writeback: bdi write bandwidth estimation
[deliverable/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
e98be2d5
WF
39/*
40 * Estimate write bandwidth at 200ms intervals.
41 */
42#define BANDWIDTH_INTERVAL max(HZ/5, 1)
43
1da177e4
LT
44/*
45 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
46 * will look to see if it needs to force writeback or throttling.
47 */
48static long ratelimit_pages = 32;
49
1da177e4
LT
50/*
51 * When balance_dirty_pages decides that the caller needs to perform some
52 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 53 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
54 * large amounts of I/O are submitted.
55 */
3a2e9a5a 56static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 57{
3a2e9a5a
WF
58 if (dirtied < ratelimit_pages)
59 dirtied = ratelimit_pages;
60
61 return dirtied + dirtied / 2;
1da177e4
LT
62}
63
64/* The following parameters are exported via /proc/sys/vm */
65
66/*
5b0830cb 67 * Start background writeback (via writeback threads) at this percentage
1da177e4 68 */
1b5e62b4 69int dirty_background_ratio = 10;
1da177e4 70
2da02997
DR
71/*
72 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73 * dirty_background_ratio * the amount of dirtyable memory
74 */
75unsigned long dirty_background_bytes;
76
195cf453
BG
77/*
78 * free highmem will not be subtracted from the total free memory
79 * for calculating free ratios if vm_highmem_is_dirtyable is true
80 */
81int vm_highmem_is_dirtyable;
82
1da177e4
LT
83/*
84 * The generator of dirty data starts writeback at this percentage
85 */
1b5e62b4 86int vm_dirty_ratio = 20;
1da177e4 87
2da02997
DR
88/*
89 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90 * vm_dirty_ratio * the amount of dirtyable memory
91 */
92unsigned long vm_dirty_bytes;
93
1da177e4 94/*
704503d8 95 * The interval between `kupdate'-style writebacks
1da177e4 96 */
22ef37ee 97unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
98
99/*
704503d8 100 * The longest time for which data is allowed to remain dirty
1da177e4 101 */
22ef37ee 102unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
103
104/*
105 * Flag that makes the machine dump writes/reads and block dirtyings.
106 */
107int block_dump;
108
109/*
ed5b43f1
BS
110 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
111 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
112 */
113int laptop_mode;
114
115EXPORT_SYMBOL(laptop_mode);
116
117/* End of sysctl-exported parameters */
118
119
04fbfdc1
PZ
120/*
121 * Scale the writeback cache size proportional to the relative writeout speeds.
122 *
123 * We do this by keeping a floating proportion between BDIs, based on page
124 * writeback completions [end_page_writeback()]. Those devices that write out
125 * pages fastest will get the larger share, while the slower will get a smaller
126 * share.
127 *
128 * We use page writeout completions because we are interested in getting rid of
129 * dirty pages. Having them written out is the primary goal.
130 *
131 * We introduce a concept of time, a period over which we measure these events,
132 * because demand can/will vary over time. The length of this period itself is
133 * measured in page writeback completions.
134 *
135 */
136static struct prop_descriptor vm_completions;
3e26c149 137static struct prop_descriptor vm_dirties;
04fbfdc1 138
04fbfdc1
PZ
139/*
140 * couple the period to the dirty_ratio:
141 *
142 * period/2 ~ roundup_pow_of_two(dirty limit)
143 */
144static int calc_period_shift(void)
145{
146 unsigned long dirty_total;
147
2da02997
DR
148 if (vm_dirty_bytes)
149 dirty_total = vm_dirty_bytes / PAGE_SIZE;
150 else
151 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
152 100;
04fbfdc1
PZ
153 return 2 + ilog2(dirty_total - 1);
154}
155
156/*
2da02997 157 * update the period when the dirty threshold changes.
04fbfdc1 158 */
2da02997
DR
159static void update_completion_period(void)
160{
161 int shift = calc_period_shift();
162 prop_change_shift(&vm_completions, shift);
163 prop_change_shift(&vm_dirties, shift);
164}
165
166int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 167 void __user *buffer, size_t *lenp,
2da02997
DR
168 loff_t *ppos)
169{
170 int ret;
171
8d65af78 172 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
173 if (ret == 0 && write)
174 dirty_background_bytes = 0;
175 return ret;
176}
177
178int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 179 void __user *buffer, size_t *lenp,
2da02997
DR
180 loff_t *ppos)
181{
182 int ret;
183
8d65af78 184 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
185 if (ret == 0 && write)
186 dirty_background_ratio = 0;
187 return ret;
188}
189
04fbfdc1 190int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 191 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
192 loff_t *ppos)
193{
194 int old_ratio = vm_dirty_ratio;
2da02997
DR
195 int ret;
196
8d65af78 197 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 198 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
199 update_completion_period();
200 vm_dirty_bytes = 0;
201 }
202 return ret;
203}
204
205
206int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 207 void __user *buffer, size_t *lenp,
2da02997
DR
208 loff_t *ppos)
209{
fc3501d4 210 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
211 int ret;
212
8d65af78 213 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
214 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
215 update_completion_period();
216 vm_dirty_ratio = 0;
04fbfdc1
PZ
217 }
218 return ret;
219}
220
221/*
222 * Increment the BDI's writeout completion count and the global writeout
223 * completion count. Called from test_clear_page_writeback().
224 */
225static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
226{
f7d2b1ec 227 __inc_bdi_stat(bdi, BDI_WRITTEN);
a42dde04
PZ
228 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
229 bdi->max_prop_frac);
04fbfdc1
PZ
230}
231
dd5656e5
MS
232void bdi_writeout_inc(struct backing_dev_info *bdi)
233{
234 unsigned long flags;
235
236 local_irq_save(flags);
237 __bdi_writeout_inc(bdi);
238 local_irq_restore(flags);
239}
240EXPORT_SYMBOL_GPL(bdi_writeout_inc);
241
1cf6e7d8 242void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
243{
244 prop_inc_single(&vm_dirties, &tsk->dirties);
245}
246
04fbfdc1
PZ
247/*
248 * Obtain an accurate fraction of the BDI's portion.
