writeback: introduce max-pause and pass-good dirty limits
[deliverable/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
ffd1f609
WF
39/*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42#define MAX_PAUSE max(HZ/5, 1)
43
e98be2d5
WF
44/*
45 * Estimate write bandwidth at 200ms intervals.
46 */
47#define BANDWIDTH_INTERVAL max(HZ/5, 1)
48
1da177e4
LT
49/*
50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
51 * will look to see if it needs to force writeback or throttling.
52 */
53static long ratelimit_pages = 32;
54
1da177e4
LT
55/*
56 * When balance_dirty_pages decides that the caller needs to perform some
57 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 58 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
59 * large amounts of I/O are submitted.
60 */
3a2e9a5a 61static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 62{
3a2e9a5a
WF
63 if (dirtied < ratelimit_pages)
64 dirtied = ratelimit_pages;
65
66 return dirtied + dirtied / 2;
1da177e4
LT
67}
68
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
5b0830cb 72 * Start background writeback (via writeback threads) at this percentage
1da177e4 73 */
1b5e62b4 74int dirty_background_ratio = 10;
1da177e4 75
2da02997
DR
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80unsigned long dirty_background_bytes;
81
195cf453
BG
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86int vm_highmem_is_dirtyable;
87
1da177e4
LT
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
1b5e62b4 91int vm_dirty_ratio = 20;
1da177e4 92
2da02997
DR
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97unsigned long vm_dirty_bytes;
98
1da177e4 99/*
704503d8 100 * The interval between `kupdate'-style writebacks
1da177e4 101 */
22ef37ee 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
103
104/*
704503d8 105 * The longest time for which data is allowed to remain dirty
1da177e4 106 */
22ef37ee 107unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
108
109/*
110 * Flag that makes the machine dump writes/reads and block dirtyings.
111 */
112int block_dump;
113
114/*
ed5b43f1
BS
115 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
116 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
117 */
118int laptop_mode;
119
120EXPORT_SYMBOL(laptop_mode);
121
122/* End of sysctl-exported parameters */
123
c42843f2 124unsigned long global_dirty_limit;
1da177e4 125
04fbfdc1
PZ
126/*
127 * Scale the writeback cache size proportional to the relative writeout speeds.
128 *
129 * We do this by keeping a floating proportion between BDIs, based on page
130 * writeback completions [end_page_writeback()]. Those devices that write out
131 * pages fastest will get the larger share, while the slower will get a smaller
132 * share.
133 *
134 * We use page writeout completions because we are interested in getting rid of
135 * dirty pages. Having them written out is the primary goal.
136 *
137 * We introduce a concept of time, a period over which we measure these events,
138 * because demand can/will vary over time. The length of this period itself is
139 * measured in page writeback completions.
140 *
141 */
142static struct prop_descriptor vm_completions;
3e26c149 143static struct prop_descriptor vm_dirties;
04fbfdc1 144
04fbfdc1
PZ
145/*
146 * couple the period to the dirty_ratio:
147 *
148 * period/2 ~ roundup_pow_of_two(dirty limit)
149 */
150static int calc_period_shift(void)
151{
152 unsigned long dirty_total;
153
2da02997
DR
154 if (vm_dirty_bytes)
155 dirty_total = vm_dirty_bytes / PAGE_SIZE;
156 else
157 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
158 100;
04fbfdc1
PZ
159 return 2 + ilog2(dirty_total - 1);
160}
161
162/*
2da02997 163 * update the period when the dirty threshold changes.
04fbfdc1 164 */
2da02997
DR
165static void update_completion_period(void)
166{
167 int shift = calc_period_shift();
168 prop_change_shift(&vm_completions, shift);
169 prop_change_shift(&vm_dirties, shift);
170}
171
172int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 173 void __user *buffer, size_t *lenp,
2da02997
DR
174 loff_t *ppos)
175{
176 int ret;
177
8d65af78 178 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
179 if (ret == 0 && write)
180 dirty_background_bytes = 0;
181 return ret;
182}
183
184int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 185 void __user *buffer, size_t *lenp,
2da02997
DR
186 loff_t *ppos)
187{
188 int ret;
189
8d65af78 190 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
191 if (ret == 0 && write)
192 dirty_background_ratio = 0;
193 return ret;
194}
195
04fbfdc1 196int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 197 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
198 loff_t *ppos)
199{
200 int old_ratio = vm_dirty_ratio;
2da02997
DR
201 int ret;
202
8d65af78 203 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 204 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
205 update_completion_period();
206 vm_dirty_bytes = 0;
207 }
208 return ret;
209}
210
211
212int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 213 void __user *buffer, size_t *lenp,
2da02997
DR
214 loff_t *ppos)
215{
fc3501d4 216 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
217 int ret;
218
8d65af78 219 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
220 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
221 update_completion_period();
222 vm_dirty_ratio = 0;
04fbfdc1
PZ
223 }
224 return ret;
225}
226
227/*
228 * Increment the BDI's writeout completion count and the global writeout
229 * completion count. Called from test_clear_page_writeback().
230 */
231static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
232{
f7d2b1ec 233 __inc_bdi_stat(bdi, BDI_WRITTEN);
a42dde04
PZ
234 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
235 bdi->max_prop_frac);
04fbfdc1
PZ
236}
237
dd5656e5
MS
238void bdi_writeout_inc(struct backing_dev_info *bdi)
239{
240 unsigned long flags;
241
242 local_irq_save(flags);
243 __bdi_writeout_inc(bdi);
244 local_irq_restore(flags);
245}
246EXPORT_SYMBOL_GPL(bdi_writeout_inc);
247
1cf6e7d8 248void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
249{
250 prop_inc_single(&vm_dirties, &tsk->dirties);
251}
252
04fbfdc1
PZ
253/*
254 * Obtain an accurate fraction of the BDI's portion.
255 */
256static void bdi_writeout_fraction(struct backing_dev_info *bdi,
257 long *numerator, long *denominator)
258{
3efaf0fa 259 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 260 numerator, denominator);
04fbfdc1
PZ
261}
262
3e26c149
PZ
263static inline void task_dirties_fraction(struct task_struct *tsk,
264 long *numerator, long *denominator)
265{
266 prop_fraction_single(&vm_dirties, &tsk->dirties,
267 numerator, denominator);
268}
269
270/*
1babe183 271 * task_dirty_limit - scale down dirty throttling threshold for one task
3e26c149
PZ
272 *
273 * task specific dirty limit:
274 *
275 * dirty -= (dirty/8) * p_{t}
1babe183
WF
276 *
277 * To protect light/slow dirtying tasks from heavier/fast ones, we start
278 * throttling individual tasks before reaching the bdi dirty limit.
