[PATCH] Optimize free_one_page
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
ac924c60 42#include <asm/div64.h>
1da177e4
LT
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
c3d8c141 49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 50EXPORT_SYMBOL(node_online_map);
c3d8c141 51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 52EXPORT_SYMBOL(node_possible_map);
6c231b7b 53unsigned long totalram_pages __read_mostly;
cb45b0e9 54unsigned long totalreserve_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
2f1b6248
CL
71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72 256,
fb0e7942 73#ifdef CONFIG_ZONE_DMA32
2f1b6248 74 256,
fb0e7942 75#endif
e53ef38d 76#ifdef CONFIG_HIGHMEM
2f1b6248 77 32
e53ef38d 78#endif
2f1b6248 79};
1da177e4
LT
80
81EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
82
83/*
84 * Used by page_zone() to look up the address of the struct zone whose
85 * id is encoded in the upper bits of page->flags
86 */
c3d8c141 87struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
88EXPORT_SYMBOL(zone_table);
89
2f1b6248
CL
90static char *zone_names[MAX_NR_ZONES] = {
91 "DMA",
fb0e7942 92#ifdef CONFIG_ZONE_DMA32
2f1b6248 93 "DMA32",
fb0e7942 94#endif
2f1b6248 95 "Normal",
e53ef38d 96#ifdef CONFIG_HIGHMEM
2f1b6248 97 "HighMem"
e53ef38d 98#endif
2f1b6248
CL
99};
100
1da177e4
LT
101int min_free_kbytes = 1024;
102
86356ab1
YG
103unsigned long __meminitdata nr_kernel_pages;
104unsigned long __meminitdata nr_all_pages;
1da177e4 105
13e7444b 106#ifdef CONFIG_DEBUG_VM
c6a57e19 107static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 108{
bdc8cb98
DH
109 int ret = 0;
110 unsigned seq;
111 unsigned long pfn = page_to_pfn(page);
c6a57e19 112
bdc8cb98
DH
113 do {
114 seq = zone_span_seqbegin(zone);
115 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
116 ret = 1;
117 else if (pfn < zone->zone_start_pfn)
118 ret = 1;
119 } while (zone_span_seqretry(zone, seq));
120
121 return ret;
c6a57e19
DH
122}
123
124static int page_is_consistent(struct zone *zone, struct page *page)
125{
1da177e4
LT
126#ifdef CONFIG_HOLES_IN_ZONE
127 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 128 return 0;
1da177e4
LT
129#endif
130 if (zone != page_zone(page))
c6a57e19
DH
131 return 0;
132
133 return 1;
134}
135/*
136 * Temporary debugging check for pages not lying within a given zone.
137 */
138static int bad_range(struct zone *zone, struct page *page)
139{
140 if (page_outside_zone_boundaries(zone, page))
1da177e4 141 return 1;
c6a57e19
DH
142 if (!page_is_consistent(zone, page))
143 return 1;
144
1da177e4
LT
145 return 0;
146}
13e7444b
NP
147#else
148static inline int bad_range(struct zone *zone, struct page *page)
149{
150 return 0;
151}
152#endif
153
224abf92 154static void bad_page(struct page *page)
1da177e4 155{
224abf92 156 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
157 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
158 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
159 KERN_EMERG "Backtrace:\n",
224abf92
NP
160 current->comm, page, (int)(2*sizeof(unsigned long)),
161 (unsigned long)page->flags, page->mapping,
162 page_mapcount(page), page_count(page));
1da177e4 163 dump_stack();
334795ec
HD
164 page->flags &= ~(1 << PG_lru |
165 1 << PG_private |
1da177e4 166 1 << PG_locked |
1da177e4
LT
167 1 << PG_active |
168 1 << PG_dirty |
334795ec
HD
169 1 << PG_reclaim |
170 1 << PG_slab |
1da177e4 171 1 << PG_swapcache |
676165a8
NP
172 1 << PG_writeback |
173 1 << PG_buddy );
1da177e4
LT
174 set_page_count(page, 0);
175 reset_page_mapcount(page);
176 page->mapping = NULL;
9f158333 177 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
178}
179
1da177e4
LT
180/*
181 * Higher-order pages are called "compound pages". They are structured thusly:
182 *
183 * The first PAGE_SIZE page is called the "head page".
184 *
185 * The remaining PAGE_SIZE pages are called "tail pages".
186 *
187 * All pages have PG_compound set. All pages have their ->private pointing at
188 * the head page (even the head page has this).
189 *
41d78ba5
HD
190 * The first tail page's ->lru.next holds the address of the compound page's
191 * put_page() function. Its ->lru.prev holds the order of allocation.
192 * This usage means that zero-order pages may not be compound.
1da177e4 193 */
d98c7a09
HD
194
195static void free_compound_page(struct page *page)
196{
197 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
198}
199
1da177e4
LT
200static void prep_compound_page(struct page *page, unsigned long order)
201{
202 int i;
203 int nr_pages = 1 << order;
204
d98c7a09 205 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 206 page[1].lru.prev = (void *)order;
1da177e4
LT
207 for (i = 0; i < nr_pages; i++) {
208 struct page *p = page + i;
209
5e9dace8 210 __SetPageCompound(p);
4c21e2f2 211 set_page_private(p, (unsigned long)page);
1da177e4
LT
212 }
213}
214
215static void destroy_compound_page(struct page *page, unsigned long order)
216{
217 int i;
218 int nr_pages = 1 << order;
219
41d78ba5 220 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 221 bad_page(page);
1da177e4
LT
222
223 for (i = 0; i < nr_pages; i++) {
224 struct page *p = page + i;
225
224abf92
NP
226 if (unlikely(!PageCompound(p) |
227 (page_private(p) != (unsigned long)page)))
228 bad_page(page);
5e9dace8 229 __ClearPageCompound(p);
1da177e4
LT
230 }
231}
1da177e4 232
17cf4406
NP
233static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
234{
235 int i;
236
725d704e 237 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
238 /*
239 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
240 * and __GFP_HIGHMEM from hard or soft interrupt context.
241 */
725d704e 242 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
243 for (i = 0; i < (1 << order); i++)
244 clear_highpage(page + i);
245}
246
1da177e4
LT
247/*
248 * function for dealing with page's order in buddy system.
249 * zone->lock is already acquired when we use these.
250 * So, we don't need atomic page->flags operations here.
251 */
6aa3001b
AM
252static inline unsigned long page_order(struct page *page)
253{
4c21e2f2 254 return page_private(page);
1da177e4
LT
255}
256
6aa3001b
AM
257static inline void set_page_order(struct page *page, int order)
258{
4c21e2f2 259 set_page_private(page, order);
676165a8 260 __SetPageBuddy(page);
1da177e4
LT
261}
262
263static inline void rmv_page_order(struct page *page)
264{
676165a8 265 __ClearPageBuddy(page);
4c21e2f2 266 set_page_private(page, 0);
1da177e4
LT
267}
268
269/*
270 * Locate the struct page for both the matching buddy in our
271 * pair (buddy1) and the combined O(n+1) page they form (page).
272 *
273 * 1) Any buddy B1 will have an order O twin B2 which satisfies
274 * the following equation:
275 * B2 = B1 ^ (1 << O)
276 * For example, if the starting buddy (buddy2) is #8 its order
277 * 1 buddy is #10:
278 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
279 *
280 * 2) Any buddy B will have an order O+1 parent P which
281 * satisfies the following equation:
282 * P = B & ~(1 << O)
283 *
d6e05edc 284 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
285 */
286static inline struct page *
287__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
288{
289 unsigned long buddy_idx = page_idx ^ (1 << order);
290
291 return page + (buddy_idx - page_idx);
292}
293
294static inline unsigned long
295__find_combined_index(unsigned long page_idx, unsigned int order)
296{
297 return (page_idx & ~(1 << order));
298}
299
300/*
301 * This function checks whether a page is free && is the buddy
302 * we can do coalesce a page and its buddy if
13e7444b 303 * (a) the buddy is not in a hole &&
676165a8 304 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
305 * (c) a page and its buddy have the same order &&
306 * (d) a page and its buddy are in the same zone.
676165a8
NP
307 *
308 * For recording whether a page is in the buddy system, we use PG_buddy.
309 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 310 *
676165a8 311 * For recording page's order, we use page_private(page).
1da177e4 312 */
cb2b95e1
AW
313static inline int page_is_buddy(struct page *page, struct page *buddy,
314 int order)
1da177e4 315{
13e7444b 316#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 317 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
318 return 0;
319#endif
320
cb2b95e1
AW
321 if (page_zone_id(page) != page_zone_id(buddy))
322 return 0;
323
324 if (PageBuddy(buddy) && page_order(buddy) == order) {
325 BUG_ON(page_count(buddy) != 0);
6aa3001b 326 return 1;
676165a8 327 }
6aa3001b 328 return 0;
1da177e4
LT
329}
330
331/*
332 * Freeing function for a buddy system allocator.
333 *
334 * The concept of a buddy system is to maintain direct-mapped table
335 * (containing bit values) for memory blocks of various "orders".
336 * The bottom level table contains the map for the smallest allocatable
337 * units of memory (here, pages), and each level above it describes
338 * pairs of units from the levels below, hence, "buddies".
339 * At a high level, all that happens here is marking the table entry
340 * at the bottom level available, and propagating the changes upward
341 * as necessary, plus some accounting needed to play nicely with other
342 * parts of the VM system.
343 * At each level, we keep a list of pages, which are heads of continuous
676165a8 344 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 345 * order is recorded in page_private(page) field.
1da177e4
LT
346 * So when we are allocating or freeing one, we can derive the state of the
347 * other. That is, if we allocate a small block, and both were
348 * free, the remainder of the region must be split into blocks.
