ea4d6 1661void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1662{
364aeb28
DR
1663 unsigned long background_thresh;
1664 unsigned long dirty_thresh;
1da177e4
LT
1665
1666 for ( ; ; ) {
16c4042f 1667 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1668 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1669
1670 /*
1671 * Boost the allowable dirty threshold a bit for page
1672 * allocators so they don't get DoS'ed by heavy writers
1673 */
1674 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1675
c24f21bd
CL
1676 if (global_page_state(NR_UNSTABLE_NFS) +
1677 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1678 break;
8aa7e847 1679 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1680
1681 /*
1682 * The caller might hold locks which can prevent IO completion
1683 * or progress in the filesystem. So we cannot just sit here
1684 * waiting for IO to complete.
1685 */
1686 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1687 break;
1da177e4
LT
1688 }
1689}
1690
1da177e4
LT
1691/*
1692 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1693 */
cccad5b9 1694int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1695 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1696{
8d65af78 1697 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1698 return 0;
1699}
1700
c2c4986e 1701#ifdef CONFIG_BLOCK
31373d09 1702void laptop_mode_timer_fn(unsigned long data)
1da177e4 1703{
31373d09
MG
1704 struct request_queue *q = (struct request_queue *)data;
1705 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1706 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1
TH
1707 struct bdi_writeback *wb;
1708 struct wb_iter iter;
1da177e4 1709
31373d09
MG
1710 /*
1711 * We want to write everything out, not just down to the dirty
1712 * threshold
1713 */
a06fd6b1
TH
1714 if (!bdi_has_dirty_io(&q->backing_dev_info))
1715 return;
1716
1717 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1718 if (wb_has_dirty_io(wb))
1719 wb_start_writeback(wb, nr_pages, true,
1720 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1721}
1722
1723/*
1724 * We've spun up the disk and we're in laptop mode: schedule writeback
1725 * of all dirty data a few seconds from now. If the flush is already scheduled
1726 * then push it back - the user is still using the disk.
1727 */
31373d09 1728void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1729{
31373d09 1730 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1731}
1732
1733/*
1734 * We're in laptop mode and we've just synced. The sync's writes will have
1735 * caused another writeback to be scheduled by laptop_io_completion.
1736 * Nothing needs to be written back anymore, so we unschedule the writeback.
1737 */
1738void laptop_sync_completion(void)
1739{
31373d09
MG
1740 struct backing_dev_info *bdi;
1741
1742 rcu_read_lock();
1743
1744 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1745 del_timer(&bdi->laptop_mode_wb_timer);
1746
1747 rcu_read_unlock();
1da177e4 1748}
c2c4986e 1749#endif
1da177e4
LT
1750
1751/*
1752 * If ratelimit_pages is too high then we can get into dirty-data overload
1753 * if a large number of processes all perform writes at the same time.
1754 * If it is too low then SMP machines will call the (expensive)
1755 * get_writeback_state too often.
1756 *
1757 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1758 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1759 * thresholds.
1da177e4
LT
1760 */
1761
2d1d43f6 1762void writeback_set_ratelimit(void)
1da177e4 1763{
9d823e8f
WF
1764 unsigned long background_thresh;
1765 unsigned long dirty_thresh;
1766 global_dirty_limits(&background_thresh, &dirty_thresh);
68809c71 1767 global_dirty_limit = dirty_thresh;
9d823e8f 1768 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1769 if (ratelimit_pages < 16)
1770 ratelimit_pages = 16;
1da177e4
LT
1771}
1772
0db0628d 1773static int
2f60d628
SB
1774ratelimit_handler(struct notifier_block *self, unsigned long action,
1775 void *hcpu)
1da177e4 1776{
2f60d628
SB
1777
1778 switch (action & ~CPU_TASKS_FROZEN) {
1779 case CPU_ONLINE:
1780 case CPU_DEAD:
1781 writeback_set_ratelimit();
1782 return NOTIFY_OK;
1783 default:
1784 return NOTIFY_DONE;
1785 }
1da177e4
LT
1786}
1787
0db0628d 1788static struct notifier_block ratelimit_nb = {
1da177e4
LT
1789 .notifier_call = ratelimit_handler,
1790 .next = NULL,
1791};
1792
1793/*
dc6e29da
LT
1794 * Called early on to tune the page writeback dirty limits.