279 * Relatively low thresholds will be allocated to heavy dirtiers. So when
280 * dirty pages grow large, heavy dirtiers will be throttled first, which will
281 * effectively curb the growth of dirty pages. Light dirtiers with high enough
282 * dirty threshold may never get throttled.
3e26c149 283 */
16c4042f
WF
284static unsigned long task_dirty_limit(struct task_struct *tsk,
285 unsigned long bdi_dirty)
3e26c149
PZ
286{
287 long numerator, denominator;
16c4042f 288 unsigned long dirty = bdi_dirty;
3e26c149
PZ
289 u64 inv = dirty >> 3;
290
291 task_dirties_fraction(tsk, &numerator, &denominator);
292 inv *= numerator;
293 do_div(inv, denominator);
294
295 dirty -= inv;
3e26c149 296
16c4042f 297 return max(dirty, bdi_dirty/2);
3e26c149
PZ
298}
299
189d3c4a
PZ
300/*
301 *
302 */
189d3c4a
PZ
303static unsigned int bdi_min_ratio;
304
305int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
306{
307 int ret = 0;
189d3c4a 308
cfc4ba53 309 spin_lock_bh(&bdi_lock);
a42dde04 310 if (min_ratio > bdi->max_ratio) {
189d3c4a 311 ret = -EINVAL;
a42dde04
PZ
312 } else {
313 min_ratio -= bdi->min_ratio;
314 if (bdi_min_ratio + min_ratio < 100) {
315 bdi_min_ratio += min_ratio;
316 bdi->min_ratio += min_ratio;
317 } else {
318 ret = -EINVAL;
319 }
320 }
cfc4ba53 321 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
322
323 return ret;
324}
325
326int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
327{
a42dde04
PZ
328 int ret = 0;
329
330 if (max_ratio > 100)
331 return -EINVAL;
332
cfc4ba53 333 spin_lock_bh(&bdi_lock);
a42dde04
PZ
334 if (bdi->min_ratio > max_ratio) {
335 ret = -EINVAL;
336 } else {
337 bdi->max_ratio = max_ratio;
338 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
339 }
cfc4ba53 340 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
341
342 return ret;
343}
a42dde04 344EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 345
1da177e4
LT
346/*
347 * Work out the current dirty-memory clamping and background writeout
348 * thresholds.
349 *
350 * The main aim here is to lower them aggressively if there is a lot of mapped
351 * memory around. To avoid stressing page reclaim with lots of unreclaimable
352 * pages. It is better to clamp down on writers than to start swapping, and
353 * performing lots of scanning.
354 *
355 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
356 *
357 * We don't permit the clamping level to fall below 5% - that is getting rather
358 * excessive.
359 *
360 * We make sure that the background writeout level is below the adjusted
361 * clamping level.
362 */
1b424464
CL
363
364static unsigned long highmem_dirtyable_memory(unsigned long total)
365{
366#ifdef CONFIG_HIGHMEM
367 int node;
368 unsigned long x = 0;
369
37b07e41 370 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
371 struct zone *z =
372 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
373
adea02a1
WF
374 x += zone_page_state(z, NR_FREE_PAGES) +
375 zone_reclaimable_pages(z);
1b424464
CL
376 }
377 /*
378 * Make sure that the number of highmem pages is never larger
379 * than the number of the total dirtyable memory. This can only
380 * occur in very strange VM situations but we want to make sure
381 * that this does not occur.
382 */
383 return min(x, total);
384#else
385 return 0;
386#endif
387}
388
3eefae99
SR
389/**
390 * determine_dirtyable_memory - amount of memory that may be used
391 *
392 * Returns the numebr of pages that can currently be freed and used
393 * by the kernel for direct mappings.
394 */
395unsigned long determine_dirtyable_memory(void)
1b424464
CL
396{
397 unsigned long x;
398
adea02a1 399 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
400
401 if (!vm_highmem_is_dirtyable)
402 x -= highmem_dirtyable_memory(x);
403
1b424464
CL
404 return x + 1; /* Ensure that we never return 0 */
405}
406
ffd1f609
WF
407static unsigned long hard_dirty_limit(unsigned long thresh)
408{
409 return max(thresh, global_dirty_limit);
410}
411
03ab450f 412/*
1babe183
WF
413 * global_dirty_limits - background-writeback and dirty-throttling thresholds
414 *
415 * Calculate the dirty thresholds based on sysctl parameters
416 * - vm.dirty_background_ratio or vm.dirty_background_bytes
417 * - vm.dirty_ratio or vm.dirty_bytes
418 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 419 * real-time tasks.
1babe183 420 */
16c4042f 421void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 422{
364aeb28
DR
423 unsigned long background;
424 unsigned long dirty;
240c879f 425 unsigned long uninitialized_var(available_memory);
1da177e4
LT
426 struct task_struct *tsk;
427
240c879f
MK
428 if (!vm_dirty_bytes || !dirty_background_bytes)
429 available_memory = determine_dirtyable_memory();
430
2da02997
DR
431 if (vm_dirty_bytes)
432 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
433 else
434 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 435
2da02997
DR
436 if (dirty_background_bytes)
437 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
438 else
439 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 440
2da02997
DR
441 if (background >= dirty)
442 background = dirty / 2;
1da177e4
LT
443 tsk = current;
444 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
445 background += background / 4;
446 dirty += dirty / 4;
447 }
448 *pbackground = background;
449 *pdirty = dirty;
16c4042f 450}
04fbfdc1 451
6f718656 452/**
1babe183 453 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
454 * @bdi: the backing_dev_info to query
455 * @dirty: global dirty limit in pages
456 *
457 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
458 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
459 * And the "limit" in the name is not seriously taken as hard limit in
460 * balance_dirty_pages().
1babe183 461 *
6f718656 462 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
463 * - starving fast devices
464 * - piling up dirty pages (that will take long time to sync) on slow devices
465 *
466 * The bdi's share of dirty limit will be adapting to its throughput and
467 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
468 */
469unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
470{
471 u64 bdi_dirty;
472 long numerator, denominator;
04fbfdc1 473
16c4042f
WF
474 /*
475 * Calculate this BDI's share of the dirty ratio.
