writeback: dirty position control
[deliverable/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
ffd1f609
WF
39/*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42#define MAX_PAUSE max(HZ/5, 1)
43
e98be2d5
WF
44/*
45 * Estimate write bandwidth at 200ms intervals.
46 */
47#define BANDWIDTH_INTERVAL max(HZ/5, 1)
48
6c14ae1e
WF
49#define RATELIMIT_CALC_SHIFT 10
50
1da177e4
LT
51/*
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
54 */
55static long ratelimit_pages = 32;
56
1da177e4
LT
57/*
58 * When balance_dirty_pages decides that the caller needs to perform some
59 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 60 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
61 * large amounts of I/O are submitted.
62 */
3a2e9a5a 63static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 64{
3a2e9a5a
WF
65 if (dirtied < ratelimit_pages)
66 dirtied = ratelimit_pages;
67
68 return dirtied + dirtied / 2;
1da177e4
LT
69}
70
71/* The following parameters are exported via /proc/sys/vm */
72
73/*
5b0830cb 74 * Start background writeback (via writeback threads) at this percentage
1da177e4 75 */
1b5e62b4 76int dirty_background_ratio = 10;
1da177e4 77
2da02997
DR
78/*
79 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
80 * dirty_background_ratio * the amount of dirtyable memory
81 */
82unsigned long dirty_background_bytes;
83
195cf453
BG
84/*
85 * free highmem will not be subtracted from the total free memory
86 * for calculating free ratios if vm_highmem_is_dirtyable is true
87 */
88int vm_highmem_is_dirtyable;
89
1da177e4
LT
90/*
91 * The generator of dirty data starts writeback at this percentage
92 */
1b5e62b4 93int vm_dirty_ratio = 20;
1da177e4 94
2da02997
DR
95/*
96 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
97 * vm_dirty_ratio * the amount of dirtyable memory
98 */
99unsigned long vm_dirty_bytes;
100
1da177e4 101/*
704503d8 102 * The interval between `kupdate'-style writebacks
1da177e4 103 */
22ef37ee 104unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
105
106/*
704503d8 107 * The longest time for which data is allowed to remain dirty
1da177e4 108 */
22ef37ee 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
110
111/*
112 * Flag that makes the machine dump writes/reads and block dirtyings.
113 */
114int block_dump;
115
116/*
ed5b43f1
BS
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
119 */
120int laptop_mode;
121
122EXPORT_SYMBOL(laptop_mode);
123
124/* End of sysctl-exported parameters */
125
c42843f2 126unsigned long global_dirty_limit;
1da177e4 127
04fbfdc1
PZ
128/*
129 * Scale the writeback cache size proportional to the relative writeout speeds.
130 *
131 * We do this by keeping a floating proportion between BDIs, based on page
132 * writeback completions [end_page_writeback()]. Those devices that write out
133 * pages fastest will get the larger share, while the slower will get a smaller
134 * share.
135 *
136 * We use page writeout completions because we are interested in getting rid of
137 * dirty pages. Having them written out is the primary goal.
138 *
139 * We introduce a concept of time, a period over which we measure these events,
140 * because demand can/will vary over time. The length of this period itself is
141 * measured in page writeback completions.
142 *
143 */
144static struct prop_descriptor vm_completions;
3e26c149 145static struct prop_descriptor vm_dirties;
04fbfdc1 146
04fbfdc1
PZ
147/*
148 * couple the period to the dirty_ratio:
149 *
150 * period/2 ~ roundup_pow_of_two(dirty limit)
151 */
152static int calc_period_shift(void)
153{
154 unsigned long dirty_total;
155
2da02997
DR
156 if (vm_dirty_bytes)
157 dirty_total = vm_dirty_bytes / PAGE_SIZE;
158 else
159 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
160 100;
04fbfdc1
PZ
161 return 2 + ilog2(dirty_total - 1);
162}
163
164/*
2da02997 165 * update the period when the dirty threshold changes.
04fbfdc1 166 */
2da02997
DR
167static void update_completion_period(void)
168{
169 int shift = calc_period_shift();
170 prop_change_shift(&vm_completions, shift);
171 prop_change_shift(&vm_dirties, shift);
172}
173
174int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 175 void __user *buffer, size_t *lenp,
2da02997
DR
176 loff_t *ppos)
177{
178 int ret;
179
8d65af78 180 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
181 if (ret == 0 && write)
182 dirty_background_bytes = 0;
183 return ret;
184}
185
186int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 187 void __user *buffer, size_t *lenp,
2da02997
DR
188 loff_t *ppos)
189{
190 int ret;
191
8d65af78 192 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
193 if (ret == 0 && write)
194 dirty_background_ratio = 0;
195 return ret;
196}
197
04fbfdc1 198int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 199 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
200 loff_t *ppos)
201{
202 int old_ratio = vm_dirty_ratio;
2da02997
DR
203 int ret;
204
8d65af78 205 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 206 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
207 update_completion_period();
208 vm_dirty_bytes = 0;
209 }
210 return ret;
211}
212
213
214int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 215 void __user *buffer, size_t *lenp,
2da02997
DR
216 loff_t *ppos)
217{
fc3501d4 218 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
219 int ret;
220
8d65af78 221 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
222 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
223 update_completion_period();
224 vm_dirty_ratio = 0;
04fbfdc1
PZ
225 }
226 return ret;
227}
228
229/*
230 * Increment the BDI's writeout completion count and the global writeout
231 * completion count. Called from test_clear_page_writeback().
232 */
233static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
234{
f7d2b1ec 235 __inc_bdi_stat(bdi, BDI_WRITTEN);
a42dde04
PZ
236 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
237 bdi->max_prop_frac);
04fbfdc1
PZ
238}
239
dd5656e5
MS
240void bdi_writeout_inc(struct backing_dev_info *bdi)
241{
242 unsigned long flags;
243
244 local_irq_save(flags);
245 __bdi_writeout_inc(bdi);
246 local_irq_restore(flags);
247}
248EXPORT_SYMBOL_GPL(bdi_writeout_inc);
249
1cf6e7d8 250void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
251{
252 prop_inc_single(&vm_dirties, &tsk->dirties);
253}
254
04fbfdc1
PZ
255/*
256 * Obtain an accurate fraction of the BDI's portion.
257 */
258static void bdi_writeout_fraction(struct backing_dev_info *bdi,
259 long *numerator, long *denominator)
260{
3efaf0fa 261 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 262 numerator, denominator);
04fbfdc1
PZ
263}
264
3e26c149
PZ
265static inline void task_dirties_fraction(struct task_struct *tsk,
266 long *numerator, long *denominator)
267{
268 prop_fraction_single(&vm_dirties, &tsk->dirties,
269 numerator, denominator);
270}
271
272/*
1babe183 273 * task_dirty_limit - scale down dirty throttling threshold for one task
3e26c149
PZ
274 *
275 * task specific dirty limit:
276 *
277 * dirty -= (dirty/8) * p_{t}
1babe183
WF
278 *
279 * To protect light/slow dirtying tasks from heavier/fast ones, we start
280 * throttling individual tasks before reaching the bdi dirty limit.