349 * If a block is freed, and its buddy is also free, then this
350 * triggers coalescing into a block of larger size.
351 *
352 * -- wli
353 */
354
48db57f8 355static inline void __free_one_page(struct page *page,
1da177e4
LT
356 struct zone *zone, unsigned int order)
357{
358 unsigned long page_idx;
359 int order_size = 1 << order;
360
224abf92 361 if (unlikely(PageCompound(page)))
1da177e4
LT
362 destroy_compound_page(page, order);
363
364 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
365
725d704e
NP
366 VM_BUG_ON(page_idx & (order_size - 1));
367 VM_BUG_ON(bad_range(zone, page));
1da177e4
LT
368
369 zone->free_pages += order_size;
370 while (order < MAX_ORDER-1) {
371 unsigned long combined_idx;
372 struct free_area *area;
373 struct page *buddy;
374
1da177e4 375 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 376 if (!page_is_buddy(page, buddy, order))
1da177e4 377 break; /* Move the buddy up one level. */
13e7444b 378
1da177e4
LT
379 list_del(&buddy->lru);
380 area = zone->free_area + order;
381 area->nr_free--;
382 rmv_page_order(buddy);
13e7444b 383 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
384 page = page + (combined_idx - page_idx);
385 page_idx = combined_idx;
386 order++;
387 }
388 set_page_order(page, order);
389 list_add(&page->lru, &zone->free_area[order].free_list);
390 zone->free_area[order].nr_free++;
391}
392
224abf92 393static inline int free_pages_check(struct page *page)
1da177e4 394{
92be2e33
NP
395 if (unlikely(page_mapcount(page) |
396 (page->mapping != NULL) |
397 (page_count(page) != 0) |
1da177e4
LT
398 (page->flags & (
399 1 << PG_lru |
400 1 << PG_private |
401 1 << PG_locked |
402 1 << PG_active |
403 1 << PG_reclaim |
404 1 << PG_slab |
405 1 << PG_swapcache |
b5810039 406 1 << PG_writeback |
676165a8
NP
407 1 << PG_reserved |
408 1 << PG_buddy ))))
224abf92 409 bad_page(page);
1da177e4 410 if (PageDirty(page))
242e5468 411 __ClearPageDirty(page);
689bcebf
HD
412 /*
413 * For now, we report if PG_reserved was found set, but do not
414 * clear it, and do not free the page. But we shall soon need
415 * to do more, for when the ZERO_PAGE count wraps negative.
416 */
417 return PageReserved(page);
1da177e4
LT
418}
419
420/*
421 * Frees a list of pages.
422 * Assumes all pages on list are in same zone, and of same order.
207f36ee 423 * count is the number of pages to free.
1da177e4
LT
424 *
425 * If the zone was previously in an "all pages pinned" state then look to
426 * see if this freeing clears that state.
427 *
428 * And clear the zone's pages_scanned counter, to hold off the "all pages are
429 * pinned" detection logic.
430 */
48db57f8
NP
431static void free_pages_bulk(struct zone *zone, int count,
432 struct list_head *list, int order)
1da177e4 433{
c54ad30c 434 spin_lock(&zone->lock);
1da177e4
LT
435 zone->all_unreclaimable = 0;
436 zone->pages_scanned = 0;
48db57f8
NP
437 while (count--) {
438 struct page *page;
439
725d704e 440 VM_BUG_ON(list_empty(list));
1da177e4 441 page = list_entry(list->prev, struct page, lru);
48db57f8 442 /* have to delete it as __free_one_page list manipulates */
1da177e4 443 list_del(&page->lru);
48db57f8 444 __free_one_page(page, zone, order);
1da177e4 445 }
c54ad30c 446 spin_unlock(&zone->lock);
1da177e4
LT
447}
448
48db57f8 449static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 450{
006d22d9
CL
451 spin_lock(&zone->lock);
452 zone->all_unreclaimable = 0;
453 zone->pages_scanned = 0;
454 __free_one_page(page, zone ,order);
455 spin_unlock(&zone->lock);
48db57f8
NP
456}
457
458static void __free_pages_ok(struct page *page, unsigned int order)
459{
460 unsigned long flags;
1da177e4 461 int i;
689bcebf 462 int reserved = 0;
1da177e4
LT
463
464 arch_free_page(page, order);
de5097c2 465 if (!PageHighMem(page))
f9b8404c
IM
466 debug_check_no_locks_freed(page_address(page),
467 PAGE_SIZE<<order);
1da177e4 468
1da177e4 469 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 470 reserved += free_pages_check(page + i);
689bcebf
HD
471 if (reserved)
472 return;
473
48db57f8 474 kernel_map_pages(page, 1 << order, 0);
c54ad30c 475 local_irq_save(flags);
f8891e5e 476 __count_vm_events(PGFREE, 1 << order);
48db57f8 477 free_one_page(page_zone(page), page, order);
c54ad30c 478 local_irq_restore(flags);
1da177e4
LT
479}
480
a226f6c8
DH
481/*
482 * permit the bootmem allocator to evade page validation on high-order frees
483 */
484void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
485{
486 if (order == 0) {
487 __ClearPageReserved(page);
488 set_page_count(page, 0);
7835e98b 489 set_page_refcounted(page);
545b1ea9 490 __free_page(page);
a226f6c8 491 } else {
a226f6c8
DH
492 int loop;
493
545b1ea9 494 prefetchw(page);
a226f6c8
DH
495 for (loop = 0; loop < BITS_PER_LONG; loop++) {
496 struct page *p = &page[loop];
497
545b1ea9
NP
498 if (loop + 1 < BITS_PER_LONG)
499 prefetchw(p + 1);
a226f6c8
DH
500 __ClearPageReserved(p);
501 set_page_count(p, 0);
502 }
503
7835e98b 504 set_page_refcounted(page);
545b1ea9 505 __free_pages(page, order);
a226f6c8
DH
506 }
507}
508
1da177e4
LT
509
510/*
511 * The order of subdivision here is critical for the IO subsystem.
512 * Please do not alter this order without good reasons and regression
513 * testing. Specifically, as large blocks of memory are subdivided,
514 * the order in which smaller blocks are delivered depends on the order
515 * they're subdivided in this function. This is the primary factor
516 * influencing the order in which pages are delivered to the IO
517 * subsystem according to empirical testing, and this is also justified
518 * by considering the behavior of a buddy system containing a single
519 * large block of memory acted on by a series of small allocations.
520 * This behavior is a critical factor in sglist merging's success.
521 *
522 * -- wli
523 */
085cc7d5 524static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
525 int low, int high, struct free_area *area)
526{
527 unsigned long size = 1 << high;
528
529 while (high > low) {
530 area--;
531 high--;
532 size >>= 1;
725d704e 533 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
534 list_add(&page[size].lru, &area->free_list);
535 area->nr_free++;
536 set_page_order(&page[size], high);
537 }
1da177e4
LT
538}
539
1da177e4
LT
540/*
541 * This page is about to be returned from the page allocator
542 */
17cf4406 543static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 544{
92be2e33
NP
545 if (unlikely(page_mapcount(page) |
546 (page->mapping != NULL) |
547 (page_count(page) != 0) |
334795ec
HD
548 (page->flags & (
549 1 << PG_lru |
1da177e4
LT
550 1 << PG_private |
551 1 << PG_locked |
1da177e4
LT
552 1 << PG_active |
553 1 << PG_dirty |
554 1 << PG_reclaim |
334795ec 555 1 << PG_slab |
1da177e4 556 1 << PG_swapcache |
b5810039 557 1 << PG_writeback |
676165a8
NP
558 1 << PG_reserved |
559 1 << PG_buddy ))))
224abf92 560 bad_page(page);
1da177e4 561
689bcebf
HD
562 /*
563 * For now, we report if PG_reserved was found set, but do not
564 * clear it, and do not allocate the page: as a safety net.
565 */
566 if (PageReserved(page))
567 return 1;
568
1da177e4
LT
569 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
570 1 << PG_referenced | 1 << PG_arch_1 |
571 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 572 set_page_private(page, 0);
7835e98b 573 set_page_refcounted(page);
1da177e4 574 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
575
576 if (gfp_flags & __GFP_ZERO)
577 prep_zero_page(page, order, gfp_flags);
578
579 if (order && (gfp_flags & __GFP_COMP))
580 prep_compound_page(page, order);
581
689bcebf 582 return 0;
1da177e4
LT
583}
584
585/*
586 * Do the hard work of removing an element from the buddy allocator.
587 * Call me with the zone->lock already held.
588 */
589static struct page *__rmqueue(struct zone *zone, unsigned int order)
590{
591 struct free_area * area;
592 unsigned int current_order;
593 struct page *page;
594
595 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
596 area = zone->free_area + current_order;
597 if (list_empty(&area->free_list))
598 continue;
599
600 page = list_entry(area->free_list.next, struct page, lru);
601 list_del(&page->lru);
602 rmv_page_order(page);
603 area->nr_free--;
604 zone->free_pages -= 1UL << order;
085cc7d5
NP
605 expand(zone, page, order, current_order, area);
606 return page;
1da177e4
LT
607 }
608
609 return NULL;
610}
611
612/*
613 * Obtain a specified number of elements from the buddy allocator, all under
614 * a single hold of the lock, for efficiency. Add them to the supplied list.
615 * Returns the number of new pages which were placed at *list.