476 */
477 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 478
16c4042f
WF
479 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
480 bdi_dirty *= numerator;
481 do_div(bdi_dirty, denominator);
04fbfdc1 482
16c4042f
WF
483 bdi_dirty += (dirty * bdi->min_ratio) / 100;
484 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
485 bdi_dirty = dirty * bdi->max_ratio / 100;
486
487 return bdi_dirty;
1da177e4
LT
488}
489
e98be2d5
WF
490static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
491 unsigned long elapsed,
492 unsigned long written)
493{
494 const unsigned long period = roundup_pow_of_two(3 * HZ);
495 unsigned long avg = bdi->avg_write_bandwidth;
496 unsigned long old = bdi->write_bandwidth;
497 u64 bw;
498
499 /*
500 * bw = written * HZ / elapsed
501 *
502 * bw * elapsed + write_bandwidth * (period - elapsed)
503 * write_bandwidth = ---------------------------------------------------
504 * period
505 */
506 bw = written - bdi->written_stamp;
507 bw *= HZ;
508 if (unlikely(elapsed > period)) {
509 do_div(bw, elapsed);
510 avg = bw;
511 goto out;
512 }
513 bw += (u64)bdi->write_bandwidth * (period - elapsed);
514 bw >>= ilog2(period);
515
516 /*
517 * one more level of smoothing, for filtering out sudden spikes
518 */
519 if (avg > old && old >= (unsigned long)bw)
520 avg -= (avg - old) >> 3;
521
522 if (avg < old && old <= (unsigned long)bw)
523 avg += (old - avg) >> 3;
524
525out:
526 bdi->write_bandwidth = bw;
527 bdi->avg_write_bandwidth = avg;
528}
529
c42843f2
WF
530/*
531 * The global dirtyable memory and dirty threshold could be suddenly knocked
532 * down by a large amount (eg. on the startup of KVM in a swapless system).
533 * This may throw the system into deep dirty exceeded state and throttle
534 * heavy/light dirtiers alike. To retain good responsiveness, maintain
535 * global_dirty_limit for tracking slowly down to the knocked down dirty
536 * threshold.
537 */
538static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
539{
540 unsigned long limit = global_dirty_limit;
541
542 /*
543 * Follow up in one step.
544 */
545 if (limit < thresh) {
546 limit = thresh;
547 goto update;
548 }
549
550 /*
551 * Follow down slowly. Use the higher one as the target, because thresh
552 * may drop below dirty. This is exactly the reason to introduce
553 * global_dirty_limit which is guaranteed to lie above the dirty pages.
554 */
555 thresh = max(thresh, dirty);
556 if (limit > thresh) {
557 limit -= (limit - thresh) >> 5;
558 goto update;
559 }
560 return;
561update:
562 global_dirty_limit = limit;
563}
564
565static void global_update_bandwidth(unsigned long thresh,
566 unsigned long dirty,
567 unsigned long now)
568{
569 static DEFINE_SPINLOCK(dirty_lock);
570 static unsigned long update_time;
571
572 /*
573 * check locklessly first to optimize away locking for the most time
574 */
575 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
576 return;
577
578 spin_lock(&dirty_lock);
579 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
580 update_dirty_limit(thresh, dirty);
581 update_time = now;
582 }
583 spin_unlock(&dirty_lock);
584}
585
e98be2d5 586void __bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2
WF
587 unsigned long thresh,
588 unsigned long dirty,
589 unsigned long bdi_thresh,
590 unsigned long bdi_dirty,
e98be2d5
WF
591 unsigned long start_time)
592{
593 unsigned long now = jiffies;
594 unsigned long elapsed = now - bdi->bw_time_stamp;
595 unsigned long written;
596
597 /*
598 * rate-limit, only update once every 200ms.
599 */
600 if (elapsed < BANDWIDTH_INTERVAL)
601 return;
602
603 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
604
605 /*
606 * Skip quiet periods when disk bandwidth is under-utilized.
607 * (at least 1s idle time between two flusher runs)
608 */
609 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
610 goto snapshot;
611
c42843f2
WF
612 if (thresh)
613 global_update_bandwidth(thresh, dirty, now);
614
e98be2d5
WF
615 bdi_update_write_bandwidth(bdi, elapsed, written);
616
617snapshot:
618 bdi->written_stamp = written;
619 bdi->bw_time_stamp = now;
620}
621
622static void bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2
WF
623 unsigned long thresh,
624 unsigned long dirty,
625 unsigned long bdi_thresh,
626 unsigned long bdi_dirty,
e98be2d5
WF
627 unsigned long start_time)
628{
629 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
630 return;
631 spin_lock(&bdi->wb.list_lock);
c42843f2
WF
632 __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
633 start_time);
e98be2d5
WF
634 spin_unlock(&bdi->wb.list_lock);
635}
636
1da177e4
LT
637/*
638 * balance_dirty_pages() must be called by processes which are generating dirty
639 * data. It looks at the number of dirty pages in the machine and will force
640 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
641 * If we're over `background_thresh' then the writeback threads are woken to
642 * perform some writeout.
1da177e4 643 */
3a2e9a5a
WF
644static void balance_dirty_pages(struct address_space *mapping,
645 unsigned long write_chunk)
1da177e4 646{
7762741e
WF
647 unsigned long nr_reclaimable, bdi_nr_reclaimable;
648 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
649 unsigned long bdi_dirty;
364aeb28
DR
650 unsigned long background_thresh;
651 unsigned long dirty_thresh;
652 unsigned long bdi_thresh;
1da177e4 653 unsigned long pages_written = 0;
87c6a9b2 654 unsigned long pause = 1;
e50e3720 655 bool dirty_exceeded = false;
1da177e4 656 struct backing_dev_info *bdi = mapping->backing_dev_info;
e98be2d5 657 unsigned long start_time = jiffies;
1da177e4
LT
658
659 for (;;) {
5fce25a9
PZ
660 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
661 global_page_state(NR_UNSTABLE_NFS);
7762741e 662 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 663
16c4042f
WF
664 global_dirty_limits(&background_thresh, &dirty_thresh);
665
666 /*
667 * Throttle it only when the background writeback cannot
668 * catch-up. This avoids (excessively) small writeouts
669 * when the bdi limits are ramping up.
670 */
7762741e 671 if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
16c4042f
WF
672 break;
673
674 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
675 bdi_thresh = task_dirty_limit(current, bdi_thresh);
676
e50e3720
WF
677 /*
678 * In order to avoid the stacked BDI deadlock we need
679 * to ensure we accurately count the 'dirty' pages when
680 * the threshold is low.