281 * Relatively low thresholds will be allocated to heavy dirtiers. So when
282 * dirty pages grow large, heavy dirtiers will be throttled first, which will
283 * effectively curb the growth of dirty pages. Light dirtiers with high enough
284 * dirty threshold may never get throttled.
3e26c149 285 */
bcff25fc 286#define TASK_LIMIT_FRACTION 8
16c4042f
WF
287static unsigned long task_dirty_limit(struct task_struct *tsk,
288 unsigned long bdi_dirty)
3e26c149
PZ
289{
290 long numerator, denominator;
16c4042f 291 unsigned long dirty = bdi_dirty;
bcff25fc 292 u64 inv = dirty / TASK_LIMIT_FRACTION;
3e26c149
PZ
293
294 task_dirties_fraction(tsk, &numerator, &denominator);
295 inv *= numerator;
296 do_div(inv, denominator);
297
298 dirty -= inv;
3e26c149 299
16c4042f 300 return max(dirty, bdi_dirty/2);
3e26c149
PZ
301}
302
bcff25fc
JK
303/* Minimum limit for any task */
304static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
305{
306 return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
307}
308
189d3c4a
PZ
309/*
310 *
311 */
189d3c4a
PZ
312static unsigned int bdi_min_ratio;
313
314int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
315{
316 int ret = 0;
189d3c4a 317
cfc4ba53 318 spin_lock_bh(&bdi_lock);
a42dde04 319 if (min_ratio > bdi->max_ratio) {
189d3c4a 320 ret = -EINVAL;
a42dde04
PZ
321 } else {
322 min_ratio -= bdi->min_ratio;
323 if (bdi_min_ratio + min_ratio < 100) {
324 bdi_min_ratio += min_ratio;
325 bdi->min_ratio += min_ratio;
326 } else {
327 ret = -EINVAL;
328 }
329 }
cfc4ba53 330 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
331
332 return ret;
333}
334
335int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
336{
a42dde04
PZ
337 int ret = 0;
338
339 if (max_ratio > 100)
340 return -EINVAL;
341
cfc4ba53 342 spin_lock_bh(&bdi_lock);
a42dde04
PZ
343 if (bdi->min_ratio > max_ratio) {
344 ret = -EINVAL;
345 } else {
346 bdi->max_ratio = max_ratio;
347 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
348 }
cfc4ba53 349 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
350
351 return ret;
352}
a42dde04 353EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 354
1da177e4
LT
355/*
356 * Work out the current dirty-memory clamping and background writeout
357 * thresholds.
358 *
359 * The main aim here is to lower them aggressively if there is a lot of mapped
360 * memory around. To avoid stressing page reclaim with lots of unreclaimable
361 * pages. It is better to clamp down on writers than to start swapping, and
362 * performing lots of scanning.
363 *
364 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
365 *
366 * We don't permit the clamping level to fall below 5% - that is getting rather
367 * excessive.
368 *
369 * We make sure that the background writeout level is below the adjusted
370 * clamping level.
371 */
1b424464
CL
372
373static unsigned long highmem_dirtyable_memory(unsigned long total)
374{
375#ifdef CONFIG_HIGHMEM
376 int node;
377 unsigned long x = 0;
378
37b07e41 379 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
380 struct zone *z =
381 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
382
adea02a1
WF
383 x += zone_page_state(z, NR_FREE_PAGES) +
384 zone_reclaimable_pages(z);
1b424464
CL
385 }
386 /*
387 * Make sure that the number of highmem pages is never larger
388 * than the number of the total dirtyable memory. This can only
389 * occur in very strange VM situations but we want to make sure
390 * that this does not occur.
391 */
392 return min(x, total);
393#else
394 return 0;
395#endif
396}
397
3eefae99
SR
398/**
399 * determine_dirtyable_memory - amount of memory that may be used
400 *
401 * Returns the numebr of pages that can currently be freed and used
402 * by the kernel for direct mappings.
403 */
404unsigned long determine_dirtyable_memory(void)
1b424464
CL
405{
406 unsigned long x;
407
adea02a1 408 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
409
410 if (!vm_highmem_is_dirtyable)
411 x -= highmem_dirtyable_memory(x);
412
1b424464
CL
413 return x + 1; /* Ensure that we never return 0 */
414}
415
6c14ae1e
WF
416static unsigned long dirty_freerun_ceiling(unsigned long thresh,
417 unsigned long bg_thresh)
418{
419 return (thresh + bg_thresh) / 2;
420}
421
ffd1f609
WF
422static unsigned long hard_dirty_limit(unsigned long thresh)
423{
424 return max(thresh, global_dirty_limit);
425}
426
03ab450f 427/*
1babe183
WF
428 * global_dirty_limits - background-writeback and dirty-throttling thresholds
429 *
430 * Calculate the dirty thresholds based on sysctl parameters
431 * - vm.dirty_background_ratio or vm.dirty_background_bytes
432 * - vm.dirty_ratio or vm.dirty_bytes
433 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 434 * real-time tasks.
1babe183 435 */
16c4042f 436void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 437{
364aeb28
DR
438 unsigned long background;
439 unsigned long dirty;
240c879f 440 unsigned long uninitialized_var(available_memory);
1da177e4
LT
441 struct task_struct *tsk;
442
240c879f
MK
443 if (!vm_dirty_bytes || !dirty_background_bytes)
444 available_memory = determine_dirtyable_memory();
445
2da02997
DR
446 if (vm_dirty_bytes)
447 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
448 else
449 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 450
2da02997
DR
451 if (dirty_background_bytes)
452 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
453 else
454 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 455
2da02997
DR
456 if (background >= dirty)
457 background = dirty / 2;
1da177e4
LT
458 tsk = current;
459 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
460 background += background / 4;
461 dirty += dirty / 4;
462 }
463 *pbackground = background;
464 *pdirty = dirty;
e1cbe236 465 trace_global_dirty_state(background, dirty);
16c4042f 466}
04fbfdc1 467
6f718656 468/**
1babe183 469 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
470 * @bdi: the backing_dev_info to query
471 * @dirty: global dirty limit in pages
1babe183 472 *
6f718656
WF
473 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
474 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
475 * And the "limit" in the name is not seriously taken as hard limit in
476 * balance_dirty_pages().
1babe183 477 *
6f718656 478 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
479 * - starving fast devices
480 * - piling up dirty pages (that will take long time to sync) on slow devices
481 *
482 * The bdi's share of dirty limit will be adapting to its throughput and
483 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
484 */
485unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
486{
487 u64 bdi_dirty;
488 long numerator, denominator;
04fbfdc1 489
16c4042f
WF
490 /*
491 * Calculate this BDI's share of the dirty ratio.
492 */
493 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 494
16c4042f
WF
495 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
496 bdi_dirty *= numerator;
497 do_div(bdi_dirty, denominator);
04fbfdc1 498
16c4042f
WF
499 bdi_dirty += (dirty * bdi->min_ratio) / 100;
500 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
501 bdi_dirty = dirty * bdi->max_ratio / 100;
502
503 return bdi_dirty;
1da177e4
LT
504}
505
6c14ae1e
WF
506/*
507 * Dirty position control.
508 *
509 * (o) global/bdi setpoints
510 *
511 * We want the dirty pages be balanced around the global/bdi setpoints.