616 */
617static int rmqueue_bulk(struct zone *zone, unsigned int order,
618 unsigned long count, struct list_head *list)
619{
1da177e4 620 int i;
1da177e4 621
c54ad30c 622 spin_lock(&zone->lock);
1da177e4 623 for (i = 0; i < count; ++i) {
085cc7d5
NP
624 struct page *page = __rmqueue(zone, order);
625 if (unlikely(page == NULL))
1da177e4 626 break;
1da177e4
LT
627 list_add_tail(&page->lru, list);
628 }
c54ad30c 629 spin_unlock(&zone->lock);
085cc7d5 630 return i;
1da177e4
LT
631}
632
4ae7c039 633#ifdef CONFIG_NUMA
8fce4d8e
CL
634/*
635 * Called from the slab reaper to drain pagesets on a particular node that
636 * belong to the currently executing processor.
879336c3
CL
637 * Note that this function must be called with the thread pinned to
638 * a single processor.
8fce4d8e
CL
639 */
640void drain_node_pages(int nodeid)
4ae7c039 641{
2f6726e5
CL
642 int i;
643 enum zone_type z;
4ae7c039
CL
644 unsigned long flags;
645
8fce4d8e
CL
646 for (z = 0; z < MAX_NR_ZONES; z++) {
647 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
648 struct per_cpu_pageset *pset;
649
23316bc8 650 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
651 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
652 struct per_cpu_pages *pcp;
653
654 pcp = &pset->pcp[i];
879336c3
CL
655 if (pcp->count) {
656 local_irq_save(flags);
657 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
658 pcp->count = 0;
659 local_irq_restore(flags);
660 }
4ae7c039
CL
661 }
662 }
4ae7c039
CL
663}
664#endif
665
1da177e4
LT
666#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
667static void __drain_pages(unsigned int cpu)
668{
c54ad30c 669 unsigned long flags;
1da177e4
LT
670 struct zone *zone;
671 int i;
672
673 for_each_zone(zone) {
674 struct per_cpu_pageset *pset;
675
e7c8d5c9 676 pset = zone_pcp(zone, cpu);
1da177e4
LT
677 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
678 struct per_cpu_pages *pcp;
679
680 pcp = &pset->pcp[i];
c54ad30c 681 local_irq_save(flags);
48db57f8
NP
682 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
683 pcp->count = 0;
c54ad30c 684 local_irq_restore(flags);
1da177e4
LT
685 }
686 }
687}
688#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
689
690#ifdef CONFIG_PM
691
692void mark_free_pages(struct zone *zone)
693{
694 unsigned long zone_pfn, flags;
695 int order;
696 struct list_head *curr;
697
698 if (!zone->spanned_pages)
699 return;
700
701 spin_lock_irqsave(&zone->lock, flags);
702 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
703 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
704
705 for (order = MAX_ORDER - 1; order >= 0; --order)
706 list_for_each(curr, &zone->free_area[order].free_list) {
707 unsigned long start_pfn, i;
708
709 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
710
711 for (i=0; i < (1<<order); i++)
712 SetPageNosaveFree(pfn_to_page(start_pfn+i));
713 }
714 spin_unlock_irqrestore(&zone->lock, flags);
715}
716
717/*
718 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
719 */
720void drain_local_pages(void)
721{
722 unsigned long flags;
723
724 local_irq_save(flags);
725 __drain_pages(smp_processor_id());
726 local_irq_restore(flags);
727}
728#endif /* CONFIG_PM */
729
1da177e4
LT
730/*
731 * Free a 0-order page
732 */
1da177e4
LT
733static void fastcall free_hot_cold_page(struct page *page, int cold)
734{
735 struct zone *zone = page_zone(page);
736 struct per_cpu_pages *pcp;
737 unsigned long flags;
738
739 arch_free_page(page, 0);
740
1da177e4
LT
741 if (PageAnon(page))
742 page->mapping = NULL;
224abf92 743 if (free_pages_check(page))
689bcebf
HD
744 return;
745
689bcebf
HD
746 kernel_map_pages(page, 1, 0);
747
e7c8d5c9 748 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 749 local_irq_save(flags);
f8891e5e 750 __count_vm_event(PGFREE);
1da177e4
LT
751 list_add(&page->lru, &pcp->list);
752 pcp->count++;
48db57f8
NP
753 if (pcp->count >= pcp->high) {
754 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
755 pcp->count -= pcp->batch;
756 }
1da177e4
LT
757 local_irq_restore(flags);
758 put_cpu();
759}
760
761void fastcall free_hot_page(struct page *page)
762{
763 free_hot_cold_page(page, 0);
764}
765
766void fastcall free_cold_page(struct page *page)
767{
768 free_hot_cold_page(page, 1);
769}
770
8dfcc9ba
NP
771/*
772 * split_page takes a non-compound higher-order page, and splits it into
773 * n (1<<order) sub-pages: page[0..n]
774 * Each sub-page must be freed individually.
775 *
776 * Note: this is probably too low level an operation for use in drivers.
777 * Please consult with lkml before using this in your driver.
778 */
779void split_page(struct page *page, unsigned int order)
780{
781 int i;
782
725d704e
NP
783 VM_BUG_ON(PageCompound(page));
784 VM_BUG_ON(!page_count(page));
7835e98b
NP
785 for (i = 1; i < (1 << order); i++)
786 set_page_refcounted(page + i);
8dfcc9ba 787}
8dfcc9ba 788
1da177e4
LT
789/*
790 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
791 * we cheat by calling it from here, in the order > 0 path. Saves a branch
792 * or two.
793 */
a74609fa
NP
794static struct page *buffered_rmqueue(struct zonelist *zonelist,
795 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
796{
797 unsigned long flags;
689bcebf 798 struct page *page;
1da177e4 799 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 800 int cpu;
1da177e4 801
689bcebf 802again:
a74609fa 803 cpu = get_cpu();
48db57f8 804 if (likely(order == 0)) {
1da177e4
LT
805 struct per_cpu_pages *pcp;
806
a74609fa 807 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 808 local_irq_save(flags);
a74609fa 809 if (!pcp->count) {
1da177e4
LT
810 pcp->count += rmqueue_bulk(zone, 0,
811 pcp->batch, &pcp->list);
a74609fa
NP
812 if (unlikely(!pcp->count))
813 goto failed;
1da177e4 814 }
a74609fa
NP
815 page = list_entry(pcp->list.next, struct page, lru);
816 list_del(&page->lru);
817 pcp->count--;
7fb1d9fc 818 } else {
1da177e4
LT
819 spin_lock_irqsave(&zone->lock, flags);
820 page = __rmqueue(zone, order);
a74609fa
NP
821 spin_unlock(&zone->lock);
822 if (!page)
823 goto failed;
1da177e4
LT
824 }
825
f8891e5e 826 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 827 zone_statistics(zonelist, zone);
a74609fa
NP
828 local_irq_restore(flags);
829 put_cpu();
1da177e4 830
725d704e 831 VM_BUG_ON(bad_range(zone, page));
17cf4406 832 if (prep_new_page(page, order, gfp_flags))
a74609fa 833 goto again;
1da177e4 834 return page;
a74609fa
NP
835
836failed:
837 local_irq_restore(flags);
838 put_cpu();
839 return NULL;
1da177e4
LT
840}
841
7fb1d9fc 842#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
843#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
844#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
845#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
846#define ALLOC_HARDER 0x10 /* try to alloc harder */
847#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
848#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 849
1da177e4
LT
850/*
851 * Return 1 if free pages are above 'mark'. This takes into account the order
852 * of the allocation.
853 */
854int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 855 int classzone_idx, int alloc_flags)
1da177e4
LT
856{
857 /* free_pages my go negative - that's OK */
858 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
859 int o;
860
7fb1d9fc 861 if (alloc_flags & ALLOC_HIGH)
1da177e4 862 min -= min / 2;
7fb1d9fc 863 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
864 min -= min / 4;
865
866 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
867 return 0;
868 for (o = 0; o < order; o++) {
869 /* At the next order, this order's pages become unavailable */
870 free_pages -= z->free_area[o].nr_free << o;
871
872 /* Require fewer higher order pages to be free */
873 min >>= 1;
874
875 if (free_pages <= min)
876 return 0;
877 }
878 return 1;
879}
880
7fb1d9fc
RS
881/*
882 * get_page_from_freeliest goes through the zonelist trying to allocate
883 * a page.
884 */
885static struct page *
886get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
887 struct zonelist *zonelist, int alloc_flags)
753ee728 888{
7fb1d9fc
RS
889 struct zone **z = zonelist->zones;
890 struct page *page = NULL;
891 int classzone_idx = zone_idx(*z);
1192d526 892 struct zone *zone;
7fb1d9fc
RS
893
894 /*
895 * Go through the zonelist once, looking for a zone with enough free.
896 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
897 */
898 do {
1192d526 899 zone = *z;
9b819d20 900 if (unlikely((gfp_mask & __GFP_THISNODE) &&
1192d526 901 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
9b819d20 902 break;
7fb1d9fc 903 if ((alloc_flags & ALLOC_CPUSET) &&
1192d526 904 !cpuset_zone_allowed(zone, gfp_mask))
7fb1d9fc
RS
905 continue;
906
907 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
908 unsigned long mark;
909 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 910 mark = zone->pages_min;
3148890b 911 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 912 mark = zone->pages_low;
3148890b 913 else
1192d526
CL
914 mark = zone->pages_high;
915 if (!zone_watermark_ok(zone , order, mark,
7fb1d9fc 916 classzone_idx, alloc_flags))
9eeff239 917 if (!zone_reclaim_mode ||
1192d526 918 !zone_reclaim(zone, gfp_mask, order))
9eeff239 919 continue;
7fb1d9fc
RS
920 }
921
1192d526 922 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
7fb1d9fc 923 if (page) {
7fb1d9fc
RS
924 break;
925 }
926 } while (*(++z) != NULL);
927 return page;
753ee728
MH
928}
929
1da177e4
LT
930/*
931 * This is the 'heart' of the zoned buddy allocator.