681 *
682 * Otherwise it would be possible to get thresh+n pages
683 * reported dirty, even though there are thresh-m pages
684 * actually dirty; with m+n sitting in the percpu
685 * deltas.
686 */
687 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
688 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
7762741e
WF
689 bdi_dirty = bdi_nr_reclaimable +
690 bdi_stat_sum(bdi, BDI_WRITEBACK);
e50e3720
WF
691 } else {
692 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
7762741e
WF
693 bdi_dirty = bdi_nr_reclaimable +
694 bdi_stat(bdi, BDI_WRITEBACK);
e50e3720 695 }
5fce25a9 696
e50e3720
WF
697 /*
698 * The bdi thresh is somehow "soft" limit derived from the
699 * global "hard" limit. The former helps to prevent heavy IO
700 * bdi or process from holding back light ones; The latter is
701 * the last resort safeguard.
702 */
7762741e
WF
703 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
704 (nr_dirty > dirty_thresh);
e50e3720
WF
705
706 if (!dirty_exceeded)
04fbfdc1 707 break;
1da177e4 708
04fbfdc1
PZ
709 if (!bdi->dirty_exceeded)
710 bdi->dirty_exceeded = 1;
1da177e4 711
c42843f2
WF
712 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
713 bdi_thresh, bdi_dirty, start_time);
e98be2d5 714
1da177e4
LT
715 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
716 * Unstable writes are a feature of certain networked
717 * filesystems (i.e. NFS) in which data may have been
718 * written to the server's write cache, but has not yet
719 * been flushed to permanent storage.
d7831a0b
RK
720 * Only move pages to writeback if this bdi is over its
721 * threshold otherwise wait until the disk writes catch
722 * up.
1da177e4 723 */
d46db3d5 724 trace_balance_dirty_start(bdi);
d7831a0b 725 if (bdi_nr_reclaimable > bdi_thresh) {
d46db3d5
WF
726 pages_written += writeback_inodes_wb(&bdi->wb,
727 write_chunk);
728 trace_balance_dirty_written(bdi, pages_written);
e50e3720
WF
729 if (pages_written >= write_chunk)
730 break; /* We've done our duty */
04fbfdc1 731 }
d153ba64 732 __set_current_state(TASK_UNINTERRUPTIBLE);
d25105e8 733 io_schedule_timeout(pause);
d46db3d5 734 trace_balance_dirty_wait(bdi);
87c6a9b2 735
ffd1f609
WF
736 dirty_thresh = hard_dirty_limit(dirty_thresh);
737 /*
738 * max-pause area. If dirty exceeded but still within this
739 * area, no need to sleep for more than 200ms: (a) 8 pages per
740 * 200ms is typically more than enough to curb heavy dirtiers;
741 * (b) the pause time limit makes the dirtiers more responsive.
742 */
743 if (nr_dirty < dirty_thresh +
744 dirty_thresh / DIRTY_MAXPAUSE_AREA &&
745 time_after(jiffies, start_time + MAX_PAUSE))
746 break;
747 /*
748 * pass-good area. When some bdi gets blocked (eg. NFS server
749 * not responding), or write bandwidth dropped dramatically due
750 * to concurrent reads, or dirty threshold suddenly dropped and
751 * the dirty pages cannot be brought down anytime soon (eg. on
752 * slow USB stick), at least let go of the good bdi's.
753 */
754 if (nr_dirty < dirty_thresh +
755 dirty_thresh / DIRTY_PASSGOOD_AREA &&
756 bdi_dirty < bdi_thresh)
757 break;
758
87c6a9b2
JA
759 /*
760 * Increase the delay for each loop, up to our previous
761 * default of taking a 100ms nap.
762 */
763 pause <<= 1;
764 if (pause > HZ / 10)
765 pause = HZ / 10;
1da177e4
LT
766 }
767
e50e3720 768 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 769 bdi->dirty_exceeded = 0;
1da177e4
LT
770
771 if (writeback_in_progress(bdi))
5b0830cb 772 return;
1da177e4
LT
773
774 /*
775 * In laptop mode, we wait until hitting the higher threshold before
776 * starting background writeout, and then write out all the way down
777 * to the lower threshold. So slow writers cause minimal disk activity.
778 *
779 * In normal mode, we start background writeout at the lower
780 * background_thresh, to keep the amount of dirty memory low.
781 */
782 if ((laptop_mode && pages_written) ||
e50e3720 783 (!laptop_mode && (nr_reclaimable > background_thresh)))
c5444198 784 bdi_start_background_writeback(bdi);
1da177e4
LT
785}
786
a200ee18 787void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 788{
a200ee18 789 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
790 struct address_space *mapping = page_mapping(page);
791
792 if (mapping)
793 balance_dirty_pages_ratelimited(mapping);
794 }
795}
796
245b2e70
TH
797static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
798
1da177e4 799/**
fa5a734e 800 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 801 * @mapping: address_space which was dirtied
a580290c 802 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
803 *
804 * Processes which are dirtying memory should call in here once for each page
805 * which was newly dirtied. The function will periodically check the system's
806 * dirty state and will initiate writeback if needed.
807 *
808 * On really big machines, get_writeback_state is expensive, so try to avoid
809 * calling it too often (ratelimiting). But once we're over the dirty memory
810 * limit we decrease the ratelimiting by a lot, to prevent individual processes
811 * from overshooting the limit by (ratelimit_pages) each.
812 */
fa5a734e
AM
813void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
814 unsigned long nr_pages_dirtied)
1da177e4 815{
36715cef 816 struct backing_dev_info *bdi = mapping->backing_dev_info;
fa5a734e
AM
817 unsigned long ratelimit;
818 unsigned long *p;
1da177e4 819
36715cef
WF
820 if (!bdi_cap_account_dirty(bdi))
821 return;
822
1da177e4 823 ratelimit = ratelimit_pages;
04fbfdc1 824 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
825 ratelimit = 8;
826
827 /*
828 * Check the rate limiting. Also, we do not want to throttle real-time
829 * tasks in balance_dirty_pages(). Period.