1795 *
1796 * We used to scale dirty pages according to how total memory
1797 * related to pages that could be allocated for buffers (by
1798 * comparing nr_free_buffer_pages() to vm_total_pages.
1799 *
1800 * However, that was when we used "dirty_ratio" to scale with
1801 * all memory, and we don't do that any more. "dirty_ratio"
1802 * is now applied to total non-HIGHPAGE memory (by subtracting
1803 * totalhigh_pages from vm_total_pages), and as such we can't
1804 * get into the old insane situation any more where we had
1805 * large amounts of dirty pages compared to a small amount of
1806 * non-HIGHMEM memory.
1807 *
1808 * But we might still want to scale the dirty_ratio by how
1809 * much memory the box has..
1da177e4
LT
1810 */
1811void __init page_writeback_init(void)
1812{
2d1d43f6 1813 writeback_set_ratelimit();
1da177e4 1814 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1815
380c27ca 1816 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1da177e4
LT
1817}
1818
f446daae
JK
1819/**
1820 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1821 * @mapping: address space structure to write
1822 * @start: starting page index
1823 * @end: ending page index (inclusive)
1824 *
1825 * This function scans the page range from @start to @end (inclusive) and tags
1826 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1827 * that write_cache_pages (or whoever calls this function) will then use
1828 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1829 * used to avoid livelocking of writeback by a process steadily creating new
1830 * dirty pages in the file (thus it is important for this function to be quick
1831 * so that it can tag pages faster than a dirtying process can create them).
1832 */
1833/*
1834 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1835 */
f446daae
JK
1836void tag_pages_for_writeback(struct address_space *mapping,
1837 pgoff_t start, pgoff_t end)
1838{
3c111a07 1839#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1840 unsigned long tagged;
1841
1842 do {
1843 spin_lock_irq(&mapping->tree_lock);
1844 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1845 &start, end, WRITEBACK_TAG_BATCH,
1846 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1847 spin_unlock_irq(&mapping->tree_lock);
1848 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1849 cond_resched();
d5ed3a4a
JK
1850 /* We check 'start' to handle wrapping when end == ~0UL */
1851 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1852}
1853EXPORT_SYMBOL(tag_pages_for_writeback);
1854
811d736f 1855/**
0ea97180 1856 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1857 * @mapping: address space structure to write
1858 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1859 * @writepage: function called for each page
1860 * @data: data passed to writepage function
811d736f 1861 *
0ea97180 1862 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1863 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1864 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1865 * and msync() need to guarantee that all the data which was dirty at the time
1866 * the call was made get new I/O started against them. If wbc->sync_mode is
1867 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1868 * existing IO to complete.
f446daae
JK
1869 *
1870 * To avoid livelocks (when other process dirties new pages), we first tag
1871 * pages which should be written back with TOWRITE tag and only then start
1872 * writing them. For data-integrity sync we have to be careful so that we do
1873 * not miss some pages (e.g., because some other process has cleared TOWRITE
1874 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1875 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1876 */
0ea97180
MS
1877int write_cache_pages(struct address_space *mapping,
1878 struct writeback_control *wbc, writepage_t writepage,
1879 void *data)
811d736f 1880{
811d736f
DH
1881 int ret = 0;
1882 int done = 0;
811d736f
DH
1883 struct pagevec pvec;
1884 int nr_pages;
31a12666 1885 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1886 pgoff_t index;
1887 pgoff_t end; /* Inclusive */
bd19e012 1888 pgoff_t done_index;
31a12666 1889 int cycled;
811d736f 1890 int range_whole = 0;
f446daae 1891 int tag;
811d736f 1892
811d736f
DH
1893 pagevec_init(&pvec, 0);
1894 if (wbc->range_cyclic) {
31a12666
NP
1895 writeback_index = mapping->writeback_index; /* prev offset */
1896 index = writeback_index;
1897 if (index == 0)
1898 cycled = 1;
1899 else
1900 cycled = 0;
811d736f
DH
1901 end = -1;
1902 } else {
1903 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1904 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1905 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1906 range_whole = 1;
31a12666 1907 cycled = 1; /* ignore range_cyclic tests */
811d736f 1908 }
6e6938b6 1909 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1910 tag = PAGECACHE_TAG_TOWRITE;
1911 else
1912 tag = PAGECACHE_TAG_DIRTY;
811d736f 1913retry:
6e6938b6 1914 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1915 tag_pages_for_writeback(mapping, index, end);
bd19e012 1916 done_index = index;
5a3d5c98
NP
1917 while (!done && (index <= end)) {
1918 int i;
1919
f446daae 1920 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1921 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1922 if (nr_pages == 0)
1923 break;
811d736f 1924
811d736f
DH
1925 for (i = 0; i < nr_pages; i++) {
1926 struct page *page = pvec.pages[i];
1927
1928 /*
d5482cdf
NP
1929 * At this point, the page may be truncated or
1930 * invalidated (changing page->mapping to NULL), or
1931 * even swizzled back from swapper_space to tmpfs file
1932 * mapping. However, page->index will not change
1933 * because we have a reference on the page.