249 */
250static void bdi_writeout_fraction(struct backing_dev_info *bdi,
251 long *numerator, long *denominator)
252{
3efaf0fa 253 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 254 numerator, denominator);
04fbfdc1
PZ
255}
256
3e26c149
PZ
257static inline void task_dirties_fraction(struct task_struct *tsk,
258 long *numerator, long *denominator)
259{
260 prop_fraction_single(&vm_dirties, &tsk->dirties,
261 numerator, denominator);
262}
263
264/*
1babe183 265 * task_dirty_limit - scale down dirty throttling threshold for one task
3e26c149
PZ
266 *
267 * task specific dirty limit:
268 *
269 * dirty -= (dirty/8) * p_{t}
1babe183
WF
270 *
271 * To protect light/slow dirtying tasks from heavier/fast ones, we start
272 * throttling individual tasks before reaching the bdi dirty limit.
273 * Relatively low thresholds will be allocated to heavy dirtiers. So when
274 * dirty pages grow large, heavy dirtiers will be throttled first, which will
275 * effectively curb the growth of dirty pages. Light dirtiers with high enough
276 * dirty threshold may never get throttled.
3e26c149 277 */
16c4042f
WF
278static unsigned long task_dirty_limit(struct task_struct *tsk,
279 unsigned long bdi_dirty)
3e26c149
PZ
280{
281 long numerator, denominator;
16c4042f 282 unsigned long dirty = bdi_dirty;
3e26c149
PZ
283 u64 inv = dirty >> 3;
284
285 task_dirties_fraction(tsk, &numerator, &denominator);
286 inv *= numerator;
287 do_div(inv, denominator);
288
289 dirty -= inv;
3e26c149 290
16c4042f 291 return max(dirty, bdi_dirty/2);
3e26c149
PZ
292}
293
189d3c4a
PZ
294/*
295 *
296 */
189d3c4a
PZ
297static unsigned int bdi_min_ratio;
298
299int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
300{
301 int ret = 0;
189d3c4a 302
cfc4ba53 303 spin_lock_bh(&bdi_lock);
a42dde04 304 if (min_ratio > bdi->max_ratio) {
189d3c4a 305 ret = -EINVAL;
a42dde04
PZ
306 } else {
307 min_ratio -= bdi->min_ratio;
308 if (bdi_min_ratio + min_ratio < 100) {
309 bdi_min_ratio += min_ratio;
310 bdi->min_ratio += min_ratio;
311 } else {
312 ret = -EINVAL;
313 }
314 }
cfc4ba53 315 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
316
317 return ret;
318}
319
320int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
321{
a42dde04
PZ
322 int ret = 0;
323
324 if (max_ratio > 100)
325 return -EINVAL;
326
cfc4ba53 327 spin_lock_bh(&bdi_lock);
a42dde04
PZ
328 if (bdi->min_ratio > max_ratio) {
329 ret = -EINVAL;
330 } else {
331 bdi->max_ratio = max_ratio;
332 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
333 }
cfc4ba53 334 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
335
336 return ret;
337}
a42dde04 338EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 339
1da177e4
LT
340/*
341 * Work out the current dirty-memory clamping and background writeout
342 * thresholds.
343 *
344 * The main aim here is to lower them aggressively if there is a lot of mapped
345 * memory around. To avoid stressing page reclaim with lots of unreclaimable
346 * pages. It is better to clamp down on writers than to start swapping, and
347 * performing lots of scanning.
348 *
349 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
350 *
351 * We don't permit the clamping level to fall below 5% - that is getting rather
352 * excessive.
353 *
354 * We make sure that the background writeout level is below the adjusted
355 * clamping level.
356 */
1b424464
CL
357
358static unsigned long highmem_dirtyable_memory(unsigned long total)
359{
360#ifdef CONFIG_HIGHMEM
361 int node;
362 unsigned long x = 0;
363
37b07e41 364 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
365 struct zone *z =
366 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
367
adea02a1
WF
368 x += zone_page_state(z, NR_FREE_PAGES) +
369 zone_reclaimable_pages(z);
1b424464
CL
370 }
371 /*
372 * Make sure that the number of highmem pages is never larger
373 * than the number of the total dirtyable memory. This can only
374 * occur in very strange VM situations but we want to make sure
375 * that this does not occur.
376 */
377 return min(x, total);
378#else
379 return 0;
380#endif
381}
382
3eefae99
SR
383/**
384 * determine_dirtyable_memory - amount of memory that may be used
385 *
386 * Returns the numebr of pages that can currently be freed and used
387 * by the kernel for direct mappings.
388 */
389unsigned long determine_dirtyable_memory(void)
1b424464
CL
390{
391 unsigned long x;
392
adea02a1 393 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
394
395 if (!vm_highmem_is_dirtyable)
396 x -= highmem_dirtyable_memory(x);
397
1b424464
CL
398 return x + 1; /* Ensure that we never return 0 */
399}
400
03ab450f 401/*
1babe183
WF
402 * global_dirty_limits - background-writeback and dirty-throttling thresholds
403 *
404 * Calculate the dirty thresholds based on sysctl parameters
405 * - vm.dirty_background_ratio or vm.dirty_background_bytes
406 * - vm.dirty_ratio or vm.dirty_bytes
407 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 408 * real-time tasks.
1babe183 409 */
16c4042f 410void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 411{
364aeb28
DR
412 unsigned long background;
413 unsigned long dirty;
240c879f 414 unsigned long uninitialized_var(available_memory);
1da177e4
LT
415 struct task_struct *tsk;
416
240c879f
MK
417 if (!vm_dirty_bytes || !dirty_background_bytes)
418 available_memory = determine_dirtyable_memory();
419
2da02997
DR
420 if (vm_dirty_bytes)
421 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
422 else
423 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 424
2da02997
DR
425 if (dirty_background_bytes)
426 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
427 else
428 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 429
2da02997
DR
430 if (background >= dirty)
431 background = dirty / 2;
1da177e4
LT
432 tsk = current;
433 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
434 background += background / 4;
435 dirty += dirty / 4;
436 }
437 *pbackground = background;
438 *pdirty = dirty;
16c4042f 439}
04fbfdc1 440
6f718656 441/**
1babe183 442 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
443 * @bdi: the backing_dev_info to query
444 * @dirty: global dirty limit in pages
445 *
446 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
447 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
448 * And the "limit" in the name is not seriously taken as hard limit in
449 * balance_dirty_pages().