830 */
fa5a734e 831 preempt_disable();
245b2e70 832 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
833 *p += nr_pages_dirtied;
834 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 835 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
836 *p = 0;
837 preempt_enable();
3a2e9a5a 838 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
839 return;
840 }
fa5a734e 841 preempt_enable();
1da177e4 842}
fa5a734e 843EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 844
232ea4d6 845void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 846{
364aeb28
DR
847 unsigned long background_thresh;
848 unsigned long dirty_thresh;
1da177e4
LT
849
850 for ( ; ; ) {
16c4042f 851 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
852
853 /*
854 * Boost the allowable dirty threshold a bit for page
855 * allocators so they don't get DoS'ed by heavy writers
856 */
857 dirty_thresh += dirty_thresh / 10; /* wheeee... */
858
c24f21bd
CL
859 if (global_page_state(NR_UNSTABLE_NFS) +
860 global_page_state(NR_WRITEBACK) <= dirty_thresh)
861 break;
8aa7e847 862 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
863
864 /*
865 * The caller might hold locks which can prevent IO completion
866 * or progress in the filesystem. So we cannot just sit here
867 * waiting for IO to complete.
868 */
869 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
870 break;
1da177e4
LT
871 }
872}
873
1da177e4
LT
874/*
875 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
876 */
877int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 878 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 879{
8d65af78 880 proc_dointvec(table, write, buffer, length, ppos);
6423104b 881 bdi_arm_supers_timer();
1da177e4
LT
882 return 0;
883}
884
c2c4986e 885#ifdef CONFIG_BLOCK
31373d09 886void laptop_mode_timer_fn(unsigned long data)
1da177e4 887{
31373d09
MG
888 struct request_queue *q = (struct request_queue *)data;
889 int nr_pages = global_page_state(NR_FILE_DIRTY) +
890 global_page_state(NR_UNSTABLE_NFS);
1da177e4 891
31373d09
MG
892 /*
893 * We want to write everything out, not just down to the dirty
894 * threshold
895 */
31373d09 896 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 897 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
898}
899
900/*
901 * We've spun up the disk and we're in laptop mode: schedule writeback
902 * of all dirty data a few seconds from now. If the flush is already scheduled
903 * then push it back - the user is still using the disk.
904 */
31373d09 905void laptop_io_completion(struct backing_dev_info *info)
1da177e4 906{
31373d09 907 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
908}
909
910/*
911 * We're in laptop mode and we've just synced. The sync's writes will have
912 * caused another writeback to be scheduled by laptop_io_completion.
913 * Nothing needs to be written back anymore, so we unschedule the writeback.
914 */
915void laptop_sync_completion(void)
916{
31373d09
MG
917 struct backing_dev_info *bdi;
918
919 rcu_read_lock();
920
921 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
922 del_timer(&bdi->laptop_mode_wb_timer);
923
924 rcu_read_unlock();
1da177e4 925}
c2c4986e 926#endif
1da177e4
LT
927
928/*
929 * If ratelimit_pages is too high then we can get into dirty-data overload
930 * if a large number of processes all perform writes at the same time.
931 * If it is too low then SMP machines will call the (expensive)
932 * get_writeback_state too often.
933 *
934 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
935 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
936 * thresholds before writeback cuts in.
937 *
938 * But the limit should not be set too high. Because it also controls the
939 * amount of memory which the balance_dirty_pages() caller has to write back.
940 * If this is too large then the caller will block on the IO queue all the
941 * time. So limit it to four megabytes - the balance_dirty_pages() caller
942 * will write six megabyte chunks, max.
943 */
944
2d1d43f6 945void writeback_set_ratelimit(void)
1da177e4 946{
40c99aae 947 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
948 if (ratelimit_pages < 16)
949 ratelimit_pages = 16;
950 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
951 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
952}
953
26c2143b 954static int __cpuinit
1da177e4
LT
955ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
956{
2d1d43f6 957 writeback_set_ratelimit();
aa0f0303 958 return NOTIFY_DONE;
1da177e4
LT
959}
960
74b85f37 961static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
962 .notifier_call = ratelimit_handler,
963 .next = NULL,
964};
965
966/*
dc6e29da
LT
967 * Called early on to tune the page writeback dirty limits.
968 *
969 * We used to scale dirty pages according to how total memory
970 * related to pages that could be allocated for buffers (by
971 * comparing nr_free_buffer_pages() to vm_total_pages.
972 *
973 * However, that was when we used "dirty_ratio" to scale with
974 * all memory, and we don't do that any more. "dirty_ratio"
975 * is now applied to total non-HIGHPAGE memory (by subtracting
976 * totalhigh_pages from vm_total_pages), and as such we can't
977 * get into the old insane situation any more where we had
978 * large amounts of dirty pages compared to a small amount of
979 * non-HIGHMEM memory.
980 *
981 * But we might still want to scale the dirty_ratio by how
982 * much memory the box has..
1da177e4
LT
983 */
984void __init page_writeback_init(void)
985{
04fbfdc1
PZ
986 int shift;
987
2d1d43f6 988 writeback_set_ratelimit();
1da177e4 989 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
990
991 shift = calc_period_shift();
992 prop_descriptor_init(&vm_completions, shift);
3e26c149 993 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
994}
995
f446daae
JK
996/**
997 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
998 * @mapping: address space structure to write
999 * @start: starting page index
1000 * @end: ending page index (inclusive)
1001 *
1002 * This function scans the page range from @start to @end (inclusive) and tags
1003 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1004 * that write_cache_pages (or whoever calls this function) will then use
1005 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1006 * used to avoid livelocking of writeback by a process steadily creating new
1007 * dirty pages in the file (thus it is important for this function to be quick
1008 * so that it can tag pages faster than a dirtying process can create them).
1009 */
1010/*
1011 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1012 */
f446daae
JK
1013void tag_pages_for_writeback(struct address_space *mapping,
1014 pgoff_t start, pgoff_t end)
1015{
3c111a07 1016#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1017 unsigned long tagged;
1018
1019 do {
1020 spin_lock_irq(&mapping->tree_lock);
1021 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1022 &start, end, WRITEBACK_TAG_BATCH,
1023 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1024 spin_unlock_irq(&mapping->tree_lock);
1025 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1026 cond_resched();
d5ed3a4a
JK
1027 /* We check 'start' to handle wrapping when end == ~0UL */
1028 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1029}
1030EXPORT_SYMBOL(tag_pages_for_writeback);
1031
811d736f 1032/**
0ea97180 1033 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1034 * @mapping: address space structure to write
1035 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1036 * @writepage: function called for each page
1037 * @data: data passed to writepage function
811d736f 1038 *
0ea97180 1039 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1040 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1041 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1042 * and msync() need to guarantee that all the data which was dirty at the time
1043 * the call was made get new I/O started against them. If wbc->sync_mode is
1044 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1045 * existing IO to complete.