811d736f 1934 */
d5482cdf
NP
1935 if (page->index > end) {
1936 /*
1937 * can't be range_cyclic (1st pass) because
1938 * end == -1 in that case.
1939 */
1940 done = 1;
1941 break;
1942 }
1943
cf15b07c 1944 done_index = page->index;
d5482cdf 1945
811d736f
DH
1946 lock_page(page);
1947
5a3d5c98
NP
1948 /*
1949 * Page truncated or invalidated. We can freely skip it
1950 * then, even for data integrity operations: the page
1951 * has disappeared concurrently, so there could be no
1952 * real expectation of this data interity operation
1953 * even if there is now a new, dirty page at the same
1954 * pagecache address.
1955 */
811d736f 1956 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1957continue_unlock:
811d736f
DH
1958 unlock_page(page);
1959 continue;
1960 }
1961
515f4a03
NP
1962 if (!PageDirty(page)) {
1963 /* someone wrote it for us */
1964 goto continue_unlock;
1965 }
1966
1967 if (PageWriteback(page)) {
1968 if (wbc->sync_mode != WB_SYNC_NONE)
1969 wait_on_page_writeback(page);
1970 else
1971 goto continue_unlock;
1972 }
811d736f 1973
515f4a03
NP
1974 BUG_ON(PageWriteback(page));
1975 if (!clear_page_dirty_for_io(page))
5a3d5c98 1976 goto continue_unlock;
811d736f 1977
de1414a6 1978 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1979 ret = (*writepage)(page, wbc, data);
00266770
NP
1980 if (unlikely(ret)) {
1981 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1982 unlock_page(page);
1983 ret = 0;
1984 } else {
1985 /*
1986 * done_index is set past this page,
1987 * so media errors will not choke
1988 * background writeout for the entire
1989 * file. This has consequences for
1990 * range_cyclic semantics (ie. it may
1991 * not be suitable for data integrity
1992 * writeout).
1993 */
cf15b07c 1994 done_index = page->index + 1;
00266770
NP
1995 done = 1;
1996 break;
1997 }
0b564927 1998 }
00266770 1999
546a1924
DC
2000 /*
2001 * We stop writing back only if we are not doing
2002 * integrity sync. In case of integrity sync we have to
2003 * keep going until we have written all the pages
2004 * we tagged for writeback prior to entering this loop.
2005 */
2006 if (--wbc->nr_to_write <= 0 &&
2007 wbc->sync_mode == WB_SYNC_NONE) {
2008 done = 1;
2009 break;
05fe478d 2010 }
811d736f
DH
2011 }
2012 pagevec_release(&pvec);
2013 cond_resched();
2014 }
3a4c6800 2015 if (!cycled && !done) {
811d736f 2016 /*
31a12666 2017 * range_cyclic:
811d736f
DH
2018 * We hit the last page and there is more work to be done: wrap
2019 * back to the start of the file
2020 */
31a12666 2021 cycled = 1;
811d736f 2022 index = 0;
31a12666 2023 end = writeback_index - 1;
811d736f
DH
2024 goto retry;
2025 }
0b564927
DC
2026 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2027 mapping->writeback_index = done_index;
06d6cf69 2028
811d736f
DH
2029 return ret;
2030}
0ea97180
MS
2031EXPORT_SYMBOL(write_cache_pages);
2032
2033/*
2034 * Function used by generic_writepages to call the real writepage
2035 * function and set the mapping flags on error
2036 */
2037static int __writepage(struct page *page, struct writeback_control *wbc,
2038 void *data)
2039{
2040 struct address_space *mapping = data;
2041 int ret = mapping->a_ops->writepage(page, wbc);
2042 mapping_set_error(mapping, ret);
2043 return ret;
2044}
2045
2046/**
2047 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2048 * @mapping: address space structure to write
2049 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2050 *
2051 * This is a library function, which implements the writepages()
2052 * address_space_operation.