512 * When the number of dirty pages is higher/lower than the setpoint, the
513 * dirty position control ratio (and hence task dirty ratelimit) will be
514 * decreased/increased to bring the dirty pages back to the setpoint.
515 *
516 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
517 *
518 * if (dirty < setpoint) scale up pos_ratio
519 * if (dirty > setpoint) scale down pos_ratio
520 *
521 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
522 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
523 *
524 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
525 *
526 * (o) global control line
527 *
528 * ^ pos_ratio
529 * |
530 * | |<===== global dirty control scope ======>|
531 * 2.0 .............*
532 * | .*
533 * | . *
534 * | . *
535 * | . *
536 * | . *
537 * | . *
538 * 1.0 ................................*
539 * | . . *
540 * | . . *
541 * | . . *
542 * | . . *
543 * | . . *
544 * 0 +------------.------------------.----------------------*------------->
545 * freerun^ setpoint^ limit^ dirty pages
546 *
547 * (o) bdi control line
548 *
549 * ^ pos_ratio
550 * |
551 * | *
552 * | *
553 * | *
554 * | *
555 * | * |<=========== span ============>|
556 * 1.0 .......................*
557 * | . *
558 * | . *
559 * | . *
560 * | . *
561 * | . *
562 * | . *
563 * | . *
564 * | . *
565 * | . *
566 * | . *
567 * | . *
568 * 1/4 ...............................................* * * * * * * * * * * *
569 * | . .
570 * | . .
571 * | . .
572 * 0 +----------------------.-------------------------------.------------->
573 * bdi_setpoint^ x_intercept^
574 *
575 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
576 * be smoothly throttled down to normal if it starts high in situations like
577 * - start writing to a slow SD card and a fast disk at the same time. The SD
578 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
579 * - the bdi dirty thresh drops quickly due to change of JBOD workload
580 */
581static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
582 unsigned long thresh,
583 unsigned long bg_thresh,
584 unsigned long dirty,
585 unsigned long bdi_thresh,
586 unsigned long bdi_dirty)
587{
588 unsigned long write_bw = bdi->avg_write_bandwidth;
589 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
590 unsigned long limit = hard_dirty_limit(thresh);
591 unsigned long x_intercept;
592 unsigned long setpoint; /* dirty pages' target balance point */
593 unsigned long bdi_setpoint;
594 unsigned long span;
595 long long pos_ratio; /* for scaling up/down the rate limit */
596 long x;
597
598 if (unlikely(dirty >= limit))
599 return 0;
600
601 /*
602 * global setpoint
603 *
604 * setpoint - dirty 3
605 * f(dirty) := 1.0 + (----------------)
606 * limit - setpoint
607 *
608 * it's a 3rd order polynomial that subjects to
609 *
610 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
611 * (2) f(setpoint) = 1.0 => the balance point
612 * (3) f(limit) = 0 => the hard limit
613 * (4) df/dx <= 0 => negative feedback control
614 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
615 * => fast response on large errors; small oscillation near setpoint
616 */
617 setpoint = (freerun + limit) / 2;
618 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
619 limit - setpoint + 1);
620 pos_ratio = x;
621 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
622 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
623 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
624
625 /*
626 * We have computed basic pos_ratio above based on global situation. If
627 * the bdi is over/under its share of dirty pages, we want to scale
628 * pos_ratio further down/up. That is done by the following mechanism.
629 */
630
631 /*
632 * bdi setpoint
633 *
634 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
635 *
636 * x_intercept - bdi_dirty
637 * := --------------------------
638 * x_intercept - bdi_setpoint
639 *
640 * The main bdi control line is a linear function that subjects to
641 *
642 * (1) f(bdi_setpoint) = 1.0
643 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
644 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
645 *
646 * For single bdi case, the dirty pages are observed to fluctuate
647 * regularly within range
648 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
649 * for various filesystems, where (2) can yield in a reasonable 12.5%
650 * fluctuation range for pos_ratio.
651 *
652 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
653 * own size, so move the slope over accordingly and choose a slope that
654 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
655 */
656 if (unlikely(bdi_thresh > thresh))
657 bdi_thresh = thresh;
658 /*
659 * scale global setpoint to bdi's:
660 * bdi_setpoint = setpoint * bdi_thresh / thresh
661 */
662 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
663 bdi_setpoint = setpoint * (u64)x >> 16;
664 /*
665 * Use span=(8*write_bw) in single bdi case as indicated by
666 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
667 *
668 * bdi_thresh thresh - bdi_thresh
669 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
670 * thresh thresh
671 */
672 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
673 x_intercept = bdi_setpoint + span;
674
675 if (bdi_dirty < x_intercept - span / 4) {
676 pos_ratio *= x_intercept - bdi_dirty;
677 do_div(pos_ratio, x_intercept - bdi_setpoint + 1);
678 } else
679 pos_ratio /= 4;
680
681 return pos_ratio;
682}
683
e98be2d5
WF
684static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
685 unsigned long elapsed,
686 unsigned long written)
687{
688 const unsigned long period = roundup_pow_of_two(3 * HZ);
689 unsigned long avg = bdi->avg_write_bandwidth;
690 unsigned long old = bdi->write_bandwidth;
691 u64 bw;
692
693 /*
694 * bw = written * HZ / elapsed
695 *
696 * bw * elapsed + write_bandwidth * (period - elapsed)
697 * write_bandwidth = ---------------------------------------------------
698 * period
699 */
700 bw = written - bdi->written_stamp;
701 bw *= HZ;
702 if (unlikely(elapsed > period)) {
703 do_div(bw, elapsed);
704 avg = bw;
705 goto out;
706 }
707 bw += (u64)bdi->write_bandwidth * (period - elapsed);
708 bw >>= ilog2(period);
709
710 /*
711 * one more level of smoothing, for filtering out sudden spikes
712 */
713 if (avg > old && old >= (unsigned long)bw)
714 avg -= (avg - old) >> 3;
715
716 if (avg < old && old <= (unsigned long)bw)
717 avg += (old - avg) >> 3;
718
719out:
720 bdi->write_bandwidth = bw;
721 bdi->avg_write_bandwidth = avg;
722}
723
c42843f2
WF
724/*
725 * The global dirtyable memory and dirty threshold could be suddenly knocked
726 * down by a large amount (eg. on the startup of KVM in a swapless system).
727 * This may throw the system into deep dirty exceeded state and throttle
728 * heavy/light dirtiers alike. To retain good responsiveness, maintain
729 * global_dirty_limit for tracking slowly down to the knocked down dirty
730 * threshold.
731 */
732static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
733{
734 unsigned long limit = global_dirty_limit;
735
736 /*
737 * Follow up in one step.
738 */
739 if (limit < thresh) {
740 limit = thresh;
741 goto update;
742 }
743
744 /*
745 * Follow down slowly. Use the higher one as the target, because thresh
746 * may drop below dirty. This is exactly the reason to introduce
747 * global_dirty_limit which is guaranteed to lie above the dirty pages.