f446daae
JK
1046 *
1047 * To avoid livelocks (when other process dirties new pages), we first tag
1048 * pages which should be written back with TOWRITE tag and only then start
1049 * writing them. For data-integrity sync we have to be careful so that we do
1050 * not miss some pages (e.g., because some other process has cleared TOWRITE
1051 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1052 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1053 */
0ea97180
MS
1054int write_cache_pages(struct address_space *mapping,
1055 struct writeback_control *wbc, writepage_t writepage,
1056 void *data)
811d736f 1057{
811d736f
DH
1058 int ret = 0;
1059 int done = 0;
811d736f
DH
1060 struct pagevec pvec;
1061 int nr_pages;
31a12666 1062 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1063 pgoff_t index;
1064 pgoff_t end; /* Inclusive */
bd19e012 1065 pgoff_t done_index;
31a12666 1066 int cycled;
811d736f 1067 int range_whole = 0;
f446daae 1068 int tag;
811d736f 1069
811d736f
DH
1070 pagevec_init(&pvec, 0);
1071 if (wbc->range_cyclic) {
31a12666
NP
1072 writeback_index = mapping->writeback_index; /* prev offset */
1073 index = writeback_index;
1074 if (index == 0)
1075 cycled = 1;
1076 else
1077 cycled = 0;
811d736f
DH
1078 end = -1;
1079 } else {
1080 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1081 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1082 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1083 range_whole = 1;
31a12666 1084 cycled = 1; /* ignore range_cyclic tests */
811d736f 1085 }
6e6938b6 1086 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1087 tag = PAGECACHE_TAG_TOWRITE;
1088 else
1089 tag = PAGECACHE_TAG_DIRTY;
811d736f 1090retry:
6e6938b6 1091 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1092 tag_pages_for_writeback(mapping, index, end);
bd19e012 1093 done_index = index;
5a3d5c98
NP
1094 while (!done && (index <= end)) {
1095 int i;
1096
f446daae 1097 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1098 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1099 if (nr_pages == 0)
1100 break;
811d736f 1101
811d736f
DH
1102 for (i = 0; i < nr_pages; i++) {
1103 struct page *page = pvec.pages[i];
1104
1105 /*
d5482cdf
NP
1106 * At this point, the page may be truncated or
1107 * invalidated (changing page->mapping to NULL), or
1108 * even swizzled back from swapper_space to tmpfs file
1109 * mapping. However, page->index will not change
1110 * because we have a reference on the page.
811d736f 1111 */
d5482cdf
NP
1112 if (page->index > end) {
1113 /*
1114 * can't be range_cyclic (1st pass) because
1115 * end == -1 in that case.
1116 */
1117 done = 1;
1118 break;
1119 }
1120
cf15b07c 1121 done_index = page->index;
d5482cdf 1122
811d736f
DH
1123 lock_page(page);
1124
5a3d5c98
NP
1125 /*
1126 * Page truncated or invalidated. We can freely skip it
1127 * then, even for data integrity operations: the page
1128 * has disappeared concurrently, so there could be no
1129 * real expectation of this data interity operation
1130 * even if there is now a new, dirty page at the same
1131 * pagecache address.
1132 */
811d736f 1133 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1134continue_unlock:
811d736f
DH
1135 unlock_page(page);
1136 continue;
1137 }
1138
515f4a03
NP
1139 if (!PageDirty(page)) {
1140 /* someone wrote it for us */
1141 goto continue_unlock;
1142 }
1143
1144 if (PageWriteback(page)) {
1145 if (wbc->sync_mode != WB_SYNC_NONE)
1146 wait_on_page_writeback(page);
1147 else
1148 goto continue_unlock;
1149 }
811d736f 1150
515f4a03
NP
1151 BUG_ON(PageWriteback(page));
1152 if (!clear_page_dirty_for_io(page))
5a3d5c98 1153 goto continue_unlock;
811d736f 1154
9e094383 1155 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 1156 ret = (*writepage)(page, wbc, data);
00266770
NP
1157 if (unlikely(ret)) {
1158 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1159 unlock_page(page);
1160 ret = 0;
1161 } else {
1162 /*
1163 * done_index is set past this page,
1164 * so media errors will not choke
1165 * background writeout for the entire
1166 * file. This has consequences for
1167 * range_cyclic semantics (ie. it may
1168 * not be suitable for data integrity
1169 * writeout).
1170 */
cf15b07c 1171 done_index = page->index + 1;
00266770
NP
1172 done = 1;
1173 break;
1174 }
0b564927 1175 }
00266770 1176
546a1924
DC
1177 /*
1178 * We stop writing back only if we are not doing
1179 * integrity sync. In case of integrity sync we have to
1180 * keep going until we have written all the pages
1181 * we tagged for writeback prior to entering this loop.
1182 */
1183 if (--wbc->nr_to_write <= 0 &&
1184 wbc->sync_mode == WB_SYNC_NONE) {
1185 done = 1;
1186 break;
05fe478d 1187 }
811d736f
DH
1188 }
1189 pagevec_release(&pvec);
1190 cond_resched();
1191 }
3a4c6800 1192 if (!cycled && !done) {
811d736f 1193 /*
31a12666 1194 * range_cyclic:
811d736f
DH
1195 * We hit the last page and there is more work to be done: wrap
1196 * back to the start of the file
1197 */
31a12666 1198 cycled = 1;
811d736f 1199 index = 0;
31a12666 1200 end = writeback_index - 1;
811d736f
DH
1201 goto retry;
1202 }
0b564927
DC
1203 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1204 mapping->writeback_index = done_index;
06d6cf69 1205
811d736f
DH
1206 return ret;
1207}
0ea97180
MS
1208EXPORT_SYMBOL(write_cache_pages);
1209
1210/*
1211 * Function used by generic_writepages to call the real writepage
1212 * function and set the mapping flags on error
1213 */
1214static int __writepage(struct page *page, struct writeback_control *wbc,
1215 void *data)
1216{
1217 struct address_space *mapping = data;
1218 int ret = mapping->a_ops->writepage(page, wbc);
1219 mapping_set_error(mapping, ret);
1220 return ret;
1221}
1222
1223/**
1224 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1225 * @mapping: address space structure to write
1226 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1227 *
1228 * This is a library function, which implements the writepages()
1229 * address_space_operation.