932 */
933struct page * fastcall
dd0fc66f 934__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
935 struct zonelist *zonelist)
936{
260b2367 937 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 938 struct zone **z;
1da177e4
LT
939 struct page *page;
940 struct reclaim_state reclaim_state;
941 struct task_struct *p = current;
1da177e4 942 int do_retry;
7fb1d9fc 943 int alloc_flags;
1da177e4
LT
944 int did_some_progress;
945
946 might_sleep_if(wait);
947
6b1de916 948restart:
7fb1d9fc 949 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 950
7fb1d9fc 951 if (unlikely(*z == NULL)) {
1da177e4
LT
952 /* Should this ever happen?? */
953 return NULL;
954 }
6b1de916 955
7fb1d9fc 956 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 957 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
958 if (page)
959 goto got_pg;
1da177e4 960
6b1de916 961 do {
43b0bc00 962 wakeup_kswapd(*z, order);
6b1de916 963 } while (*(++z));
1da177e4 964
9bf2229f 965 /*
7fb1d9fc
RS
966 * OK, we're below the kswapd watermark and have kicked background
967 * reclaim. Now things get more complex, so set up alloc_flags according
968 * to how we want to proceed.
969 *
970 * The caller may dip into page reserves a bit more if the caller
971 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
972 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
973 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 974 */
3148890b 975 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
976 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
977 alloc_flags |= ALLOC_HARDER;
978 if (gfp_mask & __GFP_HIGH)
979 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
980 if (wait)
981 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
982
983 /*
984 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 985 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
986 *
987 * This is the last chance, in general, before the goto nopage.
988 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 989 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 990 */
7fb1d9fc
RS
991 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
992 if (page)
993 goto got_pg;
1da177e4
LT
994
995 /* This allocation should allow future memory freeing. */
b84a35be
NP
996
997 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
998 && !in_interrupt()) {
999 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1000nofail_alloc:
b84a35be 1001 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1002 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1003 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1004 if (page)
1005 goto got_pg;
885036d3
KK
1006 if (gfp_mask & __GFP_NOFAIL) {
1007 blk_congestion_wait(WRITE, HZ/50);
1008 goto nofail_alloc;
1009 }
1da177e4
LT
1010 }
1011 goto nopage;
1012 }
1013
1014 /* Atomic allocations - we can't balance anything */
1015 if (!wait)
1016 goto nopage;
1017
1018rebalance:
1019 cond_resched();
1020
1021 /* We now go into synchronous reclaim */
3e0d98b9 1022 cpuset_memory_pressure_bump();
1da177e4
LT
1023 p->flags |= PF_MEMALLOC;
1024 reclaim_state.reclaimed_slab = 0;
1025 p->reclaim_state = &reclaim_state;
1026
7fb1d9fc 1027 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1028
1029 p->reclaim_state = NULL;
1030 p->flags &= ~PF_MEMALLOC;
1031
1032 cond_resched();
1033
1034 if (likely(did_some_progress)) {
7fb1d9fc
RS
1035 page = get_page_from_freelist(gfp_mask, order,
1036 zonelist, alloc_flags);
1037 if (page)
1038 goto got_pg;
1da177e4
LT
1039 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1040 /*
1041 * Go through the zonelist yet one more time, keep
1042 * very high watermark here, this is only to catch
1043 * a parallel oom killing, we must fail if we're still
1044 * under heavy pressure.
1045 */
7fb1d9fc 1046 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1047 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1048 if (page)
1049 goto got_pg;
1da177e4 1050
9b0f8b04 1051 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1052 goto restart;
1053 }
1054
1055 /*
1056 * Don't let big-order allocations loop unless the caller explicitly
1057 * requests that. Wait for some write requests to complete then retry.
1058 *
1059 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1060 * <= 3, but that may not be true in other implementations.
1061 */
1062 do_retry = 0;
1063 if (!(gfp_mask & __GFP_NORETRY)) {
1064 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1065 do_retry = 1;
1066 if (gfp_mask & __GFP_NOFAIL)
1067 do_retry = 1;
1068 }
1069 if (do_retry) {
1070 blk_congestion_wait(WRITE, HZ/50);
1071 goto rebalance;
1072 }
1073
1074nopage:
1075 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1076 printk(KERN_WARNING "%s: page allocation failure."
1077 " order:%d, mode:0x%x\n",
1078 p->comm, order, gfp_mask);
1079 dump_stack();
578c2fd6 1080 show_mem();
1da177e4 1081 }
1da177e4 1082got_pg:
1da177e4
LT
1083 return page;
1084}
1085
1086EXPORT_SYMBOL(__alloc_pages);
1087
1088/*
1089 * Common helper functions.
1090 */
dd0fc66f 1091fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1092{
1093 struct page * page;
1094 page = alloc_pages(gfp_mask, order);
1095 if (!page)
1096 return 0;
1097 return (unsigned long) page_address(page);
1098}
1099
1100EXPORT_SYMBOL(__get_free_pages);
1101
dd0fc66f 1102fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1103{
1104 struct page * page;
1105
1106 /*
1107 * get_zeroed_page() returns a 32-bit address, which cannot represent
1108 * a highmem page
1109 */
725d704e 1110 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1111
1112 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1113 if (page)
1114 return (unsigned long) page_address(page);
1115 return 0;
1116}
1117
1118EXPORT_SYMBOL(get_zeroed_page);
1119
1120void __pagevec_free(struct pagevec *pvec)
1121{
1122 int i = pagevec_count(pvec);
1123
1124 while (--i >= 0)
1125 free_hot_cold_page(pvec->pages[i], pvec->cold);
1126}
1127
1128fastcall void __free_pages(struct page *page, unsigned int order)
1129{
b5810039 1130 if (put_page_testzero(page)) {
1da177e4
LT
1131 if (order == 0)
1132 free_hot_page(page);
1133 else
1134 __free_pages_ok(page, order);
1135 }
1136}
1137
1138EXPORT_SYMBOL(__free_pages);
1139
1140fastcall void free_pages(unsigned long addr, unsigned int order)
1141{
1142 if (addr != 0) {
725d704e 1143 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1144 __free_pages(virt_to_page((void *)addr), order);
1145 }
1146}
1147
1148EXPORT_SYMBOL(free_pages);
1149
1150/*
1151 * Total amount of free (allocatable) RAM:
1152 */
1153unsigned int nr_free_pages(void)
1154{
1155 unsigned int sum = 0;
1156 struct zone *zone;
1157
1158 for_each_zone(zone)
1159 sum += zone->free_pages;
1160
1161 return sum;
1162}
1163
1164EXPORT_SYMBOL(nr_free_pages);
1165
1166#ifdef CONFIG_NUMA
1167unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1168{
2f6726e5
CL
1169 unsigned int sum = 0;
1170 enum zone_type i;
1da177e4
LT
1171
1172 for (i = 0; i < MAX_NR_ZONES; i++)
1173 sum += pgdat->node_zones[i].free_pages;
1174
1175 return sum;
1176}
1177#endif
1178
1179static unsigned int nr_free_zone_pages(int offset)
1180{
e310fd43
MB
1181 /* Just pick one node, since fallback list is circular */
1182 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1183 unsigned int sum = 0;
1184
e310fd43
MB
1185 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1186 struct zone **zonep = zonelist->zones;
1187 struct zone *zone;
1da177e4 1188
e310fd43
MB
1189 for (zone = *zonep++; zone; zone = *zonep++) {
1190 unsigned long size = zone->present_pages;
1191 unsigned long high = zone->pages_high;
1192 if (size > high)
1193 sum += size - high;
1da177e4
LT
1194 }
1195
1196 return sum;
1197}
1198
1199/*
1200 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1201 */
1202unsigned int nr_free_buffer_pages(void)
1203{
af4ca457 1204 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1205}
1206
1207/*
1208 * Amount of free RAM allocatable within all zones
1209 */
1210unsigned int nr_free_pagecache_pages(void)
1211{
af4ca457 1212 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1213}
1da177e4
LT
1214#ifdef CONFIG_NUMA
1215static void show_node(struct zone *zone)
1216{
1217 printk("Node %d ", zone->zone_pgdat->node_id);
1218}
1219#else
1220#define show_node(zone) do { } while (0)
1221#endif
1222
1da177e4
LT
1223void si_meminfo(struct sysinfo *val)
1224{
1225 val->totalram = totalram_pages;
1226 val->sharedram = 0;
1227 val->freeram = nr_free_pages();
1228 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1229 val->totalhigh = totalhigh_pages;
1230 val->freehigh = nr_free_highpages();
1da177e4
LT
1231 val->mem_unit = PAGE_SIZE;
1232}
1233
1234EXPORT_SYMBOL(si_meminfo);
1235
1236#ifdef CONFIG_NUMA
1237void si_meminfo_node(struct sysinfo *val, int nid)
1238{
1239 pg_data_t *pgdat = NODE_DATA(nid);
1240
1241 val->totalram = pgdat->node_present_pages;
1242 val->freeram = nr_free_pages_pgdat(pgdat);
98d2b0eb 1243#ifdef CONFIG_HIGHMEM
1da177e4
LT
1244 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1245 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
98d2b0eb
CL
1246#else
1247 val->totalhigh = 0;
1248 val->freehigh = 0;
1249#endif
1da177e4
LT
1250 val->mem_unit = PAGE_SIZE;
1251}
1252#endif
1253
1254#define K(x) ((x) << (PAGE_SHIFT-10))
1255
1256/*
1257 * Show free area list (used inside shift_scroll-lock stuff)
1258 * We also calculate the percentage fragmentation. We do this by counting the
1259 * memory on each free list with the exception of the first item on the list.