748 */
749 thresh = max(thresh, dirty);
750 if (limit > thresh) {
751 limit -= (limit - thresh) >> 5;
752 goto update;
753 }
754 return;
755update:
756 global_dirty_limit = limit;
757}
758
759static void global_update_bandwidth(unsigned long thresh,
760 unsigned long dirty,
761 unsigned long now)
762{
763 static DEFINE_SPINLOCK(dirty_lock);
764 static unsigned long update_time;
765
766 /*
767 * check locklessly first to optimize away locking for the most time
768 */
769 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
770 return;
771
772 spin_lock(&dirty_lock);
773 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
774 update_dirty_limit(thresh, dirty);
775 update_time = now;
776 }
777 spin_unlock(&dirty_lock);
778}
779
e98be2d5 780void __bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2
WF
781 unsigned long thresh,
782 unsigned long dirty,
783 unsigned long bdi_thresh,
784 unsigned long bdi_dirty,
e98be2d5
WF
785 unsigned long start_time)
786{
787 unsigned long now = jiffies;
788 unsigned long elapsed = now - bdi->bw_time_stamp;
789 unsigned long written;
790
791 /*
792 * rate-limit, only update once every 200ms.
793 */
794 if (elapsed < BANDWIDTH_INTERVAL)
795 return;
796
797 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
798
799 /*
800 * Skip quiet periods when disk bandwidth is under-utilized.
801 * (at least 1s idle time between two flusher runs)
802 */
803 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
804 goto snapshot;
805
c42843f2
WF
806 if (thresh)
807 global_update_bandwidth(thresh, dirty, now);
808
e98be2d5
WF
809 bdi_update_write_bandwidth(bdi, elapsed, written);
810
811snapshot:
812 bdi->written_stamp = written;
813 bdi->bw_time_stamp = now;
814}
815
816static void bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2
WF
817 unsigned long thresh,
818 unsigned long dirty,
819 unsigned long bdi_thresh,
820 unsigned long bdi_dirty,
e98be2d5
WF
821 unsigned long start_time)
822{
823 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
824 return;
825 spin_lock(&bdi->wb.list_lock);
c42843f2
WF
826 __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
827 start_time);
e98be2d5
WF
828 spin_unlock(&bdi->wb.list_lock);
829}
830
1da177e4
LT
831/*
832 * balance_dirty_pages() must be called by processes which are generating dirty
833 * data. It looks at the number of dirty pages in the machine and will force
834 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
835 * If we're over `background_thresh' then the writeback threads are woken to
836 * perform some writeout.
1da177e4 837 */
3a2e9a5a
WF
838static void balance_dirty_pages(struct address_space *mapping,
839 unsigned long write_chunk)
1da177e4 840{
7762741e
WF
841 unsigned long nr_reclaimable, bdi_nr_reclaimable;
842 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
843 unsigned long bdi_dirty;
6c14ae1e 844 unsigned long freerun;
364aeb28
DR
845 unsigned long background_thresh;
846 unsigned long dirty_thresh;
847 unsigned long bdi_thresh;
bcff25fc
JK
848 unsigned long task_bdi_thresh;
849 unsigned long min_task_bdi_thresh;
1da177e4 850 unsigned long pages_written = 0;
87c6a9b2 851 unsigned long pause = 1;
e50e3720 852 bool dirty_exceeded = false;
bcff25fc 853 bool clear_dirty_exceeded = true;
1da177e4 854 struct backing_dev_info *bdi = mapping->backing_dev_info;
e98be2d5 855 unsigned long start_time = jiffies;
1da177e4
LT
856
857 for (;;) {
5fce25a9
PZ
858 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
859 global_page_state(NR_UNSTABLE_NFS);
7762741e 860 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 861
16c4042f
WF
862 global_dirty_limits(&background_thresh, &dirty_thresh);
863
864 /*
865 * Throttle it only when the background writeback cannot
866 * catch-up. This avoids (excessively) small writeouts
867 * when the bdi limits are ramping up.
868 */
6c14ae1e
WF
869 freerun = dirty_freerun_ceiling(dirty_thresh,
870 background_thresh);
871 if (nr_dirty <= freerun)
16c4042f
WF
872 break;
873
874 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
bcff25fc
JK
875 min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
876 task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
16c4042f 877
e50e3720
WF
878 /*
879 * In order to avoid the stacked BDI deadlock we need
880 * to ensure we accurately count the 'dirty' pages when
881 * the threshold is low.
882 *
883 * Otherwise it would be possible to get thresh+n pages
884 * reported dirty, even though there are thresh-m pages
885 * actually dirty; with m+n sitting in the percpu
886 * deltas.
887 */
bcff25fc 888 if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
e50e3720 889 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
7762741e
WF
890 bdi_dirty = bdi_nr_reclaimable +
891 bdi_stat_sum(bdi, BDI_WRITEBACK);
e50e3720
WF
892 } else {
893 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
7762741e
WF
894 bdi_dirty = bdi_nr_reclaimable +
895 bdi_stat(bdi, BDI_WRITEBACK);
e50e3720 896 }
5fce25a9 897
e50e3720
WF
898 /*
899 * The bdi thresh is somehow "soft" limit derived from the
900 * global "hard" limit. The former helps to prevent heavy IO
901 * bdi or process from holding back light ones; The latter is
902 * the last resort safeguard.
903 */
bcff25fc 904 dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
7762741e 905 (nr_dirty > dirty_thresh);
bcff25fc
JK
906 clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
907 (nr_dirty <= dirty_thresh);
e50e3720
WF
908
909 if (!dirty_exceeded)
04fbfdc1 910 break;
1da177e4 911
04fbfdc1
PZ
912 if (!bdi->dirty_exceeded)
913 bdi->dirty_exceeded = 1;
1da177e4 914
c42843f2
WF
915 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
916 bdi_thresh, bdi_dirty, start_time);
e98be2d5 917
1da177e4
LT
918 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
919 * Unstable writes are a feature of certain networked
920 * filesystems (i.e. NFS) in which data may have been
921 * written to the server's write cache, but has not yet
922 * been flushed to permanent storage.
d7831a0b
RK
923 * Only move pages to writeback if this bdi is over its
924 * threshold otherwise wait until the disk writes catch
925 * up.
1da177e4 926 */
d46db3d5 927 trace_balance_dirty_start(bdi);
bcff25fc 928 if (bdi_nr_reclaimable > task_bdi_thresh) {
d46db3d5
WF
929 pages_written += writeback_inodes_wb(&bdi->wb,
930 write_chunk);
931 trace_balance_dirty_written(bdi, pages_written);
e50e3720
WF
932 if (pages_written >= write_chunk)
933 break; /* We've done our duty */
04fbfdc1 934 }
d153ba64 935 __set_current_state(TASK_UNINTERRUPTIBLE);
d25105e8 936 io_schedule_timeout(pause);
d46db3d5 937 trace_balance_dirty_wait(bdi);
87c6a9b2 938
ffd1f609
WF
939 dirty_thresh = hard_dirty_limit(dirty_thresh);
940 /*
941 * max-pause area. If dirty exceeded but still within this
942 * area, no need to sleep for more than 200ms: (a) 8 pages per
943 * 200ms is typically more than enough to curb heavy dirtiers;
944 * (b) the pause time limit makes the dirtiers more responsive.