1230 */
1231int generic_writepages(struct address_space *mapping,
1232 struct writeback_control *wbc)
1233{
9b6096a6
SL
1234 struct blk_plug plug;
1235 int ret;
1236
0ea97180
MS
1237 /* deal with chardevs and other special file */
1238 if (!mapping->a_ops->writepage)
1239 return 0;
1240
9b6096a6
SL
1241 blk_start_plug(&plug);
1242 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1243 blk_finish_plug(&plug);
1244 return ret;
0ea97180 1245}
811d736f
DH
1246
1247EXPORT_SYMBOL(generic_writepages);
1248
1da177e4
LT
1249int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1250{
22905f77
AM
1251 int ret;
1252
1da177e4
LT
1253 if (wbc->nr_to_write <= 0)
1254 return 0;
1255 if (mapping->a_ops->writepages)
d08b3851 1256 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1257 else
1258 ret = generic_writepages(mapping, wbc);
22905f77 1259 return ret;
1da177e4
LT
1260}
1261
1262/**
1263 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1264 * @page: the page to write
1265 * @wait: if true, wait on writeout
1da177e4
LT
1266 *
1267 * The page must be locked by the caller and will be unlocked upon return.
1268 *
1269 * write_one_page() returns a negative error code if I/O failed.
1270 */
1271int write_one_page(struct page *page, int wait)
1272{
1273 struct address_space *mapping = page->mapping;
1274 int ret = 0;
1275 struct writeback_control wbc = {
1276 .sync_mode = WB_SYNC_ALL,
1277 .nr_to_write = 1,
1278 };
1279
1280 BUG_ON(!PageLocked(page));
1281
1282 if (wait)
1283 wait_on_page_writeback(page);
1284
1285 if (clear_page_dirty_for_io(page)) {
1286 page_cache_get(page);
1287 ret = mapping->a_ops->writepage(page, &wbc);
1288 if (ret == 0 && wait) {
1289 wait_on_page_writeback(page);
1290 if (PageError(page))
1291 ret = -EIO;
1292 }
1293 page_cache_release(page);
1294 } else {
1295 unlock_page(page);
1296 }
1297 return ret;
1298}
1299EXPORT_SYMBOL(write_one_page);
1300
76719325
KC
1301/*
1302 * For address_spaces which do not use buffers nor write back.
1303 */
1304int __set_page_dirty_no_writeback(struct page *page)
1305{
1306 if (!PageDirty(page))
c3f0da63 1307 return !TestSetPageDirty(page);
76719325
KC
1308 return 0;
1309}
1310
e3a7cca1
ES
1311/*
1312 * Helper function for set_page_dirty family.
1313 * NOTE: This relies on being atomic wrt interrupts.
1314 */
1315void account_page_dirtied(struct page *page, struct address_space *mapping)
1316{
1317 if (mapping_cap_account_dirty(mapping)) {
1318 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1319 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1
ES
1320 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1321 task_dirty_inc(current);
1322 task_io_account_write(PAGE_CACHE_SIZE);
1323 }
1324}
679ceace 1325EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1326
f629d1c9
MR
1327/*
1328 * Helper function for set_page_writeback family.
1329 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1330 * wrt interrupts.
1331 */
1332void account_page_writeback(struct page *page)
1333{
1334 inc_zone_page_state(page, NR_WRITEBACK);
ea941f0e 1335 inc_zone_page_state(page, NR_WRITTEN);
f629d1c9
MR
1336}
1337EXPORT_SYMBOL(account_page_writeback);
1338
1da177e4
LT
1339/*
1340 * For address_spaces which do not use buffers. Just tag the page as dirty in
1341 * its radix tree.
1342 *
1343 * This is also used when a single buffer is being dirtied: we want to set the
1344 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1345 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1346 *
1347 * Most callers have locked the page, which pins the address_space in memory.
1348 * But zap_pte_range() does not lock the page, however in that case the
1349 * mapping is pinned by the vma's ->vm_file reference.
1350 *
1351 * We take care to handle the case where the page was truncated from the
183ff22b 1352 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1353 */
1354int __set_page_dirty_nobuffers(struct page *page)
1355{
1da177e4
LT
1356 if (!TestSetPageDirty(page)) {
1357 struct address_space *mapping = page_mapping(page);
1358 struct address_space *mapping2;
1359
8c08540f
AM
1360 if (!mapping)
1361 return 1;
1362
19fd6231 1363 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1364 mapping2 = page_mapping(page);
1365 if (mapping2) { /* Race with truncate? */
1366 BUG_ON(mapping2 != mapping);
787d2214 1367 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1368 account_page_dirtied(page, mapping);
8c08540f
AM
1369 radix_tree_tag_set(&mapping->page_tree,
1370 page_index(page), PAGECACHE_TAG_DIRTY);
1371 }
19fd6231 1372 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1373 if (mapping->host) {
1374 /* !PageAnon && !swapper_space */
1375 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1376 }
4741c9fd 1377 return 1;
1da177e4 1378 }
4741c9fd 1379 return 0;
1da177e4
LT
1380}
1381EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1382
1383/*
1384 * When a writepage implementation decides that it doesn't want to write this
1385 * page for some reason, it should redirty the locked page via
1386 * redirty_page_for_writepage() and it should then unlock the page and return 0
1387 */
1388int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1389{
1390 wbc->pages_skipped++;
1391 return __set_page_dirty_nobuffers(page);
1392}
1393EXPORT_SYMBOL(redirty_page_for_writepage);
1394
1395/*
6746aff7
WF
1396 * Dirty a page.
1397 *
1398 * For pages with a mapping this should be done under the page lock
1399 * for the benefit of asynchronous memory errors who prefer a consistent
1400 * dirty state. This rule can be broken in some special cases,
1401 * but should be better not to.
1402 *
1da177e4
LT
1403 * If the mapping doesn't provide a set_page_dirty a_op, then
1404 * just fall through and assume that it wants buffer_heads.
1405 */
1cf6e7d8 1406int set_page_dirty(struct page *page)
1da177e4
LT
1407{
1408 struct address_space *mapping = page_mapping(page);
1409
1410 if (likely(mapping)) {
1411 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1412 /*
1413 * readahead/lru_deactivate_page could remain
1414 * PG_readahead/PG_reclaim due to race with end_page_writeback
1415 * About readahead, if the page is written, the flags would be
1416 * reset. So no problem.
1417 * About lru_deactivate_page, if the page is redirty, the flag
1418 * will be reset. So no problem. but if the page is used by readahead
1419 * it will confuse readahead and make it restart the size rampup
1420 * process. But it's a trivial problem.