1260 */
1261void show_free_areas(void)
1262{
1da177e4
LT
1263 int cpu, temperature;
1264 unsigned long active;
1265 unsigned long inactive;
1266 unsigned long free;
1267 struct zone *zone;
1268
1269 for_each_zone(zone) {
1270 show_node(zone);
1271 printk("%s per-cpu:", zone->name);
1272
f3fe6512 1273 if (!populated_zone(zone)) {
1da177e4
LT
1274 printk(" empty\n");
1275 continue;
1276 } else
1277 printk("\n");
1278
6b482c67 1279 for_each_online_cpu(cpu) {
1da177e4
LT
1280 struct per_cpu_pageset *pageset;
1281
e7c8d5c9 1282 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1283
1284 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1285 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1286 cpu,
1287 temperature ? "cold" : "hot",
1da177e4 1288 pageset->pcp[temperature].high,
4ae7c039
CL
1289 pageset->pcp[temperature].batch,
1290 pageset->pcp[temperature].count);
1da177e4
LT
1291 }
1292 }
1293
1da177e4
LT
1294 get_zone_counts(&active, &inactive, &free);
1295
1da177e4
LT
1296 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1297 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1298 active,
1299 inactive,
b1e7a8fd 1300 global_page_state(NR_FILE_DIRTY),
ce866b34 1301 global_page_state(NR_WRITEBACK),
fd39fc85 1302 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1303 nr_free_pages(),
9a865ffa 1304 global_page_state(NR_SLAB),
65ba55f5 1305 global_page_state(NR_FILE_MAPPED),
df849a15 1306 global_page_state(NR_PAGETABLE));
1da177e4
LT
1307
1308 for_each_zone(zone) {
1309 int i;
1310
1311 show_node(zone);
1312 printk("%s"
1313 " free:%lukB"
1314 " min:%lukB"
1315 " low:%lukB"
1316 " high:%lukB"
1317 " active:%lukB"
1318 " inactive:%lukB"
1319 " present:%lukB"
1320 " pages_scanned:%lu"
1321 " all_unreclaimable? %s"
1322 "\n",
1323 zone->name,
1324 K(zone->free_pages),
1325 K(zone->pages_min),
1326 K(zone->pages_low),
1327 K(zone->pages_high),
1328 K(zone->nr_active),
1329 K(zone->nr_inactive),
1330 K(zone->present_pages),
1331 zone->pages_scanned,
1332 (zone->all_unreclaimable ? "yes" : "no")
1333 );
1334 printk("lowmem_reserve[]:");
1335 for (i = 0; i < MAX_NR_ZONES; i++)
1336 printk(" %lu", zone->lowmem_reserve[i]);
1337 printk("\n");
1338 }
1339
1340 for_each_zone(zone) {
8f9de51a 1341 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1342
1343 show_node(zone);
1344 printk("%s: ", zone->name);
f3fe6512 1345 if (!populated_zone(zone)) {
1da177e4
LT
1346 printk("empty\n");
1347 continue;
1348 }
1349
1350 spin_lock_irqsave(&zone->lock, flags);
1351 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1352 nr[order] = zone->free_area[order].nr_free;
1353 total += nr[order] << order;
1da177e4
LT
1354 }
1355 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1356 for (order = 0; order < MAX_ORDER; order++)
1357 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1358 printk("= %lukB\n", K(total));
1359 }
1360
1361 show_swap_cache_info();
1362}
1363
1364/*
1365 * Builds allocation fallback zone lists.
1a93205b
CL
1366 *
1367 * Add all populated zones of a node to the zonelist.
1da177e4 1368 */
86356ab1 1369static int __meminit build_zonelists_node(pg_data_t *pgdat,
2f6726e5 1370 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1da177e4 1371{
1a93205b
CL
1372 struct zone *zone;
1373
98d2b0eb 1374 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1375 zone_type++;
02a68a5e
CL
1376
1377 do {
2f6726e5 1378 zone_type--;
070f8032 1379 zone = pgdat->node_zones + zone_type;
1a93205b 1380 if (populated_zone(zone)) {
070f8032
CL
1381 zonelist->zones[nr_zones++] = zone;
1382 check_highest_zone(zone_type);
1da177e4 1383 }
02a68a5e 1384
2f6726e5 1385 } while (zone_type);
070f8032 1386 return nr_zones;
1da177e4
LT
1387}
1388
1389#ifdef CONFIG_NUMA
1390#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1391static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1392/**
4dc3b16b 1393 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1394 * @node: node whose fallback list we're appending
1395 * @used_node_mask: nodemask_t of already used nodes
1396 *
1397 * We use a number of factors to determine which is the next node that should
1398 * appear on a given node's fallback list. The node should not have appeared
1399 * already in @node's fallback list, and it should be the next closest node
1400 * according to the distance array (which contains arbitrary distance values
1401 * from each node to each node in the system), and should also prefer nodes
1402 * with no CPUs, since presumably they'll have very little allocation pressure
1403 * on them otherwise.
1404 * It returns -1 if no node is found.
1405 */
86356ab1 1406static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1407{
4cf808eb 1408 int n, val;
1da177e4
LT
1409 int min_val = INT_MAX;
1410 int best_node = -1;
1411
4cf808eb
LT
1412 /* Use the local node if we haven't already */
1413 if (!node_isset(node, *used_node_mask)) {
1414 node_set(node, *used_node_mask);
1415 return node;
1416 }
1da177e4 1417
4cf808eb
LT
1418 for_each_online_node(n) {
1419 cpumask_t tmp;
1da177e4
LT
1420
1421 /* Don't want a node to appear more than once */
1422 if (node_isset(n, *used_node_mask))
1423 continue;
1424
1da177e4
LT
1425 /* Use the distance array to find the distance */
1426 val = node_distance(node, n);
1427
4cf808eb
LT
1428 /* Penalize nodes under us ("prefer the next node") */
1429 val += (n < node);
1430
1da177e4
LT
1431 /* Give preference to headless and unused nodes */
1432 tmp = node_to_cpumask(n);
1433 if (!cpus_empty(tmp))
1434 val += PENALTY_FOR_NODE_WITH_CPUS;
1435
1436 /* Slight preference for less loaded node */
1437 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1438 val += node_load[n];
1439
1440 if (val < min_val) {
1441 min_val = val;
1442 best_node = n;
1443 }
1444 }
1445
1446 if (best_node >= 0)
1447 node_set(best_node, *used_node_mask);
1448
1449 return best_node;
1450}
1451
86356ab1 1452static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1453{
19655d34
CL
1454 int j, node, local_node;
1455 enum zone_type i;
1da177e4
LT
1456 int prev_node, load;
1457 struct zonelist *zonelist;
1458 nodemask_t used_mask;
1459
1460 /* initialize zonelists */
19655d34 1461 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1462 zonelist = pgdat->node_zonelists + i;
1463 zonelist->zones[0] = NULL;
1464 }
1465
1466 /* NUMA-aware ordering of nodes */
1467 local_node = pgdat->node_id;
1468 load = num_online_nodes();
1469 prev_node = local_node;
1470 nodes_clear(used_mask);
1471 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1472 int distance = node_distance(local_node, node);
1473
1474 /*
1475 * If another node is sufficiently far away then it is better
1476 * to reclaim pages in a zone before going off node.
1477 */
1478 if (distance > RECLAIM_DISTANCE)
1479 zone_reclaim_mode = 1;
1480
1da177e4
LT
1481 /*
1482 * We don't want to pressure a particular node.
1483 * So adding penalty to the first node in same
1484 * distance group to make it round-robin.
1485 */
9eeff239
CL
1486
1487 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1488 node_load[node] += load;
1489 prev_node = node;
1490 load--;
19655d34 1491 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1492 zonelist = pgdat->node_zonelists + i;
1493 for (j = 0; zonelist->zones[j] != NULL; j++);
1494
19655d34 1495 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1496 zonelist->zones[j] = NULL;
1497 }
1498 }
1499}
1500
1501#else /* CONFIG_NUMA */
1502
86356ab1 1503static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1504{
19655d34
CL
1505 int node, local_node;
1506 enum zone_type i,j;
1da177e4
LT
1507
1508 local_node = pgdat->node_id;
19655d34 1509 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1510 struct zonelist *zonelist;
1511
1512 zonelist = pgdat->node_zonelists + i;
1513
19655d34 1514 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
1515 /*
1516 * Now we build the zonelist so that it contains the zones
1517 * of all the other nodes.
1518 * We don't want to pressure a particular node, so when
1519 * building the zones for node N, we make sure that the
1520 * zones coming right after the local ones are those from
1521 * node N+1 (modulo N)
1522 */
1523 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1524 if (!node_online(node))
1525 continue;
19655d34 1526 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1527 }
1528 for (node = 0; node < local_node; node++) {
1529 if (!node_online(node))
1530 continue;
19655d34 1531 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1532 }
1533
1534 zonelist->zones[j] = NULL;
1535 }
1536}
1537
1538#endif /* CONFIG_NUMA */
1539
6811378e
YG
1540/* return values int ....just for stop_machine_run() */
1541static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1542{
6811378e
YG
1543 int nid;
1544 for_each_online_node(nid)
1545 build_zonelists(NODE_DATA(nid));
1546 return 0;
1547}
1548
1549void __meminit build_all_zonelists(void)
1550{
1551 if (system_state == SYSTEM_BOOTING) {
1552 __build_all_zonelists(0);
1553 cpuset_init_current_mems_allowed();
1554 } else {
1555 /* we have to stop all cpus to guaranntee there is no user
1556 of zonelist */
1557 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1558 /* cpuset refresh routine should be here */
1559 }
bd1e22b8
AM
1560 vm_total_pages = nr_free_pagecache_pages();
1561 printk("Built %i zonelists. Total pages: %ld\n",
1562 num_online_nodes(), vm_total_pages);
1da177e4
LT
1563}
1564
1565/*
1566 * Helper functions to size the waitqueue hash table.