2053 */
2054int generic_writepages(struct address_space *mapping,
2055 struct writeback_control *wbc)
2056{
9b6096a6
SL
2057 struct blk_plug plug;
2058 int ret;
2059
0ea97180
MS
2060 /* deal with chardevs and other special file */
2061 if (!mapping->a_ops->writepage)
2062 return 0;
2063
9b6096a6
SL
2064 blk_start_plug(&plug);
2065 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2066 blk_finish_plug(&plug);
2067 return ret;
0ea97180 2068}
811d736f
DH
2069
2070EXPORT_SYMBOL(generic_writepages);
2071
1da177e4
LT
2072int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2073{
22905f77
AM
2074 int ret;
2075
1da177e4
LT
2076 if (wbc->nr_to_write <= 0)
2077 return 0;
2078 if (mapping->a_ops->writepages)
d08b3851 2079 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2080 else
2081 ret = generic_writepages(mapping, wbc);
22905f77 2082 return ret;
1da177e4
LT
2083}
2084
2085/**
2086 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2087 * @page: the page to write
2088 * @wait: if true, wait on writeout
1da177e4
LT
2089 *
2090 * The page must be locked by the caller and will be unlocked upon return.
2091 *
2092 * write_one_page() returns a negative error code if I/O failed.
2093 */
2094int write_one_page(struct page *page, int wait)
2095{
2096 struct address_space *mapping = page->mapping;
2097 int ret = 0;
2098 struct writeback_control wbc = {
2099 .sync_mode = WB_SYNC_ALL,
2100 .nr_to_write = 1,
2101 };
2102
2103 BUG_ON(!PageLocked(page));
2104
2105 if (wait)
2106 wait_on_page_writeback(page);
2107
2108 if (clear_page_dirty_for_io(page)) {
2109 page_cache_get(page);
2110 ret = mapping->a_ops->writepage(page, &wbc);
2111 if (ret == 0 && wait) {
2112 wait_on_page_writeback(page);
2113 if (PageError(page))
2114 ret = -EIO;
2115 }
2116 page_cache_release(page);
2117 } else {
2118 unlock_page(page);
2119 }
2120 return ret;
2121}
2122EXPORT_SYMBOL(write_one_page);
2123
76719325
KC
2124/*
2125 * For address_spaces which do not use buffers nor write back.
2126 */
2127int __set_page_dirty_no_writeback(struct page *page)
2128{
2129 if (!PageDirty(page))
c3f0da63 2130 return !TestSetPageDirty(page);
76719325
KC
2131 return 0;
2132}
2133
e3a7cca1
ES
2134/*
2135 * Helper function for set_page_dirty family.
c4843a75
GT
2136 *
2137 * Caller must hold mem_cgroup_begin_page_stat().
2138 *
e3a7cca1
ES
2139 * NOTE: This relies on being atomic wrt interrupts.
2140 */
c4843a75
GT
2141void account_page_dirtied(struct page *page, struct address_space *mapping,
2142 struct mem_cgroup *memcg)
e3a7cca1 2143{
52ebea74
TH
2144 struct inode *inode = mapping->host;
2145
9fb0a7da
TH
2146 trace_writeback_dirty_page(page, mapping);
2147
e3a7cca1 2148 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2149 struct bdi_writeback *wb;
2150
2151 inode_attach_wb(inode, page);
2152 wb = inode_to_wb(inode);
de1414a6 2153
c4843a75 2154 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2155 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2156 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2157 __inc_wb_stat(wb, WB_RECLAIMABLE);
2158 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2159 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2160 current->nr_dirtied++;
2161 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2162 }
2163}
679ceace 2164EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2165
b9ea2515
KK
2166/*
2167 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2168 *
2169 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2170 */
c4843a75
GT
2171void account_page_cleaned(struct page *page, struct address_space *mapping,
2172 struct mem_cgroup *memcg)
b9ea2515
KK
2173{
2174 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2175 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2176 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2177 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2178 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2179 }
2180}
b9ea2515 2181
1da177e4
LT
2182/*
2183 * For address_spaces which do not use buffers. Just tag the page as dirty in
2184 * its radix tree.