1421 */
1422 ClearPageReclaim(page);
9361401e
DH
1423#ifdef CONFIG_BLOCK
1424 if (!spd)
1425 spd = __set_page_dirty_buffers;
1426#endif
1427 return (*spd)(page);
1da177e4 1428 }
4741c9fd
AM
1429 if (!PageDirty(page)) {
1430 if (!TestSetPageDirty(page))
1431 return 1;
1432 }
1da177e4
LT
1433 return 0;
1434}
1435EXPORT_SYMBOL(set_page_dirty);
1436
1437/*
1438 * set_page_dirty() is racy if the caller has no reference against
1439 * page->mapping->host, and if the page is unlocked. This is because another
1440 * CPU could truncate the page off the mapping and then free the mapping.
1441 *
1442 * Usually, the page _is_ locked, or the caller is a user-space process which
1443 * holds a reference on the inode by having an open file.
1444 *
1445 * In other cases, the page should be locked before running set_page_dirty().
1446 */
1447int set_page_dirty_lock(struct page *page)
1448{
1449 int ret;
1450
7eaceacc 1451 lock_page(page);
1da177e4
LT
1452 ret = set_page_dirty(page);
1453 unlock_page(page);
1454 return ret;
1455}
1456EXPORT_SYMBOL(set_page_dirty_lock);
1457
1da177e4
LT
1458/*
1459 * Clear a page's dirty flag, while caring for dirty memory accounting.
1460 * Returns true if the page was previously dirty.
1461 *
1462 * This is for preparing to put the page under writeout. We leave the page
1463 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1464 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1465 * implementation will run either set_page_writeback() or set_page_dirty(),
1466 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1467 * back into sync.
1468 *
1469 * This incoherency between the page's dirty flag and radix-tree tag is
1470 * unfortunate, but it only exists while the page is locked.
1471 */
1472int clear_page_dirty_for_io(struct page *page)
1473{
1474 struct address_space *mapping = page_mapping(page);
1475
79352894
NP
1476 BUG_ON(!PageLocked(page));
1477
7658cc28
LT
1478 if (mapping && mapping_cap_account_dirty(mapping)) {
1479 /*
1480 * Yes, Virginia, this is indeed insane.
1481 *
1482 * We use this sequence to make sure that
1483 * (a) we account for dirty stats properly
1484 * (b) we tell the low-level filesystem to
1485 * mark the whole page dirty if it was
1486 * dirty in a pagetable. Only to then
1487 * (c) clean the page again and return 1 to
1488 * cause the writeback.
1489 *
1490 * This way we avoid all nasty races with the
1491 * dirty bit in multiple places and clearing
1492 * them concurrently from different threads.
1493 *
1494 * Note! Normally the "set_page_dirty(page)"
1495 * has no effect on the actual dirty bit - since
1496 * that will already usually be set. But we
1497 * need the side effects, and it can help us
1498 * avoid races.
1499 *
1500 * We basically use the page "master dirty bit"
1501 * as a serialization point for all the different
1502 * threads doing their things.
7658cc28
LT
1503 */
1504 if (page_mkclean(page))
1505 set_page_dirty(page);
79352894
NP
1506 /*
1507 * We carefully synchronise fault handlers against
1508 * installing a dirty pte and marking the page dirty
1509 * at this point. We do this by having them hold the
1510 * page lock at some point after installing their
1511 * pte, but before marking the page dirty.
1512 * Pages are always locked coming in here, so we get
1513 * the desired exclusion. See mm/memory.c:do_wp_page()
1514 * for more comments.
1515 */
7658cc28 1516 if (TestClearPageDirty(page)) {
8c08540f 1517 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1518 dec_bdi_stat(mapping->backing_dev_info,
1519 BDI_RECLAIMABLE);
7658cc28 1520 return 1;
1da177e4 1521 }
7658cc28 1522 return 0;
1da177e4 1523 }
7658cc28 1524 return TestClearPageDirty(page);
1da177e4 1525}
58bb01a9 1526EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1527
1528int test_clear_page_writeback(struct page *page)
1529{
1530 struct address_space *mapping = page_mapping(page);
1531 int ret;
1532
1533 if (mapping) {
69cb51d1 1534 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1535 unsigned long flags;
1536
19fd6231 1537 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1538 ret = TestClearPageWriteback(page);
69cb51d1 1539 if (ret) {
1da177e4
LT
1540 radix_tree_tag_clear(&mapping->page_tree,
1541 page_index(page),
1542 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1543 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1544 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1545 __bdi_writeout_inc(bdi);
1546 }
69cb51d1 1547 }
19fd6231 1548 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1549 } else {
1550 ret = TestClearPageWriteback(page);
1551 }
d688abf5
AM
1552 if (ret)
1553 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1554 return ret;
1555}
1556
1557int test_set_page_writeback(struct page *page)
1558{
1559 struct address_space *mapping = page_mapping(page);
1560 int ret;
1561
1562 if (mapping) {
69cb51d1 1563 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1564 unsigned long flags;
1565
19fd6231 1566 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1567 ret = TestSetPageWriteback(page);
69cb51d1 1568 if (!ret) {
1da177e4
LT
1569 radix_tree_tag_set(&mapping->page_tree,
1570 page_index(page),
1571 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1572 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1573 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1574 }
1da177e4
LT
1575 if (!PageDirty(page))
1576 radix_tree_tag_clear(&mapping->page_tree,
1577 page_index(page),
1578 PAGECACHE_TAG_DIRTY);
f446daae
JK
1579 radix_tree_tag_clear(&mapping->page_tree,
1580 page_index(page),
1581 PAGECACHE_TAG_TOWRITE);
19fd6231 1582 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1583 } else {
1584 ret = TestSetPageWriteback(page);
1585 }
d688abf5 1586 if (!ret)
f629d1c9 1587 account_page_writeback(page);
1da177e4
LT
1588 return ret;
1589
1590}
1591EXPORT_SYMBOL(test_set_page_writeback);
1592
1593/*
00128188 1594 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1595 * passed tag.
1596 */
1597int mapping_tagged(struct address_space *mapping, int tag)
1598{
1da177e4 1599 int ret;
00128188 1600 rcu_read_lock();
1da177e4 1601 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1602 rcu_read_unlock();
1da177e4
LT
1603 return ret;
1604}
1605EXPORT_SYMBOL(mapping_tagged);
This page took 0.601134 seconds and 5 git commands to generate.