945 */
bb082295
WF
946 if (nr_dirty < dirty_thresh &&
947 bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
ffd1f609
WF
948 time_after(jiffies, start_time + MAX_PAUSE))
949 break;
87c6a9b2
JA
950
951 /*
952 * Increase the delay for each loop, up to our previous
953 * default of taking a 100ms nap.
954 */
955 pause <<= 1;
956 if (pause > HZ / 10)
957 pause = HZ / 10;
1da177e4
LT
958 }
959
bcff25fc
JK
960 /* Clear dirty_exceeded flag only when no task can exceed the limit */
961 if (clear_dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 962 bdi->dirty_exceeded = 0;
1da177e4
LT
963
964 if (writeback_in_progress(bdi))
5b0830cb 965 return;
1da177e4
LT
966
967 /*
968 * In laptop mode, we wait until hitting the higher threshold before
969 * starting background writeout, and then write out all the way down
970 * to the lower threshold. So slow writers cause minimal disk activity.
971 *
972 * In normal mode, we start background writeout at the lower
973 * background_thresh, to keep the amount of dirty memory low.
974 */
975 if ((laptop_mode && pages_written) ||
e50e3720 976 (!laptop_mode && (nr_reclaimable > background_thresh)))
c5444198 977 bdi_start_background_writeback(bdi);
1da177e4
LT
978}
979
a200ee18 980void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 981{
a200ee18 982 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
983 struct address_space *mapping = page_mapping(page);
984
985 if (mapping)
986 balance_dirty_pages_ratelimited(mapping);
987 }
988}
989
245b2e70
TH
990static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
991
1da177e4 992/**
fa5a734e 993 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 994 * @mapping: address_space which was dirtied
a580290c 995 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
996 *
997 * Processes which are dirtying memory should call in here once for each page
998 * which was newly dirtied. The function will periodically check the system's
999 * dirty state and will initiate writeback if needed.
1000 *
1001 * On really big machines, get_writeback_state is expensive, so try to avoid
1002 * calling it too often (ratelimiting). But once we're over the dirty memory
1003 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1004 * from overshooting the limit by (ratelimit_pages) each.
1005 */
fa5a734e
AM
1006void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1007 unsigned long nr_pages_dirtied)
1da177e4 1008{
36715cef 1009 struct backing_dev_info *bdi = mapping->backing_dev_info;
fa5a734e
AM
1010 unsigned long ratelimit;
1011 unsigned long *p;
1da177e4 1012
36715cef
WF
1013 if (!bdi_cap_account_dirty(bdi))
1014 return;
1015
1da177e4 1016 ratelimit = ratelimit_pages;
04fbfdc1 1017 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
1018 ratelimit = 8;
1019
1020 /*
1021 * Check the rate limiting. Also, we do not want to throttle real-time
1022 * tasks in balance_dirty_pages(). Period.
1023 */
fa5a734e 1024 preempt_disable();
245b2e70 1025 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
1026 *p += nr_pages_dirtied;
1027 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 1028 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
1029 *p = 0;
1030 preempt_enable();
3a2e9a5a 1031 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
1032 return;
1033 }
fa5a734e 1034 preempt_enable();
1da177e4 1035}
fa5a734e 1036EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 1037
232ea4d6 1038void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1039{
364aeb28
DR
1040 unsigned long background_thresh;
1041 unsigned long dirty_thresh;
1da177e4
LT
1042
1043 for ( ; ; ) {
16c4042f 1044 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
1045
1046 /*
1047 * Boost the allowable dirty threshold a bit for page
1048 * allocators so they don't get DoS'ed by heavy writers
1049 */
1050 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1051
c24f21bd
CL
1052 if (global_page_state(NR_UNSTABLE_NFS) +
1053 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1054 break;
8aa7e847 1055 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1056
1057 /*
1058 * The caller might hold locks which can prevent IO completion
1059 * or progress in the filesystem. So we cannot just sit here
1060 * waiting for IO to complete.
1061 */
1062 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1063 break;
1da177e4
LT
1064 }
1065}
1066
1da177e4
LT
1067/*
1068 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1069 */
1070int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 1071 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1072{
8d65af78 1073 proc_dointvec(table, write, buffer, length, ppos);
6423104b 1074 bdi_arm_supers_timer();
1da177e4
LT
1075 return 0;
1076}
1077
c2c4986e 1078#ifdef CONFIG_BLOCK
31373d09 1079void laptop_mode_timer_fn(unsigned long data)
1da177e4 1080{
31373d09
MG
1081 struct request_queue *q = (struct request_queue *)data;
1082 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1083 global_page_state(NR_UNSTABLE_NFS);
1da177e4 1084
31373d09
MG
1085 /*
1086 * We want to write everything out, not just down to the dirty
1087 * threshold
1088 */
31373d09 1089 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 1090 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
1091}
1092
1093/*
1094 * We've spun up the disk and we're in laptop mode: schedule writeback
1095 * of all dirty data a few seconds from now. If the flush is already scheduled
1096 * then push it back - the user is still using the disk.
1097 */
31373d09 1098void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1099{
31373d09 1100 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1101}
1102
1103/*
1104 * We're in laptop mode and we've just synced. The sync's writes will have
1105 * caused another writeback to be scheduled by laptop_io_completion.
1106 * Nothing needs to be written back anymore, so we unschedule the writeback.
1107 */
1108void laptop_sync_completion(void)
1109{
31373d09
MG
1110 struct backing_dev_info *bdi;
1111
1112 rcu_read_lock();
1113
1114 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1115 del_timer(&bdi->laptop_mode_wb_timer);
1116
1117 rcu_read_unlock();
1da177e4 1118}
c2c4986e 1119#endif
1da177e4
LT
1120
1121/*
1122 * If ratelimit_pages is too high then we can get into dirty-data overload
1123 * if a large number of processes all perform writes at the same time.
1124 * If it is too low then SMP machines will call the (expensive)
1125 * get_writeback_state too often.
1126 *
1127 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1128 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1129 * thresholds before writeback cuts in.
1130 *
1131 * But the limit should not be set too high. Because it also controls the
1132 * amount of memory which the balance_dirty_pages() caller has to write back.
1133 * If this is too large then the caller will block on the IO queue all the
1134 * time. So limit it to four megabytes - the balance_dirty_pages() caller
1135 * will write six megabyte chunks, max.
1136 */
1137
2d1d43f6 1138void writeback_set_ratelimit(void)
1da177e4 1139{
40c99aae 1140 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
1141 if (ratelimit_pages < 16)
1142 ratelimit_pages = 16;
1143 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
1144 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
1145}
1146
26c2143b 1147static int __cpuinit
1da177e4
LT
1148ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1149{
2d1d43f6 1150 writeback_set_ratelimit();
aa0f0303 1151 return NOTIFY_DONE;
1da177e4
LT
1152}
1153
74b85f37 1154static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
1155 .notifier_call = ratelimit_handler,
1156 .next = NULL,
1157};
1158
1159/*
dc6e29da
LT
1160 * Called early on to tune the page writeback dirty limits.
1161 *
1162 * We used to scale dirty pages according to how total memory
1163 * related to pages that could be allocated for buffers (by
1164 * comparing nr_free_buffer_pages() to vm_total_pages.