2185 *
2186 * This is also used when a single buffer is being dirtied: we want to set the
2187 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2188 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2189 *
2d6d7f98
JW
2190 * The caller must ensure this doesn't race with truncation. Most will simply
2191 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2192 * the pte lock held, which also locks out truncation.
1da177e4
LT
2193 */
2194int __set_page_dirty_nobuffers(struct page *page)
2195{
c4843a75
GT
2196 struct mem_cgroup *memcg;
2197
2198 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2199 if (!TestSetPageDirty(page)) {
2200 struct address_space *mapping = page_mapping(page);
a85d9df1 2201 unsigned long flags;
1da177e4 2202
c4843a75
GT
2203 if (!mapping) {
2204 mem_cgroup_end_page_stat(memcg);
8c08540f 2205 return 1;
c4843a75 2206 }
8c08540f 2207
a85d9df1 2208 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2209 BUG_ON(page_mapping(page) != mapping);
2210 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2211 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2212 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2213 PAGECACHE_TAG_DIRTY);
a85d9df1 2214 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2215 mem_cgroup_end_page_stat(memcg);
2216
8c08540f
AM
2217 if (mapping->host) {
2218 /* !PageAnon && !swapper_space */
2219 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2220 }
4741c9fd 2221 return 1;
1da177e4 2222 }
c4843a75 2223 mem_cgroup_end_page_stat(memcg);
4741c9fd 2224 return 0;
1da177e4
LT
2225}
2226EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2227
2f800fbd
WF
2228/*
2229 * Call this whenever redirtying a page, to de-account the dirty counters
2230 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2231 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2232 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2233 * control.
2234 */
2235void account_page_redirty(struct page *page)
2236{
2237 struct address_space *mapping = page->mapping;
91018134 2238
2f800fbd 2239 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2240 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2241
2f800fbd
WF
2242 current->nr_dirtied--;
2243 dec_zone_page_state(page, NR_DIRTIED);
91018134 2244 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2245 }
2246}
2247EXPORT_SYMBOL(account_page_redirty);
2248
1da177e4
LT
2249/*
2250 * When a writepage implementation decides that it doesn't want to write this
2251 * page for some reason, it should redirty the locked page via
2252 * redirty_page_for_writepage() and it should then unlock the page and return 0
2253 */
2254int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2255{
8d38633c
KK
2256 int ret;
2257
1da177e4 2258 wbc->pages_skipped++;
8d38633c 2259 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2260 account_page_redirty(page);
8d38633c 2261 return ret;
1da177e4
LT
2262}
2263EXPORT_SYMBOL(redirty_page_for_writepage);
2264
2265/*
6746aff7
WF
2266 * Dirty a page.
2267 *
2268 * For pages with a mapping this should be done under the page lock
2269 * for the benefit of asynchronous memory errors who prefer a consistent
2270 * dirty state. This rule can be broken in some special cases,
2271 * but should be better not to.
2272 *
1da177e4
LT
2273 * If the mapping doesn't provide a set_page_dirty a_op, then
2274 * just fall through and assume that it wants buffer_heads.
2275 */
1cf6e7d8 2276int set_page_dirty(struct page *page)
1da177e4
LT
2277{
2278 struct address_space *mapping = page_mapping(page);
2279
2280 if (likely(mapping)) {
2281 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2282 /*
2283 * readahead/lru_deactivate_page could remain
2284 * PG_readahead/PG_reclaim due to race with end_page_writeback
2285 * About readahead, if the page is written, the flags would be
2286 * reset. So no problem.
2287 * About lru_deactivate_page, if the page is redirty, the flag
2288 * will be reset. So no problem. but if the page is used by readahead
2289 * it will confuse readahead and make it restart the size rampup
2290 * process. But it's a trivial problem.