1babe183 450 *
6f718656 451 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
452 * - starving fast devices
453 * - piling up dirty pages (that will take long time to sync) on slow devices
454 *
455 * The bdi's share of dirty limit will be adapting to its throughput and
456 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
457 */
458unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
459{
460 u64 bdi_dirty;
461 long numerator, denominator;
04fbfdc1 462
16c4042f
WF
463 /*
464 * Calculate this BDI's share of the dirty ratio.
465 */
466 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 467
16c4042f
WF
468 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
469 bdi_dirty *= numerator;
470 do_div(bdi_dirty, denominator);
04fbfdc1 471
16c4042f
WF
472 bdi_dirty += (dirty * bdi->min_ratio) / 100;
473 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
474 bdi_dirty = dirty * bdi->max_ratio / 100;
475
476 return bdi_dirty;
1da177e4
LT
477}
478
e98be2d5
WF
479static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
480 unsigned long elapsed,
481 unsigned long written)
482{
483 const unsigned long period = roundup_pow_of_two(3 * HZ);
484 unsigned long avg = bdi->avg_write_bandwidth;
485 unsigned long old = bdi->write_bandwidth;
486 u64 bw;
487
488 /*
489 * bw = written * HZ / elapsed
490 *
491 * bw * elapsed + write_bandwidth * (period - elapsed)
492 * write_bandwidth = ---------------------------------------------------
493 * period
494 */
495 bw = written - bdi->written_stamp;
496 bw *= HZ;
497 if (unlikely(elapsed > period)) {
498 do_div(bw, elapsed);
499 avg = bw;
500 goto out;
501 }
502 bw += (u64)bdi->write_bandwidth * (period - elapsed);
503 bw >>= ilog2(period);
504
505 /*
506 * one more level of smoothing, for filtering out sudden spikes
507 */
508 if (avg > old && old >= (unsigned long)bw)
509 avg -= (avg - old) >> 3;
510
511 if (avg < old && old <= (unsigned long)bw)
512 avg += (old - avg) >> 3;
513
514out:
515 bdi->write_bandwidth = bw;
516 bdi->avg_write_bandwidth = avg;
517}
518
519void __bdi_update_bandwidth(struct backing_dev_info *bdi,
520 unsigned long start_time)
521{
522 unsigned long now = jiffies;
523 unsigned long elapsed = now - bdi->bw_time_stamp;
524 unsigned long written;
525
526 /*
527 * rate-limit, only update once every 200ms.
528 */
529 if (elapsed < BANDWIDTH_INTERVAL)
530 return;
531
532 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
533
534 /*
535 * Skip quiet periods when disk bandwidth is under-utilized.
536 * (at least 1s idle time between two flusher runs)
537 */
538 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
539 goto snapshot;
540
541 bdi_update_write_bandwidth(bdi, elapsed, written);
542
543snapshot:
544 bdi->written_stamp = written;
545 bdi->bw_time_stamp = now;
546}
547
548static void bdi_update_bandwidth(struct backing_dev_info *bdi,
549 unsigned long start_time)
550{
551 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
552 return;
553 spin_lock(&bdi->wb.list_lock);
554 __bdi_update_bandwidth(bdi, start_time);
555 spin_unlock(&bdi->wb.list_lock);
556}
557
1da177e4
LT
558/*
559 * balance_dirty_pages() must be called by processes which are generating dirty
560 * data. It looks at the number of dirty pages in the machine and will force
561 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
562 * If we're over `background_thresh' then the writeback threads are woken to
563 * perform some writeout.
1da177e4 564 */
3a2e9a5a
WF
565static void balance_dirty_pages(struct address_space *mapping,
566 unsigned long write_chunk)
1da177e4 567{
5fce25a9
PZ
568 long nr_reclaimable, bdi_nr_reclaimable;
569 long nr_writeback, bdi_nr_writeback;
364aeb28
DR
570 unsigned long background_thresh;
571 unsigned long dirty_thresh;
572 unsigned long bdi_thresh;
1da177e4 573 unsigned long pages_written = 0;
87c6a9b2 574 unsigned long pause = 1;
e50e3720 575 bool dirty_exceeded = false;
1da177e4 576 struct backing_dev_info *bdi = mapping->backing_dev_info;
e98be2d5 577 unsigned long start_time = jiffies;
1da177e4
LT
578
579 for (;;) {
5fce25a9
PZ
580 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
581 global_page_state(NR_UNSTABLE_NFS);
582 nr_writeback = global_page_state(NR_WRITEBACK);
583
16c4042f
WF
584 global_dirty_limits(&background_thresh, &dirty_thresh);
585
586 /*
587 * Throttle it only when the background writeback cannot
588 * catch-up. This avoids (excessively) small writeouts
589 * when the bdi limits are ramping up.
590 */
4cbec4c8 591 if (nr_reclaimable + nr_writeback <=
16c4042f
WF
592 (background_thresh + dirty_thresh) / 2)
593 break;
594
595 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
596 bdi_thresh = task_dirty_limit(current, bdi_thresh);
597
e50e3720
WF
598 /*
599 * In order to avoid the stacked BDI deadlock we need
600 * to ensure we accurately count the 'dirty' pages when
601 * the threshold is low.
602 *
603 * Otherwise it would be possible to get thresh+n pages
604 * reported dirty, even though there are thresh-m pages
605 * actually dirty; with m+n sitting in the percpu
606 * deltas.
607 */
608 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
609 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
610 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
611 } else {
612 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
613 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
614 }
5fce25a9 615
e50e3720
WF
616 /*
617 * The bdi thresh is somehow "soft" limit derived from the
618 * global "hard" limit. The former helps to prevent heavy IO
619 * bdi or process from holding back light ones; The latter is
620 * the last resort safeguard.