1165 *
1166 * However, that was when we used "dirty_ratio" to scale with
1167 * all memory, and we don't do that any more. "dirty_ratio"
1168 * is now applied to total non-HIGHPAGE memory (by subtracting
1169 * totalhigh_pages from vm_total_pages), and as such we can't
1170 * get into the old insane situation any more where we had
1171 * large amounts of dirty pages compared to a small amount of
1172 * non-HIGHMEM memory.
1173 *
1174 * But we might still want to scale the dirty_ratio by how
1175 * much memory the box has..
1da177e4
LT
1176 */
1177void __init page_writeback_init(void)
1178{
04fbfdc1
PZ
1179 int shift;
1180
2d1d43f6 1181 writeback_set_ratelimit();
1da177e4 1182 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
1183
1184 shift = calc_period_shift();
1185 prop_descriptor_init(&vm_completions, shift);
3e26c149 1186 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
1187}
1188
f446daae
JK
1189/**
1190 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1191 * @mapping: address space structure to write
1192 * @start: starting page index
1193 * @end: ending page index (inclusive)
1194 *
1195 * This function scans the page range from @start to @end (inclusive) and tags
1196 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1197 * that write_cache_pages (or whoever calls this function) will then use
1198 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1199 * used to avoid livelocking of writeback by a process steadily creating new
1200 * dirty pages in the file (thus it is important for this function to be quick
1201 * so that it can tag pages faster than a dirtying process can create them).
1202 */
1203/*
1204 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1205 */
f446daae
JK
1206void tag_pages_for_writeback(struct address_space *mapping,
1207 pgoff_t start, pgoff_t end)
1208{
3c111a07 1209#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1210 unsigned long tagged;
1211
1212 do {
1213 spin_lock_irq(&mapping->tree_lock);
1214 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1215 &start, end, WRITEBACK_TAG_BATCH,
1216 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1217 spin_unlock_irq(&mapping->tree_lock);
1218 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1219 cond_resched();
d5ed3a4a
JK
1220 /* We check 'start' to handle wrapping when end == ~0UL */
1221 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1222}
1223EXPORT_SYMBOL(tag_pages_for_writeback);
1224
811d736f 1225/**
0ea97180 1226 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1227 * @mapping: address space structure to write
1228 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1229 * @writepage: function called for each page
1230 * @data: data passed to writepage function
811d736f 1231 *
0ea97180 1232 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1233 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1234 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1235 * and msync() need to guarantee that all the data which was dirty at the time
1236 * the call was made get new I/O started against them. If wbc->sync_mode is
1237 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1238 * existing IO to complete.
f446daae
JK
1239 *
1240 * To avoid livelocks (when other process dirties new pages), we first tag
1241 * pages which should be written back with TOWRITE tag and only then start
1242 * writing them. For data-integrity sync we have to be careful so that we do
1243 * not miss some pages (e.g., because some other process has cleared TOWRITE
1244 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1245 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1246 */
0ea97180
MS
1247int write_cache_pages(struct address_space *mapping,
1248 struct writeback_control *wbc, writepage_t writepage,
1249 void *data)
811d736f 1250{
811d736f
DH
1251 int ret = 0;
1252 int done = 0;
811d736f
DH
1253 struct pagevec pvec;
1254 int nr_pages;
31a12666 1255 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1256 pgoff_t index;
1257 pgoff_t end; /* Inclusive */
bd19e012 1258 pgoff_t done_index;
31a12666 1259 int cycled;
811d736f 1260 int range_whole = 0;
f446daae 1261 int tag;
811d736f 1262
811d736f
DH
1263 pagevec_init(&pvec, 0);
1264 if (wbc->range_cyclic) {
31a12666
NP
1265 writeback_index = mapping->writeback_index; /* prev offset */
1266 index = writeback_index;
1267 if (index == 0)
1268 cycled = 1;
1269 else
1270 cycled = 0;
811d736f
DH
1271 end = -1;
1272 } else {
1273 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1274 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1275 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1276 range_whole = 1;
31a12666 1277 cycled = 1; /* ignore range_cyclic tests */
811d736f 1278 }
6e6938b6 1279 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1280 tag = PAGECACHE_TAG_TOWRITE;
1281 else
1282 tag = PAGECACHE_TAG_DIRTY;
811d736f 1283retry:
6e6938b6 1284 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1285 tag_pages_for_writeback(mapping, index, end);
bd19e012 1286 done_index = index;
5a3d5c98
NP
1287 while (!done && (index <= end)) {
1288 int i;
1289
f446daae 1290 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1291 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1292 if (nr_pages == 0)
1293 break;
811d736f 1294
811d736f
DH
1295 for (i = 0; i < nr_pages; i++) {
1296 struct page *page = pvec.pages[i];
1297
1298 /*
d5482cdf
NP
1299 * At this point, the page may be truncated or
1300 * invalidated (changing page->mapping to NULL), or
1301 * even swizzled back from swapper_space to tmpfs file
1302 * mapping. However, page->index will not change
1303 * because we have a reference on the page.
811d736f 1304 */
d5482cdf
NP
1305 if (page->index > end) {
1306 /*
1307 * can't be range_cyclic (1st pass) because
1308 * end == -1 in that case.
1309 */
1310 done = 1;
1311 break;
1312 }
1313
cf15b07c 1314 done_index = page->index;
d5482cdf 1315
811d736f
DH
1316 lock_page(page);
1317
5a3d5c98
NP
1318 /*
1319 * Page truncated or invalidated. We can freely skip it
1320 * then, even for data integrity operations: the page
1321 * has disappeared concurrently, so there could be no
1322 * real expectation of this data interity operation
1323 * even if there is now a new, dirty page at the same
1324 * pagecache address.
1325 */
811d736f 1326 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1327continue_unlock:
811d736f
DH
1328 unlock_page(page);
1329 continue;
1330 }
1331
515f4a03
NP
1332 if (!PageDirty(page)) {
1333 /* someone wrote it for us */
1334 goto continue_unlock;
1335 }
1336
1337 if (PageWriteback(page)) {
1338 if (wbc->sync_mode != WB_SYNC_NONE)
1339 wait_on_page_writeback(page);
1340 else
1341 goto continue_unlock;
1342 }
811d736f 1343
515f4a03
NP
1344 BUG_ON(PageWriteback(page));
1345 if (!clear_page_dirty_for_io(page))
5a3d5c98 1346 goto continue_unlock;
811d736f 1347
9e094383 1348 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 1349 ret = (*writepage)(page, wbc, data);
00266770
NP
1350 if (unlikely(ret)) {
1351 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1352 unlock_page(page);
1353 ret = 0;
1354 } else {
1355 /*
1356 * done_index is set past this page,
1357 * so media errors will not choke
1358 * background writeout for the entire
1359 * file. This has consequences for
1360 * range_cyclic semantics (ie. it may
1361 * not be suitable for data integrity
1362 * writeout).
1363 */
cf15b07c 1364 done_index = page->index + 1;
00266770
NP
1365 done = 1;
1366 break;
1367 }
0b564927 1368 }
00266770 1369
546a1924
DC
1370 /*
1371 * We stop writing back only if we are not doing
1372 * integrity sync. In case of integrity sync we have to
1373 * keep going until we have written all the pages
1374 * we tagged for writeback prior to entering this loop.