2291 */
a4bb3ecd
NH
2292 if (PageReclaim(page))
2293 ClearPageReclaim(page);
9361401e
DH
2294#ifdef CONFIG_BLOCK
2295 if (!spd)
2296 spd = __set_page_dirty_buffers;
2297#endif
2298 return (*spd)(page);
1da177e4 2299 }
4741c9fd
AM
2300 if (!PageDirty(page)) {
2301 if (!TestSetPageDirty(page))
2302 return 1;
2303 }
1da177e4
LT
2304 return 0;
2305}
2306EXPORT_SYMBOL(set_page_dirty);
2307
2308/*
2309 * set_page_dirty() is racy if the caller has no reference against
2310 * page->mapping->host, and if the page is unlocked. This is because another
2311 * CPU could truncate the page off the mapping and then free the mapping.
2312 *
2313 * Usually, the page _is_ locked, or the caller is a user-space process which
2314 * holds a reference on the inode by having an open file.
2315 *
2316 * In other cases, the page should be locked before running set_page_dirty().
2317 */
2318int set_page_dirty_lock(struct page *page)
2319{
2320 int ret;
2321
7eaceacc 2322 lock_page(page);
1da177e4
LT
2323 ret = set_page_dirty(page);
2324 unlock_page(page);
2325 return ret;
2326}
2327EXPORT_SYMBOL(set_page_dirty_lock);
2328
11f81bec
TH
2329/*
2330 * This cancels just the dirty bit on the kernel page itself, it does NOT
2331 * actually remove dirty bits on any mmap's that may be around. It also
2332 * leaves the page tagged dirty, so any sync activity will still find it on
2333 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2334 * look at the dirty bits in the VM.
2335 *
2336 * Doing this should *normally* only ever be done when a page is truncated,
2337 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2338 * this when it notices that somebody has cleaned out all the buffers on a
2339 * page without actually doing it through the VM. Can you say "ext3 is
2340 * horribly ugly"? Thought you could.
2341 */
2342void cancel_dirty_page(struct page *page)
2343{
c4843a75
GT
2344 struct address_space *mapping = page_mapping(page);
2345
2346 if (mapping_cap_account_dirty(mapping)) {
2347 struct mem_cgroup *memcg;
2348
2349 memcg = mem_cgroup_begin_page_stat(page);
2350
2351 if (TestClearPageDirty(page))
2352 account_page_cleaned(page, mapping, memcg);
2353
2354 mem_cgroup_end_page_stat(memcg);
2355 } else {
2356 ClearPageDirty(page);
2357 }
11f81bec
TH
2358}
2359EXPORT_SYMBOL(cancel_dirty_page);
2360
1da177e4
LT
2361/*
2362 * Clear a page's dirty flag, while caring for dirty memory accounting.
2363 * Returns true if the page was previously dirty.
2364 *
2365 * This is for preparing to put the page under writeout. We leave the page
2366 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2367 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2368 * implementation will run either set_page_writeback() or set_page_dirty(),
2369 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2370 * back into sync.
2371 *
2372 * This incoherency between the page's dirty flag and radix-tree tag is
2373 * unfortunate, but it only exists while the page is locked.
2374 */
2375int clear_page_dirty_for_io(struct page *page)
2376{
2377 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2378 struct mem_cgroup *memcg;
2379 int ret = 0;
1da177e4 2380
79352894
NP
2381 BUG_ON(!PageLocked(page));
2382
7658cc28
LT
2383 if (mapping && mapping_cap_account_dirty(mapping)) {
2384 /*
2385 * Yes, Virginia, this is indeed insane.
2386 *
2387 * We use this sequence to make sure that
2388 * (a) we account for dirty stats properly
2389 * (b) we tell the low-level filesystem to
2390 * mark the whole page dirty if it was
2391 * dirty in a pagetable. Only to then
2392 * (c) clean the page again and return 1 to
2393 * cause the writeback.
2394 *
2395 * This way we avoid all nasty races with the
2396 * dirty bit in multiple places and clearing
2397 * them concurrently from different threads.
2398 *
2399 * Note! Normally the "set_page_dirty(page)"
2400 * has no effect on the actual dirty bit - since
2401 * that will already usually be set. But we
2402 * need the side effects, and it can help us
2403 * avoid races.