621 */
622 dirty_exceeded =
4cbec4c8
WF
623 (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
624 || (nr_reclaimable + nr_writeback > dirty_thresh);
e50e3720
WF
625
626 if (!dirty_exceeded)
04fbfdc1 627 break;
1da177e4 628
04fbfdc1
PZ
629 if (!bdi->dirty_exceeded)
630 bdi->dirty_exceeded = 1;
1da177e4 631
e98be2d5
WF
632 bdi_update_bandwidth(bdi, start_time);
633
1da177e4
LT
634 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
635 * Unstable writes are a feature of certain networked
636 * filesystems (i.e. NFS) in which data may have been
637 * written to the server's write cache, but has not yet
638 * been flushed to permanent storage.
d7831a0b
RK
639 * Only move pages to writeback if this bdi is over its
640 * threshold otherwise wait until the disk writes catch
641 * up.
1da177e4 642 */
d46db3d5 643 trace_balance_dirty_start(bdi);
d7831a0b 644 if (bdi_nr_reclaimable > bdi_thresh) {
d46db3d5
WF
645 pages_written += writeback_inodes_wb(&bdi->wb,
646 write_chunk);
647 trace_balance_dirty_written(bdi, pages_written);
e50e3720
WF
648 if (pages_written >= write_chunk)
649 break; /* We've done our duty */
04fbfdc1 650 }
d153ba64 651 __set_current_state(TASK_UNINTERRUPTIBLE);
d25105e8 652 io_schedule_timeout(pause);
d46db3d5 653 trace_balance_dirty_wait(bdi);
87c6a9b2
JA
654
655 /*
656 * Increase the delay for each loop, up to our previous
657 * default of taking a 100ms nap.
658 */
659 pause <<= 1;
660 if (pause > HZ / 10)
661 pause = HZ / 10;
1da177e4
LT
662 }
663
e50e3720 664 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 665 bdi->dirty_exceeded = 0;
1da177e4
LT
666
667 if (writeback_in_progress(bdi))
5b0830cb 668 return;
1da177e4
LT
669
670 /*
671 * In laptop mode, we wait until hitting the higher threshold before
672 * starting background writeout, and then write out all the way down
673 * to the lower threshold. So slow writers cause minimal disk activity.
674 *
675 * In normal mode, we start background writeout at the lower
676 * background_thresh, to keep the amount of dirty memory low.
677 */
678 if ((laptop_mode && pages_written) ||
e50e3720 679 (!laptop_mode && (nr_reclaimable > background_thresh)))
c5444198 680 bdi_start_background_writeback(bdi);
1da177e4
LT
681}
682
a200ee18 683void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 684{
a200ee18 685 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
686 struct address_space *mapping = page_mapping(page);
687
688 if (mapping)
689 balance_dirty_pages_ratelimited(mapping);
690 }
691}
692
245b2e70
TH
693static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
694
1da177e4 695/**
fa5a734e 696 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 697 * @mapping: address_space which was dirtied
a580290c 698 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
699 *
700 * Processes which are dirtying memory should call in here once for each page
701 * which was newly dirtied. The function will periodically check the system's
702 * dirty state and will initiate writeback if needed.
703 *
704 * On really big machines, get_writeback_state is expensive, so try to avoid
705 * calling it too often (ratelimiting). But once we're over the dirty memory
706 * limit we decrease the ratelimiting by a lot, to prevent individual processes
707 * from overshooting the limit by (ratelimit_pages) each.
708 */
fa5a734e
AM
709void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
710 unsigned long nr_pages_dirtied)
1da177e4 711{
36715cef 712 struct backing_dev_info *bdi = mapping->backing_dev_info;
fa5a734e
AM
713 unsigned long ratelimit;
714 unsigned long *p;
1da177e4 715
36715cef
WF
716 if (!bdi_cap_account_dirty(bdi))
717 return;
718
1da177e4 719 ratelimit = ratelimit_pages;
04fbfdc1 720 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
721 ratelimit = 8;
722
723 /*
724 * Check the rate limiting. Also, we do not want to throttle real-time
725 * tasks in balance_dirty_pages(). Period.
726 */
fa5a734e 727 preempt_disable();
245b2e70 728 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
729 *p += nr_pages_dirtied;
730 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 731 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
732 *p = 0;
733 preempt_enable();
3a2e9a5a 734 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
735 return;
736 }
fa5a734e 737 preempt_enable();
1da177e4 738}
fa5a734e 739EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 740
232ea4d6 741void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 742{
364aeb28
DR
743 unsigned long background_thresh;
744 unsigned long dirty_thresh;
1da177e4
LT
745
746 for ( ; ; ) {
16c4042f 747 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
748
749 /*
750 * Boost the allowable dirty threshold a bit for page
751 * allocators so they don't get DoS'ed by heavy writers
752 */
753 dirty_thresh += dirty_thresh / 10; /* wheeee... */
754
c24f21bd
CL
755 if (global_page_state(NR_UNSTABLE_NFS) +
756 global_page_state(NR_WRITEBACK) <= dirty_thresh)
757 break;
8aa7e847 758 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
759
760 /*
761 * The caller might hold locks which can prevent IO completion
762 * or progress in the filesystem. So we cannot just sit here
763 * waiting for IO to complete.
764 */
765 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
766 break;
1da177e4
LT
767 }
768}
769
1da177e4
LT
770/*
771 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
772 */
773int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 774 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 775{
8d65af78 776 proc_dointvec(table, write, buffer, length, ppos);
6423104b 777 bdi_arm_supers_timer();
1da177e4
LT
778 return 0;
779}
780
c2c4986e 781#ifdef CONFIG_BLOCK
31373d09 782void laptop_mode_timer_fn(unsigned long data)
1da177e4 783{
31373d09
MG
784 struct request_queue *q = (struct request_queue *)data;
785 int nr_pages = global_page_state(NR_FILE_DIRTY) +
786 global_page_state(NR_UNSTABLE_NFS);
1da177e4 787
31373d09
MG
788 /*
789 * We want to write everything out, not just down to the dirty
790 * threshold
791 */
31373d09 792 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 793 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
794}
795
796/*
797 * We've spun up the disk and we're in laptop mode: schedule writeback
798 * of all dirty data a few seconds from now. If the flush is already scheduled
799 * then push it back - the user is still using the disk.