1375 */
1376 if (--wbc->nr_to_write <= 0 &&
1377 wbc->sync_mode == WB_SYNC_NONE) {
1378 done = 1;
1379 break;
05fe478d 1380 }
811d736f
DH
1381 }
1382 pagevec_release(&pvec);
1383 cond_resched();
1384 }
3a4c6800 1385 if (!cycled && !done) {
811d736f 1386 /*
31a12666 1387 * range_cyclic:
811d736f
DH
1388 * We hit the last page and there is more work to be done: wrap
1389 * back to the start of the file
1390 */
31a12666 1391 cycled = 1;
811d736f 1392 index = 0;
31a12666 1393 end = writeback_index - 1;
811d736f
DH
1394 goto retry;
1395 }
0b564927
DC
1396 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1397 mapping->writeback_index = done_index;
06d6cf69 1398
811d736f
DH
1399 return ret;
1400}
0ea97180
MS
1401EXPORT_SYMBOL(write_cache_pages);
1402
1403/*
1404 * Function used by generic_writepages to call the real writepage
1405 * function and set the mapping flags on error
1406 */
1407static int __writepage(struct page *page, struct writeback_control *wbc,
1408 void *data)
1409{
1410 struct address_space *mapping = data;
1411 int ret = mapping->a_ops->writepage(page, wbc);
1412 mapping_set_error(mapping, ret);
1413 return ret;
1414}
1415
1416/**
1417 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1418 * @mapping: address space structure to write
1419 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1420 *
1421 * This is a library function, which implements the writepages()
1422 * address_space_operation.
1423 */
1424int generic_writepages(struct address_space *mapping,
1425 struct writeback_control *wbc)
1426{
9b6096a6
SL
1427 struct blk_plug plug;
1428 int ret;
1429
0ea97180
MS
1430 /* deal with chardevs and other special file */
1431 if (!mapping->a_ops->writepage)
1432 return 0;
1433
9b6096a6
SL
1434 blk_start_plug(&plug);
1435 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1436 blk_finish_plug(&plug);
1437 return ret;
0ea97180 1438}
811d736f
DH
1439
1440EXPORT_SYMBOL(generic_writepages);
1441
1da177e4
LT
1442int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1443{
22905f77
AM
1444 int ret;
1445
1da177e4
LT
1446 if (wbc->nr_to_write <= 0)
1447 return 0;
1448 if (mapping->a_ops->writepages)
d08b3851 1449 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1450 else
1451 ret = generic_writepages(mapping, wbc);
22905f77 1452 return ret;
1da177e4
LT
1453}
1454
1455/**
1456 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1457 * @page: the page to write
1458 * @wait: if true, wait on writeout
1da177e4
LT
1459 *
1460 * The page must be locked by the caller and will be unlocked upon return.
1461 *
1462 * write_one_page() returns a negative error code if I/O failed.
1463 */
1464int write_one_page(struct page *page, int wait)
1465{
1466 struct address_space *mapping = page->mapping;
1467 int ret = 0;
1468 struct writeback_control wbc = {
1469 .sync_mode = WB_SYNC_ALL,
1470 .nr_to_write = 1,
1471 };
1472
1473 BUG_ON(!PageLocked(page));
1474
1475 if (wait)
1476 wait_on_page_writeback(page);
1477
1478 if (clear_page_dirty_for_io(page)) {
1479 page_cache_get(page);
1480 ret = mapping->a_ops->writepage(page, &wbc);
1481 if (ret == 0 && wait) {
1482 wait_on_page_writeback(page);
1483 if (PageError(page))
1484 ret = -EIO;
1485 }
1486 page_cache_release(page);
1487 } else {
1488 unlock_page(page);
1489 }
1490 return ret;
1491}
1492EXPORT_SYMBOL(write_one_page);
1493
76719325
KC
1494/*
1495 * For address_spaces which do not use buffers nor write back.
1496 */
1497int __set_page_dirty_no_writeback(struct page *page)
1498{
1499 if (!PageDirty(page))
c3f0da63 1500 return !TestSetPageDirty(page);
76719325
KC
1501 return 0;
1502}
1503
e3a7cca1
ES
1504/*
1505 * Helper function for set_page_dirty family.
1506 * NOTE: This relies on being atomic wrt interrupts.
1507 */
1508void account_page_dirtied(struct page *page, struct address_space *mapping)
1509{
1510 if (mapping_cap_account_dirty(mapping)) {
1511 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1512 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1 1513 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
c8e28ce0 1514 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
e3a7cca1
ES
1515 task_dirty_inc(current);
1516 task_io_account_write(PAGE_CACHE_SIZE);
1517 }
1518}
679ceace 1519EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1520
f629d1c9
MR
1521/*
1522 * Helper function for set_page_writeback family.
1523 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1524 * wrt interrupts.
1525 */
1526void account_page_writeback(struct page *page)
1527{
1528 inc_zone_page_state(page, NR_WRITEBACK);
1529}
1530EXPORT_SYMBOL(account_page_writeback);
1531
1da177e4
LT
1532/*
1533 * For address_spaces which do not use buffers. Just tag the page as dirty in
1534 * its radix tree.
1535 *
1536 * This is also used when a single buffer is being dirtied: we want to set the
1537 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1538 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1539 *
1540 * Most callers have locked the page, which pins the address_space in memory.
1541 * But zap_pte_range() does not lock the page, however in that case the
1542 * mapping is pinned by the vma's ->vm_file reference.
1543 *
1544 * We take care to handle the case where the page was truncated from the
183ff22b 1545 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1546 */
1547int __set_page_dirty_nobuffers(struct page *page)
1548{
1da177e4
LT
1549 if (!TestSetPageDirty(page)) {
1550 struct address_space *mapping = page_mapping(page);
1551 struct address_space *mapping2;
1552
8c08540f
AM
1553 if (!mapping)
1554 return 1;
1555
19fd6231 1556 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1557 mapping2 = page_mapping(page);
1558 if (mapping2) { /* Race with truncate? */
1559 BUG_ON(mapping2 != mapping);
787d2214 1560 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1561 account_page_dirtied(page, mapping);
8c08540f
AM
1562 radix_tree_tag_set(&mapping->page_tree,
1563 page_index(page), PAGECACHE_TAG_DIRTY);
1564 }
19fd6231 1565 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1566 if (mapping->host) {
1567 /* !PageAnon && !swapper_space */
1568 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1569 }
4741c9fd 1570 return 1;
1da177e4 1571 }
4741c9fd 1572 return 0;
1da177e4
LT
1573}
1574EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1575
1576/*
1577 * When a writepage implementation decides that it doesn't want to write this
1578 * page for some reason, it should redirty the locked page via
1579 * redirty_page_for_writepage() and it should then unlock the page and return 0
1580 */
1581int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1582{
1583 wbc->pages_skipped++;
1584 return __set_page_dirty_nobuffers(page);
1585}
1586EXPORT_SYMBOL(redirty_page_for_writepage);
1587
1588/*
6746aff7
WF
1589 * Dirty a page.
1590 *
1591 * For pages with a mapping this should be done under the page lock
1592 * for the benefit of asynchronous memory errors who prefer a consistent
1593 * dirty state. This rule can be broken in some special cases,
1594 * but should be better not to.