1567 * Essentially these want to choose hash table sizes sufficiently
1568 * large so that collisions trying to wait on pages are rare.
1569 * But in fact, the number of active page waitqueues on typical
1570 * systems is ridiculously low, less than 200. So this is even
1571 * conservative, even though it seems large.
1572 *
1573 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1574 * waitqueues, i.e. the size of the waitq table given the number of pages.
1575 */
1576#define PAGES_PER_WAITQUEUE 256
1577
cca448fe 1578#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1579static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1580{
1581 unsigned long size = 1;
1582
1583 pages /= PAGES_PER_WAITQUEUE;
1584
1585 while (size < pages)
1586 size <<= 1;
1587
1588 /*
1589 * Once we have dozens or even hundreds of threads sleeping
1590 * on IO we've got bigger problems than wait queue collision.
1591 * Limit the size of the wait table to a reasonable size.
1592 */
1593 size = min(size, 4096UL);
1594
1595 return max(size, 4UL);
1596}
cca448fe
YG
1597#else
1598/*
1599 * A zone's size might be changed by hot-add, so it is not possible to determine
1600 * a suitable size for its wait_table. So we use the maximum size now.
1601 *
1602 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1603 *
1604 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1605 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1606 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1607 *
1608 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1609 * or more by the traditional way. (See above). It equals:
1610 *
1611 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1612 * ia64(16K page size) : = ( 8G + 4M)byte.
1613 * powerpc (64K page size) : = (32G +16M)byte.
1614 */
1615static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1616{
1617 return 4096UL;
1618}
1619#endif
1da177e4
LT
1620
1621/*
1622 * This is an integer logarithm so that shifts can be used later
1623 * to extract the more random high bits from the multiplicative
1624 * hash function before the remainder is taken.
1625 */
1626static inline unsigned long wait_table_bits(unsigned long size)
1627{
1628 return ffz(~size);
1629}
1630
1631#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1632
1633static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1634 unsigned long *zones_size, unsigned long *zholes_size)
1635{
1636 unsigned long realtotalpages, totalpages = 0;
2f6726e5 1637 enum zone_type i;
1da177e4
LT
1638
1639 for (i = 0; i < MAX_NR_ZONES; i++)
1640 totalpages += zones_size[i];
1641 pgdat->node_spanned_pages = totalpages;
1642
1643 realtotalpages = totalpages;
1644 if (zholes_size)
1645 for (i = 0; i < MAX_NR_ZONES; i++)
1646 realtotalpages -= zholes_size[i];
1647 pgdat->node_present_pages = realtotalpages;
1648 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1649}
1650
1651
1652/*
1653 * Initially all pages are reserved - free ones are freed
1654 * up by free_all_bootmem() once the early boot process is
1655 * done. Non-atomic initialization, single-pass.
1656 */
c09b4240 1657void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1658 unsigned long start_pfn)
1659{
1da177e4 1660 struct page *page;
29751f69
AW
1661 unsigned long end_pfn = start_pfn + size;
1662 unsigned long pfn;
1da177e4 1663
cbe8dd4a 1664 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1665 if (!early_pfn_valid(pfn))
1666 continue;
1667 page = pfn_to_page(pfn);
1668 set_page_links(page, zone, nid, pfn);
7835e98b 1669 init_page_count(page);
1da177e4
LT
1670 reset_page_mapcount(page);
1671 SetPageReserved(page);
1672 INIT_LIST_HEAD(&page->lru);
1673#ifdef WANT_PAGE_VIRTUAL
1674 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1675 if (!is_highmem_idx(zone))
3212c6be 1676 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1677#endif
1da177e4
LT
1678 }
1679}
1680
1681void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1682 unsigned long size)
1683{
1684 int order;
1685 for (order = 0; order < MAX_ORDER ; order++) {
1686 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1687 zone->free_area[order].nr_free = 0;
1688 }
1689}
1690
d41dee36 1691#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
2f1b6248
CL
1692void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1693 unsigned long pfn, unsigned long size)
d41dee36
AW
1694{
1695 unsigned long snum = pfn_to_section_nr(pfn);
1696 unsigned long end = pfn_to_section_nr(pfn + size);
1697
1698 if (FLAGS_HAS_NODE)
1699 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1700 else
1701 for (; snum <= end; snum++)
1702 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1703}
1704
1da177e4
LT
1705#ifndef __HAVE_ARCH_MEMMAP_INIT
1706#define memmap_init(size, nid, zone, start_pfn) \
1707 memmap_init_zone((size), (nid), (zone), (start_pfn))
1708#endif
1709
6292d9aa 1710static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1711{
1712 int batch;
1713
1714 /*
1715 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1716 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1717 *
1718 * OK, so we don't know how big the cache is. So guess.
1719 */
1720 batch = zone->present_pages / 1024;
ba56e91c
SR
1721 if (batch * PAGE_SIZE > 512 * 1024)
1722 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1723 batch /= 4; /* We effectively *= 4 below */
1724 if (batch < 1)
1725 batch = 1;
1726
1727 /*
0ceaacc9
NP
1728 * Clamp the batch to a 2^n - 1 value. Having a power
1729 * of 2 value was found to be more likely to have
1730 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1731 *
0ceaacc9
NP
1732 * For example if 2 tasks are alternately allocating
1733 * batches of pages, one task can end up with a lot
1734 * of pages of one half of the possible page colors
1735 * and the other with pages of the other colors.
e7c8d5c9 1736 */
0ceaacc9 1737 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1738
e7c8d5c9
CL
1739 return batch;
1740}
1741
2caaad41
CL
1742inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1743{
1744 struct per_cpu_pages *pcp;
1745
1c6fe946
MD
1746 memset(p, 0, sizeof(*p));
1747
2caaad41
CL
1748 pcp = &p->pcp[0]; /* hot */
1749 pcp->count = 0;
2caaad41
CL
1750 pcp->high = 6 * batch;
1751 pcp->batch = max(1UL, 1 * batch);
1752 INIT_LIST_HEAD(&pcp->list);
1753
1754 pcp = &p->pcp[1]; /* cold*/
1755 pcp->count = 0;
2caaad41 1756 pcp->high = 2 * batch;
e46a5e28 1757 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1758 INIT_LIST_HEAD(&pcp->list);
1759}
1760
8ad4b1fb
RS
1761/*
1762 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1763 * to the value high for the pageset p.
1764 */
1765
1766static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1767 unsigned long high)
1768{
1769 struct per_cpu_pages *pcp;
1770
1771 pcp = &p->pcp[0]; /* hot list */
1772 pcp->high = high;
1773 pcp->batch = max(1UL, high/4);
1774 if ((high/4) > (PAGE_SHIFT * 8))
1775 pcp->batch = PAGE_SHIFT * 8;
1776}
1777
1778
e7c8d5c9
CL
1779#ifdef CONFIG_NUMA
1780/*
2caaad41
CL
1781 * Boot pageset table. One per cpu which is going to be used for all
1782 * zones and all nodes. The parameters will be set in such a way
1783 * that an item put on a list will immediately be handed over to
1784 * the buddy list. This is safe since pageset manipulation is done
1785 * with interrupts disabled.
1786 *
1787 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1788 *
1789 * The boot_pagesets must be kept even after bootup is complete for
1790 * unused processors and/or zones. They do play a role for bootstrapping
1791 * hotplugged processors.
1792 *
1793 * zoneinfo_show() and maybe other functions do
1794 * not check if the processor is online before following the pageset pointer.
1795 * Other parts of the kernel may not check if the zone is available.
2caaad41 1796 */
88a2a4ac 1797static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1798
1799/*
1800 * Dynamically allocate memory for the
e7c8d5c9
CL
1801 * per cpu pageset array in struct zone.
1802 */
6292d9aa 1803static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1804{
1805 struct zone *zone, *dzone;
e7c8d5c9
CL
1806
1807 for_each_zone(zone) {
e7c8d5c9 1808
23316bc8 1809 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1810 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1811 if (!zone_pcp(zone, cpu))
e7c8d5c9 1812 goto bad;
e7c8d5c9 1813
23316bc8 1814 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1815
1816 if (percpu_pagelist_fraction)
1817 setup_pagelist_highmark(zone_pcp(zone, cpu),
1818 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1819 }
1820
1821 return 0;
1822bad:
1823 for_each_zone(dzone) {
1824 if (dzone == zone)
1825 break;
23316bc8
NP
1826 kfree(zone_pcp(dzone, cpu));
1827 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1828 }
1829 return -ENOMEM;
1830}
1831
1832static inline void free_zone_pagesets(int cpu)
1833{
e7c8d5c9
CL
1834 struct zone *zone;
1835
1836 for_each_zone(zone) {
1837 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1838
f3ef9ead
DR
1839 /* Free per_cpu_pageset if it is slab allocated */
1840 if (pset != &boot_pageset[cpu])
1841 kfree(pset);
e7c8d5c9 1842 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 1843 }
e7c8d5c9
CL
1844}
1845
9c7b216d 1846static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1847 unsigned long action,
1848 void *hcpu)
1849{
1850 int cpu = (long)hcpu;
1851 int ret = NOTIFY_OK;
1852
1853 switch (action) {
1854 case CPU_UP_PREPARE:
1855 if (process_zones(cpu))
1856 ret = NOTIFY_BAD;
1857 break;
b0d41693 1858 case CPU_UP_CANCELED:
e7c8d5c9
CL
1859 case CPU_DEAD:
1860 free_zone_pagesets(cpu);
1861 break;
e7c8d5c9
CL
1862 default:
1863 break;
1864 }
1865 return ret;
1866}
1867
74b85f37 1868static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
1869 { &pageset_cpuup_callback, NULL, 0 };
1870
78d9955b 1871void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1872{
1873 int err;
1874
1875 /* Initialize per_cpu_pageset for cpu 0.