800 */
31373d09 801void laptop_io_completion(struct backing_dev_info *info)
1da177e4 802{
31373d09 803 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
804}
805
806/*
807 * We're in laptop mode and we've just synced. The sync's writes will have
808 * caused another writeback to be scheduled by laptop_io_completion.
809 * Nothing needs to be written back anymore, so we unschedule the writeback.
810 */
811void laptop_sync_completion(void)
812{
31373d09
MG
813 struct backing_dev_info *bdi;
814
815 rcu_read_lock();
816
817 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
818 del_timer(&bdi->laptop_mode_wb_timer);
819
820 rcu_read_unlock();
1da177e4 821}
c2c4986e 822#endif
1da177e4
LT
823
824/*
825 * If ratelimit_pages is too high then we can get into dirty-data overload
826 * if a large number of processes all perform writes at the same time.
827 * If it is too low then SMP machines will call the (expensive)
828 * get_writeback_state too often.
829 *
830 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
831 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
832 * thresholds before writeback cuts in.
833 *
834 * But the limit should not be set too high. Because it also controls the
835 * amount of memory which the balance_dirty_pages() caller has to write back.
836 * If this is too large then the caller will block on the IO queue all the
837 * time. So limit it to four megabytes - the balance_dirty_pages() caller
838 * will write six megabyte chunks, max.
839 */
840
2d1d43f6 841void writeback_set_ratelimit(void)
1da177e4 842{
40c99aae 843 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
844 if (ratelimit_pages < 16)
845 ratelimit_pages = 16;
846 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
847 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
848}
849
26c2143b 850static int __cpuinit
1da177e4
LT
851ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
852{
2d1d43f6 853 writeback_set_ratelimit();
aa0f0303 854 return NOTIFY_DONE;
1da177e4
LT
855}
856
74b85f37 857static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
858 .notifier_call = ratelimit_handler,
859 .next = NULL,
860};
861
862/*
dc6e29da
LT
863 * Called early on to tune the page writeback dirty limits.
864 *
865 * We used to scale dirty pages according to how total memory
866 * related to pages that could be allocated for buffers (by
867 * comparing nr_free_buffer_pages() to vm_total_pages.
868 *
869 * However, that was when we used "dirty_ratio" to scale with
870 * all memory, and we don't do that any more. "dirty_ratio"
871 * is now applied to total non-HIGHPAGE memory (by subtracting
872 * totalhigh_pages from vm_total_pages), and as such we can't
873 * get into the old insane situation any more where we had
874 * large amounts of dirty pages compared to a small amount of
875 * non-HIGHMEM memory.
876 *
877 * But we might still want to scale the dirty_ratio by how
878 * much memory the box has..
1da177e4
LT
879 */
880void __init page_writeback_init(void)
881{
04fbfdc1
PZ
882 int shift;
883
2d1d43f6 884 writeback_set_ratelimit();
1da177e4 885 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
886
887 shift = calc_period_shift();
888 prop_descriptor_init(&vm_completions, shift);
3e26c149 889 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
890}
891
f446daae
JK
892/**
893 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
894 * @mapping: address space structure to write
895 * @start: starting page index
896 * @end: ending page index (inclusive)
897 *
898 * This function scans the page range from @start to @end (inclusive) and tags
899 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
900 * that write_cache_pages (or whoever calls this function) will then use
901 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
902 * used to avoid livelocking of writeback by a process steadily creating new
903 * dirty pages in the file (thus it is important for this function to be quick
904 * so that it can tag pages faster than a dirtying process can create them).
905 */
906/*
907 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
908 */
f446daae
JK
909void tag_pages_for_writeback(struct address_space *mapping,
910 pgoff_t start, pgoff_t end)
911{
3c111a07 912#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
913 unsigned long tagged;
914
915 do {
916 spin_lock_irq(&mapping->tree_lock);
917 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
918 &start, end, WRITEBACK_TAG_BATCH,
919 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
920 spin_unlock_irq(&mapping->tree_lock);
921 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
922 cond_resched();
d5ed3a4a
JK
923 /* We check 'start' to handle wrapping when end == ~0UL */
924 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
925}
926EXPORT_SYMBOL(tag_pages_for_writeback);
927
811d736f 928/**
0ea97180 929 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
930 * @mapping: address space structure to write
931 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
932 * @writepage: function called for each page
933 * @data: data passed to writepage function
811d736f 934 *
0ea97180 935 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
936 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
937 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
938 * and msync() need to guarantee that all the data which was dirty at the time
939 * the call was made get new I/O started against them. If wbc->sync_mode is
940 * WB_SYNC_ALL then we were called for data integrity and we must wait for
941 * existing IO to complete.