1595 *
1da177e4
LT
1596 * If the mapping doesn't provide a set_page_dirty a_op, then
1597 * just fall through and assume that it wants buffer_heads.
1598 */
1cf6e7d8 1599int set_page_dirty(struct page *page)
1da177e4
LT
1600{
1601 struct address_space *mapping = page_mapping(page);
1602
1603 if (likely(mapping)) {
1604 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1605 /*
1606 * readahead/lru_deactivate_page could remain
1607 * PG_readahead/PG_reclaim due to race with end_page_writeback
1608 * About readahead, if the page is written, the flags would be
1609 * reset. So no problem.
1610 * About lru_deactivate_page, if the page is redirty, the flag
1611 * will be reset. So no problem. but if the page is used by readahead
1612 * it will confuse readahead and make it restart the size rampup
1613 * process. But it's a trivial problem.
1614 */
1615 ClearPageReclaim(page);
9361401e
DH
1616#ifdef CONFIG_BLOCK
1617 if (!spd)
1618 spd = __set_page_dirty_buffers;
1619#endif
1620 return (*spd)(page);
1da177e4 1621 }
4741c9fd
AM
1622 if (!PageDirty(page)) {
1623 if (!TestSetPageDirty(page))
1624 return 1;
1625 }
1da177e4
LT
1626 return 0;
1627}
1628EXPORT_SYMBOL(set_page_dirty);
1629
1630/*
1631 * set_page_dirty() is racy if the caller has no reference against
1632 * page->mapping->host, and if the page is unlocked. This is because another
1633 * CPU could truncate the page off the mapping and then free the mapping.
1634 *
1635 * Usually, the page _is_ locked, or the caller is a user-space process which
1636 * holds a reference on the inode by having an open file.
1637 *
1638 * In other cases, the page should be locked before running set_page_dirty().
1639 */
1640int set_page_dirty_lock(struct page *page)
1641{
1642 int ret;
1643
7eaceacc 1644 lock_page(page);
1da177e4
LT
1645 ret = set_page_dirty(page);
1646 unlock_page(page);
1647 return ret;
1648}
1649EXPORT_SYMBOL(set_page_dirty_lock);
1650
1da177e4
LT
1651/*
1652 * Clear a page's dirty flag, while caring for dirty memory accounting.
1653 * Returns true if the page was previously dirty.
1654 *
1655 * This is for preparing to put the page under writeout. We leave the page
1656 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1657 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1658 * implementation will run either set_page_writeback() or set_page_dirty(),
1659 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1660 * back into sync.
1661 *
1662 * This incoherency between the page's dirty flag and radix-tree tag is
1663 * unfortunate, but it only exists while the page is locked.
1664 */
1665int clear_page_dirty_for_io(struct page *page)
1666{
1667 struct address_space *mapping = page_mapping(page);
1668
79352894
NP
1669 BUG_ON(!PageLocked(page));
1670
7658cc28
LT
1671 if (mapping && mapping_cap_account_dirty(mapping)) {
1672 /*
1673 * Yes, Virginia, this is indeed insane.
1674 *
1675 * We use this sequence to make sure that
1676 * (a) we account for dirty stats properly
1677 * (b) we tell the low-level filesystem to
1678 * mark the whole page dirty if it was
1679 * dirty in a pagetable. Only to then
1680 * (c) clean the page again and return 1 to
1681 * cause the writeback.
1682 *
1683 * This way we avoid all nasty races with the
1684 * dirty bit in multiple places and clearing
1685 * them concurrently from different threads.
1686 *
1687 * Note! Normally the "set_page_dirty(page)"
1688 * has no effect on the actual dirty bit - since
1689 * that will already usually be set. But we
1690 * need the side effects, and it can help us
1691 * avoid races.
1692 *
1693 * We basically use the page "master dirty bit"
1694 * as a serialization point for all the different
1695 * threads doing their things.
7658cc28
LT
1696 */
1697 if (page_mkclean(page))
1698 set_page_dirty(page);
79352894
NP
1699 /*
1700 * We carefully synchronise fault handlers against
1701 * installing a dirty pte and marking the page dirty
1702 * at this point. We do this by having them hold the
1703 * page lock at some point after installing their
1704 * pte, but before marking the page dirty.
1705 * Pages are always locked coming in here, so we get
1706 * the desired exclusion. See mm/memory.c:do_wp_page()
1707 * for more comments.
1708 */
7658cc28 1709 if (TestClearPageDirty(page)) {
8c08540f 1710 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1711 dec_bdi_stat(mapping->backing_dev_info,
1712 BDI_RECLAIMABLE);
7658cc28 1713 return 1;
1da177e4 1714 }
7658cc28 1715 return 0;
1da177e4 1716 }
7658cc28 1717 return TestClearPageDirty(page);
1da177e4 1718}
58bb01a9 1719EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1720
1721int test_clear_page_writeback(struct page *page)
1722{
1723 struct address_space *mapping = page_mapping(page);
1724 int ret;
1725
1726 if (mapping) {
69cb51d1 1727 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1728 unsigned long flags;
1729
19fd6231 1730 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1731 ret = TestClearPageWriteback(page);
69cb51d1 1732 if (ret) {
1da177e4
LT
1733 radix_tree_tag_clear(&mapping->page_tree,
1734 page_index(page),
1735 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1736 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1737 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1738 __bdi_writeout_inc(bdi);
1739 }
69cb51d1 1740 }
19fd6231 1741 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1742 } else {
1743 ret = TestClearPageWriteback(page);
1744 }
99b12e3d 1745 if (ret) {
d688abf5 1746 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
1747 inc_zone_page_state(page, NR_WRITTEN);
1748 }
1da177e4
LT
1749 return ret;
1750}
1751
1752int test_set_page_writeback(struct page *page)
1753{
1754 struct address_space *mapping = page_mapping(page);
1755 int ret;
1756
1757 if (mapping) {
69cb51d1 1758 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1759 unsigned long flags;
1760
19fd6231 1761 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1762 ret = TestSetPageWriteback(page);
69cb51d1 1763 if (!ret) {
1da177e4
LT
1764 radix_tree_tag_set(&mapping->page_tree,
1765 page_index(page),
1766 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1767 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1768 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1769 }
1da177e4
LT
1770 if (!PageDirty(page))
1771 radix_tree_tag_clear(&mapping->page_tree,
1772 page_index(page),
1773 PAGECACHE_TAG_DIRTY);
f446daae
JK
1774 radix_tree_tag_clear(&mapping->page_tree,
1775 page_index(page),
1776 PAGECACHE_TAG_TOWRITE);
19fd6231 1777 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1778 } else {
1779 ret = TestSetPageWriteback(page);
1780 }
d688abf5 1781 if (!ret)
f629d1c9 1782 account_page_writeback(page);
1da177e4
LT
1783 return ret;
1784
1785}
1786EXPORT_SYMBOL(test_set_page_writeback);
1787
1788/*
00128188 1789 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1790 * passed tag.
1791 */
1792int mapping_tagged(struct address_space *mapping, int tag)
1793{
72c47832 1794 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
1795}
1796EXPORT_SYMBOL(mapping_tagged);
This page took 0.631931 seconds and 5 git commands to generate.