1876 * A cpuup callback will do this for every cpu
1877 * as it comes online
1878 */
1879 err = process_zones(smp_processor_id());
1880 BUG_ON(err);
1881 register_cpu_notifier(&pageset_notifier);
1882}
1883
1884#endif
1885
c09b4240 1886static __meminit
cca448fe 1887int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
1888{
1889 int i;
1890 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 1891 size_t alloc_size;
ed8ece2e
DH
1892
1893 /*
1894 * The per-page waitqueue mechanism uses hashed waitqueues
1895 * per zone.
1896 */
02b694de
YG
1897 zone->wait_table_hash_nr_entries =
1898 wait_table_hash_nr_entries(zone_size_pages);
1899 zone->wait_table_bits =
1900 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
1901 alloc_size = zone->wait_table_hash_nr_entries
1902 * sizeof(wait_queue_head_t);
1903
1904 if (system_state == SYSTEM_BOOTING) {
1905 zone->wait_table = (wait_queue_head_t *)
1906 alloc_bootmem_node(pgdat, alloc_size);
1907 } else {
1908 /*
1909 * This case means that a zone whose size was 0 gets new memory
1910 * via memory hot-add.
1911 * But it may be the case that a new node was hot-added. In
1912 * this case vmalloc() will not be able to use this new node's
1913 * memory - this wait_table must be initialized to use this new
1914 * node itself as well.
1915 * To use this new node's memory, further consideration will be
1916 * necessary.
1917 */
1918 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1919 }
1920 if (!zone->wait_table)
1921 return -ENOMEM;
ed8ece2e 1922
02b694de 1923 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 1924 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
1925
1926 return 0;
ed8ece2e
DH
1927}
1928
c09b4240 1929static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1930{
1931 int cpu;
1932 unsigned long batch = zone_batchsize(zone);
1933
1934 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1935#ifdef CONFIG_NUMA
1936 /* Early boot. Slab allocator not functional yet */
23316bc8 1937 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1938 setup_pageset(&boot_pageset[cpu],0);
1939#else
1940 setup_pageset(zone_pcp(zone,cpu), batch);
1941#endif
1942 }
f5335c0f
AB
1943 if (zone->present_pages)
1944 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1945 zone->name, zone->present_pages, batch);
ed8ece2e
DH
1946}
1947
718127cc
YG
1948__meminit int init_currently_empty_zone(struct zone *zone,
1949 unsigned long zone_start_pfn,
1950 unsigned long size)
ed8ece2e
DH
1951{
1952 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
1953 int ret;
1954 ret = zone_wait_table_init(zone, size);
1955 if (ret)
1956 return ret;
ed8ece2e
DH
1957 pgdat->nr_zones = zone_idx(zone) + 1;
1958
ed8ece2e
DH
1959 zone->zone_start_pfn = zone_start_pfn;
1960
1961 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1962
1963 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
1964
1965 return 0;
ed8ece2e
DH
1966}
1967
1da177e4
LT
1968/*
1969 * Set up the zone data structures:
1970 * - mark all pages reserved
1971 * - mark all memory queues empty
1972 * - clear the memory bitmaps
1973 */
86356ab1 1974static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
1975 unsigned long *zones_size, unsigned long *zholes_size)
1976{
2f1b6248 1977 enum zone_type j;
ed8ece2e 1978 int nid = pgdat->node_id;
1da177e4 1979 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 1980 int ret;
1da177e4 1981
208d54e5 1982 pgdat_resize_init(pgdat);
1da177e4
LT
1983 pgdat->nr_zones = 0;
1984 init_waitqueue_head(&pgdat->kswapd_wait);
1985 pgdat->kswapd_max_order = 0;
1986
1987 for (j = 0; j < MAX_NR_ZONES; j++) {
1988 struct zone *zone = pgdat->node_zones + j;
1989 unsigned long size, realsize;
1da177e4 1990
1da177e4
LT
1991 realsize = size = zones_size[j];
1992 if (zholes_size)
1993 realsize -= zholes_size[j];
1994
98d2b0eb 1995 if (!is_highmem_idx(j))
1da177e4
LT
1996 nr_kernel_pages += realsize;
1997 nr_all_pages += realsize;
1998
1999 zone->spanned_pages = size;
2000 zone->present_pages = realsize;
9614634f
CL
2001#ifdef CONFIG_NUMA
2002 zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
2003 / 100;
2004#endif
1da177e4
LT
2005 zone->name = zone_names[j];
2006 spin_lock_init(&zone->lock);
2007 spin_lock_init(&zone->lru_lock);
bdc8cb98 2008 zone_seqlock_init(zone);
1da177e4
LT
2009 zone->zone_pgdat = pgdat;
2010 zone->free_pages = 0;
2011
2012 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2013
ed8ece2e 2014 zone_pcp_init(zone);
1da177e4
LT
2015 INIT_LIST_HEAD(&zone->active_list);
2016 INIT_LIST_HEAD(&zone->inactive_list);
2017 zone->nr_scan_active = 0;
2018 zone->nr_scan_inactive = 0;
2019 zone->nr_active = 0;
2020 zone->nr_inactive = 0;
2244b95a 2021 zap_zone_vm_stats(zone);
53e9a615 2022 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2023 if (!size)
2024 continue;
2025
d41dee36 2026 zonetable_add(zone, nid, j, zone_start_pfn, size);
718127cc
YG
2027 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2028 BUG_ON(ret);
1da177e4 2029 zone_start_pfn += size;
1da177e4
LT
2030 }
2031}
2032
2033static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2034{
1da177e4
LT
2035 /* Skip empty nodes */
2036 if (!pgdat->node_spanned_pages)
2037 return;
2038
d41dee36 2039#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2040 /* ia64 gets its own node_mem_map, before this, without bootmem */
2041 if (!pgdat->node_mem_map) {
e984bb43 2042 unsigned long size, start, end;
d41dee36
AW
2043 struct page *map;
2044
e984bb43
BP
2045 /*
2046 * The zone's endpoints aren't required to be MAX_ORDER
2047 * aligned but the node_mem_map endpoints must be in order
2048 * for the buddy allocator to function correctly.
2049 */
2050 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2051 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2052 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2053 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2054 map = alloc_remap(pgdat->node_id, size);
2055 if (!map)
2056 map = alloc_bootmem_node(pgdat, size);
e984bb43 2057 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2058 }
d41dee36 2059#ifdef CONFIG_FLATMEM
1da177e4
LT
2060 /*
2061 * With no DISCONTIG, the global mem_map is just set as node 0's
2062 */
2063 if (pgdat == NODE_DATA(0))
2064 mem_map = NODE_DATA(0)->node_mem_map;
2065#endif
d41dee36 2066#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2067}
2068
86356ab1 2069void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2070 unsigned long *zones_size, unsigned long node_start_pfn,
2071 unsigned long *zholes_size)
2072{
2073 pgdat->node_id = nid;
2074 pgdat->node_start_pfn = node_start_pfn;
2075 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2076
2077 alloc_node_mem_map(pgdat);
2078
2079 free_area_init_core(pgdat, zones_size, zholes_size);
2080}
2081
93b7504e 2082#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2083static bootmem_data_t contig_bootmem_data;
2084struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2085
2086EXPORT_SYMBOL(contig_page_data);
93b7504e 2087#endif
1da177e4
LT
2088
2089void __init free_area_init(unsigned long *zones_size)
2090{
93b7504e 2091 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2092 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2093}
1da177e4 2094
1da177e4
LT
2095#ifdef CONFIG_HOTPLUG_CPU
2096static int page_alloc_cpu_notify(struct notifier_block *self,
2097 unsigned long action, void *hcpu)
2098{
2099 int cpu = (unsigned long)hcpu;
1da177e4
LT
2100
2101 if (action == CPU_DEAD) {
1da177e4
LT
2102 local_irq_disable();
2103 __drain_pages(cpu);
f8891e5e 2104 vm_events_fold_cpu(cpu);
1da177e4 2105 local_irq_enable();
2244b95a 2106 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2107 }
2108 return NOTIFY_OK;
2109}
2110#endif /* CONFIG_HOTPLUG_CPU */
2111
2112void __init page_alloc_init(void)
2113{
2114 hotcpu_notifier(page_alloc_cpu_notify, 0);
2115}
2116
cb45b0e9
HA
2117/*
2118 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2119 * or min_free_kbytes changes.
2120 */
2121static void calculate_totalreserve_pages(void)
2122{
2123 struct pglist_data *pgdat;
2124 unsigned long reserve_pages = 0;
2f6726e5 2125 enum zone_type i, j;
cb45b0e9
HA
2126
2127 for_each_online_pgdat(pgdat) {
2128 for (i = 0; i < MAX_NR_ZONES; i++) {
2129 struct zone *zone = pgdat->node_zones + i;
2130 unsigned long max = 0;
2131
2132 /* Find valid and maximum lowmem_reserve in the zone */
2133 for (j = i; j < MAX_NR_ZONES; j++) {
2134 if (zone->lowmem_reserve[j] > max)
2135 max = zone->lowmem_reserve[j];
2136 }
2137
2138 /* we treat pages_high as reserved pages. */
2139 max += zone->pages_high;
2140
2141 if (max > zone->present_pages)
2142 max = zone->present_pages;
2143 reserve_pages += max;
2144 }
2145 }
2146 totalreserve_pages = reserve_pages;
2147}
2148
1da177e4
LT
2149/*
2150 * setup_per_zone_lowmem_reserve - called whenever
2151 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2152 * has a correct pages reserved value, so an adequate number of
2153 * pages are left in the zone after a successful __alloc_pages().