f446daae
JK
942 *
943 * To avoid livelocks (when other process dirties new pages), we first tag
944 * pages which should be written back with TOWRITE tag and only then start
945 * writing them. For data-integrity sync we have to be careful so that we do
946 * not miss some pages (e.g., because some other process has cleared TOWRITE
947 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
948 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 949 */
0ea97180
MS
950int write_cache_pages(struct address_space *mapping,
951 struct writeback_control *wbc, writepage_t writepage,
952 void *data)
811d736f 953{
811d736f
DH
954 int ret = 0;
955 int done = 0;
811d736f
DH
956 struct pagevec pvec;
957 int nr_pages;
31a12666 958 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
959 pgoff_t index;
960 pgoff_t end; /* Inclusive */
bd19e012 961 pgoff_t done_index;
31a12666 962 int cycled;
811d736f 963 int range_whole = 0;
f446daae 964 int tag;
811d736f 965
811d736f
DH
966 pagevec_init(&pvec, 0);
967 if (wbc->range_cyclic) {
31a12666
NP
968 writeback_index = mapping->writeback_index; /* prev offset */
969 index = writeback_index;
970 if (index == 0)
971 cycled = 1;
972 else
973 cycled = 0;
811d736f
DH
974 end = -1;
975 } else {
976 index = wbc->range_start >> PAGE_CACHE_SHIFT;
977 end = wbc->range_end >> PAGE_CACHE_SHIFT;
978 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
979 range_whole = 1;
31a12666 980 cycled = 1; /* ignore range_cyclic tests */
811d736f 981 }
6e6938b6 982 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
983 tag = PAGECACHE_TAG_TOWRITE;
984 else
985 tag = PAGECACHE_TAG_DIRTY;
811d736f 986retry:
6e6938b6 987 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 988 tag_pages_for_writeback(mapping, index, end);
bd19e012 989 done_index = index;
5a3d5c98
NP
990 while (!done && (index <= end)) {
991 int i;
992
f446daae 993 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
994 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
995 if (nr_pages == 0)
996 break;
811d736f 997
811d736f
DH
998 for (i = 0; i < nr_pages; i++) {
999 struct page *page = pvec.pages[i];
1000
1001 /*
d5482cdf
NP
1002 * At this point, the page may be truncated or
1003 * invalidated (changing page->mapping to NULL), or
1004 * even swizzled back from swapper_space to tmpfs file
1005 * mapping. However, page->index will not change
1006 * because we have a reference on the page.
811d736f 1007 */
d5482cdf
NP
1008 if (page->index > end) {
1009 /*
1010 * can't be range_cyclic (1st pass) because
1011 * end == -1 in that case.
1012 */
1013 done = 1;
1014 break;
1015 }
1016
cf15b07c 1017 done_index = page->index;
d5482cdf 1018
811d736f
DH
1019 lock_page(page);
1020
5a3d5c98
NP
1021 /*
1022 * Page truncated or invalidated. We can freely skip it
1023 * then, even for data integrity operations: the page
1024 * has disappeared concurrently, so there could be no
1025 * real expectation of this data interity operation
1026 * even if there is now a new, dirty page at the same
1027 * pagecache address.
1028 */
811d736f 1029 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1030continue_unlock:
811d736f
DH
1031 unlock_page(page);
1032 continue;
1033 }
1034
515f4a03
NP
1035 if (!PageDirty(page)) {
1036 /* someone wrote it for us */
1037 goto continue_unlock;
1038 }
1039
1040 if (PageWriteback(page)) {
1041 if (wbc->sync_mode != WB_SYNC_NONE)
1042 wait_on_page_writeback(page);
1043 else
1044 goto continue_unlock;
1045 }
811d736f 1046
515f4a03
NP
1047 BUG_ON(PageWriteback(page));
1048 if (!clear_page_dirty_for_io(page))
5a3d5c98 1049 goto continue_unlock;
811d736f 1050
9e094383 1051 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 1052 ret = (*writepage)(page, wbc, data);
00266770
NP
1053 if (unlikely(ret)) {
1054 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1055 unlock_page(page);
1056 ret = 0;
1057 } else {
1058 /*
1059 * done_index is set past this page,
1060 * so media errors will not choke
1061 * background writeout for the entire
1062 * file. This has consequences for
1063 * range_cyclic semantics (ie. it may
1064 * not be suitable for data integrity
1065 * writeout).
1066 */
cf15b07c 1067 done_index = page->index + 1;
00266770
NP
1068 done = 1;
1069 break;
1070 }
0b564927 1071 }
00266770 1072
546a1924
DC
1073 /*
1074 * We stop writing back only if we are not doing
1075 * integrity sync. In case of integrity sync we have to
1076 * keep going until we have written all the pages
1077 * we tagged for writeback prior to entering this loop.
1078 */
1079 if (--wbc->nr_to_write <= 0 &&
1080 wbc->sync_mode == WB_SYNC_NONE) {
1081 done = 1;
1082 break;
05fe478d 1083 }
811d736f
DH
1084 }
1085 pagevec_release(&pvec);
1086 cond_resched();
1087 }
3a4c6800 1088 if (!cycled && !done) {
811d736f 1089 /*
31a12666 1090 * range_cyclic:
811d736f
DH
1091 * We hit the last page and there is more work to be done: wrap
1092 * back to the start of the file
1093 */
31a12666 1094 cycled = 1;
811d736f 1095 index = 0;
31a12666 1096 end = writeback_index - 1;
811d736f
DH
1097 goto retry;
1098 }
0b564927
DC
1099 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1100 mapping->writeback_index = done_index;
06d6cf69 1101
811d736f
DH
1102 return ret;
1103}
0ea97180
MS
1104EXPORT_SYMBOL(write_cache_pages);
1105
1106/*
1107 * Function used by generic_writepages to call the real writepage
1108 * function and set the mapping flags on error
1109 */
1110static int __writepage(struct page *page, struct writeback_control *wbc,
1111 void *data)
1112{
1113 struct address_space *mapping = data;
1114 int ret = mapping->a_ops->writepage(page, wbc);
1115 mapping_set_error(mapping, ret);
1116 return ret;
1117}
1118
1119/**
1120 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1121 * @mapping: address space structure to write
1122 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1123 *
1124 * This is a library function, which implements the writepages()
1125 * address_space_operation.
1126 */
1127int generic_writepages(struct address_space *mapping,
1128 struct writeback_control *wbc)
1129{
9b6096a6
SL
1130 struct blk_plug plug;
1131 int ret;
1132
0ea97180
MS
1133 /* deal with chardevs and other special file */
1134 if (!mapping->a_ops->writepage)
1135 return 0;
1136
9b6096a6
SL
1137 blk_start_plug(&plug);
1138 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1139 blk_finish_plug(&plug);
1140 return ret;
0ea97180 1141}
811d736f
DH
1142
1143EXPORT_SYMBOL(generic_writepages);
1144
1da177e4
LT
1145int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1146{
22905f77
AM
1147 int ret;
1148
1da177e4
LT
1149 if (wbc->nr_to_write <= 0)
1150 return 0;
1151 if (mapping->a_ops->writepages)
d08b3851 1152 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1153 else
1154 ret = generic_writepages(mapping, wbc);
22905f77 1155 return ret;
1da177e4
LT
1156}
1157
1158/**
1159 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1160 * @page: the page to write
1161 * @wait: if true, wait on writeout
1da177e4
LT
1162 *
1163 * The page must be locked by the caller and will be unlocked upon return.