2404 *
2405 * We basically use the page "master dirty bit"
2406 * as a serialization point for all the different
2407 * threads doing their things.
7658cc28
LT
2408 */
2409 if (page_mkclean(page))
2410 set_page_dirty(page);
79352894
NP
2411 /*
2412 * We carefully synchronise fault handlers against
2413 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2414 * at this point. We do this by having them hold the
2415 * page lock while dirtying the page, and pages are
2416 * always locked coming in here, so we get the desired
2417 * exclusion.
79352894 2418 */
c4843a75 2419 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2420 if (TestClearPageDirty(page)) {
c4843a75 2421 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2422 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2423 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2424 ret = 1;
1da177e4 2425 }
c4843a75
GT
2426 mem_cgroup_end_page_stat(memcg);
2427 return ret;
1da177e4 2428 }
7658cc28 2429 return TestClearPageDirty(page);
1da177e4 2430}
58bb01a9 2431EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2432
2433int test_clear_page_writeback(struct page *page)
2434{
2435 struct address_space *mapping = page_mapping(page);
d7365e78 2436 struct mem_cgroup *memcg;
d7365e78 2437 int ret;
1da177e4 2438
6de22619 2439 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2440 if (mapping) {
91018134
TH
2441 struct inode *inode = mapping->host;
2442 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2443 unsigned long flags;
2444
19fd6231 2445 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2446 ret = TestClearPageWriteback(page);
69cb51d1 2447 if (ret) {
1da177e4
LT
2448 radix_tree_tag_clear(&mapping->page_tree,
2449 page_index(page),
2450 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2451 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2452 struct bdi_writeback *wb = inode_to_wb(inode);
2453
2454 __dec_wb_stat(wb, WB_WRITEBACK);
2455 __wb_writeout_inc(wb);
04fbfdc1 2456 }
69cb51d1 2457 }
19fd6231 2458 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2459 } else {
2460 ret = TestClearPageWriteback(page);
2461 }
99b12e3d 2462 if (ret) {
d7365e78 2463 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2464 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2465 inc_zone_page_state(page, NR_WRITTEN);
2466 }
6de22619 2467 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2468 return ret;
2469}
2470
1c8349a1 2471int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2472{
2473 struct address_space *mapping = page_mapping(page);
d7365e78 2474 struct mem_cgroup *memcg;
d7365e78 2475 int ret;
1da177e4 2476
6de22619 2477 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2478 if (mapping) {
91018134
TH
2479 struct inode *inode = mapping->host;
2480 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2481 unsigned long flags;
2482
19fd6231 2483 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2484 ret = TestSetPageWriteback(page);
69cb51d1 2485 if (!ret) {
1da177e4
LT
2486 radix_tree_tag_set(&mapping->page_tree,
2487 page_index(page),
2488 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2489 if (bdi_cap_account_writeback(bdi))
91018134 2490 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2491 }
1da177e4
LT
2492 if (!PageDirty(page))
2493 radix_tree_tag_clear(&mapping->page_tree,
2494 page_index(page),
2495 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2496 if (!keep_write)
2497 radix_tree_tag_clear(&mapping->page_tree,
2498 page_index(page),
2499 PAGECACHE_TAG_TOWRITE);
19fd6231 2500 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2501 } else {
2502 ret = TestSetPageWriteback(page);
2503 }
3a3c02ec 2504 if (!ret) {
d7365e78 2505 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2506 inc_zone_page_state(page, NR_WRITEBACK);
2507 }
6de22619 2508 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2509 return ret;
2510
2511}
1c8349a1 2512EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2513
2514/*
00128188 2515 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2516 * passed tag.
2517 */
2518int mapping_tagged(struct address_space *mapping, int tag)
2519{
72c47832 2520 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2521}
2522EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2523
2524/**
2525 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2526 * @page: The page to wait on.
2527 *
2528 * This function determines if the given page is related to a backing device
2529 * that requires page contents to be held stable during writeback. If so, then
2530 * it will wait for any pending writeback to complete.
2531 */
2532void wait_for_stable_page(struct page *page)
2533{
de1414a6
CH
2534 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2535 wait_on_page_writeback(page);
1d1d1a76
DW
2536}
2537EXPORT_SYMBOL_GPL(wait_for_stable_page);
This page took 0.921102 seconds and 5 git commands to generate.