2154 */
2155static void setup_per_zone_lowmem_reserve(void)
2156{
2157 struct pglist_data *pgdat;
2f6726e5 2158 enum zone_type j, idx;
1da177e4 2159
ec936fc5 2160 for_each_online_pgdat(pgdat) {
1da177e4
LT
2161 for (j = 0; j < MAX_NR_ZONES; j++) {
2162 struct zone *zone = pgdat->node_zones + j;
2163 unsigned long present_pages = zone->present_pages;
2164
2165 zone->lowmem_reserve[j] = 0;
2166
2f6726e5
CL
2167 idx = j;
2168 while (idx) {
1da177e4
LT
2169 struct zone *lower_zone;
2170
2f6726e5
CL
2171 idx--;
2172
1da177e4
LT
2173 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2174 sysctl_lowmem_reserve_ratio[idx] = 1;
2175
2176 lower_zone = pgdat->node_zones + idx;
2177 lower_zone->lowmem_reserve[j] = present_pages /
2178 sysctl_lowmem_reserve_ratio[idx];
2179 present_pages += lower_zone->present_pages;
2180 }
2181 }
2182 }
cb45b0e9
HA
2183
2184 /* update totalreserve_pages */
2185 calculate_totalreserve_pages();
1da177e4
LT
2186}
2187
2188/*
2189 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2190 * that the pages_{min,low,high} values for each zone are set correctly
2191 * with respect to min_free_kbytes.
2192 */
3947be19 2193void setup_per_zone_pages_min(void)
1da177e4
LT
2194{
2195 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2196 unsigned long lowmem_pages = 0;
2197 struct zone *zone;
2198 unsigned long flags;
2199
2200 /* Calculate total number of !ZONE_HIGHMEM pages */
2201 for_each_zone(zone) {
2202 if (!is_highmem(zone))
2203 lowmem_pages += zone->present_pages;
2204 }
2205
2206 for_each_zone(zone) {
ac924c60
AM
2207 u64 tmp;
2208
1da177e4 2209 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
2210 tmp = (u64)pages_min * zone->present_pages;
2211 do_div(tmp, lowmem_pages);
1da177e4
LT
2212 if (is_highmem(zone)) {
2213 /*
669ed175
NP
2214 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2215 * need highmem pages, so cap pages_min to a small
2216 * value here.
2217 *
2218 * The (pages_high-pages_low) and (pages_low-pages_min)
2219 * deltas controls asynch page reclaim, and so should
2220 * not be capped for highmem.
1da177e4
LT
2221 */
2222 int min_pages;
2223
2224 min_pages = zone->present_pages / 1024;
2225 if (min_pages < SWAP_CLUSTER_MAX)
2226 min_pages = SWAP_CLUSTER_MAX;
2227 if (min_pages > 128)
2228 min_pages = 128;
2229 zone->pages_min = min_pages;
2230 } else {
669ed175
NP
2231 /*
2232 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2233 * proportionate to the zone's size.
2234 */
669ed175 2235 zone->pages_min = tmp;
1da177e4
LT
2236 }
2237
ac924c60
AM
2238 zone->pages_low = zone->pages_min + (tmp >> 2);
2239 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
2240 spin_unlock_irqrestore(&zone->lru_lock, flags);
2241 }
cb45b0e9
HA
2242
2243 /* update totalreserve_pages */
2244 calculate_totalreserve_pages();
1da177e4
LT
2245}
2246
2247/*
2248 * Initialise min_free_kbytes.
2249 *
2250 * For small machines we want it small (128k min). For large machines
2251 * we want it large (64MB max). But it is not linear, because network
2252 * bandwidth does not increase linearly with machine size. We use
2253 *
2254 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2255 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2256 *
2257 * which yields
2258 *
2259 * 16MB: 512k
2260 * 32MB: 724k
2261 * 64MB: 1024k
2262 * 128MB: 1448k
2263 * 256MB: 2048k
2264 * 512MB: 2896k
2265 * 1024MB: 4096k
2266 * 2048MB: 5792k
2267 * 4096MB: 8192k
2268 * 8192MB: 11584k
2269 * 16384MB: 16384k
2270 */
2271static int __init init_per_zone_pages_min(void)
2272{
2273 unsigned long lowmem_kbytes;
2274
2275 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2276
2277 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2278 if (min_free_kbytes < 128)
2279 min_free_kbytes = 128;
2280 if (min_free_kbytes > 65536)
2281 min_free_kbytes = 65536;
2282 setup_per_zone_pages_min();
2283 setup_per_zone_lowmem_reserve();
2284 return 0;
2285}
2286module_init(init_per_zone_pages_min)
2287
2288/*
2289 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2290 * that we can call two helper functions whenever min_free_kbytes
2291 * changes.
2292 */
2293int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2294 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2295{
2296 proc_dointvec(table, write, file, buffer, length, ppos);
2297 setup_per_zone_pages_min();
2298 return 0;
2299}
2300
9614634f
CL
2301#ifdef CONFIG_NUMA
2302int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2303 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2304{
2305 struct zone *zone;
2306 int rc;
2307
2308 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2309 if (rc)
2310 return rc;
2311
2312 for_each_zone(zone)
2313 zone->min_unmapped_ratio = (zone->present_pages *
2314 sysctl_min_unmapped_ratio) / 100;
2315 return 0;
2316}
2317#endif
2318
1da177e4
LT
2319/*
2320 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2321 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2322 * whenever sysctl_lowmem_reserve_ratio changes.
2323 *
2324 * The reserve ratio obviously has absolutely no relation with the
2325 * pages_min watermarks. The lowmem reserve ratio can only make sense
2326 * if in function of the boot time zone sizes.
2327 */
2328int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2329 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2330{
2331 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2332 setup_per_zone_lowmem_reserve();
2333 return 0;
2334}
2335
8ad4b1fb
RS
2336/*
2337 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2338 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2339 * can have before it gets flushed back to buddy allocator.
2340 */
2341
2342int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2343 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2344{
2345 struct zone *zone;
2346 unsigned int cpu;
2347 int ret;
2348
2349 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2350 if (!write || (ret == -EINVAL))
2351 return ret;
2352 for_each_zone(zone) {
2353 for_each_online_cpu(cpu) {
2354 unsigned long high;
2355 high = zone->present_pages / percpu_pagelist_fraction;
2356 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2357 }
2358 }
2359 return 0;
2360}
2361
f034b5d4 2362int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
2363
2364#ifdef CONFIG_NUMA
2365static int __init set_hashdist(char *str)
2366{
2367 if (!str)
2368 return 0;
2369 hashdist = simple_strtoul(str, &str, 0);
2370 return 1;
2371}
2372__setup("hashdist=", set_hashdist);
2373#endif
2374
2375/*
2376 * allocate a large system hash table from bootmem
2377 * - it is assumed that the hash table must contain an exact power-of-2
2378 * quantity of entries
2379 * - limit is the number of hash buckets, not the total allocation size
2380 */
2381void *__init alloc_large_system_hash(const char *tablename,
2382 unsigned long bucketsize,
2383 unsigned long numentries,
2384 int scale,
2385 int flags,
2386 unsigned int *_hash_shift,
2387 unsigned int *_hash_mask,
2388 unsigned long limit)
2389{
2390 unsigned long long max = limit;
2391 unsigned long log2qty, size;
2392 void *table = NULL;
2393
2394 /* allow the kernel cmdline to have a say */
2395 if (!numentries) {
2396 /* round applicable memory size up to nearest megabyte */
2397 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2398 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2399 numentries >>= 20 - PAGE_SHIFT;
2400 numentries <<= 20 - PAGE_SHIFT;
2401
2402 /* limit to 1 bucket per 2^scale bytes of low memory */
2403 if (scale > PAGE_SHIFT)
2404 numentries >>= (scale - PAGE_SHIFT);
2405 else
2406 numentries <<= (PAGE_SHIFT - scale);
2407 }
6e692ed3 2408 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2409
2410 /* limit allocation size to 1/16 total memory by default */
2411 if (max == 0) {
2412 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2413 do_div(max, bucketsize);
2414 }
2415
2416 if (numentries > max)
2417 numentries = max;
2418
2419 log2qty = long_log2(numentries);
2420
2421 do {
2422 size = bucketsize << log2qty;
2423 if (flags & HASH_EARLY)
2424 table = alloc_bootmem(size);
2425 else if (hashdist)
2426 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2427 else {
2428 unsigned long order;
2429 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2430 ;
2431 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2432 }
2433 } while (!table && size > PAGE_SIZE && --log2qty);
2434
2435 if (!table)
2436 panic("Failed to allocate %s hash table\n", tablename);
2437
2438 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2439 tablename,
2440 (1U << log2qty),
2441 long_log2(size) - PAGE_SHIFT,
2442 size);
2443
2444 if (_hash_shift)
2445 *_hash_shift = log2qty;
2446 if (_hash_mask)
2447 *_hash_mask = (1 << log2qty) - 1;
2448
2449 return table;
2450}
a117e66e
KH
2451
2452#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
2453struct page *pfn_to_page(unsigned long pfn)
2454{
67de6482 2455 return __pfn_to_page(pfn);
a117e66e
KH
2456}
2457unsigned long page_to_pfn(struct page *page)
2458{
67de6482 2459 return __page_to_pfn(page);
a117e66e 2460}
a117e66e
KH
2461EXPORT_SYMBOL(pfn_to_page);
2462EXPORT_SYMBOL(page_to_pfn);
2463#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
This page took 0.320039 seconds and 5 git commands to generate.