1164 *
1165 * write_one_page() returns a negative error code if I/O failed.
1166 */
1167int write_one_page(struct page *page, int wait)
1168{
1169 struct address_space *mapping = page->mapping;
1170 int ret = 0;
1171 struct writeback_control wbc = {
1172 .sync_mode = WB_SYNC_ALL,
1173 .nr_to_write = 1,
1174 };
1175
1176 BUG_ON(!PageLocked(page));
1177
1178 if (wait)
1179 wait_on_page_writeback(page);
1180
1181 if (clear_page_dirty_for_io(page)) {
1182 page_cache_get(page);
1183 ret = mapping->a_ops->writepage(page, &wbc);
1184 if (ret == 0 && wait) {
1185 wait_on_page_writeback(page);
1186 if (PageError(page))
1187 ret = -EIO;
1188 }
1189 page_cache_release(page);
1190 } else {
1191 unlock_page(page);
1192 }
1193 return ret;
1194}
1195EXPORT_SYMBOL(write_one_page);
1196
76719325
KC
1197/*
1198 * For address_spaces which do not use buffers nor write back.
1199 */
1200int __set_page_dirty_no_writeback(struct page *page)
1201{
1202 if (!PageDirty(page))
c3f0da63 1203 return !TestSetPageDirty(page);
76719325
KC
1204 return 0;
1205}
1206
e3a7cca1
ES
1207/*
1208 * Helper function for set_page_dirty family.
1209 * NOTE: This relies on being atomic wrt interrupts.
1210 */
1211void account_page_dirtied(struct page *page, struct address_space *mapping)
1212{
1213 if (mapping_cap_account_dirty(mapping)) {
1214 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1215 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1
ES
1216 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1217 task_dirty_inc(current);
1218 task_io_account_write(PAGE_CACHE_SIZE);
1219 }
1220}
679ceace 1221EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1222
f629d1c9
MR
1223/*
1224 * Helper function for set_page_writeback family.
1225 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1226 * wrt interrupts.
1227 */
1228void account_page_writeback(struct page *page)
1229{
1230 inc_zone_page_state(page, NR_WRITEBACK);
ea941f0e 1231 inc_zone_page_state(page, NR_WRITTEN);
f629d1c9
MR
1232}
1233EXPORT_SYMBOL(account_page_writeback);
1234
1da177e4
LT
1235/*
1236 * For address_spaces which do not use buffers. Just tag the page as dirty in
1237 * its radix tree.
1238 *
1239 * This is also used when a single buffer is being dirtied: we want to set the
1240 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1241 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1242 *
1243 * Most callers have locked the page, which pins the address_space in memory.
1244 * But zap_pte_range() does not lock the page, however in that case the
1245 * mapping is pinned by the vma's ->vm_file reference.
1246 *
1247 * We take care to handle the case where the page was truncated from the
183ff22b 1248 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1249 */
1250int __set_page_dirty_nobuffers(struct page *page)
1251{
1da177e4
LT
1252 if (!TestSetPageDirty(page)) {
1253 struct address_space *mapping = page_mapping(page);
1254 struct address_space *mapping2;
1255
8c08540f
AM
1256 if (!mapping)
1257 return 1;
1258
19fd6231 1259 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1260 mapping2 = page_mapping(page);
1261 if (mapping2) { /* Race with truncate? */
1262 BUG_ON(mapping2 != mapping);
787d2214 1263 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1264 account_page_dirtied(page, mapping);
8c08540f
AM
1265 radix_tree_tag_set(&mapping->page_tree,
1266 page_index(page), PAGECACHE_TAG_DIRTY);
1267 }
19fd6231 1268 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1269 if (mapping->host) {
1270 /* !PageAnon && !swapper_space */
1271 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1272 }
4741c9fd 1273 return 1;
1da177e4 1274 }
4741c9fd 1275 return 0;
1da177e4
LT
1276}
1277EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1278
1279/*
1280 * When a writepage implementation decides that it doesn't want to write this
1281 * page for some reason, it should redirty the locked page via
1282 * redirty_page_for_writepage() and it should then unlock the page and return 0
1283 */
1284int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1285{
1286 wbc->pages_skipped++;
1287 return __set_page_dirty_nobuffers(page);
1288}
1289EXPORT_SYMBOL(redirty_page_for_writepage);
1290
1291/*
6746aff7
WF
1292 * Dirty a page.
1293 *
1294 * For pages with a mapping this should be done under the page lock
1295 * for the benefit of asynchronous memory errors who prefer a consistent
1296 * dirty state. This rule can be broken in some special cases,
1297 * but should be better not to.
1298 *
1da177e4
LT
1299 * If the mapping doesn't provide a set_page_dirty a_op, then
1300 * just fall through and assume that it wants buffer_heads.
1301 */
1cf6e7d8 1302int set_page_dirty(struct page *page)
1da177e4
LT
1303{
1304 struct address_space *mapping = page_mapping(page);
1305
1306 if (likely(mapping)) {
1307 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1308 /*
1309 * readahead/lru_deactivate_page could remain
1310 * PG_readahead/PG_reclaim due to race with end_page_writeback
1311 * About readahead, if the page is written, the flags would be
1312 * reset. So no problem.
1313 * About lru_deactivate_page, if the page is redirty, the flag
1314 * will be reset. So no problem. but if the page is used by readahead
1315 * it will confuse readahead and make it restart the size rampup
1316 * process. But it's a trivial problem.
1317 */
1318 ClearPageReclaim(page);
9361401e
DH
1319#ifdef CONFIG_BLOCK
1320 if (!spd)
1321 spd = __set_page_dirty_buffers;
1322#endif
1323 return (*spd)(page);
1da177e4 1324 }
4741c9fd
AM
1325 if (!PageDirty(page)) {
1326 if (!TestSetPageDirty(page))
1327 return 1;
1328 }
1da177e4
LT
1329 return 0;
1330}
1331EXPORT_SYMBOL(set_page_dirty);
1332
1333/*
1334 * set_page_dirty() is racy if the caller has no reference against
1335 * page->mapping->host, and if the page is unlocked. This is because another
1336 * CPU could truncate the page off the mapping and then free the mapping.
1337 *
1338 * Usually, the page _is_ locked, or the caller is a user-space process which
1339 * holds a reference on the inode by having an open file.
1340 *
1341 * In other cases, the page should be locked before running set_page_dirty().
1342 */
1343int set_page_dirty_lock(struct page *page)
1344{
1345 int ret;
1346
7eaceacc 1347 lock_page(page);
1da177e4
LT
1348 ret = set_page_dirty(page);
1349 unlock_page(page);
1350 return ret;
1351}
1352EXPORT_SYMBOL(set_page_dirty_lock);
1353
1da177e4
LT
1354/*
1355 * Clear a page's dirty flag, while caring for dirty memory accounting.
1356 * Returns true if the page was previously dirty.
1357 *
1358 * This is for preparing to put the page under writeout. We leave the page
1359 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1360 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1361 * implementation will run either set_page_writeback() or set_page_dirty(),
1362 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1363 * back into sync.
1364 *
1365 * This incoherency between the page's dirty flag and radix-tree tag is
1366 * unfortunate, but it only exists while the page is locked.
1367 */
1368int clear_page_dirty_for_io(struct page *page)
1369{
1370 struct address_space *mapping = page_mapping(page);
1371
79352894
NP
1372 BUG_ON(!PageLocked(page));
1373
7658cc28
LT
1374 if (mapping && mapping_cap_account_dirty(mapping)) {
1375 /*
1376 * Yes, Virginia, this is indeed insane.
1377 *
1378 * We use this sequence to make sure that
1379 * (a) we account for dirty stats properly
1380 * (b) we tell the low-level filesystem to
1381 * mark the whole page dirty if it was
1382 * dirty in a pagetable. Only to then
1383 * (c) clean the page again and return 1 to
1384 * cause the writeback.
1385 *
1386 * This way we avoid all nasty races with the
1387 * dirty bit in multiple places and clearing
1388 * them concurrently from different threads.
1389 *
1390 * Note! Normally the "set_page_dirty(page)"
1391 * has no effect on the actual dirty bit - since
1392 * that will already usually be set. But we
1393 * need the side effects, and it can help us
1394 * avoid races.
1395 *
1396 * We basically use the page "master dirty bit"
1397 * as a serialization point for all the different
1398 * threads doing their things.
7658cc28
LT
1399 */
1400 if (page_mkclean(page))
1401 set_page_dirty(page);
79352894
NP
1402 /*
1403 * We carefully synchronise fault handlers against
1404 * installing a dirty pte and marking the page dirty
1405 * at this point. We do this by having them hold the
1406 * page lock at some point after installing their
1407 * pte, but before marking the page dirty.
1408 * Pages are always locked coming in here, so we get
1409 * the desired exclusion. See mm/memory.c:do_wp_page()
1410 * for more comments.
1411 */
7658cc28 1412 if (TestClearPageDirty(page)) {
8c08540f 1413 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1414 dec_bdi_stat(mapping->backing_dev_info,
1415 BDI_RECLAIMABLE);
7658cc28 1416 return 1;
1da177e4 1417 }
7658cc28 1418 return 0;
1da177e4 1419 }
7658cc28 1420 return TestClearPageDirty(page);
1da177e4 1421}
58bb01a9 1422EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1423
1424int test_clear_page_writeback(struct page *page)
1425{
1426 struct address_space *mapping = page_mapping(page);
1427 int ret;
1428
1429 if (mapping) {
69cb51d1 1430 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1431 unsigned long flags;
1432
19fd6231 1433 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1434 ret = TestClearPageWriteback(page);
69cb51d1 1435 if (ret) {
1da177e4
LT
1436 radix_tree_tag_clear(&mapping->page_tree,
1437 page_index(page),
1438 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1439 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1440 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1441 __bdi_writeout_inc(bdi);
1442 }
69cb51d1 1443 }
19fd6231 1444 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1445 } else {
1446 ret = TestClearPageWriteback(page);
1447 }
d688abf5
AM
1448 if (ret)
1449 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1450 return ret;
1451}
1452
1453int test_set_page_writeback(struct page *page)
1454{
1455 struct address_space *mapping = page_mapping(page);
1456 int ret;
1457
1458 if (mapping) {
69cb51d1 1459 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1460 unsigned long flags;
1461
19fd6231 1462 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1463 ret = TestSetPageWriteback(page);
69cb51d1 1464 if (!ret) {
1da177e4
LT
1465 radix_tree_tag_set(&mapping->page_tree,
1466 page_index(page),
1467 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1468 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1469 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1470 }
1da177e4
LT
1471 if (!PageDirty(page))
1472 radix_tree_tag_clear(&mapping->page_tree,
1473 page_index(page),
1474 PAGECACHE_TAG_DIRTY);
f446daae
JK
1475 radix_tree_tag_clear(&mapping->page_tree,
1476 page_index(page),
1477 PAGECACHE_TAG_TOWRITE);
19fd6231 1478 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1479 } else {
1480 ret = TestSetPageWriteback(page);
1481 }
d688abf5 1482 if (!ret)
f629d1c9 1483 account_page_writeback(page);
1da177e4
LT
1484 return ret;
1485
1486}
1487EXPORT_SYMBOL(test_set_page_writeback);
1488
1489/*
00128188 1490 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1491 * passed tag.
1492 */
1493int mapping_tagged(struct address_space *mapping, int tag)
1494{
1da177e4 1495 int ret;
00128188 1496 rcu_read_lock();
1da177e4 1497 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1498 rcu_read_unlock();
1da177e4
LT
1499 return ret;
1500}
1501EXPORT_SYMBOL(mapping_tagged);
This page took 0.623921 seconds and 5 git commands to generate.